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1. Introduction and notation

Contrary to resampling from the observed values, resampling in the smooth
bootstrap introduced in Efron (1982) is done from a smoothed version of the
empirical distribution function. We consider the multivariate smooth bootstrap
for functionals T defined on the set (or possibly only a subset) of copulas which
represent the possible dependence structures at hand. Examples for such func-
tionals include measures of association such as Kendall’s tau or Spearman’s
rho, the upper and lower tail dependence coefficients, or level sets that are used
to quantify the risk inherent in joint events; see, for example, Salvadori et al.
(2016), and Coblenz, Dyckerhoff and Grothe (2018) where in the latter the
smooth bootstrap has recently been used to estimate level sets of copulas.

Our investigation is motivated by the question of how much the smoothing
aspect of smooth bootstrap influences the underlying dependence structure in
a multivariate framework. The whole procedure can also be seen as a form of
data augmentation – a topic which recently has drawn considerable attention
in the machine learning community, see, e.g., Shorten and Khoshgoftaar (2019),
Wong et al. (2016), and Taylor and Nitschke (2018). In general the extent of
this dependence distortion introduced by the smooth bootstrap may depend on
the functional, the smoothing kernel or the sample size.

The smooth bootstrap used in this paper is different from jittering as, e.g.,
investigated in Nagler (2018). Usually, jittering is used for making discrete vari-
ables continuous and is not a resampling scheme in the classical sense. In ad-
dition to that, jittering is carried out in the data space, whereas we employ
the smooth bootstrap in a transformed data space and focus specifically on the
dependence structure, cf. Figure 1.

Furthermore, we want to point out that there are links to other empirical
versions of the copula such as the empirical beta copula, see Segers, Sibuya and
Tsukahara (2017), and the checkerboard copula. In contrast to the empirical
copula, a sample from the latter two is not a simple resampling of the initial ob-
servations, but produces previously unseen observations. However, the sampling
schemes are different from the resampling scheme employed in this paper. While
the empirical beta copula smoothes based on the distribution of rank orders, the
smoothing considered here relies on adding a smoothing kernel from a given fam-
ily. Further, the ‘smoothing’ implied by drawing from the checkerboard copula
is related to latin hypercube sampling, see Packham and Schmidt (2010), and
thus also different in basic principle from the kernel based smoothing analyzed
here.

We contribute to the existing literature in the following ways. Firstly, we
provide theoretical details on the smooth bootstrap for copula functionals. We
focus on elliptical distributions at the population level where the bandwidth
matrices are obtained by the commonly used sphering approach. In this frame-
work we show that the dependence distortion of the underlying elliptical copula
is solely due to a distortion of the associated characteristic generator, whereas
the associated parameter matrix remains unaffected. Our investigation reveals
surprising cases where kernel smoothing has no impact on the underlying de-
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pendence structure and we identify and characterize the responsible mechanism
in detail. We also discuss that this fact holds true for certain functionals of
copulas which remain unaffected by kernel smoothing. Concerning the rate of
convergence in our framework, we connect the absolute value difference between
the characteristic functions with the regular variation property of the charac-
teristic generator of the smoothing kernel and we discuss related examples and
practical implications. While most motivating examples are bivariate in nature,
our discussion is valid in arbitrary dimensions d making the results viable for
high-dimensional settings and data science applications in general.

Secondly, when considering a fixed sample we provide practical details con-
cerning the evaluation of the copula of the smoothed distribution estimator,
where our approach is not limited to product kernels when elliptical smoothing
kernels are used. Furthermore, in Algorithm 4.1 we discuss a sampling strategy
for constructing smooth bootstrap samples. The resulting smooth bootstrap
sample can then be used to gauge the variability of a functional Tn(x1, . . . ,xn)
based on a sample of size n. Furthermore, as in Coblenz, Dyckerhoff and Grothe
(2018), the suggested algorithm can be used for data augmentation, for example,
to obtain smoothed results in order to facilitate the numerical computation of T
or to circumvent problems with ties in the original or an alternative (ordinary)
bootstrap sample. Data augmentation in this sense is particularly valuable for
small sample sizes.

Thirdly, we generalise the bandwidth selection procedure of Bowman, Hall
and Prvan (1998) for kernel distribution estimation to the multivariate case.
While bandwidth selection is a crucial part of kernel distribution estimation it
is generally discussed for diagonal bandwidth matrices, see, for example, Liu
and Yang (2008). We introduce a cross-validation-based bandwidth matrix se-
lection procedure that is not limited to diagonal bandwidth matrices or product
kernels to overcome the aforementioned limitations and can select non-diagonal
bandwidth matrices in a data driven and optimal way.

Lastly we illustrate the smooth bootstrap for copula functionals with a num-
ber of theoretical examples and simulation studies.

The remainder of this paper is structured as follows: In the next section
we introduce our notation and provide necessary preliminaries on copulas and
multivariate kernel smoothing. Additionally, we give an overview of the smooth
bootstrap setting and the estimators involved. Section 3 comprises our theoreti-
cal considerations. We start in 3.1 by reviewing basic facts about the connection
of multivariate kernel smoothing to convolution and thus sums of independent
random vectors. Section 3.2 introduces dependence distortion at the popula-
tion level for elliptical distributions and smoothing kernels. Aside from deriving
conditions under which the dependence distortion can be quantified precisely,
we also discuss examples of functionals that do not exhibit dependence distor-
tion. In Section 3.3 we link our results to regular variation properties of the
characteristic generator associated with the elliptical kernel distribution. We
discuss convergence rates of the distorted characteristic function towards the
undistorted characteristic function and hence dependence structure in terms of
regular variation of the radial distribution associated with the smoothing kernel.
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Section 3.4 identifies special classes of distributions for which the dependence
structure is unaffected by smoothing at the population level. To complete the
picture we also present examples for which the dependence distortion effects
are present and can be worked out in detail. In Section 4 we review the mul-
tivariate smooth bootstrap for a given sample. We introduce an algorithm to
obtain a smooth bootstrap sample from the copula. Furthermore, we not only
introduce and discuss a method to select appropriate non-diagonal bandwidth
matrices via cross-validation but also cover some asymptotic considerations of
our approach. A simulation study to show the impact of dependence distortion
for popular functionals is conducted in Section 5. Final conclusions are given
in Section 6. Appendix A and Appendix B provide details about characteristic
functions and elliptical random vectors, respectively.

2. Notation, preliminaries, and setting

In this section we provide necessary preliminaries and introduce our setting.
Also, we introduce the notation as needed. Much of the attention of this article is
devoted to the impact of kernel smoothing and bootstrapping on the dependence
structure between random variables which we represent by copulas. Copulas are
one way to model the dependence between components of random vectors. While
we only review the notions relevant for our exposition, textbook introductions
to dependence modeling via copulas can be found, e.g., in Nelsen (2006); Mai
and Scherer (2012); Joe (2015); Durante and Sempi (2016); Hofert et al. (2018).

A function C : [0, 1]d → [0, 1] is called a d-copula (or copula), if C is the
distribution function of a d-dimensional random vector U = (U1, . . . , Ud) with
standard uniform univariate marginals, that is, P [Uk ≤ uk] = uk for all k ∈
{1, . . . , d} and uk ∈ [0, 1]. The importance of copulas stems from Sklar’s Theo-
rem, see Sklar (1959), which states that any d-dimensional distribution function
F with margins F1, . . . , Fd can be decomposed as (where R = R ∪ {−∞,∞})

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), x ∈ R
d
, (1)

where C is a copula. If F1, . . . , Fd are all continuous, then C is unique. Oth-
erwise, C is uniquely determined on ×d

j=1 rangeFj , where rangeFj = Fj(R)
for j = 1, . . . , d. Conversely, if C is a d-copula and F1, . . . , Fd are distribution
functions, then the function F defined by (1) is a d-dimensional distribution
function with margins F1, . . . , Fd.

Throughout we generally consider a d-dimensional random vector X defined
on a probability space (Ω,F ,P). In our presentation we draw clear distinc-
tions between (i) the (theoretical) underlying copula CX related to the joint

distribution FX of X via Sklar’s theorem, (ii) the (theoretical) copula ĈE

n con-
structed by convolving the underlying joint distribution FX with the kernel

K with bandwidth matrix Hn, and (iii) the smoothed copula Ĉ
|X
n based on a

sample {x1, . . . ,xn} of X that is used to generate a smooth bootstrap sample
{u∗

1, . . . ,u
∗
m} of size m based on Algorithm 4.1. Figure 1 shows the schematic
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Fig 1. Schematic relationships between the objects under consideration. Objects in gray are at
the (inaccessible) population level, while objects in black are tangible to the statistician. CX

is the theoretical copula, ĈE
n the theoretical copula constructed by convolving the underlying

joint distribution FX with the kernel KHn , and Ĉ
|X
n the smoothed copula. T and Tn denote

the population version and estimated version of the considered functional, respectively.

relationship between the considered objects; gray entries represent the inacces-
sible objects at the population level, black entries are observable or under the
direct control of the statistician.

To understand the ideas behind the smooth bootstrap later on, we need to
briefly review multivariate kernel density estimation. We follow the notation of
Wand and Jones (1995); other references are Devroye and Gyorfi (1985); Silver-
man (1986); Härdle et al. (2012) and Scott (2015). We denote the d-dimensional
identity matrix by Id. Vectors are generally understood as column vectors, and
� is used to denote the transpose when required.

The key idea in kernel density estimation is to smooth out the empirical mass
function by means of a kernel which is defined as follows.

Definition 2.1 (Kernel). A function k is called a d-dimensional kernel, if

1. k is the density function of an absolutely continuous d-dimensional random
vector Y , i.e., k(x) ≥ 0 for all x ∈ R

d, k is integrable and
∫
Rd k(x) dx =

1;
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2. k has zero mean, i.e., E [Y ] =
∫
Rd xk(x) dx = 0; and

3. k has uncorrelated components with finite and identical marginal second
moments, i.e., cov [Y ] =

∫
Rd xx

�k(x) dx = μ2,kId, where the marginal
second moment μ2,k =

∫
Rd x

2
jk(x) dx is equal for each j.

More general definitions of kernels (such as higher order kernels) are available
in the literature, but are not considered here.

For a given kernel k we define a rescaled version via

kH(x) =
1√

det(H)
k
(
H− 1

2x
)
, x ∈ R

d, (2)

where H is a symmetric positive definite (spd) matrix called the bandwidth
matrix. Accordingly, K and KH denote the corresponding distribution functions
of the kernel and rescaled kernel. Note that if Y ∼ K, then the density of YH =
H1/2Y is kH . Based on the properties of k it is then straightforward to see that
kH has zero mean, i.e., E [YH ] = 0, and covariance matrix cov [YH ] = μ2,kH.

For a random sample X = (Xi)
n
i=1 from a d-dimensional random vector X,

the kernel density estimate of the underlying d-dimensional density fX is defined
by

f̂n(x) = f̂n(x;X) =
1

n

n∑
i=1

kHn(x−Xi), (3)

where the bandwidth matrix Hn typically only depends on the sample size
n. However, it is possible to consider a local bandwidth matrix Hn(x) that
(possibly) changes with the evaluation point x ∈ R

d. In a practical setting,
Hn can also depend on X, for example, when considering a scaled version of
the empirical covariance matrix; we discuss the selection of Hn for our problem
setting in Section 4.2. The estimate F̂n of the corresponding joint distribution
function FX is thus given by

F̂n(x) = F̂n(x;X) =

∫
(−∞,x]

f̂n(y) dy =
1

n

n∑
i=1

∫
(−∞,x]

kHn(y −Xi) dy

=
1

n

n∑
i=1

KHn(x−Xi),

where (−∞,x] = ×d
j=1(−∞, xj ]. Note that by Sklar’s Theorem, see Sklar

(1959), there is a unique (random) copula associated to F̂n which is given by

Ĉn(u) = F̂n

(
F̂−1
n1 (u1), . . . , F̂

−1
nd (ud)

)
, (4)

where F̂−1
n1 , . . . , F̂−1

nd are the marginal quantile functions associated to F̂n.
While (2) provides a direct relationship to evaluate kH in terms of k, there

is in general no such relationship between KH and K. For certain kernel dis-
tributions K, such as the multivariate normal distribution or, more generally,
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elliptical distributions, the corresponding rescaled distribution function KH can
be identified and is (at least numerically) accessible. Special cases, such as di-
agonal bandwidth matrices and product kernels, allow in general for a direct
evaluation of KH in terms of K. In the case of product kernels and a strictly
stationary and geometrically strongly mixing data generating process, Liu and
Yang (2008) derive pointwise first and second order asymptotics of F̂n.

The kernel density estimate in (3) can also be understood from the view-
point of convolutions. The convolution f ∗ g, see Rudin 1991, p. 170, of two
d-dimensional functions f , g ∈ L1(Rd) at x ∈ R

d is defined by

(f ∗ g)(x) =
∫
Rd

f(x− y)g(y) dy. (5)

If f and g are density functions, the convolution also has a probabilistic
interpretation. When two independent random vectors X and Y have densities
f and g, the density fX+Y of X + Y is given by fX+Y = f ∗ g. To also cover
probability mass functions in f ∗ g one can extend the convolution formula in
(5) in terms of a Lebesgue-Stieltjes integral to (f ∗ g)(x) =

∫
Rd f(x−y) dG(y)

when g is a probability mass function. The kernel density estimator in (3) can
then be seen as the convolution of the (rescaled) kernel density kHn with the
point masses

∑n
i=1

1
nδXi belonging to the empirical distribution function; here

δa denotes a point mass at a ∈ R
d, i.e., δa(x) = 1 if x = a and zero otherwise.

For specific observations {xi}ni=1, so realizations xi = Xi(ω) for some ω ∈ Ω (or,
equivalently, given X), the kernel density estimate is a mixture density where
the ith mixing density has mean xi and is given by kHn(x−xi) while the mixing
weights are 1

n .

The bias and variance of f̂n can be derived under additional assumptions
on k, Hn and fX ; see Wand and Jones 1995, Chapter 4.3. To state the re-
sults, we denote by tr(H) =

∑d
j=1 Hjj the trace of a d× d matrix H. Further-

more, for a twice continuously differentiable function f : Rd → R, the Hessian
matrix of second order partial derivatives at x ∈ R

d is denoted by Hx(f) =(
∂2f

∂xi∂xj
(x)
)
i,j=1,...,d

. To simplify limits we utilize the Landau symbols o and O.

