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ABSTRACT

Experiments are ahead in the race for determining the features of neutral B-mesons.
Recent measurements at the LHCb experiment have pushed the uncertainties
of the decay width difference AT in the B,-Bs system to about 6%, whereas the
uncertainty of the theory prediction is about a factor of four larger. First results
for AT" and the parameter a¢, quantifying the violation of the CP symmetry in B;
and B; mixing, were already obtained in the Standard Model of particle physics
several decades ago. In this thesis we improve on earlier predictions and provide
the first next-to-next-to-leading order prediction which stabilizes the dependence
on the renormalization scale and reduces uncertainties. The necessary calculations
demand attention toward perturbative and non-perturbative aspects of meson
physics. Focusing on the former, we carefully construct effective field theories
where we complement the physical operators with properly chosen evanescent
operators. Furthermore, efficient tools are necessary to compute the thousands of
Feynman diagrams.

ZUSAMMENFASSUNG

Experimente liegen vorne im Rennen zur Bestimmung der Eigenschaften neutraler
B-Mesonen. Neueste Messungen am LHCb Experiment haben die Messunsicherheit
der Zerfallsbreitendifferenz AT des Bs-Bs-Systems auf 6% verringert, wohingegen
die Unsicherheit der Theorievorhersage ungefiahr viermal so grofs ist. Erste Er-
gebnisse fiir AT' und den Parameter ag, der die Brechung der CP-Symmetrie in
Bs- und B;-Mischungen quantifizert, wurden bereits vor einigen Jahrzehnten im
Standardmodell der Teilchenphysik errechnet. In dieser Dissertation werden an
frithere Theorievorhersagen angekniipft und die erste Vorhersage zur Ordnung a?
vorgestellt, die sowohl die Renormierungsskalenabhdngigkeit als auch die entspre-
chende Unsicherheit reduziert. Die dafiir notwendigen Berechnungen erfordern die
Behandlung perturbativer sowie nichtperturbativer Aspekte der Mesonphysik. Der
Fokus liegt hier auf ersterem, was die Konstruktion effektiver Feldtheorien bein-
haltet, in denen physikalische Operatoren durch sorgfiltig gewidhlte evaneszente
Operatoren ergdnzt werden. Zudem werden effiziente Werkzeuge benétigt, die die
Berechnung der tausenden notwendigen Feynman-Diagramme ermoglichen.
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Nicht der Besitz von Wissen, von unumstofslichen Wahrheiten macht den
Wissenschaftler, sondern das riicksichtslos kritische, das unabléssige Suchen nach
Wabhrheit.

— Karl Popper, Logik der Forschung
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INTRODUCTION

Already in ancient Greece the question arose what the boundaries of existence are.
To the smaller end of this question, already Demokrit introduced in the 5th century
BCE a theory of atoms as smallest “uncuttable” particles. This hypothesis remained
valid until around 1900 smaller particles were discovered: The electron and the
nucleus. These building blocks of the atom opened the imagination of ever smaller
particles which form the matter of our visible world.

A breakthrough in the further history was accomplished in the 1920s by Paul
Dirac [1] who formulated a theory which combined quantum mechanics with
Albert Einstein’s special relativity [2]. Based on Dirac’s work, Richard Feynman [3-
5], Sin-Itiro Tomonaga [6] and Julian Schwinger [7, 8] formulated a fully covariant
theory of Quantum Electrodynamics (QED). Their work inspired further developments,
leading finally to the formulation of the Standard Model of Particle Physics (SM) [9-11]
in the 1960s. The following decades were a mere success story for the SM since vast
developments of particle accelerators and detector techniques showed continuous
agreement with the theoretical predictions.

However, the SM alone is not sufficient to explain all observations from experiment
and astronomy. The first problem is due to Einstein’s theory of general relativity [12]
which is not described by the sM. Although several observations are in accordance
with general relativity (e.g. [13-15]), every approach of formulating it as a Quantum
Field Theory (QFT) leads to a non-renormalizable theory which contradicts its
fundamental claim.

Another question arises from the particle content of the observed universe. To
explain the imbalance of matter and antimatter, Andrei Sakharov determined three
necessary criteria to be fulfilled in the early universe [16]:

e Violation of baryon number conservation,

e Violation of C (Charge Conjugation) and CP (Charge Conjugation and Parity
Transformation) symmetries,

e Violation of thermodynamic equilibrium.

Concerning the second point, the SM does indeed allow for such an asymmetry.
The first experimental discovery of Charge-Parity Violation (CPV) was made in the
experiment of Cronin and Fitch in 1964 where CP changing kaon decays into pions
were observed [17]. Although many subsequent experiments found CPV in different
particle interactions, the overall measured quantitative size of CPV is not sufficient
to fulfill Sakharov’s condition. Moreover, the electroweak phase transition in the SM
is not strong enough to fulfill the third condition (see e.g. ref. [18]).
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Furthermore, among others, precision measurements of b — slI processes [19] and
of the magnetic moment of the muon [20] observe a significant discrepancy to SM
predictions.

In this dissertation we focus on the physics of neutral B;- and B;-mesons. The sM
predicts a certain gap between the masses (AM) and the decay widths (AT’) of their
respective mass eigenstates. Additionally, a certain CP asymmetry ag quantifying
CPV in the time evolution is predicted for the mixing of neutral B-mesons. Every
deviation between the SM and measurement opens further the idea for physics
beyond the sM.

In the following chapter we explain the quantum mechanical details of neutral
B-mixing. We use the definitions and conventions of refs. [21-23].

1.1 QUANTUM MECHANICS OF NEUTRAL B-MESONS

The four neutral B-mesons are characterized by their valence quarks. They read
Bs = (bs), By = (b9), B; = (bd) and By = (bd). (1.1)

In the following we do not differentiate between B; and B;. The time evolution of
these mesons in terms of flavor eigenstates can be described quantum mechanically

as
<|B<t>>) _ <|B<o>>> | w2)
|B(2)) 8(0))
This equation is used to describe the mixing and decay properties of B/B using an
effective Hamiltonian operator H which is given by

I
H=M-i-. (1.3)

2
The first term describes the time evolution of stable B/B particles in the rest frame
using the mass matrix M. It is hermitian and the diagonal elements are equal due
to the combined Charge, Parity and Time Reversal (CPT) invariance. It is called the

dispersive part of eq. (1.3).

The second term accounts for the decay law which can be derived within the Wigner-
Weisskopf approximation [24, 25]. It consists of the two-particle generalization of
the decay width T’ and is called absorptive part of eq. (1.3). For I also the hermiticity
and CPT arguments apply.

Thus, the effective Hamiltonian operator can be written as

T T

H = Mll — Zfil MlZ — 17212

- * 1 iIn |7 (1.4)
M12 - ZT Mll - ZT

where we have used

My = Mp, My = Mj,, Txn =T33 and Ty = I, (1.5)



1.1 QUANTUM MECHANICS OF NEUTRAL B-MESONS

Since H has off-diagonal elements we can diagonalize it with the matrix Q:

H:Q-<E1 0>-Q‘1. (1.6)
0 E

The eigenvalues of H are given by

IT12|2
4

T \/ i i
Eip = —i— 2Ty — zTpMj, —
12 = My —i > T | M2 > 1M1z > 12M7, @)
=Mpyg—i——,
LH =1
where the indices L and H denote the eigenvalues of the corresponding light and
heavy states.

The matrix Q can be parametrized as

1 _ (P4 _ 1 (q 1 C. 3
y (P —q>' © ZP‘?(P —10)' re o

After diagonalizing eq. (1.2), we obtain the mass eigenstates of the neutral B-meson
system which are given by

BL) = pIB) + qlB), o

|Bu) = p[B) — q[B) .
Unitarity demands that |p|? + |g|> = 1. Additionally, we observe that the states
|Br i) are not orthogonal since the Hamiltonian operator of eq. (1.3) is not hermitian.
Nevertheless, observables can be stated according to the operators M and I' which
are manifestly hermitian.

So far, everything stated applies to a general system of (anti-)particles which mix
into each other due to quantum effects. A special property we did not yet mentioned
is the CP symmetrization. For the flavor eigenstates of neutral B-mesons, we can
specify the action of applying a CP transformation as

CP|B)

—|B), CP|B) = —|B). (1.10)

We can thus define two eigenstates:

B) = \2 (B)+[B)  (cp odd),
1 B (1.11)
|B,) = —= (|B) —|B)) (CP even).

S5

2

For the case that CP is a symmetry of the physical system, eq. (1.11) would be equal
to eq. (1.9), and it would hold p = —g = 1/+/2. However, since CP symmetry is
broken this is not the case.

Important quantities which characterize neutral B systems are the masses and the
decay widths of the heavy and the light states. Especially interesting for oscillation
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sensitive experiments are the differences of these observables AM and AI'. For
B-mesons they can be approximated by using
My = [My|e™,

. (1.12)
F12 = |F12]el4’r .

In the SM, the ratio '/ My is numerically suppressed by O(107?) for B-mesons.
From eq. (1.7) we obtain

T 2
AM = My — M, = 2|My| +(’)< iz 2> ) (1.13)
| Mz
_ _ T12|?
Al = FL - FH = —Z\Flz\ COS((PF - (])M) + @ 5 . (1.14)
| Mz
The ratio thus reads
AT T
M Re(Mu) . (1.15)

The phases ¢» and ¢r in eq. (1.12) are unphysical. Relevant is instead the difference
between them:

M
P12 = arg(—rlz> = T+ ¢m—¢r. (1.16)
12
Alternatively, one can define the observable,
To| ( I >
— sin = Im|{——= |, 1.1
fs |M12| ((P12) MlZ ( 7)

which is a CP asymmetry in flavor specific decays. To see why it carries this name,
let us examine the ratio of the coefficients of eq. (1.9):

=) (=)

ir'y

p My, — 52 (1.18)
, NP
—e M (1 Afs O T12 '
¢ ( + 2 ) * | M2
In the case of no CP violation one would get q/p = —e M. Thus, a;, quantifies

the CP asymmetry as it expresses the deviation of the physical states from the CP
eigenstates.

The asymmetry parameter ag can be experimentally accessed from decays into final
states f/ f for which the processes B — f and B — f are forbidden and no direct
CPV occurs, i.e.

| (fIB(t))| = | (f[B(t))]. (1.19)
With the considerations of refs. [23, 26], it follows
r(B() — ) —T(B(t) - f)
r(B(t) — f) +T(B(t) - f) '

agg = (1.20)
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where I'(i — f) is the partial decay width of the regarded process.

Returning to the time evolution, we get for the physical states

Bu(t)) = e Mit=F B (0))

‘ Iy (1.21)
B (t)) = e ™M= By (0))
and for the flavor eigenstates of eq. (1.2)
B(t) = g+(t)[BO) + Lg-(1)[B0)),
p
B p - (1.22)
[B(t)) = ag—(f) B(0)) + g+(t)[B(0)) ,
with
gi(t) = % <e_iMLt_r7Lt + e_iMHt_rTHt> ) (1.23)

In the following we focus on the individual observables AM, AT’ and ag and how
they can be predicted by the SM. From egs. (1.13), (1.14) and (1.17) we see that these
quantities can solely be computed from the complex off-diagonal elements of the
mass and width matrices, M1, and I'15. Hence, we will take a closer look at their
definitions in quantum field theory.

1.2 M12

The transition between flavor eigenstates of a B-B system is described in QFT by the
self-energy matrix element X. It is given by

(Bi| S |B;)

i) 0 (pi=p)Zy = =

(1.24)

where |B; ;) are either |B) or |B), with all states defined in the Heisenberg picture
and in momentum space. The normalization factor (2Mp)~! with the average
B-meson mass Mp is convention. Since the meson flavor eigenstates mix during
propagation, X is a 2 x 2 matrix. Also, momentum conservation between initial and
final state is implied in eq. (1.24) due to the Dirac J-function.

We can define the transfer matrix T as the non-trivial part of the S-matrix:
S = 14iT = e /& H™ (1.25)

where HM is the Hamiltonian density operator (or shorthand “Hamiltonian”) of the
Standard Model.

According to ref. [22], the effective Hamiltonian of eq. (1.3) is given by the self-
energy:

Y=H=M-i-. (1.26)
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Figure 1.1: In the SM the oscillations of the flavor eigenstates of Bs/ B and B;/B; are
dominated by two W-exchanges. The diagrams for B;/B; look similar with
s <+ d exchanged.

By recalling eq. (1.4) we get

Yo+ 25 .
My = % = Disp(X12) . (1.27)

What we previously called “dispersive” part now reveals to be connected to the
real part of the self-energy. My, is sensitive to heavy virtual particles which can
or cannot go on-shell in the loop diagrams. This includes particles like W, Z, the
top-quark and the Higgs boson.

In the sM the leading contributions to X1, are given by box diagrams with virtual
W-boson exchange, as shown in fig. 1.1. Loop diagrams are the only source of these
so-called Flavor Changing Neutral Currents (FCNCs) in the SM. Besides the fact that
no tree-level graph exists, they are additionally suppressed due to the Glashow-
Iliopoulos-Maiani (GIM) mechanism [27]. This suppression is of phenomenological
importance for the building and constraining new physics models.

The relevant SM interactions for this process are given by the weak interaction
Hamiltonian responsible for charged currents:

W o f/v% (Vz’jﬁﬂ”PLdeJ + m;faﬂﬂpmjw;) . (1.28)

Here, the W gauge field couples only to left-handed quark fields and right-handed
anti-quark fields, as indicated by the chiral projection operator:

1:|:’)/5

P = . 1.2
R/L 5 (1.29)

The left-handed up-type quark flavor u; and the down-type d; interact proportion-
ally to the corresponding entries of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
V [28, 29]. Its numerical scaling can be approximated using the Wolfenstein parame-
terization [30]. It reads

Ve Vus Vi
V=1|Vy Vi Vy
th Vts th
L4 N WA (1.30)
> p—in)
= ) 1-4 A4 +o(r),

MA1—-p—ig) —A%A 1
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where p,7,A = O(0.1) are treated as small expansion parameters and A =
0(1) [31].

Since V is unitary we can state six equations describing triangles in the complex
space. They are called unitarity triangles:

ci

ViVia +VisVis + Vi Vi = 0,

ViiVuj + VaiVej + Vi Viy - = 0, (1.31)

withi,j € {d,s,b} and k,I € {u,c,t}.

Regarding the off-diagonal elements of the self-energy matrix, the CKM matrix
elements factorize as

1o = Y (ViiVip)? M(B— B),
i,j

o = Y (ViVii)? My(B — B).
i,j

(1.32)

After the CP-violating CKM matrix elements are removed, the remainder of the
amplitude is CP invariant. Hence, the terms of eq. (1.32) are connected according to

Mi]’(E — B) = ./\/li]'(B — E) = Ml']'. (1.33)
Thus, eq. (1.27) simplifies to

My = 2 (Vz:VJb)z Re(M;j) . (1.34)
L]

The CKM matrix elements allow for another simplification of Mj,. From fig. 1.1 one
can see that My, can in general be parametrized as

My = A2 MY 420, A MY + 20, A MY
+ AZMES + 2A A M, + AZME,

(1.31)
=" A% (M —2Mi5 + M55) (1.35)

+ 22 (M — Mi§ — M + Msh)
+ A7 (Mi5 —2M1] + M)

We use the abbreviation A; = V,;Vy, for Bs-mesons. For By, Vi is replaced by V.

From eq. (1.35) it is apparent that M, vanishes if all quarks would carry the same
mass. This follows directly from the GIM mechanism. Hence, the mass dependence
plays a crucial role in the determination of M.

Until now, we consider processes with many scales involved, including quark and
gauge boson masses, as well as Agcp. Taking all of them into account would lead to
large logarithms which spoil the scaling behavior of the perturbative expansion. The
common way to avoid these difficulties is the utilization of approximate methods
like Operator Product Expansion (OPE) [32—35]. It allows the separation of scales
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which are divided by several orders of magnitude. We can expand eq. (1.24) by
introducing an effective Hamiltonian H* according to

(B e~ J&'x HM By L (g omi fdx MRy (’)< Miight )
Mheavy

- —z'/d4x (B| He(x) |B)

— 3 [dtx [dty (BITH (1)1 ) |B)
+ ...

(1.36)

This equation holds to a fixed order in the expansion of small scale ratios, denoted
for simplification by “mijght/ Mpeavy”- In our case we have myeayy ~ myy, mz, my, my
and the remaining scales being treated as ;g The effective Hamiltonian can then
be written as

eff = AB=2 4 qyAB=1 4 2/QCD,(5) (1.37)

The first two terms describe an Effective Field Theory (EFT) of flavor changing interac-
tions. They include operators which change the beauty quantum number (denoted
by B) by AB = 2 and AB = 1, respectively. These two theories are discussed in more
detail in chapters 2 and 3.

To account for effects from the strong force, which are the dominant corrections
in meson physics, we include the Quantum Chromodynamics (QCD) Hamiltonian
HAD5) with five active quark flavors.

Overall, H*f describes only the dynamics of light particles, whereas the heavy
particles are integrated out of the theory. Their remaining effect consists of higher
dimensional effective operators and corresponding proportionality factors, called
Wilson coefficients.

Coming back to the description of Mj;, the Leading Order (LO) contribution is
given by the AB = 2 Hamiltonian:

Gt
1672

HAB=2 ~ m%v)&f Co Q*8=2 1 he., (1.38)

where Gr is Fermi’s constant. The effective operator

Q=2 = 4 (E’Y”h&‘) <Ej'7yPL5j> (1.39)

stems from the diagrams of fig. 1.2 in the full theory'. As mentioned before, the
quark mass dependence plays a crucial role in the calculation of Mj;. The GIM
suppression has the least effect in diagrams involving two virtual top-quarks.
Therefore, they are the dominant contributions to M.

Additionally, since M, includes only contributions from virtual particles it would
be sensitive to heavy particles beyond the Standard Model [36] as well.

1 As full theory we denote the theory from which an effective theory is derived. The former may be an
effective theory as well.
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Figure 1.2: If heavy particles are integrated out of the theory, mainly single operator inser-
tions of an effective AB = 2 theory contribute to Mj,. The leading effects stem
from box diagrams with two top quarks. The same holds for B;/B;.

Keeping only the leading effects, eq. (1.36) leads to

2

GF 2 42 AB=2 |}
M12 = me)\ch <B| Q |B> . (1'40)

The hadronic matrix element (B| Q##=2 |B) cannot be computed in perturbation
theory. The contributing hadronization effects take place at energies below Agcp,
i.e. the fundamental scale of QCD. At these energies, the perturbative description
of «; is ill-defined and cannot be used anymore. Therefore, one has to turn to
non-perturbative methods such as lattice gauge theory [37—41] or sum rules [42—46]
which allow a numerical determination of such quantities.

In the literature, the matrix element is conventionally defined as [47]

8

(B| QY2 [B) = S M3f3Bq, (1.41)

where fp is the decay constant of the B-B system. By is called bag parameter.

The Wilson coefficient Cg in eq. (1.40) contains information about the short range
effects of the B <+ B transition. It can hence be computed using perturbative tools.
At leading order in a, it is given by

dx; —11x2 + 3 33 1In(x
Colp =mw) = Solxi) = t4(1—;t)2 t_z(lt—itﬁz). (142)

The function So(x;) is called Inami-Lim function with x; = m? /m%, [48]. At the time
of writing, Cg is known to next-to-leading order in a5 [49].

As it can be seen from eq. (1.36), also the dispersive part of two AB = 1 insertions
contributes, a priori, to M,. However, the AB = 1 contributions are substantially
smaller than the AB = 2 ones due to the dominance of the top-quark mass.

In the next section we put the main focus on these AB = 1 terms in the context of
T'po.

1.3 T2

Similar to the definition of M;;, we can formulate I';; according to eq. (1.4):

T _1.212 — Xy

> = 5 = AbS(le) . (143)

9
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By using the parameterization as in eq. (1.32), we see that the absorptive part of the
self-energy is connected to its imaginary part:

SR = Y (V) Im(My) o

L]
According to Cutkosky’s cutting rules, the imaginary part of a Feynman amplitude
is defined as the sum of all possible cuts through loop propagators in such a way
that the remaining graph is separated [50]. These cut propagators are then put
on-shell. Thus, only virtual particles in loop diagrams contribute to I'; which are
allowed by the kinematics to go on-shell. Recalling eq. (1.36) we see that the single
AB = 2 insertion therefore cannot contribute. The leading contributions are two

AB =1 insertions:
Ty = L Abs <i / d*x (B| THAB=1(x)H2B=1(0) \B>> : (1.45)

2Mp
In order to get a predictable observable, this expression is simplified to a local
operator matrix element. Otherwise, the evaluation of the hadronic matrix ele-
ment would be not feasible with current non-perturbative techniques. Thus, a
second OPE is needed, for which we choose A/m; ~ 0.05 as a small parameter
with A being a hadronic scale of the order of Aqgcp. The precise value of A is
determined by non-perturbative calculations. This expansion is known as Heavy

Quark Expansion (HQE) [51-56]. In this approximation I'i; can be written as

A3 A A°
Tp = nTgr12 +m—§ru +0 ) (1.46)

Similar to M, the expression for I'1; simplifies to single AB = 2 operator insertions:

Iy o 2 Ci (B| H =2 |B) , (1.47)

where the Wilson coefficients C; are functions of AB = 1 parameters, and hence
depend only indirectly on the fundamental theory. This enables the investigation of
changes in the AB = 1 contributions due to new physics effects and the impact on
I'12. To evaluate I'y, it is necessary to compute contributions of AB =1 and AB = 2.
Afterwards, both results are connected by a matching calculation. This procedure is
similar to the first operator product expansion in which the degrees of freedom of
W, Z, H and t were integrated out.

The terms of eq. (1.46) individually receive QCD corrections which must be taken
into account for high precision predictions of I';>. The leading term Fg) includes
four-quark operators of dimension-6 and chromomagnetic dimension-5 operators,
whereas I"g) includes further power suppressed operators of various dimensions.

The results for l"g) and 1“%) to leading order in as are known for several decades [57-
63]. In contrast to Tg) , no further orders are known for Tg) .
According to the various CKM matrix contributions, I';> can be decomposed as

I'p = — )‘5 ﬁl — 2A A 515 - ?\ff‘ié

1.31 A A2 (1.48)
"= 7| 25 (T~ THE) + 53 (T -2+ T)
t



1.3 F12

b Q1/2 s
b—-—’\/\l./y\/\,—— s b s
Q
u/c u/c — u/c u/c —_—
w B _ _
§——ANAN——} 5 b

5 Q1/2 b

Figure 1.3: After the first OPE the B-B mixing is described by two effective interactions in
the AB = 1 theory. We expand then in A/m;, and project the absorptive part
of the corresponding matrix elements on local AB = 2 operator insertions. The
diagram with two c-quarks contributes solely to I'5, the one with two u-quarks
to I'fy and the mixed variant to I'{5.

We see that the GIM mechanism enhances the contribution of I'{5 which stems
primarily from diagrams with two virtual charm quarks. Also, the relative scaling
of the terms in eq. (1.48) is influenced by the factor A, /A; which scales as A? ~ 0.05
according to the Wolfenstein parameterization. The procedure to compute I'y, is
illustrated in fig. 1.3.

From eq. (1.48) one can see that ag, being the imaginary part of I'12/ My, receives
no contributions from the (A, / /\t)o term of I'1; since the prefactor Af cancels in
the ratio. Therefore, a¢; is GIM suppressed and sensitive to the mass of the c-quark
m.. This renders a¢, numerically small which gives a strong constraint on the CP
violating effects of new physics in neutral B-meson mixing.

The computation of I'1» to higher orders in a; is the main topic of this dissertation.
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AB=1 THEORY

In this chapter we focus on the effective interactions that lead to a beauty-flavor
change of AB = 1, as well as the implications and difficulties of their formulation.

2.1 EFFECTIVE FIELD THEORIES

In the SM the most significant contribution to processes which change the beauty
flavor quantum number by AB = 1 comes from a virtual W-boson exchange. For
example, the transition b5 — cc is depicted in the following Feynman diagram:

b c

S c

The corresponding tree-level matrix element with the Hamiltonian of eq. (1.28) in
the Feynman-"t Hooft gauge is given by

2

. . « 1 _ _
iMeu = iV Vi (59" PLc) (ev,PLb)
2 T (2.1)

. 8 - _ 7
= —lﬁVCbVCS (S')/HPLC) (C,)/]lPLb> + O(yn%\/) .

We use my > /¢ to simplify the matrix element, where g is the exchanged
momentum between the two quark lines. The leading term of this approximation
describes a local interaction which does not depend on the kinematics of the external
particles.

Let us repeat this calculation with an effective local interaction which is described
by the Hamiltonian:

4G

HBB=1 _
V2

wVes (C1Q1+ C2Q2) + hec., (2.2)
with

Q1 = (5iv"Prej) (¢jvuPrbi) , Q2 = (5iv"Prei) (GivuPLby) - (2.3)

15
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QED o (71 (711,)) ~ 0.0074

QCD ol (7 (7)) ~ 0.2245
72 —

Weak theory aw% ~ 0.0001
W

Table 2.1: This table provides an overview of the relative size of effects expected for higher
order corrections at the scale i, (77, ). For the QED fine structure constant «, only
the one-loop corrections are taken into account. For the running of a5 we use the
five-loop corrections from RunDec [64]. The size of the weak coupling constant
aw = 0.0339 is estimated from eq. (2.6). The used input parameters are given in
table 7.1.

The indices i and j denote the color indices of the quark fields. This theory is sup-
posed to describe the physics of energies below myy. This requirement is expressed
in terms of S matrix elements,

Crqhpqgfall C [ qd et | A3
(fle AT i) = (fle M) 4+ (9<3> - (2.4)

Instead of truncating eq. (2.4) the higher order terms could also be included
in H¢f. This leads to a population with infinitely many operators and Wilson
coefficients. This OPE provides a powerful tool to resum large logarithms of the type
In(m?/m%,), and it simplifies computations, additionally. However, the effective
theory is constructed in such a way that it is only valid in a certain energy range.

The matrix element for the bs — cc process in the effective theory of eq. (2.2) is

given by
AGrp

iMegg = — ZWVCWS;Cz (57" Prc) (¢yyuPLb)
2 (2.5)
= —i5 5 VaViCo (57" Pic) (e, PLb) ,
W
where we use
) 2
Gr— V28 (2.6)

2
8myy,

The comparison of egs. (2.1) and (2.5), together with the requirement of eq. (2.4),
gives:

Ci =0, GC =1 (2.7)

This equality holds at leading order in A/myy. To obtain more accurate predictions
for the process bs — cc, one could include higher-order corrections from the
Standard Model. A naive numerical comparison of the coupling constants gives
an approximate relative size of the expected corrections. The comparison is shown
in table 2.1. Hence, it is sufficient to focus solely on QCD corrections before other
corrections have to be considered.



2.2 TRADITIONAL BASIS

b u/c

3 u/c

Figure 2.1: SM contributions to the Wilson coefficients of current-current operators are
shown at LO and NLO in QCD.

In general, renormalization of effective field theories leads to a mixing of the
effective operators. Denoting the renormalization matrix for the operators Q by Z,
we have

Mien = Ci{(Qi) = GZ;'(Q))° (2.8)

Thus, in order to renormalize the theory properly a closed set of operators has to
be considered. This means that the operator basis includes all operators which are
allowed by the symmetries of the theory and occur due to quantum corrections.
Nevertheless, one has some freedom in the choice of the basis because the effective
Hamiltonian which satisfies eq. (2.4) is not unique. In the following we discuss two
different operator bases for the AB = 1 theory. The first basis was used in previous
calculations of I'yp. In this work we use the second one due to its advantageous
properties.

2.2 TRADITIONAL BASIS

For the calculation of I'y; in refs. [47, 63, 65—71], the operator basis of ref. [72] was
used for the AB = 1 effective Hamiltonian, which is given by

4Gy
V2
+ Vi Ves (C1°Q1 + G Q5°) + Vi Viis (G Q1" + G2 Q3") (2.9)

— Vi Vi (Z GiQi+ C8Q8> +) CrE;
i

i=3

MAITL = SL VGV (CEQE + CFQE) + Va Vi (CQY" + C508')

+ h.c..

The operators of eq. (2.9) are separated into three classes. The class of current-current
operators involves

© = (5iv"Prej) (¢jvuPrb;) , 5§ = (Ev"Prei) (6vuPLby) |

iu — (§i')/VPLu]') (Ej')’yPLbi) , 5“ — (§Z'YVPLL[Z) (E]")/VPLZJ]) , (2 10)
Q%C = (51")/VPLC]) ( ’)/yPLb) , Elc = (gi’)/yPLCi) (ﬁ]”)/yPLb]) P

1 = (5iy"Pruj) (ujyuPbi) , 5 = (5" Pru;) (v, PLbj)

17
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L Pate

q q
Figure 2.2: SM equivalent of penguin diagrams have a spectator fermion line which is
connected by gluons. Since QCD is flavor-blind, the spectator quark can be any

quark flavor. The two diagrams on the right contribute to the chromomagnetic
dimension-5 operator Qg.

