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Alliage à mémoire de forme 
Modélisation de matériau 
Simulation de système 
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A B S T R A C T   

Elastocaloric cooling systems may offer a potentially more efficient as well as environmentally friendly alter-
native to compressor-based cooling technology. These cooling systems use stress-induced phase transformation 
in elastocaloric materials to pump heat. Thermodynamically consistent material models can be used to design 
and quantify the efficiency of these cooling systems. In this paper, we present a phenomenological material 
model that depicts the behavior of first-order materials during stress-induced phase transformation. This model is 
based on a phenomenological heat capacity equation, from which the parameters adiabatic temperature change 
and isothermal entropy can be derived. Hysteresis of the materials, which determines it dissipative effects, is also 
taken into account. Based on this model, these parameters can be calculated as a function of stress and tem-
perature. The performance coefficients derived from the model can be used to evaluate the materials efficiency. 
Furthermore, the data obtained using this model coincided very closely with experimental data.    

Nomenclature 
Roman  
c0 specific baseline heat capacity [J kg− 1K− 1] 
cp heat capacity [J kg− 1K− 1] 
COPMat coefficient of performance for material [-] 
FOM figure of merit [-] 
h specific enthalpy [m2s− 2] 
E Young’s-modul [MPa] 
qdiss specific dissipative energy [J kg− 1] 
S entropy [J K− 1] 
s specific entropy [J kg− 1K− 1] 
siso specific, isothermal entropy change of the caloric material 

[J kg− 1K− 1] 
T temperature [K] 
T0 peak temperature of specific heat capacitance with no 

external field [K] 
ΔTad adiabatic temperature change [K] 
ΔTad,rev reversible, adiabatic temperature change [K] 

Tσmax temperature at maximum stress [K] 
ΔThys thermal hysteresis [K] 
Tirr irreversibility of the adiabatic temperature change [K] 
TS start temperature for integration [K] 
W weighting factor [-] 
X phase composition [-] 
Greek letters 
α model parameter corresponding to the peak width [K] 
β model parameter corresponding to the shift of the peak per 

applied field [K MPa− 1] 
σ stress [MPa] 
δ error 
ε strain [-] 
ρ density [kg m− 3] 
Subscripts 
a austenite 
elastic elastic part of the strain 
loading loading of the elastocaloric material 
m martensite 
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max maximal 
min minimal 
pseudoelastic pseudoelastic part of the strain 
rev reversible 
unloading unloading of the elastocaloric material 
Acronyms 
DSC differential scanning calorimetry 
Ni nickel 
Ti titanium 

1. Introduction 

When it comes to covering the growing demand for cooling tech-
nology, elastocaloric cooling technologies may offer an environmentally 
friendly, and potentially more efficient, alternative to compressor-based 
cooling technology (Goetzler et al., 2014). At present these elastocaloric 
cooling systems are based on materials that are already used in medical 
technology or in actuating elements as shape-memory alloys. A revers-
ible structural transformation from austenite to martensite can be 
induced in these materials by applying a load. During this exothermal 
process, the material heats up and then releases this heat into its sur-
roundings. Once the load is removed, the material will transform back 
into its original lattice structure, cooling down to below the ambient 
temperature and absorbing heat from the surrounding environment. 
This reversible process is known as an “elastocaloric effect” (Kitanovski 
et al., 2015), with adiabatic temperature changes of up to 25 K possible 
(Chen et al., 2019). By repeating this process cyclically, heat can be 
pumped from a cold to a hot reservoir. Initial prototypes of these kinds of 
elastocaloric cooling systems have already been developed (Bruederlin 
et al., 2019; Kirsch et al., 2018; Snodgrass and Erickson, 2019; Tušek 
et al., 2015). For simulation-based system optimization and prediction 
of the efficiency, thermodynamically consistent material models are 
required which are based on fundamental equations of thermodynamics. 

In this paper, we present a material model that can be used to 
calculate adiabatic temperature changes, isothermal entropy change 
and material strain. This model also takes into account hysteresis losses 
occurring during the transformation process. On this basis conclusions 
regarding the efficiency of the materials can be drawn. The results of this 
model were compared with experimental data to confirm its validity. 