Specifically, we assume the following conditions to hold:

1. ‖k‖22 =
∫
Rd k

2(x) dx < ∞;
2. each entry of the Hesse matrix Hx(fX) is piecewise continuous and square

integrable;
3. (Hn)n≥1 is a sequence of bandwidth matrices such that 1/(n

√
det(Hn))

and all entries of Hn approach zero as n → ∞;
4. the ratio of the largest and smallest eigenvalue of Hn is bounded for all n;

and
5. k is a bounded and compactly supported d-dimensional kernel.

Under these conditions the bias and variance of the kernel density estimate f̂n

can be computed as a function of the sample size n and the function fX via

E

[
f̂n(x)

]
− fX(x) =

1

2
μ2,k tr (HnHx(fX)) + o(tr (Hn))
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≈ 1

2
μ2,k tr (HnHx(fX)) ,

var
[
f̂n(x)

]
=

1

n
√

det(Hn)
‖k‖22 fX(x) + o

(
1

n
√

det(Hn)

)

≈ 1

n
√

det(Hn)
‖k‖22 fX(x).

Furthermore, under the above conditions the estimate is consistent at any fixed

point x, that is, f̂n(x)
P→ fX(x) for n → ∞.

In the following section we discuss kernel smoothing and the dependence
distortion it (possibly) introduces. This will be important for the subsequent
analysis of the smooth bootstrap.

3. Kernel smoothing and dependence distortion

This section investigates the effects of kernel smoothing on the dependence
structure on the population level. We start by considering a fixed sample size.

3.1. Population version of kernel smoothing for a fixed sample size

To prepare the presentation of the smooth bootstrap later on we now discuss
the dependence distortion introduced by kernel density estimation for a fixed
sample size n. This links to the bootstrap in that the number of sample points
n is fixed, but the number of (bootstrap) samples B is effectively unlimited. If
we had access to B independent samples (Xb)

B
b=1, where Xb = {Xb1, . . . ,Xbn}

is a collection of iid random vectors with common density fX , we could indeed
average over our samples and obtain from the strong law of large numbers that

1

B

B∑
b=1

f̂n(x;Xb)
a.s.→ E

[
f̂n(x)

]
, (B → ∞).

When considering the smooth bootstrap in Section 4, bootstrap samples X∗
b will

replace the unavailable samples Xb. When comparing (as a function of x) the
expected density and distribution function estimators

f̂E

n (x) = E

[
f̂n(x)

]
=

∫
Rd

kHn(x− y)fX(y) dy, (6)

F̂ E

n (x) = E

[
F̂n(x)

]
=

∫
Rd

KHn(x− y)fX(y) dy (7)

with the convolution formula (5), we see that f̂E

n coincides with the density
of Z = X + YHn , where X is distributed with density fX and YHn with
density kHn , and X and YHn are independent. The mean of Z is therefore
E [X] and hence undistorted compared to fX . However, the covariance matrix
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is cov [Z] = cov [X] + cov [YHn ] = cov [X] + μ2,kHn by independence of X and
YHn and the properties of kHn , and thus in general not equal to cov [X]. The
independence between X and YHn also allows us to compute the characteristic

function of f̂E

n as φf̂E
n
(t) = φX(t)φk

(
H

1/2
n t

)
, see Appendix A where we provide

further details on properties of characteristic functions.
According to Sklar’s Theorem there is a unique copula associated to F̂ E

n which
is given by

ĈE

n(u) = F̂ E

n

(
F̂−1
n1 (u1), . . . , F̂

−1
nd (ud)

)
,

where F̂−1
n1 , . . . , F̂−1

nd are the marginal quantile functions associated to F̂ E

n . It

is important to notice here that ĈE

n , just like f̂E

n and F̂ E

n , does not depend on
the sample or the sample size n directly. However, the bandwidth matrix Hn

typically depends on the sample size (and possibly the sample) which establishes
an indirect connection and justifies the subscript n in the notation. Further
properties of ĈE

n and the differences between ĈE

n and CX in the case of elliptical
distributions are the subject of the following section.

3.2. Population version of dependence distortion for elliptical
random vectors and elliptical smoothing kernels

Combining the observations from Section 3.1 with the properties of elliptical
random vectors gives a first idea on how smoothing distorts the underlying de-
pendence structure for the statistically important class of elliptical distributions.
An elliptical random vector can be described by three components: a location
vector μ, a dispersion matrix Σ and a characteristic generator ψ, which is a
real-valued function such that φ(t) = exp

(
it�μ

)
ψ
(
t�Σt

)
where φ denotes the

multivariate characteristic function. Appendix B provides further details on el-
liptical random vectors. In the notation of McNeil, Frey and Embrechts 2015,
Chapter 6, consider X ∼ Ed(μ,Σ, ψX) and Y ∼ Ed(0, Id, ψY ) (related to
the kernel density k) to be independent and elliptically distributed, where we
directly have μ2,k = −2ψ′

Y (0). In general, see Theorem B.2, we have for an el-
liptical random vector Z ∼ Ed(μ,Σ, ψZ) with an associated radial part R ≥ 0

with finite second moment that E[Z] = μ and cov [Z] = E[R2]
rank(Σ)Σ = −2ψ′

Z(0)Σ.

However, the associated correlation matrix is independent of ψZ and given as
corr [Z] = diag

(
1/

√
Σ11, . . . , 1/

√
Σdd

)
Σ diag

(
1/

√
Σ11, . . . , 1/

√
Σdd

)
so that

corr [Zi, Zj ] = Σij/
√
ΣiiΣjj .

Furthermore, if X and Y are independent, the distribution of Z = X +
YHn with density f̂E

n is elliptical if Hn = cnΣ for some cn > 0; see McNeil,
Frey and Embrechts 2015, Remark 6.26. In this case YHn ∼ Ed(0, cnΣ, ψY ).
In Corollary B.1 we derive general conditions that imply Z ∼ Ed(μ,Σ, ψZ) in
the given context, where ψZ(u) = ψX(u)ψY (cnu). This shows that if Hn =
cnΣ, then, on average (i.e., when considering the expected density estimate

f̂E

n ), the distortion introduced by kernel smoothing affects the rescaling of the
characteristic generator of X by a factor of ψY (cnu) for every u ≥ 0.
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While the specific choice Hn = cnΣ seems limiting at first, it corresponds to
the population version of the sphering approach commonly used in multivariate
kernel density estimation; see Wand and Jones 1995, Chapter 4.6 and references
therein. In this case the bandwidth matrix is determined by a one-dimensional
parameter h by setting H = hŜn. This links to our theoretical discussion since

Ŝ
P→ cov [X] and hence H ≈ −2hψ′(0)Σ for elliptical random vectors. As we

will see, in the context of elliptical random vectors, sphering will allow us to
derive theoretical results without being limited to product kernels or diagonal
bandwidth matrices. We return to a general discussion of bandwidth matrices
in Section 4.2.

Furthermore, since Z ∼ Ed(μ,Σ, ψZ), the covariance matrix of Z is given
by

cov [Z] = −2ψ′
Z(0)Σ =

(
1 + cn

ψ′
Y (0)

ψ′
X(0)

)
cov [X] , (8)

where cov [X] = −2ψ′
X(0)Σ. As a consequence of cov [Z] being a re-scaling of

cov [X], the correlation matrix of Z is thus

corr [Z] = corr [X]

and hence, although the covariance matrix is distorted in general, the correlation
matrix is not. Note that the jth margin of X is Xj ∼ E1(μj ,Σjj , ψX), see
(34), so the margins of Z are Zj ∼ E1(μj ,Σjj , ψZ), i.e., their characteristic
generators have also been altered. While we still have that E [Zj ] = μj , the

variance changes to var [Zj ] = −2ψ′
Z(0)Σjj =

(
1 + cn

ψ′
Y (0)

ψ′
X(0)

)
var [Xj ] and so do

the marginal quantile functions when going from X to Z.
In summary, the correlation structure remains unchanged when going from

X to Z, but the altered characteristic generator affects the marginal distribu-
tions. Differences in the resulting elliptical copulas, see Definition B.3, are hence
not due to the respective correlation matrices (which enter the copulas as pa-
rameters), but are solely due to differences of the characteristic generators, i.e.,
the distributions of the underlying radial parts.

Contrasting the copula of Z given by ĈE

n = Ccorr[Z],ψZ
with the original

copula of interest CX = Ccorr[X],ψX
, corr [Z] = corr [X] implies that the only

difference between ĈE

n associated to the average kernel density estimate based
on samples of size n and the copula CX underlying the data generating process
is due to the difference in the characteristic generators ψZ versus ψX . At this
point it is worth noticing that limcn→0 ψY (cnu) = 1 for all u ≥ 0 due to uniform
continuity of characteristic functions, see Sasvári 2013, Theorem 1.1.2, and thus
for cn → 0 we have that ψZ(u) → ψX(u) for all points u ≥ 0. Generally
this implies, even in the absence of estimation of ψX and corr [X], that the

average estimated density f̂E

n has a different copula ĈE

n than the original sample
CX . Interestingly this is not always the case and we discuss conditions for
such exceptions and examples in Section 3.4. Furthermore, when ĈE

n is used to
estimate functionals of CX , the distortion introduced may or may not affect the
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result depending on the functional under consideration. We illustrate this point
by considering a number of popular copula functionals and their properties in
the case of elliptical distributions in the following paragraphs.

In the case of absolutely continuous meta-elliptical distributions, Kendall’s
tau does not depend on the characteristic generator, but solely on the entries of
the dispersion matrixΣ; see Lindskog, McNeil and Schmock (2003). As shown in
Schmid and Schmidt 2007, Proposition 8, the same is true for Blomqvist’s beta
which equals Kendall’s tau for elliptical models. On the population level in the
elliptical class these measures of association hence coincide surprisingly for the
underlying random vector X and the smooth version Z as long as Hn = cnΣ.

However, Spearman’s rho may depend on the density generator of the ellip-
tical density; see Abdous, Genest and Rémillard (2005) and Hult and Lindskog
(2002) for an example showing that Spearman’s rho is not invariant among
(meta) elliptical models with a common correlation structure. For absolutely
continuous multivariate elliptical random vectors the corresponding density gen-
erator provides a simple description of the multivariate density in terms of a
univariate function, see Theorem B.5 for the details. The density generator in
turn depends on the associated characteristic generator ψ as the characteristic
function fully describes the joint distribution. The same is true for the tail de-
pendence coefficient of elliptical distributions for which Schmidt (2002) shows
that it depends on the regular variation property of the density generator. As
expected, smoothing thus leads to different values of these functionals for the
underlying random vector X and the smooth version Z even if Hn = cnΣ.

For spherical distributions it is possible to give a precise condition when a test
statistic will be invariant under changes of the underlying spherical distribution.
This complements the earlier discussion on the invariance of certain functionals
of elliptical copulas and it potentially opens an alternative route of investigation.

Theorem 3.1 (Fang, Kotz and Ng 1990, Theorem 2.22). The distribution
of a statistic T (X) remains unchanged as long as X ∼ Ed(0, Id, ψX) with
P [X = 0]= 0, provided that

T (αX)
d
= T (X)

for each α > 0. In this case T (X)
d
= T (Y ) where Y ∼ N (0, Id).

Next, we investigate the convergence of the characteristic generator and the
characteristic function.

3.3. Convergence rates of ψZ(u) → ψX(u) and φZ(t) → φX(t)

In this section, we investigate the difference between the characteristic generator
ψZ(u) = ψX(u)ψY (cnu) and the original ψX and the impact on the difference
between the respective characteristic functions. The difference between ψZ and
ψX only depends on the convergence rate ψY (cnu) → 1 as cn → 0, since

|ψX(u)− ψZ(u)| = |ψX(u)| (1− ψY (cnu)) ≤ 1− ψY (cnu).
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The equality as well as the inequality hold since |ψ(z)| ≤ 1 for all z ∈ [0,∞)
and all characteristic generators ψ. Also the relative error hence conveniently
takes the form∣∣∣∣ψX(u)− ψZ(u)

ψX(u)

∣∣∣∣ = |1− ψY (cnu)| = 1− ψY (cnu). (9)

For certain generators ψY this rate may be slower than for others. For example,
in case of a Gaussian kernel with ψY (u) = exp(−u/2) or a Laplace kernel with
ψY (u) = (1 + u/2)−1 we have in both cases

1− ψY (cnu) = cn
u

2
+O

(
c2n
)
, cn → 0.

For the Cauchy distribution with ψY (u) = exp (−√
u) we have

1− ψY (cnu) =
√
cn
√
u+O (cn) , cn → 0.

The convergence rate of the relative error in (9), that simultaneously acts as an
upper bound for the absolute error, is hence slower in the latter case. For a given
characteristic generator ψY the behaviour of 1 − ψY (y) for y → 0 is analyzed
in Bingham (1972). It is connected to the behavior of the corresponding radial
distribution as follows. Denote by FR the distribution function of the radial
part corresponding to the spherical distribution Ed(0, Id, ψY ). For 0 < α < 2
we then have that

1− ψY (y) ∼ yα/2L (1/
√
y) , (y → 0), (10)

for a function L varying slowly at infinity, if and only if

1− FR(y) ∼
L(y)

yα
2αΓ ((d+ α)/2)

Γ (d/2) Γ (1− α/2)
, (y → ∞); (11)

see Bingham (1972), where one can also find a discussion of the cases α =
0 and α ≥ 2. It is important to note that we adapted the result in Bing-
ham (1972) to our convention concerning the characteristic generators, whereas

Bingham (1972) works with comparable functions ψ̃Y such that ψ̃Y (‖t‖2) =
E
[
exp
(
it�Y

)]
= φY (t). However, neither convention impacts the role of the

radial distribution FR. The convergence rate of the relative error in (9) repre-
senting the discrepancy between the dependence structures is therefore directly
linked to the asymptotic behavior of the survival function 1− FR of the radial
distribution of Y representing the kernel.

