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1 Introduction

1 Introduction

The Chamanara surface, first described by Reza Chamanara in [Cha04] is one of the
most well-known examples of an infinite translation surface. Infinite translation surfaces
is a relatively recent topic which has not been the focus of research up until the 21st
century. Classical translation surfaces on the other hand have been studied extensively
since the last quarter of the 20th century.

The most intuitive way of constructing a translation surface (in the classical sense) is by
taking a finite number of disjoint polygons and gluing parallel edges of the same length
and different orientation together via translations. By doing this for all edges we obtain
a 2-dimensional oriented real manifold. Furthermore, for all charts which do not contain
any of the former vertices, the transition functions are just translations. The points
correlating to the former vertices are called singularities and each of them is a cone
point of the surface with cone angle 2kπ for some k ∈ N. This k is also called the order
of the singularity. This leads to another way of defining a translation surface, namely as
a 2-dimensional oriented compact connected manifold for which the transition functions
are translations apart from a finite number of cone singularities. There is also a third
common way of defining a translation surface: A translation surface can be defined as
a pair (X,ω), where X is a connected compact Riemann surface and ω is a nonzero
holomorphic differential on X.

Translation surfaces possess many different interesting properties and are therefore re-
lated to various different fields. Nevertheless, in this work, we are mainly interested in the
moduli spaces of translation surfaces. In the classical situation, these appear naturally
as a vector bundle over the spaceMg of Riemann surfaces of genus g and are stratified
by the order of the singularities. The strata then have a complex orbifold-structure,
which goes back to Veech ([Vee86]). This structure is realized by local coordinate func-
tions called the period coordinates. In the last 20 years, several important results have
been found concerning the structure of the strata. One of these was the research done
by Kontsevich and Zorich in [KZ03], which showed that almost all of the strata are
connected. Surely the most groundbreaking research was the one done by Eskin, Mirza-
khani, and Mohammadi in [EMM15] and Eskin and Mirzakhani in [EM18], which led
to Mirzakhani winning the Fields Medal in 2014. In these articles, they established a
description of the orbit closures of the action of GL+

2 (R) on a stratum.

That being said, very little is known about the structure of the space of all infinite
translation surfaces. Similar to the classical case an infinite translation surface can
be obtained by gluing infinitely many polygons together instead of finitely many. An-
other method of constructing infinite translation surfaces is by allowing the polygons
to have infinitely many edges. Again an infinite translation surface can be defined as
a 2-dimensional oriented connected manifold X for which the transition functions are
translations. In contrast to the finite case, X is not necessarily compact. In addition,
the singularities are not part of the manifold X anymore but are rather found in the
metric completion X. Because we focus mainly on infinite translation surfaces we just
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1 Introduction

Figure 1: The polygon used to construct the Chamanara surface.

call them translation surfaces instead of “infinite translation surfaces” and call the classi-
cal translation surfaces finite translation surfaces instead. This is supported by the fact
that each finite translation surface (after removing the singularities) is also an infinite
translation surface.

The space of all infinite translation surfaces lacks the structure of the moduli spaces
of finite translation surfaces. There have been different attempts at overcoming this
issue either by the means of Veech groups or covering spaces (see e.g. [Tre14], [HT19]
or [DHL14]). In [Hoo13] and [Hoo18] Patrick Hooper uses a different approach by using
immersions and embeddings of translation surfaces to define a topology on the spaceM
of all translation surfaces (finite and infinite ones). This topology is called the immersive
topology and it will be our main tool to make statements about the structure of families
of infinite translation surfaces. In addition, building up on this topology, we will define
a finer topology onM.

One recent attempt at investigating the structure of the space of all translation surfaces
has been done by Rodrigo Treviño in [Tre18] building up on his work done with Kathryn
Lindsey in [LT16]. There they introduced a way of constructing a translation surface out
of a bi-infinite Bratteli diagram. This allows a topology defined on the set of Bratteli
diagrams to be used on the set of translation surfaces constructed out of these Bratteli
diagrams. Our approach follows a similar spirit. Instead of Bratteli diagrams we use
point-symmetric polygons with infinitely many edges (called PSI-polygons) as a way to
define coordinates on the set of translation surfaces constructed out of these polygons. In
particular, we show that these coordinates agree with the immersive topology introduced
in [Hoo13] and [Hoo18].

The basic idea of this procedure stems from the Chamanara surface mentioned in the
beginning. This surface is constructed by taking the polygon depicted in Figure 1 and
gluing diagonally opposing edges together. This leads to an infinite translation surface
with infinite genus and one singularity. In [Cha04] the author does not only describe one
surface but a whole family of surfaces. The polygon depicted in Figure 1 is constructed
by dividing each side in half and then again dividing one of the resulting parts in half
and so forth. This can be generalized by replacing the factor 1

2
with another factor

α ∈ (0, 1) to receive a translation surface Chα. This results in the 1-parameter family
introduced in [Cha04]. One starting idea will be to use this α as a coordinate function
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1 Introduction

for this family. We then generalize this approach further to define similar coordinate
functions on much larger families.

We will see that these coordinate functions agree with the immersive topology, i.e.
they are homeomorphisms from these families to a suitable coordinate space. But as
it turns out the immersive topology is not sufficient for coordinate functions of more
complex families. The main problem is that this topology is too coarse to perceive certain
properties. For example, the genus is not preserved under limits of sequences. The same
holds for the area of surfaces: There are sequences of translation surfaces of infinite area
which converge to a surface of finite area in the immersive topology. We will address this
issue by introducing a slightly stronger topology on the space of all translation surfaces
which we will therefore call the strong immersive topology. We will see that this topology
is sufficient to resolve these problems. We also show that this topology is not too strong
for our case, i.e. the coordinate functions are still homeomorphisms with respect to the
strong immersive topology.

The structure of this thesis is as follows. In Section 2 we recall the basic definitions
used in the later sections. In addition, we give a short summary of the structure of the
moduli spaces of finite translation surfaces and introduce some examples of families of
finite translation surfaces as a motivation for our further procedure.
In Section 3 we state the definition of the immersive topology as defined in [Hoo13] and
[Hoo18] and repeat some basic facts from these works, which we use in later sections.
In Section 4 we start by introducing our basic tool, point-symmetric infinite polygons
(PSI-polygons), and construct translation surfaces out of these polygons. This is done as
a generalization of the Chamanara surface. Afterward, we investigate some basic prop-
erties and define convergence for these polygons. We then conclude that the convergence
of PSI-polygons implies the convergence of the corresponding translation surfaces in the
immersive topology in Theorem 4.18:

Theorem 4.18. If (P (n), (x
(n)
m )m∈N)n∈N converges to (P, (xm)m∈N), then (P̂ (n))n∈N con-

verges to P̂ in the immersive topology.

In Section 5 we then establish several families of translation surfaces which are con-
structed out of PSI-polygons. Among other things we show in Theorem 5.1 that α as
introduced above is, in fact, suitable as a coordinate:

Theorem 5.1. The map

Ψ: (0, 1)→M, α 7→ Chα

is a homeomorphism onto its image.

In Theorem 5.1M is equipped with the immersive topology but Theorem 6.16 will show
that the statement still holds for the strong immersive topology. In the other main state-
ments of Section 5, namely Theorem 5.9 and Theorem 5.16, we introduce coordinates
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1 Introduction

for two much larger families. The first is an infinite-dimensional real family, the second
a finite-dimensional complex family.
At last, in Section 6, we introduce the strong immersive topology on the space of all
translation surfacesM. This topology can be seen as a fusion of the immersive topol-
ogy and the Gromov-Hausdorff topology for metric spaces. We investigate some basic
properties of this topology and highlight some cases for which this topology has some
advantages over the immersive topology. In Theorem 6.16 we show that an analogue of
Theorem 4.18 still holds for the strong immersive topology. Finally, in Theorem 6.23 we
establish an infinite-dimensional complex family.

4



2 Basics of translation surfaces

2 Basics of translation surfaces

2.1 Fundamental definitions

This section will be devoted to repeating some basic facts about translation surfaces.
We will only give a very brief introduction, mainly to fix notation and to give some moti-
vation for the ideas used in the next sections. For a more detailed and beginner-friendly
introduction see e.g. [Mas22] or [Zor06]. First, let us clarify how a translation surface
is defined in our case. Most works regarding translation surfaces define a translation
surface as the construct we will call “finite translation surface”. But in our case, the term
translation surface also includes those surfaces often referred to as “infinite translation
surfaces”. Nevertheless, we will also give a short introduction into the theory of finite
translation surfaces in Section 2.2.

Definition 2.1. A translation surface is a pair (X,A), where X is a connected oriented
2-dimensional manifold and A is a maximal translation atlas, i.e. a maximal atlas where
all transition functions are translations.

These objects are often called infinite translation surfaces. Please remark that we do not
require X to be a closed manifold. For example, every open path-connected subset of C
is a translation surface. Often we will only write X for a translation surface if A is clear
from the context. Throughout this work, we will often use R2 and C interchangeably
(by identifying the point (a, b) ∈ R2 with the point a+ ib ∈ C) when the multiplication
on C is not needed.

For a metric space X we will denote by X the metric completion of X. For a translation
surface (X,A), the translation atlas A gives rise to a unique metric on X.

Definition 2.2. Let (X,A) be a translation surface. A singularity of X is a point in
X \X.

In [Cha04] the author describes a family of translation surfaces. Each of these surfaces is
often called Chamanara surface or sometimes baker’s map surface and will be described
in the following example.

Example 2.3 (Chamanara surface). Let P = [0, 1]2 be the closed unit square and
α ∈ (0, 1). We divide the upper side of this square into segments

x1 = [0, 1− (1− α)1]× {1},
x2 = [1− (1− α)1, 1− (1− α)2]× {1},
x3 = [1− (1− α)2, 1− (1− α)3]× {1},
...
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x1 x2 x3 · · ·

z1

z2

z3

··
·

x′1x′2x′3
· · ·

z′1

z′2

z′3

··
·

Figure 2: The “standard” Chamanara surface Ch 1
2
. The small circles correspond to the

endpoints of the segments or, equivalently, to the singularity of the surface. In
this work, we will always mark such points by circles.

We then divide the other sides in the same manner, see Figure 2 for a picture with α = 1
2
.

In the end, we remove the endpoints of each of these segments and glue each side xi to
the diagonally opposing side x′i and each side zi to the diagonally opposing side z′i via
a translation. The resulting surface is an infinite translation surface. Let us now look
at the endpoints of these segments. These are not part of the surface anymore but they
still lie in the metric completion. So they correspond to the singularities of this surface.
Through the identification of the segments these points get identified into four points,
two on the horizontal and two on the vertical sides. But these points are actually the
same because they get infinitely close to each other at the upper right corner. Therefore
this translation surface has only one singularity but infinite genus. In this work, we will
denote this surface by Chα.

The Chamanara surface has been a recurring example in many works that deal with
infinite translation surfaces with finite area (see e.g. [Ran16], [HR16] or [HT19]). In this
work, we will use the Chamanara surface as some kind of starting point for an attempt
to better understand the moduli space of translation surfaces.

For technical reasons, we will mostly regard pointed translation surfaces, i.e. translation
surfaces with a marked point oX ∈ X. We will denote such a translation surface by
(X,A, oX) or sometimes only by (X, oX) or even only by X.

Definition 2.4. Two translation surfaces (X,A) and (Y,B) are isomorphic if there is
a homeomorphism ϕ : X → Y such that for each ψ ∈ A it holds that ψ ◦ ϕ−1 ∈ B. If
those translation surfaces are pointed with basepoints oX and oY , we also require that
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2 Basics of translation surfaces

ϕ(oX) = oY . Such a homeomorphism will be called a translation isomorphism or often
just an isomorphism.

Definition 2.5. The moduli space M of all pointed translation surfaces is the set of all
isomorphism classes of pointed translation surfaces.

For now,M is only a set. The notion ofM as a space will be justified in Section 3 when
we define a topology onM.

In most cases, we will not differentiate between a translation surface X and the isomor-
phism class of X and therefore regard X as an element ofM.

Definition 2.6. The total space of translation surfaces E is the set of all isomorphism
classes of two-pointed translation surfaces, i.e. translation surfaces with two (not neces-
sarily distinct) marked points.

The space E will be seen mostly as the space of pairs of a translation surface X together
with a point x ∈ X. One of the marked points of these two-pointed translation surfaces
corresponds to the basepoint, the other one to the point x. Or to be more precise:

Remark 2.7. There is a natural projection

π : E →M, (X,A, oX , x) 7→ (X,A, oX)

and each fiber is as a set canonically bijective to a translation surface. Via this bijection,
each fiber can then be endowed with a translation surface structure. As before we will
often write (X, x) instead of (X,A, oX , x).

As a last point in this section, we want to introduce the concept of a developing map
which we will use on several occasions in the next sections. This concept exists in the
more general case of (G,X)-structures, but we will only state the adaption to our case.
For the more general language see [Thu97][§3.4].

Definition 2.8. Let (X,A) be a simply connected translation surface. The developing
map is the unique map devX : X → C with devX(oX) = 0 and such that for each ϕ ∈ A,
devX differs from ϕ on the domain of ϕ only by a translation.

The uniqueness of this map follows from analytic continuation. Basically, we start at
the basepoint and a chart of a neighborhood of this point, so the image of devX is clear
for every point of this neighborhood. We then continue with every chart whose domain
intersects this neighborhood. Because X is connected this can be continued for all of
X. Because the developing map can only be defined for simply connected translation
surfaces it is often helpful to consider the universal cover of X.

7



2 Basics of translation surfaces

Remark 2.9. Let (X,A) be a translation surface and C be a covering space of X together
with the covering map p : C → X. Then C has a natural structure as a translation
surface via the atlas {ϕ ◦ p | ϕ ∈ A}. In particular, the universal cover of X is a simply
connected translation surface. We will denote this translation surface by X̃.

We will mostly denote the points of the universal cover by x̃ and paths whose image lies
in X̃ by γ̃ and so on, to better distinguish whether an object belongs to X or X̃.

For a pointed translation surface (X,A, oX) the universal cover X̃ becomes a pointed
translation surface via the choice of a basepoint oX̃ . This will always be done in a way
such that p(oX̃) = oX , where p is the universal covering map. This choice of a basepoint
for X̃ is then unique up to isomorphism.

2.2 Finite translation surfaces

Finite translation surfaces will not be the main focus of this work. Nevertheless, we will
give a short summary of finite translation surfaces in this section. Our focus will be on
the structure of the moduli space of finite translation surfaces. This will give us some
starting points and motivation for finding coordinates for appropriate families of infinite
translation surfaces. Let us start by defining what a finite translation surface is.

Definition 2.10. Let (X,A) be a translation surface. If X has only finitely many
singularities and X is a compact surface, then X is called a finite translation surface.

Often we will also call X a finite translation surface instead of X. Sometimes we will
call a translation surface an infinite translation surface if we want to emphasize that it
is not a finite translation surface.

The above is not the only common way of defining finite translation surfaces. In fact,
there are 3 common ways of defining finite translation surfaces as they appear for example
in [Mas06]. The most constructive is via gluings of polygons, namely the following:

Remark 2.11. Let P be a finite set of disjoint polygons (seen as subsets of C), E(P)
be the set consisting of all edges of polygons in P and ϕ : E(P)→ E(P) a pairing, such
that for all x ∈ E(P) the edges x and ϕ(x) differ only by a translation. In addition, the
polygon that x belongs to and the polygon ϕ(x) belongs to should be on different sides of
these edges. Then, by gluing each x ∈ E(P) to ϕ(x) by the above translations, we get a
finite translation surface.

In addition, similar as we did in Example 2.3 when we remove the vertices from these
polygons the resulting surface is a translation surface as defined in Definition 2.1. So we
can assume that the singularities of these translation surfaces correspond to the vertices

8



2 Basics of translation surfaces

of the polygons. This also shows that the angle around such a singularity is a multiple
of 2π.

The third way of defining finite translation surfaces is via abelian differentials. For a
Riemann surface X we denote by Ω(X) the set of non-zero abelian differentials.

Definition 2.12. A finite translation surface is a pair (X,ω) where X is a compact,
connected Riemann surface and ω ∈ Ω(X).

Please note that this X corresponds to X in Definition 2.10. One can show that these
three definitions are in fact equivalent. For a proof see e.g. [Mas22] or [Mas06]. In
Definition 2.12 the singularities correspond to the zeroes of the abelian differential. The
angle around such a singularity is then exactly 2π · (k + 1), where k is the multiplicity
of this zero. We will call such a singularity a singularity of order k.

Note that an abelian differential ω allows us to make sense of the notion
∫
γ
ω for any

path γ on X. The value of
∫
γ
ω is then just a complex number.

Now let X be a finite translation surface and g be the genus of X. Furthermore let
k1, . . . , kn be the orders of the singularities of X. Then, analogue to the Gauß-Bonnet-
formula it holds that

2g − 2 =
n∑
i=1

ki.

This fact leads to a stratification of the moduli space. For this let us first take a look
at the moduli spaces of Riemann surfaces. LetMg be the set of all isomorphism classes
of all Riemann surfaces of genus g. Then Mg has a well-established topology and is
a 3g − 3-dimensional analytic space (see e.g. [IT92]). Furthermore, the moduli space
consisting of pairs (Riemann surface, abelian differential) forms a vector bundle over
Mg and corresponds to the moduli space ΩMg of translation surfaces of genus g. This
fact yields a natural topology on this space1.

This space is then stratified according to the number and multiplicity of the zeroes of
the abelian differential. For this let k1, . . . , kn be a partition of 2g − 2. Then we define
the stratum H(k1, . . . , kn) to be the set of all translation surfaces where the orders of the
singularities are exactly k1, . . . , kn. From now on let κ = (k1, . . . , kn) so we can simply
write H(κ) instead of H(k1, . . . , kn). In most cases, only the topology of one stratum is
considered and not the topology of all of ΩMg. This is done because the topology of
H(κ) has a nice structure through the period coordinates:

Definition 2.13. Let (X,ω) ∈ H(κ) be a finite translation surface as defined in Defi-
nition 2.12. In addition let Σ be the set of singularities of (X,ω) and {γ1, . . . , γ2g+n−1}

1There is also another method of defining a topology on this space via the developing map. This
approach is found e.g. in [FM14] or [Yoc10].
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2 Basics of translation surfaces

be a basis of the relative homology group H1(X,Σ;Z). The period coordinates of (X,ω)
are the complex numbers (∫

γi

ω

)2g+n−1

i=1

∈ C2g+n−1.

The period coordinates provide H(κ) with the structure of a (2g + n − 1)-dimensional
orbifold. To see this, it is necessary to have some way of “carrying over” the basis of the
homology to nearby translation surfaces, but we will not investigate this any further. A
reader interested and not familiar with this topic may find a proof of the fact that H(κ)
is in fact a (2g + n − 1)-dimensional orbifold in [Wri15], [FM14] or [Yoc10]. Note that
the Gauß-Bonnet-formula shows that dimC(H(κ)) =

∑n
i=1 ki + n+ 1.

One thing to note is that for most translation surfaces (X,ω), there is a neighborhood
of (X,ω) in H(κ) on which the period coordinates act as an actual chart, i.e. a homeo-
morphism from this neighborhood to an open subset of C2g+n−1. So for the most part,
H(κ) has the structure of a manifold instead of an orbifold.

Before we end this section, let us look at an example of finite translation surfaces and see
some possible period coordinates for this example. In [CGL06] the authors construct a
family of finite translation surfaces Ynm in a very similar way to the Chamanara surface
by dividing the horizontal lines into n edges and the vertical lines into m edges. The
next example will be a generalization of this construction and will show that there is a
canonical way to create a translation surface out of a point-symmetric polygon. This
idea will be heavily used in this work and Section 4 will generalize this example to the
infinite case.

Example 2.14. Let P be a point-symmetric polygon. Let oP be the point of symmetry
and Φ: P → P be the reflection on oP . For each edge x of P we denote the mirrored edge
by x′ := Φ(x). Applying the point-symmetry and then the reflection on the midpoint of
x′ we obtain a translation that maps x to x′. Therefore we can glue each edge x to the
mirrored edge x′ and get a finite translation surface P̂ .

Let N be the number of edges of P and M = N
2
. The singularities of such a translation

surface correspond to the vertices of the polygon and one can see that all vertices are
glued into a single singularity if M is even and into two different singularities if M is
odd. So it holds that

P̂ ∈

{
H(M − 2), if M is even,
H(M−3

2
, M−3

2
), if M is odd.

In each case it holds that dimC(H(M − 2)) = M = dimC(H(M−3
2
, M−3

2
)), so P̂ lies in

a stratum of dimension M . For an edge xn we denote by s(xn) the start- and by t(xn)
the endpoint of xn. For each pair of edges consisting of one edge xn and the mirrored
edge x′n we may choose a path γn in P̂ from s(xn) to t(xn) with image xn. Then

10



2 Basics of translation surfaces

{γn | n ∈ N, n ≤ M} is a basis of the homology H1(P̂ ,Σ;Z) and the corresponding
period coordinates are

(t(x1)− s(x1), . . . , t(xM)− s(xM)) ∈ CM .

As we have seen, due to the period coordinates, the strata have a very nice structure that
has been well studied in the past. Unfortunately the same cannot be said about infinite
translation surfaces. In fact, not very much is known about the structure of the moduli
space of all translation surfaces and no analogue to the period coordinates is known for
this space until today. In this work, we will try to find at least some structures in this
space by looking at some families of infinite translation surfaces and providing them with
some reasonable coordinates, i.e. homeomorphisms from open subsets of these families
to a suitable Banach space. The following section will provide some examples to explain
the idea and motivation behind this.

2.3 A family of finite translation surfaces

Example 2.15. We construct a sequence of finite translation surfaces. The construction
will be very similar to Figure 2. For n ∈ N let Xn be the following (finite) translation
surface:
As in Figure 2, we take P = [0, 1]2, α = 1

2
, and we use the same subdivision of the

upper side to construct the edges x1, . . . , xn. But instead of continuing this splitting
indefinitely, we define xn+1 to be the remainder of the upper side. We repeat this
process for each side of P and glue opposite edges together. See Figure 3 for an example
for n = 1 and n = 2.

For n → ∞ these finite translation surfaces become more and more similar to the
Chamanara surface. So it is plausible, that the sequence given by these translation
surfaces converges to Ch 1

2
in some sense. But this argument is rather intuitive and not

very precise. The main problem here is, that the genus of these surfaces gets larger for
greater n and the topology on the moduli space is only given on eachMg and not for
the whole space. In addition, Ch 1

2
is an infinite translation surface of infinite genus. So

it is not contained in any Mg at all. The next section will be devoted to fixing this
problem by introducing a topology on the moduli space of all translation surfaces.