2. The theory behind elastocaloric phase transitions 

Phase transitions in caloric materials can be categorized into first- 
and second-order type (Smith et al., 2012). For elastocalorics, first-order 
materials tend to be used since these undergo greater entropy and 
temperature changes during the phase transition. In the case of 
first-order materials, the heat capacity peak shifts to higher tempera-
tures when mechanical stress σ is applied (Hess et al., 2020). This shift in 
the transformation temperature is represented by σβ, where β corre-
sponds to the multiplicative inverse of the Clausius–Clapeyron coeffi-
cient. The shape of the curve resulting from this shift remains virtually 
identical, however. 

First-order transformation in elastocaloric materials is usually asso-
ciated with a hysteretic behavior (Masche et al., 2020). Because of this 
hysteresis, the material heats up irreversibly during the transformation. 
At the same time, hysteresis causes the heat capacity temperature peak 
to shift symmetrically by ±ΔThys

2 during the transformation (ca− m) and 
reverse transformation (cm− a), as shown in Fig. 1. 

3. Material models from literature 

Initial models on the behavior of this phase transition describe stress 
σ as a function of strain ε, temperature T, the fraction of martensite and 

Young’s moduli and apply to both the elastocaloric effect and the shape 
memory effect (Brinson and Huang, 1996; Lagoudas, 2008; Liang and 
Rogers, 1990; Tanaka et al., 1995; Tanaka, 1986). 

Many models for elastocaloric materials are based on Maxwell’s re-
lations (Bonnot et al., 2008; Gràcia-Condal et al., 2018; Pataky et al., 
2015; Tušek et al., 2016; Xiao et al., 2013) and use entropy change δS to 
calculate the adiabatic temperature change. 
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To identify the output values for Maxwell’s relations (Eq. (1) and Eq. 
(2)), strain measurements need to be carried out with different me-
chanical loads (stresses) (Chen et al., 2019; Gràcia-Condal et al., 2018; 
Pataky et al., 2015; Xiao et al., 2013) or by varying the material tem-
perature (Chen et al., 2019). Bonnot et al. (2008) and Tušek et al., 
(2016) also established equations pertaining to strain, enabling the 
adiabatic temperature change to be specified as a function of stress and 
temperature. Furthermore, the isothermal entropy change can also be 
determined using the heat capacity from DSC (differential scanning 
calorimetry) measurements (Pataky et al., 2015) or by measuring the 
Clausius–Clapeyron coefficients, i.e. the change in transformation stress 
with respect to temperature (Chluba et al., 2016; Mañosa et al., 2013). 

Models frequently overestimate the adiabatic temperature change 
(Chen et al., 2019; Pataky et al., 2015; Tušek et al., 2016; Xiao et al., 
2013) compared to the measurement. This may be due to less-than-ideal 
adiabatic measurements in the laboratory or an incomplete phase 
transformation in the material (Tušek et al., 2016). 

In addition, dissipation effects cause an entropy increase during the 
load cycle (Bonnot et al., 2008). These effects can be attributed to ma-
terial hysteresis, among other things, and lead to an irreversible tem-
perature change ΔTirr, which can be calculated using stress/strain 
measurements (Hess et al., 2020; Tušek et al., 2016). Moreover, hys-
teresis can also be taken into account in a thermodynamically consistent 
manner by adapting the input parameters for calculating the elasto-
caloric effect during loading and unloading (Chen et al., 2019; 
Gràcia-Condal et al., 2018; Pataky et al., 2015; Tušek et al., 2016; Xiao 
et al., 2013). 

Fig. 1. Shift in the heat capacity peak temperature as a result of applied stress 
and hysteresis: the dashed lines show the shift to a higher temperature caused 
by the stress applied, while the shift due to hysteresis is represented by the solid 
lines. The heat capacity during the phase transformation from austenite (a) to 
martensite (m) is shown in red (ca− m), while the reverse transformation (cm− a) is 
shown in blue. 
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Hess et al. (2019) developed a phenomenological model for mag-
netocalorics. This model describes heat capacity using a Cauchy-Lorentz 
function based on the temperature and the field applied. This can be 
used to calculate the adiabatic temperature change ΔTad and the 
isothermal entropy change Δsiso. 