We can connect the previous discussion to the absolute difference between
the characteristic functions of the initial random vector X and the smoothed
version Z as follows. With

∣∣∣eiμ�t
∣∣∣ = 1 we have

|φX(t)− φZ(t)| =
∣∣∣eiμ�tψX

(
t�Σt

)
− eiμ

�tψZ

(
t�Σt

)∣∣∣
=
∣∣ψX

(
t�Σt

)
− ψZ

(
t�Σt

)∣∣ ≤ 1− ψY

(
cnt

�Σt
)
,
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implying pointwise convergence for cn → 0. We also have a bound on the relative
error given by ∣∣∣∣φX(t)− φZ(t)

φX(t)

∣∣∣∣ ≤ 1− ψY

(
cnt

�Σt
)
.

The absolute difference |φX (t)− φZ (t)| can be used to construct an upper
bound on the uniform distance ‖FX − FZ‖∞ via the smoothing inequality and
its higher dimensional analogues, see Theorem A.3 in Appendix A. For ease of
presentation we proceed with a univariate example.

Example 3.1. For simplicity, we discuss this approach in the one-dimensional
case where a Laplace kernel with ψY (u) = (1 + u/2)−1 is used to smooth a one
dimensional elliptical random variable X ∼ E1(μ, σ

2, ψX). Combining the fact
that

|φX(t)− φZ(t)| ≤ 1− ψY

(
cnσ

2t2
)
=

cnσ
2t2/2

cnσ2t2/2 + 1

with the smoothing inequality we have for T > 0 that

‖FX − FZ‖∞ ≤ 1

π

∫ T

−T

∣∣∣∣φX(t)− φZ(t)

t

∣∣∣∣ dt+ 24

πT
sup
x∈R

|fZ(x)|

≤ 2

π

∫ T

0

1− ψY (cnσ
2t2)

t
dt+

24

πT
sup
x∈R

|fZ(x)|

=
1

π

∫ T

0

cnσ
2t

cnσ2t2/2 + 1
dt+

24

πT
sup
x∈R

|fZ(x)|

=
log(cnσ

2T 2/2 + 1)

π
+

24

πT
sup
x∈R

|fZ(x)|

≤ log(cnσ
2T 2/2 + 1)

π
+

M

πT
, (12)

where M is such that 24 supx∈R
|fZ(x)| ≤ M . Given that fZ is the convolution

of the kernel density fY with fX , a simple upper bound independent of cn is
given by M = 24 supx∈R

|fX(x)|.
Optimizing the bound in (12) with respect to T we obtain the first order

condition cnσ
2T 3 −Mcnσ

2T 2/2−M = 0 with the unique (real) solution

T ∗ =
1

6

(
cnσ

2M2

a1/3
+

a1/3

cnσ2
+M

)
, where

a = c3nσ
6M3 + 108c2nσ

4M + 6
√
6
√
c5nσ

10M4 + 54c4nσ
8M2.

Given that T ∗ is the unique stationary point and limT→0
log(cnσ

2T 2/2+1)
π + M

πT =

limT→∞
log(cnσ

2T 2/2+1)
π + M

πT = ∞ it is clear that T ∗ leads to the minimal upper

bound. Considering Tn = T ∗(cn) as a function of cn we have Tn = O
(
c
−1/3
n

)
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for cn → 0 and hence cnT
2
n = O

(
c
1/3
n

)
which leads to

‖FX − FZ‖∞ =
∥∥∥FX − FX+Ycnσ2

∥∥∥
∞

= O
(
c1/3n

)
.

It is important to note that the rate O
(
c
1/3
n

)
is universal in the sense that

it only depends on the kernel distribution Y and holds simultaneously for all
absolutely continuous univariate elliptical random variables X ∼ E1(μ, σ

2, ψX)
with a bounded density. The dependence on X is in fact only visible in the chosen
bound M .

In the next section, we provide cases for which the dependence structure
remains unaffected by smoothing at the population level.

3.4. Exceptions to dependence distortions at the population level

Section 3.2 has established how smoothing impacts the dependence structure
for elliptical models and kernels at the population level. In this section we give
conditions under which these effects surprisingly do not impact the dependence
structure. As can be expected, these examples are rather artificial but serve the
purpose of establishing a comprehensive view of dependence distortion in kernel
density estimation. To complete the picture we also discuss in Section 3.4.4 and
3.4.5 examples for which the effects of dependence distortion are present and
can be worked out in detail.

3.4.1. Multivariate normal distribution

We start by considering the Gaussian random vectorX, assume that the smooth-
ing random vector Y is also Gaussian and that the bandwidth matrixHn = cnΣ
is a rescaled version of the dispersion matrix Σ of X. In this case, see Fang,
Kotz and Ng 1990, Example 2.3, page 28, the characteristic generators of X
and Y are given by ψX(u) = ψY (u) = exp(−u/2), and hence we can compute

the characteristic generator of the expected density f̂E

n of the smoothed random
vector Z = X + Y since

ψZ(u) = ψX(u)ψY (cnu) = e−u/2e−cnu/2 = e−(1+cn)u/2 = ψX((1 + cn)u).

This allows us to represent Z in two different ways, namely as Z ∼ Ed(μ,Σ, ψZ)
as in the previous section, and as Z ∼ Ed(μ, (1 + cn)Σ, ψX) by invoking a re-
parameterization; see Remark B.1. Recalling from (8) that corr [Z] = corr [X],
the second parameterization in fact yields that

ĈE

n = Ccorr[Z],ψZ
= Ccorr[X],ψX

= CX .

This is due to the specific properties of the characteristic generator that allows
us to shift the effects of multiplying the two characteristic generators ψX and
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ψY into a rescaling of the dispersion matrix. This rescaling in turn gets lost
when considering the associated correlation matrix. The effect of reverting ψZ

back to the standard form ψX , however, is persisting.
The key property we have used to derive this result is that for all u ≥ 0 and

β ≥ 0 we have

ψX(u)ψY (βu) = ψX(γu) (13)

for some γ > 0. The functional equation in (13) is reminiscent of a characteriza-
tion of the exponential function stating that, for non-zero continuous functions,
the property

φ(x)φ(y) = φ(x+ y) (14)

uniquely characterizes the exponential function; see, for example, Rudin 1976,
Exercise 6 of Chapter 8.

3.4.2. Multivariate elliptical stable distributions

Since the requirement in (13) is less strict than (14), it is possible to find so-
lutions other than the normal distribution discussed above. One class of dis-
tributions that allows one to shift multiplicative scalars as in (13) is the class
of multivariate elliptical stable distributions; see Nolan (2013) for an overview
(note that this reference calls this class of distributions multivariate elliptically
contoured stable distributions). Multivariate elliptical stable distributions are
at the intersection of stable and elliptical distributions.

Definition 3.1 (Multivariate elliptical stable distributions). For 0 < α ≤ 2 a
d-dimensional random vector X has a multivariate elliptical stable distribution
if its characteristic function takes the form

φX(t) = exp
(
iμ�t−

(
t�Σt

)α/2)
,

where Σ ∈ R
d×d is symmetric positive definite and μ ∈ R

d.

The characteristic generator of a multivariate elliptical stable distribution is
given by ψ(u) = exp

(
−uα/2

)
. For β ≥ 0, we thus have that

ψ(u)ψ(βu) = exp(−(1 + βα/2)uα/2) = ψ(γu)

with γ = (1+ βα/2)2/α. If the original random vector and the smoothing kernel
both belong to the class of multivariate elliptical stable distributions with the
same shape parameter α and dispersion matrices Σ and cnΣ, it is thus possible
to shift the scaling factor cn into the dispersion matrix analogously to the case
of the multivariate normal distribution. This in turn leaves the underlying de-
pendence structure undistorted, i.e., ĈE

n = CX . As a consequence, functionals
that only depend on the copula are unaffected when smoothing.
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One application of this result are the values of the upper and lower tail
dependence coefficients which are derived in Schmidt (2002) for elliptical random
vectors. For multivariate elliptical stable distributions we have for 0 < α ≤ 2
that

1− ψ(u) =
∞∑
k=1

(−1)k+1 u
kα/2

k!
∼ uα/2, (u → 0),

and thus by the results of Bingham (1972) in (10) and (11) that the distribution
function of the associated radial part is regularly varying with index −α for
0 < α < 2. Following Theorem 5.2 and (5.2) of Schmidt (2002), this implies a
non-zero upper and lower tail dependence coefficient for multivariate elliptical
stable distributions, except for the Gaussian case (α = 2) where there is no tail
dependence. However, since the tail dependence coefficients are functionals of
the copula, our calculations show that the tail dependence will not be distorted
if the kernel and bandwidth matrix are chosen appropriately.

3.4.3. Multivariate stable distributions

To complement the discussion in Section 3.4.2 we briefly touch upon the general
case of multivariate stable distributions. We follow Samorodnitsky and Taqqu
1994, Chapter 2, with the following definition.

Definition 3.2 (Multivariate stable distribution). A random vector X is said
to be stable in R

d if for any positive numbers b1 > 0 and b2 > 0 there exists a
vector d ∈ R

d such that

b1X1 + b2X2
d
= (bα1 + bα2 )

1/αX + d, (15)

where X1 and X2 are independent copies of X, and 0 < α ≤ 2 does not depend
on b1 and b2. A stable random vector is called strictly stable, if (15) holds with
d = 0 for any b1 > 0 and b2 > 0.

It is straightforward to link Definition 3.2 to the framework of multivariate
kernel smoothing by choosing a smoothing kernel K = FX . For Y ∼ K we then
have for h > 0 that

Z = X + hY ∼ FX

(
(1 + hα)−1/α(x− d)

)
.

While it is straightforward to show that we have under the current assumptions
ĈE

n = CX , the result is not of much practical use. On the one hand, if the
underlying distribution function FX is known and hence can be used as the
kernel distribution no estimation is necessary. On the other hand, if a smoothing
kernel in the class of multivariate stable distributions is chosen, the chances
that the underlying data generating process follows the same distribution are
(without additional knowledge) slim.

From a theoretical point of view it is, however, noteworthy that multivariate
stable distributions are presumably the largest class of distributions for which
no dependence distortion occurs if the smoothing kernel is chosen appropriately.
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3.4.4. Multivariate Student t distribution

For the Student t family with ν > 0 degrees of freedom, the characteristic
generator is derived in Sutradhar (1986). We utilize the form derived in Joarder
and Ali (1996) and Song, Park and Kim (2014), given by

ψν(x) =
Kν/2 (

√
νx) (

√
νx)

ν/2

Γ (ν/2) 2ν/2−1
,

where Kα denotes the modified Bessel function of the second kind (Joarder and
Ali (1996) refer to it as the Mcdonald function, Song, Park and Kim (2014)
and Kotz, Kozubowski and Podgórski (2001) refer to it as the modified Bessel
function of the third kind) which can be represented as

Kα(t) =

(
2

t

)α
Γ (α+ 1/2)√

π

∫ ∞

0

(
1 + u2

)−(α+ 1
2 ) cos(tu) du (16)

for t > 0 and α > −1/2; see, for example, NIST, Equation 10.32.11. For pa-
rameters of the form α = r + 0.5 with r ∈ {0, 1, 2, . . .} we have the explicit
formula

Kα(t) =

√
π

2t
e−t

r∑
k=0

(r + k)!

(r − k)!k!
(2t)−k, (17)

see Kotz, Kozubowski and Podgórski 2001, Equation (A.0.10). For the special
case α = 1/2 we consequently have

K 1
2
(t) =

√
π

2t
e−t,

see also NIST, Equation 10.39.2. For the special case of the multivariate Cauchy
distribution we have ν = 1 and therefore obtain the characteristic generator as

ψ1(u) =
K 1

2
(
√
u) (

√
u)

1/2

Γ
(
1
2

)
2−

1
2

=

√
2

π
u

1
4

√
π

2
√
u
e−

√
u = e−

√
u.

If the smoothing kernel is also a multivariate Cauchy distribution we conse-
quently have for β ≥ 0 that,

ψ1(u)ψ1(βu) = e−
√
ue−

√
βu = e−

√
u(1+

√
β)

2

= ψ1

(
u
(
1 +
√

β
)2)

.

This is as expected since the Cauchy distribution is an elliptical stable distri-
bution with index α = 1.

For general ν 
= 1 the modified Bessel function of the second kind does not
reduce to the exponential function. A similar rescaling is therefore in general
not possible for the Student t distribution. This implies that for ν 
= 1 the
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dependence structure will be distorted even when the smoothing kernel is chosen
to match the distribution of the original data. For a concrete example we set
ν = 3 and obtain via (17) that

ψ3(u) = e−
√
3u
(
1 +

√
3u
)
.

Consequently we have

ψ3(u)ψ3(βu) = e−
√

3u(1+
√
β)

2

(
1 +

√
3u
(
1 +
√

β
)2

+ 3u
√
β

)
= ψ3(γu)e

−
√
3γu3u

√
β,

where γ =
(
1 +

√
β
)2
. Hence we can identify the term e−

√
3γu3u

√
β on the right

as being responsible for the dependence distortion.

3.4.5. Elliptical distributions not elliptical stable

As a last example, we consider an elliptical distribution which is not elliptical
stable. We focus on the multivariate Laplace distribution, in which case (13) will
not hold. For this model the effect of the dependence distortion can be worked
out explicitly. A general introduction to the multivariate Laplace distribution
can be found in Kotz, Kozubowski and Podgórski (2001).

Denote by X ∼ Ed(μ,Σ, ψL) a d-dimensional random vector with character-
istic generator

ψL(u) =
1

1 + u/2
.

