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A B S T R A C T

Experiments are ahead in the race for determining the features of neutral B-mesons.
Recent measurements at the LHCb experiment have pushed the uncertainties
of the decay width difference ∆Γ in the Bs-Bs system to about 6%, whereas the
uncertainty of the theory prediction is about a factor of four larger. First results
for ∆Γ and the parameter afs, quantifying the violation of the CP symmetry in Bs

and Bd mixing, were already obtained in the Standard Model of particle physics
several decades ago. In this thesis we improve on earlier predictions and provide
the first next-to-next-to-leading order prediction which stabilizes the dependence
on the renormalization scale and reduces uncertainties. The necessary calculations
demand attention toward perturbative and non-perturbative aspects of meson
physics. Focusing on the former, we carefully construct effective field theories
where we complement the physical operators with properly chosen evanescent
operators. Furthermore, efficient tools are necessary to compute the thousands of
Feynman diagrams.

Z U S A M M E N FA S S U N G

Experimente liegen vorne im Rennen zur Bestimmung der Eigenschaften neutraler
B-Mesonen. Neueste Messungen am LHCb Experiment haben die Messunsicherheit
der Zerfallsbreitendifferenz ∆Γ des Bs-Bs-Systems auf 6% verringert, wohingegen
die Unsicherheit der Theorievorhersage ungefähr viermal so groß ist. Erste Er-
gebnisse für ∆Γ und den Parameter afs, der die Brechung der CP-Symmetrie in
Bs- und Bd-Mischungen quantifizert, wurden bereits vor einigen Jahrzehnten im
Standardmodell der Teilchenphysik errechnet. In dieser Dissertation werden an
frühere Theorievorhersagen angeknüpft und die erste Vorhersage zur Ordnung α2

s
vorgestellt, die sowohl die Renormierungsskalenabhängigkeit als auch die entspre-
chende Unsicherheit reduziert. Die dafür notwendigen Berechnungen erfordern die
Behandlung perturbativer sowie nichtperturbativer Aspekte der Mesonphysik. Der
Fokus liegt hier auf ersterem, was die Konstruktion effektiver Feldtheorien bein-
haltet, in denen physikalische Operatoren durch sorgfältig gewählte evaneszente
Operatoren ergänzt werden. Zudem werden effiziente Werkzeuge benötigt, die die
Berechnung der tausenden notwendigen Feynman-Diagramme ermöglichen.

iii





Nicht der Besitz von Wissen, von unumstößlichen Wahrheiten macht den
Wissenschaftler, sondern das rücksichtslos kritische, das unablässige Suchen nach

Wahrheit.

— Karl Popper, Logik der Forschung
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1
I N T R O D U C T I O N

Already in ancient Greece the question arose what the boundaries of existence are.
To the smaller end of this question, already Demokrit introduced in the 5th century
BCE a theory of atoms as smallest “uncuttable” particles. This hypothesis remained
valid until around 1900 smaller particles were discovered: The electron and the
nucleus. These building blocks of the atom opened the imagination of ever smaller
particles which form the matter of our visible world.

A breakthrough in the further history was accomplished in the 1920s by Paul
Dirac [1] who formulated a theory which combined quantum mechanics with
Albert Einstein’s special relativity [2]. Based on Dirac’s work, Richard Feynman [3–
5], Sin-Itiro Tomonaga [6] and Julian Schwinger [7, 8] formulated a fully covariant
theory of Quantum Electrodynamics (QED). Their work inspired further developments,
leading finally to the formulation of the Standard Model of Particle Physics (SM) [9–11]
in the 1960s. The following decades were a mere success story for the SM since vast
developments of particle accelerators and detector techniques showed continuous
agreement with the theoretical predictions.

However, the SM alone is not sufficient to explain all observations from experiment
and astronomy. The first problem is due to Einstein’s theory of general relativity [12]
which is not described by the SM. Although several observations are in accordance
with general relativity (e.g. [13–15]), every approach of formulating it as a Quantum
Field Theory (QFT) leads to a non-renormalizable theory which contradicts its
fundamental claim.

Another question arises from the particle content of the observed universe. To
explain the imbalance of matter and antimatter, Andrei Sakharov determined three
necessary criteria to be fulfilled in the early universe [16]:

• Violation of baryon number conservation,

• Violation of C (Charge Conjugation) and CP (Charge Conjugation and Parity
Transformation) symmetries,

• Violation of thermodynamic equilibrium.

Concerning the second point, the SM does indeed allow for such an asymmetry.
The first experimental discovery of Charge-Parity Violation (CPV) was made in the
experiment of Cronin and Fitch in 1964 where CP changing kaon decays into pions
were observed [17]. Although many subsequent experiments found CPV in different
particle interactions, the overall measured quantitative size of CPV is not sufficient
to fulfill Sakharov’s condition. Moreover, the electroweak phase transition in the SM

is not strong enough to fulfill the third condition (see e.g. ref. [18]).
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Furthermore, among others, precision measurements of b→ sll processes [19] and
of the magnetic moment of the muon [20] observe a significant discrepancy to SM

predictions.

In this dissertation we focus on the physics of neutral Bs- and Bd-mesons. The SM

predicts a certain gap between the masses (∆M) and the decay widths (∆Γ) of their
respective mass eigenstates. Additionally, a certain CP asymmetry afs quantifying
CPV in the time evolution is predicted for the mixing of neutral B-mesons. Every
deviation between the SM and measurement opens further the idea for physics
beyond the SM.

In the following chapter we explain the quantum mechanical details of neutral
B-mixing. We use the definitions and conventions of refs. [21–23].

1.1 quantum mechanics of neutral b-mesons

The four neutral B-mesons are characterized by their valence quarks. They read

Bs ≡ (bs) , Bs ≡ (bs) , Bd ≡ (bd) and Bd ≡ (bd) . (1.1)

In the following we do not differentiate between Bs and Bd. The time evolution of
these mesons in terms of flavor eigenstates can be described quantum mechanically
as (

|B(t)〉
|B(t)〉

)
= e−iHt

(
|B(0)〉
|B(0)〉

)
. (1.2)

This equation is used to describe the mixing and decay properties of B/B using an
effective Hamiltonian operator H which is given by

H = M− i
Γ
2

. (1.3)

The first term describes the time evolution of stable B/B particles in the rest frame
using the mass matrix M. It is hermitian and the diagonal elements are equal due
to the combined Charge, Parity and Time Reversal (CPT) invariance. It is called the
dispersive part of eq. (1.3).

The second term accounts for the decay law which can be derived within the Wigner-
Weisskopf approximation [24, 25]. It consists of the two-particle generalization of
the decay width Γ and is called absorptive part of eq. (1.3). For Γ also the hermiticity
and CPT arguments apply.

Thus, the effective Hamiltonian operator can be written as

H =

(
M11 − i Γ11

2 M12 − i Γ12
2

M∗12 − i Γ∗12
2 M11 − i Γ11

2

)
, (1.4)

where we have used

M22 = M11 , M21 = M∗12 , Γ22 = Γ11 and Γ21 = Γ∗12 . (1.5)
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Since H has off-diagonal elements we can diagonalize it with the matrix Q:

H = Q ·
(

E1 0

0 E2

)
·Q−1 . (1.6)

The eigenvalues of H are given by

E1,2 = M11 − i
Γ11

2
∓
√
|M12|2 −

i
2

Γ∗12M12 −
i
2

Γ12M∗12 −
|Γ12|2

4

≡ ML,H − i
ΓL,H

2
,

(1.7)

where the indices L and H denote the eigenvalues of the corresponding light and
heavy states.

The matrix Q can be parametrized as

Q−1 =

(
p q

p −q

)
, Q =

1
2pq

(
q q

p −p

)
, p, q ∈ C . (1.8)

After diagonalizing eq. (1.2), we obtain the mass eigenstates of the neutral B-meson
system which are given by

|BL〉 = p |B〉 + q |B〉 ,

|BH〉 = p |B〉 − q |B〉 .
(1.9)

Unitarity demands that |p|2 + |q|2 = 1. Additionally, we observe that the states
|BL,H〉 are not orthogonal since the Hamiltonian operator of eq. (1.3) is not hermitian.
Nevertheless, observables can be stated according to the operators M and Γ which
are manifestly hermitian.

So far, everything stated applies to a general system of (anti-)particles which mix
into each other due to quantum effects. A special property we did not yet mentioned
is the CP symmetrization. For the flavor eigenstates of neutral B-mesons, we can
specify the action of applying a CP transformation as

CP |B〉 = − |B〉 , CP |B〉 = − |B〉 . (1.10)

We can thus define two eigenstates:

|B1〉 =
1√
2

(
|B〉+ |B〉

)
(CP odd) ,

|B2〉 =
1√
2

(
|B〉 − |B〉

)
(CP even) .

(1.11)

For the case that CP is a symmetry of the physical system, eq. (1.11) would be equal
to eq. (1.9), and it would hold p = −q = 1/

√
2. However, since CP symmetry is

broken this is not the case.

Important quantities which characterize neutral B systems are the masses and the
decay widths of the heavy and the light states. Especially interesting for oscillation
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sensitive experiments are the differences of these observables ∆M and ∆Γ. For
B-mesons they can be approximated by using

M12 = |M12|eiφM ,

Γ12 = |Γ12|eiφΓ .
(1.12)

In the SM, the ratio Γ12/M12 is numerically suppressed by O
(
10−3) for B-mesons.

From eq. (1.7) we obtain

∆M ≡ MH −ML = 2|M12|+O
(
|Γ12|2
|M12|2

)
, (1.13)

∆Γ ≡ ΓL − ΓH = −2|Γ12| cos(φΓ − φM) +O
(
|Γ12|2
|M12|2

)
. (1.14)

The ratio thus reads

∆Γ
∆M

= − Re
(

Γ12

M12

)
. (1.15)

The phases φM and φΓ in eq. (1.12) are unphysical. Relevant is instead the difference
between them:

φ12 ≡ arg
(
−M12

Γ12

)
= π + φM − φΓ . (1.16)

Alternatively, one can define the observable,

afs ≡
|Γ12|
|M12|

sin(φ12) = Im
(

Γ12

M12

)
, (1.17)

which is a CP asymmetry in flavor specific decays. To see why it carries this name,
let us examine the ratio of the coefficients of eq. (1.9):

q
p

= −

√(
M12 − iΓ12

2

) (
M∗12 −

iΓ∗12
2

)
M∗12 −

iΓ∗12
2

= e−iφM
(
−1 +

afs

2

)
+O

(
|Γ12|2
|M12|2

)
.

(1.18)

In the case of no CP violation one would get q/p = −e−iφM . Thus, afs quantifies
the CP asymmetry as it expresses the deviation of the physical states from the CP

eigenstates.

The asymmetry parameter afs can be experimentally accessed from decays into final
states f / f for which the processes B→ f and B→ f are forbidden and no direct
CPV occurs, i.e.

| 〈 f |B(t)〉 | = | 〈 f |B(t)〉 | . (1.19)

With the considerations of refs. [23, 26], it follows

afs =
Γ
(

B(t)→ f
)
− Γ

(
B(t)→ f

)
Γ
(

B(t)→ f
)
+ Γ

(
B(t)→ f

) , (1.20)
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where Γ(i→ f ) is the partial decay width of the regarded process.