But before we do that, let us look at a variation of the above sequence.

Example 2.16. Let (λn)n∈N, (µn)n∈N be sequences in R+ such that

∞∑
i=1

λi =
∞∑
i=1

µi = 1.

11



2 Basics of translation surfaces

x1 x2

z̄1

z̄2

x̄1x̄2

z1

z2

x1 x2 x3

z̄1

z̄2

z̄3

x̄1x̄2x̄3

z1

z2

z3

n→∞−−−→

x1 x2 x3 ··

z̄1

z̄2
z̄3

··

x̄1x̄2x̄3··

z1

z2

z3

··

Figure 3: The translation surfacesXn for n = 1 and n = 2. Each such translation surface
is constructed from a polygon with 4 · (n+1) edges. For n→∞ these surfaces
become more and more like Ch 1

2
.

We construct the following translation surface: Let P = [0, 1]2. We again divide the
upper side into the segments

x1 = [0, λ1]× {1}, x2 = [λ1, λ1 + λ2]× {1}, . . . .

We divide the lower side in the same manner such that the result is point-symmetric
for the point

(
1
2
, 1
2

)
. Next, we repeat this process for the vertical sides but with µi

instead of λi. In the end, we glue each edge to its corresponding edge on the other
side to get a translation surface X. So Chα is a special case of this construction with
λi = µi = (1− α)i−1α.
As in Example 2.15, we may construct a sequence of finite translation surfaces Xn by
doing the above construction up until xn and defining xn+1 to be the rest of the upper
side. We again repeat this for the vertical sides and glue the edges together accordingly.
As in Example 2.14, we can choose a basis of the relative homology of Xn in such a way
that the image of the period coordinates of Xn is(

λ1, . . . , λn, 1−
n∑
i=1

λi, µ1i, . . . , µni,

(
1−

n∑
i=1

µi

)
· i

)
∈ C2n+2.

As before the sequence Xn converges to X in some sense. Therefore

(λ1, µ1i, λ2, µ2i, . . .) ∈ C∞

can be seen as reasonable coordinates for the translation surface X. The following
sections will be devoted to creating a formal background for these coordinates. In
Theorem 5.9 we will show that the above idea gives rise to a homeomorphism from the
space of all translation surfaces that can be constructed in the above way to the space
c0 of all sequences converging to zero, equipped with the supremum norm.

12
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3 Immersive topology

The goal of this section is to establish a topology on the setM of isomorphism classes
of all translation surfaces. As mentioned in the previous section, the moduli spaces of
finite translation surfaces have been the target of much research in the past. This cannot
be said about infinite translation surfaces, but there are some results concerning this
issue.

In [Bow13] a very similar approach is used as the one presented in Section 2.3. There the
family of the so-called Arnoux-Yoccoz surfaces is constructed. These surfaces go back
to the work done by Arnoux and Yoccoz in [AY81] and [Arn88]. For each g ∈ N one
can construct such a finite translation surface (Xg, ωg) of genus g. In [Bow13] a limit
surface X∞ is constructed, which is an infinite translation surface. In addition, for each
g ∈ N, a compact subsurface with boundary Kg of X∞ and a piecewise-affine embedding
ιg : Kg → Xg is given. It is also shown that ι∗g(|ωg|) converges to |ω∞| on compact subsets
of X∞ as g → ∞, where |ωg| denotes the metric induced by ωg on Xg. This is done to
make clear that X∞ can be seen as a limit space of the sequence (Xg)g∈N.

In [Hoo18] and [Hoo13] the author uses a very similar approach. While in [Bow13] the
main goal is to investigate the above sequence, the goal of these works is to define a
topology on all ofM. This approach uses the idea of embedding subsurfaces, too. The
resulting topology is called the immersive topology and is the central tool used for most
of this work. Therefore we now define this topology and review some properties of it.
The following section mostly repeats facts stated in [Hoo18] and [Hoo13]. For a proof
of these facts or a more detailed study please refer to these works. Let us first begin by
defining what an immersion is.

Definition 3.1 ([Hoo18, §3.1]). Let (X,A, oX) and (Y,B, oY ) be pointed translation
surfaces and U ⊂ X, V ⊂ Y be path-connected subsets that contain the basepoint. An
immersion from U to V is a continuous map ι : U → V with ι(oX) = oY which acts as
a translation in local coordinates.

For the rest of this section, every subset of a translation surface is always path-connected
and contains the basepoint.

We have already seen one prime example of an immersion, namely the following:

Example 3.2. For each simply connected translation surface X, the developing map is
an immersion from X to C.

For the same reasons as for the developing map, we can deduce uniqueness of immer-
sions:

Proposition 3.3 ([Hoo18, Proposition 7]). If there exists an immersion, then it is
unique.

13



3 Immersive topology

We are mainly interested in the existence of such an immersion, so we write U  V if
there exists an immersion from U to V and U 6 V if there exists no such immersion.

Graphically, the existence of an immersion just means that the first subset “fits” into the
second one. This graphical explanation will be concretized by the following examples.

Example 3.4. If U and V are subsets of the same translation surface, then U  V if
and only if U ⊆ V .

This example also holds in a more general case. LetX, Y be simply connected translation
surfaces and U and V be subsets as in Definition 3.1. If in addition devV := devY |V
is injective, then U  V if and only if devU(U) ⊆ devV (V ). This is easy to see,
because if ι : U → V is an immersion, then devV ◦ ι : U → C is an immersion as well, so
devV ◦ ι = devU with Proposition 3.3 and therefore devU(U) ⊆ devV (V ). On the other
hand if devU(U) ⊆ devV (V ) then dev−1V is also an immersion, so dev−1V ◦ devU : U → V
is an immersion.

Remark 3.5. Immersions can also be examined at the level of paths: If U  X and
U  Y , then each path with image in U can be seen as a path in X or a path in Y .

In most cases, the non-existence of an immersion can be graphically explained by the
set “hitting” a singularity. The most simple such case is the following:

Example 3.6. We look at the two translation surfaces (C, 0) and (C \ {x}, 0) for some
x ∈ C \ {0}. Then C 6 C \ {x} because the immersion would have to map x to x.

Definition 3.7. An injective immersion will be called an embedding and the existence
of an embedding will be marked by U ↪→ V .

Of course not every immersion is an embedding:

Example 3.8. Let T be the torus with an arbitrary marked point. Then C  T , but
of course C ↪→ T does not hold.

As a last point before we are able to define the immersive topology, we need to define
the set PC. For a translation surface (X, oX) the set PC(X) is the set of all path-
connected subsets containing the basepoint. Now let (Y, oY ) be another translation
surface. A ∈ PC(X) and B ∈ PC(Y ) are isomorphic if there is a bijective immersion
A B. The set PC is then just the set of isomorphism classes in

⋃
X∈M̃ PC(X).
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3 Immersive topology

Definition 3.9 ([Hoo13, §3.2]). The immersive topology onM is the coarsest topology
such that all sets of the following forms are open:

(i) The set M (D) = {X ∈ M | D  X} for every D ∈ PC homeomorphic to a
closed disc.

(ii) The set M6 (U) = {X ∈ M | U 6 X} for every U ∈ PC homeomorphic to an
open disc.

(iii) The setM+(D,U) = {X ∈ M | ∃ι : D  X with oX ∈ ι(U)} for every D ∈ PC
homeomorphic to a closed disc and every open U ⊆ D◦.

(iv) The setM−(D,K) = {X ∈ M | ∃ι : D  X with oX 6∈ ι(K)}for every D ∈ PC
homeomorphic to a closed disc and every closed K ⊆ D.

In this definition, we used implicitly that the existence of an immersion does not change
under translation isomorphism. The notion of embedding also gives us a different kind
of open sets which can be constructed from the other sets.

Theorem 3.10 ([Hoo13, Theorem 5]). If D ∈ PC is homeomorphic to a closed disc,
then the set

M↪→(D) := {X ∈M | D ↪→ X}

is open.

The following theorem shows that the immersive topology has some nice topological
properties:

Theorem 3.11 ([Hoo13, Theorem 8]). The immersive topology is Hausdorff and second
countable.

This tells us that it is very useful to consider convergence of sequences in M. Due
to the Hausdorff-property, every sequence can have at most one limit and the second
countability provides that convergence of sequences can be used to determine if sets are
closed or if maps are continuous.

In the following, we establish some criteria for the convergence of sequences in the
immersive topology. For this let us first have a look at the convergence of sequences of
simply connected translation surfaces. We denote by M̃ ⊆M the set of all isomorphism
classes of simply connected pointed translation surfaces.

Theorem 3.12 ([Hoo18, §7]). Let X ∈ M̃ and (Xn)n∈N be a sequence in M̃. Then Xn

converges to X if and only if the two following statements hold:

(a) If D ⊆ X is homeomorphic to a closed disc, then D  Xn for almost all n ∈ N.

(b) Let Q ∈ M̃. If Q ↪→ Xn holds for infinitely many n ∈ N, then Q X.
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3 Immersive topology

Before we can generalize this theorem for all translation surfaces inM, we need to have
a look at the space E . We can expand the immersive topology to E and also establish
some criteria for the convergence of sequences in this space.

Definition 3.13 ([Hoo13, §3.3]). The immersive topology on E is the coarsest topology
such that the projection π : E →M is continuous and such that the set

E+(D,U) = {(X, x) ∈ E | ∃ι : D  X such that x ∈ ι(U)}

is open for every D ∈ PC homeomorphic to a closed disc and every open subset U ⊆ D◦.

Remark 3.14. The topology on E is natural in the following sense: As mentioned in
Remark 2.7, every translation surface X can be seen as a subset of E. If we restrict the
topology of E to the subspace topology on X ⊆ E, we obtain the usual topology on X.

Theorem 3.15 ([Hoo18, Proposition 43]). Let Xn be a sequence converging to X in M̃.
Then the sequence (Xn, xn)n∈N converges to (X, x) in E if and only if there is a compact
subset K ⊆ X with x ∈ K and an N ∈ N such that there is an immersion ιn : K  Xn

for every n > N and such that d(xn, ιn(x))→ 0 for n→∞.

This allows us to make a statement about the convergence of non simply connected
translation surfaces by looking at the universal cover of this surface.

Theorem 3.16 ([Hoo13, Theorem 17]). Let (X, oX) ∈ M and (Xn, oXn)n∈N be a se-
quence in M. In addition let p : X̃ → X and pn : X̃n → Xn be the universal covering
maps. Then (Xn, oXn) converges to (X, oX) if and only if the following statements hold:

(a) (X̃n, oX̃n) converges to (X̃, oX̃).

(b) For every õ ∈ p−1(oX), there is a sequence (õn ∈ p−1n (oXn)) converging to õ in E.

(c) For every subsequence (Xnk) of (Xn) and every sequence of points (õnk ∈ p−1nk (oXnk ))
which converges to some õ ∈ E we have õ ∈ p−1(oX).
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4 Generalizations of the Chamanara surface

4.1 PSI-polygons

As we have seen in Example 2.14, there is a canonical way to construct a translation
surface out of a point-symmetric polygon. This construction is very similar to that of
the Chamanara surface. The main problem is that the corresponding point-symmetric
polygon needed to create the Chamanara surface would have infinitely many edges.
Therefore, it is not a polygon in the usual sense. This problem can be fixed by allowing
polygons to have infinitely many edges. In this section, we want to give this approach
a formal framework. Furthermore, in Section 4.2 we establish some properties of the
space of translation surfaces constructed from such polygons.

We start by giving a formal definition.

Definition 4.1. A line segment is a set x ⊆ C of the form x = {u + tv | t ∈ [0, 1]} for
some u ∈ C, v ∈ C×. We denote the start and end of x by s(x) := u and t(x) := u+ v.
In addition, the midpoint u + 1

2
v will be denoted by m(x) and the length |v| will be

denoted by l(x).

Definition 4.2. A point-symmetric infinite polygon (or short PSI-polygon) is a pair
(P, (xn)n∈N), where P ⊆ C is a point-symmetric subset homeomorphic to a closed disc
and (xn)n∈N ⊆ P is a sequence of line segments (xn)n∈N ⊆ P such that the following
conditions hold:

(a) ∂P =
⋃
n∈N xn,

(b) ∂P \
⋃
n∈N xn is finite,

(c) |xi ∩ xj| ≤ 1 if i 6= j,

(d) for each i ∈ N there is exactly one j ∈ N with xi ∩ xj = {t(xi)} = {s(xj)} and

(e) for each i ∈ N there is exactly one j ∈ N with xi ∩ xj = {s(xi)} = {t(xj)}.

Furthermore, if ΦP denotes the reflection on the point of symmetry, then for each xn
there should be an m ∈ N with ΦP (xn) = xm and ΦP (s(xn)) = s(xm).

We will denote a PSI-polygon often just by P if (xn)n∈N is clear from the context. As for
a finite polygon, the line segments xn will be called the edges of P , and the startpoints
of these segments will be called the vertices of P .
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4 Generalizations of the Chamanara surface

Convention 4.3. For a PSI-polygon (P, (xn)n∈N) the point of symmetry will always be
called oP , ΦP will always be the reflection on oP . For each edge xn of P the mirrored
edge ΦP (xn) will also be called x′n.
In most cases, we will only include half of the edges in the sequence (xn)n∈N. This will
be done in such a way that the sequence x1, x′1, x2, x′2, . . . contains all the edges of P . So
the sequence (xn)n∈N still contains all the necessary information. In addition, we mostly
define (xn)n∈N in such a way that the closure of the union of these edges is connected.

The prime example of a PSI-polygon is of course the one depicted in Figure 2 which
we used to construct the Chamanara surface. Our next goal will be to generalize the
construction from Figure 2 to construct a translation surface out of an arbitrary PSI-
polygon. But before we start, let us first take a look at one major difference to finite
polygons, namely that not every point of ∂P must be contained in one edge. We will
now show that the missing points correspond to the accumulation points of edges of P .
So for example in Figure 2 every point of ∂P is contained in one of the edges except the
points (0, 0) and (1, 1).

Proposition 4.4. Let (P, (xn)n∈N) be a PSI-polygon. Then the following statements
hold:

(a) Every point in ∂P \
⋃
n∈N xn is an accumulation point of (s(xn))n∈N.

(b) Every accumulation point of (s(xn))n∈N is a vertex or lies in ∂P \
⋃
n∈N xn.

Proof. (a) Let y ∈ ∂P \
⋃
n∈N xn. Because ∂P =

⋃
n∈N xn there exists a sequence

(yn)n∈N in
⋃
n∈N xn which converges to y. If there was an N ∈ N and an i ∈ N

such that yn ∈ xi for all n ≥ N then it would also hold that y ∈ xi because xi is
closed.
So there exists a subsequence (yin)n∈N converging to y such that each yin lies in
a different xj. Let (jn)n∈N be the sequence in N such that yin ∈ xjn . Because P
is homeomorphic to a disc, ∂P is homeomorphic to a circle. Then the sequence
(s(xjn))n∈N lies between the sequences (yin)n∈N and (yin−1)n∈N on this circle. There-
fore it converges to y.

(b) So let y ∈ xm\{s(xm), t(xm)} for an m ∈ N. Again ∂P is homeomorphic to a circle
and therefore (∂P \xm)∪{s(xm), t(xm)} is closed. For each sequence (yn)n∈N in ∂P
converging to y there has to be an N ∈ N such that yn ∈ xm \ {s(xm), t(xm)} for
n ≥ N . Therefore only finitely many elements of such a sequence can be vertices
of P , so y is not an accumulation point of these vertices.

Proposition 4.4 suggests that a point in ∂P can be a vertex as well as an accumulation
point of vertices. In fact, an example of this behavior can be easily constructed by
replacing all the vertical edges of Figure 2 with only one vertical edge of length 1.
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We will now start the construction of a translation surface out of a PSI-polygon (P, (xn)n∈N).
In Example 2.14 this was already done for the finite case. Of course, in the infinite case,
the vertices of P again correspond to the singularities of the translation surfaces. But
in addition, the accumulation points which were examined in Proposition 4.4 also corre-
spond to singularities. This holds for a similar reason as for the Chamanara surface.

We begin by defining the set

P ∗ := P \ ΣP

where ΣP is defined as

ΣP := {s(xn) | n ∈ N}. (1)

We can then glue xn ∩ P ∗ to x′n ∩ P ∗ via a translation. The resulting topological space
will be called P̂ .

Proposition 4.5. P̂ is a translation surface.

Proof. For each point x̂ ∈ P̂ corresponding to a point x ∈ P ◦, there is an open neigh-
borhood Û corresponding to an open set U ⊆ P ◦. So the inclusion of U in C gives a
natural chart.
As seen in Proposition 4.4, every point in x ∈ ∂P ∩ P ∗ belongs to xn \ {s(xn), t(xn)}
for some n ∈ N. So let x̂ ∈ P̂ be the corresponding point in the surface. Then x̂ does
not only correspond to the point x ∈ xn, but also to the point x′ = Φ(x) ∈ x′n. Then
there are two open neighborhoods U and U ′ of x and x′ in P homeomorphic to two open
subsets of the upper halfplane. Choosing suitable subsets we can assume that U,U ′ ⊆ P ∗

and U ′ = Φ(U). On the set Û corresponding to the set U ∪ U ′ there is a natural chart
given by the inclusion of U in C and the translation which sends x′i to xi.

Convention 4.6. For a PSI-polygon (P, (xn)n∈N) the translation surface constructed
from P will always be called P̂ . As in the above proof, for a point x ∈ P , the corre-
sponding point in P̂ will be called x̂ ∈ P̂ and vice versa. The same will be done for
subsets of P or P̂ .

Convention 4.7. We will always use ôP as the basepoint of P̂ .

As we have seen the Chamanara surface has only one singularity because each vertex of
the PSI-polygon gets identified to one point in the corresponding translation surface. In
fact, this is always true for all P̂ constructed out of a PSI-polygon P :

Proposition 4.8. Let P be a PSI-polygon. Then P̂ has exactly one singularity.
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Proof. This follows essentially for the same reasons as it holds for the Chamanara surface.
Let us first assume that no vertex (i.e. endpoint of an edge) of P is an accumulation point
of vertices of P . Denote by {y1, y2, . . . , yn} the accumulation points of the vertices of P
such that on the part of ∂P between yi and yi+1 there lies no other such accumulation
point. In addition, let xi denote the edges between y1 and y2 such that xi is adjacent
to xi−1 and xi+1 and such that s(xi) = t(xi+1). But through the identification in P̂ it
holds that

s(x̂i) = t(x̂′i) = s(x̂′i−1) = t(x̂i−1).

So again as for the Chamanara surface, every second vertex gets identified. This also
holds for each part of ∂P between each yi and yi+1 as well as for the part between
yn and y1. Consider the sequence (s(x2n))n∈N, which is identified to one singularity in
P̂ . It converges to y2 for n → ∞ and to y1 for n → −∞ (or vice versa). So the two
points corresponding to the sequences (s(x2n))n∈N and (s(x2n+1))n∈N get identified into
one singularity by this convergence. For a similar reason the two points (corresponding
to the two similarly defined sequences) between y2 and y3 also get identified with this
singularity. Inductively, all these points get identified into one singularity.

Let us now return to the case, where a vertex is an accumulation point. W.l.o.g. let y2
be a vertex, such that (s(xn))n∈N converges to y2 for n → ∞. Due to this convergence
y2 and ΦP (y2) get identified. Denote by x the edge such that s(x) = y2. But then

ŷ2 = Φ̂P (y2) = ̂ΦP (s(x)) = s(x̂′) = t(x̂)

holds in P̂ , so every vertex between y2 and y3 gets identified with y2. Then the argument
can be continued.

As we have seen in Section 2 and 3, it is often useful to look at the universal cover of a
translation surface. For a PSI-polygon (P, (xn)n∈N), the universal cover of P̂ can always
be constructed in the following way: Let S be the set consisting of half of the edges of
P as noted in Convention 4.3 and F be the free group generated by S. We now take a
look at the space P ∗ × F . For each g ∈ F , the set P ◦ × {g} admits a natural structure
of a translation surface, coming from P ◦. We then get a translation structure on all of
P ∗×F by identifying each xi×{g} with x′i×{xi ◦ g}. The resulting translation surface
will be denoted by P̃ . One example can be seen in Figure 4. We will always use (oP , e)

as the basepoint of P̃ , where e is the neutral element of F .

Proposition 4.9. P̃ is the universal cover of P̂ .

Proof. The map p : P̃ → P̂ , (y, g) 7→ ŷ is continuous and surjective. A point ŷ ∈ x̂i

has a neighborhood of the form Û ∪ Φ̂(U) with Û ∩ Φ̂(U) ⊆ x̂i. Then p−1(Û ∪ Φ̂(U)) is
the disjoint union of the sets U × {g} ∪ Φ(U)× {xi ◦ g} over all g ∈ F . For each point
y ∈ P ◦ there is a neighborhood U ⊆ P ◦ such that p−1(Û) is the disjoint union of the
sets U × {g} for all g ∈ F . In addition, p respects the translation structure. Therefore
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P ∗ × {e}
P ∗ × {z−12 }

P ∗ × {x1}

P ∗ × {z−11 z−12 }

Figure 4: Part of the universal cover of Ch 1
2
. The PSI-polygon P is the one depicted in

Figure 2.

P̃ is a covering space of P̂ .
Let us now look at the set S ⊆ P consisting of the segments connecting oP to the mid-
points of the edges xn. Then S×F ⊆ P̃ is homotopy equivalent to P̃ and homeomorphic
to a tree. Therefore P̃ is simply connected.

The natural projection π : P ∗ → P̂ is automatically continuous. Let X be a topological
space. Then for every continuous map f : X → P ∗ the map f̂ := π◦f is also continuous.
The converse is not always true. Nevertheless for a path γ̂ : [0, 1] → P̂ a corresponding
map γ : [0, 1] → P ∗ can be constructed. This is just the intuitive approach of drawing
the path γ̂ in the polygon P where it splits into pieces whenever it crosses an edge. This
is formalized in the following remark:

Remark 4.10. Let (P, (xn)n∈N) be a PSI-polygon and let γ̂ : [0, 1]→ P̂ be a path. Then
there is a map γ : [0, 1]→ P such that γ̂(a) = γ̂(a) for all a ∈ [0, 1]. Such a map can be
constructed in the following way:
We choose one of the up to two points of P corresponding to γ̂(0) as γ(0). Let γ̃ : [0, 1]→
P̃ be the lift of γ̂ which starts at (γ(0), e). Let a1 ∈ [0, 1] denote the maximum for which
γ̃([0, a1]) ⊆ P ∗ × {e}. For a ∈ [0, a1] we then set γ(a) = π1(γ̃(a)) where π1 is the
projection to the first coordinate. This can be repeated for each segment of γ̃.