For such a random vector X the density generator is given by

gL(t) =
2

(2π)d/2

(
t

2

)(2−d)/4

K(2−d)/2

(√
2t
)
,

see Kotz, Kozubowski and Podgórski 2001, Equation (5.2.2), and X follows a
multivariate Laplace distribution; see Kotz, Kozubowski and Podgórski 2001,
Equations (5.2.1) and (5.2.2). The corresponding radial distribution RL of X
has the density

fRL
(x) =

2xd/2Kd/2−1

(
x
√
2
)(√

2
)d/2−1

Γ(d/2)
, x > 0;

see Kotz, Kozubowski and Podgórski 2001, Proposition 6.3.1. In this case, the
product of the characteristic generators related to kernel smoothing for β ≥ 0
is given by

ψZ(u) = ψL(u)ψL(βu) =
1

1 + u/2

1

1 + βu/2
=

1

1 + u(1 + β)/2 + βu2/4
,
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where the term βu2/4 in the denominator prevents a simplification as in the
Gauss and Cauchy (and general multivariate elliptical stable) cases discussed
before. In this example it is therefore clearly not possible to convert the effects
of dependence distortion into a rescaling of the dispersion matrix. When trying
to identify the radial distribution connected to the generator ψZ resulting from
smoothing with a Laplace kernel (with an appropriate bandwidth matrix) we
can use partial fraction decomposition for β 
= 1 to get

ψZ(u) =
2

1− β

(
1

u+ 2
− β

βu+ 2

)
=

1

1− β
ψL(u)−

β

1− β
ψL(βu).

To identify the radial distribution connected to ψZ we can draw on the connec-
tion between characteristic generators and radial distributions; see Fang, Kotz
and Ng 1990, Section 2.1. Specifically, for any spherical distribution Ed(0, Id, ψ)
there exists a distribution function FR of an a.s. positive random variable R (the
radial part) such that

ψ(u) =

∫ ∞

0

Ωd

(
ut2
)
dFR(t),

where Ωd is the characteristic generator of a random vector S uniformly dis-

tributed on the unit sphere {x ∈ R
d : ‖x‖2 = 1}, i.e., φS(t) = E

[
eit

�S
]
=

Ωd

(
‖t‖22

)
, see Fang, Kotz and Ng 1990, Theorem 2.2, page 29. Concerning ψZ ,

we consequently have that

ψL(u) =

∫ ∞

0

Ωd

(
ut2
)
fRL

(t) dt,

ψL(βu) =

∫ ∞

0

Ωd

(
βut2

)
fRL

(t) dt =

∫ ∞

0

Ωd

(
ut2
)
fRL

(
t/
√
β
)
/
√
β dt,

where the last equality is obtained from a substitution. Using linearity and the
integral representation of ψL, we now have that

ψZ(u) =
1

1− β
ψL(u)−

β

1− β
ψL(βu)

=
1

1− β

∫ ∞

0

Ωd

(
ut2
)
fRL

(t) dt

− β

1− β

∫ ∞

0

Ωd

(
ut2
)
fRL

(
t/
√
β
)
/
√
β dt

=

∫ ∞

0

Ωd

(
ut2
)
fRZ

(t) dt,

where the radial density fRZ
connected to ψZ can be identified as

fRZ
(x) =

1

1− β

(
fRL

(x)−
√

βfRL

(
x/
√

β
))

, x > 0. (18)
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When smoothing the considered multivariate Laplace distribution with a match-
ing multivariate Laplace kernel and an appropriate bandwidth matrix H = βΣ,
the smoothing thus affects the radial distribution as shown in (18). The differ-
ence between fRZ

and the original radial density fRL
distorts the joint distri-

bution and hence the implied copula.
This concludes our theoretical discussion and investigation of dependence

structure distortion at the population level. In the next section, we link this to
the smooth bootstrap.

4. Smooth bootstrap

Section 3 focuses on dependence distortion at the population level for kernel
based estimators. In this section, we connect our previous results to bootstrap-
ping. While we discuss asymptotic theory where appropriate, we mainly focus
on the smooth bootstrap as a computational tool. A general introduction to the
theory of the non-parametric bootstrap can be found in Hall 1992, Chapter 1,
and Shao and Tu (1995).

The smooth bootstrap is motivated by, and closely related to, kernel density
estimation as discussed in Section 2. To introduce the smooth bootstrap we
denote by n the original sample size, while B denotes the overall number of
smooth bootstrap replications. Each bootstrap sample is of size m. While m = n
is a typical choice, it is possible to use m � n in a data augmentation situation.
Furthermore, τb, b ∈ {1, . . . , B}, denotes a random vector uniformly distributed
on ×m

i=1{1, . . . , n} with components τbi for i ∈ {1, . . . ,m} independent of the
sample X = {Xi}ni=1. In this case the individual components of τb are clearly
independent and uniformly distributed on {1, . . . , n}. A bootstrap sample X∗

b =
(X∗

bi)
m
i=1, b ∈ {1, . . . , B}, is now generated via X∗

bi = Xτbi . The draws τ1, . . . , τB
are assumed to be independent which thus carries over to the (non-parametric)
bootstrap samples {X∗

b}Bb=1.
The smooth bootstrap sample S

∗
b = {Z∗

bi}mi=1 is obtained by setting Z∗
bi =

X∗
bi + Ybi, where Ybi is distributed according to a smoothing kernel KHn inde-

pendently of {Xi}ni=1 and {τb}Bb=1. This again leads to independence among all
the components of {S∗b}Bb=1. The smooth bootstrap sampling scheme can also
be interpreted from the kernel smoothing perspective discussed in Sections 2
and 3. Considering the unconditional distribution of Z∗

bi it can readily be seen

that Z∗
bi

d
= X + Y , where X and Y are independent random vectors with

densities fX and kHn . The (unconditional) density of Z∗
bi is therefore given by

f̂E

n defined in (6), the expected kernel density estimate, and the observations in
Sections 3.1–3.4 apply accordingly.

Conditionally on X, the smooth bootstrap is equivalent to sampling from the
mixture density obtained from the kernel density estimation for a given dataset.
We denote this mixture density by

f̂ |X
n (x) = f̂n(x |X) = 1

n

n∑
i=1

kHn(x− xi), (19)
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where xi = Xi(ω), i ∈ {1, . . . , n}, for some fixed ω ∈ Ω. Along the same lines
we denote the joint distribution function conditional on X by

F̂ |X
n (x) = F̂n(x |X) = 1

n

n∑
i=1

KHn(x− xi). (20)

In general, sampling from a mixture density proceeds in two steps. First, one of
n possible groups is selected with equal probability n−1. The second step con-
sist of drawing a random vector from the corresponding mixing density, which
in our case is represented by a random vector that follows KHn centered at
the randomly selected xi representing the ith group. Given X, we thus equiva-
lently have that Z∗

bi = x∗
bi + Ybi in the smooth bootstrap, where x∗

bi is selected
uniformly from {x1, . . . ,xn} according to τb.

In the following section, we apply the smooth bootstrap to copula functionals
and provide an algorithm that draws a smoothed sample from given observa-
tions.

4.1. The smooth bootstrap for copula functionals

In Section 3.2 we have discussed how smoothing impacts the joint distribution
and dependence structure of the expected kernel density estimate f̂E

n with a
special focus on elliptical distributions and kernels. In this section we discuss

properties of f̂
|X
n with a focus on the implied dependence structure.

If the marginal quantile functions F̂−1
n1 , . . . , F̂−1

nd associated to the joint dis-

tribution function F̂
|X
n implied by the density f̂

|X
n are known, Sklar’s Theorem

can be used to extract the corresponding copula (conditional on the data X) via

Ĉ|X
n (u) = F̂ |X

n

(
F̂−1
n1 (u1), . . . , F̂

−1
nd (ud)

)
. (21)

However, recovering the marginal distribution and quantile functions from f̂
|X
n

defined in (19) is not an easy task in general. In the following discussion we will
thus limit ourselves to kernels that are elliptical. Aside from elliptical kernels,
it is straightforward to extract the marginal distributions in the case of prod-
uct kernels. There, the marginal distributions are given by standard univariate
kernel distribution estimates where the respective bandwidths are selected in-
dividually by virtue of a diagonal bandwidth matrix Hn = diag(hn1, . . . , hnd).

If the kernel k is the density of an elliptical random vector Y ∼ Ed(0, Id, ψY ),
the rescaled and shifted kernel kHn(x−xi), x ∈ R

d, can be identified as the den-

sity of Zi = xi+H
1/2
n Y ∼ Ed(xi, Hn, ψY ); see Theorem B.3. Considering (34),

the jth marginal distribution of Zi is hence given by Zij ∼ E1(xij , Hnjj , ψY ).
Denoting by FψY

the common univariate marginal distribution function of Y ,
the distribution function of Zij , j ∈ {1, . . . , d}, is then given in terms of a
location-scale model taking the form

FZij (z) = P [Zij ≤ z] = FψY

(
z − xij√
Hnjj

)
, z ∈ R.
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In this specific setup, the marginal distribution functions of F̂
|X
n are given by

mixture distribution functions of location-scale models of FψY
. For the jth mar-

gin we have that

F̂nj(x) =
1

n

n∑
i=1

FψY

(
x− xij√

Hnjj

)
, x ∈ R. (22)

The marginal distributions of F̂
|X
n are thus given by univariate kernel distribu-

tion estimates with bandwidth hnj =
√
Hnjj and kernel density fψY

= F ′
ψY

.

To make use of Sklar’s Theorem, the corresponding quantile functions F̂−1
nj

need to be available. For p ∈ (0, 1) the quantile function F̂−1
nj (p) is (here) defined

via the inverse relationship

F̂nj(x) = p. (23)

The probabilistic behaviour of univariate quantile functions for n → ∞ in this
case is studied in Nadaraya (1964a,b) and Azzalini (1981). Since in our case
the marginal distributions are given in closed form in (22), the corresponding

quantile functions F̂−1
nj can be computed for a fixed n via numerical inversion.

This leads to a tractable numerical evaluation of Ĉ
|X
n for an argument u in the

case of elliptical kernels.

Concerning the numerical inversion, the value of a sample quantile can serve
as a starting point for numerical algorithms as suggested in Azzalini (1981).
When a starting interval instead of a starting point is required for the numerical
search, the value of F̂nj at the first and last order statistic (in component j) can
be used to obtain a first estimate of the relevant search region.

In Azzalini (1981), an optimal bandwidth for deriving a quantile via the im-
plicit definition in (23) is given. In this case the asymptotic mean square optimal

bandwidth is proportional to n− 1
3 . However, the optimal bandwidth for smooth-

ing the joint density (or distribution) will in general depend on the dimension
d. This makes it necessary to compromise either on the marginal or joint dis-
tributional level when selecting the bandwidth. When different bandwidths are
chosen for the marginal smoothing and quantile computation via (23), and for
the smoothing of the joint distribution via (20), the resulting combination in
(21) is not a proper copula since the resulting margins are not adapted to the
joint distribution. It is important to point out that in an asymptotic n → ∞
consideration different bandwidth choices for the margins and joint distribution
might not pose any problems as long as the usual conditions are obeyed. In a
setting with a fixed n, it is, however, not possible to mix different bandwidths
and obtain a proper copula, even if they might be optimal when considered
individually.

If an elliptical kernel (or any other multivariate kernel with accessible marginal
distributions) is used to construct the kernel density estimate, it is possible to
simulate from the implied conditional copula in (21). This is done by combining
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the simulation of mixture distributions discussed at the end of the previous sec-
tion with the marginal distributions given in (22). This leads to the following

algorithm to draw a random sample from Ĉ
|X
n .

Algorithm 4.1 (Smooth bootstrap sample from Ĉ
|X
n ). Denote by {xi}ni=1 a

given set of observations and assume that a sensible bandwidth matrix Hn has
been determined (see, e.g., the discussion in Section 4.2). To draw a pseudo-

random sample (u∗
� )

m
�=1 from Ĉ

|X
n of size m repeat the following steps for 
 ∈

{1, . . . ,m}:

1. Draw a pseudo-random y� distributed according to the kernel density k.

2. Draw an index i uniformly from {1, . . . , n} and set z∗
� = xi +H

1/2
n y�.

3. Return u∗
� =

(
F̂n1(z

∗
�1), . . . , F̂nd(z

∗
�d)
)
, where F̂nj is the jth marginal dis-

tribution of F̂
|X
n .

Remark 4.1. Algorithm 4.1 is based on a direct application of the kernel den-
sity estimate. However, in certain situations a straightforward application of the
kernel density estimation might not be possible. The most common situation of
the latter type is when the multivariate joint distribution is only supported on a
compact set, leading to a boundary bias in the estimation. Specifically relevant to
our investigation are the cases when the original sample X consists (i) of obser-
vations of a copula C, or (ii) of copula pseudo-observations obtained by apply-
ing the marginal empirical distribution functions to the component samples. To
avoid boundary issues in such cases it is possible to transform the observations
from [0, 1]d to Rd by an appropriate (bijective) marginal transformation. Al-
though any continuous marginal distribution function can be used for this trans-
formation, it is most common to use the standard normal distribution function,
see, for example, (Joe, 2015, Section 5.10.3). Transformation re-transformation
approaches in the context of non-parametric copula estimation have also been
studied in Omelka, Gijbels and Veraverbeke (2009) and Geenens, Charpentier
and Paindaveine (2018). In the new domain the smoothing can then be carried
out according to Algorithm 4.1. Since the copula is invariant under strictly in-
creasing marginal transformations, the resulting sample is still representative of
the underlying copula.

The smooth bootstrap outlined in Algorithm 4.1 can now be used in two
situations when dealing with a copula functional T and its empirical version
Tn defined for samples X (of arbitrary size n). First, the smooth bootstrap can
be used to gauge the distribution (and other characteristics) of Tn for a fixed
sample size n. While the original sample X only allows for one realization of Tn,
one can use the smooth bootstrap to gauge for example the distribution of Tn.
Via Algorithm 4.1 one can draw B smooth bootstrap samples (S∗b)

B
b=1 of size n.

This leads to B smooth bootstrap observations (T b
n)

B
b=1 of Tn, which are based

on F̂
|X
n with underlying copula Ĉ

|X
n . While the number of bootstrap samples

B is under the control of the statistician, it is crucial to verify whether the
resulting bootstrap distribution is (asymptotically for n → ∞) representative



Smooth bootstrapping of copula functionals 2573

for the distribution of Tn at the population level. A general discussion of this
issue for the smooth bootstrap can be found in Shao and Tu 1995, Chapter 3.5.

Second, the bootstrap can also be used as a method of data augmentation.
This method can come into play when an approximation of T (CX) is con-
structed by replacing the unknown copula CX with either the empirical copula

or the smooth version Ĉ
|X
n . This can either be necessary when the computations

based on the empirical copula, i.e., the original sample {x1, . . . ,xn}, are too

coarse to be useful, or to facilitate the (numerical) approximation of T
(
Ĉ

|X
n

)
.