These operators stem from SM diagrams with the combination of two charged
currents mediated by a W boson (hence the name) as shown in fig. 2.1. For the
corresponding Wilson coefficients we have

€1 =C¢ = C{* = Ci* =

(2.11)
C =C =G" =G =G
which must be treated differently for the renormalization.
The second operator class is called penguin operators. They are given by
Qs = (5iy"Pubi) Y| (ﬁﬂypmj) ,
q
Qs = (5iy"Pbj) ) (q]’)’yPLﬁlz)
Qs = (57" PLby) (q]’ryPRq]> (2.12)
Qs = (5:7"Prby) ) (CIJWPR%>
Qs = 15 bG,,

with o = i[y#,9"]/2 and the SU.(3) group generators T?. We also use the QCD
field strength tensor (see e.g. ref. [73])

Gy = 9uGy — 9,Gy + gsf“bCGZGﬁ , (2.13)

with f%¢ being the structure constants and g the strong coupling constant. The
sum over g iterates through all five active quark flavors. These operators are related
in the SM to diagrams shown in fig. 2.2.

The chromomagnetic moment operator Qg plays a special role since it is a dimension-5
operator, in contrast to the remaining operators which are dimension-6. Thus, Qg
has to be taken into account for the renormalization of Q;_¢. On the contrary, no
other operator is needed to renormalize the contributions of Qg [21].

The last operator class are the so-called evanescent operators. They are the topic of
section 2.4.
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Q3-6 Q3-6

Figure 2.3: Diagrams with two penguin insertions lead to ill-defined traces with s in the
traditional basis. This problem arises first at O(as) which was not yet the subject
in the literature. In the full theory equivalent of this diagram, such objects are
absent. Therefore, they can be prevented by a different choice of the operator
basis.

2.3 CMM BASIS

The operator basis introduced in section 2.2 has a practical disadvantage: Diagrams
with two penguin operator insertions, as for example fig. 2.3, give rise to the Dirac
structure

Tra(vs7v" 1" 7). (2.14)
In d = 4 space-time dimensions this trace can be evaluated using the Levi-Civita
symbol:

Tra(ysy"y 'y y7) = —4ietP. (2.15)

In calculations employing the dimensional regularization scheme, the Dirac matrices
are formally defined as infinite dimensional [74]. Hence, the combinatorically
motivated e/'f? is ill-defined in d = 4 — 2e.

From the full-theory equivalent of the two penguin insertion diagram, it is evident
that no such trace can appear. Since only the weak interactions are sensitive to
the chirality of the interacting particles, additional corrections from chirality-blind
theories, such as QCD, do not lead to new appearances of traces with 7s.

Thus, the appearance of eq. (2.14) is a spurious artifact of the chosen basis of

eq. (2.9). To circumvent this issue, a different basis has been proposed in ref. [75].

We refer to it as the “CMM” basis according to its inventors K. Chetyrkin, M. Misiak
and M. Miinz. The effective Hamiltonian has the same structure as eq. (2.9), except
for the operators which we denote by P; to distinguish them from the traditional
basis. They read

P = ( P = (59"Pre) (eruPud)

P = ( ) Ps* = (57" Pou) (C1uPrb) ,

P = (sy"P.T%) (uy,PLT'b) , Py = (59"Prc) (wy,Pub) ,

P = ( u) (uyPLT) , Py* = (s7"Pru) (wy,Prb) ,
( (

Py = GYuq) (2.16)
Py = (5Y"PLT'b) ) (F7,T"q) ,

Ps = (7" 9"y PLb) ) (37 e Vis) 4
q

19



20

AB=1 THEORY

Wilson coefficient ~ O(a?)  O(al) O(a2)
Cy (mp) —0.6367 0.2986 0.0455

Co(my 1.0389 —0.0322 0.0026
Cs(my —0.0078 0.0023 —0.0005
Cy(my —0.0898 —0.0013 0.0042

0.0016 —0.0005 8 x 107°

(1)
)
@)
Cs(111y) 0.0007 —0.0004 5x 1075
()
(1) —0.1580 —0.0104 0.0057

Table 2.2: This table illustrates the numerical sizes for Wilson coefficients of the CMM basis
with the results of refs. [75-79]. The coefficients are evaluated at the MS mass

my, = my(7y), using 0655) (m1,) = 0.2245. The numeric input is given in table 7.1.

Ps = (syMl24PLTD) Z (7’7;41 Y2 Yus Tﬂ‘]) ’
q

_ & =
Py = 16ﬂ2mbsa”"PRT”bGﬁV.

Compared to eq. (2.12), one can see that no ys-dependence is present in the spectator
fermion line of the penguin operators. This allows for a straightforward evaluation
of diagrams as in fig. 2.3. The Wilson coefficients to these operators are currently
known at Next-to-Next-to-Leading Order (NNLO) in QCD [76—79].

From the numerical values of the Wilson coefficients, as shown in table 2.2, one
can see a clear enhancement of the current-current in comparison to the penguin
operators. The numerical differences is the reason to treat penguin contributions in
the literature as higher order. This observation holds in the traditional basis as well.
Note that the relatively large value of Cg is misleading since every contribution of
Ps comes with an additional factor of «;.

2.4 DIMENSIONAL REGULARIZATION AND EVANESCENT OPERATORS

For schemes in which the dimension is used as the regularization parameter, there
are multiple variants to extend four-dimensional quantities. For example, in the
original 't Hooft-Veltman (HV) scheme [80] Dirac matrices are split into four- and
(d — 4)-dimensional parts, where the latter is defined with infinite dimensions.
Another frequently used modification is Dimensional Reduction (DRED) [81] in which
only momenta and coordinates are defined in 4 dimensions. Tensor structures are
kept four-dimensional in this scheme.

In this work we use the Naive Dimensional Regularization (NDR) scheme (e.g. as used
in ref. [82]) which prescribes the “naive” usage of an anti-commuting 7s:

{2, s} = 0. (2.17)
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P, Es

(i) (if)

Figure 2.4: To reduce the Dirac matrix structures of physical operators at higher orders (i),
an evanescent operator (ii) is introduced.

In NDR the spinor space is four-dimensional and the following relations hold:

s =d, {2 = 2¢, (2.18)
yuY" =d, Try(1) = 4.

Additional care must be taken if 5 occurs in calculations of higher order. As stated

in the literature [83-87], the usage of eq. (2.17) leads to inconsistencies in d dimen-

sions if traces such as eq. (2.14) appear. Thus, NDR is only consistent if traces with an

odd number of 5 do not contribute, or else the anti-commutation property must be

dropped. Furthermore, four-dimensional relations like the Chisholm identity [88],

r)/Vr)/Vr)/p d;4 g“ul/,)/p — gVPrYV —+ gvpr)/f" + iea}w‘of)’“’)/S , (2.19)
cannot be used in NDR.

For all schemes an additional set of auxiliary operators has to be included to resolve
common problems that appear at higher loop orders in dimensional regularization.
This class of evanescent operators is the subject of several publications [74, 89, 9o].
Their usage and computational necessity was stressed for the first time in ref. [82].
Their appearance is unique to dimensional regularization as they describe objects
that vanish in the limit d — 4.

An example where these operators may appear is given by the matrix element
describing higher order corrections to an insertion of P,, as shown in fig. 2.4:

(P2>1'1°°p = a (3y" Y2y Pre) (€vn Y Yus PLb) + ..., (2.20)

with s, b and ¢ describing spinors. The coefficient a contains the remainder of the
amplitude.

In four space-time dimensions we are able to reduce any string of Dirac matrices
between spinors to a combination of 16 bilinear covariants:

{Ill ’Yy/ U-HV/ Y5, ,}/5,}/'14} . (2.21)
Equation (2.20) can hence be simplified to

_ _ d= _ _
(57 Y2 Prc) (69, YV PLb) "= 16 (59" Pre) (€, PLb)

(2.22)
— 16 <P2>tree ]

Since in d = 4 — 2¢ the y-matrices are infinite dimensional, the same also holds
for the basis of bilinear covariants. Therefore, eq. (2.20) cannot be further reduced,

21
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and we formally have to treat it as an additional operator of our d-dimensional
Hamiltonian. This has the disadvantage that the operator basis is redundant in the
limit d — 4. Alternatively, one could start with the d = 4 operator basis and add an
evanescent operator of the type:

Er = (37"19"9" Pre) (€Y Yy Vs PLb) — 16 (57" Pre) (€vuPLb) - (2.23)
Thus, the operator insertion of eq. (2.20) reduces to

(P)T1OP = 4 (16 (Py)ee 4 <E2>“ee) TR (2.24)
The comparison to eq. (2.22) implies

<E2>tree = O(er> , (2.25)

which we want to hold for renormalized matrix elements of evanescent operators
to all orders in perturbation theory.

The definition of eq. (2.23) is by far not unique. With the restriction of eq. (2.25),
one could as well add arbitrary O(e) terms without changing the physical outcome.
Hence, the definition of the evanescent operators implies a specific renormaliza-
tion scheme. Intermediate (non-physical) results from different schemes are not
comparable without a proper scheme change [90].

Equation (2.25) introduces a dimensional parameter to regularize Ultraviolet (UV)
divergences which is denoted by eyy. In general, also physical Infrared (IR) di-
vergences appear which must be separated from UV poles in computations of the
renormalization constants. However, in physical quantities where IR divergences
are absent, the matrix elements of evanescent operators vanish again in the limit
e —0.

As we have seen, the need for evanescent operators is tied to computations of
higher loop order. Therefore, the operator basis has to grow accordingly with the
given problem. This implies that also the renormalization of the physical operators
has to be adjusted to the choice of evanescent operators. The renormalization
conditions for Wilson coefficients in an extended definition of the Modified Minimal
Subtraction (MS) scheme are [91]:

e Renormalized amplitudes proportional to Wilson coefficients of physical op-
erators have no UV poles, i.e. they start at O (e{}y ). Renormalization constants
which render these terms finite must contain only terms proportional to 1/¢€"
with n € {1,...,1}, where I is the loop order.

e Renormalized amplitudes proportional to Wilson coefficients of evanescent
operators are O (eyy). According renormalization constants must contain only
terms proportional to 1/€"” withn € {0, ..., I — 1}.

Unlike the regular MS scheme, the renormalization constants of evanescent oper-
ators include additional finite terms to fulfill eq. (2.25). More details are given in
section 2.5.
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In the CMM basis, we have to include the following evanescent operators for calcu-
lations up to O(as) [75]:

YA 23 P T 0 ) (G0 iy Yo Y PLTD) — 16Pf“72 ,
SYM Y2 PLan) (q07p Y Vs PLb) — 16P' 7,

Sy ARy SPLE) Y (FY i Voo Vs Vs Yus PLE)
1 (2.26)

(1
E?l‘h() = (s
Eglv/z,(l) =

(

— 20Ps + 64P3,
o= YRy SPLT0) Y (F Y Vi Ve Y Vs PLT?G)
q
— 20Ps + 64P,

with q1,4> € {u,c}. If we want to compute contributions up to O(a?) additional
evanescent operators are needed:

2 = 7T
E ) = (st beyts PLT 0 ) (7% Y Yy Vs Vs PLT?D)
—20E1 V) _ g56pM2
2 = Tt
EP ) = (st oy eyhs Py o) (G Yy Vs Vs Tis PLD)
— 203 _ o56pN12
E) = (sy/ten oottt PLb) 227

< Y (@Y Vi Y Vi Vs Vs Y PLG) — 3365 + 1280P5,
q

EP = (sy"ylanotiyoqeyl PLT D)
XY (@Y Y Yus Yiea Vs Yus Vi PLT? ) — 336P6 + 1280P .
q

Since each operator set is only necessary at a fixed order in perturbation theory, we
denote eq. (2.26) as first and eq. (2.27) as second generation evanescent operators.

In the literature, there are different definitions of the evanescent operators in the
traditional basis. However, their knowledge is necessary to transform results from
the traditional to the CMM basis. In the context of computing I';», two different sets
were used. Both are given by a reduction prescription for Dirac matrix chains.

Reference [65] uses the basis of [92]. According to ref. [77] this leads to the following
definition of evanescent operators:

EP® = (59" 929" PL(q2);) (1) Y Yo Yus PLb:) — (16 — 4€) Q7'
EP® = (5" 9" 29" PL(92):) ((Gy)iYm Yo Yus PLb;) — (16 — 4€)QI,

Es = (579" PLb;) Z j'Ym'thz’szPL%’> — (16 — 4¢€)Qs,

Ey = (5" y"2y" PLbj) Z T Y Vs P (16 — 4€)Qq4, (2.28)

4+4e

(
(7 )=

Es = (siy" "2 PLb;) Z( ]’Yyl’Y;tz’Y;tspR‘h) (4+4€)Qs,
( ]"7141'714271431)12‘11)

E6 — (S r)/ylr)/VZr),V3PL 2
q
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The other basis used in the literature [68, 69] is defined with an implicit change of
the operators analogous to the current-current ones:

— (16 — 4e — 4€2)QT",

ENT2 = (5;qM1 2943 P (g2);) (@)Y V2 Vs PLb))
— (16 — 4e — 4€?) Q"2

(2.29)

with the remaining operators equal to eq. (2.28).

Since both bases use different evanescent operators also the used renormalization
schemes change. Thus, a comparison of results stemming from either basis needs
a proper transformation. However, the difference between them is O (e?), leading
to different results at NNLO. Since in [65] only Next-to-Leading Order (NLO) con-
tributions were computed, the same transformation rules can be used for both
results.

2.5 RENORMALIZATION

With renormalization, it is possible to render formally Uv-divergent quantities UV-
finite in quantum field theory. As we have seen in section 2.4, evanescent operators
require a special treatment such that O(e) terms do not contribute in four space-
time dimensions. In this section we will analyze the renormalization of the effective
AB =1 field theory in more detail. The definitions and notation follow refs. [21, 73]
except for the gauge definition.

Renormalization can be understood as identifying the parameters and fields of the
Lagrangian as bare. To get access to the physical parameters one has to shift the
bare ones by intrinsically divergent values.

The QCD Lagrangian is given by

— 1 1 2
QCD _ TH S a cauv ua
s P —m) = 4 GLG™ — S (a GV> o
+ (94" (M’ay + g f”bCGf,) ¢,
where D, denotes the covariant derivative which is given by
Dy = 0y —ig:G,T". (2.31)

In eq. (2.30), we include the Fadeev-Popov ghost field c and gauge fixing parameter
¢ in the so-called Rz gauge with { = 0 corresponding to the Feynman-"t Hooft
gauge. For the renormalization procedure the Lagrangian is expressed in terms of

IPO - \/ZIP/ m? - Zm,'mir
8 = WZs8 = W Zugs, 1-¢" = z3(1-9), (2.32)

G’ = \VZsGy, ¢ =\ Zsc",
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where y is called renormalization scale or 't Hooft mass. The renormalization constants
Z; are given by an expansion in & and depend on the chosen renormalization
scheme. The structure is hence

S v (&N 1oak
Z;, = ];)kz <E> gZi . (2.33)

In the MS scheme, the Z; are defined such that they remove only poles of the type

1
== -t In(47), (2.34)

in which g is the Euler-Mascheroni constant. We therefore have Zl.(j k<0 i,0-

In effective field theories where the effective operators mix under renormalization,
additional renormalization constants are needed to obtain finite quantities. In the
following we exemplify this mixing for a sample set of operators {O;} of the form
(¢Ty)(pI"¢p). The bare amplitude of the process Py — ¢¢ is given by

A = O}y’ ¢%)) . (2:35)

With the renormalization of the fields and parameters of eq. (2.32) alone, this
amplitude will in general remain UV divergent. We have two possibilities to include
the additional renormalization. One way is to renormalize the Green’s functions
themselves. The renormalized amplitude is then given by

A = ClOI§,9)) = ZoyZoyCiZ;" (O] (9,9)) - (2.36)

The renormalization matrix Z-]- takes into account that effective operators are not
distinct at higher order corrections. Therefore, the whole set of operators is necessary
for renormalization. Here we use the fact that the operator basis is closed under
renormalization, i.e. the operators in the sums of eqgs. (2.35) and (2.36) are sufficient
to obtain a UV-finite amplitude.

Another way to renormalize eq. (2.35) is through the Wilson coefficients. Similarly,
we get

A = Z5yZ24CiZ;i (O} (¢, 9)) - (2.37)

Both ways are equivalent in describing the poles occurring in higher order com-
putations. Since they must lead to the same finite results, we can summarize our
finding as

1

) = Cz

i ji s

0V = ZZJO] with Z = Z7L. (2.38)

To account for both evanescent (E;) and physical operators (Q;), the matrix Z can
be written as

Q) _ (Zee Zar) (Q) (2.39)
EO ZEQ ZEE E
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As stated in section 2.4, the evanescent operators are needed to close the renormal-
ization of the physical operators. For the adjusted MS renormalization conditions,
we parameterize the renormalization matrices as

Do ()L 56k
. (2.40)
ZEQ _ 1 j-1 <&>J lz(]’k)
j=1 k=0 ~*7C ekre
_ L i1
Zep = 14+) ) (“—;t)]gzgék).

In order to renormalize the physical operators at [-loop order, we have to include I
generations of evanescent operators. To render evanescent operator insertions to
be O(€), we need a finite renormalization proportional to the physical operators
and other evanescent operators. Therefore, the matrix Z is only sufficient for a
fixed order in / and must be extended accordingly when higher order corrections
are taken into account. Remarkable is that ZEQ and Zgp are not sufficient to
renormalize all evanescent operators to order [. This follows from the fact that
for the renormalization of a certain generation, evanescent operators of a higher
generation are needed.

To illustrate the statements above, we consider a physical operator insertion at
one-loop order, as shown in fig. 2.4i:

tree

(@ = a; (@)™ +bi(EM) (242)

where the coefficients a; and b; contain UV-poles and finite contributions. Obviously,
renormalization constants ZQ £ Which are proportional to the first generation evanes-
cent operators are needed to obtain a UV-finite result. Turning to the insertion of an
evanescent operator at NLO, we have

tree tree

+e (EPY (2.42)

1-loop

(M) = 6 (@)™ +di (E)
To renormalize this quantity, we have to extend our Lagrangian by second genera-
tion evanescent operators. In turn, to compute the regarded process to full extent,

. 1-loo .
we now have to consider (E(?)) P as well. Hence, we have to formally include
an infinite amount of evanescent operators. This is a direct consequence of the
infinite-dimensional Dirac matrices in d dimensions.

Nevertheless, it is possible to formulate a closed renormalization group which is
only valid up to a specific order in perturbation theory. Thus, matrix elements are
only computable for insertions of nh generation evanescent operators up to O (oéé),
with n +i < I. The upper bound I is the number of the highest generation which
has to be taken into account at least at LO. Physical operators are treated in this
context as zeroth generation.
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Therefore, to compute an operator insertion to e.g. O (a?), we have to take evanes-

cent operators of first and second generation into account. But only the matrix ele-
; : !

ments (Q)¢, (Q)*1°P, (Q)>1°P (1Y (EMW)'P and (E@)"™ can be renor-

malized.

The renormalization matrix for the CMM basis is shown in appendix A.

2.6 BASIS TRANSFORMATION

Since the operator bases of sections 2.2 and 2.3 describe the same SM processes, it
is possible to transform them into each other. We follow here the description of
refs. [77, 93] for the NNLO basis transformation. In the following, objects defined in
different bases are distinguished by primes.

In a first step, we describe a shift of the physical operators by a linear combination
of evanescent ones, i.e.

Q = O+ WE, E = E. (2.43)

Then, the evanescent operators are shifted by a term which is proportional to
the physical operators with the matrix U. To render this sum evanescent again,
the physical term is multiplied by €. Afterwards, a linear transformation of both
operator classes using the matrices R and M is applied. Ref. [77] finds

0" = RG' = R(G+WE),

. . . , (2.44)
‘= M(E'+eud) = M[(1+eUW)E+eud| .

<!

According to ref. [77] this transformation leads to a finite renormalization of physical
operators in the new basis. At NLO the transition between Wilson coefficients is
given by

T
— Ng (1,0 _ T _,
o = o520 (1) e,
with
" l
ZQ%,O) = R [sz(zléo) _ <Z((211,_:1) + WZI(Slél) _ 270W> U] R, (2.46)

where is the LO term of the Anomalous Dimension Matrix (ADM) in the unprimed
basis.

For the change from the CMM to the traditional basis of egs. (2.9) and (2.28), the
finite renormalization matrix is given by

-Z -1 0 0 0 0
-2 2 0 0 0 0
;’2%0) _ 0 0 %ﬂ n_% ;% i 29*0 ) (2.47)
0 0 1-4 4-2 —JL-2 F+6
I T .
0o 0 ¥-2 6-% Y43 YU
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where ny =5 is the number of active flavors. In eq. (2.47) we use the fact that only
two Wilson coefficients of the current-current operators are distinct.

Together with the rotation matrix

2 0 0 0 O
01 0 0 0 0
1 1
R_ |00 -3 0 45 0 (2.48)
oo -1 2 1 1 ’
9 3 36 6
4 1
00 3 0 —-% 0
4 8 1 1
00 5 3 —3% —%

we can write the CMM Wilson coefficients to up to O(as) as

n 14C
Cp =2Cq, + (ﬁ) < 3Q1 +4CQ2> ,

o CQ] Kg 16CQ1
Cr = 5"+ Cou+ (47) =52
Co, Co, 4Co,  4Co
Cp = ——2— B 54
3 9 3 9
<&) 80CQ3 _ 16CQ4 B 80CQ5 B 64CQ6
47T 9 27 9 27 !
2C 8C 76C 194C
Cr, = - 20y By () <_ so P (2.49)
16CQ5 124CQ6 ZCQ4ﬂf ZCQanf
+ 9 + 9 3 + 3 ,

12 36 12 36
+ <ﬁ> (_SCQs + 4CQ4 + 8CQ5 + 4CQ6> ,

c _Co, | Co, Co  Co,
P5 -

4 9 27 9 27

CQ CQ 1 43CQ CQ 29CQ
Cr, :T4_Tﬁ+(ﬁ) <CQ3+ 8 3 18 )

In order to compare NNLO results of refs. [68, 69], (9(62) terms of evanescent
operators have to be taken into account as well. It turns out that the evanescent
operators of egs. (2.28) and (2.29) alone are not sufficient for a full calculation at
NNLO. Together with the formulae of ref. [93] we can only state O (a?) corrections to
current-current coefficients which are proportional to the number of active flavors

nf:

- N 14CQ1
Ch =2Co + (1) <3 +4Co,

a\2 [ (35Co,  10Co,
+<E> ["f< 27 g ) Tyl

C 16C
Cr = 5"+ Cat (37) 757

K 2 40CQ1
+<E> [nf 31 + non-ny| .

(2.50)
Xs
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Nevertheless, this partial transformation is sufficient to compare the NNLO results
of refs. [68, 69] which include only n; dependent terms.
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In the previous chapter we discussed interactions in the effective AB = 1 theory.
The only missing piece in the Hamiltonian of eq. (1.37) are the AB = 2 interactions.
With them, we have everything at hand to compute I';; in the matching between
both theories.

3.1 OPERATOR BASIS

Similar to AB = 1 there are several approaches to define a AB = 2 operator basis.
For lattice computations the so-called supersymmetric basis of refs. [94—96] has been
established [40]. It includes five dimension-6 operators of which three are not
present in the SM.

Furthermore, bases like in refs. [97-100] focus more on SM phenomenology and the
application for higher order calculations. This includes the definition and proper
treatment of evanescent operators.

We have already seen in section 1.2 that to describe the leading effects of M, only
a single effective AB = 2 operator Q is needed. For the purpose of computing I'1,,
we start with six operators in the leading order of the A/mj; expansion: [100]

4 (§i’yVPLbi) (gj’)’,,,PLbj) ,
Q =4 (5"PLbj) (5/vuPLbi) ,

QS =4 (§iPRbi) (EJPRb]) , (3 1)
Qs =4 (5iPrbj) (5jPrbi) ,

QT =1 (gi(TVVPRbi) (gj(TvaRb]') ,

QT =4 (giU’}wPRb]') (gjO’;WPRbZ‘) .
This basis is redundant in four dimensions since some operators are related accord-
ing to the so-called Fierz symmetry [101]. This symmetry makes use of the finiteness
of the bilinear covariant basis in d = 4 to find relations between spinor tensor
structures with Dirac matrices. A simple way to find these identities is described in
appendix B.

Ind =4 we find

Q =0Q, (3-2a)
Qr = —4Qs —8Qs, (3.2b)
Qr = —4Qs —8Qs. (3-2¢)
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In addition to the remaining three operators, we extend the effective Hamiltonian to
include also terms of the next-to-leading order in A/my,. The d-dimensional AB = 2
Hamiltonian is then given by

2
G AB=2

BB=2 _ T CQQ+CQ5QS+C Qs+ZCEE + Hijym, + heo (33)

This definition is different from the one in eq. (1.38), where no A/m; expansion is
applied. The operators of the eq. (3.3) is what we need to express the HQE of I';; as
shown in eq. (1.47).

The Hamiltonian ’HAB 2 includes 10 physical operators which are given by [63]

1 .
Ry =5Q+Qs+0Qs, (3-42)
_ 1~ _
Ry = QQ + Qs+ Qs, (3-4b)
Ry = 4m—b (5iPrb;) (5,PLbj) , (3.4¢)
~ m
Ry = 4 ° (s Prb;) (5;Pbi) , (3.4d)
4 e
Ry = ) <51DP7VPLprz> S]r)/pr ’ (3-4€)
b
~ 4 =
Ry = W <51DP7VPLDP ]) S]')/yPL ’ (34f)
b
4 —
R3 = ? ( ZDPPRD b> ( PRb (34g)
b
~ 4 B
R3 = <S pPRD b> S]PRb (34h)
my
4 .
Ry = . (S 1DPPRb> (5j7uPLbj) , (3-41)
~ 4 [_. _ .
Ry = . <Si1DpPij> (5j7uPrbi) - (3-4))

The covariant derivative D¥ is defined in eq. (2.31). Note that all operators of eq. (3.4)
are sensitive to the kinematics of the s-quark.

It is again possible to find linear relations between different operators using equa-
tions of motions, Fierz identities and by dropping terms of higher order in the
A /my, expansion. This results in

ﬁo = Ry, (3.5a)
Ry = — Ry, (3-5b)
~ R
Ry =R3+ 72 , (3-5¢)
Ry = R,
Ry = 2R+ =2, 5d
4 5 1+ 5 (3.5d)
~ R R
Ry = 2 —R — 2. (3-5€)



3.2 EVANESCENT OPERATORS

In the literature these relations are used to remove R, Ry and Ry from the operator
basis. All others are kept and used for the matching of AB = 1 contributions.

From eq. (3.4) we see that a linear combination of Q, Qs and Qs is suppressed
by A/my. The proof and the technical implications are presented in appendix C
and section 3.5. Another important aspect of the effective AB = 2 theory is the
treatment of evanescent terms which is the topic of the next section.

3.2 EVANESCENT OPERATORS

In section 2.4 we included a new class of operators to the effective AB = 1 theory
to resolve emerging difficulties when extending the effective operator basis to d
dimensions. Also, for the AB = 2 theory we have to introduce evanescent operators
to get a well-defined regularization and renormalization procedure. We have seen in
eq. (3.2) that four-dimensional Fierz identities can be used to reduce the number of
physical operators in the Hamiltonian. In dimensional regularization these relations
receive O(€) corrections which must not be neglected. We define the first generation
of evanescent operators as

E%l) —0-0, (3.6a)
B = 4 (5" " PLby) (577 v Vs PLb) (3.6b)
— (16 + e +eShe))Q, |
E) = 4" "9 Puby) (577 Vi i PLb) (3.60)
) |
E) = 4 (509"19" Prby) (577 7 PrY) (3.6d)
—(-8+ efl/lz)/le + eSz)/zez)Qg - (eﬁ/le - e&)/zez)és , ‘
EY) = (519" 9" Prbi) (577 Vs PRY;)
(3-6€)

1 1 ~ 1 1
—(=8+ eé,1),1€ + eéj),zez)QS —( é,z),le + eé,z)/QGZ)QS :

Equation (3.6) is necessary to renormalize the physical operators at O(as). The
leading order matrix elements of these operators can be used to relate spinor
tensor structures with up to three Dirac matrices to the reduced four-dimensional

equivalent. Such terms arise from physical operator contributions at one-loop order.

Additionally, the operator Egl) expresses the Fierz symmetry between Q and Q

which holds in four dimensions.
(i)

The parameters ¢, of eq. (3.6) denote alternative evanescent contributions of order e

and beyond. They express the arbitrariness in the choice of the evanescent operators.