Then the map γ : [0, 1]→ P is piecewise continuous. The discontinuities of γ are those
points where it meets or rather crosses one of the edges of P .

4.2 Convergence of PSI-polygons

We now want to investigate some conditions for the convergence of such translation
surfaces constructed out of PSI-polygons. An intuitive thought might be that such
translation surfaces converge if and only if the vertices of the corresponding PSI-polygons
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converge. Unfortunately, this is not the case. One problem that might occur is that for
two different PSI-polygons P1 and P2 the corresponding translation surfaces P̂1 and P̂2

can be isomorphic. This problem can be solved but requires some work which will mainly
be done in Lemma 5.15.

Another problem occurs because the immersive topology is rather weak and there are
converging sequences of such translation surfaces, where the vertices of the correspond-
ing PSI-polygons do not converge, even if each of these translation surfaces can be
constructed from a unique PSI-polygon. We will return to this problem in Section 6.

On the upside, the converse is always true. If the vertices of a sequence of PSI-polygons
converge, then the corresponding translation surfaces also converge. This is formalized
in Theorem 4.18. The rest of this section is devoted to proving Theorem 4.18. Please
note that by convergence of vertices we mean that they converge uniformly. This is
formalized in the following definition.

Definition 4.11. Let (P (n), (x
(n)
m )m∈N)n∈N be a sequence of PSI-polygons and (P, (xm)m∈N)

be a PSI-polygon in such a way that the connection between the edges coincides, i.e. for
all m1,m2, n ∈ N it holds that

s(xm1) = t(xm2)⇔ s(x(n)m1
) = t(x(n)m2

).

In addition, the points of symmetry all coincide, i.e. oP = oP (n) ∀n ∈ N.

Then we say that (P (n), (x
(n)
m )m∈N)n∈N converges to (P, (xm)m∈N) if for each ε ∈ R+ there

exists an Nε ∈ N such that

s(x(n)m ) ∈ Bε(s(xm)) ∀m ∈ N,∀n ≥ Nε

holds.

We will always denote sequences of PSI-polygons by P (n) instead of Pn in an effort not
to overload the bottom index. Similar to before we will always denote points of P (n) by
x(n), the same for edges, subsets, paths, etc.

Convention 4.12. For a sequence of PSI-polygons (P (n), (x
(n)
m )m∈N)n∈N converging to

a PSI-polygon (P, (xm)m∈N) and ε ∈ R+ we will denote by Nε a number as defined in
Definition 4.11, i.e. a number such that

s(x(n)m ) ∈ Bε(s(xm)) ∀m ∈ N,∀n ≥ Nε

holds.

Remark 4.13. Let (P (n), (x
(n)
m )m∈N)n∈N be a sequence of PSI-polygons converging to

(P, (xm)m∈N). In addition let F be the free group used for the construction of the corre-
sponding universal cover of P̂ . Formally identifying xi with x

(n)
i we can use F for the

construction of P̃ as well as for the construction of each P̃ (n).
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As we have seen in Proposition 4.4 a PSI-polygon P has two kinds of points which
correspond to the singularity of P̂ . These points are either vertices of P or accumulation
points of vertices. As it turns out convergence of PSI-polygons also implies convergence
of the latter kind of points.

Proposition 4.14. Let (P (n), (x
(n)
m )m∈N)n∈N be a sequence of PSI-polygons converging

to (P, (xm)m∈N). For each point y ∈ ∂P which is an accumulation point of the vertices
of P and for each ε ∈ R+, there exists for each n ≥ Nε a point y(n) ∈ ∂P (n) which is an
accumulation point of the vertices of P (n) and such that

y(n) ∈ Bε(y)

holds. In addition the number of accumulation points of vertices of P and P (n) are the
same.

Proof. Let y ∈ ∂P be an accumulation point of the vertices of P . Then there is a
sequence of vertices (s(xnk))k∈N converging to y. W.l.o.g. we can assume that each xnk
and xnk+1

are adjacent. Then x(n)nk and x(n)nk+1 are also adjacent. Let us assume that the
sequence (s(x

(n)
nk ))k∈N does not converge. But then it is also not a Cauchy sequence and

therefore the length of
⋃∞
k=1 xnk would be infinite. This is a contradiction to ∂P (n) being

homeomorphic to a circle.

So let y(n) denote the limit of (s(x
(n)
nk ))k∈N. Then d(y(n), y) ≤ ε or else we can find a large

enough k ∈ N such that d(s(x
(n)
nk ), s(xnk)) ≥ ε.

This also shows, that the number of accumulation points of vertices of P (n) is greater or
equal than the number of accumulation points of vertices of P . To show the opposite let
y(n) ∈ ∂P (n) be an accumulation point of the vertices of P (n). Then there is a sequence of
vertices (s(x

(n)
mk))k∈N converging to y(n). With the same arguments as in the beginning of

the proof, it follows, that the corresponding sequence of vertices in P also converges.

One problem with the convergence of PSI-polygons is that even for very small ε there
are always vertices of P closer together than ε. So their position in P (n) for n > Nε

relative to one another is rather arbitrary. But at least for all edges xi of a certain
minimum length there is a certain set Ai around m(xi) (illustrated in Figure 5) which
cannot intersect any other edge of P (n).

Lemma 4.15. Let (P (n), (x
(n)
m )m∈N)n∈N be a sequence of PSI-polygons converging to

(P, (xm)m∈N). Then for each edge xi of P and each δ ∈ R+ with δ < 1
2
l(xi), there

exists an ε ∈ R+ (ε < δ) such that for n > Nε each other edge of P (n) has distance
greater than ε to the set

Ai := {v ∈ xi | d(v, s(xi)) ≥ δ and d(v, t(xi)) ≥ δ}.
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4 Generalizations of the Chamanara surface

xi

δ

Ai

ε

Figure 5: An illustration of the set Ai from Lemma 4.15. No edge of P (n) except x(n)i

can be in the area marked in red.

Proof. Similar to the proof of Proposition 4.4, the set Ai cannot contain an accumulation
point of vertices of P and therefore also not an accumulation point of ∂P \Ai. But then
there is a ξ ∈ R+ such that each point in ∂P \Ai has distance greater than ξ to Ai. Now
let ε = ξ

2
and n > Nε. Then each edge x(n)j of P (n) lies completely in Bε(xj). But then

each edge of P (n) (except x(n)i ) still has distance greater than ε to each point in Ai.

Lemma 4.15 allows for some variation. For example this can also be done the other way
around, i.e. for each edge x(n)i of P (n) each edge of P has distance more than ε from the
corresponding A(n)

i for large enough n.
Lemma 4.15 can also be adjusted to work for every edge longer than 2δ, because there
are only finitely many of these edges.
Sometimes, we cite Lemma 4.15, when one of these variations is needed.

We will now show two statements which will be used in the proof of Theorem 4.18.
For this, let Σ̂P denote the set of singularities of P̂ (consisting of only one element, see
Proposition 4.8) and Σ̃P the set of singularities of P̃ . As we have seen before, these sets
correlate to the set ΣP of vertices of P and their accumulation points defined in (1).

Lemma 4.16. Let (P, (xn)n∈N) be a PSI-polygon and K ⊆ P̃ compact. Then there is
an ε ∈ R+ such that

d(x, y) > ε ∀x ∈ K, y ∈ Σ̃P .

Proof. Let us first assume that for each ε ∈ R+ there is an y ∈ Σ̃P and x ∈ K such that
d(x, y) ≤ ε.
Then there is also a sequence (xn)n∈N in K such that

∀ε ∈ R+,∃N ∈ N, ∀n ≥ N : d(xn, Σ̃P ) ≤ ε.

Because K is compact, (xn)n∈N has an accumulation point x ∈ K. Then for each
ε ∈ R+ there is y ∈ Σ̃P such that d(x, y) ≤ ε. Therefore x is either a point in Σ̃P

or is an accumulation point of Σ̃P . But because of the definition of ΣP (see (1)) these
accumulation points also lie in Σ̃P . So it holds that x ∈ Σ̃P , which is a contradiction to
K ⊆ P̃ .
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4 Generalizations of the Chamanara surface

One of the problems that we will encounter is that by shifting one vertex s(xi) of P 2 the
copies P ∗ × {xki } get shifted more and more if k → ∞. This will cause some problems
in the following proof. But at least the shift of P ∗ × {g} is bounded in correlation with
the number of occurrences of xi in g:

Lemma 4.17. Let ε ∈ R+. If (P (n), (x
(n)
m )m∈N)n∈N converges to (P, (xm)m∈N), then for

all g ∈ F

d(devP̃ (oP , g), devP̃ (n)(oP (n) , g)) < 4ε|g| ∀n > Nε

holds, where |g| denotes the length of the word g ∈ F .

Proof. Let γ̃ be a path in P̃ from (oP , e) to (oP , xi) and γ̃(n) be a path in P̃ (n) from
(oP (n) , e) to (oP (n) , xi). We denote by z̃ (z̃(n)) the intersection of the image of γ̃ (γ̃(n))
with xi×{e} (x(n)i ×{e}). This situation is depicted in Figure 6. W.l.o.g. we can assume
that d(z̃, (s(xi), e)) = d(z̃(n), (s(x

(n)
i ), e)). The point z (or z(n)) is an equivalence class

consisting of two points (z1, e) and (z2, xi) ((z(n)1 , e) and (z
(n)
2 , xi)). Integrating along

the path γ̃ yields a vector vγ̃ ∈ C which is equal to devP̃ (γ̃(1)) − devP̃ (γ̃(0)). Thus
vγ̃ = (z1 − oP ) + (oP − z2) and the same holds for γ̃(n).

In addition, it holds that d(z1, z
(n)
1 ) < 2ε and d(z2, z

(n)
2 ) < 2ε and therefore we have

d(devP̃ (oP , xi), devP̃ (n)(oP (n) , xi)) = d(vγ̃, vγ̃(n))

= d(z1 − oP + oP − z2, z(n)1 − oP (n) + oP (n) − z(n)2 ) = d(z1 − z2, z(n)1 − z
(n)
2 )

≤ d(z1, z
(n)
1 ) + d(z2, z

(n)
2 ) < 4ε.

Inductively the claim follows.

Another way to phrase Lemma 4.17 is, that if the two endpoints of one edge of P are
shifted less than ε, then the corresponding translation surface gains or loses some area
of diameter smaller than 2ε. This is depicted in Figure 7.

Formally, devP̃ cannot be extended to the metric completion P̃ because P̃ fails to be
a translation surface. But we can still make sense of the notion devP̃ (s(xi), g) in the
following sense: For each g ∈ F , the set devP̃ (P ∗×{g}) is a translate of P ∗. Therefore the
point devP̃ (s(xi), g) can be defined to be the starting point of the segment devP̃ (xi×{g}).
For each singularity of P̃ corresponding to an accumulation point y ∈ ∂P there is
a subsequence (s(xin))n∈N converging to y. We can proceed in a similar manner and
define the point devP̃ (y, g) to be the limit of (devP̃ (s(xin), g))n∈N.

2i.e. by taking another PSI-polygon P (1) which has the same vertices as P , except the vertex s(xi)
which is at another position.
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4 Generalizations of the Chamanara surface

xi × {e}

x
(n)
i × {e}

γ̃γ̃(n)

z̃

z̃(n)

ε

(oP , e) =̂ (oP (n) , e)

Figure 6: The situation in Lemma 4.17. Here the corresponding vector z(n)1 − oP (n) is
slightly longer than z1 − oP , but the difference is smaller than ε.

P × {e}

P × {xi}

xi × {e}
x
(n)
i × {e}

ε

(a) The situation in P̃ .

P (n) × {e}

P (n) × {xi}

xi × {e}

x′i × {xi}

x
(n)
i × {e}

(b) The corresponding situation in
P̃ (n) if x(n)i is shifted ε up com-
pared to xi.

Figure 7: Shifting xi an ε farther away from oP creates a new area with diameter 2ε
marked in blue.
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4 Generalizations of the Chamanara surface

We now want to examine the reasons why a set cannot be immersed in a translation
surface P̃ . As mentioned in Section 3, this is mostly due to the set “hitting” a singu-
larity. We now want to make this notion more precise and investigate the situation for
translation surfaces of the form P̃ . Let P be a PSI-polygon, X ∈M and let Q ⊆ X be
a simply connected subset containing the basepoint.

We now take a look at the subset V ⊆ Q such that devQ(V ) ⊆ devP̃ (P ∗ × {e}). Then
let Ue be the connected component of V containing the basepoint. Then, as noted
after Example 3.4, the map dev−1P×{e} ◦ devUe is a well defined immersion and therefore
Ue  P̃ .

Now let Ue ⊆ Q be the set defined similarly as Ue, but with devQ(Ue) being a subset
of devP̃ (P ∗ × {e}) together with the image of the corresponding singularities as defined
above. If Ue 6= Ue then Q 6 P̃ : We can find a sequence in Ue converging to some point
x ∈ Ue \ Ue such that devQ(x) = devP̃ (s(xi), e) for some i ∈ N (or devP̃ (y, e) for some
accumulation point y of the vertices of P ). This sequence then diverges in P̃ because it
converges to a point in P̃ \ P̃ . Therefore the immersion from Ue to P̃ cannot be extended
to an immersion from Ue and especially not to an immersion from Q.

If instead Ue = Ue and there is no xi with devQ(Ue)∩devP̃ (xi×{e}) 6= ∅ then Ue = Q and
therefore Q can be immersed in P̃ . If instead there is xi with devQ(Ue)∩devP̃ (xi×{e}) 6=
∅ we can repeat this procedure for P ∗ × {xi}. We can do this by taking a point b ∈ Ue
such that devQ(b) ∈ devP̃ (xi×{e}) and using b as the new basepoint for this procedure
on P ∗×{xi}. If we can repeat this for all h ∈ F then Q P̃ follows because then each
point in Q lies in one of these Uh.

In summary, we can conclude that if Q 6 P̃ there is an h ∈ F such that there is
x ∈ Uh \ Uh. We can choose this h to be minimal, i.e Uh′ = Uh′ holds for all suffixes h′
of h. Also there is xi (or y) with devP̃ (s(xi), h) = devQ(x). Then the pair

(x, (s(xi), h)) ∈ Q× (P × F )

or
(x, (yi, h))

will be called a critical point.

For each such singularity of P̃ corresponding to a point (s(xi), h) this singularity also
corresponds to (t(x′i), xi ◦h) and to (s(x′j), xj ◦h) where xj is the edge of P with t(xj) =
s(xi). This can be repeated for these points as well. The upshot is that if we look at the
subset of F consisting of all h′ such that (s(xi), h) also belongs to P ×{h′} then this set
has a shortest element g. In addition if (x, (s(xi), h)) is a critical point then h ∈ F is
such a shortest element. This is true because Uh′ = Uh′ for all suffixes h′ of h and each
shorter element in this set has to be a suffix of h.

We are now ready to prove the aforementioned theorem.
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4 Generalizations of the Chamanara surface

xj × {xih}

xi × {h} = x′i × {xih}

D

P ∗ × {xih}

Figure 8: There might be an edge xi which is so close to xj that they switch position in
P (n). The distance of D and xi×{h} is relatively large in P ∗×{xih} because
it is taken by going around the drawn edges. But Lemma 4.15 shows that this
behavior cannot happen for large enough n.

Theorem 4.18. If (P (n), (x
(n)
m )m∈N)n∈N converges to (P, (xm)m∈N), then (P̂ (n))n∈N con-

verges to P̂ in the immersive topology.

Proof. We will use Theorem 3.16 to show the convergence in the immersive topology.
To do this we first use Theorem 3.12 to show that P̃ (n) converges to P̃ . So let D ⊆ P̃
be homeomorphic to a closed disc with oP̃ ∈ D. We now have to show D  P̃ (n) for
almost all n ∈ N. With Lemma 4.16 it follows that there exists ε ∈ R+ such that
d(x, y) > ε ∀x ∈ D, y ∈ Σ̃. We will only focus on singularities corresponding to a point
of the form (s(xi), h). For singularities of the form (y, h), where y is an accumulation
point of the vertices of P the arguments are analogous.

Now let F be the free group as before. We denote by G ⊆ F the set of all g ∈ F with
D∩(P ∗×{g}) 6= ∅. Then there is ε′ ∈ R+ such that d(D,P ∗×{h}) > ε′ for all h ∈ F \G.
This can be shown similar to Lemma 4.16: Let us assume that this statement is not
true. Then there has to be a single point x ∈ D ∩ (P ∗ × {g}) such that for any δ ∈ R+

there is a segment xi × {g} closer than δ to x (as in Lemma 4.16 x can be obtained as
the accumulation point of such a sequence (xn)n∈N). But this is not possible because
devP̃ (∂P × {g}) is compact.

Note that this distance is measured in P̃ and not in P . So it can still be possible that
for one xi×{h} the set devP̃ (xi×{h}) is relatively close to devP̃ (D∩P ∗×{xih}) where
the distance is measured in C. This is possible because xi×{h} may lie behind an edge
xj × {xih} that D goes through, compare Figure 8. But this implies that x′i and xj
are relatively close together in P . This is exactly the behavior we get under control by
applying Lemma 4.15 to each of these edges: D goes only through a finite number of
edges xj×{g}, so there is δ ∈ R+ such that D has distance greater than δ to each of the
endpoints of each of the xj×{g}. Then we can choose ε′′ in such a way that each xi has
distance greater than ε′′ to such an Aj. Therefore the distance between devP̃ (xi × {h})
and devP̃ (D ∩ P ∗ × {xih}) is also greater than ε′′.
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4 Generalizations of the Chamanara surface

Now let ξ := min(ε, ε′, ε′′), let g ∈ F be a longest word in G and let 0 < δ < 1
8|g|ξ.

We now want to show that D  P̃n for all n > Nδ. Let us assume the opposite, so let
n > Nδ and D 6 Pn. Then there is a critical point (x,

(
s(x

(n)
i ), h

)
).

Let us assume for a moment that there is exactly one longest element g ∈ G and each
other element in G is a suffix of g. Let Uh ⊆ D be as before for the critical point
(x,
(
s(x

(n)
i ), h

)
). Then there is a path γ in Uh from oP̃ to x such that γ([0, 1)) ⊆ Uh.

If we look at the embedding γ(n) of this path in P̃ (n) we see that if it crosses one edge
x
(n)
j ×{e} of P (n)×{e} this edge has to be the last letter of g. This holds because every

edge of P (n) × {e} can be shifted at maximum δ. But this is smaller than ξ which is
the distance of Uh to these edges (except x(n)j × {e}, but this poses no problem due to
Lemma 4.15 as explained above). Then, similar to the proof of Lemma 4.17 the first
point of the path in P (n)×{x(n)j } is shifted at maximum 2δ in relation to the first point
of the path in P × {xj}. This is again the situation depicted in Figure 7.

We denote by b ∈ [0, 1) the first point such that γ(n)(b) ∈ P (n) × {xj} and by c the
last such point. Then for each k ∈ N the vertex (s(x

(n)
k ), xj) still has distance more

than ξ − 3δ from each point in γ(n)([b, c]). This holds because each xk × {xj} with
xk × {xj} ∩D = ∅3 has distance more than ξ from each point in Im(γ).

This can be continued inductively to show that each vertex (s(x
(n)
k ), h) still has distance

more than
ξ − 3δ|g| > 1

2
ξ

from the last part of γ(n). This is a contradiction to (x,
(
s(x

(n)
i ), h

)
) being a critical

point.

If G is not of this form then we can use that G consists of only finitely many elements
because D is compact. Therefore we can repeat the above process for each such element
in G that is not a suffix of a longer word. This leads to finitely many of the above
constructed ξ and we can take the smallest such ξ. Then the rest follows as before.

Now let Q ∈ M̃ with Q ↪→ P̃ (n) for infinitely many n ∈ N, so we can see Q as a
subsurface of these P̃ (n). We assume that Q 6 P̃ . Then again there is a critical point
(x, (s(xi), h)) and a corresponding Uh ⊆ Q. Like before we can choose a path γ in Uh
from oP̃ to x such that γ([0, 1)) ⊆ Uh. Then, because Q is open, there is ξ ∈ R+ such
that Bξ(Im(γ)) ⊆ Q. But for similar reasons as before for large enough n ∈ N there has
to be a singularity of P̃ (n) closer than ξ to γ(n)(1) ∈ Q ⊆ P̃ (n)4. This is a contradiction

3Only x′j ×{xj} and up to one other edge do not fulfill this condition. Again, Lemma 4.15 shows that
there cannot be an edge lying closely behind one of those edges.

4This singularity does not necessarily correspond to (s(x
(n)
i ), h) because another edge of P (n) × {h}

may lie before (s(x
(n)
i ), h) (similar to the case displayed in Figure 8). But then Lemma 4.15 shows

that n can be chosen in such a way that this edge is sufficiently small, so that one of its endpoints
is closer than ξ to γ(n)(1).
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4 Generalizations of the Chamanara surface

to Q ↪→ P̃ (n).

We now use Theorem 3.16 to show that P̂ (n) converges to P̂ . Up to now we have shown
(a). Let us show (b) and (c). The points in p−1(ôP ) are exactly the points of the
form (oP , g). By taking a shortest path γ from (oP , e) to (oP , g) we get an ε ∈ R+

such that d(Im(γ), Σ̃) > ε (again because Im(γ) is compact). The set D := {x ∈ P̃ |
d(x, Im(γ)) ≤ ε} is compact and simply connected. For all but finitely many P̃ (n) there
exists an immersion ι(n) : D  P̃ (n). Then similar as before we see that ι(n)(oP , g) lies
in P (n) × {g} for sufficiently large n and with Lemma 4.17 (b) follows. Now let K ⊆ P̃

be a compact path-connected subset containing the basepoint and ι(n) : K  P̃ (n) be
the corresponding immersions. If (oP (n) , hn) ∈ P̃ (n) converges to x ∈ K then (again
similar as before) there is an h ∈ F such that hn = h for sufficiently large n . Therefore
x = (oP , h) and (c) follows.
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5 Families in M

In this section, we want to use the tools introduced in Section 4 to establish coordinates
on some families of infinite translation surfaces. These families consist of translation
surfaces arising from PSI-polygons as established in Proposition 4.5. So let (P, (xn)n∈N)
be a PSI-polygon. When we compare it to the finite case considered in Example 2.14,
the vector (t(xn)−s(xn))n∈N ∈ C∞ seems like a suitable coordinate for P̂ (using Conven-
tion 4.3). However, when we take a closer look at it this causes several problems. The
main problem will be the one mentioned in Section 4.2, namely that the convergence
of the corresponding translation surfaces does not automatically imply the convergence
of the PSI-polygons. Nevertheless, the above coordinates will be our guiding thought
in the following section. Our main approach will be to look at some families of such
surfaces such that the above implication holds. We will start by looking at some small
families in Section 5.1 and then continue with two bigger families in Section 5.2 and
Section 5.3.