For certain functionals T , such as level sets, or Kendall’s tau and Spearman’s

rho which are given as multivariate integrals, the computation of T
(
Ĉ

|X
n

)
might

pose (numerical) challenges even if Ĉ
|X
n is in principle known and can be eval-

uated via (21). From a practical point of view it can then be easier to use an
approximation

lim
m→∞

Tm (u∗
1, . . . ,u

∗
m) = T

(
Ĉ |X

n

)
,

if a suitable sample version Tm is available. To make sense of the limit we need to

formally define a distance between Tm (u∗
1, . . . ,u

∗
m) and T

(
Ĉ

|X
n

)
and we circle

back to this issue in Section 4.3.
In both cases, instead of creating B samples of size n to assess the distribution

of Tn, only one smooth bootstrap sample S∗m = (u∗
i )

m
i=1 of size m � n is created.

Contrary to the approximation based on the original sample Tn (x1, . . . ,xn), Al-
gorithm 4.1 allows us to sample an arbitrary number m of pseudo-observations.
If the functional is well behaved, the resulting T ∗

m = T (S∗m) is then a close

approximation to T
(
Ĉ

|X
n

)
.

An open question is which bandwidth matrix to use in Algorithm 4.1. This
is addressed in the subsequent section.

4.2. Cross-validation bandwidth selection

A crucial part of the suggested procedure is the selection of the bandwidth ma-
trix H. In the univariate case the asymptotic mean integrated squared error
(AMISE) optimal bandwidth is of order O

(
n−1/5

)
in the case of density esti-

mation. However, as shown in Azzalini (1981) the AMISE optimal bandwidth
for distribution estimation is of order O

(
n−1/3

)
. In the multivariate case we

can thus not expect that bandwidth selection techniques designed for density
estimation will work well when estimating distribution functions.

While a variety of bandwidth selection methods are available in the case
of multivariate kernel density estimation, this is not the case when estimating
distribution functions. When restricting oneself to product kernels, and hence
diagonal bandwidth matrices in our setting, a plug-in estimator can be found
in Liu and Yang (2008). Given that product kernels are too restrictive in our
setup we instead turn to cross-validation for bandwidth selection.
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In the univariate case Bowman, Hall and Prvan (1998) adapt cross-validation
for kernel distribution estimators by introducing the objective function

CV1
n(h) =

1

n

n∑
i=1

∫
R

(
1(−∞,x](Xi)− F̂−i(x)

)2
dx

=
1

n

n∑
i=1

∫
R

(
1[Xi,∞)(x)− F̂−i(x)

)2
dx,

where F̂−i is the (in this case one-dimensional) leave-one-out kernel distribution
estimator. Minimization of CV1

n(h) with respect to h then leads to a sensible
optimal bandwidth as argued in Bowman, Hall and Prvan (1998). While the
integral is finite for compactly supported kernel functions, kernels with support
on R can be used if they decay fast enough which can be seen when decomposing
the integral as∫

R

(
1[Xi,∞)(x)− F̂−i(x)

)2
dx =

∫ Xi

−∞

(
F̂−i(x)

)2
dx+

∫ ∞

Xi

(
1− F̂−i(x)

)2
dx.

However, in the multivariate case a direct generalization of CV1
n is only valid

for compactly supported kernels. When supported over Rd, the respective in-
tegrals will generally not converge. To solve this issue we introduce a weight
function w : Rd → [0,∞) and define a weighted multivariate version of CV1

n as

CVd
n(H;w) =

1

n

n∑
i=1

∫
Rd

(
1(−∞,x](Xi)− F̂−i(x)

)2
w(x) dx, (24)

where (−∞,x] = ×d
i=1(−∞, xi] for x = (x1, . . . , xd) ∈ R

d. Here F̂−i denotes the
leave-one-out kernel distribution estimate when disregarding the ith observation,
i.e.,

F̂−i(x;X) = F̂−i(x) =
1

n− 1

n∑
j=1
j 
=i

KH(x−Xj).

As a measure of performance we consider the weighted mean integrated squared
error (WISE)

WISEd
n(H;w) = E

[∫
Rd

(
F̂n(x)− FX(x)

)2
w(x) dx

]
(25)

as a function of the bandwidth matrix H. A WISE optimal bandwidth matrix
is any matrix that minimizes (25).

In the univariate case with w ≡ 1, Bowman, Hall and Prvan (1998) show that
E
[
CV1

n(h)
]
= WISE1

n−1(h) up to a constant shift term that is independent

of h which justifies minimizing CV1
n(h) to find a sensible bandwidth. In the

multivariate case we derive the following generalization concerning the objective
function in (24).
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Theorem 4.1. If
∫
Rd w(x) dx < ∞ then

E

[
CVd

n(H;w)
]
= WISEd

n−1(H;w) +DX(w), (26)

where DX(w) is independent of H and n and given by

DX(w) = E

[∫
Rd

(
1(−∞,x](X)− FX(x)

)2
w(x) dx

]
.

Proof. We first note that the existence of the involved integrals is guaranteed
by integrability of the weight function. Due to the iid setting we have that

E

[
1(−∞,x](Xi)F̂−i(x)

]
= FX(x)E

[
F̂−i(x)

]
and therefore

E

[
CVd

n(H)
]
−DX(w)

= E

[
1

n

n∑
i=1

∫
Rd

(
1(−∞,x](Xi)− F̂−i(x)

)2

w(x) dx

]

− E

[∫
Rd

(
1(−∞,x](X)− FX(x)

)2

w(x) dx

]

= E

[
1

n

n∑
i=1

∫
Rd

(
1(−∞,x](Xi)− F̂−i(x)

)2

w(x) dx

]

− E

[
1

n

n∑
i=1

∫
Rd

(
1(−∞,x](Xi)− FX(x)

)2

w(x) dx

]

= E

[
1

n

n∑
i=1

∫
Rd

(
1(−∞,x](Xi)

2 + F̂−i(x)
2 − 21(−∞,x](Xi)F̂−i(x)

]
− E

[
1(−∞,x](Xi)

2 − FX(x)2 + 21(−∞,x](Xi)FX(x)
)
w(x) dx

]
=

1

n

n∑
i=1

∫
Rd

(
E

[
F̂−i(x)

2
]
− 2E

[
1(−∞,x](Xi)F̂−i(x)

]
− FX(x)2

+ 2E
[
1(−∞,x](Xi)

]
FX(x)

)
w(x) dx

=
1

n

n∑
i=1

∫
Rd

(
E

[
F̂−i(x)

2
]
− 2FX(x)E

[
F̂−i(x)

]
− FX(x)2

+ 2FX(x)2
)
w(x) dx

=
1

n

n∑
i=1

E

[∫
Rd

(
F̂−i(x)− FX(x)

)2

w(x) dx

]

= E

[∫
Rd

(
F̂n−1(x)− FX(x)

)2

w(x) dx

]
= WISEd

n−1(H;w)
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from which the claim follows by rearranging terms. The step from the third to
last equality to the last line is justified by the identical distribution of the Xi,
leading to n times the same expectation.

Clearly, if the kernel is compactly supported we can set w ≡ 1 and obtain a
direct generalization of the result in Bowman, Hall and Prvan (1998) along the
same lines. Although the constantDX is typically unknown in a realistic setting,
DX does not depend on H and is hence irrelevant for the minimization. This
justifies minimizing CVd

n(H;w) with respect to H to obtain an approximation
to the WISE optimal bandwidth.

In the absence of specific preferences it seems natural that the weight function
w decays evenly in all directions from a central point. While any measure of
centrality can in principle be used as a central point, we will be using the
(sample) mean. A possible example of an appropriately shifted weight function

is hence given by w(x) = exp
(
−‖x− E [X]‖22

)
.

In terms of selecting the bandwidth matrix H we fall back to the sphering
approach introduced in Section 3.2, see also Wand and Jones 1995, Chapter 4.6
and references therein. Instead of optimizing over all d(d + 1)/2 entries in H

we instead compute the empirical covariance matrix Ŝn and introduce a one-
dimensional optimization parameter h by setting H = hŜn. Not only does
this approach avoid the otherwise high dimensional optimization, but it also

fits to the theoretical discussion in Section 3.2 since Ŝ
P→ cov [X] and hence

H ≈ −2hψ′(0)Σ for elliptical random vectors.

Finally, depending on the kernel F̂−i, the evaluation of the integrals in (24) is
not possible in closed form. In this case multivariate numerical integration can
be used to compute the integrals. The previously introduced weight function

w(x) = exp
(
−‖x− E [X]‖22

)
fits especially well with Gauss-Hermite quadra-

ture and is utilized in our numerical examples where d = 2. Multivariate Gauss-
Hermite quadrature that is compatible with the chosen weight function can be
accomplished via a tensor grid, or, for higher dimensions, by the more efficient
sparse grid integration. Sparse grid integration introduced by Smolyak (1963)
efficiently combines univariate quadrature rules into multivariate ones; see Ger-
stner and Griebel (1998) for an overview.

Figure 2 visualizes (26) by showing the approximation of WISE2
n(H;w) by

the expectation of CV2
n(H;w) in the case of a bivariate normal X ∼ N (μ,Σ)

with parameters

μ =

(
−1.0
1.0

)
and Σ =

(
1.0 1.05
1.05 1.96

)
,

yielding a correlation coefficient of 0.75 between X1 and X2. In our example we
also use a standard bivariate normal distribution N (0, I2) for the kernel K. Due
to the lack of closed form solutions we approximate WISE2

n(H;w), DX(w), as
well as E

[
CV2

n(H;w)
]
numerically. All necessary integrals inside the respective

expectations are computed via a bivariate Gauss-Hermite tensor product rule
with 25 points in each dimension, totalling to 625 evaluation points. The weight
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Fig 2. Numerical approximation of E
[
CV2

n(H;w)
]

(orange) and WISE2
n−1(H;w) + DX

(green) for n = 25 (top), n = 50 (middle) and n = 100 (bottom) with H = hΣ for
h ∈ {0.01, 0.02, . . . , 2.5}. The minimum of E

[
CV2

n(H;w)
]
is indicated by a circle and the

dashed vertical black line in all cases. The dashed vertical gray line indicates the choice of h
following Silverman’s rule of thumb.

function is always centered at μ, i.e., w(x) = exp
(
−‖x− μ‖22

)
. Given that

DX(w) is independent of H and n we compute it only once based on 10 000 in-



2578 M. Coblenz et al.

Table 1

Simulation settings for the example in Section 4.2.

n Sample size used for
E
[
CV2

n(H;w)
] Sample size used for

WISE2
n−1(H;w)

Gauss-Hermite
nodes used

25 300 5 000 252

50 60 2 500 252

100 20 1 000 252

dependent samples from X and find DX(w) = 0.629732. For a given bandwidth
matrix H we compute WISE2

n(H;w) for three sample sizes n ∈ {24, 49, 99}.
For n = 24 we approximate the outer expectation by the mean over 5 000 in-
dependent samples of X, for n = 49 we use 2 500 independent samples and
for n = 99 the approximation is based on 1 000 independent samples. The ap-
proximation of E

[
CV2

n(H;w)
]
for the same bandwidth matrix H is thus based

on samples of size n ∈ {25, 50, 100}. For n = 25 the value of E
[
CV2

n(H;w)
]

is approximated by 300 independent samples of size 25. In the case of n = 50
we use 60 independent samples and for n = 100 we use 20 independent sam-
ples from X. For WISE2

n(H;w) and E
[
CV2

n(H;w)
]
, the bandwidth matrices

are chosen as H = hΣ with h ∈ {0.01, 0.02, . . . , 2.5}. The resulting approxi-
mation for E

[
CV2

n(H;w)
]
as a function of h is shown in orange for n = 25

(top), n = 50 (middle) and n = 100 (bottom). The green line shows the approx-
imation to WISE2

24(H;w) + DX(w) (top), WISE2
49(H;w) + DX(w) (middle)

and WISE2
99(H;w) +DX(w) (bottom). The minimum of E

[
CV2

n(H;w)
]
is in-

dicated by a circle and the dashed vertical black line in all cases. The settings
are summarized in Table 1.

From Figure 2 we see that the approximation to WISE2
n(H;w) seems to

be more erratic than for E
[
CV2

n(H;w)
]
. While the functions should perfectly

match according to Theorem 4.1, the remaining differences can be attributed
to the limited sample sizes. In line with intuition, the bandwidth parame-
ter h is decreasing with sample size. We also see that the population ver-
sion E

[
CV2

n(H;w)
]
, i.e., the average over the sample versions CV2

n(H;w), is
a smooth function with a unique minimum. However, as known from cross-
validation in other contexts, this is not necessarily the case for a given sample
X = {Xi}ni=1. In Figure 3 we show two out of the 300 curves of CV2

25(H;w)
that are used in the computation of E

[
CV2

25(H;w)
]
. The two underlying sam-

ples are denoted by X1 = {Xi}25i=1 and X2 = {Xi}25i=1. While the orange curve
generated from X2 has a shape that is conducive to optimization, the black curve
generated from X1 is monotonically decreasing over the considered range. When
considering E

[
CV2

25(H;w)
]
all 300 curves get averaged which finally yields a

reasonable target for minimization, but the individual curves might not be good
optimization targets.

In our numerical experiments we find that this issue is more pronounced for
small values of n. To address this issue in a practical situation it is possible
to use a bootstrap approach to generate artificial samples that can then be
averaged. Taking for example the sample X1 that generated the black curve in
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Figure 3, we generate 25 new samples of size n = 25 by resampling from X1

with replacement. Based on these 25 new bootstrap samples we then compute
an approximation to E

[
CV2

25(H;w)
]
by averaging. The resulting curve is shown

in Figure 4 and shows a preferable shape compared to the initial black curve
in Figure 3. Although the optimal bandwidth h taken from Figure 4 does not
match the population version shown in Figure 2, it is important to recall that
the starting sample X1 was problematic from the point of view of bandwidth
selection by cross-validation to begin with due to its decreasing shape. In this
sense bootstrapping helped to obtain a reasonable bandwidth under difficult
conditions.