Returning to the time evolution, we get for the physical states

|BL(t)〉 = e−iMLt− ΓL
2 t |BL(0)〉 ,

|BH(t)〉 = e−iMH t− ΓH
2 t |BH(0)〉 ,

(1.21)

and for the flavor eigenstates of eq. (1.2)

|B(t)〉 = g+(t) |B(0)〉 +
q
p

g−(t) |B(0)〉 ,

|B(t)〉 =
p
q

g−(t) |B(0)〉 + g+(t) |B(0)〉 ,
(1.22)

with

g±(t) =
1
2

(
e−iMLt− ΓL

2 t ± e−iMH t− ΓH
2 t
)

. (1.23)

In the following we focus on the individual observables ∆M, ∆Γ and afs and how
they can be predicted by the SM. From eqs. (1.13), (1.14) and (1.17) we see that these
quantities can solely be computed from the complex off-diagonal elements of the
mass and width matrices, M12 and Γ12. Hence, we will take a closer look at their
definitions in quantum field theory.

1.2 M12

The transition between flavor eigenstates of a B-B system is described in QFT by the
self-energy matrix element Σ. It is given by

−i(2π)4δ(4)(pi − pj)Σij =
〈Bi| S |Bj〉

2MB
, (1.24)

where |Bi/j〉 are either |B〉 or |B〉, with all states defined in the Heisenberg picture
and in momentum space. The normalization factor (2MB)

−1 with the average
B-meson mass MB is convention. Since the meson flavor eigenstates mix during
propagation, Σ is a 2× 2 matrix. Also, momentum conservation between initial and
final state is implied in eq. (1.24) due to the Dirac δ-function.

We can define the transfer matrix T as the non-trivial part of the S-matrix:

S = 1 + iT = e−i
∫

d4x HSM
, (1.25)

where HSM is the Hamiltonian density operator (or shorthand “Hamiltonian”) of the
Standard Model.

According to ref. [22], the effective Hamiltonian of eq. (1.3) is given by the self-
energy:

Σ ≡ H = M− i
Γ
2

. (1.26)
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Figure 1.1: In the SM the oscillations of the flavor eigenstates of Bs/Bs and Bd/Bd are
dominated by two W-exchanges. The diagrams for Bd/Bd look similar with
s↔ d exchanged.

By recalling eq. (1.4) we get

M12 =
Σ12 + Σ∗21

2
≡ Disp(Σ12) . (1.27)

What we previously called “dispersive” part now reveals to be connected to the
real part of the self-energy. M12 is sensitive to heavy virtual particles which can
or cannot go on-shell in the loop diagrams. This includes particles like W, Z, the
top-quark and the Higgs boson.

In the SM the leading contributions to Σ12 are given by box diagrams with virtual
W-boson exchange, as shown in fig. 1.1. Loop diagrams are the only source of these
so-called Flavor Changing Neutral Currents (FCNCs) in the SM. Besides the fact that
no tree-level graph exists, they are additionally suppressed due to the Glashow-
Iliopoulos-Maiani (GIM) mechanism [27]. This suppression is of phenomenological
importance for the building and constraining new physics models.

The relevant SM interactions for this process are given by the weak interaction
Hamiltonian responsible for charged currents:

HW = − gW√
2

(
Vijuiγ

µPLdjW+
µ + V∗ij diγ

µPLujW−µ
)

. (1.28)

Here, the W gauge field couples only to left-handed quark fields and right-handed
anti-quark fields, as indicated by the chiral projection operator:

PR/L =
1± γ5

2
. (1.29)

The left-handed up-type quark flavor ui and the down-type di interact proportion-
ally to the corresponding entries of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
V [28, 29]. Its numerical scaling can be approximated using the Wolfenstein parame-
terization [30]. It reads

V =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



=

 1− λ
2 λ λ3A(ρ− iη)

−λ 1− λ
2 λ2A

λ3A(1− ρ− iη) −λ2A 1

 + O
(

λ4
)

,

(1.30)
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where ρ, η, λ = O(0.1) are treated as small expansion parameters and A =

O(1) [31].

Since V is unitary we can state six equations describing triangles in the complex
space. They are called unitarity triangles:

V∗uiVuj + V∗ciVcj + V∗ti Vtj = 0 ,

V∗kdVld + V∗ksVls + V∗kbVlb = 0 ,
(1.31)

with i, j ∈ {d, s, b} and k, l ∈ {u, c, t}.

Regarding the off-diagonal elements of the self-energy matrix, the CKM matrix
elements factorize as

Σ12 = ∑
i,j

(V∗isVjb)
2 Mij(B→ B) ,

Σ21 = ∑
i,j

(VisV∗jb)
2 Mij(B→ B) .

(1.32)

After the CP-violating CKM matrix elements are removed, the remainder of the
amplitude is CP invariant. Hence, the terms of eq. (1.32) are connected according to

Mij(B→ B) = Mij(B→ B) ≡ Mij . (1.33)

Thus, eq. (1.27) simplifies to

M12 = ∑
i,j

(V∗isVjb)
2 Re

(
Mij

)
. (1.34)

The CKM matrix elements allow for another simplification of M12. From fig. 1.1 one
can see that M12 can in general be parametrized as

M12 = λ2
u Muu

12 + 2λuλc Muc
12 + 2λuλt Mut

12

+ λ2
c Mcc

12 + 2λcλt Mct
12 + λ2

t Mtt
12

(1.31)
= λ2

c (Muu
12 − 2Muc

12 + Mcc
12)

+ 2λcλt
(

Muu
12 −Muc

12 −Mut
12 + Mct

12
)

+ λ2
t
(

Muu
12 − 2Mut

12 + Mtt
12
)

.

(1.35)

We use the abbreviation λq ≡ V∗qsVqb for Bs-mesons. For Bd, V∗qs is replaced by V∗qd.

From eq. (1.35) it is apparent that M12 vanishes if all quarks would carry the same
mass. This follows directly from the GIM mechanism. Hence, the mass dependence
plays a crucial role in the determination of M12.

Until now, we consider processes with many scales involved, including quark and
gauge boson masses, as well as ΛQCD. Taking all of them into account would lead to
large logarithms which spoil the scaling behavior of the perturbative expansion. The
common way to avoid these difficulties is the utilization of approximate methods
like Operator Product Expansion (OPE) [32–35]. It allows the separation of scales
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which are divided by several orders of magnitude. We can expand eq. (1.24) by
introducing an effective Hamiltonian Heff according to

〈B| e−i
∫

d4x HSM |B〉 !
= 〈B| e−i

∫
d4x Heff |B〉 + O

(
mlight

mheavy

)
= − i

∫
d4x 〈B| Heff(x) |B〉

− 1
2

∫
d4x

∫
d4y 〈B|THeff(x)Heff(y) |B〉

+ . . . .

(1.36)

This equation holds to a fixed order in the expansion of small scale ratios, denoted
for simplification by “mlight/mheavy”. In our case we have mheavy ∼ mW , mZ, mt, mH

and the remaining scales being treated as mlight. The effective Hamiltonian can then
be written as

Heff ≡ H∆B=2 + H∆B=1 + HQCD,(5) . (1.37)

The first two terms describe an Effective Field Theory (EFT) of flavor changing interac-
tions. They include operators which change the beauty quantum number (denoted
by B) by ∆B = 2 and ∆B = 1, respectively. These two theories are discussed in more
detail in chapters 2 and 3.

To account for effects from the strong force, which are the dominant corrections
in meson physics, we include the Quantum Chromodynamics (QCD) Hamiltonian
HQCD,(5) with five active quark flavors.

Overall, Heff describes only the dynamics of light particles, whereas the heavy
particles are integrated out of the theory. Their remaining effect consists of higher
dimensional effective operators and corresponding proportionality factors, called
Wilson coefficients.

Coming back to the description of M12, the Leading Order (LO) contribution is
given by the ∆B = 2 Hamiltonian:

H∆B=2 ≈ G2
F

16π2 m2
Wλ2

t CQ Q∆B=2 + h.c. , (1.38)

where GF is Fermi’s constant. The effective operator

Q∆B=2 = 4
(

biγ
µPLsi

) (
bjγµPLsj

)
(1.39)

stems from the diagrams of fig. 1.2 in the full theory1. As mentioned before, the
quark mass dependence plays a crucial role in the calculation of M12. The GIM

suppression has the least effect in diagrams involving two virtual top-quarks.
Therefore, they are the dominant contributions to M12.

Additionally, since M12 includes only contributions from virtual particles it would
be sensitive to heavy particles beyond the Standard Model [36] as well.

1 As full theory we denote the theory from which an effective theory is derived. The former may be an
effective theory as well.
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Figure 1.2: If heavy particles are integrated out of the theory, mainly single operator inser-
tions of an effective ∆B = 2 theory contribute to M12. The leading effects stem
from box diagrams with two top quarks. The same holds for Bd/Bd.

Keeping only the leading effects, eq. (1.36) leads to

M12 =
G2

F
32π2 m2

Wλ2
t CQ 〈B|Q∆B=2 |B〉 . (1.40)

The hadronic matrix element 〈B|Q∆B=2 |B〉 cannot be computed in perturbation
theory. The contributing hadronization effects take place at energies below ΛQCD,
i.e. the fundamental scale of QCD. At these energies, the perturbative description
of αs is ill-defined and cannot be used anymore. Therefore, one has to turn to
non-perturbative methods such as lattice gauge theory [37–41] or sum rules [42–46]
which allow a numerical determination of such quantities.

In the literature, the matrix element is conventionally defined as [47]

〈B|Q∆B=2 |B〉 ≡ 8
3

M2
B f 2

BBQ , (1.41)

where fB is the decay constant of the B-B system. BQ is called bag parameter.

The Wilson coefficient CQ in eq. (1.40) contains information about the short range
effects of the B↔ B transition. It can hence be computed using perturbative tools.
At leading order in αs, it is given by

CQ(µ = mW) = S0(xt) ≡
4xt − 11x2

t + x3
t

4(1− xt)2 − 3x3
t ln(xt)

2(1− xt)3 . (1.42)

The function S0(xt) is called Inami-Lim function with xt = m2
t /m2

W [48]. At the time
of writing, CQ is known to next-to-leading order in αs [49].

As it can be seen from eq. (1.36), also the dispersive part of two ∆B = 1 insertions
contributes, a priori, to M12. However, the ∆B = 1 contributions are substantially
smaller than the ∆B = 2 ones due to the dominance of the top-quark mass.

In the next section we put the main focus on these ∆B = 1 terms in the context of
Γ12.