Physical observables must not dependent on them [90]. The latter condition would
provide a consistency check for phenomenological results. In our case the e,@ are
kept unspecified throughout the calculation. This dependence is expected to cancel
in the lattice-continuum matching if the matrix elements are calculated in lattice

QCD. Hence, this check is beyond the scope of this work.
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34 AB=2 THEORY

(i)

According to refs. [49, 65, 68, 90] a certain numerical choice for the e, parameters
preserves Fierz symmetry in d dimensions. It is given by
L _ 1) _
€21 3 = —4,
1 1
4 = ) = -,
(1) 1  _
€421 €5,1,1 8, (3.7)
(1) I 37
€411 €01 = Yo
1 1
51,1),2 eé,z),z =4,
o _ 1 _
2 2),2 = ¢e50, = 0.

7

As we see in chapter 4, three more generations are needed for the calculation of
I';» in addition to the evanescent operators of eq. (3.6). For the renormalization
of the physical operators at two-loops and for the first generation at one-loop we
introduce the following:

EgZ) =4 (Ei'y’“ Ce ’)’VSPLb]‘) (gﬂlm e ’)’ySPLbi)

~ (3.8a)
— (256 + eﬁ)e + eg%z)ez)Q,
2 _ _
Eé ) =4 (Sl")/ﬂ1 e ’)"HSPLbi) (S]")/y] e ’)’VSPLb]') (3 8b)
— (256 + ¢} e +¢7€?)Q,
Eéz) =4 (51")/’41 cen ’)/mPRbi) (gj’y‘ul e ’)’pt4Pij) ( SC)
— (128—|—e(2) e—l—e(2> (-:2)@ — (128+e(2) e+e(2) 62)Q >
3,1,1 3,12 S 32,1 32,2 S
E® — 4 (59" ... y"Prb;) (5i7u, - - - Y, PrD:
J (59" ... 4" Prb;) (577 - - - Vs PrDS) (84)

2 2 ~ 2 2
— (128 + efm),le + eiflzez)Qg — (128 + eiz),le + eiz),zez)Qs )

For the renormalization of the first generation evanescent operators at two-loops
and for the second generation at one-loop we also need a third generation. It is

given by
Ef’) =4 (59" .. " PLb;) (Sjvp - - Y PLbi)
S (3.92)
— (4096 + e e +e5€7)Q,
E§3) =4 (Eify’“ . ’)/]WPLbi) (gj')/}ll s 7#7PLb]') (3 9b)
— (4096 + ¢)’)e + ¢ )e))Q,
E§3) — 4 <§Zr)/yl . r),.uGPRbZ) (5]’)/]41 . ’YVGPRb])
2048 + %) (3) _2A 3) (3) .2 G99
—( + 3116+ 631,67 )Qs — (2048 4¢3, 1€ +e3,,€7) Qs
Ef) =4 (57" ... Y Prb;) (5ivp, - - - Ve PrD?)
(3-.9d)

— (2048 + efl),le + efl),zez)@s — (2048 + efgrle + efz)rzez)Qs .
Finally, the fourth generation with up to nine Dirac matrices in one bilinear factor
is given by
4 - _
E; ) =4 (Sl")/ﬂ1 . ’)/VgPLbj) (S]")/Hl e ’)/Vgpri)

— (65536 +¢|]

_ (3.10a)
[+ e%z)ez)Q ,
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E§4) =4 (59" ... 4" PLb;) (5]'7141 e 'ymprj)

(3.10b)
— (65536 + ¢l)e + 1)) Q,
E§4) =4 (5;9" ...y Prby) (§j’Yy1 e 'YHSPRZ’J') (3.10¢)
— (32768 + ¢\ e + el €2)Os — (32768 + ) e + el e g
( + 63,1,16 + 33,1,26 )QS ( + 63,2,16 + 63, ,26 )QS 4
EF) =4 (51")/”1 ... ’)/VSPij) (gj’)’}ll . ’)’VSPRbi)
— (32768 + ¢} 1€ + )1 ,62)Qs — (32768 + ¢} € + )5 ,62) Qs
(3.10d)

In the next section we compute the renormalization constants of this operator basis
at the leading power in A/my,.

3.3 RENORMALIZATION

For the determination of the renormalization constants of effective operators, respec-
tive matrix elements with QCD corrections have to be considered. For the AB = 2
theory this involves the computation of the process sb — bs.

Since renormalization constants in MS do not depend on the masses or momenta
of the interacting particles, we can simplify the calculation by setting g, = gs = 0.
Thus, only tadpole integrals occur which can be directly evaluated with usage of
the program MATAD [102].

Unfortunately, the resulting matrix elements do not only involve ultraviolet but
also infrared divergences. This problem can be resolved if we introduce a mass for
every quark. For simplicity this mass is chosen to be equal among different flavors.
This unphysical kinematics regulates the IR divergences, whereas the UV behavior
is not effected. Thus, all occurrences of € can be interpreted as eyy. Therefore, the
renormalization condition for evanescent operators, as stated in section 2.5, can be
applied without restriction.

Additionally, QCD renormalization constants have to be inserted to render the matrix
elements finite. We employ in the following the parameterization of eq. (2.33). The
renormalization matrix for the Wilson coefficients is defined as

Co Zoo Z
1)~ () (2 20 )
(C%> ( © ) Zrq  Zee

with the parameterization equivalent to eq. (2.40).
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Schematically, we compute the one-loop corrections to a physical operator insertion
and express it in terms of tree-level matrix elements. Up to NLO in QCD we obtain

(@)™ = (Quy")™
14 a('Ll) tr
+(12) (aE}‘” + ”e) P Q)"

& (1,0) b t
Bs 1,0 1] 0 ) 0 ree
+(52) [ o+ == | g™,

where the sum over i and j is implied. In general, the coefficients a2 and b are
mass dependent. Since the tree-level contribution does not include any masses, Z,,
becomes relevant first at NNLO. The argument 1° implicates that the quark fields
are unrenormalized.

(3.12)

Similarly, we can write the evanescent operator insertions as

(EpNS = 2 (Ei(y°))"
(1,1)

Cij ree
+ (2 (Cff"” + L) 3, (9

« (1,0) ;" t
As 10) , %ij 0 (B (g0 e
+ () |4+ == | R (B o)™

(3.13)

In the MS scheme we demand that all O 66\1/ terms are removed by the renormal-

ization constants. Combining both eqs. (3.12) and (3.13) leads to an overall pole
structure of

a 11 11 11 11 11 .
<47§e) [(al('i )Cj + 2Z£ )Ci + ZC(QjQ)in + ZI(SjQ3CEj + C]('i )CE;') <Qi>t o
(3.14)

11 1,1 11 11 ”
+ <d](l )CE,' + Zzé )CEi + ZéjEl-)CE/ + Z(Q]E,)C] + b](z )C]> <Ei>tree:| .

(11

Since evanescent operators are formally defined as O(e), we always have ¢ i ) =o.
Comparing the coefficients of eq. (3.14) leads to

Zoo = —223"s;—alY,
Zgé]) - (3.15)
ZS’%? - _bi(flll)' 3.15
ZI(:“lEl]) — 27—l

Our renormalization condition for evanescent operators further demands that finite
terms of egs. (3.12) and (3.13) proportional to Cg vanish in the limit e — 0. They
are given by

&s Lo 1,0 Tee 1,0 ree
<E> |:<ZI(3/-Q3CE]' +C]('i )CE]) <Qi>t + (d](z )CE,‘> <E1‘>t :| . (316)
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The second term vanishes for d — 4 due to (E)™° = O(eyy). Applying the
renormalization condition to the first term gives
10 10
ZI(S,-Q,? = _Cz(]' . (3-17)

Our renormalization scheme is chosen such that all renormalization constants are
independent of the chosen kinematics for the underlying process. For the terms
containing poles this condition is evident from standard MS. However, it is not easy
to see that eq. (3.17) also fulfills this requirement. This becomes clear, if we look at
the general structure of an evanescent matrix element. Schematically,

(E) = (E) +ce(Q) . (3.18)

Every evanescent matrix element can be written as a sum of a matrix element (E)
which vanishes in d = 4 due to its connection to four-dimensional identities (such
as Fierz identities), and a term which is proportional to a physical operator matrix
element (Q). The proportionality factor c¢ is UV-finite. The one-loop corrections of
such an operator are given by

<E>1-loop _ <E>1'100P+C€<Q>1-loop

~, 1-loo O
= (E) P | e (a(o) + a) (Q)free

(0)
+ce <b<°> + bg) (Eyee,

where E’ denotes further evanescent operators. Their tree-level matrix element
arises from the one-loop corrections to Q.

Thus,

(3-19)

By = (E)"™ +eal) (Q)" +0(e) (3.20)
The one-loop matrix element contains only poles from the evanescent terms (E) eloop,
The finite terms proportional to physical matrix elements, c a!), stem from O(e)
terms of the evanescent operator definition multiplied by O (e™!) terms from the
one-loop correction. Since these terms do not depend on the kinematics of the
external particles, the same applies to the counterterm which removes them.

Our physical AB = 2 operators are Q, Qs and Qs. Regarding the first order in the
A /my expansion, we see that we could replace one of them by Ry, as defined in
eq. (3.4a). The A/my suppression of Ry is of kinematic nature and follows from
equations of motions and Fierz identities, as shown in appendix C. Therefore, it
cannot be neglected in the basis and must be also part of the renormalization if only
two operators out of Q, Qs and Qs are used to describe the leading A /my effects.

Following the renormalization procedure as described, we compute the renormaliza-
tion matrix of the Wilson coefficients. The renormalization of the effective operators
follows from eq. (2.38). Our choice for the physical operator basis is

Q = {Q Qs Qs}- (3.21)
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Since we are interested in the matching of NNLO amplitudes, evanescent operators
of at least second generation have to be included, because structures with 5 x 5
y-matrices appear. According to the discussion in chapter 4, we take evanescent
operators up to fourth generation into account for the matching of AB = 1 and
AB = 2. This allows us to compute the renormalization of first and second gen-
eration evanescent operators up to NNLO, and of third generation to NLO. In the
corresponding matrix elements, we encounter terms with up to 9 ® 9 -matrices.
Thus, we have

E={EM ED, BV EN ED, B, B, EP, ED,

g® gB) pB) pB) p@) p@) p@)

(3.22)
4
DY B B B, Y B, B

Note that in general the evanescent structure of our chosen basis is sufficient to
renormalize physical operator insertions with up to four-loop QCD corrections.

At one-loop order we obtain for the renormalization mixing of physical Wilson
coefficients:

0 0
1,1
zoo = o -1 2 |. (3:23)
0 8 16
3 3

All results are given in the ancillary files of this thesis with exact n, dependence,
where 1, denotes the number of colors. For illustration purposes we present the
results for n. = 3. Equation (3.23) agrees with the matrix found in ref. [65]. The
structure of the matrix shows that Q does not mix with the other physical operators
at one-loop order.

The renormalization matrix which mixes evanescent into physical coefficients is

given by

0

A=

(3.24)

= O
o O O
o O O
o O O
S O O
S O O
S O O
o O O
o O O
o O O
S O O

0
0
0

@]

st

|
O O N
o O O

0
0

’,:,"\1 N[—

— 1

1
One can see that only the first generation of evanescent operators is needed for the
renormalization of the physical operators at O(as).

The finite renormalization, which is responsible for removing contributions of
evanescent Wilson coefficients in physical matrix elements, is split into three
columns:

Z(l,O) _ (Z(l,O),l Z(l,O),Z Z(l,O),3)‘

EQ EQ +2EQ 1 ZLEQ (3-25)



They read

Z(l,O),l

EQ

Z(l,O),Z

EQ

3.3 RENORMALIZATION

1,01 5 (1)
12801 T 12631 T2
65 ,(1) (1) 7 ,(2) 1,(2)
—3C01) ~ €51 T 12811 T 180 T 48
(1) 7,(1) 1,(2) 1,(2)
—13e55) + 3¢50 T 2€(11) ~ 56020 — 48
0
0
1888 JeY) (1) 35 ,(2) (2) 7 o(3) 1,(3)
Co1) T96e5) FFeh) =90 T 120(11) T 16(,1) T 3840
(1) 1568 (1) 2 73,2) 1,03 1,03)
—288e €21) + 31) + 36(],1) ~ 30 + 2°(11) ~ 6%021) 3840
0
0
_ 39424 ,(1) n _ 2) (2) 179,3) _ 5 ,(3) 7 ,4) 1,4)
== (( )1) + 2560¢ ((Si 6726(( )) +224e(( )) + 3 e((gl)J) 256%’;> + 126’(%” +3 (() ) + 258048
34304 o 217 ,(° 1 1
*5632£’< TS5 ea) T 224e<1/1) + 6726(2,” + 196(1,” =50 T 2801 ~ 6800 ~ 258048
0
0
%
*k
*
*
(3.26)
(1) (1) (1) (2) (2)
726(4,1,1) - %6(4,2,1) - %6(5,2,1) - %"(3,2,1) - %6(4,2,1) -3
(1) 1) (1) (2) (2)
7%6(4,2,1) - %‘%5,1,1) + 2?6"(5,2,1) + %‘%3,2,1) - %6(42 T 3
0
0
(1) 1 2) 2) 2) (€}
ésﬁg(m/l) - %655/)21) %EEM 1) %623,2 1)~ 2624/2/1> %‘(%)2 nt 2 (4)21) 52348
(1) (1 (2 2 (2) (3)
%"(4,2,1) %e(s?z 1) 45’(3,)2 1~ %554,)1,” + %"(4/2/1) + %"(%2 nt he 54)2 yt 2
0
0
(1 (€) 3) 3 4)
74324 (4>21) 1?2€E521) + 720652)21 2406(4)21 %e(s,)m) - %egz,z,lj + 106(4>2,1) %05321) + 2 54)21
(1) ) 2 3 3 (3) 4)
Ble €421) —Be Eszn + 240352)21) 7203(4)21) 16‘)53,)2,1) Se 24)1 nt 1;80(4,)2,1) + %65321) + Ge 54)21) +
*
*
*
*

(3-27)

203776

195584
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0
0
82 (1) 2,(1) 2,1 1,(2) 7 ,(2) 376
3C11) T 3%421) T 355,10 4‘(31 1)~ 12%411) T 3
44 (1 4,(1) 2,(1) 1,(2) 1,(2) 136
3C411) ~3%61,1) ~ 3521 T s F G11) ~2%411) T 3
0
0
608 ,(1) 544 ,(1) 38 ,(2) 2,(2) (2) 1,0) 1,03) 640
(1,0)3 11 T 30511 T 3%311) T 3%521) ~ 2611) T 66311 T 23%411) T3
N — 992,(1) 160 ,(1) (2) 20,(2) 2,(2) 1,0) 7,) 7040
ZEQ 3 Ca1) T 3 60 _48(3,1,1) — 3410 ~ 3%z T 28611 T 2841 T 3
0
0
7424 ,(1) 1792 146 3) 2 (3) (3) ( 1,(4)
T‘(4,1,1)7T"<;11 +720€%11; 2406411) (311 -3¢ <321 10,1y~ 6¢510) T 2 "(411)
8960 ,(1) 256 88, (3> 4) 7 (4)
3 G (vll +2406%11) 7206411) 166(%11>Jr 411)73 @2 t1 i 61y T 12661 T
*
*
*
*
(3.28)
The unknown dependence on the NLO contributions of the fourth generation
evanescent terms are denoted by an asterisk “x”. They are not relevant for the
calculations of this thesis.
Furthermore, at NLO we have a 17 x 17 sub-matrix to renormalize evanescent
operators among themselves. It is given by
1 5
-4 - 0 0 0 0 0 0 0 0 0 0 0 0
59 7 1
0 2 5 0 0 10 0 0 0 0 0 0 0 0
o -13 ¥ o o { -t 0o o0 o0 0 0 0 0 0 O
2 1 7
o o o -2 -2 o o0 -} -Z 0o o 0 0 0 0 O
0 0 g2 4 o o Lt -3 0o o 0 0 0 0 0
1888 41 7 1
0o -8 9% o o 4 -9 0o o Z 1 0 o0 0 0 o0
0 -288 % o o 3 - o o LY -1 0 o0 0 0 o0
608 544 22 1 1
1) o o o % M o o -2Z 2 0 0o -1 1 0o o0 o
Zrf o o0 o0 ¥ % o o 4 -4 0 0 1 Z o 0o o
0 ¥ 2560 0 0 —672 224 0 o0 ¥ -2 0 0o 5 } o0
0 —5632 MM g 0 -224 672 0 0 19 -#Z o o I -1 o0
0 0 0 XA 1% o 0 720 -240 0 O 3 10 0 0o -1
0 0 o &0 2 o 0 240 -720 0 0 -16 ¥ o0 o0 I
* * * * * * * * * * * * * * * *
* * * * * * * * * * k * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * ok * *
(3-29)

The unknown NLO contributions of E() also lead here to no further specification of

the last rows.

166912
3

232448
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For the order O (a2), we depict only the parts of the renormalization matrix which
s P y the p
are necessary to renormalize physical operators. At this order the factors e,((’) are
resent in the e ! terms of Zpp, which is given b
p QQ g y
Zﬂf
(2,2) B ° 14 2 ’
2) 337 nyo 2y 31
200 0 ¥-=5 <5-3 |- (5:30)
0 8ny 124 l6ng 128
9 9 9 9
1, () 1 (1) _1e7,(1) 7 (1) 5 (2) 11 ,02) 5”f 119
oy 61 — 1801 — 24 G0 T 7% T 1801 T el T 9 T
200" = 0 ’
0
(3-31)
0
7212 _ (1) M 44,0 17,0 a0 1,0 1, o2 4 By
QQ — —g§nseis+ 8”f€521+ 3eu11+ Fei1 — 58500~ 9501 + 1488321 T 18 42(1"‘ 2
1 1 1 1 2) n
376”1‘651/2),1 112”/‘632)1 + 65.1)1 + 4762962) +3e él)l 33&2)1 + 966221 + 7% 42)1 +
(3-32)
0
7213 _ 1, ) M 32,0 M) 16,0 _ 1,0 J2 452 10
QQ - ”fe411+18”f€511+ @411+3€4 — 9611 9%21 +4 3,1,1 +@411_65
1 1) 2) n
*%”feifj 12”feé1)1 + 878296’511)1 + 18642)1 + 24"%1) +ge é +5e (31)1 + 288¢ 4(111 i
(3-33)
with the splitting of individual columns as in eq. (3.25).
The two-loop contribution to the mixing of evanescent to physical operators is given
by
np—3% Y- L1 0 0 &% i 0 0 00000000
Z(Z’Z) npoony 8 1 5
OF = 0 0 0 M8 0 0 4 2 00000000
n n
0 0 0 L -3 0 & = 00000000
(3-34)
The only non-vanishing entries of Zgél) are given by
e2) W, O 1Bl 1w, 5@ 8
QEM ~ gezlnf""?_ 24621+ 621‘*‘@@11"‘@
1) ng_ 7,0, 1 @, 133
— LT+ ey
QE 36 24 %1 12731 0 24
s _ " 1o 10 71
QE{ 108 872! 363 727
A )
QE? 3847

259
9

f +409

335
%

1393
18
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@y _ _ 77

QEY 1152”7

@y _ " _ 7w 1o 7m0 10 79
ZQs,Ef;” =36 24411 3%21 + 755,11 + 12521 7 17

vy _ o 1oy 1 g 1T g 1 g 4l
ZQS,Eé” = T 108 534,1,1 + 125421 + 545511 %55,2,1 36’ (335)

21 77
ng ;@ - 1152’

Sst3

(2,1) 35
Z =

Qs EY 384’

20 _ 7 49 ) M 7w Lo 1271
OV T 216 144 411 24 4217 4g%01 T g% T ag
7(21) ng 7 7 1 1o 1
14 74, 14 5

el)—l— 1)+

GsE) T 727 48 72° 2= 16 24%217 167
ey _ 5

G.E? 48’

@y _ 1

QSrEA(IZ) - % .

We observe that the dependence on the QCD gauge parameter ¢ drops out of the
final renormalization matrix. This is expected from the fact that a {-dependence of
Z would also imply a ¢-dependence of the ADM. The latter is used for the running
of hadronic matrix elements down to the matching scale. Hence, the AB = 2
matching coefficients would also be ¢-dependent. Since physical quantities are
gauge independent, and neither the CMM Wilson coefficients nor the lattice results
depend on ¢, this dependence is expected to drop out in Zgg as well.

Alternatively to the physical operator basis of eq. (3.21), one could also choose e.g.

= {Q, Qs, Ro} (3.36)

as described in ref. [47]. For illustration, we state only the sub-matrix for the
one-loop renormalization among physical operators. It is given by

2
(L) _ 4
QQ 3

2

Wi O

Z (3-37)

Q0 Wi O

-2

Without Ry in the basis (3.36) no solution of eq. (3.14) can be constructed.
The complete 20 x 20 matrix can be found in the ancillary files of this thesis.

In the next chapter we use the renormalization matrices to relate the Wilson
coefficients at different renormalization scales.
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Since the bare Wilson coefficients do not depend on the renormalization scale y in
the Hamiltonian, we can formulate the equation

d d
_, Y5 - 94
0 —deC ydy (CZ>
- Vddué - _6<V;zlz) z7 (3.3)
33

I
|
(@)
=
=
o
VN
=
&

N
N————
N

)

=Cry,

The matrix v is called Anomalous Dimension Matrix (ADM) and eq. (3.38) is known
as Renormalization Group Equation (RGE). We further introduce the QCD B-function
which is defined as

. d
B(as, €) = y@as, (3-39)
with the parameterization
_ Ks s )2 3
Blas,€) = —2a, [€+ (E) Bo + (E> p1+ O(“s)} : (3-40)

This function is currently known up five-loop order [103-105]. However, only the
two-loop results are needed for the purposes of this thesis. They are given by [104]

11 4
Bo = Ca— ;Tny,
3 3 (3.41)
34 20 34

;Bl = §C124 — ?CATPTlf — 4Cprnf,
with the Casimir operators C4 = n,, Cr = (n? —1)/(2n.) and the color trace
normalization Tr = 1/2.

Alternatively, the p-dependence of the effective operators O can be expressed by
another ADM 7. With the renormalization matrix defined in eq. (2.38), we obtain

0 :y;V (co) = yil (c°00) = éoyjy (z10)

= y(ﬁlo = —ﬁ(ucs,e)Z( d Z1> @)

Xs

(3-42)

In eq. (3.42) we use the following matrix identity:

Cd A (4 L (d
o_an_a(/x A) - <dxA >A+A <dxA

(3-43)
d -1 _ -1 d -1
= dxA = —A (dxA> A,
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which holds for any invertible matrix A.

The following relation between the two ADMs can be found by comparing egs. (3.38)
and (3.42):

¥ = —7. (3-44)

In the full theory side of a matching calculation, logarithms such as In(M/u)
appear from loop corrections, where M is the mass of a heavy particle. To get a
better perturbative convergence, a reasonable choice for the renormalization scale is
obviously u ~ M. On the effective field theory side, where M is integrated out, the
typical energy scales are of order m and corresponding logarithms In(m /) occur.
The former choice y ~ M leads to numerically enhanced terms with In(m/M),
which lead to large corrections in the perturbative expansion.

This problem can be solved by using RGE techniques. Since they describe the u
dependence of a quantity, they can be used to relate quantities at different scales.
In general, we can describe the so-called running with a transition operator U. For
the Wilson coefficients we get

C(m) = Clu)U(pr, p2) .- (3-45)

The structure of U can be derived from the ADM in eq. (3.38). We use the following
parameterization:
&g\ (D)
7= X (57)

i=0

Yi- (3-46)

Equation (3.38) can be solved perturbatively as

(o

é(Hl) = C(p2) exp /P:]iy ’Y]

[ ros(p) 0% :|

=C ex / dag ——
()| | 4% Blas)

_A as() Yo Bor1i—Pivo
= C(p2) exp _/as(m) das <_2ﬁorxs BT +O(rxs)>] (3-47)
- (_f(yz)exp _—ﬁ)ln(ii&li)

BB s 1) — as(a)) + O(a2)|

where we set € — 0 since all quantities are finite. It turns out that the large loga-
rithms which appear when relating results at two different scales are automatically
summed by the RGE running. Equation (3.47) enhances the Wilson coefficients to be
defined in RGE improved perturbation theory.
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If the scales p1 and 2 of eq. (3.47) are of the same order, the result can be expressed

in terms of a; at a single scale. The running of «; is defined by solving eq. (3.39).

We get
"1 - /‘Xs(]/‘l) 1
In{ — = dae —
(qu) D‘s(ﬂz) ) ﬁ(IXS/O)
— o3 (p2) H1
= as(p1) = as(p2) — 750 1n<‘u2> (3-48)
0‘?(#2) 21.2( M1 "1 4
t g [Zﬁo In (PQ) — B ln(}l2>] + O(ag) .

If p11 and pp are not of the same order, we would again get large logarithms.

Inserting eq. (3.48) into eq. (3.47) and expanding the exponent, results in

Eun) = é(yz){l + <“ng)> 70 m(}’t)

Y o) (Felz)] o
+ (’)(zx?)}.

Starting at O (a2) also commutation relations have to be considered between the
7vi [106].
The ADM can be represented in the following way:

y = ( TeQ  TeE ) . (3.50)
YEQ YEE

The sub-matrices ygg and ygr describe the mixing into and of evanescent Wilson
coefficients. They can be ignored since physical quantities must not depend on
them.

In the basis of physical operators Q, Qs and Qs, we find

4 0 0

Yoo =0 -2 2 |, (3.51)
o b 32
3 3

which agrees with ref. [65]. The ADM sub-matrix which mixes evanescent Wilson
coefficients into physical ones reads

61—%00000000000000
Yoo = [00 0 -1 } 000000000000 /[- (35
00 0 -Z -1 000000000000
At two-loops, the ADM is given by
— (- (2) (3)
71,00 = (’)’LQQI 7,007 'Yl,QQ) ’ (3-53)
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with
2 (1) 2 (1) (1) , 11,(1) , 20m 109
" snges | —gnges | —1ley | + Fey | + =L — 12
71,00 = 0 / (3-54)
0
0
2  _ 1 1 1 1 232n
7,00 = Z”feflz)l + ”feéz)l + 64(1 1>1 + %62,2),1 - geé 1)1 *46’;,2),1 + %Zf 424 ’
1 1 1 n
§”f€z(1,2),1 ”feéz)l + 7864(13,1 - %‘34(1 )1 + éeé - %g é2>1 + 5+ 82
(3-55)
) 0
®)  _ 1 1 40n
M,00 = ”feifl + nf€é1)1 + 18264(11)1 + ‘3512)1 - 23*2‘?&31 %eéz)l 260f + 116
1 il n
g”fez(t,l),l 1nfeél)1 + €i1)1 + 64(12)1 + 11123’56é1)1 + %e 2)1 5+ %
(3.56)
For 71,0r only few entries are non-zero. They are given by
2 10ny 131 () () 5 2. 83
701w 133
TigE) T T 9 T2t 3Bi T
1l 1o 71
Toel) T 27 T 2%1 T 9%1 T g
R
71,QE§2) - %1
77
’)/LQEéz) - = @/
e 7w o 7w Lo 79
™ T 9 T g4l T Ga21 T g1 T 3% T 3
ng 1 () 1@ 1 1n 41
MoE® = 73772 4(1,1,1 + 554,2),1 + gef(s,l 17 §€é,z),1 9 (3:57)
7
,)/l,QsEéz) - @/
35
71/QSE£2) - %/
B 7nf 49 (1) 7 (1) 7 (1) 1 (1) 1271
'h@sgf) ~ 51 %64,1,1 - 66421 125511 7 5%21 36
7 70 Lo 1a 11
M0 T 18 T 12411 T 1g%21 T g%11 T g%21 T g
5
,yl,QsE:gz) = - ﬁ/
1

71,@55(12) 9 .
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The transition operator U of eq. (3.45) can be computed by inserting this ADM into
eq. (3.47). The alternative approach is to define the transition operator for effective
operators:

(0) (m1) = U(p1, p2) (O) (p2) - (3-58)

The matrices U and U are related by
U(pr, p2) = U (pa, p2). (3.59)

The running of the three physical operators at p1 ~ 2 is given by

Co(m1) = CQ(Vz){1—4<asiZ2)>1n<;2>
< >2 [h‘< ) (‘”feél) +§”f€§13 (3.60)

1) 11 (1) 20nf 109
173% "9 T3
f

47 Z
2
s (2) Py (2, 0 2 0
“(57) o) Grret =Gt
8 1 92 1 8 1 1 2321’[f 484
_3551,1),1_5651,2),14'5@;,1),1"'4%2)1_ 77 +T

56nr 500\ . o (1
+ (9 — 9> In <P‘2>] (3.61)
( 7

2
as(p2) H1 2 2 n
+ ( 547[ [ln<m> <3”f€z(11)1 ~ 9%
182 1 2 1 22 1 2 1 4071f 116
5 ¢ ,), - *@51,2)1 ?eé@)@ + §€éz)1 w3

Co, (1) = CQS(HZ){—136 (D‘SAEZZ)) h‘(z;)

ws(p2) \2 [, (1 o 1w
+<47-[> [ <}42 9”fe421+ 21501
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28 (1 3 n 4 25 1 9271]‘
—jfz(x )+ 5651,2)1 - g‘fs(s,1),1 T3é2)1 -y 82
560 _ 32n In2 il
9 9 Ha

T cés(m{l -3 <"‘ﬁ2>> 1“(2) (362)

2
(2] () (Grsetl+ et

61 (1) 7 (1) 115 ( ) 260nf B 422>

e e 1()
6 411 94 1 18 511 352 27 3
(1600 64npN o ()]
9 9 U2

Although the evanescent operators are absent in the running, their definition affects

the RGE-evolved coefficients through the el).