This model can be expanded to include the thermal hysteresis effect 
of heat capacity ΔThys. The resulting dissipative heat qdiss corresponds to 
the enclosed area between the strain curve during loading, εloading, and 
unloading, εunloading, in the stress-strain graph normalized with the 
density (Hess et al., 2020). 

4. Elastocaloric material model 

The model presented in this paper is based on the material model by 
Hess et al. (2019). This model cannot be applied directly to elasto-
calorics, however, as the peak of the heat capacity as a function of 
temperature for elastocaloric materials is much wider than for magne-
tocaloric materials. The heat capacity equation was therefore adapted to 
ensure that it is constant when far away from the temperature of the 
transformation peak. Furthermore, the strain for elastocalorics was 
calculated based on the field applied using Maxwell’s relations (Eq. (2)). 
This equation consists of an elastic and a pseudoelastic part. The model 
also reflects incomplete phase transformations. The equations for the 
model are first specified for a completely reversible phase trans-
formation and then expanded to include the effect of hysteresis. 

This model has been adapted for elastocalorics as follows. The heat 
capacity equation is used to derive the equations for isothermal entropy 
change Δsiso, adiabatic temperature change ΔTad, dissipative energy 
qdiss and strain ε. These equations can be used to describe loading and 
unloading with the hysteresis effect. The model will then be compared 
with the measured values. Material efficiency will also be considered. 

4.1. Heat capacity 

The heat capacity of an elastocaloric material as a function of tem-
perature T and stress σ can be described using a Cauchy-Lorentz func-
tion: 

cp(T, σ) =
Δsmax

iso

π
α T

α2 + [T − (T0 + β σ)]2
+ c0 (3) 

This function reaches its peak at temperature T0 (Fig. 2). Here, c0 is 
the heat capacity at a temperature much greater or smaller than the peak 
temperature (baseline value) and corresponds to the offset of the curve. 

The half width of the curve is given by α. β is the reciprocal of Clau-
sius–Clapeyron coefficient and determines the shift of the curve when a 
stress is applied. The area under the curve up to the specific base heat 
capacity c0 corresponds to the maximum entropy change Δsmax

iso , i.e. 
occurring during a complete transformation from austenite to 
martensite. On the basis of this stress- and temperature-dependent heat 
capacity, Maxwell’s relations can now be used to analytically calculate 

the isothermal entropy change Δsiso, adiabatic temperature change ΔTad, 
phase composition X and strain ε, as shown in the following. 

4.2. Isothermal entropy change 

The entropy of the elastocaloric material can be calculated by inte-
grating cp/T from 0 K to temperature T. 

s(T, σ) =
∫ T

TS

cp(T ’, σ)
T ’ dT ’

=
Δsmax

iso

π tan− 1
[

T − (T0 + βσ)
α

]

+ c0ln(T)

−
Δsmax

iso

π tan− 1
[

TS − (T0 + βσ)
α

]

− c0ln(TS)

(4) 

Here, the auxiliary variable TS is introduced with TS≪T0. 
The isothermal entropy change Δsiso describes the entropy change 

during loading and unloading at a constant temperature T and is rep-
resented by:   

The approximation applies for TS≪ T0. 

4.3. Adiabatic temperature change 

Entropy during a reversible, adiabatic phase transformation is con-
stant. Therefore, entropy will remain the same before and after the 
application of stress σ to an elastocaloric material with temperature T, i. 

Fig. 2. Heat capacity as a function of temperature: The heat capacity peak is at 
T0 and the width of the peak is defined as α. The area under the curve corre-
sponds to the maximum isothermal entropy change during the phase trans-
formation Δsmax

iso . 