5.1 Some simple families

As noted before the main idea of this approach of finding coordinates for infinite trans-
lation surfaces comes from looking at generalizations of the Chamanara surface. In
this subsection, we want to look at some families which are still pretty similar to the
Chamanara surface.

The first such family is the one introduced in [Cha04]. There the author describes a
surface Chα for each α ∈ (0, 1) as mentioned in Example 2.3. One very straightforward
approach would be to use this α as a coordinate for such a translation surface. The
following theorem will show that this approach is indeed viable.

Theorem 5.1. The map

Ψ: (0, 1)→M, α 7→ Chα

is a homeomorphism onto its image.

Proof. For α ∈ (0, 1) let Pα be the PSI-polygon constructed in Figure 2, i.e. the PSI-
polygon the Chamanara surface Chα is constructed from.

• Injective: Let α1 6= α2 ∈ (0, 1).
If Chα1 = Chα2 holds in M, there exists a translation isomorphism Φ: Chα1 →
Chα2 . Because Φ has to send the basepoint of Chα1 to the basepoint of Chα2 it
also sends every point of Chα1 corresponding to a point in P ◦α1

to the point of Chα2

corresponding to the same point. Now assume w.l.o.g. that α2 < α1. Then Φ has
to map (̂α2, 1) ∈ Chα1 to (̂α2, 1), but (̂α2, 1) /∈ Chα2 . �
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• Continuous: Let (αn)n∈N be a sequence in (0, 1) which converges to α ∈ (0, 1).
Then Pαn converges to Pα and therefore it follows with Theorem 4.18 that Chαn
converges to Chα.

• Open: Let Chαn be a sequence in Im(Ψ) which converges to Chα ∈ Im(Ψ). Then
the universal covers C̃hαn also converge to C̃hα. We now assume that αn does not
converge to α. Then there exists ε ∈ R+ such that for all N ∈ N there is n ∈ N,
n > N with |α− αn| > ε. We can safely assume that ε < α.
In particular there are infinitely many αn that meet this condition. Let

D =
(

[δ, 1− δ]2 ∪ [δ, α− ε

2
]× [δ, 1]

)
× {e} ⊆ C̃hα

for some sufficiently small δ ∈ R+. Then D is homeomorphic to a closed disc
and with Theorem 3.12(a) it follows that D  Chαn for almost all n ∈ N. So
αn > α − ε

2
for almost all n ∈ N. But still |α − αn| > ε holds for infinitely many

n ∈ N and therefore also αn > α+ ε holds for infinitely many αn. But then the set
Q = (0, 1)2∪ (0, α+ε)× (1−δ, 1+δ) ⊆ R2 is a surface in M̃ and can be embedded
in each of these infinitely many C̃hαn but not in C̃hα which is a contradiction to
Theorem 3.12(b).

Remark 5.2. The sequence Chαn converges to (0, 1)2 if αn converges to 0 and it con-
verges to the punctured torus if αn converges to 1.

Another very straightforward approach is to vary the shape of the PSI-polygon itself
instead of its edges. This leads to two additional rather simple families.

Proposition 5.3. (a) For β ∈ (0, π) let (Pβ, (xn)n∈N) be the PSI-polygon such that Pβ
is the rhombus with side length 1 and with angle β at one corner. In addition, we
divide the sides in the same way as they are divided in Ch 1

2
, with one accumulation

point at the corner for which the angle is β. Then the map

Ψa : (0, π)→M, β 7→ P̂β

is a homeomorphism onto its image.

(b) For l ∈ R+, let (Pl, (xn)n∈N) be the PSI-polygon such that Pl is the square with side
length l. Again we divide the sides in the same way as they are divided in Ch 1

2
.

Then the map
Ψb : R+ →M, l 7→ P̂l

is a homeomorphism onto its image.
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Sketch of Proof. The proof is very similar to the previous one, so we will only sketch it.
For similar reasons as before these maps are injective and continuous.

To see that Ψa and Ψb are open we can take a sequence P̂ (n) converging to P̂ in the
image. Then, for all ε ∈ R+, the set Dε ⊆ P of all points with distance greater or equal
to ε from ∂P can be embedded in P̃ and therefore in almost all P̃ (n). This is sufficient
to show that Ψa is open. For Ψb it is still possible that infinitely many of these P (n) are
too large. But then if P = Pl and ε sufficiently small we can take the set Qε = P ◦l+ε
which can be embedded in these infinitely many P̃ (n) but not in P̃ .

At last, these three families can be combined, which is the contend of the following
Theorem:

Theorem 5.4. Let (Chα,β,l, (xn)n∈N) be the PSI-polygon such that Chα,β,l is the rhombus
with side length l and with angle β at one corner. In addition we divide the sides in the
same way as they are divided in Chα with one accumulation at the corner for which the
angle is β. Then the map

Ψ: (0, 1)× (0, π)× R+ →M, (α, β, l) 7→ Ĉhα,β,l

is a homeomorphism onto its image.

Proof. This is essentially a combination of the previous statements in this section: Let
x ∈ (0, π) × (0, 1) × R+. A sequence in this space that does not converge to x cannot
converge in all three coordinates. Then we can use the same sets as before for the
coordinate for which this sequence does not converge.

5.2 An infinite-dimensional real family

We will now return to the situation described in Example 2.16 and construct an infinite-
dimensional family. In Example 2.16 we have seen a generalization of the Chamanara
surface where the lengths of the edges were variable instead of being always in the same
proportion. We have argued that these edges viewed as vectors in C make up suitable
coordinates for such a translation surface. We will now pursue this approach. But
instead of vectors in C, we will take the lengths of these vectors as coordinates in R
because in this case, such coordinates carry the same information. In fact, our image
will lie in the following space:

Definition 5.5. By c0 = c0(R) we will denote the real vector space of all null sequences
in R together with the supremum norm ||(xn)n∈N||∞ = sup{|xn| | n ∈ N}.

Compared to Example 2.16 we will also need some additional technical restriction which
will be motivated in the next example.
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P1

x1

x′1

P2

x1 x2

x′1x′2

P3

x1 x2 x3

x′1x′2x′3

P4

x1 x2 x3 x4

x′1x′2x′3x′4

Figure 9: The polygons P1, . . . , P4. These polygons give rise to finite translation surfaces
P̂n with genus

⌈
n
2

⌉
.

Example 5.6. We will construct a family of finite translation surfaces. For this let Pn
be the (normal) polygon consisting of the set [0, 1]2 ⊆ R2 such that the upper and lower
sides are split into n edges of equal length. The right and left side of these polygons are
only one edge in each case. Figure 9 shows examples of these polygons for n = 1, . . . , 4.
Then again as described in Example 2.14 (or similar to Proposition 4.5) we can construct
finite translation surfaces P̂n out of these polygons. In Example 2.14 we have seen that

P̂n ∈

{
H(n− 1), if n is odd,
H(n−2

2
, n−2

2
), if n is even.

If we apply the formula 2g − 2 =
∑m

i=1 ki from Section 2.2 it follows that the genus gn
of P̂n satisfies

gn =

{
n+1
2
, if n is odd,

n
2
, if n is even.

As in Figure 9 we label the upper sides by x1, x2, . . . starting from left to right and the
lower sides x′1, x′2, . . . accordingly. Now for m ∈ N, m ≥ n let P (m)

n be the polygon
which we obtain from Pn by replacing the vertex t(x1) by an edge xins with length 1

m

and midpoint at the point t(x1) and adding vertices accordingly. We do the same with
x′1. See Figure 10 for an example of this construction.

Then the sequence (P̂
(m)
n )m∈N converges to P̂n in the immersive topology. This can be

seen in a very similar way to the proof of Theorem 4.18:

Part (a) of Theorem 3.12 follows in the same way as in Theorem 4.18. Now let Q ∈ M̃
such that Q can be embedded in infinitely many P̃ (m)

n . Then this inclusion cannot cross
a copy of xins in P̃

(m)
n if m is big enough, because this edge gets arbitrarily small for big

m. Similar to Theorem 4.18 Q  P̃n follows. The rest of Theorem 3.16 follows in a
similar manner.
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P3

x1 x2 x3

x′1x′2x′3

→ P
(3)
3

x1 xins x2 x3

x′1x′insx′2x′3

Figure 10: The polygons P3 and P
(3)
3 . The polygon P (m)

n is constructed from the polygon
Pn by replacing the second vertex of the upper side by an edge of length 1

m

and accordingly for the lower side.

This example is problematic for two reasons. The first is the insight that the genus is
not preserved under limits in the immersive topology. We will return to this problem
in Section 6. The second one concerns our planned way of assigning coordinates to the
above-mentioned infinite translation surfaces.

For this, we observe that Example 5.6 can easily be expanded to the infinite case. Let
us look for example at the polygons P3 and P

(m)
3 and replace the rightmost edge of

the upper side with infinitely many arbitrary edges which accumulate only in the upper
right corner. We can do this in the same way for each m ∈ N, i.e. we can take the same
edges as replacement. We then split the leftmost edge of the lower side accordingly. The
resulting PSI-polygons will be named Q3 and Q

(m)
3 and the corresponding translation

surfaces Q̂(m)
3 converge to Q̂3 for the same reasons as in Example 5.6. However, the

coordinates mentioned before (ignoring the vertical edges) would be(
1

3
− 1

2m
,

1

m
,
1

3
− 1

2m
, l1, l2, . . .

)
∈ c0

where the li are the lengths of these newly introduced edges. But for m→∞, this does
not converge to (

1

3
,
1

3
, l1, l2, . . .

)
∈ c0

which would be the coordinates of Q̂3. This makes it necessary to introduce some
conditions on these vertices in such a way that two vertices of such a PSI-polygon
cannot be arbitrarily close. However, the vertices should still be able to accumulate at
the lower left and upper right corners. The solution here is to forbid that these vertices
are too close together when compared to the distance to an accumulation point. This is
formulated in the following condition. Please note that this will be more general than
necessary at the moment, but we will use this condition again later at which point the
general case is needed.
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x1 x2 x3 · · ·

z1

z2

z3

··
·

x′1x′2x′3
· · ·

z′1

z′2

z′3

··
·

Figure 11: An example for a polygon in Re-Chδ.

Definition 5.7. Let δ ∈ R+. We say that a PSI-polygon P fulfills the δ-condition if for
every two non-adjacent edges xi and xj it holds that

d(xi, xj) > δ ·max

(
min
y∈Y

(d(xi, y)),min
y∈Y

(d(xj, y))

)
where Y denotes the set of all accumulation points of vertices of P .

We are now ready to formally define our aforementioned family.

Definition 5.8. For δ ∈ (0, 1
2
) we define Re-Chδ to be the set of PSI-polygons fulfilling

the δ-condition such that for each such PSI-polygon (P, (xn)n∈N) the set P is exactly
[−1, 1]2 ⊆ R2 and the points s(xn) have exactly two accumulation points positioned at
(−1,−1) and (1, 1) ∈ R2. R̂e-Chδ ⊆ M is the set of isomorphism classes of translation
surfaces arising from polygons in Re-Chδ.

Figure 11 shows an example of such a PSI-polygon. We will always denote the edges
on [−1, 1]× {1} by x1, x2, . . . starting from the left and the edges on {−1} × [−1, 1] by
z1, z2 . . . starting from the top. The point y will always denote the accumulation point
(1, 1) and the endpoints of these edges will always be the ones closer to y.

Please note that compared to Example 2.16, we changed the set to be [−1, 1]2 instead
of [0, 1]2 so that the point of symmetry is now (0, 0).

Now each translation surface in R̂e-Chδ is constructed from a unique PSI-polygon in
Re-Chδ (see the following proof). This enables us to use this polygon to define infinite-
dimensional coordinates for this translation surface. This is the content of the following
theorem.

36



5 Families inM

Theorem 5.9. The map

Ψ: R̂e-Chδ → c20, P̂ 7→ ((d(t(xn), y))n∈N, (d(t(z′n), y))n∈N)

is a homeomorphism onto its image.

Proof. • well-defined: Because the sequence (t(xn))n∈N converges to y, the sequence
(d(t(xn), y))n∈N does converge to 0. In addition, similar to Theorem 5.1, no two
such PSI-polygons give rise to isomorphic translation surfaces. So each P̂ ∈ R̂e-Chδ
comes from a unique P ∈ Re-Chδ.

• injective: Such a PSI-polygon is uniquely given by the above coordinates so the
map is injective.

• open: This follows directly from Theorem 4.18.

• continuous: Let P (n), P ∈ Re-Chδ be PSI-polygons such that P̂ (n) converges to
P̂ . Assume that Ψ(P̂ (n)) does not converge to Ψ(P̂ ). Then there is ε ∈ R+ such
that for infinitely many n ∈ N an in ∈ N exists such that t(x(n)in

) /∈ Bε(t(xin))

or t(z(n)in
) /∈ Bε(t(zin)). W.l.o.g. we can assume that infinitely many of these

vertices are of the form t(x
(n)
in

). Let us first assume that there is i ∈ N such that
t(x

(n)
i ) /∈ Bε(t(xi)) for infinitely many n ∈ N. Then these points t(x(n)i ) have to

accumulate at a point (a, 1) ∈ [−1, 1]× {1}.

Case 1: a < π1(t(xi))
5. If there is no j ∈ {1, . . . , i − 1} with t(xj) = (a, 1), then

there is ξ ∈ R+ such that Bξ((a, 1)) does not contain any vertex of P . We can
then take the two line segments l1 from (0, 0) to (a, 0) and l2 from (a, 0) to (a, 1)
and the set

D := Bξ(l1 ∪ l2) = {x ∈ R2 | d(x, l1) ≤ ξ or d(x, l2) ≤ ξ}.

Then D is homeomorphic to a disc and can be immersed in P̂ (and P̃ ) but not in
these infinitely many P̂ (n) (or P̃ (n)), which is a contradiction to Theorem 3.16. If
there is j ∈ N such that t(xj) = (a, 1), we can deduce from the δ-condition that
the points t(x(n)j ) cannot accumulate at the point (a, 1) because the points t(x(n)i )

already accumulate at this point. Therefore the points t(x(n)j ) have to accumulate
at a point to the left of (a, 1) and we can repeat the argument with this point.
Because there are only finitely many vertices on [−1, 1] × {1} to the left of t(xi)
there has to be one k ∈ N such that t(x(n)k ) accumulates at a point which is not a
vertex of P .

Case 2: a > π1(t(xi)). Similar as for case 1, we can deduce that there is k ∈
{1, . . . , i} and ξ ∈ R+ such that for infinitely many n ∈ N no vertex of P (n) lies
in Bξ(t(xk)). Now we can choose the two line segments l1 from 0 to (π1(t(xk)), 0)

5By π1 : R2 → R we denote the projection to the first coordinate.
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and l2 from (π1(t(xk)), 0) to t(xk). Then the set Q := Bξ(l1 ∪ l2) can be immersed
in infinitely many P̃ (n) but not in P̃ , which is again a contradiction to Theorem
3.16.

If such an i does not exist we instead look at the set V := [−1, 1− ε]× {1}. Then
only finitely many vertices of P lie in V . Let k ∈ N be the greatest number such
that t(xk) ∈ V . According to the requirements, for infinitely many n ∈ N there
is in ∈ N such that t(x(n)in

) /∈ Bε(t(xin)). But this also means that t(x(n)in
) ∈ V .

Because infinitely many of these in are greater than k+ 1 and because for those it
holds that π1(t(x

(n)
k+1)) < π1(t(x

(n)
in

)) we can conclude that t(x(n)k+1) ∈ V . But then
t(x

(n)
k+1) cannot accumulate at t(xk+1) and we can use the same argument as for

case 1.

Remark 5.10. Similar to Theorem 5.4, we can also vary the lengths of the sides and
the angles between the sides to get a family with coordinates in c20 × (0, π)× R+.

5.3 A finite-dimensional family of infinite translation surfaces

We now want to introduce a different kind of family. In the last subsection, we intro-
duced an infinite-dimensional real family. In contrast, we will now construct a finite-
dimensional complex family of infinite translation surfaces. The idea behind this is
simply to fix all but finitely many edges of a PSI-polygon and use these finitely many
edges as coordinates. In our case, the fixed edges will be exactly like the edges of the
Chamanara surface. The following definition will make this more precise:

Definition 5.11. Let n ∈ N and Fi-Chn be the set of PSI-polygons P of the following
form:

• oP = 0 ∈ C.

• There are exactly 2 accumulation points y and y′ of the vertices of P . In addition
d(y, y′) > 2 holds.

• The two parts of ∂P adjacent to y with length 1 are the same (up to translation)
as the upper and right side of the Chamanara surface Ch 1

2
and the interior of P

lies down left of these two sides. These parts will be called the converging sides.
In addition, there is no other edge of P cutting through the triangle spanned by
the two converging sides.

• Apart from these two parts P has exactly 2n edges, called finite edges. The
corresponding start- and endpoints of these edges will be called the finite vertices.

F̂i-Chn ⊆M is the set of isomorphism classes of translation surfaces arising from poly-
gons in Fi-Chn.
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y

y′

x4
x5

. . .x6

x3

x2

x1

...

x0

Figure 12: A PSI-polygon in Fi-Ch5. The red edges and vertices are the finite edges and
vertices. The black parts are the converging sides and no edge can lie in the
triangle consisting of the blue line and the two adjacent converging sides.

Figure 12 shows an example of such a polygon. Of course the set F̂i-Ch0 would only
consist of the Chamanara surface Ch 1

2
.

Convention 5.12. Let n ∈ N and P ∈ Fi-Chn. We will denote the finite edges on one
side by x1, . . . , xn such that each edge xi is adjacent to xi−1 and xi+1 for i ∈ {2, . . . , n−1}.
The corresponding edges on the other side will be denoted by x′i. We will continue this
labeling onto the converging sides, so the edge in the converging side adjacent to xn is
labeled xn+1 and the edge adjacent to x1 is labeled x0.

Our basic idea now is to use the finite edges as coordinates and get a homeomorphism
to Cn. This is, in principle, not very difficult. However, a general problem with our
way of creating coordinates appears and has to be tackled. The following example will
demonstrate this problem:

Example 5.13. Let P (1) be the PSI-polygon sketched in Figure 13 and P (2) be the
PSI-polygon sketched in Figure 14. Then both P (1) and P (2) lie in Fi-Ch4. But P̂ (1) and
P̂ (2) are translation isomorphic via the translation isomorphism Φ sketched in Figure 15.

This behavior causes some problems. F̂i-Ch4 consists of isomorphism classes of trans-
lation surfaces. Hence the classes that P̂ (1) and P̂ (2) belong to are actually the same.
Therefore our usual procedure is not sufficient to assign unique coordinates to this class.
This is not a very surprising behavior when compared to the finite case mentioned in
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Figure 13: The PSI-polygon P (1) ∈ Fi-Ch4. Again the finite edges and vertices are
marked in red.

Figure 14: The PSI-polygon P (2) ∈ Fi-Ch4.

Section 2.2. There, for each isomorphism class of finite translation surfaces, we get a
chart for some neighborhood of this class in the moduli space by choosing a basis of the
relative homology (ignoring orbifold issues). In the present case, for the isomorphism
class of P̂ with P ∈ Fi-Chn, the choice of the PSI-polygon P corresponds to selecting
such a basis. Because the families we have considered up to now were rather restricted
and a PSI-polygon has many restricting properties as well, the generating PSI-polygon
was unique for these families. However Example 5.13 shows that these restrictions on
PSI-polygons are not enough to ensure uniqueness in a more general case. But the solu-
tion to this problem can be found analogously to the finite case by restricting ourselves
to local coordinates instead of global ones. In fact, we will see that for each PSI-polygon
P ∈ Fi-Chn we get an open neighborhood of the isomorphism class of P̂ such that
P gives rise to unique coordinates from this neighborhood to an open subset of Cn.
This will give F̂i-Chn the structure of an n-dimensional complex manifold. We start by
introducing these open neighborhoods.

Definition 5.14. Let n ∈ N, ε ∈ R+ and P ∈ Fi-Chn. Then the set Bε(P ) ⊆ Fi-Chn
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A B C D E
Φ−→

A

B C D

E

Figure 15: The map Φ is obtained by mapping the areas A-E of P̂ (1) on the left to the
corresponding areas of P̂ (2) on the right via translation. Then Φ maintains the
connections between these areas and is therefore a translation isomorphism.

consists of all PSI-polygons P (1) ∈ Fi-Chn such that for each finite edge x(1)i of P (1)

d(s(xi), s(x
(1)
i )) < ε

holds, where the distance is measured in C. Similar to before B̂ε(P ) ⊆ M denotes the
set of isomorphism classes of translation surfaces arising from polygons in Bε(P ).

Note that for the last finite vertex t(xn) it also holds that

d(t(xn), t(x(1)n )) < ε

because for each P ∈ Fi-Chn

t(xn) = s(x′1) + (−1, 1) = ΦP (s(x1)) + (−1, 1)

holds.

Of course B̂ε(P ) is a neighborhood of P̂ in F̂i-Chn, but to be of any use, this neigh-
borhood has to be small enough, so ε has to be sufficiently small. For P ∈ Fi-Chn let
δP ∈ R+ such that

δP < d(xi, ∂P \ (xi ∪ xi−1 ∪ xi+1)) ∀i ∈ {1, . . . , n}.

From now on, let ε ∈ R+ such that ε < 1
16
δP and ε < 1

2n+5 . In addition, ε should
fulfill another condition. For better readability we will state this condition not until it
is needed in the proof.

This guarantees that each of the 2n finite edges has length greater than 16ε. Our next
goal is to show that such a set B̂ε(P ) is open in the immersive topology:

41



5 Families inM

Lemma 5.15. Let n ∈ N, P ∈ Fi-Chn and ε ∈ R+ that fulfills the above mentioned
conditions for P . Then B̂ε(P ) is open in the immersive topology.