We observe that Wilson coefficients of evanescent operators do not mix into physical
ones. This is a direct consequence of the renormalization scheme that we specified
in section 2.4. To be more precise, the evanescent Wilson coefficients of the first
two generations do not mix into physical coefficients at two-loop order. Since we
only compute one-loop QCD corrections to the third generation operators, we see
no mixing from C_) at O(as).

3.5 POWER SUPPRESSION OF Ry

In appendix C we show that the structure of Ry, as defined in eq. (3.4a), is twofold:
Ro = R§™ + Eg,, (3.63)

where Rghys is the physical, 1/my-suppressed operator. The evanescent operator Eg,
cannot be further specified and is given as a leading term in the 1/m; expansion.

The non-specification of Eg, is an issue if poles proportional to (Ry) appear. This
becomes important in this section, where we analyze the power suppression of Ry
up to NNLO in «as.

It is shown in ref. [65] that the matrix element of Ry, as it is stated in eq. (3.4a), is
not O(A/my) at higher orders in a;. To resolve this problem, ref. [47] introduces
correction factors a; according to

_ &g 50 A
(Ra) = %2 (Q)+ a0, (Qs) +ag, (@s) = O( ). (364)
The «; are perturbative objects and are defined in such a way that they restore the
correct A /mj scaling behavior of (Rp) at each order in «;. Formally, eq. (3.64) can
be obtained by introducing the «; in the definition of Ry as in ref. [47]. Alternatively,
one could account for these corrections as finite renormalization factors and making
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them thus part of the renormalization scheme. Since both approaches are equivalent,
we simply define the matrix element (Ry) by means of eq. (3.64).

The correction factors «; are known to O(a;) and O(n ftxg) [47, 65, 68]. For our
calculation of ', the knowledge of the full O(a?) corrections is required. Thus, we
can recover the correct scaling when removing one of the physical AB = 2 operator
matrix elements in favor of the suppressed (Ry).

We can write the correction factors as

T zxfo) + (:—;) ocgl) + (:—;)2a52), (3.65)

with the leading order result from appendix C,
0 0 0
(xé) = (xés) = (X(Qs) = 1. (3.66)

The tree-level relation of eq. (3.64) can always be used to remove one physical
tree-level matrix element. Hence, one &; can be chosen freely. We define

g, = 1. (3.67)

The further focus of this section is the computation of (Ro) up to O (a?).
3.5.1  One-Loop Corrections to ag and X5,

To compute (Ry) we consider the process bs — bs. Furthermore, it is important to
consider external on-shell particles, because the suppression of Ry is only given
in physical processes in which the HQE is valid. Since we are only interested in
the leading order in the A/mj expansion, the s-quark mass can be neglected,
whereas for the b-quark we have g7 = m?. Hence, the simplest choice is g, = 0 and
q = q, = (my,0).

The matrix elements of the B; mixing process are infrared divergent at O(as)
and beyond. Due to the unknown structure of Eg, in eq. (3.63), a computation
in dimensional regularization where IR- and UV-poles are expressed in terms of
the same regulator would lead to ambiguous results. Hence, we introduce a small
gluon mass as an alternative IR regulator. The gluon propagator is then given by

a i) v
ZGy?/(P) = i (‘gyv+€ PrP ) (3.68)

p> —mg p* —mg
Here we use a general R; gauge, where Feynman-"t Hooft gauge is indicated by
¢ = 0 and Lorenz gauge by ¢ = 1. The Fadeev-Popov ghosts are kept massless. The
mass 1, serves just as an ad hoc regulator in Feynman integrals. The Hamiltonian
itself formally does not describe a massive gluon. Thus, we circumvent the problem
of broken gauge symmetry, which becomes manifest in the three gauge boson
coupling. Nevertheless, this ancillary mass receives a counterterm contribution as
we will see later.
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The NLO matrix element of Ry is composed of tree-level and one-loop operator
insertions:

<R0>NLO = <R0>tree+<R0>1—loop ) (369)

The fermion fields are bare quantities in this relation. Thus, the tree-level amplitude
is given by

1

<R0>tree _ ZZ,SZ2,b <2 <Q>tree + <Q5>tree + <©S>tree>

1 tree (3'70)
= Zrs 2o Z <2ZQ1' +Zgsi + Zési) <(9?> .
1

The coefficients Z;j are the renormalization constants of the effective operators,
presented in section 3.3. Thus, evanescent operators of the first generation have to
be considered in eq. (3.70) as well.

One can see that the O(zxg) part of eq. (3.64) holds also for bare operator matrix
elements:

%<Q0>tree+ <Qg>tree+ <fQV(S)>tree _ O(A) ' (371)

My
This can be used for one-loop corrections if they are expressed in terms of bare
operator matrix elements. Schematically, the one-loop order result for (Ry) is then
given by

(Ro)™™P = 25,75, <; (Q)1°P 4+ (Qg) 1P + <Qs>1'1°°p>
= (1) (1@ 40109 +0(Q)"™)
+0(e) (3-72)
= (2) K” B §> (@)™ + (e~ b) <@%>”ﬂ
+O(e) .

The coefficients a, b and ¢ are O (€°).

We renormalize the quark field in the MS scheme in which Z; is currently known to
five-loop accuracy [107-109]. For our purposes we need

. w2 (72D 722
7, = 1+<4;€)Z§1’1)+<ﬁ) ( i )+O(zx§’), (3.73)
with
ZM = cr(e-1),
280 = G426 - 2y~ (10 Ca— 5 (187 Ca
. Tan] ’ (3.74)

z{*? :CF[%(l—C)CA‘F%(l_C)ZCF—’_%(1_g)ch]'
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b S
R, Rq /
RO
g b
@

(i) (iif)

Figure 3.1: These sample Feynman diagrams contribute to (Ro)*"*°.

O L O

(i) (iif)

Figure 3.2: Only three master integrals remain after the reduction of (R0>1'1°°p. Solid lines
denote denominators with the mass m;, curly lines are associated with .

The calculation of (Ro)*°°P includes the evaluation of diagrams as shown in fig. 3.1.

For this we employ the setup described in chapter 5. In the following we focus only
on the master integrals.

With the momenta of the s-quarks set to zero, only two-point On-Shell (0S) integrals
with g% = m? occur. The one-loop problem reduces to three master integrals which
are shown in fig. 3.2. The result for the massive tadpole integrals (i) and (ii) can be
directly taken from e.g. [110]. The on-shell integral with two masses needs further
analysis.

The integral of fig. 3.2iii has the following analytic form:

d“k
I = /(mg—(k+q)2) ) (3.75)

This integral can be solved with exact mass- and e-dependence in terms of GaufSian
hypergeometric functions. Nevertheless, the computation can be vastly simplified
if we expand the result in the limit my < m;. This scaling is allowed because we
recover our original (infrared divergent) result in the limit m¢ — 0.

The expansion we apply is called asymptotic expansion and describes a formally
non-convergent series. The advantage is that the expansion to a fixed order has a
better convergence towards a limit point than a fixed order Laurent expansion. Thus,
truncating the series at a certain order leads to a comparable scaling behavior as
the original function with smaller deviations in comparison to a truncated Laurent
series. For the purposes of Feynman integrals this expansion leads to additional
logarithmic and fractional power scaling.

In eq. (3.75) we have g2 = mi > méz,, which provides the possibility of a threshold
expansion [111, 112]. We follow here ref. [113] which gives a comprehensive overview
about asymptotic expansions in Feynman integrals. The procedure up to two-loop
order is first applied in ref. [114], where also eq. (3.75) is considered as an example.
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The easiest way to apply a threshold expansion is via the method of regions. It is
defined as a splitting of integrals in different regions in which the loop momenta
follow a certain scaling. After expanding the integrand accordingly, all separated
integration regions are extended over the full momentum space. The final expansion
is the sum of all these contributions. In eq. (3.75) we can find two regions, where
the scaling k ~ my, is called hard, and k ~ my is called soft.

The integral of the hard region is given by

d%k 1
1 = T . 76
| o= wram M- 070

The operator 7, describes a Laurent expansion in the limit x — 0. To the quadratic
term in m, we get

dk
= / (mj — (k+4)2) (—K?)

d?k
— mé/ (m% - (k N q)Z) (_k2)2 + O(mé) .

(3-77)

The remaining integrals of eq. (3.77) can be directly solved as [110]

2 2
L 1+2+1n<”2> _ = [1 —2+1n<”2>]
N € mb 2 |e€ mb (3.78)

+0(e)+0(mt)

d/2

with the normalization factor N = imr®/*j~€e~ 7t and the abbreviation z; = méz,/ ma.

Similarly, the soft region can be expressed as

: d’k 1
= [
B d?k d?k (—k?)
S e a0

The second term can be simplified by partial fraction decomposition. We make the
following replacement in the numerator:

(3-79)

—k* = (m?2—K*) —m?. (3.80)

2
8 8

The first term on the right-hand side cancels the mass-dependent denominator
factor, leading to a scaleless integral which vanishes in dimensional regularization.

Thus, the numerator of eq. (3.79) is simply replaced by —mg.

The remaining integrals give the following result:

2

1 4
- + 1n<n12> —In(zg)

b +0(e)+ 0 (mg) . (3.81)

1 s Zg
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By combining egs. (3.78) and (3.81) we obtain

1 1 2 z
NI ot 2+ ln<:1127> — TT\/Zg +2¢ — 53 In(z,) + O(e) + O<m§> ,  (3.82)
which is in agreement with ref. [114]. The poles proportional to z,, which appear in
the individual regions, vanish in the sum. This is a basic feature of the asymptotic
expansion, as it introduces new, spurious poles which only cancel in the sum of all
regions.

In the Integration-by-Parts (IBP) reduction additional spurious infrared divergences
may occur. For example, the integral I appears with a spurious factor of 1/ mg, in

(RO)NLO. Hence, it is necessary to compute also higher powers in z,. After inserting
the correct results for the master integrals, these inverse powers of z, disappear.

With these master integrals we can finally evaluate <R0>NLO. By comparing the coef-

. . . ~ont e .
ficients of the tree-level matrix elements (Q°)"™ and (Q%) ", it is indeed possible
to specify the NLO correction factors in such a way that the finite contributions of
these matrix elements vanish. We get

woop _ Ly Ly By 1y () 4
®o 262,] 6631 + 1 i1 B 5,1 T 4In mi + 3 5
doop _ 13y 1By 1y 1) o [
5, T T % +1*42 T 2% +1*65,2,1+8n mii :
With the replacements of eq. (3.7), we get
2 2
(le_bOp = 4n| & -|-§ WP = gin( B +8, (3.84)
mb 3’ Qs mb

which agrees with ref. [65] with full n.-dependence. For n. = 3, eq. (3.84) is also in
accordance with ref. [47].

We observe that the individual coefficients a, b and ¢ of eq. (3.72) contain additional
IR poles of the form In(y/myg). These poles cancel when applying the relation of
eq. (3.71). Additionally, to reduce terms with multiple Dirac matrices, leading order
matrix elements of evanescent operators are introduced. Thus, terms of the form

(E)"In(z,) (3.85)

remain which diverge for z; — 0. Since we have a clear splitting between IR- and
UV-poles, it is possible to take the limit € — 0 first. We then get an UV-safe quantity
which is furthermore IR-safe.

Alternatively, using dimensional regularization for the calculation of (Rg)*'*° leads
to terms of the form

< E>tree
€IR

, (3-86)

which are formally finite for eg = eyy = € and cannot be removed by the «;.
Furthermore, if the definition of (E) is changed by a O(¢€) term, the a; differ from

eq. (3.83).
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3.5.2  Two-Loop Corrections to ag and LR

The determination of #g and a5 at NNLO ensures the correct power suppression of
(Ro) to O(a?). At this order we have to evaluate the renormalized amplitude

(Ro)™ = (Ro)™™ + (Ro)"™* + (R)*'*P . (3:87)

The results for (Ry)" P have to be inserted up to O(€), since in combination with
the renormalization constants, these terms contribute to O(txgeo). Furthermore,
in (Ro)"™ evanescent operators up to the second generation are needed for the
renormalization.

In addition to the quark field, the renormalization of the b-quark mass must
be taken into account. According to the Lehmann-Symanzik-Zimmermann (LSZ)
theorem [115], the mass of the external b-field is identified as the OS mass, i.e.
77 = (m$®)?. This complies with the on-shell condition of the considered process.
The corresponding renormalization constant is currently known to four-loop accu-
racy [116] and to three-loop with a second quark mass [117]. To order O(as) it is

given by
708 :1+(&)c 3 g
My a) ) e m2

2 2 .88
e[ ) —1em([ ) 232 (5-88)
my my

where we use the notation m;, = mgs. This renormalization constant would in
general be different when a massive gluon is considered. We explicitly checked that
the a; do not change with this altered Z%C’.

It turns out that a counterterm for the auxiliary gluon mass has to be introduced to
remove all occurring poles. The gluon field- and mass-renormalization constants, Z3,
and Z,, ., are defined in such way that the Green’s function of the gluon self-energy
is finite to all orders in perturbation theory. It is expected that Z3 is the same as in
regular QCD since the gluon mass is introduced as an ad-hoc IR regulator which
does not affect the UV poles.

Including one-loop corrections, the renormalized gluon propagator is given by
, 1 (. . . ,
iGuy = Z (ngv +iGy,, il17” 1G9_V> , (3.89)

where we drop the color indices for simplicity.

The self-energy function I'l;,, can be separated into transversal (I17) and longitudinal
(ITy) parts:

. . DCS v v
il = i0ap (E) |:<gyv - p;g >HT(P2) + p;g HL<p2) . (3.90)
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For the bare gluon propagator, this splitting can also be applied as

5
Gy = —— (=g + Pupy)
uv nv Hrv
p? [pz - (mg)z}
104 0o a0 ) (3.91)
+ 2 [(mg) +(@E-1)p } Pupv,

P [P — (m3)?]
which is not transversal in Lorenz gauge (¢ = 1) due to the gluon mass. Similarly,
the renormalized gluon propagator is separated according to

Hpv v . HpY v
iGh = i<g7“’ - ’;E) Gl (p?) +zppf Gl (p?). (3.92)

The parameters ¢ and m, are renormalized with
Xs (1
=2V) -1,

@ -1) =26 -1) = (1+
. as ) (3-93)
My :ngmg = (1+Ezmg>mg.

The transversal and longitudinal parts, Gr and Gy, are renormalized independently.
Up to O(as) the transversal part is given by

i0p

. A
iGr(p°) = 2 m§ on
(BN O [, 2 (1),2 2 .
(47‘() (p? —m3)? [Zf‘ (g = p7) + 2Zugmig + U (p )] ’
which in the limit p? > m§ simplifies to
. 2\ ifsah 2 2
ZGT(p ) = p4 (P + mg)
s\ 0ap | 4,(1) o 2
() S - (mm)
d (3-95)
+ i |2y —2°2) — p? (dmzﬂr(zﬂ))
8 mg—0
— 2 4
2(m), |} o)
Similarly, the longitudinal part is given in Feynman-"t Hooft gauge (¢ = 0) by
S N . 10ab 2(,(1) (1) 2
lGL(F’ ) = P2 — mé (47_[) (P2 — m§>2 [mg(z?) +2ng) + HL(F’ )]

"B () - (£2) lfaéb{p (),

d
p2Z§1) + ZpZZ,S}g) + p2 (dmZ HL(p2)>
g

fro(m)

(3.96)
+ m§

me—0

+2(Tm(p?))

mg—0
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G YR CURLIN. © 4

Figure 3.3: These diagrams contribute to the mass and field renormalization of the gluon at
one-loop order. Note that the diagram with the four-gluon interaction does not
vanish due to mg # 0.

The limit p2 > mg; is allowed because the Green’s function Gy, is off-shell, and all
renormalization constants in the MS scheme do not depend on the chosen kinematics
of external particles.

The one-loop order contributions to I1,, are shown in fig. 3.3. For p* > mg, the
diagrams are evaluated using the large momentum expansion which is done with
the program exp [118, 119]. The resulting Feynman integrals are either massive
tadpoles or massless propagator-like integrals. Both can be evaluated in a highly
automated way using the programs MATAD [102] and MINCER [120], respectively.

From the requirement that in eqgs. (3.95) and (3.96) all divergences cancel, the
renormalization constants in Feynman-"t Hooft gauge take the form

a _ 1[5 4

VAR p <3CA—3”fTR> ’ (3.97)
m _ 1/ 19 2

Ly, = e( 15 Cat TR ) - (3.98)

The gluon field renormalization is in accordance with the MS result [109].

For the two-loop computation of <R0>NNLO, in total 1554 diagrams have to be evalu-

ated. Sample diagrams are shown in fig. 6.9. As before, we use the computational
setup described in chapter 5.

The topology reduction with tapir [121] leads to 91 independent Feynman graph
topologies. Due to our special kinematics with ps = 0, 1126 symbolic Feynman inte-
gral families appear after applying partial fraction decomposition. The integrated
symbolic topology minimization of tapir reduces this number to 221 independent
integral families.

After applying an IBP reduction with FIRE [122] the results are expressed as 25
master integrals. Two of them will appear in the matching calculation of I'y; as
shown in fig. 6.15. The remaining 23 are presented in fig. 3.4.

The integrals of figs. 3.4i, 3.4ii, 3.4V, 3.4vi and 3.4xiv are straightforward to compute
since they are products of one-loop integrals. For the computation of the remaining
master integrals a strategy similar to in the one-loop calculation is pursued. To
apply a threshold expansion with g> = m? > méz,, we first have to identify all
non-vanishing regions of loop momenta scaling. For this task we use the program
asy.m [123]. For every input integral it returns a list of vectors which contain the
scaling behavior of the propagators in the corresponding region. By applying shifts
in the loop momenta, it is then possible to identify the individual regions in the
momentum space representation of the integral.
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(v) (vi) (vii) (viii)

(ix) %) (xi) (xii)
(xiii) (xiv) (xv) (xvi)

(x.vii) (xviii) (xix)

(xxi) (xxii) (xxiii)

Figure 3.4: We show the master integrals which emerge after the IBP reduction of (Ry) at
NNLO. Solid lines denote propagators with mass m;, curly lines with mg and
dashed lines are massless. A dot on a line means that the according propagator
is squared.
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Hence, each region introduces a new integral family. The expanded master integrals
of fig. 3.4 can then be further reduced by an additional IBP reduction. This leads to
simpler master integrals, partially without graph representation. These are either
known, single scale, on-shell integrals [124], or can be evaluated straightforwardly
using Feynman parameterization and the program HyperInt [125], or other common
multi-loop techniques such as Mellin-Barnes representation (see e.g. ref. [110]). The
evaluation with the former is explained in appendix D.s5.

The «a; are again constrained by the fact that the finite part of <R0>NNLO vanishes
at leading order in the A /m; expansion. We find that the individual NNLO matrix
elements of Q, Qs and Qs are individually UV-finite in Feynman-'t Hooft gauge.
Their IR-divergences are regulated by In(z,) terms which cancel in the combined

(Ro)NMO The results for the a; as well as for (Q)™"-°, (Qs)"N and (QS>NNLO
are given in the ancillary files of this thesis.

For the correction factors we find

2 Loy, o, o 1 on_ 13
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T 04%12 7 144%411%21 + 77 €4216521 1446’51 19521
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with L = In(p?/m?) and (z) being the Riemann zeta function which is given by
< 1
Z on’ (3.101)
with the function value
Z(3) ~ 1.20206. (3.102)

The symbol n;, gives the number of quarks with the mass m;. The number of
massless flavors is denoted by n;.

An arbitrary choice for the evanescent coefficients which is in accordance with the
literature is given by

) = -4, o) = -4, o) = -4, o) = -1,
efh, =8, e, =0, el =0, oY, =4,

eé,lz),l =0, Eé/lQ)/z =4, 5&),1 =8, 6&),2 —0,

eﬁ) =0, 6522) = —55—2, eng =0, eézz) —4, (3.103)
2 =0, e, =266, P =0, 7, o84,

6By =0, =88, oY =0, oY, =22

58L2 649 177% 11183 16 ,
3t T3t T3 @) -80),
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@) 8L2 104L 1672 422 167
~ = _—_ —_ 1
wo, = (mtm) < 3 9 9 27 ) T\ 73 6
18812 32072 326047 32 G105
E— 2 JE—
+ +220L + = + = + S In(2) — 164(3).

Equations (3.104) and (3.105) are in accordance with ref. [68] where only terms
proportional to n;, and n; are given at NNLO, but additionally with a non-vanishing
c-quark mass dependence. Thus, the results are complementary.



MATCHING CALCULATION

The effective field theories of chapters 2 and 3 contain effective couplings which
describe interactions only correctly at certain energies. The renormalization con-
stants which are defined in section 2.5 not only render our theory UV-finite over
this valid energy range, but also introduce a renormalization scale y. As we have
seen, the latter can be chosen such that the occurring logarithms do not lead to
large corrections in the perturbative series. Therefore, y is usually set to the typical
energy scale of the problem at hand. In the EFT picture it can hence take values of
the range in which the theory leads to useful predictions. In perturbative QCD, for
example, j1 can be formally used in the range (Aqcp, Ep| since we treat QCD as a
UV-complete theory. No matter if the upper bound is actually the Planck energy Ep
or not, QCD has become the empirically established theory of the experimentally
accessible subset of this energy range. It is therefore treated as our “full theory” for
interactions of particles depending on their color charges.

The basic requirement on an EFT is that it predicts the same results as the full theory
in the limit where both are valid. The procedure to connect the different theories
is called matching. Relevant for this work is the connection of the AB = 1 theory
to the sM. The scale o at which both theories agree is denoted as matching scale.
Renormalized, amputated Green’s functions with same external states are then
computed in both theories and one demands that they agree at yy:

<f|SSM ‘i>ren L (f’SAB 1| >ren (1 +O(1/mw)> (4.1)

H=Ho

H=Ho
The resulting Wilson coefficients C; (o) are then extended to the whole valid energy
regime through RGE techniques.

The HQE, as described in section 1.3, is an operator product expansion that marks the
transition from one EFT to another. Thus, for the computation of I';, the following
matching calculation at the scale y; is applied:

Iy = 2MAbs<' / d*x (B| THAE=Y(x)HAB=1(0) yB>)

#=m (4‘2)

L (B|HYP2(0) [B)

4

H=m

where the Wilson coefficients of the AB = 2 Hamiltonian are replaced by I';>-specific
matching coefficients H;. Using the operators of eq. (3.3), we obtain

Gpm
T2 = 5- 1\/? ZH 1) (BlOMP=2|B) (1) + Ti/m, - (4.3)
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The matching coefficients H; include the leading effects in the A/m; expansion,
whereas the higher orders are denoted by I'; /,,,,. With the RGE running of section 3.4,
the resulting AB = 2 operator matrix elements can be expressed at a different scale
u2. This scale can later be chosen as the point where the hadronic matrix elements
are evaluated by non-perturbative calculations. In the end, the AB = 2 matching
coefficients have the following structure:

H; = H;(Cj (po, 1), i1, 12) , (4-4)
where Cj denotes the AB = 1 Wilson coefficients.

A look at eq. (4.2) reveals that it involves the bound states |B) and |B), which cannot
be fully described as local quark field operators in perturbation theory. It is anyway
possible to access H; if the final states are replaced, in first approximation, by their
valence quark fields, i.e. |Bs) — |bs), |Bs) — |b3) and |B;) — |bd), |B;) — |bd). The
matching equation simplifies to a comparison of local matrix elements describing
the process bs — bs or bd — bd

L Abs (ima3) Lojpmsn=2

M5 (4-5)

H=m H=H1

Both sides entail quark field renormalizations which cancel in the direct compar-
ison. It is nevertheless beneficial to work with UV-finite quantities, because the
corresponding regulator can then be set to zero before the actual matching. This
simplifies in general the whole procedure as evanescent operators are no concern.

Since in this work we focus solely on the matching of leading terms of the A /m,,
expansion, the momenta of the external s-quarks (or respective d-quark) can be
chosen as g;,; = 0. Furthermore, the physical process is sensitive to the b-quark
mass, but the matching coefficients do not depend on the three-momentum of
the b. Thus, together with the on-shell condition q% = mﬁ, the easiest choice is
gy = (my, 0)7.

Note that the matrix elements of eq. (4.5) are IR divergent. As described in section 3.5,
one possibility to regularize the divergences is to include a small gluon mass m;
into our Feynman integrals. This has the advantage of a simplified matching
calculation as the limit € — 0 can be taken after the renormalization. Since both
sides of eq. (4.5) have by construction the same low energy behavior, the gluon mass
dependence drops out, and H; becomes independent of the chosen IR-regulator.
The disadvantages of this approach are the appearance of more involved Feynman
integrals since we introduce an additional scale. Also, the implications of the gauge
breaking that come with a gluon mass may effect the Uv-renormalization procedure,
as discussed in section 3.5.2.

Another approach is pursued in refs. [91, 126] where both IR and UV divergences are
regulated dimensionally. Hence, the matching must be performed in 4 dimensions.
Due to the presence of IR poles, this implies that evanescent parts of the matrix
elements contribute to the finite result. Thus, Wilson coefficients of evanescent
operators have to be considered on both sides of eq. (4.5), and coefficients of
physical operators are extended to include terms of higher order in €. In the
following we describe this approach in more detail.
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At leading order there are no IR divergences and the two sides of eq. (4.5) are
schematically given by

LAbs (iMLO,AB:1> _ (a(o,o) _|_a(0,1)€) (Q)rree

2Mp (4.6)
4
+ (b(om + b(‘"”e) (E)™ +0(e),
i = ree ree
MHOAB=2 = g gyiee 1 g0 By 1 O (e?) (47)

2Mp
where we used the following parameterization for the AB = 2 Wilson coefficients:

s

H: = 2Mj (H}O) +

HY) +0(a2) . (4.8)

The terms (Q)"*® and (E)"™* indicate tree-level matrix elements of physical and
evanescent AB = 2 operators, and the coefficients 2 and b are finite. Comparing
the coefficients of the matrix elements in egs. (4.6) and (4.7) gives for the AB = 2
Wilson coefficients

H;(go) = a0 1 40Ve L O(?), Hz(so) = 000+ b+ O(e?) . (49)

Including O(a;) effects, the UV-renormalized matrix elements on the AB = 1 side

read
1 . A (NLO,AB=1 _ s a1 (1,0) tree
My Abs (z/\/l ) =i . +a (Q)
Xs
(1-1) (4.10)
i (b _ +b(1’0)> <E>tree]
+O(e),

where only O(as) terms are considered. The coefficients a1 and b~ describe
the IR poles which appear at this order for the first time. Similarly, for the AB = 2
matrix element we obtain

i
MNLO,ABZZ
2Mp

_ U [H(l) <Q>tree —|—H](:-1) <E>tree

g

€

4(L-1) e (4.11)
+ ( . _|_d(1,0)) Hg)) (E)t
+ 6(1/0)Héo) <Q>tree

(1/_1)
n (fe +f(1,o)> HO (E) e

C(lril) ree
= ( +c0 ) HY (@)t

+O(e) .

The first two terms stem from the LO amplitude, whereas in the remainder are
one-loop corrections of physical and evanescent operators. Except for the mixing
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of the evanescent into physical matrix elements (denoted by the prefactor e), the
one-loop terms are IR divergent.

In order to determine H') we have to compare the coefficients of (Q)"* in both
egs. (4.10) and (4.11). We obtain

(1-1) _ (-1 g0
a c
HY = - Q1 g0 00D 00 (4.12)

which is IR-save if the following holds:
21 = C(L*l)HS)) +O(e) . (4.13)

From the contributions of Hg) ) and H ,(50) to eq. (4.12), it is clear that the LO coeffi-

cients b(®% and a(%1) become relevant due to eq. (4.9). Although the knowledge
of H}(EO) is apparently needed for H(Q1 ), physical results must not depend on the
chosen evanescent operators. Thus, their contribution is an artifact of the chosen
IR regularization. Since our renormalization condition requires (E) = O(eyy), the
multiplication with a dimensionally regularized IR pole makes this object finite.
In the end, IR artifacts in eq. (4.12) are canceled by Hg)) and the O(e) terms of
Hg) ). The same applies to the AB = 1 side, where evanescent contributions are

included in a1 of eq. (4.10). Thus, the dependence on the Wilson coefficients of
the evanescent AB = 1 operators should cancel in this procedure, contributing only
to Hg but not to Hg.