1.3 Γ12

Similar to the definition of M12, we can formulate Γ12 according to eq. (1.4):

−Γ12

2
= −i

Σ12 − Σ∗21
2

≡ Abs(Σ12) . (1.43)
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By using the parameterization as in eq. (1.32), we see that the absorptive part of the
self-energy is connected to its imaginary part:

−Γ12

2
= ∑

i,j
(VisV∗jb)

2 Im
(
Mij

)
. (1.44)

According to Cutkosky’s cutting rules, the imaginary part of a Feynman amplitude
is defined as the sum of all possible cuts through loop propagators in such a way
that the remaining graph is separated [50]. These cut propagators are then put
on-shell. Thus, only virtual particles in loop diagrams contribute to Γ12 which are
allowed by the kinematics to go on-shell. Recalling eq. (1.36) we see that the single
∆B = 2 insertion therefore cannot contribute. The leading contributions are two
∆B = 1 insertions:

Γ12 =
1

2MB
Abs

(
i
∫

d4x 〈B|TH∆B=1(x)H∆B=1(0) |B〉
)

. (1.45)

In order to get a predictable observable, this expression is simplified to a local
operator matrix element. Otherwise, the evaluation of the hadronic matrix ele-
ment would be not feasible with current non-perturbative techniques. Thus, a
second OPE is needed, for which we choose Λ/mb ≈ 0.05 as a small parameter
with Λ being a hadronic scale of the order of ΛQCD. The precise value of Λ is
determined by non-perturbative calculations. This expansion is known as Heavy
Quark Expansion (HQE) [51–56]. In this approximation Γ12 can be written as

Γ12 =
Λ3

m3
b

Γ(3)
12 +

Λ4

m4
b

Γ(4)
12 +O

(
Λ5

m5
b

)
. (1.46)

Similar to M12, the expression for Γ12 simplifies to single ∆B = 2 operator insertions:

Γ12 ∝ ∑
i

Ci 〈B| H∆B=2
i |B〉 , (1.47)

where the Wilson coefficients Ci are functions of ∆B = 1 parameters, and hence
depend only indirectly on the fundamental theory. This enables the investigation of
changes in the ∆B = 1 contributions due to new physics effects and the impact on
Γ12. To evaluate Γ12 it is necessary to compute contributions of ∆B = 1 and ∆B = 2.
Afterwards, both results are connected by a matching calculation. This procedure is
similar to the first operator product expansion in which the degrees of freedom of
W, Z, H and t were integrated out.

The terms of eq. (1.46) individually receive QCD corrections which must be taken
into account for high precision predictions of Γ12. The leading term Γ(3)

12 includes
four-quark operators of dimension-6 and chromomagnetic dimension-5 operators,
whereas Γ(4)

12 includes further power suppressed operators of various dimensions.
The results for Γ(3)

12 and Γ(4)
12 to leading order in αs are known for several decades [57–

63]. In contrast to Γ(3)
12 , no further orders are known for Γ(4)

12 .

According to the various CKM matrix contributions, Γ12 can be decomposed as

Γ12 = − λ2
uΓuu

12 − 2λuλcΓuc
12 − λ2

c Γcc
12

(1.31)
= − λ2

t

[
Γcc

12 + 2
λu

λt
(Γcc

12 − Γuc
12) +

λ2
u

λ2
t
(Γuu

12 − 2Γuc
12 + Γcc

12)

]
.

(1.48)
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Figure 1.3: After the first OPE the B-B mixing is described by two effective interactions in
the ∆B = 1 theory. We expand then in Λ/mb and project the absorptive part
of the corresponding matrix elements on local ∆B = 2 operator insertions. The
diagram with two c-quarks contributes solely to Γcc

12, the one with two u-quarks
to Γuu

12 and the mixed variant to Γuc
12.

We see that the GIM mechanism enhances the contribution of Γcc
12 which stems

primarily from diagrams with two virtual charm quarks. Also, the relative scaling
of the terms in eq. (1.48) is influenced by the factor λu/λt which scales as λ2 ≈ 0.05
according to the Wolfenstein parameterization. The procedure to compute Γ12 is
illustrated in fig. 1.3.

From eq. (1.48) one can see that afs, being the imaginary part of Γ12/M12, receives
no contributions from the (λu/λt)0 term of Γ12 since the prefactor λ2

t cancels in
the ratio. Therefore, afs is GIM suppressed and sensitive to the mass of the c-quark
mc. This renders afs numerically small which gives a strong constraint on the CP

violating effects of new physics in neutral B-meson mixing.

The computation of Γ12 to higher orders in αs is the main topic of this dissertation.
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2
∆ B = 1 T H E O RY

In this chapter we focus on the effective interactions that lead to a beauty-flavor
change of ∆B = 1, as well as the implications and difficulties of their formulation.

2.1 effective field theories

In the SM the most significant contribution to processes which change the beauty
flavor quantum number by ∆B = 1 comes from a virtual W-boson exchange. For
example, the transition bs→ cc is depicted in the following Feynman diagram:

The corresponding tree-level matrix element with the Hamiltonian of eq. (1.28) in
the Feynman-’t Hooft gauge is given by

iMSM = i
g2

W
2

VcbV∗cs
1

q2 −m2
W

(sγµPLc)
(
cγµPLb

)
= − i

g2
W

2m2
W

VcbV∗cs (sγµPLc)
(
cγµPLb

)
+ O

(
q2

m2
W

)
.

(2.1)

We use mW �
√

q2 to simplify the matrix element, where q is the exchanged
momentum between the two quark lines. The leading term of this approximation
describes a local interaction which does not depend on the kinematics of the external
particles.

Let us repeat this calculation with an effective local interaction which is described
by the Hamiltonian:

H∆B=1 =
4GF√

2
VcbV∗cs (C1Q1 + C2Q2) + h.c. , (2.2)

with

Q1 =
(
siγ

µPLcj
) (

cjγµPLbi
)

, Q2 = (siγ
µPLci)

(
cjγµPLbj

)
. (2.3)

15
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QED α (mb(mb)) ≈ 0.0074

QCD α
(5)
s (mb(mb)) ≈ 0.2245

Weak theory αW
m2

b(mb)

m2
W
≈ 0.0001

Table 2.1: This table provides an overview of the relative size of effects expected for higher
order corrections at the scale mb(mb). For the QED fine structure constant α, only
the one-loop corrections are taken into account. For the running of αs we use the
five-loop corrections from RunDec [64]. The size of the weak coupling constant
αW = 0.0339 is estimated from eq. (2.6). The used input parameters are given in
table 7.1.

The indices i and j denote the color indices of the quark fields. This theory is sup-
posed to describe the physics of energies below mW . This requirement is expressed
in terms of S matrix elements,

〈 f | e−i
∫

d4xHfull |i〉 !
= 〈 f | e−i

∫
d4xHeff |i〉 + O

(
Λ3

m3
W

)
. (2.4)

Instead of truncating eq. (2.4) the higher order terms could also be included
in Heff. This leads to a population with infinitely many operators and Wilson
coefficients. This OPE provides a powerful tool to resum large logarithms of the type
ln(m2

b/m2
W), and it simplifies computations, additionally. However, the effective

theory is constructed in such a way that it is only valid in a certain energy range.

The matrix element for the bs → cc process in the effective theory of eq. (2.2) is
given by

iMeff = − i
4GF√

2
VcbV∗csC2 (sγµPLc)

(
cγµPLb

)
= − i

g2
W

2m2
W

VcbV∗csC2 (sγµPLc)
(
cγµPLb

)
,

(2.5)

where we use

GF =

√
2g2

W
8m2

W
. (2.6)

The comparison of eqs. (2.1) and (2.5), together with the requirement of eq. (2.4),
gives:

C1 = 0 , C2 = 1. (2.7)

This equality holds at leading order in Λ/mW . To obtain more accurate predictions
for the process bs → cc, one could include higher-order corrections from the
Standard Model. A naive numerical comparison of the coupling constants gives
an approximate relative size of the expected corrections. The comparison is shown
in table 2.1. Hence, it is sufficient to focus solely on QCD corrections before other
corrections have to be considered.
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Figure 2.1: SM contributions to the Wilson coefficients of current-current operators are
shown at LO and NLO in QCD.

In general, renormalization of effective field theories leads to a mixing of the
effective operators. Denoting the renormalization matrix for the operators ~Q by Z̃,
we have

Mren = Ci 〈Qi〉 = CiZ̃−1
ij 〈Qj〉0 . (2.8)

Thus, in order to renormalize the theory properly a closed set of operators has to
be considered. This means that the operator basis includes all operators which are
allowed by the symmetries of the theory and occur due to quantum corrections.
Nevertheless, one has some freedom in the choice of the basis because the effective
Hamiltonian which satisfies eq. (2.4) is not unique. In the following we discuss two
different operator bases for the ∆B = 1 theory. The first basis was used in previous
calculations of Γ12. In this work we use the second one due to its advantageous
properties.

2.2 traditional basis

For the calculation of Γ12 in refs. [47, 63, 65–71], the operator basis of ref. [72] was
used for the ∆B = 1 effective Hamiltonian, which is given by

H∆B=1 =
4GF√

2

[
VcbV∗cs (C

cc
1 Qcc

1 + Ccc
2 Qcc

2 ) + VcbV∗us (C
cu
1 Qcu

1 + Ccu
2 Qcu

2 )

+ VubV∗cs (C
uc
1 Quc

1 + Cuc
2 Quc

2 ) + VubV∗us (C
uu
1 Quu

1 + Cuu
2 Quu

2 )

−VtbV∗ts

(
6

∑
i=3

CiQi + C8Q8

)
+ ∑

i
CEi Ei

]
+ h.c. .

(2.9)

The operators of eq. (2.9) are separated into three classes. The class of current-current
operators involves

Qcc
1 =

(
siγ

µPLcj
) (

cjγµPLbi
)

, Qcc
2 = (siγ

µPLci)
(
cjγµPLbj

)
,

Qcu
1 =

(
siγ

µPLuj
) (

cjγµPLbi
)

, Qcu
2 = (siγ

µPLui)
(
cjγµPLbj

)
,

Quc
1 =

(
siγ

µPLcj
) (

ujγµPLbi
)

, Quc
2 = (siγ

µPLci)
(
ujγµPLbj

)
,

Quu
1 =

(
siγ

µPLuj
) (

ujγµPLbi
)

, Quu
2 = (siγ

µPLui)
(
ujγµPLbj

)
.

(2.10)
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Figure 2.2: SM equivalent of penguin diagrams have a spectator fermion line which is
connected by gluons. Since QCD is flavor-blind, the spectator quark can be any
quark flavor. The two diagrams on the right contribute to the chromomagnetic
dimension-5 operator Q8.

These operators stem from SM diagrams with the combination of two charged
currents mediated by a W boson (hence the name) as shown in fig. 2.1. For the
corresponding Wilson coefficients we have

C1 ≡ Ccc
1 = Ccu

1 = Cuc
1 = Cuu

1 ,

C2 ≡ Ccc
2 = Ccu

2 = Cuc
2 = Cuu

2 ,
(2.11)

which must be treated differently for the renormalization.

The second operator class is called penguin operators. They are given by

Q3 = (siγ
µPLbi)∑

q

(
qjγµPLqj

)
,

Q4 =
(
siγ

µPLbj
)
∑

q

(
qjγµPLqi

)
,

Q5 = (siγ
µPLbi)∑

q

(
qjγµPRqj

)
,

Q6 =
(
siγ

µPLbj
)
∑

q

(
qjγµPRqi

)
,

Q8 =
gs

16π2 mbsσµνPRTabGa
µν ,

(2.12)

with σµν = i[γµ, γν]/2 and the SUc(3) group generators Ta. We also use the QCD

field strength tensor (see e.g. ref. [73])

Ga
µν = ∂µGa

ν − ∂νGa
µ + gs f abcGb

µGc
ν , (2.13)

with f abc being the structure constants and gs the strong coupling constant. The
sum over q iterates through all five active quark flavors. These operators are related
in the SM to diagrams shown in fig. 2.2.