Δsiso(T, σ) = s(T, σ) − s(T, 0)

=
Δsmax
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π
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(5)   
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e. s(T, σ = 0) = s(T+ΔTad,rev, σ). This results in the following recursive 
equation for the adiabatic temperature change ΔTad,rev: 

ΔTad,rev(T,σ)=− T+T exp
{

Δsmax
iso

c0π

[

− tan− 1
(

T0 − T
α

)

+tan− 1
(

T0 − TS

α

)

− tan− 1
(

T0+βσ − TS

α

)

+tan− 1
(

T0+βσ − T − ΔTad,rev(T,σ)
α

)]}

(6)  

4.4. Phase composition and Young’s modulus 

The phase composition during the structural transformation is 
calculated from the maximum entropy change using the proportion of 
isothermal entropy change (Fig. 3). The ratio of the area AX and maximal 
entropy change Δsmax

iso is the austenite fraction X and is given by: 

X(T, σ) = AX

Δsmax
iso

=

∫ T

TS

cp(T ’, σ) − c0

T ’Δsmax
iso

dT ’ =
1
π

∫ T

TS

α
α2 + [T − (T0 + βσ)]2

dT ’

=
1
π

[

− tan− 1
(

βσ + T0 − T
α

)

+ tan− 1
(

βσ + T0 − TS

α

)]

≈
1
π

[

tan− 1
(

βσ + T0 − T
α

)]

+
1
2

(7) 

The approximation applies for TS≪T0. 

With the phase composition, the Young’s modulus E can be calcu-
lated, which is composed of the Young’s moduli of the two phases 
austenite Ea and martensite Em: 

E = EaX + Em(1 − X) (8)  

4.5. Strain 

Stress-induced phase transformation results in a strain ε on the ma-
terial. This is composed of three parts: a pseudoelastic part εpseudoelastic 

due to the structural transformation, an elastic part εelastic due to the 
stress applied and the strain due to the temperature change (Lagoudas, 
2008). Since the strain caused by the temperature change in the material 
is very small, this will not be discussed further here. The strain is 
adjusted by the offset of the strain without stress, resulting in:  

ε(T, σ) = εpseudoelastic(T, σ) − εpseudoelastic(T, σ = 0) + εelastic(T, σ) (9)  

The pseudoelastic part from Eq. (9) can be calculated using Max-
well’s relations (Eq. (2)):   

ρ is the density of the elastocaloric material. The approximation applies 
for TS≪T0. In addition to the pseudoelastic part, the elastic part also 
contributes to the strain. This can be calculated using Hooke’s law: 
εelastic = σ

E. This results in the following equation for the strain ε(T, σ): 

ε(T, σ) = −
Δsmax

iso βρ
π

{

tan− 1
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T − (T0 + βσ)
α

]

− tan− 1
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2
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αTS
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2
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+
σ
E

(11)  

4.6. Expansion of the model to include dissipative losses 

To integrate the hysteresis process into the model, the shift from the 
heat capacity curve (by ±ΔThys

2 ) is taken into account and the strain 
equations (Eq. (11)) adapted. Stress-dependent hysteresis, which 

εpseudoelastic(T, σ) = ρ
∫ T

TS

(δs
δσ

)

T
dT’

=
Δsmax

iso βρ
π

∫ T

TS

{

−
α

α2 + [T ’ − (T0 + βσ)]2
+

α
α2 + [TS − (T0 + β σ)]2

}

dT’

= −
Δsmax

iso βρ
π

{

tan− 1
[

T − (T0 + βσ)
α

]

− tan− 1
[

TS − (T0 + βσ)
α

]

−

[
αT

α2 + (TS − T0 − βσ)2

]

+

[
αTS

α2 + (TS − T0 − βσ)2

]}

≈ −
Δsmax

iso βρ
π

{

tan− 1
[

T − (T0 + βσ)
α

]

−
π
2
−

[
αT

α2 + (T0 + βσ)2

]}

(10)   

Fig. 3. Phase composition: the phase composition X at temperature TX is 
calculated on the basis of the relationship between the area AX shown in gray 
and Δsmax

iso , which corresponds to the area between cp/T and c0 /T. 
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corresponds to the dissipative energy qdiss, can be calculated on the basis 
of this. In the stress-strain graph qdiss corresponds to the enclosed area 
divided by the density ρ:   

If the transformation is incomplete, the branches between loading 

and unloading are connected vertically at εmin (σmin
loading and σmin

unloading) or 
εmax (σmax

loading and σmax
unloading) to calculate the area (Fig. 4). 