Proof. We will give an explicit description of B̂ε(P ) as a finite intersection of open sets.
Unfortunately, this requires some work and therefore this proof will be very long. To
accommodate this, we subdivide the proof into 4 parts:

In part 1 we construct V as an intersection of some sets which are open in the immersive
topology.
In part 2 we show that B̂ε(P ) is a subset of V .
In part 3 we start to show that V is a subset of B̂ε(P ).
In part 4 we tackle one case omitted from part 3, namely the case mentioned in Ex-
ample 5.13: It is possible that there are two PSI-polygons P (1), P (2) ∈ Fi-Chn such
that P̂ (1) ∼= P̂ (2). But this means that P̂ (1) ∈ B̂ε(P ) does not automatically imply
P (1) ∈ Bε(P ). This can happen, if P (2) lies in Bε(P ) instead (only one of them can
lie in Bε(P ), compare Theorem 5.16). So in part 4, we show that for each translation
surface X ∈ V there is at minimum one P ∈ Bε(P ) such that P̂ ∼= X. We want to
emphasize that this is the most important part of the proof, because it shows that pick-
ing an open neighborhood B̂ε(P ) actually corresponds to choosing one of the generating
PSI-polygons for each translation surface X ∈ B̂ε(P ).

Part 1: In this part, we will introduce the open sets which are used later. At the end
of part 1 we will define the set

V :=M↪→(D1) ∩M (D2) ∩
2n+1⋂
i=−n

M+(Ki, Ui) ∩ F̂i-Chn

which is open in F̂i-Chn by definition (compare Section 3). Before we begin to define the
individual sets, we want to summarize their usage in part 3. For this let P (1) ∈ Fi-Chn
such that P̂ (1) ∈ V .

• For the set M↪→(D1) we will see that D1 ⊆ (P (1))◦ when seen as subsets of C.
This allows us, to use D1 as some kind of starting point to arrange the edges of
P (1) around it. For this to be valid, we have to ignore the issues tackled in part 4
for a moment.

• The setM+(Ki, Ui) allows us, to know the positions of the midpoints of the edges
of P (1) relative to D1. This will be illustrated by “arrows” going from one side of
D1 to the opposite side (compare Figure 22). In particular, this allows us to know
the position of the converging sides relative to D1.
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xi−1

xi

s(xi)

> 16ε

gi

Figure 16: The endpoint of the shorter of two adjacent edges has distance greater than
16ε from the other edge, because it also belongs to the next edge, in this case
to the edge xi+1.

xi−1

xi

s(xi)

xj

gi

Figure 17: Every point in the area marked in blue is closer than ε to xi−1 or xi. The
points on gi left of this area either lie in D1, or there is another edge xj closer
than ε to these points. But then xj is too close to xi or xi−1.

• By knowing the position of the midpoint and one endpoint of an edge up to ε6, we
know the position of the other endpoint only up to 3ε. The setM (D2) will be
used to overcome this issue.

So, after much preparation, let us start with defining the sets. For this let

D1 := {x ∈ P | d(x, ∂P ) ≥ ε} ⊆ P.

Then D1 is compact and contains the basepoint. In addition D1 is simply connected.
This can be seen by looking at the path that stays exactly ε away from ∂P . Because ε
is small enough this path cannot cross itself.
For the same reasons, the set

D′1 := {x ∈ P | d(x, ∂P ) ≥ 3ε} ⊆ P

is also simply connected, compact and contains the basepoint.

The next set requires a bit more work. For each of the edges with index i between 1 and
n + 1, we take a bisector gi of the edges xi−1 and xi at the point s(xi) (see Figure 16).
Then gi has to meet D1 at some point. This can be seen in the following way:
Assume gi meets ∂P before it meets D1. The endpoint of the shorter of the two edges
xi and xi−1 has distance greater than 16ε from the other edge (see Figure 16). So there

6That means, we know a point x ∈ C such that the midpoint (or endpoint) lies in Bε(x) ⊆ C.
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εgi hi
D1

y2 y1

vi H1

H2

H3

Figure 18: A sketch of the sets H1, H2 and H3. They can be constructed for each gi and
together with D1 they yield the set D2.

has to be a point of gi in the interior of P , with distance greater than ε from these two
edges. Because this distance grows continuously, there is also such a point at which this
distance is smaller than 2ε. But because this point does not lie in D1, there has to be
another edge xj closer than ε to this point (see Figure 17). This shows that xj is closer
than 4ε to the edges xi and xi−1, which is a contradiction. In addition, we have seen
that the first point of gi that lies in D1 has distance greater than 3ε from each other
edge xj.

Now let Ci := C \ {s(xi)}. Then P ◦ can be embedded in the universal cover C̃i and
therefore, we can view D1 and gi as subsets of C̃i. We now take the following subset of
C̃i as shown in Figure 18: Let vi ∈ C be a vector orthogonal to gi, with length exactly
3ε. Let y1 be the first point at which gi meets D1. Let y2 be the point on gi that has
distance ε from y1 and which is further away from s(xi) than y1. By hi we denote the
part of gi between the first point of distance ε to s(xi) and y2. We now take the set

H1 := {u1 + u2 ∈ C̃i | u1 ∈ hi, u2 = a · vi with a ∈ [−1, 1]}

and combine it with the set H2, obtained by taking the subset of gi of points of distance
greater or equal than ε and smaller or equal than 3ε to s(xi) and turning it clockwise
for 180 degrees. We then combine it with the set H3 which is obtained by turning this
set counter-clockwise instead. We want to show, that the union of these sets, together
with D1 can be immersed in P̃ .

But first, we want to specify the additional condition for ε. For this, we consider each of
the n+ 1 finite vertices. ε should then be small enough, that the red line α in Figure 19
is shorter than δP − 4ε. To be more precise: There should exist a point y3 on gi, such
that the blue line orthogonal to gi meets ∂P at distance greater than 3ε from y3 and
such that d(y3, s(xi)) < δP − 4ε. In addition, this condition should also hold for each
of the finite vertices in each P (1) ∈ Bε(P ) and the corresponding value δP (1) . This is a
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s(xi)

gi α
> 3ε

y3

Figure 19: The additional condition on ε states, that ε should be small enough such that
the red line α is smaller than δP − 4ε for each relevant gi. This is possible,
because the blue line gets shorter for smaller ε and therefore also the red line
gets shorter. But δP is fixed for P .

< δP − 4ε

Figure 20: One part of the set D2 immersed in P̃ . Because of the previous condition
for ε, the blue line is short enough, such that each point in the green area is
closer than δP to each edge. This does also hold for each P (1) ∈ Bε(P ).

viable condition, because δP (1) can only be 2ε smaller than δP and each angle at a vertex
in P (1) has to be at least half of the corresponding angle in P (because the distance
marked in blue in Figure 16 has to be greater than 16ε).

Next, we want to show, that these sets can be immersed in P̃ . D1 can of course be
immersed. We now take a look at Figure 20. Of course, the inner red part can be
immersed in P̃ . The additional condition on ε (compare Figure 19) shows that H1

collides at earliest δP − 4ε away from s(xi) with one of the two edges which are adjacent
to s(xi). Therefore each point in the outer green part is at maximum δP away from
one of these edges. These sets can therefore intersect a finite number of edges but they
cannot contain a vertex:
Such a vertex has to be one of the endpoints of one of the edges it has crossed because
every other vertex is too far away. But this is impossible because the intersection of
these sets with such an edge has distance greater than ε from the endpoints.

Therefore, these sets can be immersed in P̃ . We now define D2 to be the union of
the images of these sets under this immersion for all of the n + 1 finite vertices. Note
that we have already shown that D2 can be immersed in P̂ and in each P̂ (1) for each
P (1) ∈ Bε(P ).

Now, we define for each i ∈ {−n, . . . , 2n+ 1} the set Ki as the subset of P̃ consisting of
the union of the following sets as depicted in Figure 21:
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(a)

(b)

(c)

(d)

(e)

P × {e}

P × {xi}

m(xi)

n(xi)

Figure 21: A sketch of the sets (a)-(e) used to create Ki. Because it should be possible
to immerse Ki in each P̂ (1) ∈ B̂ε(P ), the set (b) must have distance at least
3ε from δP (compare Lemma 4.17), which makes this construction necessary.
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(a) D1 × {e},

(b) D′1 × {xi},

(c) The subset of P × {e} enclosed by D1, xi, Bε(s(xi)× {e}) and Bε(t(xi)× {e}). If
one of these balls does not touch D1, we instead use the line which is closest to
this ball, orthogonal to xi and which meets D1 at distance exactly ε from xi.

(d) The subset of P × {xi} that we get by reflecting the set (c) along xi × {e}. From
this set, we take only those points that are closer (or equal) to xi than to any other
edge.

(e) {x ∈ P × {xi} | ε ≤ d(x, xi × {e}) ≤ 3ε and d(x, xi) ≤ d(x, xj) for all j 6= i}.

Then each of the sets (a)-(e) is compact and simply connected. Because the sets (c)-(e)
are adjacent to exactly 2 other of these sets and the sets (a) and (b) are adjacent to
exactly one other set (see Figure 21) the union Ki is also simply connected and compact.
We then take

Ui := B2ε(oP )× {xi}

which is an open subset of Ki.

We now define the set

V :=M↪→(D1) ∩M (D2) ∩
2n+1⋂
i=−n

M+(Ki, Ui) ∩ F̂i-Chn.

We now want to show that V = B̂ε(P ).

Part 2: First, we show that B̂ε(P ) ⊆ V . For this, let P (1) be a PSI-polygon such
that P̂ (1) ∈ B̂ε(P ). Then the embedding of D1 lies in the interior of P (1), therefore
P̂ (1) ∈M↪→(D1). We already showed P̂ (1) ∈M (D2) at the time we defined it.

At last, we want to show that Ki can be immersed in P̂ (1). For that, we see that by
moving each of the endpoints of xi at maximum ε, the pointm(xi) can also not be moved
more than ε. Because dev(oP , xi) = 2m(xi), it holds that

d(dev(oP , xi), dev(oP (1) , xi)) < 2ε.

Therefore part (b) of Ki can be immersed in P̂ (1) and ôP (1) lies in the image of Ui under
this immersion. That is, if no other edge cuts through the parts (c)-(e). This holds,
because each edge except xi has distance more than 8ε to m(xi).
Let us look at this argument in more detail: Let n(xi) denote the point in P , which is
exactly ε away from xi and m(xi). Because ε is small enough, n(xi) ∈ D1 and because
m(xi) has distance greater than 8ε from each other edge the point n(xi) also has distance
greater than 7ε from each other edge. Therefore each other edge of P (1) has distance
more than 6ε from n(xi) (n(xi) ∈ D1 lies in the interior of P (1)). The same holds for the
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n(xi−1)

n(xi)

n(xi+1)

n(x′i−1)

n(x′i)

n(x′i+1)
D1

Figure 22: The setM+(Ki, Ui) leads to a connection from n(xi) ∈ D1 to n(x′i) = n(xi)
′ ∈

D1 via a straight line segment. This connection will be represented by arrows.

reflected point n(x′i) = (n(xi))
′. But d(n(x′i), n((x

(1)
i )′)) < ε. This shows that n((x

(1)
i )′)

lies either in the (d) or (e) part of Ki
7 and each other edge of P (1) has distance more

than 5ε from this point.

Part 3: We will now show that V ⊆ B̂ε(P ). So let P (1) ∈ Fi-Chn such that P̂ (1) ∈ V .
Because P (1) ∈M↪→(D1) we can embed D1 in P̂ (1). This does not mean, that no edge of
P̂ (1) intersects the image of D1. This behavior can be seen in Example 5.13, where the
interior of P (1) can be embedded in P̂ (2), but crosses two edges. But for the moment,
we will mostly depict it as though no edges intersect the image of D1, but the following
arguments still hold if this is not true. Because D1 ↪→ P̂ (1) we can see D1 as a subset of
P̂ (1).

Let us first take a look at one of the Ki. There has to be an immersion ιi : Ki → P̂ (1)

with oP (1) ∈ ιi(Ui). Therefore ιi(D′1 × {xi}) is a slightly smaller and slightly shifted (at
maximum 2ε) copy of ιi(D1 × {e}) = D1. Therefore ιi(D′1 × {xi}) ⊆ D1 and ιi|D′1×{xi}
is injective. We define Hi ⊆ Ki to be the subset corresponding to the (c)-(e) part of
the definition of Ki. We now take a look at the point n(x′i) ∈ D1. It follows, that
n(x′i) ∈ ιi(Hi) because a 2ε-ball around (n(x′i), xi) lies completely in Hi. In addition,
there is a line segment, which lies completely in ιi(Hi) and which connects n(xi) to n(x′i).
This is true for each such i and we will represent this connection by arrows. We can
repeat this for each such i to get arrows from D1 to D1 like they are shown in Figure 22.

To summarize, each Ki yields an arrow from n(xi) ∈ D1 to n(x′i) ∈ D1. These arrows
actually represent a line, lying in Ki, from (n(xi), e) to a point a ∈ B2ε(n(x′i), xi) with
ιi(a) = n(x′i). We will say, that such an arrow corresponds to the edge xi, if it was
constructed out of the set Ki.

7Or, to be more precise, in the image of the (d) or (e) parts under the map which immersesKi\D′1×{xi}
into P̂ (1). The existence of such an immersion follows (similar as for the set D2) from the fact that
each vertex, which is not an endpoint of xi, is sufficiently far away from xi.
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x
(1)
i

x
(1)
k

t(x
(1)
i )

s(x
(1)
k )

m
(
x
(1)
k

)
Bε(m(xi+1))

D1

Figure 23: One endpoint of the edge x(1)k , responsible for the next arrow, has to coincide
with one endpoint of x(1)i or else there will be edges (represented by the dashed
black line) beyond the red dashed line. These edges cannot be responsible
for an arrow, which is a contradiction.

In P̂ (1) this line segment goes through a finite number of edges, which can be written as
a word x(1)n0 . . . x

(1)
nm . Because of the symmetry, the line segment, which connects n(x′i) to

n(xi) has to go through the mirrored versions of these edges. Therefore x(1)ni = (x
(1)
nm−i)

′.
But when we look at this line segment embedded in P (1) as mentioned in Remark 4.10,
going through an edge x(1)ni corresponds to subtracting 2(m(x

(1)
ni ) − oP (1)). This shows,

that m is even and only the edge xn(m2 )
is responsible for the corresponding arrow, i.e.

for the shift (relative to D1) which is noted by this arrow. In addition, if an edge of
P (1) is responsible for an arrow, the midpoint of this edge has to be at maximum ε away
from m(xi) with xi being the edge, this arrow corresponds to. This also shows, that
each edge can be responsible for at maximum one arrow.

We now look at the arrows corresponding to the edges of the converging sides. Because
there are n + 1 of them, at least one of the edges of the converging sides of P (1) has
to be responsible for one of these arrows. But then, because of the structure of these
converging sides, the word consists of only one letter. In addition, it has to have the
same index as the edge, this arrow corresponds to or else the other converging side of
P (1) would cut through D1 or be too far away from it. Therefore each of the arrows
corresponding to the converging sides is realized by only one edge and it always has the
right index. This also shows that each other edge has to be responsible for exactly one
arrow.

The rest of the claim will be shown by some form of induction. Starting from the
converging sides, we assume that up to a specific arrow (corresponding to xi), for each
of these arrows (corresponding to xj) the corresponding word consists of only the letter
x
(1)
j . In addition, it should hold that

d
(
s(xj), s(x

(1)
j )
)
< ε and d

(
t(xj), t(x

(1)
j )
)
< ε.
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x
(1)
i (case 1)

x
(1)
i (case 2)

s(x
(1)
j )x

(1)
j

D1

Figure 24: The situation, if D1 goes through one of the edges of P (1) exactly twice. In
the first case x(1)i is of the form of the blue line, in the second case of the red
line. Note, that in case 1 the upper end of the blue edge is actually the same
as s(x(1)j ).

The following situation is also depicted in Figure 23: We look at the next arrow (cor-
responding to xi+1). Then let x(1)k be the edge of P (1) responsible for this arrow. This
means that d(m(x

(1)
k ),m(xi+1)) < ε. Let us now, for a moment, return to the issue of

D1 going through edges of P (1). When we look at D1 as a subset of P (1) this cuts the
set into several components.

Let us first assume, that the arrows corresponding to xi and xi+1 completely lie in the
same component 8. Then one of the endpoints of x(1)k (w.l.o.g. s(x(1)k )) has to be the
same as the endpoint of x(1)i (w.l.o.g. t(x(1)i )) or else there have to be some edges of P (1)

connecting these two vertices (marked by the black dashed line in Figure 23). But the
area bound by these edges can only be reached from D1 through a region lying between
these two arrows (marked by the red dashed line in Figure 23). But this means, that
these edges cannot be responsible for any arrow, which would result in more than n
finite edges in P (1).

Together with the condition for the midpoints it follows that d(t(x
(1)
k ), t(xi+1)) < 3ε.

But in fact, this distance cannot be greater than ε or else D2 cannot be immersed in
P̂ (1). This is true because either H2 or H3 (from the definition of D2) only goes through
edges, that are fixed by the inductive condition and each of these edges is far enough
from any other edge (except the adjacent edges of course). This shows the induction for
this case.

8By completely we mean, that the whole area of D1 that is adjacent to Hi and Hi+1 lies in the same
component.
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Part 4: At last, we show that this inductive argument can even be continued if D1

goes through one of the edges x(1)j of P (1). Then, this edge also has to be responsible
for an arrow and again m(x

(1)
j ) has to be at maximum ε away from the midpoint of the

edge of P corresponding to that arrow. Let us first assume that D1 goes through that
edge exactly twice. Then the situation is as depicted in Figure 24 and there are two
possibilities.

Case 1: x(1)j is not responsible for the next arrow, i.e. the arrow corresponding to xi+1.
This is the case, if x(1)i is the blue line in Figure 24. For a similar reason as before,
one endpoint of x(1)j has to be the same as one endpoint of x(1)i (compare Figure 23).
So s(x(1)j ) and t(x

(1)
i ) are actually the same. But this just means, that the inductive

argument can be continued on the other side of x(1)j .

Case 2: x(1)j is responsible for the next arrow. This is the case, if x(1)i is the red line in
Figure 24. But then the inductive argument can also be continued, because the next
vertex9 is relative to D1 at the correct position. To see this, we can look at one of the
red dashed lines. We see that the position, relative to D1 of the next vertex is 2 times
this line from the previous vertex. Together with the fact that d(m(x

(1)
j ),m(xi+1)) < ε

we get that the distance of this next vertex to t(xi+1) is smaller than 3ε. Again with D2

we get, that this distance is smaller than ε.

So this inductive argument tells us only the position of these vertices relative to D1

embedded in P (1). Neither does it tell us their real position nor the connections between
these vertices. But before we tackle this problem, we take a look at the case, where D1

goes through that edge more than twice and show that nothing of relevance can happen
there.

For each area in P (1) between two such connected components, that does not contain
m(x

(1)
j ), there has to be a vertex near x(1)j or else the next arrow would also be realized

by x(1)j . We can assume that starting from such an area, the next arrow starts after going
through x(1)j , or else the fact that D1 goes through x(1)j one more time has no relevance
for the above argumentation (Figure 25 depicts this situation).

But then, on the other side of x(1)j , there also has to be a vertex, so the situation is as
depicted in Figure 26. However, the blue edge has to be connected to the blue point by
a series of edges not already present in Figure 26 (see Figure 27). But then the part of
D1, lying between the spikes in the middle cannot be connected to the rest of D1. This
argument is shown in Figure 28 for the case, that there is an odd number of these red
spikes. The blue parts are only connected to each other, so D1 cannot leave the area
between them. But this means, that D1 can go through x(1)j at maximum three times.

9That means the vertex that lies between the arrow for which x
(1)
j is responsible for and the next

arrow alongside D1.
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D1

Figure 25: The situation, if there is no other arrow on the other side of x(1)j . In this case,
there can only be a small hole on the other side and we can count this as only
one crossing.

• • •

• • •

Figure 26: Between each two parts of D1 there has to be a vertex relatively close to x(1)i ,
except for the part close to m(x

(1)
i ). Because each vertex is the endpoint of

exactly two edges we get these displayed spikes.
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Figure 27: The blue edge and blue vertex in Figure 26 have to be connected by a series
of edges not already present in Figure 26. If this would not be the case, the
situation will always be similar to the one displayed here. But then there is a
spike in the interior of P (1). Note that the blue lines only describe that there
are some edges joining these vertices, not how many there are.

• • • • • •

• • •• • •

Figure 28: If there are more than 3 crossings, some part of the interior cannot be con-
nected to the rest. Displayed here is the case for an odd number of spikes.
For an even number, the same holds, but the disconnected area lies between
only two spikes (instead of three as displayed here).
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A

B

C

→

C

A

B

Figure 29: The isomorphism from P̂ (1) to another P̂ (2) for which D1 goes through none
of the edges x(2)i . This transformation replaces the black edge with the brown
one. So the number of edges stays the same, but the order of these edges
changes.

Because the point of symmetry has to be in the interior of P (1), it follows that D1 cannot
go through x(1)j exactly three times.

At last, we show, that there is another PSI-polygon P (2) ∈ Fi-Chn, such that D1 lies in
the interior of P (2) and such that P̂ (1) and P̂ (2) are isomorphic as translation surfaces.
We construct P (2) by taking D1 and arranging vertices around it at the position we
know from P (1). Then each of these vertices is at maximum ε away from one vertex of P
and we connect these vertices of P (2) the same way they are connected around P . Then
we get P (2) ∈ Bε(P ). It remains to show, that the corresponding translation surfaces
are isomorphic. The isomorphism is clear on D1 ⊆ P (1) and the parts of P (1) between
D1 and ∂P (1), that belong to one of the arrows, for which D1 does not go through the
corresponding edge. For the other edges, the isomorphism is sketched in Figure 29. This
concludes the proof.

We can now reap what we sowed and show that F̂i-Chn is a complex manifold.

Theorem 5.16. Let P ∈ Fi-Chn and ε ∈ R+ be as above. Then the map

Ψ: B̂ε(P )→ Cn, P̂ (1) 7→

s(x
(1)
1 )
...

s(x
(1)
n )


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is a homeomorphism onto its open image and therefore F̂i-Chn is an n-dimensional
complex manifold.