While our bandwidth selection approach is specifically tailored towards esti-
mating multivariate distribution functions, we compare it to the popular rule
of thumb bandwidth selection for multivariate kernel density estimation. In the
multivariate case, Silverman’s rule of thumb, see, e.g., Wand and Jones 1995,
Chapter 4, is given by setting

h(d, n) =

(
4

n(d+ 2)

)2/(d+4)

, (27)

and then using sphering as before to arrive at Hn = h(d, n)Ŝn. While this
choice can be justified when estimating multivariate normal densities, it is not
theoretically justified for estimating multivariate distribution functions, even in
cases like our example setup where all involved distributions are multivariate
normal. It is, however, computationally fast and easy to implement.

The dashed vertical gray line in Figure 2 indicates the choice of h when
following Silverman’s rule of thumb. As indicated in Figure 2, this bandwidth
choice leads to undersmoothing for n = 25 and n = 50. On the contrary, for
n = 100 the rule of thumb bandwidth is slightly larger than the WISE2

n optimal
bandwidth. It is not surprising that the rule of thumb bandwidth differs from the
WISE2

n optimal bandwidth. The difference can on the one hand be attributed to
different objectives, distribution versus density estimation, that both methods
are trying to accomplish. On the other hand, the weight function w is not part of
the rule of thumb bandwidth selection procedure while it is explicitly necessary
for the WISE2

n procedure.

4.3. Consistency

In this section, we outline the difference between T (CX), T
(
ĈE

n

)
and T

(
Ĉn

)
from an asymptotic perspective, where Ĉn is the random version of Ĉ

|X
n defined

in (4). While a full development of the asymptotic theory is beyond the scope
of this paper, we highlight the differences between the population and sample
versions of the functionals and their relationship, creating a link to data aug-
mentation as discussed in Section 4.1. We then choose Spearman’s rho as an
example to highlight the challenges at hand when developing asymptotic theory
for the smooth bootstrap.
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Fig 3. CV2
25(hΣ;w) for two independent samples X1 = {Xi}25i=1 (black) and X2 = {Xi}25i=1

(orange) of X over a grid h ∈ {0.01, 0.02, . . . , 2.5}.

Fig 4. Bootstrapped version of E
[
CV2

25(hΣ;w)
]
based on the sample X1 over a grid h ∈

{0.01, 0.02, . . . , 2.5}. The approximation is based on 25 independent bootstrap samples drawn
from X1. The minimum is indicated by a circle and the dashed vertical line.

In order to make the dependence of estimates on the respective bandwidth
matrices clear we use the bandwidth matrix as an argument in the following.
For example, Ĉn(Hn) denotes the estimate Ĉn based on the bandwidth matrix
Hn. In principle, the quantity of interest is the (random) approximation error

EX = d
(
T (CX) , T

(
Ĉn

(
hnŜn

)))
,

where d (·, ·) is an appropriate distance function (metric) chosen with regard to
the functional T . Using the triangle inequality for d (·, ·) we can incorporate our

results concerning ĈE

n into this discussion via

EX ≤ d
(
T (CX) , T

(
ĈE

n (h∗
nΣ)

))
+ d
(
T
(
ĈE

n (h∗
nΣ)

)
, T
(
Ĉn

(
hnŜn

)))
= E1 + E2, (28)
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where h∗
n is the non-random, WISEn optimal bandwidth factor and hn is a data-

driven and hence random choice for the bandwidth factor. It is important to
observe that the first error E1 is non-random. In the case of elliptical distribu-
tions and smoothing kernels, E1 is a deterministic function of only the functional
T and the bandwidth matrix h∗

nΣ, which introduces the differences of the char-
acteristic generators ψX and ψZ as addressed in Section 3. From our previous
investigation we know that E1 = 0 if either (i) the elliptical distributions for
the data generating process and the kernel share the same dispersion matrix
up to a scale factor and the functional T does not depend on the characteristic
generator, cf. Section 3.2, or if (ii) the circumstances discussed in Section 3.4
are met. If E1 > 0 in the elliptical setting of Section 3, the rate of conver-
gence of ψX → ψZ discussed in Section 3.3 is linked to the convergence rate

d
(
T (CX) , T

(
ĈE

n (h∗
nΣ)

))
→ 0.

As an example, we consider Spearman’s rho ρS of a bivariate random vector
X with an associated copula CX which is given by

ρS (CX) = 12

∫ 1

0

∫ 1

0

CX(u, v) du dv − 3; (29)

see Nelsen 2006, Chapter 5. The corresponding sample version Tn (x1, . . . ,xn)
is given by the Pearson correlation coefficient of the ranks of the first and second
components of x1, . . . ,xn. As discussed in Section 3.2, similar alternatives given
by Kendall’s tau or Blomqvist’s beta lead to E1 = 0 in the considered setup.
Given that Spearman’s rho takes values in [−1, 1], a suitable metric d (·, ·) is in
this case given by the absolute value d (x, y) = |x− y|. For the error EX this
leads to

EX = d
(
T (CX) , T

(
Ĉn

(
hnŜn

)))
=
∣∣∣ρS (CX)− ρS

(
Ĉn

(
hnŜn

))∣∣∣
= 12

∣∣∣∣∫ 1

0

∫ 1

0

CX(u, v)− Ĉn

(
hnŜn

)
(u, v) du dv

∣∣∣∣
≤ 12

∫ 1

0

∫ 1

0

∣∣∣CX(u, v)− Ĉn

(
hnŜn

)
(u, v)

∣∣∣ du dv
≤ 12 dKS

(
CX , Ĉn

(
hnŜn

))
;

see (32) for the definition of the Kolmogorov-Smirnov distance dKS. We can

follow (28) to include ĈE

n (h∗
nΣ) to obtain

dKS

(
CX , Ĉn

(
hnŜn

))
≤ dKS

(
CX , ĈE

n (h∗
nΣ)

)
+ dKS

(
ĈE

n (h∗
nΣ) , Ĉn

(
hnŜn

))
.

In principle the bivariate Kolmogorov-Smirnov distance between distributions
can be bounded in terms of the characteristic functions, see Sadikova (1966)
and Heuberger and Kropf (2018) for which we give the details in Theorem A.3,
and we followed this approach at the end of Section 3.3. However, in this case,
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a direct application is too restrictive due to the need for bounded derivatives,
a condition that is not met for a number of popular copula families. As an
alternative we utilize the invariance of the Kolmogorov-Smirnov distance under
strictly increasing transforms. For continuous distribution functions F1, . . . , Fd

supported on R we have

dKS

(
CX , Ĉn

(
hnŜn

))
= sup

u∈(0,1)d

∣∣∣CX(u)− Ĉn

(
hnŜn

)
(u)
∣∣∣

= sup
x∈Rd

∣∣∣CX(F1(x1), . . . , Fd(xd))− Ĉn

(
hnŜn

)
(F1(x1), . . . , Fd(xd))

∣∣∣
= dKS

(
FX , F̃n

)
,

where FX and F̃n are the joint distribution functions with the respective copu-

las and identical margins F1, . . . , Fd. While showing that dKS

(
FX , F̃n

)
a.s.→ 0, or

dKS

(
FX , F̃n

)
P→ 0, is beyond the scope of this paper we outline one possible ap-

proach: Devroye and Wagner (1979) give conditions under which the measure as-
sociated to the kernel density estimate converges to the unknown measure of the
true underlying density in total variation distance. For two measures μ and ν on
R

d the total variation distance is defined as dTV (μ, ν) = supB∈F |μ(B)− ν(B)|,
where F is the Borel sigma algebra on R

d. In place of the measures μ and
ν we will also use the distribution or density functions associated to them.
From the definitions we immediately have dKS(F ,G) ≤ dTV (F ,G) for any

two distributions functions F and G. To show that dTV

(
f̂n,fX

)
a.s.→ 0, and

dTV

(
f̂n,fX

)
P→ 0, Devroye and Wagner (1979) however rely, amongst other

assumptions, on a diagonal bandwidth matrix in the definition of f̂n. We leave
the adaptation to elliptical kernels with non-diagonal bandwidth matrices in our
setting for further research.

As exemplified by our treatment of Spearman’s rho, a detailed analysis of
the asymptotic behaviour depends on the functional under consideration. If, for
example, the functional T is a level set of the underlying copula, the absolute
value is not a suitable metric since we need to quantify the distance between
two sets or their respective boundaries. A suitable metric in this context is given
by the Hausdorff distance between the sets enclosed by the contour lines. We
discuss this approach in our simulation studies in the next section.

5. Simulation study

In this section, we illustrate Algorithm 4.1 with several examples for two dif-
ferent functionals T , namely copula level curves and copula based dependence

measures. In our examples, we compare T
(
Ĉ

|X
n

)
to T (C), where we use the
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smooth bootstrap to approximate T
(
Ĉ

|X
n

)
via data augmentation, as discussed

in Section 4.1. In our simulations we use elliptical smoothing kernels but we do
not restrict ourselves to elliptical data generating processes to highlight that the
approach is not limited to the specific situation discussed in Section 3.2.

5.1. Copula level curves and copula diagonals

Inspired by the application in Coblenz, Dyckerhoff and Grothe (2018) we first
focus on bootstrapping level curves for copulas. For a copula C we define the
sublevel set at level t ∈ (0, 1) as

Lt(C) = {u ∈ [0, 1]d : C(u) ≤ t}.

Sublevel sets of copulas have an interpretation as multivariate quantiles, see
Salvadori et al. (2016), and are important for applications, e.g., in finance and
hydrology. To assess whether the sublevel sets of two copulas are close we mea-
sure their distance in terms of the Hausdorff distance. For two subsets A and B
of a metric space (M, d) the Hausdorff distance dH (·, ·) is defined as

dH (A,B) = max

(
sup
x∈A

inf
y∈B

d (x, y) , sup
y∈B

inf
x∈A

d (x, y)

)
,

where in our simulations we use the standard Euclidean distance d (x,y) =
‖x− y‖2 over the unit cube.

In our simulation we draw pseudorandom numbers {u1, . . . ,un} from a fixed

bivariate copula C and record the distance dH

(
Lt (C) , L̂t

)
for different values

of t over a number of independent simulations. Here L̂t is the estimated sublevel
set based either on the original observations {u1, . . . ,un}, ui ∈ [0, 1]2 for i ∈
{1, . . . , n}, only, or on the augmented sample {u∗

1, . . . ,u
∗
m} produced by the

smooth bootstrap. Sufficient conditions for the convergence dH

(
Lt (C) , L̂t

)
a.s.→

0 are discussed in Coblenz, Dyckerhoff and Grothe (2018).
Concerning the bandwidth matrix in the smooth bootstrap we use the em-

pirical variance-covariance matrix based on a transformation of {u1, . . . ,un}
with the standard normal quantile function together with Silverman’s rule of
thumb smoothing parameter given in (27). We utilize this choice throughout
the section due to the computational efficiency of the method in the simulation
re-runs. To transform the smooth bootstrap sample back into [0, 1]2 we use the
marginal distribution functions of the associated kernel distribution mixture as
outlined in Algorithm 4.1. Finally, the multivariate normal density is used as
smoothing kernel.

For a given sample, either {u1, . . . ,un} or {u∗
1, . . . ,u

∗
m}, the boundary of the

sublevel set is estimated by computing the contour lines of the associated em-
pirical copula at level t, resulting in a piecewise linear approximation to Lt(C);
to this end we apply R’s contourLines() to the empirical copula constructed via
empCopula() of the R package copula of Hofert et al. (2022). For a given level t
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it is, from a theoretical perspective, also clear that the copula contour lines ulti-
mately need to pass through (t, 1) and (1, t). Due to the inherent randomness in
the samples the estimated contour lines do not necessarily fulfill this constraint.
For points (ui, vi) on the estimated contour line it is however possible to modify
the results accordingly by replacing all values ui < t with t and all values vi < t
with t. This modification ensures the validity of the boundary conditions and is
utilised in our computations. As a result of the algorithm we obtain (by adding
the points (0, 0), (1, 0) and (0, 1)) the vertices of a polygon that approximates
Lt(C), where the number of vertices depends on the chosen number of grid
points used to discretize the x-axes between t and 1. Concerning the sublevel
sets of the true underlying copula Lt (C) it is also necessary to discretize the
boundary of Lt (C) into a list of vertices over a sufficiently fine approximation
grid. Concerning the numerical computation of dH (·, ·) we implement the algo-
rithm outlined in Taha and Hanbury (2015). The algorithm efficiently computes
the Hausdorff distance between two polygons which then applies directly to the
estimated boundary of L̂t and the discretized boundary of Lt (C).

For the simulation setup we consider the following data. We choose the un-
derlying true copula in the Archimedean class of copulas, see Nelsen (2006) for
an overview. This allows to obtain a closed-form expression for the boundary of
Lt (C) and hence allows to accurately discretize the boundary of the true under-
lying copula Lt (C). Specifically, we simulate from a Clayton copula Cθ where
we fix the model parameter θ in such a way that Kendall’s tau takes specific val-
ues, τ(Cθ) ∈ {−0.9,−0.8,−0.7, . . . , 0.9}. We also consider t ∈ {0.1, 0.2, . . . , 0.9}
and n ∈ {25, 50, 100}. For the smooth bootstrap we generally set the sample
size of the resulting (augmented) sample to m = 5000. The difference between
n and m will (generally) lead to different discretization step sizes for the re-
spective boundary approximations. We repeat each simulation independently
M = 10 000 times.