The chromomagnetic moment operator Q8 plays a special role since it is a dimension-5
operator, in contrast to the remaining operators which are dimension-6. Thus, Q8

has to be taken into account for the renormalization of Q1−6. On the contrary, no
other operator is needed to renormalize the contributions of Q8 [21].

The last operator class are the so-called evanescent operators. They are the topic of
section 2.4.
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Figure 2.3: Diagrams with two penguin insertions lead to ill-defined traces with γ5 in the
traditional basis. This problem arises first at O(αs) which was not yet the subject
in the literature. In the full theory equivalent of this diagram, such objects are
absent. Therefore, they can be prevented by a different choice of the operator
basis.

2.3 cmm basis

The operator basis introduced in section 2.2 has a practical disadvantage: Diagrams
with two penguin operator insertions, as for example fig. 2.3, give rise to the Dirac
structure

Trd(γ5γµγνγργσ) . (2.14)

In d = 4 space-time dimensions this trace can be evaluated using the Levi-Civita
symbol:

Tr4(γ5γµγνγργσ) = −4iεµνρσ . (2.15)

In calculations employing the dimensional regularization scheme, the Dirac matrices
are formally defined as infinite dimensional [74]. Hence, the combinatorically
motivated εµνρσ is ill-defined in d = 4− 2ε.

From the full-theory equivalent of the two penguin insertion diagram, it is evident
that no such trace can appear. Since only the weak interactions are sensitive to
the chirality of the interacting particles, additional corrections from chirality-blind
theories, such as QCD, do not lead to new appearances of traces with γ5.

Thus, the appearance of eq. (2.14) is a spurious artifact of the chosen basis of
eq. (2.9). To circumvent this issue, a different basis has been proposed in ref. [75].
We refer to it as the “CMM” basis according to its inventors K. Chetyrkin, M. Misiak
and M. Münz. The effective Hamiltonian has the same structure as eq. (2.9), except
for the operators which we denote by Pi to distinguish them from the traditional
basis. They read

Pcc
1 = (sγµPLTac)

(
cγµPLTab

)
, Pcc

2 = (sγµPLc)
(
cγµPLb

)
,

Pcu
1 = (sγµPLTau)

(
cγµPLTab

)
, Pcu

2 = (sγµPLu)
(
cγµPLb

)
,

Puc
1 = (sγµPLTac)

(
uγµPLTab

)
, Puc

2 = (sγµPLc)
(
uγµPLb

)
,

Puu
1 = (sγµPLTau)

(
uγµPLTab

)
, Puu

2 = (sγµPLu)
(
uγµPLb

)
,

P3 = (sγµPLb)∑
q

(
qγµq

)
, (2.16)

P4 = (sγµPLTab)∑
q

(
qγµTaq

)
,

P5 = (sγµ1 γµ2 γµ3 PLb)∑
q

(
qγµ1 γµ2 γµ3 q

)
,
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Wilson coefficient O
(
α0

s
)

O
(
α1

s
)

O
(
α2

s
)

C1(mb) −0.6367 0.2986 0.0455

C2(mb) 1.0389 −0.0322 0.0026

C3(mb) −0.0078 0.0023 −0.0005

C4(mb) −0.0898 −0.0013 0.0042

C5(mb) 0.0007 −0.0004 5× 10−5

C6(mb) 0.0016 −0.0005 8× 10−6

C8(mb) −0.1580 −0.0104 0.0057

Table 2.2: This table illustrates the numerical sizes for Wilson coefficients of the CMM basis
with the results of refs. [75–79]. The coefficients are evaluated at the MS mass
mb ≡ mb(mb), using α

(5)
s (mb) = 0.2245. The numeric input is given in table 7.1.

P6 = (sγµ1 γµ2 γµ3 PLTab)∑
q

(
qγµ1 γµ2 γµ3 Taq

)
,

P8 =
gs

16π2 mbsσµνPRTabGa
µν .

Compared to eq. (2.12), one can see that no γ5-dependence is present in the spectator
fermion line of the penguin operators. This allows for a straightforward evaluation
of diagrams as in fig. 2.3. The Wilson coefficients to these operators are currently
known at Next-to-Next-to-Leading Order (NNLO) in QCD [76–79].

From the numerical values of the Wilson coefficients, as shown in table 2.2, one
can see a clear enhancement of the current-current in comparison to the penguin
operators. The numerical differences is the reason to treat penguin contributions in
the literature as higher order. This observation holds in the traditional basis as well.
Note that the relatively large value of C8 is misleading since every contribution of
P8 comes with an additional factor of αs.

2.4 dimensional regularization and evanescent operators

For schemes in which the dimension is used as the regularization parameter, there
are multiple variants to extend four-dimensional quantities. For example, in the
original ’t Hooft-Veltman (HV) scheme [80] Dirac matrices are split into four- and
(d − 4)-dimensional parts, where the latter is defined with infinite dimensions.
Another frequently used modification is Dimensional Reduction (DRED) [81] in which
only momenta and coordinates are defined in d dimensions. Tensor structures are
kept four-dimensional in this scheme.

In this work we use the Naive Dimensional Regularization (NDR) scheme (e.g. as used
in ref. [82]) which prescribes the “naive” usage of an anti-commuting γ5:

{γµ, γ5} = 0 . (2.17)
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(i) (ii)

Figure 2.4: To reduce the Dirac matrix structures of physical operators at higher orders (i),
an evanescent operator (ii) is introduced.

In NDR the spinor space is four-dimensional and the following relations hold:

gµ
µ = d , {γµ, γν} = 2gµν ,

γµγµ = d , Trd(1) = 4 .
(2.18)

Additional care must be taken if γ5 occurs in calculations of higher order. As stated
in the literature [83–87], the usage of eq. (2.17) leads to inconsistencies in d dimen-
sions if traces such as eq. (2.14) appear. Thus, NDR is only consistent if traces with an
odd number of γ5 do not contribute, or else the anti-commutation property must be
dropped. Furthermore, four-dimensional relations like the Chisholm identity [88],

γµγνγρ d=4
= gµνγρ − gµργν + gνργµ + iεαµνργαγ5 , (2.19)

cannot be used in NDR.

For all schemes an additional set of auxiliary operators has to be included to resolve
common problems that appear at higher loop orders in dimensional regularization.
This class of evanescent operators is the subject of several publications [74, 89, 90].
Their usage and computational necessity was stressed for the first time in ref. [82].
Their appearance is unique to dimensional regularization as they describe objects
that vanish in the limit d→ 4.

An example where these operators may appear is given by the matrix element
describing higher order corrections to an insertion of P2, as shown in fig. 2.4:

〈P2〉1-loop = a (sγµ1 γµ2 γµ3 PLc)
(
cγµ1 γµ2 γµ3 PLb

)
+ . . . , (2.20)

with s, b and c describing spinors. The coefficient a contains the remainder of the
amplitude.

In four space-time dimensions we are able to reduce any string of Dirac matrices
between spinors to a combination of 16 bilinear covariants:

{1, γµ, σµν, γ5, γ5γµ} . (2.21)

Equation (2.20) can hence be simplified to

(sγµ1 γµ2 γµ3 PLc)
(
cγµ1 γµ2 γµ3 PLb

) d=4
= 16 (sγµPLc)

(
cγµPLb

)
= 16 〈P2〉tree .

(2.22)

Since in d = 4− 2ε the γ-matrices are infinite dimensional, the same also holds
for the basis of bilinear covariants. Therefore, eq. (2.20) cannot be further reduced,
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and we formally have to treat it as an additional operator of our d-dimensional
Hamiltonian. This has the disadvantage that the operator basis is redundant in the
limit d→ 4. Alternatively, one could start with the d = 4 operator basis and add an
evanescent operator of the type:

E2 = (sγµ1 γµ2 γµ3 PLc)
(
cγµ1 γµ2 γµ3 PLb

)
− 16 (sγµPLc)

(
cγµPLb

)
. (2.23)

Thus, the operator insertion of eq. (2.20) reduces to

〈P2〉1-loop = a
(

16 〈P2〉tree + 〈E2〉tree
)
+ . . . . (2.24)

The comparison to eq. (2.22) implies

〈E2〉tree = O(εUV) , (2.25)

which we want to hold for renormalized matrix elements of evanescent operators
to all orders in perturbation theory.

The definition of eq. (2.23) is by far not unique. With the restriction of eq. (2.25),
one could as well add arbitrary O(ε) terms without changing the physical outcome.
Hence, the definition of the evanescent operators implies a specific renormaliza-
tion scheme. Intermediate (non-physical) results from different schemes are not
comparable without a proper scheme change [90].

Equation (2.25) introduces a dimensional parameter to regularize Ultraviolet (UV)
divergences which is denoted by εUV. In general, also physical Infrared (IR) di-
vergences appear which must be separated from UV poles in computations of the
renormalization constants. However, in physical quantities where IR divergences
are absent, the matrix elements of evanescent operators vanish again in the limit
ε→ 0.

As we have seen, the need for evanescent operators is tied to computations of
higher loop order. Therefore, the operator basis has to grow accordingly with the
given problem. This implies that also the renormalization of the physical operators
has to be adjusted to the choice of evanescent operators. The renormalization
conditions for Wilson coefficients in an extended definition of the Modified Minimal
Subtraction (MS) scheme are [91]:

• Renormalized amplitudes proportional to Wilson coefficients of physical op-
erators have no UV poles, i.e. they start at O

(
ε0

UV

)
. Renormalization constants

which render these terms finite must contain only terms proportional to 1/εn

with n ∈ {1, . . . , l}, where l is the loop order.

• Renormalized amplitudes proportional to Wilson coefficients of evanescent
operators are O(εUV). According renormalization constants must contain only
terms proportional to 1/εn with n ∈ {0, . . . , l − 1}.

Unlike the regular MS scheme, the renormalization constants of evanescent oper-
ators include additional finite terms to fulfill eq. (2.25). More details are given in
section 2.5.
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In the CMM basis, we have to include the following evanescent operators for calcu-
lations up to O(αs) [75]:

Eq1q2,(1)
1 = (sγµ1 γµ2 γµ3 PLTaq2)

(
q1γµ1 γµ2 γµ3 PLTab

)
− 16Pq1q2

1 ,

Eq1q2,(1)
2 = (sγµ1 γµ2 γµ3 PLq2)

(
q1γµ1 γµ2 γµ3 PLb

)
− 16Pq1q2

2 ,

E(1)
3 = (sγµ1 γµ2 γµ3 γµ4 γµ5 PLb)∑

q

(
qγµ1 γµ2 γµ3 γµ4 γµ5 PLq

)
− 20P5 + 64P3 ,

E(1)
4 = (sγµ1 γµ2 γµ3 γµ4 γµ5 PLTab)∑

q

(
qγµ1 γµ2 γµ3 γµ4 γµ5 PLTaq

)
− 20P6 + 64P4 ,

(2.26)

with q1, q2 ∈ {u, c}. If we want to compute contributions up to O
(
α2

s
)

additional
evanescent operators are needed:

Eq1q2,(2)
1 = (sγµ1 γµ2 γµ3 γµ4 γµ5 PLTaq2)

(
q1γµ1 γµ2 γµ3 γµ4 γµ5 PLTab

)
− 20Eq1q2,(1)

1 − 256Pq1q2
1 ,

Eq1q2,(2)
2 = (sγµ1 γµ2 γµ3 γµ4 γµ5 PLq2)

(
q1γµ1 γµ2 γµ3 γµ4 γµ5 PLb

)
− 20Eq1q2,(1)

2 − 256Pq1q2
2 ,

E(2)
3 = (sγµ1 γµ2 γµ3 γµ4 γµ5 γµ6 γµ7 PLb)

×∑
q

(
qγµ1 γµ2 γµ3 γµ4 γµ5 γµ6 γµ7 PLq

)
− 336P5 + 1280P3 ,

E(2)
4 = (sγµ1 γµ2 γµ3 γµ4 γµ5 γµ6 γµ7 PLTab)

×∑
q

(
qγµ1 γµ2 γµ3 γµ4 γµ5 γµ6 γµ7 PLTaq

)
− 336P6 + 1280P4 .