Proof. • well-defined: We have to check, that there are no two PSI-polygons in
Bε(P ), such that the translation surfaces arising from these polygons are isomor-
phic. But the setD1 as defined above lies in the interior of each such polygon. So let
P (1) and P (2) be two different PSI-polygons in Bε(P ). Then there is i ∈ {1, . . . , n}
such that s(x(1)i ) 6= s(x

(2)
i ). W.l.o.g let d(D1, s(x

(1)
i )) ≤ d(D1, s(x

(2)
i )). But then we

can fix a line segment in C going from the point in D1 closest to s(x(1)i ) to s(x(1)i ).
Again for similar reasons as in the last proof, D1 together with this line segment
can be immersed in P̂ (2). But these sets cannot be immersed in P̂ (1) which shows
that these translation surfaces are not isomorphic.

• injective: As for Re-Chδ a PSI-polygon is uniquely given by the above coordinates
so the map is injective.

• continuous: Let P (i), P (∞) ∈ Bε(P ) be PSI-polygons, such that (P̂ (i))i∈N converges
to P̂ (∞). If we assume that (Ψ(P̂ (i)))i∈N does not converge to Ψ(P̂ (∞)) there is
j ∈ {1, . . . , n} such that (s(x

(i)
j ))i∈N does not converge to s(x(∞)

j ). But then there
is ξ ∈ R+ such that s(x(i)j ) /∈ Bξ(s(x

(∞)
j )) for infinitely many i ∈ N. Of course

ξ < ε. Similar to before, we can create a set D2 but for the polygon P (∞) instead of
P and with H2 and H3 ranging between ξ and ε instead of ε and 2ε. As before, D2

can be immersed in P̂ (∞), but not in infinitely many P̂ (i), which is a contradiction.

• open: Again this follows directly from Theorem 4.18.

• image open: The image is exactly×n

i=1
Bε(s(xi)) which is open in Cn.

Remark 5.17. Similar to Theorem 5.4 and Remark 5.10, we can combine this family
with the previous families. For some of these combinations, it might be necessary to fix
a path which lies in the interior of each such polygon (compare Section 6.5).
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6 Strong immersive topology

6.1 Motivation

In this last section, we ultimately want to construct an infinite-dimensional complex
family in Section 6.5. To do this, we first construct a topology which is slightly stronger
than the immersive topology and which we will call the strong immersive topology. In
Section 6.3 and Section 6.4 we will then explore some properties of this topology.

Before we start to define the topology we want to give a motivation for why a stronger
topology onM might be more suitable in some cases. For this, we give a few examples
of sequences inM which converge in the immersive topology.

Example 6.1. Let P again be the PSI-polygon from Figure 2 which we used to construct
the Chamanara surface. Let P (n) be the same PSI-polygon but with t(xn) shifted to
the point (1

2
, 4
3
) and t(x′n) accordingly. See Figure 30 for the first three PSI-polygons

in this sequence. Of course, the interior of each P (n) ⊆ C is also a translation surface
as an open subset of C. This sequence then converges to the unit square (0, 1)2 in the
immersive topology. This can be easily seen by applying Theorem 3.12: Each subset
of (0, 1)2 can be immersed in each of the larger sets (P (n))◦. For the second part of
Theorem 3.12 let Q ∈ M̃ be a simply connected translation surface which can be
embedded in infinitely many P (n). Then the embedding cannot contain a part which
is a subset of one of the additional “spikes”, i.e. the parts of P (n) \ (0, 1)2. This holds
because the set xn \ {s(xn), t(xn)} ⊆ (0, 1) × {1} is only contained in the interior of
P (n) and P (n−1) and not in the interior of any other P (m). Therefore the image of this
embedding of Q is a subset of (0, 1)2 and can therefore also be embedded in this limit
surface.

P (1) P (2) P (3)

Figure 30: The first 3 elements of the sequence (P (n))n∈N converging to (0, 1)2. This
sequence converges because for each Q, which can be embedded in infinitely
many P (n), the image of the embedding is a subset of (0, 1)2.
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P (1) P (2) P (3)

Figure 31: In contrary to Example 6.1, the sequence (P (n))n∈N of which the first 3 ele-
ments are depicted here does not converge to P from Figure 2. This is true
because each compact D ⊆ P containing (1

2
, 2
3
) cannot be immersed in any

P (n).

This is a general behavior of the immersive topology. A graphical intuition of this is
that the topology cannot observe something being added to a translation surface, if
the connection to this added part is arbitrarily small. But the topology is sensitive if
something is deleted instead. For example, if the vertices in Example 6.1 are shifted to
the point (1

2
, 2
3
) instead of (1

2
, 4
3
) (see Figure 31) the sequence does not converge anymore,

becauseD = [ 1
10
, 9
10

]2 can be immersed in (0, 1)2 but not in any of those P (n). The general
reasoning here is that this sequence instead converges to the polygon in Figure 32a where
the lines from (0, 0) to (1

2
, 1
3
) and from (1

2
, 2
3
) to (1, 1) are removed from the unit square.

For the sequence from Example 6.1 the intuitive limit of this sequence would be the one
depicted in Figure 32b, where the line from (1

2
,−1

3
) to (0, 0) and the line from (1, 1) to

(1
2
, 4
3
) is added to the unit square. But this set is not a translation surface anymore. In

the immersive topology this sequence then converges to the next similar set which is a
translation surface. This describes the main difference we want to achieve by introducing
a stronger topology, namely that sequences of this type do not converge at all.

This example can also be varied in different ways. One variation can be achieved by
exchanging the upper half of the spike in Example 6.1 by a copy of the open upper
half-plane. This leads to a sequence of translation surfaces of infinite area converging to
a translation surface of area 1.

The other variation can be achieved by looking at the corresponding translation surfaces
P̂ (n) and P̂ constructed out of the PSI-polygons introduced in Example 6.1 instead of
the PSI-polygons themselves. Similarly to Theorem 4.18, we see that this sequence also
converges. The reasoning here is very similar to the one in Example 6.1: Each subset
D ⊆ P̃ homeomorphic to a closed disc only goes through a finite number of edges and for
almost all P (n) these edges are the same as in P . The same follows for each path γ in any
Q which can be embedded in infinitely many P̃ (n) (compare the proof of Theorem 4.18).
But when we try to assign complex coordinates in co(C)2 to these polygons in a similar
way as we did in Theorem 5.9 for real coordinates, the image of this sequence does not
converge anymore. So this coordinate function would not be continuous. In Lemma 6.22
we will see that (with the help of some additional restrictions on the PSI-polygons) this
problem will be fixed by the stronger topology.
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(a) The limit of the sequence which
is depicted in Figure 31. The red
lines depict points removed from
the square.

(b) An intuitive limit of the sequence
which is depicted in Figure 30.
The blue lines depict points added
to the square.

Figure 32: A depiction of the limits of the two previous sequences. The sequence depicted
in Figure 31 does not converge to the square because it converges to the
surface shown on the left. The picture on the right shows an intuitive limit of
the sequence which is depicted in Figure 30. But this set is not a translation
surface.

Before we define the topology we want to recall Example 5.6. There we have seen
that there are sequences of finite translation surfaces in M of genus g, converging to
a finite translation surface of genus g − 1 in the immersive topology. This is also an
indication that a slightly stronger topology is desirable in which this behavior is not
possible anymore. We will not investigate this phenomenon that much, because most of
the translation surfaces which we consider have infinite genus. But the general idea of
the strong immersive topology can be derived from this example which we will examine
further in the next section.

6.2 Definition

The basic idea of the strong immersive topology comes from the following observation:
Let us again take a look at the sequence (P̂

(m)
2 )m∈N as defined in Example 5.6. This

converges to P̂2 in the immersive topology. As mentioned the genus of P̂ (m)
2 is 2 for each

m ∈ N and the genus of P̂2 is 1. But we can observe that these translation surfaces
are very different metric spaces, although they are very similar from the viewpoint of
immersions. To see this let ε ∈ R+ be sufficiently small (e.g. smaller than 1

100
). We can

then look at the points a = (1
2
, 1− ε) and b = (1

2
, ε). The distance of these points is 2ε

in P̂ (m)
2 because they are connected via the additional edge xins. But the distance in P̂2

is much larger because (1
2
, 1) and (1

2
, 0) correspond to two different singularities of P̂ (2).
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So the distance of a and b is slightly larger than the distance of these singularities which
is 1

2
. This is independent of m. The main idea will be to also enforce convergence as

metric spaces. One topology often used for sets of metric spaces is the Gromov-Hausdorff
topology which is based on the Gromov-Hausdorff metric10. But this metric is mostly
used for compact (or at least for locally compact) metric spaces. Instead, we will use
a slight variation of the topology induced by this metric and additionally adapt it in
such a way, that it is compatible with the translation structure. To do this the following
definitions will come to help.

Remark 6.2. Let X be a translation surface and γ : [0, 1] → X a path. Then there is
a natural corresponding path .

γ : [0, 1] → C with .
γ(0) = 0. This path can be obtained in

different ways. One way is by analytic continuation. Another one is by looking at the
path devX̃(γ̃) where γ̃ is a lift of γ and translating this path such that it starts at 0. If
Im(γ) is contained in a closed simply-connected set D there is also a third way, namely
by taking γ(0) as the basepoint of X and defining .

γ as the composition of γ with the
unique immersion of D into C.
In the case of a geodesic path, this construction agrees with the definition of the holonomy
vector.

Definition 6.3. Let X and Y be translation surfaces, γ1 : [0, 1]→ X and γ2 : [0, 1]→ Y
be paths in X and Y and ε ∈ R+. Then γ1 and γ2 will be called ε-similar if

d (
.
γ1(a),

.
γ2(a)) < ε ∀a ∈ [0, 1]

and if
|l(γ1)− l(γ2)| < ε.

For the Gromov-Hausdorff metric ε-approximations (sometimes called ε-isometries as
in [BBI01]) are often used. For this metric, the existence of such an ε-approximation
between two metric spaces implies that the Gromov-Hausdorff distance of these spaces
is smaller than 2ε. We will take a similar approach but define a more strict form of
ε-approximations, which is compatible with the translation structure.

Definition 6.4. Let (X, oX), (Y, oY ) be translation surfaces and ε ∈ R+. A map
ϕ : X → Y is called ε-translation approximation or often just ε-approximation if all
of the following conditions hold:

(a) ϕ(oX) = oY .

(b) Im(ϕ) is ε-dense in Y , i.e. for each y ∈ Y there is an x ∈ X with d(ϕ(x), y) < ε.

(c) For each x1, x2 ∈ X and each shortest path γ1 : [0, 1] → X from x1 to x2 there is
a path γ2 : [0, 1]→ Y from ϕ(x1) to ϕ(x2) which is ε-similar to γ1.

10For a definition and further information see e.g. [BBI01].
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(d) For each x1, x2 ∈ X and each shortest path γ2 : [0, 1] → Y from ϕ(x1) to ϕ(x2)
there is a path γ1 : [0, 1]→ X from x1 to x2 which is ε-similar to γ2.

Because the conditions (c) and (d) hold for all shortest paths, they imply that for each
x1, x2 ∈ X it holds that

|d(x1, x2)− d(ϕ(x1), ϕ(x2))| < ε.

If X and Y are translation surfaces and Φ: X → Y is a translation isomorphism then
Φ is also an ε-approximation for each ε ∈ R+. In addition, if Z is another translation
surface and ϕ : Y → Z is an ε-approximation for some ε ∈ R+ then ϕ ◦ Φ: X → Z
is an ε-approximation as well. Therefore for two isomorphism classes X, Y ∈ M the
existence of an ε-approximation is independent of a chosen representative. As before we
will mostly make no difference between a translation surface and its isomorphism class
and just identify X, Y ∈M with one of its representatives.

At last, this allows us to define the strong immersive topology:

Definition 6.5. The strong immersive topology onM is the coarsest topology onM,
which is finer than the immersive topology and such that all sets of the form

∆ε(X) := {Y ∈M | ∃ξ-approximation ϕ : X → Y for a ξ ∈ R+, ξ < ε}

for X ∈M and ε ∈ R+ are open.

6.3 Some technical statements

Before we can start examining and using the strong immersive topology we have to prove
some rather technical prerequisites about ε-similar paths and ε-approximations. This
section is dedicated to this task. The statements we prove in this section will all be used
at later stages of Section 6.

A reader not interested in those technical details may as well skip to Section 6.4 and
look up those statements when they are needed.

At first, we show that being ε-similar behaves well under concatenation of paths.

Lemma 6.6. Let X(1) be a translation surface and γ(1)1 , γ
(1)
2 : [0, 1]→ X(1) be two paths

such that γ(1)1 (1) = γ
(1)
2 (0). In addition, let X(2) be another translation surface and

γ
(2)
1 , γ

(2)
2 : [0, 1]→ X(2) be two paths such that γ(2)1 (1) = γ

(2)
2 (0).

If there are ε1, ε2 ∈ R+ such that γ(1)1 and γ(2)1 are ε1-similar and such that γ(1)2 and γ(2)2

are ε2-similar then γ
(1)
1 ∗ γ

(1)
2 and γ(2)1 ∗ γ

(2)
2 are (ε1 + ε2)-similar, where ∗ denotes the

concatenation of paths.
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Proof. Because γ(1)1 and γ(2)1 are ε1-similar it holds that

d(
.
γ
(1)
1 (1),

.
γ
(2)
1 (1)) < ε1.

Then
.

(γ
(1)
1 ∗ γ

(1)
2 ) is obtained by translating .

γ
(1)
2 such that it starts at .

γ
(1)
1 (1). This is

done by adding the vector .
γ
(1)
1 (1) ∈ C. The same holds for

.
(γ

(2)
1 ∗ γ

(2)
2 ).

But then for a ∈ [1
2
, 1]

d(
.

(γ
(1)
1 ∗ γ

(1)
2 )(a),

.
(γ

(2)
1 ∗ γ

(2)
2 )(a))

= d(
.
γ
(1)
2 (2a− 1) +

.
γ
(1)
1 (1),

.
γ
(2)
2 (2a− 1) +

.
γ
(2)
1 (1)))

≤ d(
.
γ
(1)
2 (2a− 1),

.
γ
(2)
2 (2a− 1)) + d(

.
γ
(1)
1 (1),

.
γ
(2)
1 (1)) < ε1 + ε2.

Also

|l(γ(1)1 ∗ γ
(1)
2 )− l(γ(2)1 ∗ γ

(2)
2 )|

= |l(γ(1)1 ) + l(γ
(1)
2 )− l(γ(2)1 )− l(γ(2)2 )|

≤ |l(γ(1)1 )− l(γ(2)1 )|+ |l(γ(1)2 )− l(γ(2)2 )| < ε1 + ε2.

In addition the composition of two approximations is again an approximation:

Lemma 6.7. Let X(1), X(2), X(3) ∈ M be translation surfaces, ε(1), ε(2) ∈ R+ and
ϕ(1) : X(1) → X(2) an ε(1)-approximation and ϕ(2) : X(2) → X(3) an ε(2)-approximation.
Then ϕ(2) ◦ ϕ(1) : X(1) → X(3) is an (ε(1) + 2ε(2))-approximation.

Proof. By definition we have ϕ(2) ◦ ϕ(1)(oX(1)) = oX(3) .

If γ(1) : [0, 1] → X(1) and γ(2) : [0, 1] → X(2) are ε(1)-similar and γ(2) : [0, 1] → X(2) and
γ(3) : [0, 1] → X(3) are ε(2)-similar, then γ(1) : [0, 1] → X(1) and γ(3) : [0, 1] → X(3) are
(ε(1) + ε(2))-similar. This shows the conditions (c) and (d) of Definition 6.4.

Now let x(3) ∈ X(3). Then there is x(2) ∈ X(2) with d(ϕ(2)(x(2)), x(3)) < ε(2). In addition
there is x(1) ∈ X(1) with d(ϕ(1)(x(1)), x(2)) < ε(1). Then

d(ϕ(2) ◦ ϕ(1)(x(1)), x(3))

≤ d(ϕ(2)(ϕ(1)(x(1))), ϕ(2)(x(2))) + d(ϕ(2)(x(2)), x(3))

< (ε(2) + d(ϕ(1)(x(1)), x(2))) + ε(2)

< 2ε(2) + ε(1),

so condition (b) holds.
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In the definition of an ε-approximation, it is only required that such an ε-similar path
exists for each shortest path. This can be expanded to include non-shortest paths by
subdividing such a path into short subpaths which are ε-similar to shortest paths. This
is the content of the next lemma and is only considered in the context of PSI-polygons.

Lemma 6.8. Let P (1) and P (2) be PSI-polygons, ϕ : P̂ (1) → P̂ (2) a ξ-approximation
for some ξ ∈ R+, γ(1) : [0, 1] → (P (1))◦ a path of length l and δ ∈ R+ such that
d(∂P (1), Im(γ(1))) > δ. Then there is a path γ(2) : [0, 1] → P̂ (2) from ϕ(γ̂(1)(0)) to
ϕ(γ̂(1)(1)) which is

(⌈
l
δ

⌉
· ξ + δ

)
-similar to γ̂(1).

Proof. Let a1 ∈ [0, 1] be such that γ(1)([0, a1]) has length δ. Then d(γ̂(1)(0), γ̂(1)(a1)) ≤ δ
and the shortest path connecting these two points lies in the interior of P (1). We call
this shortest path γ(1)sh,1. Then γ(1)sh,1 is δ-similar to γ(1)([0, a1]) and in addition .

γ
(1)
sh,1(1) =.

γ(1)(a1) because they both lie in (P (1))◦ which is simply connected. We now subdivide
γ(1) into finitely many segments of length smaller than δ. Similar to Lemma 6.6 we get
a path γ(1)sh : [0, 1] → P̂ (1) which is δ-similar11 to γ(1) and which goes through all of the
start- and endpoints of these segments and consecutively connects these via shortest
paths.

Let a1 ∈ [0, 1] be such that γ(1)(a1) = γ
(1)
sh (a1) is the endpoint of the first segment. Then

there is a path γ
(2)
sh,1 : [0, 1] → P̂ (2) from ϕ(γ

(1)
sh (0)) to ϕ(γ

(1)
sh (a1)) which is ξ-similar to

γ
(1)
sh |[0,a1].

Now let a2 ∈ [0, 1] be such that γ(1)(a2) is the endpoint of the second segment. Then
a ξ-similar path γ(2)sh,2 can again be found. With Lemma 6.6 it follows inductively that
there is a path γ

(2)
sh which is (ξ · m)-similar to γ

(1)
sh , where m is the number of these

segments. But because we can choose the above subdivision in a way that each such
segment (except the last one) has length δ there are

⌈
l
δ

⌉
many of them.

Lemma 6.9. Let P (1), P (2) be PSI-polygons, ε ∈ R+, γ(1) : [0, 1] → (P (1))◦ a path of
length l and δ ∈ R+, δ < ε such that d(∂P (1), Im(γ(1))) > δ. If there is a ξ-approximation
ϕ : P̂ (1) → P̂ (2) for

ξ ≤ δε− δ2

2l

then there is a path γ(2) : [0, 1]→ P̂ (2) from ϕ(γ̂(1)(0)) to ϕ(γ̂(1)(1)) which is ε-similar to
γ̂(1).

Proof. This is a direct consequence of Lemma 6.8.

11d(
.
γ
(1)
1 (1),

.
γ
(2)
1 (1)) in Lemma 6.6 is actually zero in this case.
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In the proof of Lemma 5.15, we have defined the set D1 of all points of distance more
than ε to ∂P . For later use, we now fix a more general definition.

Definition 6.10. Let P be a PSI-polygon and ε ∈ R+. Then

IPε := {x ∈ P | d(x, ∂P ) ≥ ε}.

Similar to our previous approach for a PSI-polygon P (n) we denote the corresponding
set by IP(n)

ε .

This set is mostly used because an appropriate approximation has to map it into a
slightly larger version of itself which is the content of the next lemma:

Lemma 6.11. Let P (1) and P (2) be two PSI-polygons, ε ∈ R+ and

l := sup{d
IP

(1)
ε

(x, oP ) | x ∈ IP(1)
ε },

where d
IP

(1)
ε

denotes the metric of IP(1)
ε , i.e. the distance measured by the length of shortest

paths lying in IP(1)
ε .

In addition let ϕ : P̂ (1) → P̂ (2) be an ε
8l
-approximation. If IP

(1)
2ε is connected and IP(1)

ε is

also a subset of (P (2))◦, then ϕ(ÎP2ε

(1)
) ⊆ ÎPε

(1)12.

Proof. This follows directly from Lemma 6.9 by setting δ = ε
2
and by taking a shortest

path for each x ∈ IP
(1)
2ε from oP (1) to x which lies in IP

(1)
2ε .

As a final observation in this section, we see that every point in P gets arbitrarily close
to IPε if we choose ε to be sufficiently small.

Lemma 6.12. Let P be a PSI-polygon and α ∈ R+. Then there is β ∈ R+ such that
P ⊆ Bα(IPβ).

Proof. Let us assume the opposite. Then there is a sequence (an)n∈N in ∂P with
d(an, IP 1

n
) > α for all n ∈ N. Because ∂P is compact it accumulates at a point a ∈ ∂P .

But then there is a point x ∈ P ◦ with d(x, a) < α. For this point x there is some N ∈ N
such that d(∂P, x) > 1

N
. This is a contradiction to d(an, IP 1

n
) > α for all n ∈ N because

a is an accumulation point of an.

12The set ÎPε
(1)

is the set of points in P̂ (1) corresponding to points in IP(1)
ε . But because IP(1)

ε ⊆ (P (2))◦,

ÎPε
(1)

can also be seen as a subset of P̂ (2).
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6.4 Properties of the strong immersive topology

Before we start using this topology we want to make sure that it behaves nicely. For this
let us first return to our examples and show that the defined sequences do not converge
anymore.

Example 6.13. Let (P (n))n∈N and P be the PSI-polygons defined in Example 6.1. Then
(again viewed as a translation surface) (P (n))n∈N does not converge to P in the strong
immersive topology13. This holds because a point in the middle of such a spike is more
than 1

6
away from each point in (0, 1)2 ⊆ P (n). But a small variation of Lemma 6.11

show that no point in such a spike lies in the image of an ε-approximation from P to
P (n) (for ε sufficiently small).

This argument still holds for the sequence (P̂ (n))n∈N and the translation surface P̂ and
shows that it does not converge as well. This behavior will be examined in a more
general case in Lemma 6.22.