The resulting distances for n = 25 are presented in the boxplots in Fig-
ure 5. The results for n = 50 can be found in Figure 6, while Figure 7 shows
the results for n = 100. The figures clearly highlight the benefit of using the
smooth bootstrap in this situation. Without smoothing, the estimated contour
lines based on the original data samples are too coarse. On the one hand this
makes them unusable in practice, see the discussion in Coblenz, Dyckerhoff and
Grothe (2018), on the other hand this leads to a significant distance from the
theoretical target. Using an augmented data sample constructed by a smooth
bootstrap procedure on the other hand leads to an estimated curve that bears
more resemblance with a contour line compared to the step-function like esti-
mation result of the standard estimation. Not only is the resulting curve more
suitable for practical applications, but also it is closer to the theoretical target.
A visual representation of this situation can be found in Figure 8, where we
depict in black the theoretical contour line of a Clayton copula at level t = 0.3
with parameter θ = 2 and an associated Kendall’s tau of τ = 1/2. For a sample
of size n = 25 we also give the estimated contour lines based on the original
sample (green) and the estimated contour lines based on the smooth bootstrap
(orange). As before, we use Silverman’s rule of thumb, see (27), in combination
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with the empirical variance-covariance matrix to construct the bandwidth ma-
trix for the bivariate Gaussian kernel. The empirical variance-covariance matrix
is computed based on the data once they have been transformed into R2 via the
standard normal quantile function. As discussed, the smooth bootstrap contour
lines provide a better approximation to the theoretical target by smoothing out
the sharp kinks of the direct estimate which is clearly visible in Figure 8.

Similar improvements are visible in the estimation of the copula diagonal
δ(u) = C(u, . . . , u) which is presented in Figure 9 for a twelve dimensional
Clayton copula with parameter θ = 5. In small samples, n = 10 in the example,
the estimation based on the empirical copula is too coarse to be useful in a
practical situation. When using the smooth bootstrap to generate additional
observations the empirical copula diagonal based on the enlarged sample, m =
10 000 in the example, is less similar to a step function and closer to the unknown
copula diagonal. As for the contour lines, the smooth bootstrap is advantageous
when the target functional is a curve where the evaluation δ(u) needs to exhibit
a smooth behavior for nearby values of u.

5.2. Copula based dependence measures

As an alternative to copula contour lines we now consider the estimation of
copula based dependence measures where we focus on Spearman’s rho and
Kendall’s tau. In our simulations we estimate Spearman’s rho and Kendall’s
tau based on samples of size n ∈ {5, 10, 20, 25, 50, 75, 100} where we consider
Clayton, Student-t, Gumbel, Joe and Gaussian copulas. In these copula fami-
lies both dependence measures can be computed in closed form which allows us
to compare our estimates to the true underlying values. Based on the original
observations we use the smooth bootstrap to generate m = 10 000 observations
based on a Gaussian kernel where we use Silverman’s rule of thumb to establish
our bandwidth matrix. Finally, we repeat the simulations 2 000 times. For the
Clayton copula with parameter θ = 4 this leads to the boxplots in Figure 10
(top) and the mean squared error curves in Figure 10 (bottom) for Spearman’s
rho, and the boxplots in Figure 11 (top) and the mean squared error curves in
Figure 11 (bottom) for Kendall’s tau. The figures show that for small sample
sizes the smooth bootstrap leads to an improved estimation in terms of the
mean squared error for both, Spearman’s rho and Kendall’s tau. For sample
sizes larger than 75 the advantage of the smooth bootstrap disappears. The
figures in Appendix C show that the same conclusions hold for our numerical
experiments using the Student-t copula with ρ = 0.9 and ν = 4 degrees of
freedom (see Figure 12 and 13), the Gumbel copula with parameter θ = 4 (see
Figure 14 and 15), the Joe copula with parameter θ = 4 (see Figure 16 and
17) and the Gaussian copula with ρ = 0.9 (see Figure 18 and 19). Overall these
findings seem to indicate that the smooth bootstrap improves the estimation of
Spearman’s rho and Kendall’s tau for small sample sizes. In the next section we
conclude our results.
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Fig 5. Hausdorff distance simulation results between the true and estimated level sets for
a Clayton copula Cθ with θ such that τ(Cθ) ∈ {−0.9,−0.5, 0, 0.5, 0.9}, for levels t ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. Original sample size n = 25, augmented smooth bootstrap sample size
m = 5000. Each boxplot is based on M = 10 000 independent reruns.

6. Conclusion

We investigate the distortion of the underlying dependence structure that arises
as a side effect of the smooth bootstrap. In the framework of elliptical distribu-
tions and elliptical smoothing kernels with a sphering type bandwidth matrix
we provide the exact mechanism that leads to the distortion of the resulting el-
liptical copula. Even though sphering is at first glance a strong restriction on the
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Fig 6. Hausdorff distance simulation results between the true and estimated level sets for
a Clayton copula Cθ with θ such that τ(Cθ) ∈ {−0.9,−0.5, 0, 0.5, 0.9}, for levels t ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. Original sample size n = 50, augmented smooth bootstrap sample size
m = 5000. Each boxplot is based on M = 10 000 independent reruns.

choice of a possible bandwidth matrix, it allows us to bypass otherwise necessary
restrictions such as product kernels or diagonal bandwidth matrices. While in
our results the parameter matrix of the elliptical copula remains unchanged, the
associated characteristic generator is distorted by a multiplicative factor related
to the smoothing kernel. We connect our investigation to the previous result of
Bingham (1972) to show that in general the pointwise convergence rate between
the original and smoothed characteristic function is linked to the regular vari-
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Fig 7. Hausdorff distance simulation results between the true and estimated level sets for
a Clayton copula Cθ with θ such that τ(Cθ) ∈ {−0.9,−0.5, 0, 0.5, 0.9}, for levels t ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. Original sample size n = 100, augmented smooth bootstrap sample
size m = 5000. Each boxplot is based on M = 10 000 independent reruns.

ation of the characteristic generator of the smoohting kernel. Surprisingly we
however also uncover situations where the underlying elliptical copula remains
completely unaffected by the smooth bootstrap on the population level. To com-
plement this finding we discuss examples where the dependence distortion can
be worked out in detail. Furthermore, given that the parameter matrix remains
unchanged, the dependence distortion introduced by kernel smoothing does not
have any impact on a functional of the copula if the functional does not depend
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Fig 8. Theoretical (black) and estimated contour lines for a Clayton copula with parameter
θ = 2 at level t = 0.3. Direct estimation (green) is based on n = 25 sample points. For the
smooth bootstrap (orange) m = 5000 pseudo-observations are generated based on the initial
sample.

Fig 9. Theoretical (black) and estimated copula diagonal for a twelve dimensional Clayton
copula with parameter θ = 5. Direct estimation (green) via the empirical copula is based on
n = 10 sample points. For the smooth bootstrap (orange) m = 10 000 pseudo-observations are
generated based on the initial sample which are then used to estimate the diagonal via the
empirical copula.

on the characteristic generator of the underlying elliptical copula. Examples of
such functionals are Kendall’s tau and Blomqvist’s beta. However, in practical
applications, even if it is known that the data generating process is elliptical,
the estimation of Σ may still impact our results and the estimation uncertainty
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Fig 10. Top: Estimated Spearman’s rho for the bivariate Clayton(4) copula. The results are
based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth
bootstrap sample size is m = 10 000. Each boxplot is based on M = 2000 independent reruns.
The red dashed line indicates the theoretical value of ρS while black dots indicate the means.
Bottom: Mean squared error for estimation of Spearman’s rho for the bivariate Clayton(4)
copula. The results are based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while
the augmented smooth bootstrap sample size is m = 10 000.

connected to Σ̂ has to be taken into account.

From a practical perspective, we outline how the smooth bootstrap can be
utilized to generate observations from the smoothed copula. Thus, it serves as
a data augmentation scheme. As well as stating an algorithm which can be
used in this situation, we discuss details and options concerning the marginal
transforms and application scenarios. As a necessary part of the algorithm we
generalise the univariate bandwidth selection procedure of Bowman, Hall and
Prvan (1998) to the multivariate case. This bandwidth selection procedure is
not limited to diagonal bandwidth matrices and allows us to select an optimal
full bandwidth matrix in terms of a weighted mean integrated squared error
criterion.

In our simulation studies we utilize the smooth bootstrap to improve the
estimation of copula contour lines in the bivariate and the copula diagonal in
the multivariate case. While our theoretical investigation is limited to elliptical
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Fig 11. Top: Estimated Kendall’s tau for the bivariate Clayton(4) copula. The results are
based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth
bootstrap sample size is m = 10 000. Each boxplot is based on M = 2000 independent reruns.
The red dashed line indicates the theoretical value of τK while black dots indicate the means.
Bottom: Mean squared error for estimation of Kendall’s tau for the bivariate Clayton(4)
copula. The results are based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while
the augmented smooth bootstrap sample size is m = 10 000.

distributions, our simulations show a vast improvement of the approximation
measured in terms of the Hausdorff distance even though the utilised Clayton
copula is not in the class of elliptical copulas. In a second set of simulations we
consider copula based measures of dependence where we focus on Spearman’s
rho and Kendall’s tau. Our results show that the smooth bootstrap improves
the estimation in small samples for a number of copulas in the elliptical and
Archimedean class.

Based on our simulation results the smooth bootstrap can lead to an im-
proved estimation of copula functionals for small sample sizes. The procedure is
especially advantageous if the target functional is smooth, such as level curves or
the copula diagonal in the considered examples, but the estimator based on the
initial (small) sample is too coarse. Here an application of the smooth bootstrap
leads to a virtually unlimited number of observations which, in the considered
applications, leads to a dramatic improvement of the estimation.
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Fig 12. Top: Estimated Spearman’s rho for the bivariate Student-t copula with ρ = 0.9
and ν = 4 degrees of freedom. The results are based on an original sample size of n ∈
{5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample size is m = 10 000. Each
boxplot is based on M = 2000 independent reruns. The red dashed line indicates the theoret-
ical value of ρS while black dots indicate the means.
Bottom: Mean squared error for estimation of Spearman’s rho. The results are based on an
original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample
size is m = 10 000.

Appendix A: Properties of characteristic functions

Here, we review properties of multivariate characteristic functions.

Definition A.1 (d-dimensional Characteristic function). The characteristic
function of d-dimensional random vector X is defined as

φX : Rd → C, t �→ φX(t) = E

[
eit

�X
]
,

where i ∈ C is the imaginary unit with i2 = −1.

In an abuse of notation we may also write φF and φf whenX has distribution
F and density f . Among the properties of characteristic functions the following
two theorems will be useful in the context of kernel smoothing. A comprehensive
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Fig 13. Top: Estimated Kendall’s tau for the bivariate Student-t copula with ρ = 0.9
and ν = 4 degrees of freedom. The results are based on an original sample size of n ∈
{5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample size is m = 10 000. Each
boxplot is based on M = 2000 independent reruns. The red dashed line indicates the theoret-
ical value of τK while black dots indicate the means.
Bottom: Mean squared error for estimation of Kendall’s tau. The results are based on an orig-
inal sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample
size is m = 10 000.

treatment of multivariate characteristic functions can be found, e.g., in Sasvári
(2013).

Theorem A.1 (Characteristic function of convolutions, Sasvári 2013, Theorem
1.1.3). If X and Y are independent d-dimensional random vectors, then the
characteristic function of their sum is φX+Y = φX · φY .

Theorem A.2 (Characteristic function of affine transformations, Sasvári 2013,
Theorem 1.1.7). Let X be a d-dimensional random vector. Then the equation

φAX+b(t) = eit
�b · φX

(
A�t

)
, t ∈ R

n

holds for every linear mapping A : Rd → R
n and b ∈ R

n.

Due to the assumed independence of the underlying random vector and the
smoothing kernel we can directly compute the characteristic function for our
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Fig 14. Top: Estimated Spearman’s rho for the bivariate Gumbel copula with parameter θ =
4. The results are based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the
augmented smooth bootstrap sample size is m = 10 000. Each boxplot is based on M = 2000
independent reruns. The red dashed line indicates the theoretical value of ρS while black dots
indicate the means.
Bottom: Mean squared error for estimation of Spearman’s rho. The results are based on an
original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample
size is m = 10 000.

main objects under consideration. Concerning the expected density function
estimator, we immediately obtain that φf̂E

n
(t) = φX(t)φYHn

(t) due to the inde-

pendence of X and YHn ; see Theorem A.1. The characteristic function of YHn

is obtained in terms of the characteristic function of Y , or equivalently k, as

φYHn
(t) = φk

(
H

1/2
n t

)
, see Theorem A.2, which overall leads to

φf̂E
n
(t) = φX(t)φk

(
H1/2

n t
)
. (30)

Via Theorem A.2 also the characteristic function of the conditional density

estimate f̂
|X
n can be computed as

φ
f̂

|X
n
(t) = φk

((
H1/2

n

)�
t

)
1

n

n∑
i=1

eit
�xi , (31)
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Fig 15. Top: Estimated Kendall’s tau for the bivariate Gumbel copula with parameter θ =
4. The results are based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the
augmented smooth bootstrap sample size is m = 10 000. Each boxplot is based on M = 2000
independent reruns. The red dashed line indicates the theoretical value of τK while black dots
indicate the means.
Bottom: Mean squared error for estimation of Kendall’s tau. The results are based on an
original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample
size is m = 10 000.

from which we can recover the characteristic function of the expected kernel
density estimate given in (30) when taking the expectation with respect to the
underlying random vector X.

Characteristic functions will also play an important role in determining the
distance between two distribution functions. The Kolmogorov-Smirnov distance
between two d-dimensional distribution functions is denoted by

dKS (F ,G) = sup
x∈Rd

|F (x)−G(x)| . (32)

The distance dKS can be bounded by the average scaled difference of the asso-
ciated characteristic functions. In the univariate case this smoothing inequality
is linked to the Berry–Esseen theorem and for T > 0 takes the form

dKS (F,G) ≤ 1

π

∫ T

−T

∣∣∣∣φX(t)− φY (t)

t

∣∣∣∣ dt+ 24

πT
sup
x∈R

|G′(x)| ,
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Fig 16. Top: Estimated Spearman’s rho for the bivariate Joe copula with parameter θ = 4. The
results are based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented
smooth bootstrap sample size is m = 10 000. Each boxplot is based on M = 2000 independent
reruns. The red dashed line indicates the theoretical value of ρS while black dots indicate the
means.
Bottom: Mean squared error for estimation of Spearman’s rho. The results are based on an
original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample
size is m = 10 000.

see, for example, Feller 1971, Lemma 2, page 538. In the multivariate case exten-
sions are available. To keep the notation to a minimum we present the bivariate
case where we use the presentation of Heuberger and Kropf (2018). Here the
cut-off interval [−T, T ] is generalized to a ball. Alternatively, a representation
in terms of a cube [−T, T ]2 is also possible; see Sadikova (1966).