Compared to using a gluon mass as IR regulator, a drawback of the d-dimensional
matching procedure is that at O(a?) it requires the knowledge of renormalized
terms up to O(e?) at LO and up to O(e) at NLO. Nevertheless, the calculation of
the Feynman integrals is substantially simplified in comparison to the case with

mg # 0.

For the matching we choose the physical operator basis of Q, Qs and Qs and the
evanescent operators of egs. (3.6) and (3.8) to (3.10). Anticipating the discussion in
section 5.2, the fourth generation of evanescent operators are necessary since on
the AB = 1 side, structures with up to 9 ® 9 Dirac matrices occur. Although these
operators do not contribute to the matching calculation of the physical operators,
they are needed for the reduction of Dirac matrix chains.

The matching of eq. (4.5) is performed up to O(a2). Additionally, a single Next-
to-Next-to-Next-to-Leading Order (N’LO) contribution is regarded which is O (a3).
It consists of two-loop corrections to the double insertion of the chromomagnetic
operator Ps. Since every occurrence of Pg is proportional to «as, it is possible to
rescale the according Wilson coefficient by

~ & -1
Cs — Cg = <4n) Cs. (4.14)
Hence, with Cg both sides of the matching include a maximum order of a2. The

correct contribution is recovered if we return afterwards to the usual definition of
Cs.
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As a final result of the matching, we obtain

Grm? o
= 24;7;\153 [H (QNO (413) + Hs (Qs) NN (ju2) + Hs (Qs) - (p2)

+ ) HE (1) (E;)NNEO (Hz)} + Ti/m, -

12

Since all UV and IR poles are absent at this point, we are allowed to put all regulators
to zero. Thus, the matrix elements of the evanescent operators vanish.

Equation (4.15) can be further simplified if we account for the power scaling of the

O(A/my)-operator Ry. With the results of section 3.5 we get

_ Grpmj
- 247tMp

(H = "2Hs) (@) ()

+ O(%)

According to ref. [47] using the basis {Q, @5 ,Ro} has a positive effect on the
A /my expansion since the numerical size of I'y/,,, is reduced in comparison to
the previously used basis {Q, Qs, Ro} [65]. Also, the uncertainties from the bag
parameters are decreased in the ratio AT'/AM.

12

(4.16)
NNLO

+ (ﬁs - DCQSH5> (Qs) (42)
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TECHNICALITIES

In this chapter we focus on the technical aspects of the calculation of I'1;. We start
with a detailed summary of the evaluation of Feynman diagrams which contribute
to I';2. We then turn to the topic of tensor reduction and how it is employed in
our setup. Finally, we present the renormalization constants which are additionally
needed to render I'y» UV-finite.

5.1 DETAILS ABOUT THE CALCULATION OF I'

For the calculation we use the program toolchain as described in appendix D.1.
The overall amount of computed one-, two- and three-loop Feynman diagrams is
(140, 000), as it is described in chapter 6 in more detail. All diagrams are generated
with the use of qgraf [127] of which we also employ the implemented filter options
to remove unwanted diagrams. Other diagrams such as the one shown in fig. 5.1 are
not straightforward to select solely with qgraf. For this we employ the diagram filter
functionality of tapir [121] with the option external_self_energy_bridge_mixing.

After all diagrams are generated, we use tapir to analyze their topological structure.
As described in appendix D.2 this is done by generating the according Nickel index
of every diagram. After comparison these indices, the set of unique topologies
are used to generate according “topology files” which are used in our setup to
express scalar integral expressions in terms of integral families. For the AB =1
computation without taking any other mass except for m, into account, we get
12 one-loop topologies, 260 at two-loop and 141 at three-loop order. The number
for the two-loop topologies is increased due to the fact that penguin operators
introduce a large variety of possible topological structures, whereas current-current
operators only have a restricted variety. The contributions with two insertions of
the latter are the only considered three-loop diagrams in this work. On the AB = 2
side, we have three one-loop and 15 two-loop topologies.

The overall amount of 413 integral families for AB = 1 is further reduced to 77
if we employ the algebraic minimization routines of tapir. Similarly, for AB = 2
the number of integral families reduces from 18 to 9. With the specification of the
integral families, we create the input files for FIRE [122].

Returning to the individual diagrams, we use tapir to insert the according Feynman
rules to create FORM [128] readable expressions. The respective momenta of the
lines in the diagram are then mapped on the corresponding topology using the
program exp [118, 119]. With our calc setup we express the amplitude, as the
sum of all diagrams, in terms of the previously defined integral families. The
individual integral members are then reduced to master integrals using an IBP
reduction procedure with FIRE which is described in appendix D.4. Only three
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Figure 5.1: A sample three-loop diagram which is easy to separate from other diagrams
with corrections to external legs, using a diagram filter which is implemented in
tapir.

) (i) (i)

Figure 5.2: At one-loop order three master integrals emerge after the IBP reduction. Solid
lines denote denominators with a mass m;, dashed lines are massless.

master integrals occur at one-loop order, as shown in fig. 5.2. At two-loop order,
we obtain the 14 master integrals of fig. 5.3 which are known in the literature for
several years [124]. The three-loop amplitude leads to 27 master integrals which
are computed by ref. [129] using either the program HyperInt [125] or MINCER [120].
They are depicted in fig. 5.4. In appendix D.5 the procedure of computing master
integrals with HyperInt is further discussed.

5.2 TENSOR REDUCTION

A topic that has not yet been covered concerns the tensor structure of Feynman dia-
grams. In this section we present a straightforward way to handle tensor structures
in Lorentz- and color space without computing tensor integrals for interactions
with external fermions.

A matrix element of the process bs — bs can in general be written as

_ o) s (m)pn) iy iy iy pi
M = Z x(mn) S ivia Torénsass S b2 52 bl . (5.1)
mmn
Each term has a distinct splitting of color indices i, and spinor indices s,. The
coefficients X are scalar expressions with respect to the spinor- and color space.
Thus, all Lorentz- and color indices in X are contracted which also holds before
evaluating the loop integrals. The goal of a tensor reduction is to find the these

coefficients X.

The Lorentz structure can take only a limited set of possible forms. They read

(PRB(”)) = (PRB(”>) ® (PRB(”)) (5.2)

5354

ré(‘:ls)zsssz; = (PRB(H))

5152

with

B ¢ {1/ A, P giiab2ads } (5-3)
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(\;iii)

(;di)

(xdii) (xiv)

Figure 5.3: These two-loop master integrals arise from the AB =1 and AB = 2 calculation
of I'1p. Hence, real and imaginary part must be determined. A dot on a line
denotes an additional power of the respective denominator.

In four space-time dimensions, this set is reduced to a finite subset to all orders in
perturbation theory due to relations such as Fierz identities. This reduction is not
possible for d = 4 — 2e. However, at a fixed order in perturbation theory eq. (5.3) is
also finite, but with an increased cardinality.

The number of possible color structures is always finite in dimensional regulariza-
tion. In our case it can only be the following;:

Z(m) S {5i1i25i3i4l 5i1i45i2i3}' (54)

The coefficients X can be extracted from eq. (5.1) by defining a projection operator
P as
X(m,n) _ P(m,n)M ) (5.5)

Since color space and Lorentz space are independent, the corresponding projectors
factorize:

pimn) — clm) (5.6)

For the color projector we can make the following ansatz:

(m) _ (m,i) s (i)
C = Zi:C >\ (5.7)
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(xx11) (xxiii)

(xxvi) (xxvii)

Figure 5.4: At three-loop order, the depicted master integrals emerge. All of them are
evaluated with HyperInt. Although only the imaginary part contributes to I'ty,
the real parts are calculated as well.
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The coefficients ¢ are determined by the condition

— cm) (E Xg)z(i)> (5.8)
&2) Y X cmsis
L]
Thus,
5 = cEWEi) = (R, ({z<m>})

= ) =gy ({Z(’”)}) , (5.9)

where G denotes the Gram matrix of the vector space spanned by {Z(")}. The scalar
product of the latter is a simple multiplication with same color indices in both basis
vectors L"), For the basis of eq. (5.4) we get

2 -1
(1) )y @) 1
(i) — (Z ) X _ 1 L=
c 2 . (5.10)
sy @) (za)) ng—1\_1
ij Yy

ne

In principle one could also construct the projector from a different set of basis
vectors {v;}. For this purpose, the Gram matrix is extended to two vector spaces:

Gij({a}, {bi}) = (ailby), (5.11)
where (-|-) describes the scalar product.
The constraints on the new basis are (see e.g. ref. [130]):
o det[G({vi})] # 0,
e rank [G({v;})] > rank [G({Z;})].

A non-vanishing Gram determinant is equivalent to linear independence of the
vectors v; and to the matrix having a full rank. The same must also hold for the
vectors {%;} on which we want to project. The matrix G is invertible if the ranks
are equal in the second condition.

Thus, using a higher dimensional vector space to build the projector is possible as
well. If the rank of the new basis is larger, the matrix spanned by c(*/) is

c e Crank[G({Zi})}Xrank[G({v,-})} , (5'12)
and for the Gram matrix follows:
rank (¢) = rank {G {=i}, {UZ})] = rank [G ({Zl})} . (5.13)

Also, the inverse of eq. (5.9) is replaced by the Moore-Penrose inverse [131, 132]:

G (= o) = [6 (DG Zh oh)] 6 (T o)) 519
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which is the definition of a left-inverse, i.e.
G ({Z} {o) G({Z}A{vi}) = Lankic(m) - (5.15)

A similar procedure can be applied for the Lorentz-projector. First, we have to
define how the projector L of eq. (5.6) acts on a matrix element:

LM, = L0 <§ :X£i)B(i)®B(i)>
( ‘>i (i (1) p (i) (1) (i) (516
= Y1) x O, (L BOY T, (L BOY
1 Ty (75 1)

where the traces are taken in the four-dimensional spinor space with d-dimensional
Dirac matrices. Equation (5.16) also defines the scalar product of this space. With this
definition, traces with <5 can arise in chiral interactions. This can be circumvented
if an additional chiral projector is included in L:

1+
Pr = 275 . (5.17)

After projecting the left- or right-handed chirality by commuting all occurrences of
75 together, all remaining 75 in the traces of the Lorentz projector can be dropped.
Thus, we can adjust eq. (5.16) according to

) Try <L§H)B(i) § —>0> . (5.18)
5

The chirality is not particularly relevant for our case since every basis vector of
egs. (5.2) and (5.3) renders the s-quark left-handed and its chirality does not change
due to our treatment of ms = 0. Thus, the chirality is neglected in the following.

(n)

An ansatz for Ll'}z is again given by the already known basis vectors:

’y5—>0

LM, = Zﬂ”ff)XS)Trd(Lg”)B(i)
i

LW gL = BMgBM. (5-19)

As before, the coefficients /(") are determined from the requirement

BL) 5 X0y 1, < BB
7

) Tr, (BmB(i) > , (5.20)
v5—0 v5—0

= Gji

where we use the abbreviation Gj; = Gj; ({B(i) ® BW) }) The projector coefficients
are again given by the inverse of the Gram matrix:

1@ — G;l ) (5.21)

A simple example of the Lorentz projector method is shown by means of the integral

d’k K
1=/ @) (k- p)’ (522
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where p is an external momentum. For the basis of possible Lorentz structures we
make the ansatz

B e {1, p}. (5.23)

Since there is only a single spinor line, the Gram matrix is given by

Trz(1) T 4 0
G (m() w)) _ ( ) (524)
Tra(p) Tra(pp) 0 4p
For the projector coefficients, it follows

0
1 . (5.25)

1
1G) — gzt = [ %
0 5/,

Thus, the Lorentz-projector has the form

1 /4
Lﬂ = Z, LP’ = @ (526)

One can see that the basis vectors do not have to be of the same mass dimension. If
we apply the constructed projector on eq. (5.22), we obtain
[=1 Try(Lal) + p -Trd(LpI)

y)/ d’k (5.27)
27)d k3( k p)

For the integral I the basis {p} would already be sufficient. However, we see from
the discussion below eq. (5.10) that projectors with a larger vector basis are always
applicable to problems with a smaller subset.

For the calculation of I'i; we have in addition the external b-quark momentum g.

Thus, from the integrals a ¢ can appear in the chain of Dirac matrices which usually
drops out by using the Dirac equation. Because the latter cannot be applied at
this step, § must also be considered in the projection. Hence, the basis of egs. (5.2)
and (5.3) cannot be used, and we have to define an alternative which is given by

B g B ¢ {11@11, 10¢, go1, g4,

YO Y OV YO Vs YO Vs
PV @ Y Yo VY@ Y Y YYD Vi Vs

,),Pllryﬂzg ® ')’;41714297’ e },

(5.28)

In order to fix the basis, it is important to know the longest string of occurring
Dirac matrices. For our problem we find diagrams shown in fig. 5.5 to have the
largest string simultaneously in both spinor lines. In principle, diagrams with a

single fermion line with more Dirac matrices are possible, as shown in fig. 5.5iii.

In that case, the Lorentz indices inside a single chain are contracted and can be
reduced. For example, fig. 5.5iii reduces to 3 ® 3 matrices. Thus, diagrams with
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Figure 5.5: Diagrams (i) and (ii) lead to an overall maximum of 9 ® 9 Dirac matrices in
the two fermion lines if the traces are closed according to the dashed lines.
The penguin operator P5 introduces three Dirac matrices per line, the fermion
propagators and gluon interaction vertices another one, respectively. In (ii) the

(1)

evanescent operator E; ’ includes five matrices which leads to 9 ® 9 already at
LO. In diagram (iii) Dirac chains with 3 ® 15 matrices occur.

equally distributed Dirac matrices in both fermion lines are considered for the
limiting case.

The diagram in figs. 5.5i and 5.5ii lead to a maximum of 9 ® 9 matrices. For possible
future applications, we implement the possibility to project on up to 10 ® 10 matrices.
The cardinality of the basis thus becomes® 43. Projecting only on up 9 ® 9 matrices
would involve a basis with 39 vectors. The computation of the Gram matrix as in
eq. (5.20) includes the evaluation of terms of the form

Tra (Y 9" ) Tra (V0 Vs - - Vo) # (5.29)

which is challenging even for a specialized computer algebra system like FORM [128].

For our calculation, one frequently encounters structures like eq. (5.29) with a
maximum of 18 x 18 matrices when applying the projection operator. To circumvent
an expensive recalculation of these traces every time, we build a lookup table of
FORM id-statements which replaces the traces by a previously evaluated quantity.
id-statements have the advantage that the property of traces to be symmetric under
cyclic permutation can be used for the identification. We can also benefit from the
pattern-matching of FORM. After evaluating all Feynman diagrams of chapter 6, our
lookup table includes O(380,000) entries and has a size of ©O(400) MB.

The 11 strings of 1 ® 1, ..., Yy —puyy ® ¥ 7#10 are counted four times due to the different occurrences
of 4. The case vy, 04 ® ¥*17#104q is excluded since it has 11 ® 11 matrices.
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10°

105 1 Fitted scaling

Measured time
10%
103
102
10! 4

100 o

Duration on single core [s]

10—1 _

1072 T T T T T
12 14 16 18 20

Number of Dirac matrices per trace

Figure 5.6: The computation of eq. (5.29) needs approximately 12h on one core of a modern
CPU. The double exponential scaling predicts for the evaluation of traces with
22 x 22 matrices a duration of 617 CPU Hours, or 26 days on a single core.
This estimation demonstrates a lower limit for parallelized evaluation with e.g.
tform.

The traces are computed with the consecutive use of the tracen command of
FORM. For products of long traces the needed computation time rises approximately
exponentially with the number of matrices, as shown in fig. 5.6.

This scaling behavior makes it increasingly difficult to project to basis elements with
an increasing number Dirac matrices. With the presented techniques and current
soft- and hardware, the projection on more than 10 matrices in both fermion lines
is not feasible. Alternative approaches to increase this limit could be:

e Usage of a different tool than tracen. A promising approach based on graph
coloring algorithms is presented in ref. [133]. Unfortunately, it is only formu-
lated in four dimensions and an extension to d-dimensional Dirac matrices
would be necessary.

e Usage of a different scalar product than eq. (5.20). An alternative would be,
for example:

G, = Ty < B () g gl ) , (5.30)
75%0

In our case this would result in one large trace with a maximum of 40 Dirac-

matrices, but with all indices contracted.

o Usage of other tensor reduction approaches such as Passarino—Veltman reduc-
tion [134]. This ansatz is used in the cross-check calculation of this work, where
we use the program FeynCalc [135] with additional support of FERMAT [136]
to perform the tensor reduction. Unfortunately, this leads to other problems
like a proliferation of terms for high tensor ranks.
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q2

q1

>

Figure 5.7: 0s quark field and mass renormalization constants are sensitive to other quark
masses starting at two-loop order.

5.3 RENORMALIZATION

We have seen in chapter 4 that the matrix elements on both sides of the matching
have to be renormalized. In this section we summarize the used renormalization
constants in addition to the ones already described in sections 2.5 and 3.3.

The external quarks of the regarded process sb — bs usually require a wave function
renormalization. The constant Z, factorizes on both sides of the matching equation
eq. (4.5). However, we introduce it for convenience according to egs. (3.73) and (3.74).

Since we compute the matrix elements in arbitrary Ry gauge, the gauge parameter
¢ has to be renormalized according to eq. (2.32) up to O(as) with

- K 5 ¢ 4
Zz = 1+ (47re) <3CA + ECA — 3nfTF> , (5.31)

defined in MS.

To the same order we need the renormalization of the QCD coupling constant which
is given by

B K 11 4
Zy, = 1+ (47_[6) <—3CA + 3npr> . (5.32)

Equations (5.31) and (5.32) are both directly applicable to theories with n active
quark flavors since renormalization constants are mass-independent in MS. Both
renormalization constants are currently known up to five-loop order [104, 105].

We further need the renormalization of the b-quark mass to O(as). In this calculation
we choose the OS mass renormalization, as given in eq. (3.88). Z, is mass dependent
in this scheme and also sensitive to the masses of other quarks through diagrams
shown in fig. 5.7. Since this dependence first occurs at O (a?), Z%S can be used as
stated in eq. (3.88).

For a non-vanishing charm-mass, Z,,_ is needed to O (a?) since the leading order
diagrams on the AB = 1 side of the matching are m. dependent. In the OS scheme
this renormalization constant, expanded for m, < my, is given by [117, 137]

o8 1y () 4 g (1) 16
Zim, _1+<47T>{ € 4ln<m%> 3
2 16 12 T 32
D i R R ) N
“(m%) 3“<mz> 3 3”

a2 [ 1 dnp\ 1 u2\ 10mp 37
+(42) {62(30‘3)+e 161“<mg Tt 3

+ €
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4, (1 52 u? 82 71
+ny gln <m§> + 9 In (m% + 9 + 9 (5.33)
46322 2 ) 304z
| 210 T 318 (27z° + 112z — 910) In(z) + 555
_4ln’(z) 87t 82| (o 8
3 9 27 ? 3
87(3) 20 2537 YAk 250 12
— — — Z )\ _=inlX™
T3 9 15 O e) 3 e

16712 In(2)

Bl o),

where we set n. = 3. The variables n;, and n, denote the numbers of active flavors
with the masses mj, and m,, respectively. We also use the abbreviation

z = ¢, (5-34)

All masses in eq. (5.33) are defined in the OS scheme.
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In this chapter we present the results for I';5, and thus for the physical matching
coefficients in the AB = 2 basis. Our results are stated in the form of

2

T2 = siats [H(E) (BIQIB) (k) + Hs(2) (B Qs [B) (1) +o(ﬂfb>, (6.1)

with m;, defined in the 0S scheme. The coefficients H and Hg are reformulated in
comparison to eq. (4.16) to describe the physical basis of {Q, Qs, Ro}. The Wilson
coefficients contain the primary results of this work. They are decomposed as

H(z) = —A2H%(z) — 2AA,H"(z) — A2H"(2), (6.2)

and similarly for Hs.

In our calculation we expand “naively” up to linear order in the small parameter

me\ 2 mos\ 2
z = (C> = ( f)s> ) (6.3)
my my

A naive expansion is defined as a Laurent series of the integrand of a Feynman
integral. A priori this leads to wrong results in comparison to the asymptotic
expansion described in section 3.5. We explicitly checked that the naive expansion
up to O(z) differs from the asymptotic expansion only for diagrams in which a
charm-quark loop arises from a gluon propagator correction. Thus, up to O(«s)
the naive expansion is sufficient to the linear order in z. At order O(a2) and
beyond diagrams as shown in fig. 6.1 cannot be treated with the naive expansion.
Fortunately, the leading z-contributions for three-loop diagrams such as figs. 6.1i
and 6.1ii are known in the literature [68, 69]. For one-loop and two-loop diagrams
with insertions of the chromomagnetic operator P, we find agreement of the
naive and the asymptotic expansion up to O(z). Sample diagrams of the latter are
presented in figs. 6.1iii and 6.1iv.

In the following sections we present the results in different orders in «;. They are
further distinguished according to their contributions of CMM Wilson coefficients:

Hz) = Y GGpif(2),
ije{1,..6,8},
i (6.4)
ﬁgb(z) = Z GiC pfj’”b(z) , ab € {cc,uc,uu}. '
ije{1,..6,8},
i

As shown in table 2.2, the AB = 1 Wilson coefficients of the current-current opera-
tors are numerically more significant. Hence, the inclusion of penguin operators are
numerically subleading. For this reason we consider penguin operator contributions
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c
5 Pyp b : : : : :

@) (ii)

c

(iii) (iv)

Figure 6.1: A priori these diagrams lead to wrong results when a Laurent expansion
around z — 0 under the integral sign is applied instead of using an asymptotic
expansion. For diagrams (iii) and (iv) the naive and asymptotic expansion agree

up to O(z).
Operator Publications
contributions 1-loop 2-loop 3-loop
P x P [63](LO) [65-67] (NLO) [68, 69] (NNLO)
Pp x P [63] (LO) [69, 70] (NLO)
Py x P [63](LO) [71] (NLO)
P, x Pg [65, 66] (NLO) [68, 69, 71] (NNLO)
Psg x DPg [69, 71](NLO)  [71] (NNLO)
Pg x Dg [69, 71] (NNLO)  [71] (N®’LO)
1/my [47, 63, 67] (LO)

Table 6.1: The appearances of the different I'1 contributions are summarized according to
their operator insertions. The entry for 1/m; denotes higher order contributions
in the A/my expansion. In refs. [68, 69] only partial results are given.

only up to two-loop order. For the more involved three-loop calculation we focus
solely on the numerically dominant current-current insertions.

Not all results presented in this chapter are new. Some of them are known for more
than 20 years. Table 6.1 summarizes the individual contributions and their, also
partial, appearances in publications.

The coefficients p?jb are given as an expansion in the strong coupling constant and
in z:

3 (5) !
by — s (H1) \  ab(n)
pij (z) = nZ%)( pps > Pij (z),
3 (5) "
S,ab _ a5 (p1) S,ab,(n)
pij (z) = E( = ) Pij (2),

where terms of O(z%/?) and beyond are discarded. All results are presented with
n. = 3, but in the ancillary files given for arbitrary n..

(6.5)
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LO contributions Number of diagrams Number of loops

P, x P, 32 1
P, x DPig 64 1
Pyg x Pie 1312 1
P, x E 320 1
Py x E 2352 1
E x E 192 1

Table 6.2: The number of evaluated O (a?) diagrams in the AB = 1 theory are shown. The
entry for E also includes evanescent operators which do not directly contribute
to the O (a?) results but are either needed for the renormalization of higher order
results or for consistency checks discussed in section 6.5. The stated numbers are
the amount of diagrams generated by qgraf.

6.1 LEADING ORDER RESULTS

At leading order in a5, the AB = 1 side of the matching consists of one-loop
diagrams, whereas there are only tree-level diagrams on the AB = 2 side. Sample
diagrams are shown in fig. 6.2. To this order all results are fully known in the
literature. We present them here for completeness.

By including evanescent operators the number of diagrams are shown in table 6.2.
There, also combinations of evanescent operators like Egl) X EEZ) are included
which are not directly needed for the results of this work. We include them as
well to analyze their possible contributions in the matching. Which evanescent
operators must necessarily be regarded can be seen from their contributions in the

renormalization, as presented in appendix A.

All diagrams with two current-current operator insertions (P; ;) have the structure
of fig. 6.21 with u- and c-quark propagators in the loop. From them, we get

(0 23 11z 5,000 5
0@ = 2-—, % = -3,
1 4
pi;(O)(Z) _ < _ 2z, Pfécc’(O)(Z) _ = (6.6)
P (z) = 1-3z, P ¥(z) = 1.

Taking also penguin contributions into account leads to three new diagram classes
as shown in figs. 6.2ii to 6.2vi. The diagrams (v) and (vi) allow only cuts through
b-propagators and thus have no imaginary (absorptive) part.

The mixed current-current and penguin contributions read

cc,(0 4 S,cc,(0 8
P13( )(Z) =3 P13 ()(Z) = 3
cc,(0 5 S,cc,(0 2
e = -5 i @) = -3
,(0 64 S,cc,(0 128
pe” @) =3 -9z, s @) = -5
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b u/c s u/c f
s u/c b u/c
(@) (ii) (iii)
T ED S
S

(iv) V1)

(vii)

Figure 6.2: Diagrams of the leading order contribution to I'1; are at one-loop order on the
AB =1 side and at tree-level for AB = 2. Orange dots depict current-current
operators, green ones penguins, and blue ones AB = 2 operators.

PO =4, PO = -3 67)
P () =1, P @) = ~2,

PO =2, P =3,

pse % (z) =16—72z, pyrV(z) = - 32,

P (2) = 5 — 24z, POz =%

For the penguin-penguin diagrams the closed fermion loop introduces a summation
over all active quark flavors. This is evident from the appearance of the factors
n; = 3 describing a sum over all massless flavors, and 71, = 1 which is the number
of flavors with the mass m.. Note that 1; and . only count flavors that appear in
closed fermion loops in which no flavor changes occur. The results are given by

pz) =3(m+m) +2, P (z) = —6(m+m)—1,

06 =7, e = -3,

P (z) = 60(n; +ny) + 64, Pz = - 120(”1 +110) =32,

P =, p;“ &=

gV =) B et < 2 7
c,(0) 112 0) 128

Pss (z) :T' Pys (z) = T3
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= = 40 224
pol0)py Bt ) (52 s, 400 tn) 24
3 9 3 =
chg(o)(z) = — 12961,z 4 408(n; + n,) + 512,
per9(z) = —816(n; +ny) — 256,
1792
pgg(O) (Z) = T,
S.cc, 2048
p56cc(0)(z) = -==,
PO (z) = _7znvz+170<nz3+"v> +4¥,
5¢0,(0 272(n) +1y) 1792
p66CC()(Z) - ( é 2 9 -

The coefficients for “uu” can be constructed from the “cc” ones:

pi%(z) = pi”(0) for i€ {1,2} andje{1,...,6},

uu CC, .. (6'9)
Pij A0) (z) = pz.].’(o) (z) for i,je{3,...,6}.
The “uc” coefficients are given by
cc,(0) uu,(0)
. Z)+p.. 4
py.c’(o)(z) _ P ) Pij &) for i,je{l,...,6}. (6.10)

2

Equations (6.9) and (6.10) hold similarly for p°. They can be explained from the fact
that the penguin operators introduce a factor (A + A, ), whereas current-current
operators multiply A; according to their flavors.

The results of egs. (6.6) to (6.10) agree with [63, 65] after applying a transformation
into the traditional basis according to eq. (2.49). In the referenced publications the
full z-dependence is considered.

6.2 NLO RESULTS

At order a; the number of diagrams which have to be evaluated increases substan-
tially which can be seen from table 6.3. Furthermore, one-loop diagrams occur on
the AB = 2 theory side of the matching. According to table 6.4, their amount is
small in comparison to the AB = 1 side, but the real part of the matrix element
have to be computed as well. Sample diagrams in the AB = 2 effective theory are
shown in fig. 6.3.

We give the results for the full O(as) corrections to I't; in the leading order of the
N /my expansion. This includes four-fermion penguin operators P;_¢ as well as
chromomagnetic Py contributions.

In the following sections we show a shortened version of the results using the
replacements of eq. (3.103) and
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NLO contributions Number of diagrams Number of loops

P, x P 832 (960) 2
Pi, x P 7296 (8064) 2
P34 x P3¢ 36416 (41664) 2
P, x E 6976 (7872) 2
Py,¢ x E 29152 (32928) 2
E x E 832 (960) 2
P, x P 48 1
P; ¢ x Pg 528 1
Ps x E 624 1

Table 6.3: The number of evaluated two-loop, as well as one-loop diagrams in the AB =
1 theory at O(as) are shown. Additional evanescent operator insertions are
included here as well. The numbers represent the diagrams which are left after
the tapir external_self_energy_bridge_mixing filter is applied. The numbers
in brackets are the amount of diagrams originating from qgraf.