Example 6.14. We return to the sequence (P̂
(m)
2 )m∈N and the translation surface

P̂2 ∈ M defined in Example 5.6. As we have seen, this sequence converges to P̂2 in
the immersive topology. But it does not converge in the strong immersive topology.
This follows again from Lemma 6.11: Recall that the points a and b introduced at the
beginning of Section 6.2 have distance larger than 1

2
in P̂2. More precisely, for a shortest

path γ connecting these two points, .γ leaves B 1
4
(0). But for a sufficiently small ε, an

ε-approximation has to map these points to two points which are very close to a and b.
But these points then have arbitrarily small distance in P̂ (m)

2 .

Again as mentioned in Section 3, to make the convergence of sequences a useful criterion a
topological space has to be at least first countable. This was the case for the immersive
topology which is even second countable. First countability still holds for the strong
immersive topology which is shown by the following proposition:

Proposition 6.15. The strong immersive topology onM is Hausdorff and first count-
able.

Proof. The strong immersive topology is still Hausdorff because it is finer than the
immersive topology which is Hausdorff.

For ε ∈ R+ an ε-approximation is also a δ-approximation for each δ ∈ R+, δ ≥ ε.
Therefore for a translation surface X ∈M it holds that ∆ε(X) ⊆ ∆δ(X).

13Therefore this sequence does not converge at all, because the immersive topology is Hausdorff and
therefore each sequence can have at most one limit.
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Now let B be a countable basis of the immersive topology. We claim that

B :=
{

∆ 1
n
(X) ∩ U | n ∈ N, U ∈ B

}
is a countable neighborhood basis of X. That B is countable follows directly from the
fact that B is countable.

To show that it is a neighborhood basis let Y ∈ M and ε ∈ R+ such that X ∈ ∆ε(Y ).
Then there is a ξ-approximation ϕ1 : Y → X with ξ < ε. Now let n ∈ N such that
1
n
< ε−ξ

2
. In addition let Z ∈ ∆ 1

n
(X) and ϕ2 : X → Z be a δ-approximation for some

δ < 1
n
. Then Lemma 6.7 shows that ϕ2 ◦ ϕ1 : Y → Z is a (ξ + 2δ)-approximation. But

because
ξ + 2δ < ξ +

2

n
< ξ + (ε− ξ) = ε

it holds that Z ∈ ∆ε(Y ). Therefore ∆ 1
n
(X) ⊆ ∆ε(Y ) holds.

We have defined the strong immersive topology by giving a subbasis. So each open set
can be written as a union of finite intersections of elements of this subbasis. This shows
that each open set containing X contains an open subset of the form

O :=
m⋂
i=0

∆εi(Yi) ∩ U

for some m ∈ N, εi ∈ R+, Yi ∈ M and U ⊆ M open in the immersive topology. In
addition O can be chosen in such a way that X ∈ O. But then the above argument tells
us that for each ∆εi(Yi) there is ∆ 1

n
(X) with ∆ 1

n
(X) ⊆ ∆εi(Yi) so the intersection of

these ∆ 1
n
(X) together with a suitable element of B is a subset of O and lies in B. This

shows that B is a countable neighborhood basis of X.

Finally, we will return to our main focus of translation surfaces constructed out of
PSI-polygons. Of course, the coordinate functions introduced in Section 5 will still be
continuous when we use the strong immersive topology onM. In Section 5 we always
used Theorem 4.18 to show that they are open. So in the best case, this Theorem still
holds if we use the strong immersive topology instead. As it turns out, this is indeed
the case and is a clear indication that the strong immersive topology is not too strong
for our case.

Theorem 6.16. If (P (n), (x
(n)
m )m∈N)n∈N converges to (P, (xm)m∈N), then (P̂ (n))n∈N con-

verges to P̂ in the strong immersive topology.

Proof. Theorem 4.18 already shows that the sequence converges in the immersive topol-
ogy. It remains to show that for each ∆ε1(P̂

′) with P̂ ∈ ∆ε1(P̂
′) it follows that almost

all P̂ (n) lie in ∆ε1(P̂
′). From Lemma 6.7 it follows that there is ε2 ∈ R+ such that
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∆ε2(P̂ ) ⊆ ∆ε1(P̂
′) (compare the proof of Proposition 6.15). In addition for ξ ∈ R+ with

ξ < ε2 the set
{X ∈M | ∃ξ-approximation ϕ : P̂ → X}

is a subset of ∆ε2(P̂ ). So it is sufficient to show that for any ξ ∈ R+ there exists an
ε ∈ R+ such that there is a ξ-approximation from P̂ to P̂ (n) for each n > Nε.

So let ξ ∈ R+ and let δ ∈ R+ such that δ < ξ
80

and there is no edge in P with length
exactly 2δ. Then we choose ε ∈ R+ to be sufficiently small, i.e. small enough such that

8
ε · l ·m
linf

+ 36δ + 32ε < ξ

holds. For better readability, we will define the constants l,m and linf at a later point.
Please note that δ and ε are much smaller than actually needed. But by making it
smaller we have to put less thought into getting exact values for similar paths later in
the proof.

Additionally, ε should be small enough that

2ε < |2δ − l(xi)|

holds for each edge xi of P . This is possible because there is only a finite number of
edges of P which are longer than δ.

Now let D ∈ R+ such that P ⊆ BD
2

(oP ) ⊆ C. Then ε should also fulfill

ε <
δ2

4D
,

which is equivalent to

D

(
1− δ − 4ε

δ

)
< δ.

Lastly, ε should be small enough such that Lemma 4.15 still holds for 3ε (for each long
enough edge of P as well as P (n)), i.e. the ε which we use here is smaller than one third
of the ε arising from Lemma 4.15. In the following n ∈ N is always chosen such that
n > Nε.

The map ϕ̂ : P̂ → P̂ (n) is given through definition of a map ϕ : P → P (n) defined as
follows (see also Figure 33):

(1) On IP4ε, ϕ is the identity.

(2) Each edge xi is mapped to x(n)i by the affine map which maps s(xi) to s(x(n)i ) and
t(xi) to t(x(n)i ).

(3) For each remaining point we chose a closest point x in ∂P and map this point to
ϕ(x) as defined in (2).
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(1)

(3)

(2)

Figure 33: A sketch of the subdivision of P̂ used to define ϕ. The blue part (1) is mapped
via the identity to P̂ (n). The edges marked in black (2) are mapped to the
corresponding edges of P̂ (n) and stretched accordingly. The orange area (3)
is mapped via the arrows to the edges.

Then ϕ(oP ) = oP (n) . In addition Im(ϕ) = IP4ε ∪∂P (n). But in P (n) each point either lies
in IP4ε or has distance smaller than 5ε to ∂P (n), so the image is 5ε-dense in P (n). So ϕ̂
fulfills the condition (a) and (b) of Definition 6.4.

We now show that ϕ̂ fulfills the conditions (c) and (d). We begin showing this for two
points q1, q2 ∈ IP4ε. Let γ̂ : [0, 1] → P̂ be a shortest path from q1 to q2. Again there
is a corresponding map γ : [0, 1] → P (compare Remark 4.10). We now want to find a
ξ-similar path from q1 to q2 in P̂ (n). This may seem trivial at first but is in fact rather
complicated, because γ may cross any number of edges of P . In addition, the positioning
of these edges can be very different in P (n) if the length of these edges is smaller than
ε. This makes it necessary to distinguish two cases: In the first, we look at the case if
γ crosses only edges of a certain length. Then γ can cross ∂P only a finite number of
times. In the second one, we look at the case if γ comes close to a vertex. In this case,
we can use the corresponding singularity of P̂ (n) as a shortcut. At this point, we want
to call to mind that Proposition 4.8 shows that P̂ has only one singularity, which we
will call y.

Case 1: d(γ̂(a), y) > δ for all a ∈ [0, 1].
Then γ̂ can only cross a finite number of edges, namely those of length greater than 2δ.
Each edge in P (n) can at maximum be 2ε longer or shorter than the corresponding edge
in P . The above condition for ε implies that l(xi)+2ε < 2δ for each edge xi of P shorter
than 2δ and l(xi) − 2ε > 2δ for each edge xi of P longer than 2δ. This shows that the
edges of P (n) which are longer than 2δ are exactly the same as the edges of P longer
than 2δ.

We now look at the set Γ of all paths in P and in each P (n) (for each n > Nε) which go
from one of the edges longer than 2δ to another one of those edges and which stay more
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xi

δ

Ai

3ε

1ε

Figure 34: Each path which starts at x(n)i at a point of distance greater than δ to the
endpoints of x(n)i , has to start in the green area. This holds because n > Nε.
In addition because Lemma 4.15 holds for 3ε, no edge of P (n) can intersect
the red area. So each path from such a point on x(n)i to another edge x(n)j has
to be longer than 2ε.

than δ away14 from each vertex. Then the set

{l(γ) | γ ∈ Γ}

is bounded from below by 2ε. This holds because each such path in P (n) which goes
from x

(n)
i to x(n)j starts at maximum ε away from the set Ai of Lemma 4.15 (belonging

to the edge xi of P ). But Lemma 4.15 shows that x(n)j has distance greater than 3ε
from this set. See Figure 34 for an illustration of this situation. We denote by linf the
infimum of these lengths. Then γ̂ can cross an edge xi at maximum l(xi)

linf
times or else

it would be shorter to go along this edge instead of going through P ◦ to x′i. Together it
follows that γ̂ can cross ∂̂P 15 a maximum of

l ·m
linf

times, where m is the number of edges of P of length greater than 2δ and l is the length
of the longest edge of P plus 2ε.

Next, we look at one of the segments of γ, i.e. a part of γ̂ going from one edge xi to
another edge xj which crosses no edge16. We call this segment γseg. Our next goal is
to construct a 4ε-similar path to γseg in P (n). The following steps are also depicted in
Figure 35. No edge of P except xi and xj intersects the set

B2ε(Im(γseg)) ⊆ C.

14With the distance measured in P , or P (n) respectively.
15By ∂̂P we denote the subset of P̂ corresponding to the edges of P .
16The start- or endpoint of this part can also be the start- or endpoint of γ̂ instead of a point on an

edge, but then the following arguments still hold.
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xj

xi

γseg

x
(n)
j

x
(n)
i q

B2ε(γseg)Bε(γseg)

(a) The path γseg in P . The blue
dashed lines represent the posi-
tions of the corresponding edges in
P (n).

xj

xi

x
(n)
j

x
(n)
i q

(b) A 4ε-similar path to γseg in P (n).
The blue dashed lines represent
the positions of the corresponding
edges in P .

Figure 35: For each shortest path γseg connecting two edges of P , which has distance
greater than δ to each vertex, a 4ε-similar path in P (n) can be constructed.
No edge of P except the two displayed ones can intersect the orange area
(B2ε(γseg)). Therefore no edge of P (n) except the two displayed ones can
intersect the red area (Bε(γseg)).
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This holds because of Lemma 4.15 and the fact that 2ε < δ: No vertex can lie in
B2ε(Im(γseg)) and no edge can intersect γseg. In addition because of Lemma 4.15 no other
edge can intersect B3ε(γseg(0)) and B3ε(γseg(1)), so no edge can intersect B2ε(Im(γseg))
because γseg is a straight line segment.

But then no other edge of P (n) intersects the set

Bε(Im(γseg)) ⊆ C,

because each edge cannot be shifted more than ε compared to P . Now let q be a point
on x(n)i with distance smaller than ε to γseg(0). Then there is a 4ε-similar path in P (n)

from q to a point in x(n)j with distance smaller than ε to γseg(1). This path is found by
going from q to the nearest point of Im(γseg)∩P (n) then following γseg as long as possible
and then going to the nearest point on x(n)j , compare Figure 35.

By concatenating all of these parts we get a path in P̂ (n) which is

4ε · l ·m
linf

< ξ

similar to γ̂ (compare Lemma 6.6). For the same reasons, for each shortest path γ̂(n) in
P̂ (n) connecting ϕ̂(q1) and ϕ̂(q2) such that the image of γ̂(n) has distance more than δ
from the singularity of P̂ (n), a ξ-similar path in P̂ connecting these two points can be
constructed.

Case 2: d(γ̂(a), y) ≤ δ for an a ∈ [0, 1].
Then there is an edge xi, such that d(γ(a), s(xi)) ≤ δ, but this distance is measured in
P̂ , i.e. there is a path of length smaller than δ in P̂ such that the corresponding map in
P connects γ(a) and s(xi)17.

Let a1 denote the first such a and a2 the last. Then, because P̂ has only one singularity
it follows that d(γ̂(a1), γ̂(a2)) ≤ 2δ and therefore γ̂([a1, a2]) is shorter than 2δ. We can
then construct a path in P̂ which is the same as γ̂ until it reaches γ̂(a1) and then goes
directly (i.e. on a shortest path) to the singularity, from where it goes directly to γ̂(a2).
After that, it is again the same as γ̂. This is not a viable path in P̂ because it has the
singularity in its image. But it can easily be adjusted to an arbitrarily similar path,
which is also a path in P̂ . This path γ̂1 is then 4δ-similar to γ̂.

We can then assume that γ̂1 does not cross an edge xj at a point with distance smaller
than δ to one of the endpoints of xj. Because if it did, this intersection point has to be
closer than δ to s(xi), because a1 is the first such a. Then we can change γ̂1 to go along
this edge to the singularity. By doing this twice (once for the part before γ̂1 hits the
singularity and once for the part after) we get a new path for which the assumption is
true and which is still 8δ-similar to γ̂.
17Instead of a vertex s(xi), this could also be an accumulation point of vertices. But the argument

stays the same, because there are vertices arbitrarily close to this accumulation point.
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δ

xi

γ1
γ2 = v

xjb

γ(a1)
s(xi)

Figure 36: A depiction of the situation if γ1 goes through γ(a1) after b. Then a similar
path γ2 can be constructed, such that the part between b and s(xi) is a
straight line segment, called v.

Let now b denote the first point in Im(γ1) such that the part of γ1 between b and s(xi)
is connected, i.e. does not go through an edge. So either b = γ(0) or b lies on an edge xj
and has distance more than δ to the endpoints of that edge. If γ1 goes through b after
it has reached γ(a1) then the part of γ1 between b and s(xi) is a straight line segment,
because this part is a shortest path in P connecting these two points and there is no
other vertex closer to b than s(xi). We then set γ2 = γ1.

So let us now take a look at the case if γ1 goes through b before it has reached γ(a1).
This case is also depicted in Figure 36. Then the part of γ1 between b and γ(a1) is
also a straight line segment with distance more than δ to each singularity. So there is a
straight line segment connecting b and s(xi) and we denote by γ2 the path which is the
same as γ1, but with the part between b and s(xi) replaced by this line segment. Then
γ2 is 12δ-similar to γ. In the following the straight line segment connecting b and s(xi)
will be called v. In addition by g we denote the line which contains v. Please note that
for each x ∈ v with

d(x, s(xi)) > δ > D

(
1− δ − 4ε

δ

)
it still holds that d(x, s(xk)) > 4ε for each edge xk (this is just Thales’ theorem, see
Figure 37).

Up to this point, we have only modified our path in P . Let us now look at the situation
in P (n). Because of the assumption made in the second last paragraph, we can repeat
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δ

δ

xi

< D

xjb

< δ − 4ε

δ

Figure 37: Because the long green line is shorter than D, Thales’s theorem implies that
the red horizontal line is shorter than δ− 4ε. Therefore the 4ε-ball around x
(painted in black) lies completely in the orange area which contains no vertex
of P .

the construction as in case 1 up to the last edge xj that γ̂2 crosses before it reaches the
singularity. Therefore we get a

4
ε · l ·m
linf

+ 12δ

similar path up to a point b(n) ∈ x(n)j (or b(n) = γ(0) if no such edge exists) with distance
less than ε from b.

We now look at the straight line segment v(n) in C from b(n) to s(x(n)i ). If v(n) meets no
edge of P (n), then going along v(n) leads to a

4
ε · l ·m
linf

+ 12δ + 2ε

similar path in P (n) to s(x(n)i ).

We now look at the case where v(n) hits an edge x(n)k . If one endpoint of x(n)k lies in
B2ε(v) then this endpoint has to be at maximum δ away from s(xi) as we have seen in
Figure 37. We can then go to this endpoint instead of s(x(n)i ) and get an

ε · l ·m
linf

+ 18δ + 2ε

similar path in P (n) instead.
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ε
g v

v(n)
x
(n)
k

b

s(xi)

b(n)

s(x
(n)
i )

s
(n)
k

t
(n)
k

B2ε(v)

Figure 38: A depiction of the case, where an edge x(n)k intersects v(n), has no endpoint in
B2ε(v) and the endpoints of x(n)k are more than δ away from the intersection
point. Then because xk does not intersect v one of the points s(n)k and t

(n)
k

has to be on the purple line and therefore less than 3ε away from s(xi).

So let us look at the case if no endpoint of x(n)k lies in B2ε(v). Let us take a closer look at
how such an edge can be positioned. The following considerations are also depicted in
Figure 38. With Lemma 4.15 (or if b = γ(0) just with b ∈ IP4ε) it follows that no edge
of P (n) can intersect B2ε(b). Denote by s(n)k and t

(n)
k the first and last point at which

x
(n)
k hits B2ε(v). The edge xk does not intersect v. This leads to two options for the

positioning of the points s(n)k and t
(n)
k . One option is that they are both at a position

at maximum ε away from two points which are at the same side of g. The other one
is that they both are at a position at maximum ε away from two points which border
B2ε(s(xi)). Then at least one of these points has to be on the purple line in Figure 38.

But then this point is closer than 3ε to s(xi) and Lemma 4.15 tells us that it is closer
than δ to one of the endpoints of x(n)k

18. So again, as before we can go to this endpoint
of x(n)k instead of s(x(n)i ) and get a

4
ε · l ·m
linf

+ 16δ + 8ε

similar path.

The same procedure can be done for the part of γ2 from the singularity to the endpoint.
All in all we get a

8
ε · l ·m
linf

+ 32δ + 16ε < ξ

similar path in P (n). These steps can also be done for a shortest path in P (n) to construct
a similar path in P .

18No point of an edge x(n)k with distance more than δ to s(x(n)k ) and t(x(n)k ) can lie in B3ε(s(xi)).
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This shows that conditions (c) and (d) of a ξ-approximation are fulfilled for two points
of the form (1) of the above subdivision, i.e. for two points in IP4ε.

If one of these points is of the form (2), then these arguments still hold. If one of these
points (w.l.o.g. the startpoint) is of the form (3), then we can extend γ to start at the
closest point x in ∂P instead and repeat the same construction as before. This makes
the path up to 4ε longer so the resulting path is still

8
ε · l ·m
linf

+ 36δ + 24ε < ξ

similar. So if both points are of the form (3) we still get a

8
ε · l ·m
linf

+ 36δ + 32ε < ξ

similar path. All in all, we have shown that the conditions (c) and (d) of a ξ-approximation
are fulfilled by ϕ̂.

Remark 6.17. Theorem 6.16 tells us, that the strong immersive topology is not that
much stronger in the case of translation surfaces coming from PSI-polygons. But the
additional restrictions imposed through the strong immersive topology are a lot stricter
when we take translation surfaces of infinite area into account. Most prominently the
convergence of a sequence of translation surfaces in the immersive topology implies the
convergence of their universal covers. This is not the case for the strong immersive
topology.

In particular, if (P (n))n∈N is a sequence of PSI-polygons converging to another PSI-
polygon P this does not imply that (P̃ (n))n∈N converges to P̃ in the strong immersive
topology because a very small shift of one edge xi can shift the copy P×{xmi } an arbitrarily
high amount if m is large enough.

6.5 An infinite-dimensional complex family

At last, we want to use the strong immersive topology to construct even larger families
of infinite translation surfaces. Unfortunately, because of the behavior discovered in
Example 5.13, the converse of Theorem 6.16 is still not true. But we can help ourselves
by looking only at such PSI-polygons for which the convergence of the vertices to the
accumulation points still happens in a somewhat orderly manner. That means, that
the projection of these vertices to an appropriate 1-dimensional affine subspace strictly
converges to the accumulation point. This leads to an infinite-dimensional complex
family.

For this section let n ∈ N, y ∈ R2 \ B1(0), δ ∈ (0, 1
16

) and v1, v2 ∈ R2 be linearly
independent with length 1. In addition γ : [0, 1] → R2 is a path with γ(0) = 0 and
y = γ(1).
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Convention 6.18. For the 1-dimensional affine space A1 = y + 〈v1〉 we denote by
πv1 : R2 → A1 the orthogonal projection onto this space. Moreover there is a natural
ordering on A1 with y + v1 > y.

Definition 6.19. Co-Chn,δ(γ, v1, v2) is the set of PSI-polygons P of the following form
(compare Figure 39):

• oP = 0 ∈ C.

• P fulfills the δ-condition (compare Definition 5.7).

• γ([0, 1)) lies in the interior of P .

• There are exactly 2 accumulation points of the vertices of P and they are positioned
at y = γ(1) and y′.

• Each x ∈ R2 \ {y} with d(x, y) < 1 which lies (mathematically positive) between
v1 and v2 also lies in P . Or to be more precise, if x fulfills

det(x− y v1) ≥ 0 and det(x− y v2) ≤ 0,

then x ∈ P .

• B1(y) ∩ ∂P is connected and therefore (B1(y) ∩ ∂P ) \ {y} has two connected
components. One of these components, together with the one edge which lies
partially in this component and partially outside ofB1(y) will be called a converging
side. The two converging sides at y will be denoted by c1 and c2 and it should
hold that

det(x− y v1) < 0 and πv1(x) > y

for all x ∈ c1 and
det(x− y v2) > 0 and πv2(x) > y

for all x ∈ c2.

• Let xi and xi+1 be two adjacent edges in c1 such that xi+1 is closer to y (with the
distance measured on ∂P ) than xi. Then it should hold that

πv1(s(xi)) > πv1(s(xi+1)).

The same should hold for all edges in c2.

• P has exactly 2n edges which do not lie in any ci (or c′i). These are called finite
edges. The corresponding start- and endpoints of these edges will be called the
finite vertices.

̂Co-Chn,δ(γ, v1, v2) ⊆M is the set of isomorphism classes of translation surfaces arising
from polygons in Co-Chn,δ(γ, v1, v2).
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v1

v2

y

γ

B1(y)

c1

c2

Figure 39: An illustration of the conditions applied to a PSI-polygon in
Co-Chn,δ(γ, v1, v2). The red lines correspond to the finite edges, the
black lines to the edges in c1, and the green lines to the edges in c2. The
yellow area has to lie in the inside of such a PSI-polygon.