The irreversible temperature change is proportional to the dissipa-
tive energy: ΔTirr =

qdiss
c0 

(Hess et al., 2020). To calculate the adiabatic 
temperature change with a hysteresis effect (ΔTad, loading and 

ΔTad, unloading ), a distinction is made between loading and unloading: 

ΔTad, loading = ΔTad,rev +
ΔTirr

2

ΔTad, unloading = ΔTad,rev −
ΔTirr

2

(13) 

Fig. 5 shows the adiabatic temperature change with and without a 
hysteresis effect. 

4.7. Material characterization for determining model parameters 

To validate the material model, samples of a commercially available 
alloy from Euroflex GmbH were used, consisting of 56.2% nickel and 
43.8% titanium (density of 6,736 kg m− 3, austenite finish temperature 
of − 1.7 ◦C) in the form of small tubes (exterior diameter: 2.4 mm, wall 
thickness: 0.3 mm) and cut to a length of 11 mm. The faces were then 
polished parallel to the planes. 

To determine the heat capacity of the used alloy, a DSC measurement 
was carried out at Ingpuls GmbH with a heating rate of 10 K min− 1. 
According to the manufacturer’s data sheet, the measurement uncer-
tainty is 2% of the measured value. The material was trained for more 
than 5,000 cycles before the measurement. 

For adiabatic and isothermal measurements, three samples were 

characterized simultaneously in a test setup. Compressive load was then 
applied using an eccentric press. The load was measured using a Hot-
tinger Brüel & Kjaer GmbH load cell, while the position was measured 
using three symmetrically arranged position sensors from eddylab 
GmbH and the temperature of each sample using type-T thermocouples. 
The test setup was temperature-controlled. 

Before the measurements, the samples underwent 5,000 cycles to 
train the material at a stress of 895 MPa ± 7 MPa had established. The 
preload, maximum strain and strain rate were adjusted. Other parame-
ters result from these settings. 

After training the samples, isothermal measurements were carried 
out with a strain rate of 5•10− 5 s− 1 at temperatures of 10 ◦C, 20 ◦C, 30 ◦C 
and 40 ◦C. The dissipative energy was calculated from the stress-strain 
data of these measurements using a closed-loop integral of the applied 
force and the change of length of the ECM divided by the mass. 

Adiabatic measurements were performed with a strain rate of 0.1 s− 1 

and a holding time between loading and unloading of 120 s for the same 
temperatures as the isothermal measurements. 

The isothermal and adiabatic stress-strain curves at 20 ◦C at 
maximum strain are shown in Fig. 6. 

For adiabatic measurements, during loading, the maximum tem-
perature Tσmax is expected to occur when the maximum stress σmax is 
applied. Fig. 7 shows the temperature T and stress σ when the material is 
compressed. The maximum temperature Tmax was measured with a 
delay related to the maximum stress σmax. This was due to thermal 
coupling and the thermal impedance of the thermocouples to the 

Fig. 5. The reversible adiabatic temperature change is shown using solid lines, 
while the dashed lines represent the adiabatic temperature change taking into 
account hysteresis. Red is used to show the temperature change during loading 
and blue to show the temperature change during unloading. 

Fig. 4. The dissipative energy for an incomplete transformation of εmin and εmax 

is proportional to the gray area. 

qdiss

(
T, σmin

loading, σmax
loading

)

=
1
ρ

(∫ σmax
unloading

σmin
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εunloading(T, σ)dσ −

∫ σmax
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σmin
loading

εloading(T, σ)dσ

+
[
σmax

loadingεloading

(
T, σmax

loading

)
− σmax

unloadingεunloading

(
T, σmax

unloading

)]

−
[
σmin

loadingεloading

(
T, σmin

loading

)
− σmin

unloadingεunloading

(
T, σmin

unloading

)])

=
1
ρ

ΔThys

β
[
ε(T, σmax) − ε

(
T, σmin)]

(12)   
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elastocaloric material. The data points in the adiabatic measurements 
were therefore extrapolated from the measured temperature values by 
means of a linear regression, with the almost linear area of the cooling 
curve selected as the regression interval. To analyze the errors, a reading 
of the temperature was taken on the regression line during application of 
maximum load. The measured values of Tmax are used in the simulation. 
The adiabatic temperature change is underestimated, however, as Tmax 
< Tσmax applies. The same applies to the adiabatic temperature change 
during unloading. 