NLO contributions Number of diagrams Number of loops
QABZZ 48 1
EAB=2 144 1

Table 6.4: At O(as) the shown number of one-loop diagrams for the AB = 2 theory are
computed. We split the contributions into physical (Q*#=2) and evanescent

(EAB=2) operator insertions. Note that Q is included in the physical counting,

(1)

although it is only needed to construct E; .

where 7, is the number of flavors with the mass m;. The extended results with
these terms and the ¢\ kept unspecified are given in the ancillary files.
In the following we discuss the contributions of different CMM operator combina-

tions in their respective sections.

6.2.1  Current-Current Double-Insertion

At two-loop order most diagrams with two current-current operators are con-
structed from the LO ones by attaching a gluon line in all possible combinations,
as shown in figs. 6.4i and 6.4ii. The additional diagram class of fig. 6.4iii consists
of One-Particle Reducible (1PR) diagrams which connects two separated fermion
loops by a gluon bridge.

The results proportional to A? are given by

3 3 3 51 216
+%n4+mma_&#+1m9
324 108 108 ' 486 ’

o (1 14L; 11L, 44In(z > 4133
Pu()(Z) =z<— L — (2) >
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(ii) (iii)

Figure 6.3: Feynman diagrams of the AB = 2 theory at NLO are given by the tree-level
contributions with additional gluon lines.

(ii) (iii)

Figure 6.4: At NLO, double insertions of current-current operators include 1PI and 1PR

diagrams.
27 1199
piczr(l)(z) =z (26L] — 4L2 — 16 h’l(Z) — % + 18)
_ 323L4 n 19L, n 572 1346
54 9 9 81 7
22 11
posW(z) =z <1le — 6L, — 24In(z) + = + 65> (6.11)

4Ly 2L, 57 91

9 73 T

Scc,(l)( ) _ 3814 _ 40L, 1159 B 4771_'2 . E n i

1 81 27 27 27 27 243’

S,ce (1 441, 320, 16712 656 82 280
e =5 - ( 9 ‘9> T T

3 3

S,CC,(l) (Z)

P2 e 3 T o7

64L; 8L, <116 16n2> 812 728
9 3 B =

with Ly, = In(u3,,/m3). Note that the zIn(z) terms originate from the c-quark
mass renormalization in the OS scheme. In fact, if z is expressed through MS masses,
ie.

=2

T;(Idc) , (6.12)
m;, (4o)

large logarithms like zIn(z) vanish when choosing the newly introduced scales at
the matching scale p. = up = p1 [67, 138].

z — z =

As before the “uu” and “uc” contributions are obtained from the “cc” ones:

Y = o),
96,(1) 2) + y'u,(l) (613)
uc,(1) (Z> _ pz] ( ) pl] for Z,] c {1/2},

ij 2
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(ii) (iii)

> ok
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Figure 6.5: Several new diagram classes appear for simultaneous current-current and pen-
guin insertions at NLO.

where again analogous relations hold for p°. Equations (6.11) and (6.13) are in
agreement with [65-67], where the full z dependence is given.

6.2.2  Current-Current-Penguin Contribution

If a penguin operator is inserted together with a current-current operator, new
diagram classes as shown in fig. 6.5 occur. For example, diagrams such as fig. 6.5v
appear which have a non-amputated leg. They cannot be discarded because the
self-energy correction changes the quark flavor due to an FCNC. They have to be
added to render the result gauge-parameter independent.

The O(as) results proportional to C1, x C3_¢ are given by

w1 320 470, 56L, 5% 1523

P = <9_4L1> T8 T T 1gy3 T i08

), . (59L, 5m® 4565\  281L; L, 5

P <)_< 3 79 108>Z 108 54 ' 18
2Br 712

©108y3 817
164
pse(z) =z (—136L1 — 1921, — 768 1In(z) — 6908)
376L; , 896Ly 407

_ + 318,
9 9 9Vv3
764L c L2

125914 n 8Ly " 4072 _ 55m 4243
27 27 9 273 27 7

cc,(1) 170 47L1 14L, 5m 677
— (24r 677
P (2) < 1+ 3 3 3 3,3 187
cc,(1) . 1072 1429 3511 Ly 572
— (26L, - _ _ L 57
Pa(2) < 6Li = —3—+ 735 9 "9 3
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251 B @
18v/3 27’
pgg(l)(z) =z (816L1 —144L, — 576In(z) + 36356> (6.14)

75214 n 2241, 807

+—— —580,
3 3 33
2
pseW(z) =z (128L1 — 481, — 192In(z) — 167” + 61940)
290Ly 16l 807% | 110m 442
9 9 3 93 9’
S,cc,(l)(z) _ & B 64L, B 1720z B 47T B @
P1s 39 9 o3 27’

16L, (80 87r2>z 4 10w 404
9 273 817

S,cc,(1)
—op, 22 [
s (2) =20 (27 T

S’CC’(l)(Z) L 641, B 1024L, B 27952z B 6471 B 2128
p]S - 3 9 9 9\/5 9 7
S,cc,(1) _ _ 2561, 128772 B @ 64772
Pie (z) =24L4 > + 5 TE 5

_ 887 n 2824
27/3 27 7
S,cc,(1) 16L, 448z 81 116
= 8L — — _—,
P23 (z) 1 3 3 + 3 \/§+ 9

See 1),y _ 32Lp | (488 len*\ 8% 20w 272
pa(2) =5 9 3 ) 3t

5060 () — 1081 — 256L, 6304z 1287 32

Pas (z) 1 3 3 + 33 + 3
512L 7520 25672

Pgém(l)(z) = 48L; + 9 2+ < 5 " 3 >z

B 128772 + 1767 n 1840
3 93 9

The “uu” contributions incorporate a z-dependence due to diagrams like in fig. 6.5iii,
where a c-quark loop appears independently of the current-current operator. Hence,
we get

Pz = pig™0), i W(z) = prM0),

PVe) = p 0+ 7, p0e) = P+
Pie(z) = pig™0), e W(z) = preeM0),

Pl =+, ) = )+
P (z) = psi(0), poaV(z) = p3se(0), (6.15)
e =p0) - 5, ) = o) - 1
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(i) (iii)

f
S
(iv) V) (vi)

Figure 6.6: With two penguin insertions at NLO, a large variety of different diagram classes
have to be taken into account.

p(z) = p(0), () = p3M0),
100z 160z
P @) =p 0 - @ =m0 -5

The “uc” contributions are again given by

@+ )
2

fori € {1,2} andj € {3,...,6}. (6.16)

The ny,, n; and n, dependent terms of egs. (6.14) to (6.16) agree with ref. [69]. The
remaining terms have been computed for the first time in the framework of this
thesis [70].

6.2.3 Penguin Double-Insertion

In this section we consider the contributions involving C3_ X C3_6. Sample Feyn-
man diagrams which have to be calculated in this context are shown in fig. 6.6. The
corresponding two-loop diagrams are the majority of all evaluated diagrams in this
work. Since in the Hamiltonian the penguin operators are proportional to (Ac + Ay),
we have

) = Ve = p V), (6.17)

which holds similarly for pi

The matching coefficients read

(1), _ _ 154L; 184L, 905 572 57 1390
Py (z) = g T3 90z 3+3\/§+27,
(), _  8l1L; 74l 10z 107> 70m 27991
P ) = — Tyt T3 T To5 B
49281, 3872L 160712 160
pe(z) = - L+ 2 | 1800z — —20  2OUT

9 3 3 T30
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16880
27 7
ce,(1) B 4io 129321, 1184L2_1607r2
Pz (2) = (144L1+ 3 > + 9 9
6707 131410
93 81
CC’(l)(z) 1811, 127L, @_ﬁ Z_335712
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5757T N 779
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p! (576L1+>z— o 18 160
+11207r 127990
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ce,(1) B 100n 2455 8759L;  1088L,
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B 1600772 n 26657 50083
27 273 243 7

peM(z) = z(—2592L, — 10368 In(z) — 33120) —
26944L, 12807> = 12807 = 347104
+ +

394241,
9

5 3 33 27
74000\  240608L;  18944L
peW(z) = (7200L1+ >z— 5t

B 256072 n 107207t~ 2253568
9 93 81

24872 12290

pel (z) :z<—48L1—144L2—5761n(z)— 3" +=5 > (6.18)

596321, N 8848L, 106407 N 123207 662144

81 27 27 273 243 7
$c0,(1 176L;  200L, 87> 8w 620
pafeW(z) = R S i s il
5,00,(1) 268L; 64L, 16z 167> 1127 3506
O Rk S
5,001 5632L;  4096L, 25672 25671 9728
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Figure 6.7: Only a single diagram type contributes to P;, x Ps at one-loop order. In the
loop are either c- or a u-quark propagators.

Scedl)yy _ 9472Ly 1024Ly | 608z 25672 17927 64784

Pas 27 9 3 5 ton 81
seo(1), . 10792L; 20481, 1607z 3568z 256072
P ) =gt Ty Ty Ty
42647 | 123080
273 243
2
S () 45026L1 _»281201Q s 20%?7{ %_ZSj?;t
349184
27
sec(1), . 167680L; 16384L, 6080z 40967 171527
Pss (2) = w9 T3 T g ‘|‘9\/§
1502720
81 '
5.6(1) 753921, 11776L, 108872z 23696z 1702472
P B =gt Tt Ty
197127 717184
273 243

These results are published in ref. [71].

6.2.4 Current-Current-Chromomagnetic Contribution

The contribution of Ps appears for the first time at O(a;) since its Feynman rule
introduces a factor gs/(47). For matching coefficients proportional to C;, x Cg the
one-loop diagrams of fig. 6.7 have to be evaluated. They are UV-finite and necessary
for the renormalization of Cy, x Cy, at O(a?). The matching coefficients pl% ) have

no terms of linear order in z.

These contributions are calculated in ref. [65], and are in agreement with our results.

We obtain
5 4
pse) = Ve =3,
(6.19)
pcc,(l)(z) _ 3 ps,cc,(l)(z) __8
28 3’ 28 3’
with
uu, cc, S,uu,(1 S,cc,(1
P (1) = P (1)(0), iy (1) = Py ()(0),
, , , L, 6.
ety PV@+p8 V@) g PV ) p () 620

Pis = 5 ’ Pis = 5 ,
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o |
i)

(ii)
Figure 6.8: In addition to the 1PR diagrams in (i), a class of 1PI diagrams (ii) with two virtual
s-quarks appear in the P;_4 X Pg contribution at one-loop order.
forie {1,2}.

6.2.5 Penguin-Chromomagnetic Contribution

As for the previous matching coefficients, no O(z) terms appear in the results
proportional to Cz_¢ x Cg. Note that in comparison to the C;, x Cg case, there is
an additional class of Feynman diagrams which is One-Particle Irreducible (1PI), as
illustrated in fig. 6.8ii. The matching coefficients are given by

cc,(1 32 S,cc,(1 64:
P38()(Z) =3 P3g ()(Z) =3

co,(1 169 S,ce,(1 20
reVe) = -2, Ve = -3,

18 9 (6.21)

CC,(l) o 512 S,CC,(l) o 1024

Pss (z) = — 3 Pss (z) = 3
(1 992 S,cc,(1 256

Pg%()@) = "9 Psscc()(z) =9 -

Equation (6.20) holds also here. The results of egs. (6.19) to (6.21) are needed to
renormalize the NNLO contributions of C;_g X Cg. This result is published in [71]
and the 1y dependent terms of it are in agreement with ref. [69].

6.3 NNLO RESULTS

At NNLO only partial results are known. The primary aim of this thesis is the
determination of (’)(txg) corrections to I';p proportional to C; o x Cj . Furthermore,
all NNLO one-loop and two-loop contributions including Ps have been computed.
The number of diagrams at this order are shown in table 6.5 for the AB = 1 side,
and in table 6.6 for AB = 2. For the latter two-loop corrections are considered
including evanescent operators of the first and second generation. Sample diagrams
are shown in fig. 6.9.

6.3.1  Current-Current Double-Insertion

The numerically dominant NNLO contribution originates from O (a2) terms propor-
tional to C;1 5 x Cp. Sample diagrams are shown in fig. 6.10. The flavor changing
self-energy corrections, which we know from NLO penguin contributions, occur
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NNLO contributions Number of diagrams Number of loops

P, x D 26560 (31744) 3
P, x D 2064 (2256) 2
Pi¢ x Pg 20368 (22480) 2

Ps x Pg 100 (108) 1

Table 6.5: The numbers of diagrams are shown which are needed for the AB = 1 part of the
NNLO contributions up to three loops. The presented format is similar to table 6.3.
Note that no evanescent operator contributions are considered at this order.

NNLO contributions Number of diagrams Number of loops
QAB=2 1016 2
EAB=2 2032 2

Table 6.6: The numbers of AB = 2 diagrams at NNLO are shown. Corrections to evanescent
operator insertions of the first two generation are also considered. Note that Q is
counted here as a physical operator in addition to Q, Qs and Qs.

for two current-current operator insertions for the first time at three-loop order, as
shown in fig. 6.10ix.

Also, diagrams such as figs. 6.10i and 6.10ii appear which have a gluon self-energy
correction with a c-quark loop. Since they contribute to terms of O (4/z), we cannot
apply the naive z-expansion for these diagrams. Fortunately, the terms of the
expansion stemming from only gluon propagator corrections are known in the
literature [68, 69].

To construct a complete O(z) result, we proceed as follows:
e Computation of all NNLO Cj, x Cj, corrections with naive expansion in z.
e Discarding all terms which are proportional to .

e Shifting n; — n; + n, to recover the correct terms proportional to n, up to
O(z) excluding only the z-dependence stemming from gluon propagator
corrections.

e Transformation of the results from ref. [68] into the CMM basis using eq. (2.50)
and adding the z-dependent terms proportional to 7, to our result.

The separate treatment of the gluon propagator corrections is allowed since the
simultaneous corrections of gluon propagator sub-diagrams and c-propagators
from the remaining diagram are O (z%/2).

The terms taken from [68] are highlighted in orange and indicated by the prefactor
1, below. The so constructed results are given by

,(2 1348 88 23472 18712
PP (=) = 2| -5-Liln(z) - Slaln(z) - =51+ —2

31720, 722039L; 337L;L, 197%L, 1891L,
+ — + +

54 1944 9 81 81
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e

() (i) i)

Figure 6.9: Sample NNLO diagrams on the AB = 2 side are shown. The first dependence on
m. comes at two-loop order from corrections to the gluon propagator.

(it) (iid)

> P XD

(v) (vi)

SO R TO0-g,

(vii) (viii) (ix)

Figure 6.10: These three-loop diagrams contribute to current-current double insertions at
NNLO.
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piﬁcc’(z) (z) =z [—487T2L1 +

18740L;  1287°Ly N 9281,
27 9 9

128 9281n(z) 7991 r4
T3 3 600¢(3) + 405
32v/57% 80387 807 N 6836747

9 27 93 2025

272 , 60412  1064L,L; )
“Zr*In(2 — 247y —
+9nn()]+ 27+ 7 Ly 2773
N 40370L; 5213 647m°Ly | 6928Ly N 16t,
243 3 9 81 9/3
| 43887(3) | 3987m*  104y5m* 412797 80w
27 135 27 486 813
27476329 656 _ 4mIn(3)
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416CI, (Z
+ 32 21n 1,5 + 2 (3)
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We use the following abbreviation:

t, = Im [Liz (3_”@” ~ —0.389012, (6.23)

6

which stems from the one-loop master integral in fig. 5.2ii.

Cly(z) is the Clausen function, defined as (see e.g. ref. [139])

Clh(0) = i sin(16) = —/09 dxIn [ZSin (%)} , (6.24)

2
n=1 n

with a function value of

Cl, (g) ~ 1.014941, (6.25)

which occurs in the two-loop master integral shown in fig. 5.3viii and the three-loop
master integral in fig. 5.4i.

The terms adapted from ref. [68] are the only part of our result which is not known
analytically.

The difference between the “cc” and “uu” contributions is again proportional to
powers of z:

P2 (z) = pe@(0)

P2 (z) = @ (0)
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Figure 6.11: The two-loop corrections to P; , x Pg include additional 1PI diagrams and the
Feynman rule of Py with two gluons contributes.

P (z) = p53?(0) (6.26)
P @ (z) = pire(0) ,

S,uu, S,cc,

P @ (z) = pire(0) ,

S,uu, S,cc,(2
P2 ()() = P2 ()(0)

The z-dependence of the “uu” terms is due to charm propagators which are not
connected to the spinor lines of P; 5. The only occurrences are diagrams such as
figs. 6.10i and 6.10ii which match the terms taken from ref. [68].

The “uc” terms can be obtained via

(1) ()
uc,(n) pfjc ( )+p§;u ( )

Pij - > ’
(6.27)
S,cc, S,uu,(n
suen) _ Pif ()( )+pu ()<Z)
Pij = >

The ny dependent parts of eqgs. (6.22) and (6.26) agree with ref. [68] in the limit
z — 0 but only for yu = .

6.3.2  Current-Current-Chromomagnetic Contribution

The two-loop corrections to P;, x Pg contribute first at order a2. For this, diagrams
as shown in fig. 6.11 have to be evaluated. The Feynman rule of the chromomagnetic
operator with two gluons attached appears for the first time at this order.

The corresponding matching coefficients are given by
cc,(Z)( ) = 208L; Lo <2615 10712> . 572 257

P1s 81 27 54 9 o T 541/3
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15
486
) () = _ 11L; 2L,  (207* 833 . 10m® 257
Pasg - 27 9 3 9 3 93
3125
- 81 7 (6.28)
Sce(2),  _ 448Ly  32L, 1192 167*\ _ 87> 207
e @) = gt 7 9 )P 9 T
| 3580
243 7
$,00,(2) 248L;  64L, 3272 1088 167> 407
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27 9 3 9 3 93
4568
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For the “uu” results we get
(2 (2 10z
P @) =70 -5
(2 (2 20z
pas (@) = p 0+ 57, o
.29
S,uu,(2 S,cc,(2 16z
plsuu( )<Z) = plscC( )(0> ~ g

32z
3 7

and “uc” is again determined by eq. (6.20).

S,uu, S,cc,
Pas (2)(2) = Pa2s (2)(0)+

The n¢-parts of these results are in agreement with [68, 69].

6.3.3 Penguin-Chromomagnetic Contribution

For the two-loop contributions of P3_¢ x Ps similar diagrams as in the previous
section occur. In addition, graphs with closed fermion loops have to be taken into
account, as shown in fig. 6.12.

The corresponding matching results at O (a?) read

@, . 8L, 4481, 196z 2572 1077 17201
P2 = - 5 T3 Y T3 81
@, . 3269L; 4271, (20m® 404\ 16972
P2 = - Ty +< 3 _3>Z 12
5147 43016
273 243 7
@, . 5120, 7168L, 760z 7707 287 430238
P 2 ==~ 3 T 9 Tos5 s
e (2) 8962L; 6976L, (2007 4222\ 37617
P 2 = g +< E )Z 27

3220t 474656
27+/3 243 7

(6.30)
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“D< T%

(i) (iv)

Figure 6.12: Most diagrams of the P;_¢ X Pg contribution at two-loop order include closed
fermion loops. An exception looks similar to the diagram of fig. 6.11v with
internal s-quark lines.
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For the “uu” contributions we get

uu, cc, 196z
P3g ) (z) = 7938(2)(0) 3

404 2072
@) =0+ (-5 )

uu, cc, 760z
Pss = (z) = P58(2)(0) 3
4222 20072
Pes D (2) = peg?(0) + (—3 +5 >z,
Juu ,cC 608Z
Pgs 2 )( ) = Pgs 2 )(0)+T/

S,uu, S,cc, 128 327‘[2
Pas ®(z) = Pas @0 + (—3 T3 > z,

S,uu, S,cc,(2 11456z
Pss ()(Z) = P58 ()(0)+ 3

160 32072
pgéuu,(Z) (Z) pggcc,(2)(0) 4 <_ I 7T > .

(6.31)
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(if)

(iif) (iv)

Figure 6.13: Sample one-loop order diagrams with two Pg insertions are presented. The box
diagrams (iii) and (iv) only have allowed cuts through at least one gluon line.

Equation (6.20) can be used to extract the “uc” terms. These results are published
in [71].

6.3.4 Chromomagnetic Double-insertions

The leading order diagram with two Pg operator insertions to the process bs — bs
is a simple tree-level graph with a gluon bridge. Since this diagram has no loop
corrections, it has no absorptive part as well and does not contribute to I'y>. The
matter changes at NNLO where one-loop diagrams shown in fig. 6.13 are considered.
The matching coefficients proportional to Cg x Cg are only known up to their 1y
dependence [68, 69]. Our results agree with them and are given by

uc, 13
PP = PP = PP = 1o,
S,cc,(2) S,u1t,(2) S,uc,(2) 68 (6.32)
Pss - (2) =pgg O (2) = pgg  (2) = — 9’

as shown in ref. [71]. These contributions have manifestly no linear z dependence.

3

6.4 N°LO RESULTS

In addition to the contributions to I';j we computed in the previous sections, the
question arises how large the effect of the last missing two-loop correction to
Ps x Pg is. The latter is formally N3LO, i.e. of order a3. It is reasonable to expect
that the contributions could be large due to the manifold interaction possibilities
of QCD, especially when the two gluon vertex of Pg is considered. The occurring
Feynman diagrams are counted in table 6.7 and illustrated in fig. 6.14. For their
renormalization only the finite diagrams from section 6.3.4 have to be evaluated.

Our resulting matching coefficients are given by

reVz) = PP 2) = P (2),

pa (@) = pV(@) = ().

(6.33)
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N3LO contributions Number of diagrams Number of loops
Py x D 4174 (4690) 2

Table 6.7: The regarded subset of N°LO diagrams involves only a moderate amount of two-
loop diagrams in comparison to other contributions at NNLO or potentially N°LO.
The shown numbers are presented similarly as in table 6.3.

e = P

(ii) (iii)

H T

(iv) W)

Figure 6.14: Sample diagrams for Pg X Py at two-loop order are shown.

with
cc,(3) 13Ly  233L, (373 207? 20872
P (2) = -5+ 3 (9_ 3 >Z_ 27
| 151 18743
93 = 486 ' (6.5
$,c6,(3) 136L;  544L, 152 3272 287 i
psg (z) = — 3 oy <—9— 3 >z—|— g1
440 57632
N

Most likely the dominant N3LO contributions arise from P;» x P;» which would
require the calculation of corresponding four-loop integrals. Additionally, three-
loop corrections with evanescent and penguin operators would be necessary for the
renormalization of the latter. However, all this is beyond the scope of this thesis.

6.5 DISCUSSION OF THE RESULTS

The presented results of the previous chapter are in accordance with prior calcula-
tions, except for the y, dependence of ref. [68]. To test the consistency of the new
contributions to I';; we include several consistency checks.
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Contribution Order
P_¢ X Eﬁ)‘} a?
Py x EF
P, x EY
B) x £,
Efy x Ep ol
Ps x EY
Pi_¢g X Eg Qg
Pip X Eglli Qg
Efy x Ejy

Table 6.8: In the matching we keep the evanescent AB = 1 Wilson coefficients of the
operators stated in the left column up to the specified order.

Gauge parameter dependence

Throughout the calculation everything was computed within a general Rz gauge.*
For physical quantities we expect that they are free from the gauge parameter ¢,
and hence manifestly gauge invariant. We observe that this is indeed the case for
I'o.

Evanescent Wilson coefficient dependence

We further traced the behavior of the evanescent operators during the whole
calculation. This implies keeping the renormalized evanescent Wilson coefficients
on the AB =1 as well as on the AB = 2 side of the matching. The contributions
of table 6.8 were taken into account for the former. Not all combinations of the
in section 2.4 introduced operators could be analyzed since evanescent operators
contribute with large Dirac matrix chains. For example, the matrix element of
EéZ) X Eg(,z) would involve a projection on up to 14 ® 14 Dirac matrices. This exceeds
the limit of 10 ® 10 -matrices we encountered in section 5.2.

For the matrix elements of the AB = 2 theory we keep the Wilson coefficients of all
four generations of evanescent operators at LO, the first three at O(a;) and the first
two at O (a?). We observe that the AB = 1 evanescent Wilson coefficients contribute
after the matching only to the evanescent coefficients of the AB = 2 side. Although
it is required in dimensional regularization to match also evanescent coefficients,
the dependence on the evanescent AB = 1 Wilson coefficients drops out for the
physical matching results, as it was expected in chapter 4.

With exception of the scaling parameters ag and @, which were obtained in Feynman-"t Hooft
gauge.
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Renormalization scale dependence

In chapter 4 we describe the matching of the matrix elements at a common scale
1. Afterwards, we use RGE techniques of the AB = 2 theory to relate the matching
coefficients H and Hs to the hadronic matrix elements defined at an a priori different
scale u>. Hence, the y1 dependence of H and ﬁg should be of higher order in a;.
This can be tested from following requirement:

d d d d d d
——H= —a —+ —GCi | == +m=——|H
yldyl [<yldyl s@ll)) das(p1) E <yldﬂ1 l> dC; yl@ﬂl]

1

(6.35)

L. .
= higher order in a5,

and similarly for Hs. The matrix v is the ADM of the AB = 1 theory. It is currently
known up to three-loop order [79, 140], and it can be constructed from the effective
renormalization constants presented in appendix A.

For the results proportional to the AB = 1 Wilson coefficients and orders in «
shown previously in this chapter, we find that the derivative of eq. (6.35) is indeed
of higher orders in a;. This means, for example, that the y; dependence of the
Cy,2 x C1 contributions is O (a3).

IR-regulator dependence

To test the consistency of our matching procedure we used a finite a gluon mass to
regulate IR-divergences up to O(as) on both sides of the matching. We followed the
same approach as in section 3.5. The corresponding master integrals which appear
additionally to figs. 3.2 and 3.4 are shown in fig. 6.15 and given in the ancillary files.

For the considered subset we find the same results as with dimensional regulariza-
tion.

Further Crosschecks

Every result stated in this chapter was computed by two independent calculations.
As already mentioned in section 5.2, the cross-check calculation uses a different
approach for tensor reduction. Furthermore, the usage of tapir was employed
in only one calculation. The agreement of both approaches provides a non-trivial
check of the used setups.

Only the results for the master integrals were used in both setups simultaneously.
This is however not bothersome since their results are checked numerically. This
check also includes the asymptotic expansion of the integrals of section 3.5, which
can be tested with the programs FIESTA [141] and pySecDec [142]. Furthermore, the
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0 (i) (i) (iv)

\

(iX.) (X) (xi) (xii)

Figure 6.15: These master integrals occur additionally to the ones of figs. 5.2 and 5.3 if the
IR divergences are regulated with a non-zero gluon mass (curly lines). With this
alternative regularization we find the same result for I'1, as with dimensional
regularization up to NLO.

master integrals are additionally checked by expanding in g% < m3 and afterwards
taking the limit g% — m3.
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In the following we analyze the results of the previous chapter and their numerical
effects on physical observables. We begin with a discussion of I';;. From eq. (6.1)
the following relation is evident:

Iy, « mi . (7.1)

Since this prefactor stems from ¢> = m?, we choose m, = m° and express the

Wilson coefficients according to this choice. From this starting point, we could
alternatively express the prefactor of I';» with a different mass definition. From the
perturbation theory point of view, different renormalization conditions are equiv-
alent and can be translated into each other. The differences between observables
expressed in various mass definitions are of higher order in a;. Taking these orders
into account should lead to a reduction of the scheme dependence. For comparison,
we hence define three different renormalization schemes which we distinguish by
their prefactor mass definitions:

e pole: mS,
e MS: ﬁb(l’lb) ’
e DPotential Subtracted (PS):  m}>.

The latter definition subtracts contributions of the heavy quark potential from the
0S mass [143]. It is assumed that quantities expressed in terms of m}° have a better
convergence behavior when taking higher orders in a5 into account in comparison
to the OS mass. The subtraction term is currently known up to O (uc‘sl) [144, 145].