(2.27)

Since each operator set is only necessary at a fixed order in perturbation theory, we
denote eq. (2.26) as first and eq. (2.27) as second generation evanescent operators.

In the literature, there are different definitions of the evanescent operators in the
traditional basis. However, their knowledge is necessary to transform results from
the traditional to the CMM basis. In the context of computing Γ12, two different sets
were used. Both are given by a reduction prescription for Dirac matrix chains.

Reference [65] uses the basis of [92]. According to ref. [77] this leads to the following
definition of evanescent operators:

Eq1q2
1 =

(
siγ

µ1 γµ2 γµ3 PL(q2)j
) (

(q1)jγµ1 γµ2 γµ3 PLbi
)
− (16− 4ε)Qq1q2

1 ,

Eq1q2
2 = (siγ

µ1 γµ2 γµ3 PL(q2)i)
(
(q1)jγµ1 γµ2 γµ3 PLbj

)
− (16− 4ε)Qq1q2

2 ,

E3 = (siγ
µ1 γµ2 γµ3 PLbi)∑

q

(
qjγµ1 γµ2 γµ3 PLqj

)
− (16− 4ε)Q3 ,

E4 =
(
siγ

µ1 γµ2 γµ3 PLbj
)
∑

q

(
qjγµ1 γµ2 γµ3 PLqi

)
− (16− 4ε)Q4 ,

E5 = (siγ
µ1 γµ2 γµ3 PLbi)∑

q

(
qjγµ1 γµ2 γµ3 PRqj

)
− (4 + 4ε)Q5 ,

E6 =
(
siγ

µ1 γµ2 γµ3 PLbj
)
∑

q

(
qjγµ1 γµ2 γµ3 PRqi

)
− (4 + 4ε)Q6 .

(2.28)
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The other basis used in the literature [68, 69] is defined with an implicit change of
the operators analogous to the current-current ones:

E′1
q1q2 =

(
siγ

µ1 γµ2 γµ3 PL(q2)j
) (

(q1)jγµ1 γµ2 γµ3 PLbi
)

− (16− 4ε− 4ε2)Qq1q2
1 ,

E′2
q1q2 = (siγ

µ1 γµ2 γµ3 PL(q2)i)
(
(q1)jγµ1 γµ2 γµ3 PLbj

)
− (16− 4ε− 4ε2)Qq1q2

2 ,

(2.29)

with the remaining operators equal to eq. (2.28).

Since both bases use different evanescent operators also the used renormalization
schemes change. Thus, a comparison of results stemming from either basis needs
a proper transformation. However, the difference between them is O

(
ε2), leading

to different results at NNLO. Since in [65] only Next-to-Leading Order (NLO) con-
tributions were computed, the same transformation rules can be used for both
results.

2.5 renormalization

With renormalization, it is possible to render formally UV-divergent quantities UV-
finite in quantum field theory. As we have seen in section 2.4, evanescent operators
require a special treatment such that O(ε) terms do not contribute in four space-
time dimensions. In this section we will analyze the renormalization of the effective
∆B = 1 field theory in more detail. The definitions and notation follow refs. [21, 73]
except for the gauge definition.

Renormalization can be understood as identifying the parameters and fields of the
Lagrangian as bare. To get access to the physical parameters one has to shift the
bare ones by intrinsically divergent values.

The QCD Lagrangian is given by

LQCD = ψ (i /D−m)ψ− 1
4

Ga
µνGa,µν − 1

2(1− ξ)

(
∂µGa

µ

)2

+ (∂µca)
(

δab∂µ + gs f abcGb
µ

)
cc ,

(2.30)

where Dµ denotes the covariant derivative which is given by

Dµ = ∂µ − igsGa
µTa . (2.31)

In eq. (2.30), we include the Fadeev-Popov ghost field c and gauge fixing parameter
ξ in the so-called Rξ gauge with ξ = 0 corresponding to the Feynman-’t Hooft
gauge. For the renormalization procedure the Lagrangian is expressed in terms of

ψ0 =
√

Z2ψ , m0
i = Zmi mi ,

g0
s = µεZgs gs = µε

√
Zαs gs , (1− ξ0) = Z3(1− ξ) ,

Ga,0
µ =

√
Z3Ga

µ , ca,0 =

√
Z̃3ca ,

(2.32)
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where µ is called renormalization scale or ’t Hooft mass. The renormalization constants
Zi are given by an expansion in αs and depend on the chosen renormalization
scheme. The structure is hence

Zi =
∞

∑
j=0

j

∑
k=−∞

( αs

4π

)j 1
εk Z(j,k)

i . (2.33)

In the MS scheme, the Zi are defined such that they remove only poles of the type

1
ε̃
≡ 1

ε
− γE + ln(4π) , (2.34)

in which γE is the Euler–Mascheroni constant. We therefore have Z(j, k≤0)
i = δj,0.

In effective field theories where the effective operators mix under renormalization,
additional renormalization constants are needed to obtain finite quantities. In the
following we exemplify this mixing for a sample set of operators {Oi} of the form
(ψΓψ)(φΓ′φ). The bare amplitude of the process ψψ→ φφ is given by

A = C0
i 〈O0

i (ψ
0, φ0)〉 . (2.35)

With the renormalization of the fields and parameters of eq. (2.32) alone, this
amplitude will in general remain UV divergent. We have two possibilities to include
the additional renormalization. One way is to renormalize the Green’s functions
themselves. The renormalized amplitude is then given by

A = Ci 〈Oi(ψ, φ)〉 = Z2,ψZ2,φCiZ̃−1
ij 〈O

0
j (ψ, φ)〉 . (2.36)

The renormalization matrix Z̃ij takes into account that effective operators are not
distinct at higher order corrections. Therefore, the whole set of operators is necessary
for renormalization. Here we use the fact that the operator basis is closed under
renormalization, i.e. the operators in the sums of eqs. (2.35) and (2.36) are sufficient
to obtain a UV-finite amplitude.

Another way to renormalize eq. (2.35) is through the Wilson coefficients. Similarly,
we get

A = Z2,ψZ2,φCjZji 〈O0
i (ψ, φ)〉 . (2.37)

Both ways are equivalent in describing the poles occurring in higher order com-
putations. Since they must lead to the same finite results, we can summarize our
finding as

C0
i = CjZji , O0

i = Z̃ijOj with Z = Z̃−1 . (2.38)

To account for both evanescent (Ei) and physical operators (Qi), the matrix Z̃ can
be written as(

~Q0

~E0

)
=

(
Z̃QQ Z̃QE

Z̃EQ Z̃EE

)(
~Q
~E

)
. (2.39)
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As stated in section 2.4, the evanescent operators are needed to close the renormal-
ization of the physical operators. For the adjusted MS renormalization conditions,
we parameterize the renormalization matrices as

Z̃QQ = 1 +
l

∑
j=1

j

∑
k=1

( αs

4π

)j 1
εk Z̃(j,k)

QQ ,

Z̃QE =
l

∑
j=1

j

∑
k=1

( αs

4π

)j 1
εk Z̃(j,k)

QE ,

Z̃EQ =
l

∑
j=1

j−1

∑
k=0

( αs

4π

)j 1
εk Z̃(j,k)

EQ ,

Z̃EE = 1 +
l

∑
j=1

j

∑
k=1

( αs

4π

)j 1
εk Z̃(j,k)

EE .

(2.40)

In order to renormalize the physical operators at l-loop order, we have to include l
generations of evanescent operators. To render evanescent operator insertions to
be O(ε), we need a finite renormalization proportional to the physical operators
and other evanescent operators. Therefore, the matrix Z̃ is only sufficient for a
fixed order in l and must be extended accordingly when higher order corrections
are taken into account. Remarkable is that Z̃EQ and Z̃EE are not sufficient to
renormalize all evanescent operators to order l. This follows from the fact that
for the renormalization of a certain generation, evanescent operators of a higher
generation are needed.

To illustrate the statements above, we consider a physical operator insertion at
one-loop order, as shown in fig. 2.4i:

〈Q〉1-loop = ai 〈Qi〉tree + bi 〈E(1)
i 〉

tree
, (2.41)

where the coefficients ai and bi contain UV-poles and finite contributions. Obviously,
renormalization constants Z̃QE which are proportional to the first generation evanes-
cent operators are needed to obtain a UV-finite result. Turning to the insertion of an
evanescent operator at NLO, we have

〈E(1)〉1-loop
= ci 〈Qi〉tree + di 〈E(1)

i 〉
tree

+ ei 〈E(2)
i 〉

tree
. (2.42)

To renormalize this quantity, we have to extend our Lagrangian by second genera-
tion evanescent operators. In turn, to compute the regarded process to full extent,

we now have to consider 〈E(2)〉1-loop
as well. Hence, we have to formally include

an infinite amount of evanescent operators. This is a direct consequence of the
infinite-dimensional Dirac matrices in d dimensions.

Nevertheless, it is possible to formulate a closed renormalization group which is
only valid up to a specific order in perturbation theory. Thus, matrix elements are
only computable for insertions of nth generation evanescent operators up to O

(
αi

s
)
,

with n + i ≤ l. The upper bound l is the number of the highest generation which
has to be taken into account at least at LO. Physical operators are treated in this
context as zeroth generation.
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Therefore, to compute an operator insertion to e.g. O
(
α2

s
)
, we have to take evanes-

cent operators of first and second generation into account. But only the matrix ele-

ments 〈Q〉tree, 〈Q〉1-loop, 〈Q〉2-loop, 〈E(1)〉tree
, 〈E(1)〉1-loop

and 〈E(2)〉tree
can be renor-

malized.

The renormalization matrix for the CMM basis is shown in appendix A.

2.6 basis transformation

Since the operator bases of sections 2.2 and 2.3 describe the same SM processes, it
is possible to transform them into each other. We follow here the description of
refs. [77, 93] for the NNLO basis transformation. In the following, objects defined in
different bases are distinguished by primes.

In a first step, we describe a shift of the physical operators by a linear combination
of evanescent ones, i.e.

~Q′ = ~Q + W~E , ~E′ = ~E . (2.43)

Then, the evanescent operators are shifted by a term which is proportional to
the physical operators with the matrix U. To render this sum evanescent again,
the physical term is multiplied by ε. Afterwards, a linear transformation of both
operator classes using the matrices R and M is applied. Ref. [77] finds

~Q′′ = R~Q′ = R
(
~Q + W~E

)
,

~E′′ = M
(
~E′ + εU ~Q′

)
= M

[
(1 + εUW)~E + εU~Q

]
.