In addition, the measurement uncertainty of the thermocouples of 
0.5 K with Gaussian error propagation is taken into account. 

The measurement uncertainty of the stress and strain data were 
calculated using the Gaussian error propagation from the specified 
measurement uncertainties of the sensor manufacturer. The same ap-
plies to the measurement uncertainty of the dissipative energy, which 
encounters the measurement uncertainty of length change of the ma-
terial and force. 

4.8. Model results and discussion 

Heat capacity (Eq. (3)), adiabatic temperature change (Eq. (13)), 
strain (Eq. 11) and dissipative losses (Eq. (12)) were simultaneously 
fitted to the corresponding experimental data by least-square minimi-
zation. Each individual value of the input variable is weighted by the 

inverse of the squared error: W = 1
δ2. This results in the following model 

parameters with a confidence interval of 95% in Table 1: 
Fig. 8 shows measurement data and the results of the model of the 

heat capacity. Only the data from the relevant temperature range around 
the peak temperature was used for the model. The adiabatic temperature 
change that occurred when loading and unloading the material is also 
represented well by the model (Fig. 9). The curves shift to higher stresses 
at higher temperatures. The effect of thermal hysteresis can be seen here 
by the fact that the curves are not symmetrical around 0 K. 

For the strain in the isothermal measurement the model is in good 
agreement with the experimental data (Fig. 10). The trend in the 
measured values is reflected by the model. 

Fig. 11 shows the data of the dissipative energy, which reaches 
saturation at high stresses, as the transformation is complete in this case. 
The model underestimates the experimental data at high strains. One 
reason could be that additional dissipative losses such as friction, which 
are not caused by the phase transformation and therefore not repre-
sented by the model. 

The underestimation of dissipative energy at high stresses is also 
reflected in the adiabatic temperature change curves, since ΔTirr is 
proportional to dissipative energy. 

It has been described in literature, that there can be a discrepancy 
between a temperature-induced transformation, which is apparent in a 
DSC measurement, and stress-induced transformation triggered by 
external forces (Ossmer et al., 2014; Tušek et al., 2016). Here, however, 
we see that it is possible to represent both heat capacity and adiabatic 
temperature change data with the model very well, supporting the 
applicability of this approach. 

With this model it is possible to represent the measured values for the 
heat capacity, the adiabatic temperature change, the strain, and the 
dissipative energy thermodynamically consistent at the same time and 
to consider the dissipative effects in the equations. The model was fitted 

Table 1 
Model parameter: After the fit to the input parameters, the model parameters 
were fitted. 95% of all measured values are found in the interval of deviation 
from the expected value.  

Model parameter  

T0 273.90 K ± 0.13 K 
ΔThys 11.9 K ± 0.6 K 
Δsmax

iso 42.7 J kg− 1 K− 1 ± 0.9 J kg− 1 K− 1 

c0 663.6 J kg− 1 K− 1 ± 1.6 J kg− 1 K− 1 

α 26.8 K ± 0.4 K 
β 0.0845 K MPa− 1 ± 0.0014 K MPa− 1 

Ea 56,900 MPa ± 400 MPa 
Em 42,000 MPa ± 3,000 MPa  

Fig. 8. Measurement data and model for heat capacity. The data between the 
dashed lines were used for the model. 

Fig. 6. Adiabatic and isothermal stress-strain curve a temperature of 20 ◦C.  

Fig. 7. Stress and temperature profile for an adiabatic measurement during 
loading. The gray dashed line shows the linear regression of the cooling curve. 
A maximum temperature change Tmax is measured. The maximum temperature 
change is expected to occur when maximum load σmax is applied, howev-
er (Tσmax ). 