Theorem A.3 (Smoothing inequality; Heuberger and Kropf 2018, Theorem 2).
Denote by X ∼ FX and Y ∼ FY two 2-dimensional random vectors. Assume
that FY is differentiable. Let T > 0 be fixed, then

dKS (FX ,FY )

≤ 2

(2π)2

∫
‖t‖2≤T

∣∣∣∣∣φX(t)− φX1(t1)φX2(t2)− φY (t) + φY1(t1)φY2(t2)∏2
i=1 ti

∣∣∣∣∣ dt
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Fig 17. Top: Estimated Kendall’s tau for the bivariate Joe copula with parameter θ = 4. The
results are based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented
smooth bootstrap sample size is m = 10 000. Each boxplot is based on M = 2000 independent
reruns. The red dashed line indicates the theoretical value of τK while black dots indicate the
means.
Bottom: Mean squared error for estimation of Kendall’s tau. The results are based on an
original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample
size is m = 10 000.

+
2

π

∫
|t1|≤T

∣∣∣∣φX1(t1)− φY1(t1)

t1

∣∣∣∣ dt1 + 2

π

∫
|t2|≤T

∣∣∣∣φX2(t2)− φY2(t2)

t2

∣∣∣∣ dt2
+ 2

∥∥∥∂FY

∂y1

∥∥∥
∞

+
∥∥∥∂FY

∂y2

∥∥∥
∞

T

⎛⎜⎝12

π
+ 3

√√√√ 32

π
(
1−
(
3
4

)1/2)
⎞⎟⎠

+
4 ‖fY1‖∞

T

(
12

π
+

3

√
128

π

)
+

4 ‖fY2‖∞
T

(
12

π
+

3

√
128

π

)
.

Proof. This is the bivariate case of Heuberger and Kropf 2018, Theorem 2.
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Fig 18. Top: Estimated Spearman’s rho for the bivariate Gaussian copula with ρ = 0.9 The
results are based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented
smooth bootstrap sample size is m = 10 000. Each boxplot is based on M = 2000 independent
reruns. The red dashed line indicates the theoretical value of ρS while black dots indicate the
means.
Bottom: Mean squared error for estimation of Spearman’s rho. The results are based on an
original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample
size is m = 10 000.

Appendix B: Elliptically distributed random vectors and copulas

For our considerations the class of elliptical distributions will play a central
role. Textbook introductions can be found in Fang, Kotz and Ng (1990) and
McNeil, Frey and Embrechts (2015). Before going to elliptical distributions we
first introduce spherical distributions as a necessary stepping stone.

Definition B.1 (Spherical distribution; McNeil, Frey and Embrechts 2015, Def-
inition 3.18). A d-dimensional random vector Y = (Y1, . . . , Yd)

� has a spherical
distribution if, for every orthogonal matrix U ∈ R

d×d, UU� = U�U = Id, we

have UX
d
= X.

Spherical distributions can equivalently be characterized via their character-
istic functions or by randomly scaling a uniform distribution on the unit sphere.
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Fig 19. Top: Estimated Kendall’s tau for the bivariate Gaussian copula with ρ = 0.9 The
results are based on an original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented
smooth bootstrap sample size is m = 10 000. Each boxplot is based on M = 2000 independent
reruns. The red dashed line indicates the theoretical value of τK while black dots indicate the
means.
Bottom: Mean squared error for estimation of Kendall’s tau. The results are based on an
original sample size of n ∈ {5, 10, 20, 25, 50, 75}, while the augmented smooth bootstrap sample
size is m = 10 000.

Theorem B.1 (Equivalent characterization of spherical distributions; McNeil,
Frey and Embrechts 2015, Theorem 3.19 and Theorem 3.22). Denote by Y a
d-dimensional random vector. Then the following are equivalent:

1. Y has a spherical distribution,
2. there exists a real valued function ψ : [0,∞) → [−1, 1] with ψ(0) = 1 such

that the characteristic function of Y is given by φY (t) = ψ
(
t�t
)
,

3. Y has the stochastic representation Y
d
= RS, where S is uniformly dis-

tributed on the unit sphere {x ∈ R
d : ‖x‖2 = 1} and R is an almost surly

non-negative random variable independent of S.

The random variable R specific to Y is called the radial distribution of Y . The
function ψ is called the characteristic generator of Y . We denote the distribution
of Y by Sd(ψ). The subclass of spherical distributions for which P [R = 0] = 0
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Table 2

Characteristic generator ψ and value of its derivative at 0 for popular spherical and
elliptical models.

Distribution ψ(u) limu→0+ ψ′(u)
Gauss exp(−u/2) −1/2
Laplace (1 + u/2)−1 −1/2
Student t (ν = 1) exp

(
−√

u
)

−∞
Student t (ν = 2) K1

(√
2x
)√

2x −∞
Student t (ν = 4) K2

(√
4x
)
2x −1

Student t (ν > 2)
Kν/2(

√
νx)(

√
νx)ν/2

Γ(ν/2)2ν/2−1 −ν/(2ν − 4)

is denoted by S+
d (ψ).

In Table 2 we collect the characteristic generators and the value of their
derivative at 0 for popular spherical and elliptical models. Based on Defini-
tion B.1 we can now go on to define elliptical distributions.

Definition B.2 (Elliptical distribution; McNeil, Frey and Embrechts 2015, Def-
inition 3.26). A d-dimensional random vector X has an elliptical distribution
if

X
d
= μ+AY , (33)

where Y ∼ Sd(ψ) and A ∈ R
d×k and μ ∈ R

d are a matrix and vector of
constants, respectively. The distribution of X is denoted by Ed(μ,Σ, ψ) where
Σ = AA� is called the dispersion matrix. The radial distribution of X is the
radial distribution R associated to Y in (33).

Given the stochastic representation of spherical random vectors an elliptical
random vector naturally has the representation

X
d
= μ+RAS

where R is the associated radial distribution, A is a non-random matrix and S
is uniformly distributed on the unit sphere. Based on the characteristic function
of spherical random vectors, the characteristic function of an elliptical random
vector X ∼ Ed(μ,Σ, ψ) is given by

φX(t) = eit
�μψ

(
t�Σt

)
.

If the radial distribution of an elliptical random vector has a finite second mo-
ment, the mean vector and covariance matrix admit the following convenient
expressions.

Theorem B.2 (Moments of elliptical random vectors; Fang, Kotz and Ng 1990,
Theorem 2.17, p. 43). If X ∼ Ed(μ,Σ, ψ) and E

[
R2
]
< ∞, then E [X] = μ

and cov [X] = E[R2]
rank(Σ)Σ = −2ψ′(0)Σ.
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Remark B.1 (Re-parameterization of elliptical random vectors). The param-
eterization of an elliptical random vector is non-unique since the dispersion
matrix and the characteristic generator can be rescaled. From the characteristic
function representation it is clear that the pairs (Σ, ψ) and (cΣ, ψ(·/c)) lead to
the same distribution for every c > 0. If X ∼ Ed(μ,Σ, ψ) we can consequently

set Σ̃ = −2ψ′(0)Σ and ψ̃(u) = ψ(u/(−2ψ′(0))) to obtain a parameterization

X ∼ Ed

(
μ, Σ̃, ψ̃

)
such that cov [X] = Σ̃.

Elliptically distributed random vectors are especially well behaved when con-
sidering affine transformations and sums as shown in the following theorems.

Theorem B.3 (Linear combinations of elliptical random vectors; Fang, Kotz
and Ng 1990, Theorem 2.16, p. 43). Denote by B a k× d matrix and by b ∈ R

k

a vector. If X ∼ Ed(μ,Σ, ψ) with rank(Σ) = k then BX + b ∼ Ek(Bμ +
b,BΣB�, ψ).

As an application of Theorem B.3 we can obtain the marginal distribu-
tions of an elliptical random vector by considering Xj = e�j X, where ej =

(0, . . . , 1, . . . , 0)� denotes the jth unit vector. We then obtain

Xj ∼ E1(μj ,Σjj , ψ). (34)

Summation of elliptical random vectors produces again an elliptical random
vector under certain conditions. Our first theorem in this direction is due to
Hult and Lindskog (2002) and relaxes the commonly requested independence
assumption by allowing for non-independent radial distributions.

Theorem B.4 (Hult and Lindskog 2002, Theorem 4.1). Let R1 and R2 be
non-negative random variables and let X1 = μ1 + R1A1S1 ∼ Ed(μ1,Σ, ψ1)
and X2 = μ2 + R2A2S2 ∼ Ed(μ2,Σ, ψ2), where the random vectors (R1, R2),
Z1 and Z2 are mutually independent. Then X1 + X2 ∼ Ed(μ1 + μ2,Σ, ψ3).
Moreover, if R1 and R2 are independent, then ψ3(u) = ψ1(u)ψ2(u).

In our context a slight generalization of Theorem B.4 for non-equal disper-
sion matrices is needed. This is essentially a combination of Theorem B.4 and
Lindskog, McNeil and Schmock 2003, Lemma 1.

Corollary B.1. Let R1 and R2 be non-negative random variables and let X1 =
μ1+R1A1S1 ∼ Ed(μ1,Σ, ψ1) and X2 = μ2+R2A2S2 ∼ Ed(μ2, cΣ, ψ2), where
the random vectors (R1, R2), Z1 and Z2 are mutually independent and c > 0.
Then X1 + X2 ∼ Ed(μ1 + μ2,Σ, ψc) for some characteristic generator ψc.
Moreover, if R1 and R2 are independent, then ψc(u) = ψ1(u)ψ2(cu).

Proof. Denote by φ1 and φ2 the conditional characteristic functions

φ1(t) = E

[
ei(μ1+R1A1S1)

�t
∣∣∣R1 = r1

]
= eit

�μ1ψ1

(
r21t

�Σt
)
,

φ2(t) = E

[
ei(μ2+R2A2S2)

�t
∣∣∣R1 = r1

]
= eit

�μ2ψr1
2

(
t�cΣt

)
,
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where ψ1 is the characteristic generator of A1S1 and ψr1
2 is the characteristic

generator of R2A2S2 given R1 = r1. Following the same steps as in the proof of
Hult and Lindskog 2002, Theorem 4.1, we obtain

φX1+X2(t) = eit
�(μ1+μ2)E

[
ψ1

(
R2

1t
�Σt

)
ψR1
2

(
ct�Σt

)]
,

showing that X1 +X2 ∼ Ed(μ1 + μ2,Σ, ψc) with characteristic generator

ψc(u) =

∫ ∞

0

ψ1

(
r21u
)
ψr1
2 (cu) dFR1(r1),

where FR1 is the marginal distribution of R1. If R1 and R2 are independent we
directly get ψc(u) = ψ1(u)ψ2(cu) without conditioning on R1 = r1.

If a spherical or elliptical random vector is absolutely continuous with respect
to the Lebesgue measure, the density takes a particular form.

Theorem B.5 (Density generator; McNeil, Frey and Embrechts 2015, Equa-
tion (3.46)). If a spherical random vector Y ∼ Sd(ψ) is absolutely continuous
with respect to the Lebesgue measure, the density fY for y ∈ R

d takes the form
fY (y) = gY (y�y), where gY is a positive function gY : [0,∞) → [0,∞), t �→
gY (t). The function gY is called the density generator of Y .

If an elliptical random vector X ∼ Ed(μ,Σ, ψ) is absolutely continuous with
respect to the Lebesgue measure, the density fX for x ∈ R

d takes the form
fX(x) = 1√

det(Σ)
gY
(
(x− μ)�Σ−1(x− μ)

)
, where gY is the density generator

of the spherical distribution Y associated to X.

Based on Sklar’s theorem every elliptically distributed random vector gives
rise to an associated copula. Due to the fact that the mean and variances are only
marginal attributes they do not play a role when focusing on the dependence
structure inherent to a given elliptical random vector. Hence it is sufficient to
neglect location parameters and to only consider correlation matrices in the
following definition. For a one-dimensional distribution function F we denote
its quantile function by F−1.

Definition B.3 (Elliptical copula). Denote by R a correlation matrix and by
ψ a characteristic generator. The elliptical copula CR,ψ is given by the copula
associated to the d-dimensional random vector X ∼ Ed(0,R, ψ) by virtue of
Sklar’s theorem

CR,ψ(u1, . . . , ud) = P
[
X1 ≤ F−1(u1), . . . , Xd ≤ F−1(ud)

]
,

where F = E1(0, 1, ψ) is the marginal distribution common to X1, . . . , Xd.

Remark B.2. Given that copulas are invariant under strictly increasing trans-
formations, different elliptical random vectors (and their parameterizations) can
give rise to the same elliptical copula. Specifically, the copula CX of an el-
liptical random vector X ∼ Ed(μ,Σ, ψ) is the same as the elliptical copula
Ccorr[X],ψ. This can readily be seen by considering a random vector Y with
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elliptical copula Ccorr[X],ψ, i.e., Y ∼ Ed(0, corr [X] , ψ) and defining D =

diag(sd[X1], . . . , sd[Xd])/
√
−2ψ′(0). This yields DY + μ ∼ Ed(μ,Σ, ψ) and

hence DY + μ
d
= X. We therefore have CX = Ccorr[X],ψ, since the transfor-

mation applied to Y is strictly increasing in every component.
Considering for example a multivariate normal random vector X ∼ Ed(0, cR,

ψ), where R is a correlation matrix and c > 0, we have a characteristic generator

ψ(u) = exp(−u/2) with −2ψ′(0) = 1. Adjusting the margins by D̃X, where D̃ =

diag(1/
√
c, . . . , 1/

√
c), corrects the correlation structure to corr

[
D̃X

]
= R.

This shows that the random vectors X and D̃X share the same Gaussian copula.
Alternatively, the copula can also be obtained by the multivariate probability

integral transform which in this case takes the form
(
Φ
(

X1√
c

)
, . . . ,Φ

(
Xd√
c

))
.

Appendix C: Numerical results

Figures 12 to 19 contain the numerical results concerning the estimation of
Spearman’s rho and Kendall’s tau using the smooth bootstrap discussed in
Section 5.2.
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