(2.44)

According to ref. [77] this transformation leads to a finite renormalization of physical
operators in the new basis. At NLO the transition between Wilson coefficients is
given by

~C′′(µ) =

[
1 +

αs(µ)

4π
Z
′′(1,0)
QQ

]T (
R−1

)T
~C(µ) , (2.45)

with

Z
′′(1,0)
QQ = R

[
WZ(1,0)

EQ −
(

Z(1,1)
QE + WZ(1,1)

EE −
1
2

γ0W
)

U
]

R−1 , (2.46)

whereγ0 is the LO term of the Anomalous Dimension Matrix (ADM) in the unprimed
basis.

For the change from the CMM to the traditional basis of eqs. (2.9) and (2.28), the
finite renormalization matrix is given by

Z
′′(1,0)
QQ =



− 7
3 −1 0 0 0 0

−2 2
3 0 0 0 0

0 0 178
27 − 34

9 − 164
27

20
9

0 0 1− n f
9

n f
3 −

25
3 − n f

9 − 2 n f
3 + 6

0 0 − 160
27

16
9

146
27 − 2

9

0 0 n f
9 − 2 6− n f

3
n f
9 + 3 − n f

3 −
11
3


, (2.47)
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where n f = 5 is the number of active flavors. In eq. (2.47) we use the fact that only
two Wilson coefficients of the current-current operators are distinct.

Together with the rotation matrix

R =



2 1
3 0 0 0 0

0 1 0 0 0 0

0 0 − 1
3 0 1

12 0

0 0 − 1
9 − 2

3
1

36
1
6

0 0 4
3 0 − 1

12 0

0 0 4
9

8
3 − 1

36 − 1
6


, (2.48)

we can write the CMM Wilson coefficients to up to O(αs) as

CP1 = 2CQ1 +
( αs

4π

)(14CQ1

3
+ 4CQ2

)
,

CP2 =
CQ1

3
+ CQ2 +

( αs

4π

) 16CQ1

9
,

CP3 = − CQ3

3
− CQ4

9
+

4CQ5

3
+

4CQ6

9

+
( αs

4π

)(80CQ3

9
− 16CQ4

27
− 80CQ5

9
− 64CQ6

27

)
,

CP4 = − 2CQ4

3
+

8CQ6

3
+
( αs

4π

)(
−76CQ3

9
− 194CQ4

9

+
16CQ5

9
+

124CQ6

9
−

2CQ4 n f

3
+

2CQ6 n f

3

)
,

CP5 =
CQ3

12
+

CQ4

36
− CQ5

12
− CQ6

36

+
( αs

4π

)(
−8CQ3

9
+

4CQ4

27
+

8CQ5

9
+

4CQ6

27

)
,

CP6 =
CQ4

6
− CQ6

6
+
( αs

4π

)(
CQ3 +

43CQ4

18
− CQ5

3
− 29CQ6

18

)
.

(2.49)

In order to compare NNLO results of refs. [68, 69], O
(
ε2) terms of evanescent

operators have to be taken into account as well. It turns out that the evanescent
operators of eqs. (2.28) and (2.29) alone are not sufficient for a full calculation at
NNLO. Together with the formulae of ref. [93] we can only state O

(
α2

s
)

corrections to
current-current coefficients which are proportional to the number of active flavors
n f :

CP1 = 2CQ1 +
( αs

4π

)(14CQ1

3
+ 4CQ2

)
+
( αs

4π

)2
[

n f

(
35CQ1

27
+

10CQ2

9

)
+ non-n f

]
,

CP2 =
CQ1

3
+ CQ2 +

( αs

4π

) 16CQ1

9

+
( αs

4π

)2
[

n f
40CQ1

81
+ non-n f

]
.

(2.50)
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Nevertheless, this partial transformation is sufficient to compare the NNLO results
of refs. [68, 69] which include only n f dependent terms.





3
∆ B = 2 T H E O RY

In the previous chapter we discussed interactions in the effective ∆B = 1 theory.
The only missing piece in the Hamiltonian of eq. (1.37) are the ∆B = 2 interactions.
With them, we have everything at hand to compute Γ12 in the matching between
both theories.

3.1 operator basis

Similar to ∆B = 1 there are several approaches to define a ∆B = 2 operator basis.
For lattice computations the so-called supersymmetric basis of refs. [94–96] has been
established [40]. It includes five dimension-6 operators of which three are not
present in the SM.

Furthermore, bases like in refs. [97–100] focus more on SM phenomenology and the
application for higher order calculations. This includes the definition and proper
treatment of evanescent operators.

We have already seen in section 1.2 that to describe the leading effects of M12 only
a single effective ∆B = 2 operator Q is needed. For the purpose of computing Γ12,
we start with six operators in the leading order of the Λ/mb expansion: [100]

Q = 4 (siγ
µPLbi)

(
sjγµPLbj

)
,

Q̃ = 4
(
siγ

µPLbj
) (

sjγµPLbi
)

,

QS = 4 (siPRbi)
(
sjPRbj

)
,

Q̃S = 4
(
siPRbj

) (
sjPRbi

)
,

QT = 4 (siσ
µνPRbi)

(
sjσµνPRbj

)
,

Q̃T = 4
(
siσ

µνPRbj
) (

sjσµνPRbi
)

.

(3.1)

This basis is redundant in four dimensions since some operators are related accord-
ing to the so-called Fierz symmetry [101]. This symmetry makes use of the finiteness
of the bilinear covariant basis in d = 4 to find relations between spinor tensor
structures with Dirac matrices. A simple way to find these identities is described in
appendix B.

In d = 4 we find

Q̃ = Q , (3.2a)

QT = − 4QS − 8Q̃S , (3.2b)

Q̃T = − 4Q̃S − 8QS . (3.2c)

31
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In addition to the remaining three operators, we extend the effective Hamiltonian to
include also terms of the next-to-leading order in Λ/mb. The d-dimensional ∆B = 2
Hamiltonian is then given by

H∆B=2 =
G2

Fm2
b

12π2

[
CQQ + CQS QS + CQ̃S

Q̃S + ∑
i

CEi Ei

]
+ H∆B=2

1/mb
+ h.c. . (3.3)

This definition is different from the one in eq. (1.38), where no Λ/mb expansion is
applied. The operators of the eq. (3.3) is what we need to express the HQE of Γ12 as
shown in eq. (1.47).

The Hamiltonian H∆B=2
1/mb

includes 10 physical operators which are given by [63]

R0 =
1
2

Q + QS + Q̃S , (3.4a)

R̃0 =
1
2

Q̃ + QS + Q̃S , (3.4b)

R1 = 4
ms

mb
(siPRbi)

(
sjPLbj

)
, (3.4c)

R̃1 = 4
ms

mb

(
siPRbj

) (
sjPLbi

)
, (3.4d)

R2 =
4

m2
b

(
si
←
DργµPLDρbi

) (
sjγµPLbj

)
, (3.4e)

R̃2 =
4

m2
b

(
si
←
DργµPLDρbj

) (
sjγµPLbi

)
, (3.4f)

R3 =
4

m2
b

(
si
←
DρPRDρbi

) (
sjPRbj

)
, (3.4g)

R̃3 =
4

m2
b

(
si
←
DρPRDρbj

) (
sjPRbi

)
, (3.4h)

R4 =
4

mb

(
sii
←
DρPRbi

) (
sjγµPLbj

)
, (3.4i)

R̃4 =
4

mb

(
sii
←
DρPRbj

) (
sjγµPLbi

)
. (3.4j)

The covariant derivative Dµ is defined in eq. (2.31). Note that all operators of eq. (3.4)
are sensitive to the kinematics of the s-quark.

It is again possible to find linear relations between different operators using equa-
tions of motions, Fierz identities and by dropping terms of higher order in the
Λ/mb expansion. This results in

R̃0 = R0 , (3.5a)

R̃2 = − R2 , (3.5b)

R̃3 = R3 +
R2

2
, (3.5c)

R4 =
R0

2
− R̃1 +

R2

2
, (3.5d)

R̃4 =
R0

2
− R1 −

R2

2
. (3.5e)
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In the literature these relations are used to remove R̃0, R4 and R̃4 from the operator
basis. All others are kept and used for the matching of ∆B = 1 contributions.

From eq. (3.4) we see that a linear combination of Q, QS and Q̃S is suppressed
by Λ/mb. The proof and the technical implications are presented in appendix C
and section 3.5. Another important aspect of the effective ∆B = 2 theory is the
treatment of evanescent terms which is the topic of the next section.

3.2 evanescent operators

In section 2.4 we included a new class of operators to the effective ∆B = 1 theory
to resolve emerging difficulties when extending the effective operator basis to d
dimensions. Also, for the ∆B = 2 theory we have to introduce evanescent operators
to get a well-defined regularization and renormalization procedure. We have seen in
eq. (3.2) that four-dimensional Fierz identities can be used to reduce the number of
physical operators in the Hamiltonian. In dimensional regularization these relations
receive O(ε) corrections which must not be neglected. We define the first generation
of evanescent operators as

E(1)
1 = Q̃−Q , (3.6a)

E(1)
2 = 4

(
siγ

µ1 γµ2 γµ3 PLbj
) (

sjγµ1 γµ2 γµ3 PLbi
)

− (16 + e(1)2,1 ε + e(1)2,2 ε2)Q̃ ,
(3.6b)

E(1)
3 = 4 (siγ

µ1 γµ2 γµ3 PLbi)
(
sjγµ1 γµ2 γµ3 PLbj

)
− (16 + e(1)3,1 ε + e(1)3,2 ε2)Q ,

(3.6c)

E(1)
4 = 4

(
siγ

µ1 γµ2 PRbj
) (

sjγµ1 γµ2 PRbi
)

− (−8 + e(1)4,2,1ε + e(1)4,2,2ε2)QS − (e(1)4,1,1ε + e(1)4,1,2ε2)Q̃S ,
(3.6d)

E(1)
5 = 4 (siγ

µ1 γµ2 PRbi)
(
sjγµ1 γµ2 PRbj

)
− (−8 + e(1)5,1,1ε + e(1)5,1,2ε2)Q̃S − (e(1)5,2,1ε + e(1)5,2,2ε2)QS .

(3.6e)

Equation (3.6) is necessary to renormalize the physical operators at O(αs). The
leading order matrix elements of these operators can be used to relate spinor
tensor structures with up to three Dirac matrices to the reduced four-dimensional
equivalent. Such terms arise from physical operator contributions at one-loop order.
Additionally, the operator E(1)

1 expresses the Fierz symmetry between Q and Q̃
which holds in four dimensions.

The parameters e(i)x of eq. (3.6) denote alternative evanescent contributions of order ε

and beyond. They express the arbitrariness in the choice of the evanescent operators.
Physical observables must not dependent on them [90]. The latter condition would
provide a consistency check for phenomenological results. In our case the e(i)x are
kept unspecified throughout the calculation. This dependence is expected to cancel
in the lattice-continuum matching if the matrix elements are calculated in lattice
QCD. Hence, this check is beyond the scope of this work.
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According to refs. [49, 65, 68, 90] a certain numerical choice for the e(i)x parameters
preserves Fierz symmetry in d dimensions. It is given by

e(1)2,1 = e(1)3,1 = −4 ,

e(1)2,2 = e(1)3,2 = −4 ,

e(1)4,2,1 = e(1)5,1,1 = 8 ,

e(1)4,1,1 = e(1)5,2,1 = 0 ,

e(1)4,1,2 = e(1)5,2,2 = 4 ,

e(1)4,2,2 = e(1)5,1,2 = 0 .