N. Bachmann et al.                                                                                                                                                                                                                             



International Journal of Refrigeration 136 (2022) 245–253

251

for nickel-titanium alloys, but it is also conceivable to use it for other 
elastocaloric materials. 

4.9. Efficiency 

The efficiency with which elastocaloric materials are able to trans-
port heat in a system is primarily determined by the relationship be-
tween isothermal entropy change Δsiso and dissipative losses qdiss (Hess 
et al., 2020; Masche et al., 2020; Qian et al., 2016). For a cascaded 
system, this results in an exergetic efficiency of η ≈ 1

1+4 qdiss
Δsmax

iso
ΔTad

= 1
1+4

ΔThys
ΔTad 

(Hess et al., 2020). 

Thus, a figure of merit (FOM) as a measure of the material’s quality 
can be defined by FOM(T,σ) =

ΔTad(T,σ)
ΔThys

. The higher this FOM, the more 
efficiently the cascaded system can work. The material parameters 
calculated here result in the FOM dependence on temperature and stress 
shown in Fig. 12. 

In this figure, the higher the stress applied and the temperature, the 
higher the FOM, resulting in an FOM value of 1.00 ± 0.06 when the 
stress is 1,200 MPa and the temperature is 40 ◦C. Since the dissipative 
energy is underestimated at high stresses, the FOM is overestimated 
here. 

With the maximum FOM the maximum possible system efficiency 

Fig. 10. Measurement data and model for the strain. The model is depicted by a solid line. The four temperatures are shown in one diagram to emphasize the effect of 
temperature on strain (a). In (b), each plot shows the data at a different temperature. 

Fig. 11. Measurement data and the model for dissipative heat. The model is depicted by a solid line. In (a) the data at the four temperatures are shown in a diagram 
and in (b) they are shown individually. 

Fig. 9. Measurement data and model showing adiabatic temperature change during loading and unloading. The model is depicted by a solid line. In (a), the data at 
the four temperatures are shown together to illustrate the temperature effect on the adiabatic temperature change. In (b) the data at the four temperatures are shown 
individually. 
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η ≈ 1
1+ 4

FOM 
would be 20.0% ± 0.3%. This FOM should not be confused 

with COPMat, which is often used in the literature to describe the per-
formance of a caloric material and is given by the ratio of reversible heat 
to dissipative losses of the material. COPMat focuses on the material ef-
ficiency and is given by COPMat =

c0ΔTad
qdiss 

(Tušek et al., 2016), while the 
FOM encounters the thermodynamic efficiency of the material in a 
cooling cycle. Using the relation qdiss = ΔsisoΔThys (Hess et al., 2020) a 
relation between COPMat and FOM can be shown: COPMat =

c0ΔTad
qdiss 

=

c0ΔTad
ΔsisoΔThys

= c0
Δsiso

FOM. 
While FOM is increasing with increasing stress (Fig. 12), COPMat is 

decreasing (Porenta et al., 2020). This is because of an increase of the 
isothermal entropy with increasing stress. 

To increase this value, materials with lower hysteresis are required, i. 
e. with smaller values for ΔThys. System efficiency can also be increased 
further by using suitable system concepts, such as applying heat 
regeneration concepts (Qian et al., 2015). 

5. Conclusion 

Elastocaloric cooling systems are a promising, environmentally 
friendly alternative to conventional compressor systems. Modeling and 
simulation play an essential role in developing and optimizing such 
systems. Material behavior is an important input variable in these sys-
tem simulations and should therefore be reflected in its entirety. The 
phenomenological material model presented in this paper expands on 
the model by Hess et al. (Hess et al., 2020, 2019) for elastocalorics. 
Adiabatic temperature change, strain, dissipative energy and heat ca-
pacity are specified as an equation in relation to temperature and stress; 
this model coincides very closely with experimental measurement re-
sults. Since this modeling approach has already been shown for elasto- 
and magnetocalorics, it is conceivable that it can be applied to electro-
calorics as well. 

The model can be used for different elastocaloric material alloys in 
order to calculate performance coefficients regarding the material effi-
ciency. This enables cooling systems to be optimized, which is an 
important step in the further development of elastocaloric cooling 
systems. 
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