Except for the prefactor mass, the remaining terms of I';; are expressed in terms
of MS variables using the relation which transforms the OS mass to MS mass at
O (a?) [117]. For example, at O(a;) these relations for g = b, ¢ are given by

1+C (‘i) 3in [ +4)
" \dn 2 (1)

z =12 [1 —6Cr (:%) <ln <z§> +1In (z))

(Jute)” 7

mqos = mq(ﬂq)

+ O(tx?) ,

(7.2)
+0(a)

with

Together with the MS masses 7. and 71;,, new renormalization scales yi. and y;, are
introduced. Using z in favor of z has the advantage of a better convergence behavior.
Instead of measuring m®S directly, it is determined from its relation to 7. [146].
This relation suffers from large corrections in the &; expansion since the OS mass
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m:(3GeV) = 0.993 + 0.008 GeV [148] as(mz) = 0.1179 £0.001 [149]
iy (7,) = 4.16340.016 GeV [150] mS = 1729 +0.4GeV [149]
Mj = 536688 +£0.00014GeV  [149] M$ = 5.27963 £ 0.00012 GeV [149]
f5 = 02307 £0.0013 [151] fi = 0.1905 + 0.0013 [151]
AMS® = 17.7656 & 0.0057 ps~* [152] AMZ® = 05065+ 0.0019 ps~! [153]
B, = 0.813+0.034 [41] B} = 0.806+0.041 [41]
BS, = 1314009 [41] B‘és = 1.20+0.09 [41]
Bk, = —043+0.17 [41] By, = —035+0.19 [41]

By, = 007 [154] B ~ 0

B%, = 004 [154] B% ~ 0
By, = —0.18+0.07 [154] B%, = B%, [69]
B%, = 038+0.13 [154] B%, = B%, [69]
|V = 0.04216 + 0.00051 [155] [Vip | = 0.03936 + 0.00068 [156]
6 = 11967003 [149] |Vi|/|Vp| = 0.083 +0.006 [157]

Gr = 1.1663787 x 107°GeV~2  [149]

AS/A3 = —(0.00865 + 0.00042) + (0.01832 + 0.00039)i [69, 158]
A2/A¢ = (0.0122 +0.0097) — (0.4203 + 0.0090)i [69, 158]

Table 7.1: Summary of numeric values needed for the determination of AT’ and ag for Bs/Bs
and B;/B,. The values for B’ ilzl and B’ %1 are neglectable since they are suppressed
by m,/my [154]. Also, the uncertainties for Gr, B’k ,and B/ sﬁl are negligible due

to their marginal contribution. We use the abbreviation A} = Vg Vap- For |V, |l

we use an updated value instead of ref. [159].

definition is affected by the renormalon ambiguity (see e.g. ref. [147]). Hence, using
m, and 7, prevents this issue. For the numeric evaluation of I';p, we use the exact
z-dependence for the contributions for which it is known in the literature. The
remainder is expanded to leading order in z after transforming the results to the
CMM basis and expanding the AB = 1 matching coefficients in as.

According to egs. (1.15) and (1.17), the real and imaginary part of I'1,/Mj; has to
be considered for the determination of AT /AM and ag. AT’ can be extracted from
the approximate formula:

AT =~ 2|T|, (7-4)

which is affected from the large uncertainty of the prefactor A;. If we use instead
the ratio I'1p/ My to extract AT, A; cancels from egs. (1.40) and (1.48). Additionally,
the bag parameter of the dominant matrix element (Q) drops out from I'1/Mj,
and only the relative size of the remaining bag parameters according to By is
considered.

The next-to-leading order corrections to I';p in the A/m; expansion are known
at tree-level and added to our result [47, 63, 67]. For these terms the same mass
definition is used for all schemes. We choose mlbDS determined from the N®LO MS-PS
relation [64].
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For the numerical analysis we use the input parameters from table 7.1. Furthermore,
the hadronic AB = 2 matrix elements are parametrized according to

(B, QUe) [By) = 5 (M3f3)7 B (1),
(By| Os(112) [By) %(MZfB) (n2), 7:5)
(Bg| Ri |B ( ) B'q

From eq. (3.5) we see that not all bag parameters By, are independent:

M _ _ pM
BEZ = — By,

1 (7.6)
9 _ pi 9
B =B, + 5B,

Additionally, we use the program RunDec [64] for the QCD running and flavor-
decoupling of quark masses and «s. For a better comparison, we set the renormal-
ization scales, as defined in chapter 4, to the same values for all schemes. We choose

Ho=165GeV,  up=pc=p =42GeV,  pp=mdS. (7.7)

With table 7.1 we get mP° = 4.757 GeV from the two-loop MS-05 relation, 771, (4.2 GeV)
4.156GeV and mlS = 4.479 GeV from the four-loop definition of the PS mass at
p = Ty (7). We employ mp> = m}>(jis) at the infrared scale s = 2GeV.

Since p; is the matching scale for the HQE of I';p, we utilize it as a measure to
express our restricted knowledge of higher orders in a;. According to the RGE
improved perturbation theory we employ for the AB = 2 matching coefficients, the
dependence of I'1; on i is expected to decrease with higher orders in «s.

7.1 Bs/Bs

With the NLO result of My, [49], we get the following for B,/ B.:

Al"s pole
<AM ) = (3 7908 ute £ 0115 £0.781 /, £ 0.05input> x 1073, (7.8a)
S

s _ (4 33702 £0.125 £ 078/, £ o.o5input> %1073, (7.8b)
AMS

PS
( AA{/D = (4204030 #0125 % 0.781 1, £ 0.05pu ) X 1072, (7.80)
The uncertainties indicated by “scale” are given by the minimal and maximal values
for the variation of y in the range between 2.5 and 10 GeV. The “B” uncertainty
is propagated from the leading order bag parameters By and BQs' “1/my" are the
uncertainties stemming from the bag parameters of the power suppressed hadronic
matrix elements. The numbers denoted by “input” include the uncertainties of the
remaining input parameters of table 7.1.
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A non-negligible part of the scaling uncertainty is accounted to the i variation of
the power suppressed A/m; terms. Numerically, the shift of the central value and
the effect on the scale uncertainty stemming from I‘ié " are given by

AT's i +0.11 -3
<AMS> = (—1s8 0, ) x 107, (7.9)

By multiplying the experimental value of AM; to eq. (7.8), the following results are
obtained for the width differences:

(AFS)P(’le — (6.73+1'34 4+ 0.205 & 1.381/mb + O-loinput) x 1072 psil ’

—1.435cale

(7.10a)

(AT)YS = (7.6970% . +0.215 %1381, %+ 0.08impuc ) X 10 2ps ™,
(7.10b)

(ATy) = (7.46i$;333ca1e +0.21p +1.381, & o.osmput) x 107 %ps .
(7.10C)

For the combination of the results in the MS and PS schemes, we obtain

(AT,)®™ = (757 4+1.63) x 10 2ps~!, (7.11)

where the uncertainties of the individual schemes are symmetrized, averaged and
finally combined with the standard deviation from both mean values. The reason
not to consider the pole scheme in eq. (7.11) is explained below.

This result is compared with the experimental determination [153]:
(AT5)®P = (824 0.5) x 10 2ps L. (7.12)

Within the theoretical uncertainties this is in agreement with eq. (7.11).

Similarly, we obtain for the CP asymmetry:

(ai )P = (2207091, +0.015 £ 0.061/, +0.07impuc) X 107°,  (7.132)
(@)™ = (2.16jg;ffgscale +0.015 £ 0.061 /1, & 0.06input ) x 1077, (7.13b)

)
(a3)"® = (222709, e & 0.015 % 0.061 /1, £ 0.07imput ) X 1077, (7.130)

with the combined result of the MS and PS scheme:

(a5,)°™ = (219+40.14) x 1075, (7.14)
For comparison, at the time of writing the experimental world average is given
by [153]

(a%,)P = (—60+£280) x 107°. (7.15)
Our determined results lie in all schemes within this error bar.

From eq. (7.8) we see a relatively large difference between the scale uncertainties
in the different schemes. The y; dependence of AT's/AM; and ag, are depicted in
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saes PS
tq [GeV]
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x10~3
- N":;u. ] Pole
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1951 ~<
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Figure 7.1: The p; dependence of AT's/AM; (i) and ag, (ii) is shown in all three schemes.

The gray band marks the region of y; which is used to quantify the scale
uncertainties. The scales p;, and ji. are fixed to 4.2 GeV.
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tig. 7.1. For AI's / AM;, all three curves of fig. 7.1i show a monotonous behavior and
the function value bands overlap mostly for y; between 2.5GeV and 10 GeV. The
curves for af in fig. 7.1ii also show an overlap, but the curves have a local maximum
which lies for the pole scheme inside the regarded y; variation range.

To further analyze the scheme differences, the different AB = 1 contributions to
AT's / AM; are presented in tables 7.2 to 7.4. The splitting between the orders in a;
shows that for P;» x P;» the NLO contribution is of comparable size as the NNLO
contribution for the MS and PS scheme. Furthermore, we see a clear suppression
of the penguin contributions in comparison to the current-current ones. Also, the
higher order corrections in the A/m; expansion have an effect which is of similar
size as the leading A /my terms at NLO.

The p1-dependence of ATl's/AM; according to the different perturbative corrections
with I’gm” , up and p. held fixed are shown in fig. 7.2. In these illustrations one
can see no flattening in the curves when comparing O () and O(a?) effects. This
can also be observed in figs. 7.2i, 7.2iii and 7.2iii where only the contributions of
current-current operators to different orders in &, are considered.

However, varying instead the renormalization scales y; = y; = p. simultaneously,
shows the expected flattening in the scale dependence of AI's/AM; in the compar-
ison of NLO and NNLO for the case with penguin contributions in figs. 7.3i, 7.3iii
and 7.3v, as well as if only P;» X P, are taken into account in figs. 7.3ii, 7.3iv
and 7.3vi.

Concerning the different schemes in which we define the prefactor of I';y, we see
from figs. 7.2 and 7.3 that the MS scheme leads to the most overlap between the
values of AI's/AM; according to different orders in ;. In the PS scheme the bands
are further separated but still closer together than in the pole scheme, where the
bands barely overlap. Especially when estimating the uncertainty due to unknown
corrections in as with a variation of only y4, as in fig. 7.2, the pole scheme leads
to a clear underestimation. This is related to the fact that the corrections of the
0S-MS mass relation are large due to the renormalon ambiguity. Thus, the bands
separate further when taking higher orders in a; into account in comparison to other
schemes. We conclude that the pole scheme should be replaced in favor of other
physically motivated mass schemes, such as the PS scheme which is renormalon
free [160]. The differences between the PS and MS schemes are additionally depicted
in fig. 7.4, where the simultaneous p; = p, = p, variation is illustrated. In the
latter one can see a clear convergence between both schemes towards the NNLO
corrections.

The numerical values of the evanescent factors ¢\ which are not given in the
literature, i.e. the ones that are not stated in eq. (3.7), have only a small effect on the
NNLO corrections of AI's/AM;. For example, if we vary all of them simultaneously
between 0 and 100 the central values of I';y/ Mj, change by O(1) percent. For our
analysis we use the choice of eq. (3.103).

Another point of interest is the validity of the z expansion. In table 7.5 we compare
the expansion to (’)(EO) and up to O(z) according to their effects on the relative
size of P; » X P;» contributions to AI's/AM;. One can see that the linear order in z
has an overall effect which is not negligible. For the O (a?) corrections which are
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not known with exact z dependence, the z corrections have a moderate size which
shows that the expansion in z is a useful approximation. For ag this expansion is
more significant since it depends strongly on 1. due to the GIM mechanism.

Contribution | Combined al s o2 al
Pip x Py 151.% 259.%  —70.2% —37.7% -
Pip x P3g —13.9% —16.1% 2.17% - -
Ps¢ x P34 2.52% 2.34% 0.187% - -
P, x Pg 1.52% - 1.38% 0.139% -
Psg x Pg —0.513% - —0.381% —0.132% -
Ps x P —0.00508% - - —0.00357% —0.00151%
1/my —40.3% —40.3% - — -

Table 7.2: Relative sizes of individual AT's/AM; contributions to central value in the pole

scheme.

Contribution | Combined al s 2 ol
Pip x P 144.% 173.%  —13.6% —15.3% -
Pip x P —11.4% —-10.7%  —0.66% - -
Ps¢ x P34 1.99% 1.56% 0.427% - -
P, x D 1.2% - 0.923% 0.274% -
Psg x Pg —0.392% - —0.255% —0.138% -
Ps x P —0.00385% - - —0.00238% —0.00147%
1/my —35.3% —35.3% - - -

Table 7.3: Relative sizes of individual AT's/AM; contributions to central value in the MS

scheme.

Contribution | Combined a? s o2 ol
Pip x Pip 146.% 207.%  —37.2% —23.9% -
Pip x P3g —12.3% —12.8% 0.54% - -
Ps¢ x P34 2.19% 1.87% 0.321% - -
P, x Pg 1.32% - 1.1% 0.214% -
Psg x Pg —0.438% - —0.304% —0.134% -
Ps x P —0.00432% - - —0.00285% —0.00147%
1/my —36.3% —36.3% - - -

Table 7.4: Relative sizes of individual AI's/AM; contributions to central value in the Ps
scheme.

In fig. 7.5 we compare in the MS scheme the determination of AT's from eq. (7.4)
with the ratio AI's/AM;. The SM prediction for AM; is shown as well which is given
by the approximate formula

AM; =~ 2|Mp,|. (7.16)
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w o

Scheme Z0 z Z0 z Z0 z

Pole 286.% 260.% | —68.% —69.8% | —36.6% —37.7%
MS 191.% 174.% | —8.56% —13.1% | —13.2% —15.3%
PS 229.% 208.% | —33.5% —36.8% | —21.8% —23.9%

Table 7.5: The relative contributions of Pj, X P;; to Alls/AM;s are shown in different
schemes and orders in «;s. The contributions are shown either to O (ZO) or up to
O(z). Contributions from I'y ,,, are not considered.

Since M, does not depend on the I';; matching scale 1, and has only a neglectable
dependence on j according to ref. [49], no u-variation is considered for AM;. The
main uncertainty of AM; stems from the input parameter A;, for which the CKM
matrix elements Vis and Vj;, have to be inserted. Since only absolute values are
needed, we can assume for the former:

|Vts‘ = ‘Vcb‘ + O(/\4> , (7.17)

which holds according to the Wolfenstein parameterization of eq. (1.30). The precise
values for |V};| and | V| are determined using a program by ref. [161] with the CKM
parameters ¢ and |V,;|/ |V | as input as given in table 7.1. Another problem arises
from the tension between different determinations of |V;| from either inclusive
or exclusive B-decays. Both are shown for comparison in fig. 7.5. In table 7.1 we
use an updated result for |V,;|"°.. The standard input is referenced as |V, |"! =
0.042 + 0.0064 [159]. An alternative approach for the determination from inclusive
decays is provided in ref. [162]. We conclude from fig. 7.5 that the determination
of AT's from AI's/AM; leads to a more reliable result due the ambivalent V,, input.
Additionally, the positions of the measured results in this plot show that they agree
the most with the inclusive determination of V.

7.2 Bg/Bg

For the B;/ B, system the same arguments hold that we discussed for B;/B;. The
only differences between both predictions are the input values for A, /A;, the bag
parameter B;, the decay constant fz and the averaged meson mass Mg. Since
some A /my suppressed matrix elements are proportional to m,/m;, where q is the
spectator quark flavor, they can be neglected for B;. With the input of table 7.1 we
obtain from I'%, /M4, the width difference

(AT)P = (1,9z+0-40 +0.06p & 0.401 /, & 0-O3input> x10%ps™,

—0.41scale
(7.18a)
(AT)™ = (21970Y . +0.065 £ 0.401 /1y, +0.02ippue) x 10 ps!,
(7.18b)
(AT = (2.13t8;§{scale +0.06p = 0.401 /, £ 0.03mput) x10%ps™,

(7.18¢)
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and the CP asymmetry

le
4 \P°
(at)

(ad)MS - (—497+0-36 +0.025 +0.141,, +0.15; )><10—4 (7.19b)
fs . . B - L1 /my, - tYinput 7 7'9

—0.2 scale

(—5.06j8;}){scale +0.025 £ 0141/, & o.15input) x107*,  (7.19a)

PS
<a?5) - <_5'11j8:%£1§scale +0.02p & 0'141/711;; + 0'16input> X 1074 . (7.19C)

Since the mentioned differences to Bs are either GIM suppressed or cancel substan-
tially in the ratio AI'/AM, we can alternatively use the following to estimate AI';:

AT, AT, .20
AM; ~ AM,’ '

From this assumption, we get

1 - -
(AT)E = (1.92t8;i§‘scale +0.06p £ 0.391 i0.03mput) x107%ps,

alt

(7.21a)
(ATNE = (219788, 0 +0.065 +0.391 /1, + 0.02iput) x 107 ps!,

(7.21b)
(AT = (2.13jg;§§’scale +0.06p £ 0.391 /, £ o.o3mput) x10°ps,

(7.210)

where the mean values as well as the uncertainties are comparable to eq. (7.18).

For the combination of the results of egs. (7.18) and (7.19) in the MS and PS schemes,
we obtain

(AT,)™ = (216 £0.47) x 10 3 ps !, (7.22)
mb
(a?s) CO!

The according determinations from experiment are given by [69, 153]

(—5.04+0.33) x 1074, (7.23)

(AT )P = (~1.324+6.58) x 10 °ps ™!, (7.24)
(al)®P = (—21417) x 1074, (7.25)
Due to large experimental error, no qualitative statement for Al'; in comparison to

the SM prediction can be made except that they agree within the uncertainty. The
same holds for a..
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Figure 7.2: The y1 dependence of Al's/AM; is presented with the different corrections in
«s for the pole, MS and PS scheme. For the left-hand side all CMM operators
are considered, whereas on the right-hand side the penguins contributions are
neglected. For these plots the cMM Wilson coefficients are expanded in a; and
only the terms up to a0 are kept for LO, a! for NLO and a2 for NNLO. The A/m,
terms are not varied and equal in each scheme. The scales y;, and y are fixed to
42GeV.
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Figure 7.3: The scale variations between the different orders in a; show a significant differ-
ence when the scales y1 = py, = . are varied simultaneously in comparison to

fig. 7.2.
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The scheme differences between MS and Ps are depicted for AI's/AM; for dif-
ferent orders in a;. For the simultaneous y1 = y;, = . variation, only the
contributions of two current-current insertions are considered, and I'y /,,, is held
fixed.
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Figure 7.5: In this plot the determinations of Al's and AM; from egs. (7.4) and (7.16) is
compared to the ratio Al's/AM; in the MS scheme. We depict two different
values for AT; and AM;, respectively, with |V, | determined from exclusive and
inclusive B-decays. The experimental results are shown as a box within their 10
deviation. The experimental error for AM; is bloated by factor of 10 for a better
visualization.






CONCLUSION AND OUTLOOK

In this work, we computed new predictions for the width difference AI' and the
flavor-specific CP-asymmetry ag of neutral Bs- and Bj-mesons. For the AB = 1
side of the matching calculation we used the CMM basis which is a novelty in
the determination of AT' and ag. Furthermore, the AB = 2 basis was extended
by several new evanescent operators. We computed the corresponding AB = 2
renormalization matrix and specified the RGE running of the effective operators or
Wilson coefficients together with the two-loop ADM. All results were computed with
unspecified evanescent parameters e,(xf) which could provide a future crosscheck
for non-perturbative calculations of the hadronic AB = 2 operator matrix elements.
Other novel results of this work are the finite renormalization factors a; which give
the two-loop matrix element of Ry the correct power scaling of A /my,. These factors
are a necessary input for the determination of the bag parameter of Ry in lattice or
sum rule computations.

For the calculation of AT and a¢ we took contributions of penguin operators
P;1_¢;8 into account which describe subleading effects due to their numerically
suppressed Wilson coefficients. With them, we completed the calculation of the
order a; corrections at leading order in the HQE. Furthermore, contributions at NNLO
were computed including two insertions of current-current operators P, which are
expected to be the numerically dominant terms of that order. Additionally, further
one-loop and two-loop corrections including the chromomagnetic penguin operator
Pg are presented which are formally NNLO and N*LO. Our results were computed up
to the second power in m. using a naive integrand expansion where it is applicable
and gives the same result as the asymptotic expansion. Although this expansion
leads to small corrections, they are needed for a¢; which is sensitive to m. due to
the GIM suppression. Consecutive calculations may include higher orders in m, to
improve the predictions of AI' and especially ag. We also showed that the NNLO
corrections to AI" are of comparable size as the NLO ones which is due to the small
size of the latter. This leads to the conclusion that further contributions should
be considered, including penguin effects at NNLO and the presumably dominant
current-current effects at NLO. We have also seen that the power suppressed A/m;,
corrections are of the same magnitude as NLO contributions of the leading powers
in A/my. Thus, future calculations should consider a; corrections to I'y /,,, as well.

We employed a plethora of tools to handle the O (10°) Feynman diagrams which
occurred in the framework of this work. One of them is tapir which was developed
in the light of the problems that emerged during the presented calculations. We also
encountered the problem of tensor reduction and explained the general idea behind
the projection ansatz. During the calculation of I'1; we reached the limitations of this
approach and encountered them with technical finesse. However, future projects
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have to invest more work in pushing these limits further or using a different tensor
reduction method.

Our ambition to reduce the theory uncertainties of AI's down to the size of the
experimental one has not yet succeeded. However, we improved on the current
phenomenological results and laid the groundwork for further calculations. For the
observables A, u?s and a?s the uncertainties of the SM predictions are below the
ones of experimental determinations. This provides further motivation for more
precise experimental results.
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RENORMALIZATION MATRIX OF THE CMM BASIS

In this appendix, we describe the renormalization of the CMM basis of egs. (2.26),
(2.27) and (2.16) according to the results of refs. [75, 140], and extend it to the
current-current operators P{‘E, P{‘E and Pf% which are not stated in the literature.
However, their renormalization constants can be reconstructed from the known ones
if the renormalization matrix is extended, and the requirement that only operators
can mix which describe interactions of the same particles. This means that P, and
Py’ operators do not mix with P{5, P’y or any penguin operator. For simplicity, we
refer here to the renormalization of the Wilson coefficients according to

Zro  ZEE
The indices i and j can describe either a physical operator,
P = {PCCIPCC/Pculpcu/PuclPuclPuulpuulp3lp4lp5/P6/P8}/ (AZ)
or an evanescent operator
E = {Egl),cc, Egl),cc, Egl),cu, Eél),cu, Egl),uc’ Eél),uc/ E%l),uu’
Eél),uul Eél)/ EA(ll)’ E%Z),cc, EéZ),cc/ EgZ),cu’ EéZ),cu, EgZ),uc/ (A3)
E§2),uc, E%Z),uu’ EéZ),uu’ E:S)Z), E£2)} )
in the given order. Note that we introduce additional evanescent “uu”, “uc” and
“cu” operators which are in accordance to the “cc” operators. We use the same
parameterization as eq. (2.40).

The renormalization among Wilson coefficients of physical operators up to O (a?)
is given by

4 1 167
24 0 0 0 0 0 0 O -1 0 0 le7
6 00 000 0 0 0 z 0 0 L
0 0-2%2 00 0 0 0 0 0 0 0
00 6 00 0 0 0 0 0 0 0 0
0 00 0-23% 00 0 0 0 0 0
o 0000 6 00 0 0 0 0 0 0
zoa) =100 0000 24 o 10 0 167 )
0000 0 O0 6 0 0 z 0 0 L
000 00 O0O0O0 O | 2
20 2 80 2 37n o7
0000 000 0 - F-% § 5 -z 3
000 00 OO0 O O -1 0 10 9 +H2
20n 551y 1906
00000 0 o0 o0 -1 =x_222 _1 227f_W
00 00O 0O 0 0 0 0 0 0 LY

(A.g)
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RENORMALIZATION MATRIX OF THE CMM BASIS
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RENORMALIZATION MATRIX OF THE CMM BASIS

The variable 1y denotes the number of active quark flavors. The asterisk “+” in-
dicates unknown entries. In the case of egs. (A.5) and (A.6) the only unspecified
renormalization constants are the ones which mix the bare Cg into other coefficients
at O(a2). Due to our definition of Pj this effect is O (a3). Note that our Ps definition
is different from the one in ref. [140].

The renormalization contribution of evanescent to physical Wilson coefficients is
given by
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RENORMALIZATION MATRIX OF THE CMM BASIS

The renormalization matrix Zgg includes finite terms which are already present at
O(a?), but describe O(as) effects due to Ps. The only non-vanishing contributions
are given by

(0,0) (0,0) 32
m, = 04, Z.a, = o
EyVP E,'P 3
X - (A.10)
00 _ 513, Z0V _ 20
E(Z)P ’ E(Z) P 3 .
3 4 18
The contributions at O(as) are partially unknown. They are given by
64 2 0 0 0 0 0 0 0 i 0 0 -1
48 —64 0 0 0 0 0 0 0 -8 0 0 s
0 0 64 2 0 0 0 0 0 0 0 0 0
0 0 48 —64 0 0 0 0 0 0 0 0 0
0 0 0 0 6 2 0 0 0 0 0 0 0
0 0 0 0 48 —64 0 0 0 0 0 0 0
0 0 0 0 0 0 6 2 0 4 0 0 _m
0 0 0 0 0 0 48 —64 O -8 0 o0 s
o 0 0o 0 o0 0 o0 o & —2432 —1280 320 —180n; — 1352
7(10) 0 0 0 0 0 0 0 0 -—H0 _g 8 6o 18 20 S
EQ « %« 0 0 0 0 0 0 0 16 0 0 *
x %« 0 0 0 0 0 0 0 —96 0 0 X
0 0 % % 0 0 0 0 0 0 0 0 0
0 0 « % 0 0 0 0 0 0 0 0
0 0 0 0 % * 0 0 0 0 0 0
0 0 0 0 % + 0 0 0 0 0 0
0 0 0 0 0 0 = = 0 16 0 0 *
0 0 0 0 0 0 * = 0 —9% 0 0 .
0 0 0 0 0 0 0 0 x X ok *
0 0 0 0 0 0 * * * * *
(A.11)
. (1,1) .
All entries of Z pO are either zero or unknown, except for
1,1 3616 128n 11 64n 80
G = 22—, 200 - =, (A.12)

EVps 3 3 7 TEVm 9 9

The O(a?) terms of Zgg are not known as well.
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130

The renormalization matrix which mixes the Wilson coefficients of evanescent

operators among themselves is also only partially known. The O(a;) terms read
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(A.13)

00 0 0 0 0 0 0 =

*

(L1)
Zgf

The entries of Z ](5 E’i) are throughout unknown.



FIERZ IDENTITIES

In this appendix, we recall a simple way to derive Fierz identities in four space-time
dimensions as it is stated in ref. [163]. The bilinear covariants basis can be stated
by several combinations of independent basis vectors. Instead of using the ones of
eq. (2.21), we could as well choose the following 16 basis vectors:

FA € {PRI PL/ PRI)/V/ PL’YV/ O-VV} ’ (BI)

with Pr,p = (1 £ 95)/2 and o = i[y#, "] /2.

The fact that eq. (B.1) is a closed basis can be used to reduce any spinor space tensor
build out of Dirac matrices. First, one has to define a scalar product between the
I'4. The necessary dual vectors I'4 for the scalar product are in general different
from the I'*, and have to fulfill the orthogonality relation of

Try (rArB) L 2645, (B.2)

Note that in eq. (B.2) no sum over Lorentz indices is applied. Thus, the dual basis
of eq. (B.1) is given by

1
s € {PR/ Pr, Pryu, Pryp ZU‘W} . (B.3)

Using the completeness of eq. (B.1), we can write a general bilinear term as
1
X = x,T4, with x4 = ETm(XFA) , (B.4)

where we assume Einstein’s summation convention.

By inserting eq. (B.2) into eq. (B.4), a completeness relation can be found according
to

1
Xij =5 ngIFA,lkrf}

1
& ) Xupbuids = 5 ) Xup Z5ak5ﬁer,lkrf? (B.5)
wp wp Kl
1
= 5”5‘3]' = EFA,WF;? .

The last line follows by comparing the coefficients of every matrix element X,.

Thus, for a combination of two Dirac chains we get

(3),(4), =maxear) (),

. (B.6)
= 7> Try[XT 4YTp] <r3> <FA> .
4 il kj
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132 FIERZ IDENTITIES

We introduce the parameter 77 to account for a different treatment of fermion
operators as anti-commuting Graffmann numbers (7 = —1), and commuting spinors
which originate from Feynman rules (7 = 1).

As an example, we prove egs. (3.2b) and (3.2¢):
4 (0" PL)yj (owPr)y = —Tra[o" o PL] (PL)y (PL)y

1
L (" 0000y PL] (PL)i (077 g

1
1 I 2 P9 (Pr )y
— 21r4 [ 0000 PL] (077)ir( L)k (B.7)

1
- AITM [U—IlvaaﬁvaUPUPL] (Upg)il (aaﬁ)kj
= —24(P); <PL)kj — 2(—=bpu0p
+ (Spﬁ51m - eptmﬁ) (Upa)il(alxﬁ)kj .

To reduce this further, let us examine the terms on the right-hand side of egs. (3.2b)

and (3.2¢):
4(Pr);j (P)yy = —Tra[PL] (Pr)y (PL)y
1 a e
— 1Tr4 [00p0poPL] (‘ip )i (P ) (B.8)
= —2(P); (PL)k]‘ + 5(_510“505

- pﬁémx - €paaﬁ)<0p0>il(aaﬁ)kj :

Combining egs. (B.7) and (B.8) and putting the expressions between the correspond-
ing fermion operators gives

4 (" Pr);; (o Pr), + 16 (Pr)ij (PL)ig = 32 (Pr)y (PL)y
= Qr +4Qs = —8Qs.

For spinors, the right-hand side would have a different sign.