(3.7)

As we see in chapter 4, three more generations are needed for the calculation of
Γ12 in addition to the evanescent operators of eq. (3.6). For the renormalization
of the physical operators at two-loops and for the first generation at one-loop we
introduce the following:

E(2)
1 = 4

(
siγ

µ1 . . . γµ5 PLbj
) (

sjγµ1 . . . γµ5 PLbi
)

− (256 + e(2)1,1 ε + e(2)1,2 ε2)Q̃ ,
(3.8a)

E(2)
2 = 4 (siγ

µ1 . . . γµ5 PLbi)
(
sjγµ1 . . . γµ5 PLbj

)
− (256 + e(2)2,1 ε + e(2)2,2 ε2)Q ,

(3.8b)

E(2)
3 = 4 (siγ

µ1 . . . γµ4 PRbi)
(
sjγµ1 . . . γµ4 PRbj

)
− (128 + e(2)3,1,1ε + e(2)3,1,2ε2)Q̃S − (128 + e(2)3,2,1ε + e(2)3,2,2ε2)QS ,

(3.8c)

E(2)
4 = 4

(
siγ

µ1 . . . γµ4 PRbj
) (

sjγµ1 . . . γµ4 PRbi
)

− (128 + e(2)4,1,1ε + e(2)4,1,2ε2)Q̃S − (128 + e(2)4,2,1ε + e(2)4,2,2ε2)QS .
(3.8d)

For the renormalization of the first generation evanescent operators at two-loops
and for the second generation at one-loop we also need a third generation. It is
given by

E(3)
1 = 4

(
siγ

µ1 . . . γµ7 PLbj
) (

sjγµ1 . . . γµ7 PLbi
)

− (4096 + e(3)1,1 ε + e(3)1,2 ε2)Q̃ ,
(3.9a)

E(3)
2 = 4 (siγ

µ1 . . . γµ7 PLbi)
(
sjγµ1 . . . γµ7 PLbj

)
− (4096 + e(3)2,1 ε + e(3)2,2 ε2)Q ,

(3.9b)

E(3)
3 = 4 (siγ

µ1 . . . γµ6 PRbi)
(
sjγµ1 . . . γµ6 PRbj

)
− (2048 + e(3)3,1,1ε + e(3)3,1,2ε2)Q̃S − (2048 + e(3)3,2,1ε + e(3)3,2,2ε2)QS ,

(3.9c)

E(3)
4 = 4

(
siγ

µ1 . . . γµ6 PRbj
) (

sjγµ1 . . . γµ6 PRbi
)

− (2048 + e(3)4,1,1ε + e(3)4,1,2ε2)Q̃S − (2048 + e(3)4,2,1ε + e(3)4,2,2ε2)QS .
(3.9d)

Finally, the fourth generation with up to nine Dirac matrices in one bilinear factor
is given by

E(4)
1 = 4

(
siγ

µ1 . . . γµ9 PLbj
) (

sjγµ1 . . . γµ9 PLbi
)

− (65536 + e(4)1,1 ε + e(4)1,2 ε2)Q̃ ,
(3.10a)
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E(4)
2 = 4 (siγ

µ1 . . . γµ9 PLbi)
(
sjγµ1 . . . γµ9 PLbj

)
− (65536 + e(4)2,1 ε + e(4)2,2 ε2)Q ,

(3.10b)

E(4)
3 = 4 (siγ

µ1 . . . γµ8 PRbi)
(
sjγµ1 . . . γµ8 PRbj

)
− (32768 + e(4)3,1,1ε + e(4)3,1,2ε2)Q̃S − (32768 + e(4)3,2,1ε + e(4)3,2,2ε2)QS ,

(3.10c)

E(4)
4 = 4

(
siγ

µ1 . . . γµ8 PRbj
) (

sjγµ1 . . . γµ8 PRbi
)

− (32768 + e(4)4,1,1ε + e(4)4,1,2ε2)Q̃S − (32768 + e(4)4,2,1ε + e(4)4,2,2ε2)QS .
(3.10d)

In the next section we compute the renormalization constants of this operator basis
at the leading power in Λ/mb.

3.3 renormalization

For the determination of the renormalization constants of effective operators, respec-
tive matrix elements with QCD corrections have to be considered. For the ∆B = 2
theory this involves the computation of the process sb→ bs.

Since renormalization constants in MS do not depend on the masses or momenta
of the interacting particles, we can simplify the calculation by setting qb = qs = 0.
Thus, only tadpole integrals occur which can be directly evaluated with usage of
the program MATAD [102].

Unfortunately, the resulting matrix elements do not only involve ultraviolet but
also infrared divergences. This problem can be resolved if we introduce a mass for
every quark. For simplicity this mass is chosen to be equal among different flavors.
This unphysical kinematics regulates the IR divergences, whereas the UV behavior
is not effected. Thus, all occurrences of ε can be interpreted as εUV. Therefore, the
renormalization condition for evanescent operators, as stated in section 2.5, can be
applied without restriction.

Additionally, QCD renormalization constants have to be inserted to render the matrix
elements finite. We employ in the following the parameterization of eq. (2.33). The
renormalization matrix for the Wilson coefficients is defined as(

~C0
Q

~C0
E

)
=
(

~CQ ~CE

)( ZQQ ZQE

ZEQ ZEE

)
, (3.11)

with the parameterization equivalent to eq. (2.40).
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Schematically, we compute the one-loop corrections to a physical operator insertion
and express it in terms of tree-level matrix elements. Up to NLO in QCD we obtain

〈Qi〉NLO = C0
i 〈Qi(ψ

0)〉tree

+
( αs

4π

)a(1,0)
ij +

a(1,1)
ij

ε

C0
i 〈Qj(ψ

0)〉tree

+
( αs

4π

)b(1,0)
ij +

b(1,1)
ij

ε

C0
i 〈Ej(ψ

0)〉tree
,

(3.12)

where the sum over i and j is implied. In general, the coefficients a and b are
mass dependent. Since the tree-level contribution does not include any masses, Zm

becomes relevant first at NNLO. The argument ψ0 implicates that the quark fields
are unrenormalized.

Similarly, we can write the evanescent operator insertions as

〈Ei〉NLO = C0
Ei
〈Ei(ψ

0)〉tree

+
( αs

4π

)c(1,0)
ij +

c(1,1)
ij

ε

C0
Ei
〈Qj(ψ

0)〉tree

+
( αs

4π

)d(1,0)
ij +

d(1,1)
ij

ε

C0
Ei
〈Ej(ψ

0)〉tree
.

(3.13)

In the MS scheme we demand that all O
(

ε−1
UV

)
terms are removed by the renormal-

ization constants. Combining both eqs. (3.12) and (3.13) leads to an overall pole
structure of( αs

4πε

) [(
a(1,1)

ji Cj + 2Z(1,1)
2 Ci + Z(1,1)

QjQi
Cj + Z(1,1)

EjQi
CEj + c(1,1)

ji CEj

)
〈Qi〉tree

+

(
d(1,1)

ji CEj + 2Z(1,1)
2 CEi + Z(1,1)

EjEi
CEj + Z(1,1)

QjEi
Cj + b(1,1)

ji Cj

)
〈Ei〉tree

]
.

(3.14)

Since evanescent operators are formally defined as O(ε), we always have c(1,1)
ji = 0.

Comparing the coefficients of eq. (3.14) leads to

Z(1,1)
QiQj

= −2Z(1,1)
2 δij − a(1,1)

ij ,

Z(1,1)
EiQj

= 0 ,

Z(1,1)
QiEj

= −b(1,1)
ij ,

Z(1,1)
EiEj

= −2Z(1,1)
2 δij − d(1,1)

ij .

(3.15)

Our renormalization condition for evanescent operators further demands that finite
terms of eqs. (3.12) and (3.13) proportional to CE vanish in the limit ε → 0. They
are given by( αs

4π

) [(
Z(1,0)

EjQi
CEj + c(1,0)

ji CEj

)
〈Qi〉tree +

(
d(1,0)

ji CEj

)
〈Ei〉tree

]
. (3.16)
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The second term vanishes for d → 4 due to 〈E〉tree = O(εUV). Applying the
renormalization condition to the first term gives

Z(1,0)
EiQj

= −c(1,0)
ij . (3.17)

Our renormalization scheme is chosen such that all renormalization constants are
independent of the chosen kinematics for the underlying process. For the terms
containing poles this condition is evident from standard MS. However, it is not easy
to see that eq. (3.17) also fulfills this requirement. This becomes clear, if we look at
the general structure of an evanescent matrix element. Schematically,

〈E〉 = 〈Ẽ〉+ c ε 〈Q〉 . (3.18)

Every evanescent matrix element can be written as a sum of a matrix element 〈Ẽ〉
which vanishes in d = 4 due to its connection to four-dimensional identities (such
as Fierz identities), and a term which is proportional to a physical operator matrix
element 〈Q〉. The proportionality factor c is UV-finite. The one-loop corrections of
such an operator are given by

〈E〉1-loop = 〈Ẽ〉1-loop
+ c ε 〈Q〉1-loop

= 〈Ẽ〉1-loop
+ c ε

(
a(0) +

a(1)

ε

)
〈Q〉tree

+ c ε

(
b(0) +

b(0)

ε

)
〈E′〉tree ,

(3.19)

where E′ denotes further evanescent operators. Their tree-level matrix element
arises from the one-loop corrections to Q.

Thus,

〈E〉1-loop = 〈Ẽ〉1-loop
+ c a(1) 〈Q〉tree +O(ε) . (3.20)

The one-loop matrix element contains only poles from the evanescent terms 〈Ẽ〉1-loop
.

The finite terms proportional to physical matrix elements, c a(1), stem from O(ε)
terms of the evanescent operator definition multiplied by O

(
ε−1) terms from the

one-loop correction. Since these terms do not depend on the kinematics of the
external particles, the same applies to the counterterm which removes them.

Our physical ∆B = 2 operators are Q, QS and Q̃S. Regarding the first order in the
Λ/mb expansion, we see that we could replace one of them by R0, as defined in
eq. (3.4a). The Λ/mb suppression of R0 is of kinematic nature and follows from
equations of motions and Fierz identities, as shown in appendix C. Therefore, it
cannot be neglected in the basis and must be also part of the renormalization if only
two operators out of Q, QS and Q̃S are used to describe the leading Λ/mb effects.

Following the renormalization procedure as described, we compute the renormaliza-
tion matrix of the Wilson coefficients. The renormalization of the effective operators
follows from eq. (2.38). Our choice for the physical operator basis is

Q ≡ {Q, QS, Q̃S} . (3.21)
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Since we are interested in the matching of NNLO amplitudes, evanescent operators
of at least second generation have to be included, because structures with 5× 5
γ-matrices appear. According to the discussion in chapter 4, we take evanescent
operators up to fourth generation into account for the matching of ∆B = 1 and
∆B = 2. This allows us to compute the renormalization of first and second gen-
eration evanescent operators up to NNLO, and of third generation to NLO. In the
corresponding matrix elements, we encounter terms with up to 9⊗ 9 γ-matrices.
Thus, we have

E ≡ {E(1)
1 , E(1)

2 , E(1)
3 , E(1)

4 , E(1)
5 , E(2)

1 , E(2)
2 , E(2)

3 , E(2)
4 ,

E(3)
1 , E(3)

2 , E(3)
3 , E(3)

4 , E(4)
1 , E(4)

2 , E(4)
3 , E(4)

4 } .
(3.22)

Note that in general the evanescent structure of our chosen basis is sufficient to
renormalize physical operator insertions with up to four-loop QCD corrections.