We often write v instead of v1 (v2) if the index is clear from the context. So for example
the map πv1 (πv2) can be written just as πv.

We have already seen many examples of PSI-polygons lying in such a Co-Chn,δ(γ, v1, v2).
In fact, all of the PSI-polygons we have considered in Section 5 lie in an appropriate
Co-Chn,δ(γ, v1, v2).

From now on, for P ∈ Co-Chn,δ(γ, v1, v2) let E be the set of all finite edges of P
together with the first 4 non-finite edges of each converging side. For the following
definition the edges of each such PSI-polygon are labeled in the same way as described
in Convention 5.12. The following situation is also illustrated in Figure 40.

Definition 6.20. Let ε ∈ R+ and P ∈ Co-Chn,δ(γ, v1, v2). Then the set Bε(P ) ⊆
Co-Chn,δ(γ, v1, v2) consists of PSI-polygons P (1) such that for each edge xi ∈ E it holds
that

d(s(xi), s(x
(1)
i )) < ε

and
d(t(xi), t(x

(1)
i )) < ε,

where the distance is measured in C.
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v1

y

ε > ε

D1

Figure 40: An illustration of the additional condition imposed on Bε(P ). Here the dis-
tance marked by the purple arrow must be greater than ε. The edges which
lie in E are marked in red. In addition, the set D1 used in the proof of
Lemma 6.21 is also depicted as the blue area.

In addition for those edges xi /∈ E which are adjacent to an edge in E it should hold
that

d(πv(s(xi)), πv(t(x
(1)
i ))) > ε

where the start of these edges lies farther away from the corresponding y or y′. Again
the set B̂ε(P ) ⊆M is the set of isomorphism classes of translation surfaces arising from
polygons in Bε(P ).

Again ε has to be sufficiently small to be of any use. So let P ∈ Co-Chn,δ(γ, v1, v2) and
δP ∈ R+ be such that

δP < d(xi, ∂P \ (xi ∪ xi−1 ∪ xi+1)) ∀xi ∈ E

where xi−1 and xi+1 are again the edges adjacent to xi. From now on let ε ∈ R+ be such
that ε < 1

16
δP .

In addition, for each non-finite edge xi ∈ E it should hold that

d(πv(s(xi)), πv(t(xi))) > 16ε

and
d(πv(s(xi)), s(xi)) > 16ε.

Additionally for each edge xi /∈ E which is adjacent to an edge in E it should hold
that

d(πv(s(xi)), πv(t(xi))) > 2ε.

The last condition guarantees that P ∈ Bε(P ).
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ε should also fulfill
ε < δd(xi, y)

for all xi ∈ E. At last, ε should fulfill the additional condition stated in the proof of
Lemma 5.15 (at the bottom of page 43) for each edge in E.

Now an analogue for Lemma 5.15 can be proven for Co-Chn,δ(γ, v1, v2).

Lemma 6.21. Let P ∈ Co-Chn,δ(γ, v1, v2) and ε ∈ R+ that fulfills the above conditions
for P . Then B̂ε(P ) is open in the immersive topology and therefore also open in the
strong immersive topology.

Proof. This follows for the same reasons as in Lemma 5.15 but with a slight variation
for the converging sides.

First, we again define D1. It will be similar as in Lemma 5.15, but with some points
removed. Namely for c1 we remove all those points lying between A1 = y+ 〈v1〉, ∂P and
the line orthogonal to A1 which goes through πv1(s(xi))− εv1 for the edge xi /∈ E of c1
which is adjacent to an edge in E. This set is also depicted in Figure 40. We repeat this
removal for each converging side. Now for a point x ∈ D1 which lies between A1 and c1
it holds that x− εv1 ∈ P and x+ εv1 ∈ P . But then the rectangle spanned by the line
segment from πv1(x− εv1) to x− εv1 and the line segment from x− εv1 to x + εv1 lies
completely in P . This shows that D1 is simply connected.

The set D2 will be adjusted accordingly and in addition, for each vertex only one of the
sets H2 and H3 is used, namely the one in the direction, in which more edges of E lie.
But to accommodate the missing set, we will make the present set larger by turning the
line 360 degree instead of 180.

Now for all non-finite edges xi ∈ E we replace theKi from Lemma 5.15 with the following
sets which are illustrated in Figure 41 and which will be used again later: Let s(xi) be
farther away from y than t(xi). We define Hi ⊆ C to be the rectangle spanned by the
line segment from πv1(s(xi)) − εv1 to πv1(t(xi)) + εv1 (the purple arrow in Figure 41)
and the line segment from πv1(m(xi)) to πv1(m(xi)) + 2 · (m(xi)−πv1(m(xi))) (the green
arrow in Figure 41). Then D1 ∪ Hi can be embedded in P̃ , so let Ki ⊆ P̃ be the set
obtained by the union of this embedded set and D′1×{xi} (again compare Lemma 5.15
and remove points as above) which is then connected (compare the requirements for ε)
and compact. Again we take

Ui := Bε(oP )× {xi}

which is an open subset of Ki.

Similar to Lemma 5.15 we define

V :=M↪→(D1) ∩M (D2) ∩
⋂
xi∈E

M+(Ki, Ui) ∩ ̂Co-Chn,δ(γ, v1, v2).
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v1

y

m(x
(1)
i )

ε

D1

m(xi)

Figure 41: A sketch of the construction of the new Ki in the proof of Lemma 6.21. The
yellow areas correspond to the rectangles named Hi. The effects of these new
Ki are also illustrated: If in any P (1) one vertex is too far up compared to P
the next vertex is too far down. This is depicted by the red arrows.

Now let P (1) be a PSI-polygon such that P̂ (1) ∈ B̂ε(P ). Then the embedding of D1 lies
in the interior of P (1), therefore P̂ (1) ∈ M↪→(D1). This follows because the first vertex
which is not an endpoint of an edge of E lies in or above the area we removed from
D1. P̂ (1) ∈M↪→(D2) follows as in Lemma 5.15, together with the insight, that the sum
of the interior angles at two neighboring vertices in a converging side is more than 180
degree. P̂ (1) ∈M+(Ki, Ui) follows in the same way as in Lemma 5.15.

Now let P (1) ∈ Co-Chn,δ(γ, v1, v2) such that P̂ (1) ∈ V . For the same reasons as in
Lemma 5.15 we get arrows from D1 to D1 with the arrows corresponding to the edges
of the converging sides facing orthogonal to Ai. In addition, because γ([0, 1)) lies in the
interior of P , the point y is at the correct position relative to D1. But this also means,
that for every arrow, which lies at least partially in B1(y), the edge of P (1) responsible
for this arrow belongs to the same converging side this arrow corresponds to.

But then the endpoints of these edges in P (1) are at most ε away from the endpoints of
the edges in P corresponding to these arrows. To see this, we first see, that the endpoints
of these edges have to lie (in v-direction) between the Hi belonging to those arrows. In
addition, in the direction orthogonal to v, these endpoints cannot be more than ε closer
to y + 〈v〉 or they would collide with D2. But this also means, that no such endpoint
can be more than 3ε farther away from y + 〈v〉, because the position of the midpoint is
given by the arrow and therefore the next vertex would be too close to y+ 〈v〉 (compare
again Figure 41). But then P̂ ∈ M (D2) shows that it can be no more than ε farther
away from y + 〈v〉. Then D2 also enforces that these endpoints lie in an ε-ball from the
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corresponding endpoints in P .

Because ε fulfills
ε < δd(xi, y)

for all xi ∈ E the δ-condition implies that only one vertex can lie in each of these ε-balls.

The rest of the proof follows exactly as in Lemma 5.15.

In Section 5 the main problem we faced was that the converse of Theorem 4.18 is not
true in the general case. But as we have seen in Theorem 5.9 those translation surfaces
behave nicely if the vertices are lined up in a 1-dimensional affine subspace. If this is
not the case then problems can arise because one edge can cut through the interior of
P (see Example 5.13). Another problem which can arise is that one edge goes too far
away from P like in Example 6.1. In the following lemma, we show that both of these
problems cannot happen in our case. The first, because we restrict ourselves to Bε(P )
and the second because the strong immersive topology forbids such behavior.

Lemma 6.22. Let
(
P (n)

)
n∈N be a sequence in Co-Chn,δ(y, v1, v2) and P ∈ Co-Chn,δ(y, v1, v2)

such that (P̂ (n))n∈N converges to P̂ in the strong immersive topology. Let c(n)i be a con-
verging side of P (n) and c(n) be the same converging side, but with the last edge (the
edge which lies only partially in B1(y)) removed. Then for all ε ∈ R+ it holds that
c(n) ⊆ Bε(∂P ) for almost all n ∈ N.

Proof. W.l.o.g. let the converging side be c(n)1 and the edges which lie (again at least
partially) in c

(n)
1 will be labeled x

(n)
1 , . . . again in such a way that x(n)i and x

(n)
i+1 are

adjacent and x
(n)
i+1 is closer to y than x

(n)
i for all i ∈ N. We label the edges of the

corresponding converging side c1 of P in the same way.

Let us assume that the statement is not true. Then for infinitely many n there is
in ∈ N \ {1} such that x(n)in

6⊆ Bε(∂P ). For each such n we always choose in to be the
smallest such integer. Now let IP := IPε and

OP := {x ∈ C | d(x, P ) ≥ ε}.

Case 1: x(n)in
∩ IP 6= ∅ for infinitely many n ∈ N.

Let x ∈ x(n)in
∩ IP. Then Bε(x) ⊆ P and therefore also x − εv1 ∈ P . But this implies

πv1(x)− εv1 ∈ P , so πv1(x) ≥ y + εv1.

We can now takeM+(Kj, Uj) as in the proof of Lemma 6.21 for all edges xj of c1 ⊆ ∂P
which fulfill πv1(xj) 6⊆ Bε(y). Of course, these are only finitely many edges. We get
that for only finitely many n ∈ N an s(x(n)j ) (for such an edge x(n)j ) can be shifted more
than ε towards A1 or more than 3ε away from A1, compared to the situation in P . A
difference to the situation in Lemma 6.21 is that we cannot assume that only one vertex
of P (n) lies in each area between two Hi. But if there are at least two vertices in such
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an area, then the edges between these vertices cannot intersect IP (for all but finitely
many n). This holds because the converse would imply, in this situation, that there is a
vertex in IP, but IP can be immersed in all but finitely many P̂ (n). All in all we get that
such a point x ∈ x(n)in

∩IPε can only exist for finitely many n ∈ N which is a contradiction.

Case 2: x(n)in
∩OP 6= ∅ for infinitely many n ∈ N.

Let µ ∈ (0, 1) be such that no point b ∈ c1 with d(b, A1) >
ε
4
fulfills πv1(b) ≤ y + µv1.

For the following let ξ ∈ R+ with

ξ <
µδ2ε

32
.

Therefore it also holds that
ξ <

δε

32
.

In addition, let β′ ∈ R+ be the value given by Lemma 6.12 for α = ξ
4
and β = β′

2
. We

will now show that there cannot be a β
8l
-approximation from P̂ to any of those P̂ (n),

where l is defined as in Lemma 6.11 for IPβ.

Because case 1 can also be done for IPβ instead of IP = IPε we can assume that no edge
of a converging side (apart from the first edge) intersects IPβ. In addition Lemma 6.21
shows that there is ε′ ∈ R+, ε′ < β such that Bε′(P̂ ) is open. Then only finitely many
P̂ (n) do not lie in Bε′(P̂ ). Therefore IPβ ⊆ P (n) for infinitely many n ∈ N. We can see
ÎPβ as a subset of P̂ as well as P̂ (n). Furthermore, β can be chosen in such a way that
IP2β is connected (compare the statement shown for D1 at the beginning of the proof of
Lemma 6.21).

Claim 1. For each such n there is a point x̂(n) ∈ P̂ (n) which has distance greater than
ξ from each point in ÎPβ ⊆ P̂ (n).

Let us assume for a moment that claim 1 holds. Then only finitely many P̂ (n) do not lie
in ∆ β

8l
(P̂ ). A β

8l
-approximation ϕ̂(n) : P̂ → P̂ (n) has to map at least one point x̂ ∈ P̂ to

a point in B β
8l

(x̂(n)) ⊆ P̂ (n).

Then x̂ cannot lie in ÎP2β or else ϕ̂(n)(x̂) would lie in ÎPβ (compare Lemma 6.11). But
then

d(x̂(n), ϕ̂(n)(x̂)) > ξ >
β

8l
,

which is a contradiction. If x̂ does not lie in ÎP2β then there is a point â ∈ ÎP2β with
d(x̂, â) < α = ξ

4
(compare the definition of β). But then ϕ̂(n)(â) ∈ ÎPβ, so

d(ϕ̂(n)(â), ϕ̂(n)(x̂)) > d(ϕ̂(n)(â), x̂(n))− β

8l
> d(ϕ̂(n)(â), x̂(n))− ξ

4
>

3ξ

4
.

81



6 Strong immersive topology

x
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s(x
(n)
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t(x
(n)
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t(x
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> δε
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> δε
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> ε
4

q1
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Figure 42: If at least one point of x(n)in
lies in OP then x(n)in

is longer than δε
2
. In addition

there is a point q1 ∈ x(n)in
with distance more than δε

4
to each endpoint of x(n)in

and more than ε
4
to P .

But
|d(ϕ̂(n)(â), ϕ̂(n)(x̂))− d(â, x̂)| > 3ξ

4
− ξ

4
>
ξ

4

and this is a contradiction to ϕ̂(n) being a β
8l
-approximation and therefore also a ξ

4
-

approximation.

It remains to show that claim 1 holds, which follows essentially from the δ-condition.
Nevertheless, it is a rather technical construction. The rest of this proof will be dedicated
to proving claim 1.

Proof of Claim 1. For this let x ∈ x(n)in
∩OP. Then

l(x
(n)
in

) > δ · d(t(x
(n)
in

), y)

and
l(x

(n)
in

) > d(t(x
(n)
in

), x) > δ · d(t(x
(n)
in

), x).

So it follows that

l(x
(n)
in

) > max(δ · d(t(x
(n)
in

), x), δ · d(t(x
(n)
in

), y)).
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x
(n)
in+1

s(x
(n)
in

)

t(x
(n)
in

)

t(x
(n)
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zq1
< 2ξ

> δε
4
− 2ξ

Figure 43: Thales’ theorem implies that the length of the blue line is smaller than
l(x

(n)
in+1)·2ξ
δε
4
−2ξ . Therefore L := d(t(x

(n)
in+1), x

(n)
in

) is also smaller than this number.

In addition d(x, y) > ε because x ∈ OP and so the triangle-inequality implies l(x(n)in
) >

δε
2
. This, as well as the following steps, is also illustrated in Figure 42.

Then there exists a point q1 ∈ x(n)in
which is at minimum δε

4
away from s(x

(n)
in

) and t(x(n)in
)

and still more than ε
4
away from P . If each other edge of P (n) is more than 2ξ away

from q1 (with the distance measured in P (n)) the point q2 ∈ P (n), which is exactly ξ

away from x
(n)
in

and q1 is still more than ξ away from P and from each other edge, so we
can set x̂(n) := q̂2.

So let us now assume that another edge of P (n) is less than 2ξ away from q1. Because
q1 has distance greater than ε

4
from y and ξ < δε

4
the other edge, which is close to this

point has to be x(n)in−1 or x
(n)
in+1. W.l.o.g. we assume it is x(n)in+1 and that t(x(n)in

) = s(x
(n)
in+1)

and d(t(x
(n)
in+1), A1) ≥ d(s(x

(n)
in

), A1) hold. Let z ∈ x(n)in+1 be the closest point to q1. Then

d(s(x
(n)
in+1), z) >

δε

4
− 2ξ

and
d(q1, z) < 2ξ.
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Now it follows for L := d(t(x
(n)
in+1), x

(n)
in

) (compare Figure 43):

L <
l(x

(n)
in+1) · 2ξ
δε
4
− 2ξ

<
l(x

(n)
in+1) · 2ξ
δε
4
− δε

8

=
l(x

(n)
in+1) · 16ξ

δε
<
l(x

(n)
in+1)

2

and similar for the angle α(n)
in+1 at s(x(n)in+1) it follows that

sinα
(n)
in+1 <

16ξ

δε
<

1

2
,

so α(n)
in+1 <

π
4
. This implies that t(x(n)in+1) is closer to A1 than s(x(n)in+1).

Now it follows from the δ-condition that

d(t(x
(n)
in+1), A1) < d(t(x

(n)
in+1), y) <

1

δ
L

and therefore the same holds for s(x(n)in
). We now define π⊥v1 : R2 → R, x 7→ x− πv1(x).

Then
d(π⊥v1(s(x

(n)
in

)), π⊥v1(t(x
(n)
in+1))) <

1

δ
L

and therefore
d(π⊥v1(m(x

(n)
in

)), π⊥v1(m(x
(n)
in+1))) <

1

δ
L.

This is also depicted in Figure 44. According to the depiction in the previous figures we
say that a point a1 is higher (or lower) than another point a2 if the distance of π⊥v1(a1)
to A1 is greater (or smaller) than that of π⊥v1(a2) to A1. The height of a point can just
be defined to be this distance.

Now let m be the point on the bisector g between these edges with

π⊥v1(m) =
1

2
π⊥v1(m(x

(n)
in

)) + π⊥v1(m(x
(n)
in+1))

and a be the highest point of P which lies between x(n)in
and x(n)in+1 (see again Figure 44).

Let us first assume that the height of a is greater than ε
4
. Similar to above it follows

that

d(πv1(s(x
(n)
in

)), y) < d(s(x
(n)
in

), y) <
l(x

(n)
in

) · 16ξ

δ2ε
<

16ξ

δ2ε

because no edge of a converging side can be longer than 1. The definition of µ then leads
to a contradiction because

µ < d(πv1(a), y) < d(πv1(s(x
(n)
in

)), y) <
16ξ

δ2ε
< µ.

So a is lower than ε
4
. This shows that the height of m is ε

4
greater than the height of a,

because the height of x is at least ε and therefore, the height of t(x(n)in
) is also at least ε.
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m(x
(n)
in+1)

m(x
(n)
in

)
m

A1

α
(n)
in+1

g

a

Figure 44: In this situation, each of the purple arrows is shorter than L
δ
. This follows

because these edges are very close together, so the δ-condition implies that
the endpoints are very close to y. This also shows that the highest point a of
P between these edges cannot be that much left of y. Some possible edges of
P are depicted by the blue dashed lines.

Let us now look at a path in P̂ (n) which starts and ends at g, goes parallel to v1 and
which goes through x̂(n)in

and afterwards through (x̂
(n)
in+1)

′ (see Figure 45). It changes its
height by a maximum of 2L

δ
. But this path has a length of at minimum L

2
. So this path

changes its height only 4
δ
faster than its length. This shows that a path from m̂ has to

be more than εδ
32

long to reach a point in P . This holds because m is more than ε
4
higher

than a19. Because ξ < δε
32

this shows that no path of length smaller than ξ starting from
m̂ reaches ÎPβ, so we can set x̂(n) := m̂ and we have found such a point.

At last, we again create a coordinate function on each of these B̂ε(P ). But let us first
fix notation. So for the next Theorem, for P (1) ∈ Co-Chn,δ(y, v1, v2) we denote by
x
(1)
1 , . . . , x

(1)
n the finite edges on one side, i.e. n finite edges in such a way that the union

of these edges is connected and by (a
(1)
n )n∈N and (b

(1)
n )n∈N all edges each of one converging

side respectively. This should again be done in a way that the union of all of these edges

19The lower height might be reached before completing a full cycle, so we changed εδ
4·4 to εδ

32 just to be
sure.
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g

g

< 2L
δ

Figure 45: The path depicted by the red arrow has length of at least L
2
, so it changes its

height at maximum 4
δ
faster than its length.

is connected. The an and bn are sorted in a way that a higher index indicates being
closer to the corresponding accumulation point. At last t(a(1)n ) (t(b(1)n )) should be closer
to y (y′) than s(a(1)n ) (s(b(1)n )) for each n ∈ N.

By c0(C) we denote the complex vector space of all null sequences in C together with
the supremum norm ||(xn)n∈N||∞ = sup{|xn| | n ∈ N}.

Theorem 6.23. Let P ∈ Co-Chn,δ(γ, v1, v2) and ε ∈ R+ be as above. Then the map

Ψ: B̂ε(P )→ Cn+1 × c0(C)2, P̂ (1) 7→



s(x

(1)
1 )
...

s(x
(1)
n )

t(x
(1)
n )

 , (t(a(1)n )− y)n∈N, (t(b
(1)
n )− y′)n∈N)


is a homeomorphism onto its image.

Proof. • well-defined: This follows in the same way as for Theorem 5.16 because no
edge can cut through the area between the two converging sides.

• injective: This follows in the same way as before.

• continuous: Let P (i), P (∞) ∈ Bε(P ) be PSI-polygons such that (P̂ (i))i∈N converges
to P̂ (∞). If we assume that (Ψ(P̂ (i)))i∈N does not converge to Ψ(P̂ (∞)) there is

86



6 Strong immersive topology

either j ∈ {1, . . . , n} such that s(x(i)j ) does not converge to s(x(∞)
j ) or the vertices

which do not converge are located in the converging sides. In the first case, a
contradiction is reached in the same way as in Theorem 5.16. In the second case,
Lemma 6.22 allows us to reach a contradiction in a similar way to Theorem 5.9 by
using πv instead of the real coordinates and adjusting the set D to reach up to ∂P
orthogonal from v.

• open: This follows directly from Theorem 6.16.
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7 Reference of most commonly used objects and notations

7 Reference of most commonly used objects and
notations

For reference, we give a short list of the most commonly used objects/notations in this
work in the order of appearance:

Object/Notation Place to find
Chamanara surface Example 2.3
M Definition 2.5
E Definition 2.6
Developing map devX Definition 2.8
Immersion /  Definition 3.1
Embedding / ↪→ Definition 3.7
M (D),M6 (U),M+(D,U),M−(D,K) Definition 3.9
PSI-polygon P Definition 4.2
Edge xn Definition 4.2
Vertex s(xn)/t(xn) Definition 4.2
oP Convention 4.3
x′n = ΦP (xn) Convention 4.3
P̂ , x̂, γ̂ Convention 4.6
P̃ Proposition 4.9
Convergence of PSI-polygons Definition 4.11
Nε Definition 4.11.
γ Remark 6.2
ε-similar Definition 6.3
ε-approximation Definition 6.4
∆ε(X) Definition 6.5
IPε Definition 6.10
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