(B.9)



EVANESCENCE OF Ry

As stated in eq. (3.4), a certain combination of the operators Q, Qs and Qs is
of higher order in the A/m; expansion. In this section, we prove the following
four-dimensional identity with respect to possible implications in dimensional
regularization:

<Q>tree+<Qs>tree+<és>tree — O<A> , (C.1)

R tree —
(Ro) o

N =

which holds up to corrections of order as.

Equation (C.1) can only be proven with the usage of explicit four-dimensional
relations. In dimensional regularization the power suppression only applies to
the O(€") term. The O(e) remainder is still defined at the leading order in the
A /my. Thus, the usage of four-dimensional identities is only allowed by introducing
evanescent operators in order to define the scaling of Ry appropriately.

We start with a four-dimensional Fierz identity and resolve it with the relations
derived in appendix B. It is given by

d= 1
(’YVPL%' (7" PL)y S 1Tr4(’YVPL’YpPR’YVPL’YTPR> (v<PL)jy (’YPPL)kj

1
= — g |Ta(r"7"7"77) + Tra(v"9"7"77 )
X (’)/TPL)il (’YPPL)k]‘
1 1 (C.2)
= =5 (V"Po)y (Y'Pr)y; — 5 (¥"Pr)y (7" )y
1
+ 58}” (Y"PL)y ('YPPL)k]'
i
+ € (vePL)y (YpPL)y -

Furthermore, the equations of motion are needed which hold exactly in d dimen-
sions. Since we discard terms of higher orders in A/m; and assume mg; < m;, we
can use the Dirac equation in the AB = 2 Hamiltonian as

ibd = b+ O(m)) = —mpb+ O(m)),

(C3)
ids = O(m)).
Thus, only the leading kinematic term of the b-quark is considered.
By neglecting total derivatives we find the following relations:
(bdPrs)(bdPs) = —ma(bPys)(bPys) + O(my) (C.4a)
((0"D)y" Prs) ((9vb)yuPrs) = —mj (bPrs) (bPys) + O(my) (C.4b)
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((0"b)y"Prs) ((0ub)yyPrs) = — (by'Prs) ((3b)7y,Prs)
= mj (by"Prs) (byvPrs) + O(my).
In eq. (C.4c) the analogy of eq. (C.3) for the Klein-Gordon equation has been used.

(C.40)

It is now possible to rewrite Qg in d dimensions according to

]
1 /2% -
= — mfg <biaPLsi> (b]'

SChy
['31
\.m
~_
+
G
—
~
3

(0"b;) J
(0"B;)7" Prs;) ((9b))yvPrsi) (C.5)
— jerPvt ((8y5i)%Psz ((avl_ﬂj)’)/pPLSi)}

+ Eo + O(1/my)

R A ;
20 5@ (@B ePis) (B Pis)

~—

(C.4)

= G -

1
+Eo+O(—).
my
In eq. (C.5) we introduce the evanescent operator Ey. It is defined as the difference
between the relation which is derived by the four-dimensional eq. (C.2).

The object €' is formally defined in dimensional regularization as

T = TTr(v" ) (C6)

which is total antisymmetric. In our employed NDR scheme, this term must not be
evaluated since it leads to ambiguous results. Nevertheless, if only its antisymmetric
property is taken into account, the usage of eq. (C.6) is of no concern. The factor of
€' in eq. (C.5) is symmetric under the exchange of the Lorentz indices y and v.
This can be seen from integration by parts relation and using Schwarz’s theorem to
allow a symmetric interchange of the derivatives. Hence, the term vanishes, and we
are left with the evanescent operator Ey which is given by

Ey = %Q+Q5+Q5. (C.7)

However, this does not provide any further information. The only difference be-

tween Ep and e.g. E%l) of eq. (3.6a) arises from the fact that Ej is only evanescent

in the leading order in 1/m;, whereas the evanescence of Eil) follows solely from

Fierz symmetry.

For eq. (C.1) it follows,

<R0>tree _ % <Q>tree + <Q5>tree + <Qs>tree
. 1 £ o A (C.8)
—<O>_§<1>+ <mh)'

where leading term in A /m;, manifestly vanishes in four dimensions.



CALCULATION SETUP

In this appendix, we summarize the software and the employed methods for the
evaluation of Feynman diagrams which is used in the context of this work. In
fig. D.1 a flowchart is presented which contains the various programs used for this
purpose.

D.1 PROGRAM TOOLCHAIN

The diagram generation according to the allowed Feynman rules is performed with
the program qgraf [127]. For this, we specify which particles are present in our
theory and if they are fermions or bosons. It is also necessary to state the interactions
of the particles, such that qgraf can build Feynman graph representations of the
regarded amplitude. A graph consists of edges, corresponding to the particle
propagators, and vertices for particle interactions. qgraf also offers filter options
to restrain diagram classes. With the option onshell, for example, it is possible to
generate only diagrams without self-energy corrections on external legs, so-called
amputated diagrams. In addition to the graph representation, the program provides
the symmetry factor and the relative sign for each diagram.

The next program takes the generated graphs of qgraf and inserts the corresponding
Feynman rules to build an amplitude. This task is accomplished with tapir [121]
which is further described in appendix D.2. The output is provided as processable
FORM [128] code.

The next program is exp [118, 119] which is used to map momenta of a Feynman
graph onto a set of predefined topologies. The result is a makefile which is the
entry point for the evaluation setup for all individual graphs, called “calc”. In the
calc setup the programs MATAD [102] and MINCER [120] are included to compute
massive tadpole- and massless propagator integrals up to three-loop order. If other
integral classes are considered, one can use tapir to generate FORM scripts which
combine the scalar factors of the integral to an integral family function of the form

d%;...d% &~ 1
I(ay,... an // G QD?I,. (D.1)

)

The set {a;} are denoted as indices to describe different members of the family I.
The D; are denominator functions which depend on the masses, external- and loop
momenta.

We also use the FORM program color [164] in calc. It enables the computation of
group theory factors in various gauge groups. With the help of calc, it is possible to
express our results in terms of Casimir operators of the QCD gauge group SU.(#.).
However, the AB = 2 operators of chapter 3 are not defined in a distinct group
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Figure D.1: Our toolchain uses a variety of different programs. Additionally, there are

several unmentioned auxiliary scripts which connect the main programs.



D.2 THE PROGRAM tapir

representation, like the AB = 1 operators. Hence, the matching results can only be
stated in terms of the number of colors, #..

D.2 THE PROGRAM tapir

As described in appendix D.1, qgraf is the first program we use to generate all
Feynman diagrams of the according process. For several subsequent steps we use
the program tapir [121] which stands for Topologies, Amplitudes, Partial fraction
decomposition and Input for Reduction. tapir is build on the main functionalities
of the program qg2e [118, 119] but extends them in many ways. To explain all features
and to set it in context for future applications, we describe the procedure for the
computation of the numerically dominating three-loop contributions to I';» with a
non-vanishing c-quark mass. Thus, we consider the process b(q1)s(q2) — s(q3)b(q4)
with g1 = g4 = (m,0)T and g2 = g3 = 0 in the AB = 1 theory of chapter 2 with
two current-current operator insertions.

The first problem arises from the fact that diagrams such as shown in fig. D.2i
contribute which have self-energy corrections on external legs. To account for
these diagrams, tapir provides diagram filters to complement the ones of qgraf.
The latter generates with the option offshell only diagrams with self-energy
corrections on the external legs, but also including the ones which do not change
the flavor of the particle. With respect of the LSZ reduction formula [115], such
diagrams must not be taken into account for the calculation of I';». The option
self_energy_bridge_mixing of tapir searches in the topological structure of the
diagram for so-called bridges, which denote edges of a graph which do not belong to
a loop. If two or more bridges are found, it is checked if all lines between two bridges
are 1PL If this is the case, then a self-energy sub-diagram is found. Additionally,
when the two regarded bridges belong to different particle types the filter applies.
The same is done for the option external_self_energy_bridge_mixing with the
additional restriction that one of the bridges must be an external line. Applying
this filter to the output of qgraf reduces the number of three-loop diagrams from
0(32000) to O(27000).

After filtering the diagrams, it is often advantageous to combine different diagrams
according to their topological structure. Thus, the problem size reduces substantially
and scalar integral families can be expressed more easily. For this purpose, tapir
includes routines to analyze and manipulate the topology of a diagram as well. As
a graph topology we denote the general graph information, i.e. the set of edges e;
which are given by the set of vertices they connect, and the according edge colors
which corresponds to the masses of the propagators. In Feynman graphs there are
also external edges which carry the external momenta.

One way to express a Feynman graph is given by the so-called Nickel notation [165,
166] which consists of two parts. For the example topology of fig. D.2ii, it is given
by

llee|2|e3|554|5e|| : Mc_Mc_ql_g2||93_|Mc_Mc_Mb|_qg4]|]|.
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S

) (ii)

(iif)

Figure D.2: The example three-loop diagram (i) has a self-energy correction on an external
line. Its graph topology is shown in (ii), whereas in (iii) we have applied the
topology simplifications of tapir. Dashed lines denoted massless edges, solid
bold ones have the mass m; and solid thin lines stand for ..

The first part specifies the topological structure of the graph in which each entry
describes a vertex and its connection to other vertices. The different entries are
separated by a vertical line “|” and describe the vertex of the number at which
position it is stated in the notation. For example, the first entry describes the vertex
which is labeled as “0”. It is connected to vertex “1” via two edges and to two
external vertices which are denoted by “e” in the notation. For the subsequent
entries the already mentioned connections must not be repeated. Thus, it is sufficient
for the entry of vertex “1” to describe only its connection to vertex “2” et cetera.
The second part of the Nickel notation defines the coloring of the edges of the first
entry. Massive lines are represented by the name of their mass, massless lines are
kept empty, and external lines are distinguished by their momenta. The colorings

£“ o7

are separated by an underscore “_".

Since the vertices can be numbered in different ways, this notation is not unique. To
compare topologies of different graphs, we iterate though all possible enumerations
and extract the Nickel notation with the least lexicographic order. This unique label
is called Nickel index. For the topology of fig. D.2ii, the Nickel index is given by

1123|2|e|e4|55]|ee| : Mc_Mc_Mb_||qg4|93_|Mc_Mc|ql_qg2]|.

As mentioned, tapir includes additional topology manipulation routines which
simplify the topological structure without changing the according integral family.
For example, since bridges are not part of a loop, their corresponding propagators
are loop-momentum independent, and we can remove them from the graph topol-
ogy. The same is true for auxiliary particles which are used to express complex
vertices, e.g. the four-gluon vertex, in way which is better suited for automatized
computations. Also, the external s-lines can be removed since their momenta are set
to zero. With these simplifications, the topology of our example diagram becomes
as shown in fig. D.2iii.

By computing all Nickel indices of the considered three-loop diagrams with the
mentioned simplifications, we conclude with O(1000) different topologies. tapir
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is capable of generating so-called “topology files” which combine scalar integral
expressions in the calc setup to scalar integral family functions. In general these
families have linear dependent denominators. To apply an IBP reduction we have
to perform a partial fraction decomposition first. tapir does this step according to
the procedure described in appendix D.3. In our three-loop example, this step is
not necessary if the option topo_remove_duplicate_lines is used which removes
duplicate lines with the same momentum and mass.

After applying partial fraction decomposition, several smaller integral families
emerge which have in general no graph representation. To be able to reduce the
number of these analytic objects, the strategy according ref. [167] is employed.
It starts by computing the Symanzik polynomials ¢/ and F of the family which
is described in more detail in appendix D.5. Then, a renaming of the Feynman
parameters is applied in such a way that the polynomial ¢/ x F is lexicographically
minimal. The so found polynomial uniquely characterizes an integral family such
that it can be used to identify a priori different families. However, symmetries in
an integral family lead to equal lexicographic Feynman parameter labels without
an equal U x F. Thus, when comparing different polynomials, one has to iterate
over all found symmetries. This symmetry handling is characteristic for the Light
Pak algorithm [142]. The algebraic minimization routine of tapir utilizes the algebra
system sympy [168]. Unfortunately, the reduction of the ©(1000) integral families is
too involved for the current implementation of the minimization algorithm. Never-
theless, the output for these families can be used as a direct input for subsequent
programs such as FIRE [122].

To build amplitudes from the qgraf output, tapir also provides the insertion of
Feynman rules to a FORM readable expression. The according rules can either be
build manually or by using FeynRules [169] with the according UF0 [170] format.
The latter can be processed by tapir to get proper FORM expressions.

To make use of all these routines, tapir supports several output formats. For
example, the diagram and topology information is provided in such a way that it
serves as an input for exp.

D.3 PARTIAL FRACTION DECOMPOSITION

After expressing the Feynman diagrams in terms of integral families, several reduc-
tion steps follow to simplify the problem. In general, the denominators D; are linear
dependent which can be reduced using partial fraction decomposition. Diagram
families with linear independent denominators are required to apply the reduction
step described in appendix D.4. We illustrate the procedure with a simple example
which is given by the integral family

. o d% 1
o) = | G o= g

with a1, a4, € Z". Obviously, the following relation between the denominators holds:

(D.2)

my—mi = (k* —mi) — (kK —m3). (D.3)
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Since the left-hand side does not dependent on the loop momentum, eq. (D.3) can
be used to gradually decrease the indices of I1(a;,a,) by multiplying the ratio of
the right- and the left-hand side. We get

I (ay22) = 1 / d’k 1
VI m2 w2 ) 2m)d \ = m2]a 1k — m2]e

- S (D.4)
[k2 — mi]m [k — m3]eat
1
= W {I(al —1,a5) — I(ay,a2 — 1)} .

A subsequent application of this rule leads to a reduction into two new integral
families:

d?k 1
him) = / 2r) k2 —m2]m’

d’k 1
L(m) = / 2m)d [k — m2]o

Additionally, the reduction is also applicable for a1 < 0 < a or a3 > 0 > a;. In
these cases, eq. (D.4) can be restated to increase the appropriate index.

(D.5)

If more than one relation can be found between the denominator functions, one
has to find a way to subsequently remove the denominators without re-inserting
another one that was already canceled out. For this purpose, we employ the idea of
ref. [167] in tapir which states the usage of Grobner bases [171] for partial fraction
decomposition. In principle, the Grobner basis of the denominator relations directly
gives the symbolic substitutions in the correct order to reduce any member of the
integral family to subsequent families.

Let us exemplify this idea with the following integral family:

: o d% 1
(a1,82,03) = / (270)4 [k2)91[k2 — m3]92[k2 — m3]s

(D.6)

B / d’k 1
~ ] 2n)?DDEDE

where we have ay,a;,a3 € Z. As an input we need a complete basis of polynomials
with the denominator functions D; as algebraic variables. To also account for
numerators, we treat the reciprocal of the denominator function D; = 1/D; as
an independent variable as well. As polynomial functions, we construct algebraic
relations which are equal to zero, such as

K ={DiD; —1, D;Dy —1, D3D3 —1, Dy — Do — m3, D; — D3 —m3}. (D.7)

The Grobner basis of K can be determined with the Buchberger algorithm [171]. In
tapir we utilize an improved version of this algorithm which is implemented in
sympy [172]. The result is given by a reduced polynomial basis expressed in a similar



D.4 INTEGRATION BY PARTS

form one would get from Gaussian elimination. This basis can be then restated as
substitution rules. For K we get
Dy = D3+ m% ’

2 2
Dy, = Dg—ml—l—mz,

Dy _,_m

D; D;’

&:14_@,

D, D (D.8)

1 _1/1 1
D1 D2 o m% D2 D1 !

L1 (1
DyD3s  mi—m3 \D, D3)’

. _1/1_1
D1 D3 o m% D3 D1 ’
By repeated application of eq. (D.8), every member of I can be reduced to subfami-
lies with only one remaining denominator function.

D.4 INTEGRATION BY PARTS

If all diagrams are expressed in terms of integral families with linear independent
denominators, the commonly used next step is to apply an IBP reduction. The
general idea to use this kind relations for Feynman integrals dates back to ref. [173].

A simple example is provided if we take the following integral family into account:

d%k 1

I(a1,a2) = / (270) [k2Jai k2 — 2k-q] (Do)

An IBP relation can be derived from the requirement that the integrand evaluates to
zero at the boundary. Hence, also a total derivative under the integral leads to zero,
as in
0_/Mkak 1
) (2n) ok, " [K2]m k2 — 2k-g)e (D.10)
= (—2611 —ap + d)[(al,az) — ﬂz[(al —1,a, + 1) .

A second relation can be found by changing the differentiation according to
IS
— ) ) ok, @)k — 2k-q)
= 2a2q21(a1,a2 +1)—axl(ay —1,ap+ 1)
+ (Elz - al)l(al,uz) + all(a1 +1,a, — 1) .

(D.11)

If we combine egs. (D.10) and (D.11) and shift the indices, we get

(i +ay—d)(2(a +ax—1) —d)
I(a1,a3) = — 2@y~ 1) (20, ~ a3 — d) I(a,a; — 1). (D.12)
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This can be used to iteratively move the second index to a; = 1, except for a, <1
in which the integral vanishes. Inserting this result in eq. (D.10) gives

—d+1

Mo l) = 5 —ar 1)

a—1,1), (D.13)

which can be used to move the first index to a; = 0. Thus, every member of the
family I can be expressed in terms of the master integral 1(0,1).

In multi-loop calculations IBP relations are in general more complicated, and solving
the difference equations in a closed form is very time-consuming. A solution to this
problem is provided by Laporta’s algorithm [174]. It became the standard to reduce
scalar Feynman integrals to a linear combination of a finite set of master integrals.

For our purposes we use the program FIRE [122], which makes use of LiteRed [175]
to identify and utilize symmetries of integral families. FIRE also offers a function to
find identical master integrals of different families.

After applying the IBP reduction we are left with a small amount of master integrals
in comparison to the original size of the problem. The further treatment of master
integrals is the topic of the next section.

D.5 COMPUTATION OF MASTER INTEGRALS

Over the past decades, the evaluation of Feynman integrals became an art form in
itself, leading to a vast spectrum of ideas and computer programs (see e.g. ref. [176]
for an extensive overview). Here, we focus only on the methods used in the context
of this work.

An important representation of a scalar Feynman integral I is via Feynman parame-
ters x;. We get (see e.g. ref. [110])

i *d [
I(ay,...,a,) = (47-[)111/2 2) / /<HdXZ W )
0 0

(D.14)
U
X 6 <Z X; — 1)
Fa— g
with [ denoting the number of loops, and
n
a= Zai. (D.15)

Il
=

U and F are the so-called graph- or Symanzik-polynomials. They can be computed
in various ways from the momentum representation (see e.g. ref. [177] for an
overview).

A straightforward way to compute U/ and F is given by the forest formula. For
this, all spanning forests of the Feynman graph must be taken into account. We
differentiate between one-forests 77, also called spanning trees, and two-forests
T>. A spanning tree is a set of edges (propagators) {e;} which connects all vertices
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without forming a loop. A two-forest is defined as a spanning tree with two disjoint
connected components. The Symanzik polynomials are then given by [177]

U=y =,

TeT ej¢T

F= Y (e&H xi) Y Y. qiaq +U;xim?-

(T, T2)€T2 \ei#(T1,T2) 7:€4q(T)} g;€{q(T2)}

(D.16)

The set {g(T;)} consists of the external momenta whose corresponding legs are
attached to the tree T;. m; denotes the mass of edge e;.

Equation (D.14) is useful to reveal some features of the regarded integral. Here we
follow ref. [178].

For two disjoint sets of Feynman parameters X, Y C {x;} with @ # XUY # {x;},
we describe the scaling behavior at the integration boundaries of an integrand F
with

wxy(F) = |X|— Y|+ degy y(F). (D.17)

| X[ is defined as the number of elements in set X. degy | (F) is the scaling degree of
F for A — 0 with the replacements x; — Ax; for x; € X, and x; — /\_1x]- forx; € Y.
Thus, degy \ (F) is defined such that

lim | A—desxy(F)F (D.18)

A=0 x; = Ax; forx; € X

Xj — )L71Xj for X; ey

is finite and non-zero. Therefore, wx y describes the degree of divergence at the
integration boundaries, i.e. it is not sensitive to divergences that occur inside the
integration region. If wxy < 0 for any X and Y, the integral is divergent. It is finite
if min(wy y) > 0 holds for all X and Y.

It can be shown [178] that the integrand F can be replaced by F = Dy yF without
changing the value of the integral, but with

wX,y(P) > a)X,y(F), (DIQ)

and

(UX/,Y/(PV) 2 (,(JX/,Y/(F) VX/, Y/ C {xz} . (D‘ZO)

Thus, Dx y describes an analytic regularization operator that can be used to extract
poles from a Feynman integral. It is given by

1 d d
Dxy = — | degyy — Xis— — xi=— | . (D.21)
wxy XY x,-XE:X Zaxi x/-;Y ]ax]'

Hence, only those wx y must be regarded for which holds

lim (wxy) = 0. (D.22)

e—0
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Sometimes, the form of eq. (D.14) is already sufficient to be evaluated with the
integration functionality of a computer algebra system such as Mathematica [179].
For more complicated integrals additional tools have to be used.

For example, the idea of ref. [180] is to use Multiple Polylogarithms (MPLs) and their
relations in the context of Feynman integrals. These special functions are defined
by the recursive relation (see e.g. ref. [176])

G(a N e 2! D
oo n; 2) = = (a2,... 00, 2"), (D.23)

with the initial condition G(; z) = 1. The arguments {a;} are called letters. A special
notation of G concerns arguments with zeros:

Gmy,omn (@1, ... ,an;2) = G(0,...,0,a1,0,...,0,a2,...,0,...,0,ay; z)
~—— ~—— ~——

" (D.2g)
my—1 my—1 my—1
It is used to express MPLs in a sum representation:
. z m An—1
Gy (A1, -« 005 2) = (=1)"Liny,..m, (, — .= > , (D.25)
ap az an
with the nested sum defined by
i in
. a a
lel,..l,mn (alr cee ran) = 2 711 s .r:;l” . (D26)
00> >ip >+ >iy >0 I In
A special subclass of MPLs are the multiple Zeta values. They are given by
gml,...,mn == Liml,...,mn (1/ ey 1) . (D27)

Another related function class are Harmonic Polylogarithms (HPLs) [181], they are
defined as

Hmll__.’mn (Z) - Lil’VZ],...,mn (Z, 1, ceey 1) . (D.28)

A Feynman integral can be expressed as an MPL if it is regularized and linearly
reducible. The latter condition states that for an integration order of Feynman
parameters {x1,xy, ..., X, } the integrand is given as a product of a rational function,
which is only linear in the integration variable, and an MPL. Not all Feynman
integrals fulfill the condition of linear reducibility. For those, an expansion in €
leads to a closed analytic form which benefits from several transformation identities.
In our case, all master integrals that occur at three-loop order are linearly reducible
after proper variable transformations and integration orders.

The translation to MPLs and the subsequent simplifications are performed with
the program HyperInt [125]. Also, the arising two-loop master integrals are either
known in the literature or can be evaluated with HyperInt as well.

In the following, we illustrate the integration procedure described in this section by
two simple examples.
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(@) (if) (iii)

Figure D.3: The integral of eq. (D.29) is shown pictorially (i), as well as its spanning trees
(ii) and the two-forest (iii). Note that the latter does not contain any internal
edges.

One-loop example

We begin with the following one-loop integral:

/ K2k 2k ) (D-29)

with g% = m?.

The Symanzik polynomials can be computed with the help of eq. (D.16) and the
spanning forests as shown in figs. D.3ii and D.3iii. We get

U =x1+x,
) ) (D.30)
f = X1X2 q(—q) +Z/{X2m = Xpom~.

Thus, I in Feynman parameter representation according to eq. (D.14) is given by

(X1 _|_ x2)72+2€

(mzx%)e (D31)

L = in?/?T (e)/ dxl/ dxy 6 (22— 1)
0 0

Here we used the Cheng-Wu theorem [182] which states that the argument in the
d-function can be replaced by a subset of Feynman parameters. Whereas, the
integration region of the remaining parameters is extended to infinity.

Equation (D.29) is easily evaluated in terms of I'-functions:

1
1—2¢"

L = im? (m?) T (e)

Two-loop example

As an example at two-loops, we take the following integral into account:

d?kd’l
// “2kq) E(k+ 12’ (D-33)

which is shown in fig. D.4 together with its one- and two-forests. The Symanzik
polynomials of I, are given by

U = x1xp + x1x3 + xx3,

(D-34)
F =m? (xjx2 + xix3) . H
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@) (ii) (iii)

Figure D.4: The two-loop example of eq. (D.33) has three possible spanning trees. The
two-forest is the same as for eq. (D.29).

After applying the Cheng-Wu theorem and evaluating the é-function to remove x1,
the Feynman parameter integral is given by

(x2 + x3 + x2x3) T3t D
e - (D:35)
(x2 4+ x3)

L = — 7T (—1 4 2€) ”6/ dxz/ dxs

Since every term in ¢/ and F is individually non-negative, the degree of divergence
wy,y as given in eq. (D.17) represents the actual divergence behavior of the integral.
We find a minimum value of

w{XQ,X3},@ = €. (D36)
According to eq. (D.21), we can thus replace the integrand of eq. (D.35) by

_343¢ —4+3e

(x2 4+ x3 + x2x3) _ (e —1)xpx3(x2 + x3 + X23)
(Xz + X3)_1+Ze G(XQ + X3)_1+2€

D{x2fx3}/® . (D37)

By analyzing the degree of divergence of this new integral, we find that it is
min(wyy) > 0, and hence finite. Since all divergences are now separated from the
integral, we can safely expand it in €. The different orders in € are stated by

Yy i) with [V = O (D.38)
i=—2

For the leading term we get

1 (=2 x2x3(x2 + x3)
e d / dxs D.
N22 262 / 2 (x2 4 x3 + x2x3)%” (D39)

with the usual prefactor N’ = int?/2~€¢~€7¢. Both integrals are straightforward to

evaluate using the Euler beta function. We arrive at

2
L[Z(*) __m (D.40)

The O(e™!) term is given by

1 _1 3m x2x3(Xx2 + x3)
— / dxz/ dx;
N X3XZ + x2 + X3)

(D.41)
[ 1—-2In (:1 ) —|—211’1(x2+X3) 311’1(X2+X3+XQX3):|.
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HyperInt can solve these integrals by iteratively identifying the linear reducible
integrands in terms of MPLs and linear rational functions. Then, the integrals are
iteratively solved using eq. (D.23):

© 1
/ dx G(ay,...,an; x) = Reg G(ay,...,a,; 2), (D.42)
0

X —a Z—00

where we defined a regularized limit of an MPL whose expansion around zp — oo
is uniquely given by [183]

G(ay,...,an; z) = Zci(z)lni(z), (D.43)
with

Reg G(ay,...,an; z) = co(o0). (D.44)

Z—»00

If the resulting term, after taking the limit, is again an MPL multiplying a linear
rational function, the procedure can be repeated for the next integration step.

With HyperInt we find:

A ey m [ m.
/\/‘212 == [ +ie§>G< Vz,z

D.
= - mfz > +1In ‘Lﬁ (D.45)
€ |4 m2) |
The last step is evident from the splitting of the MPL:
1 1
G(—a,z) =In (a—i—z) = In(z) +1n (—i—) . (D.46)
a a z
The latter term is ¢o(z) which evaluates to
Reg G (—a;z) = —In(a). (D.47)
Z—0
Finally, we regard the finite part of I:
1 0 / / x2x3(x2 + X3) 2
—1L, = 2 12
N22 4 dx; dxs X3XZ + x7 + X3) S
W W
+121In <2> +121In ( ) +121n? (x2 + x3)
m m?
2
418 [2 In <Z > 4 1] In(x3x2 + x2 + x3) (D.48)

2
— 1211’1()62 + x3) [211’1 (Z > + 311’1(JC33C2 + x2 + X3) + 1:|

+ 27ln2(x3x2 + xy + X3>} .
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HyperInt evaluates these integrals to

L0 _ res 1360, —1:2) 4 26 (=T
NZIZ = m?jﬁ 2G(O, 1,Z)+2G yz,z
(D.49)
+E+£2+2G —m—z —m—z'z
8 6 ]/{2/ #21 .
The following new objects occur [139, 181]:
(025) . 1, /1
G(0,—-1,z) =" —Lip(—z) = §(2)—|—§ln (z) 4+ Lip )
4 —az) =Lig(~% 1) BB 3y Ly z
G (—a,—a;z) = Lijq( a'l) =" Hyi( a) = 2ln (1+a) (D.50)
1 11 2
= 5 |:11'1 <a + Z> +11'1(Z):| .
Thus, the finite part of the integral becomes
1 0 Ry 5 12 502 11
— 19 = - El+2m( 5 ) +25 + . D.
Nz I ) T e ) T g (b51)

Note that both described example integrals can be computed more easily with other
methods. They were only taken into account for illustration purposes. The described
methods can be used to evaluate e.g. massless four-loop four-point integrals [178]
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