KIT | KIT-Bibliothek | Impressum | Datenschutz

Comparison of CNNs and Vision Transformers-Based Hybrid Models Using Gradient Profile Loss for Classification of Oil Spills in SAR Images

Basit, Abdul ; Siddique, Muhammad Adnan; Bhatti, Muhammad Khurram; Sarfraz, Muhammad Saquib 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Oil spillage over a sea or ocean surface is a threat to marine and coastal ecosystems. Spaceborne synthetic aperture radar (SAR) data have been used efficiently for the detection of oil spills due to their operational capability in all-day all-weather conditions. The problem is often modeled as a semantic segmentation task. The images need to be segmented into multiple regions of interest such as sea surface, oil spill, lookalikes, ships, and land. Training of a classifier for this task is particularly challenging since there is an inherent class imbalance. In this work, we train a convolutional neural network (CNN) with multiple feature extractors for pixel-wise classification and introduce a new loss function, namely, “gradient profile” (GP) loss, which is in fact the constituent of the more generic spatial profile loss proposed for image translation problems. For the purpose of training, testing, and performance evaluation, we use a publicly available dataset with selected oil spill events verified by the European Maritime Safety Agency (EMSA). The results obtained show that the proposed CNN trained with a combination of GP, Jaccard, and focal loss functions can detect oil spills with an intersection over union (IoU) value of 63.95%. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000146509
Veröffentlicht am 18.05.2022
Originalveröffentlichung
DOI: 10.3390/rs14092085
Scopus
Zitationen: 19
Web of Science
Zitationen: 14
Dimensions
Zitationen: 18
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2072-4292
KITopen-ID: 1000146509
Erschienen in Remote Sensing
Verlag MDPI
Band 14
Heft 9
Seiten Art.-Nr.: 2085
Vorab online veröffentlicht am 26.04.2022
Schlagwörter oil spills; synthetic aperture radar (SAR); deep convolutional neural networks (DCNNs); vision transformers (ViTs); deep learning; semantic segmentation; marine pollution; remote sensing
Nachgewiesen in Web of Science
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 14 – Leben unter Wasser
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page