At one-loop order we obtain for the renormalization mixing of physical Wilson
coefficients:

Z(1,1)
QQ =

 2 0 0

0 − 14
3

2
3

0 8
3

16
3

 . (3.23)

All results are given in the ancillary files of this thesis with exact nc dependence,
where nc denotes the number of colors. For illustration purposes we present the
results for nc = 3. Equation (3.23) agrees with the matrix found in ref. [65]. The
structure of the matrix shows that Q does not mix with the other physical operators
at one-loop order.

The renormalization matrix which mixes evanescent into physical coefficients is
given by

Z(1,1)
QE =

 3 1
2 − 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 − 1
2

1
6 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 − 7
12 − 1

4 0 0 0 0 0 0 0 0 0 0 0 0

 . (3.24)

One can see that only the first generation of evanescent operators is needed for the
renormalization of the physical operators at O(αs).

The finite renormalization, which is responsible for removing contributions of
evanescent Wilson coefficients in physical matrix elements, is split into three
columns:

Z(1,0)
EQ = (Z(1,0),1

EQ , Z(1,0),2
EQ , Z(1,0),3

EQ ) . (3.25)
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They read

Z(1,0),1
EQ =



1
12 e(1)

(2,1) +
5
12 e(1)

(3,1) + 2

− 65
3 e(1)

(2,1) − 5e(1)
(3,1) +

7
12 e(2)

(1,1) +
1
4 e(2)

(2,1) + 48

−13e(1)
(2,1) +

7
3 e(1)

(3,1) +
1
2 e(2)

(1,1) −
1
6 e(2)

(2,1) − 48

0

0

− 1888
3 e(1)

(2,1) + 96e(1)
(3,1) +

35
3 e(2)

(1,1) − 9e(2)
(2,1) +

7
12 e(3)

(1,1) +
1
4 e(3)

(2,1) + 3840

−288e(1)
(2,1) +

1568
3 e(1)

(3,1) + 3e(2)
(1,1) −

73
3 e(2)

(2,1) +
1
2 e(3)

(1,1) −
1
6 e(3)

(2,1) − 3840

0

0

− 39424
3 e(1)

(2,1) + 2560e(1)
(3,1) − 672e(2)

(1,1) + 224e(2)
(2,1) +

179
3 e(3)

(1,1) − 25e(3)
(2,1) +

7
12 e(4)

(1,1) +
1
4 e(4)

(2,1) + 258048

−5632e(1)
(2,1) +

34304
3 e(1)

(3,1) − 224e(2)
(1,1) + 672e(2)

(2,1) + 19e(3)
(1,1) −

217
3 e(3)

(2,1) +
1
2 e(4)

(1,1) −
1
6 e(4)

(2,1) − 258048

0

0

∗
∗
∗
∗



,

(3.26)

Z(1,0),2
EQ =



0

0

0

− 8
3 e(1)

(4,1,1) −
52
3 e(1)

(4,2,1) −
2
3 e(1)

(5,2,1) −
1
4 e(2)

(3,2,1) −
7

12 e(2)
(4,2,1) −

88
3

− 44
3 e(1)

(4,2,1) −
8
3 e(1)

(5,1,1) +
26
3 e(1)

(5,2,1) +
1
6 e(2)

(3,2,1) −
1
2 e(2)

(4,2,1) +
152
3

0

0
608
3 e(1)

(4,2,1) −
544
3 e(1)

(5,2,1) −
8
3 e(2)

(3,1,1) −
8
3 e(2)

(3,2,1) − 2e(2)
(4,2,1) −

1
6 e(3)

(3,2,1) +
1
2 e(3)

(4,2,1) −
5248

3
992
3 e(1)

(4,2,1) −
160
3 e(1)

(5,2,1) − 4e(2)
(3,2,1) −

8
3 e(2)

(4,1,1) +
10
3 e(2)

(4,2,1) +
1
4 e(3)

(3,2,1) +
7
12 e(3)

(4,2,1) +
2432

3

0

0
7424

3 e(1)
(4,2,1) −

1792
3 e(1)

(5,2,1) + 720e(2)
(3,2,1) − 240e(2)

(4,2,1) −
8
3 e(3)

(3,1,1) −
116
3 e(3)

(3,2,1) + 10e(3)
(4,2,1) −

1
6 e(4)

(3,2,1) +
1
2 e(4)

(4,2,1) −
203776

3
8960

3 e(1)
(4,2,1) −

256
3 e(1)

(5,2,1) + 240e(2)
(3,2,1) − 720e(2)

(4,2,1) − 16e(3)
(3,2,1) −

8
3 e(3)

(4,1,1) +
118
3 e(3)

(4,2,1) +
1
4 e(4)

(3,2,1) +
7
12 e(4)

(4,2,1) +
195584

3

∗
∗
∗
∗



,

(3.27)
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Z(1,0),3
EQ =



0

0

0

− 82
3 e(1)

(4,1,1) −
2
3 e(1)

(4,2,1) −
2
3 e(1)

(5,1,1) −
1
4 e(2)

(3,1,1) −
7

12 e(2)
(4,1,1) −

376
3

− 44
3 e(1)

(4,1,1) −
4
3 e(1)

(5,1,1) −
2
3 e(1)

(5,2,1) +
1
6 e(2)

(3,1,1) −
1
2 e(2)

(4,1,1) −
136
3

0

0
608
3 e(1)

(4,1,1) −
544
3 e(1)

(5,1,1) −
38
3 e(2)

(3,1,1) −
2
3 e(2)

(3,2,1) − 2e(2)
(4,1,1) −

1
6 e(3)

(3,1,1) +
1
2 e(3)

(4,1,1) −
640
3

992
3 e(1)

(4,1,1) −
160
3 e(1)

(5,1,1) − 4e(2)
(3,1,1) −

20
3 e(2)

(4,1,1) −
2
3 e(2)

(4,2,1) +
1
4 e(3)

(3,1,1) +
7

12 e(3)
(4,1,1) +

7040
3

0

0
7424

3 e(1)
(4,1,1) −

1792
3 e(1)

(5,1,1) + 720e(2)
(3,1,1) − 240e(2)

(4,1,1) −
146
3 e(3)

(3,1,1) −
2
3 e(3)

(3,2,1) + 10e(3)
(4,1,1) −

1
6 e(4)

(3,1,1) +
1
2 e(4)

(4,1,1) −
166912

3
8960

3 e(1)
(4,1,1) −

256
3 e(1)

(5,1,1) + 240e(2)
(3,1,1) − 720e(2)

(4,1,1) − 16e(3)
(3,1,1) +

88
3 e(3)

(4,1,1) −
2
3 e(3)

(4,2,1) +
1
4 e(4)

(3,1,1) +
7

12 e(4)
(4,1,1) +

232448
3

∗
∗
∗
∗



.

(3.28)

The unknown dependence on the NLO contributions of the fourth generation
evanescent terms are denoted by an asterisk “∗”. They are not relevant for the
calculations of this thesis.

Furthermore, at NLO we have a 17 × 17 sub-matrix to renormalize evanescent
operators among themselves. It is given by

Z(1,1)
EE =



−4 1
12

5
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 59
3 −5 0 0 7

12
1
4 0 0 0 0 0 0 0 0 0 0

0 −13 13
3 0 0 1

2 − 1
6 0 0 0 0 0 0 0 0 0 0

0 0 0 −22 − 2
3 0 0 − 1

4 − 7
12 0 0 0 0 0 0 0 0

0 0 0 − 44
3 4 0 0 1

6 − 1
2 0 0 0 0 0 0 0 0

0 − 1888
3 96 0 0 41

3 −9 0 0 7
12

1
4 0 0 0 0 0 0

0 −288 1568
3 0 0 3 − 67

3 0 0 1
2 − 1

6 0 0 0 0 0 0

0 0 0 608
3 − 544

3 0 0 − 22
3 −2 0 0 − 1

6
1
2 0 0 0 0

0 0 0 992
3 − 160

3 0 0 −4 − 4
3 0 0 1

4
7

12 0 0 0 0

0 − 39424
3 2560 0 0 −672 224 0 0 185

3 −25 0 0 7
12

1
4 0 0

0 −5632 34304
3 0 0 −224 672 0 0 19 − 211

3 0 0 1
2 − 1

6 0 0

0 0 0 7424
3 − 1792

3 0 0 720 −240 0 0 − 130
3 10 0 0 − 1

6
1
2

0 0 0 8960
3 − 256

3 0 0 240 −720 0 0 −16 104
3 0 0 1

4
7
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



.

(3.29)

The unknown NLO contributions of E(4) also lead here to no further specification of
the last rows.
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For the order O
(
α2

s
)
, we depict only the parts of the renormalization matrix which

are necessary to renormalize physical operators. At this order the factors e(i)x are
present in the ε−1 terms of ZQQ, which is given by

Z(2,2)
QQ =


2n f

3 − 9 0 0

0 337
9 −

14n f
9

2n f
9 −

31
9

0 8n f
9 −

124
9

16n f
9 −

128
9

 , (3.30)

Z(2,1),1
QQ =


1
6 n f e(1)2,1 −

1
18 n f e(1)3,1 −

167
24 e(1)2,1 + 7

72 e(1)3,1 + 5
48 e(2)1,1 + 11

144 e(2)2,1 +
5n f

9 + 119
12

0

0

 ,

(3.31)

Z(2,1),2
QQ =


0

− 1
6 n f e(1)4,2,1 +

1
18 n f e(1)5,2,1 +

4
3 e(1)4,1,1 +

17
3 e(1)4,2,1 −

4
9 e(1)5,1,1 −

1
9 e(1)5,2,1 +

11
144 e(2)3,2,1 +

5
48 e(2)4,2,1 +

58n f
27 −

259
9

− 7
36 n f e(1)4,2,1 −

1
12 n f e(1)5,2,1 +

14
9 e(1)4,1,1 +

469
72 e(1)4,2,1 +

2
3 e(1)5,1,1 −

13
24 e(1)5,2,1 +

5
96 e(2)3,2,1 +

67
288 e(2)4,2,1 +

23n f
27 + 409

18

 ,

(3.32)

Z(2,1),3
QQ =


0

− 1
6 n f e(1)4,1,1 +

1
18 n f e(1)5,1,1 +

32
3 e(1)4,1,1 +

1
3 e(1)4,2,1 −

16
9 e(1)5,1,1 −

1
9 e(1)5,2,1 +

11
144 e(2)3,1,1 +

5
48 e(2)4,1,1 −

10n f
27 + 335

9

− 7
36 n f e(1)4,1,1 −

1
12 n f e(1)5,1,1 +

889
72 e(1)4,1,1 +

7
18 e(1)4,2,1 +

47
24 e(1)5,1,1 +

1
6 e(1)5,2,1 +

5
96 e(2)3,1,1 +

67
288 e(2)4,1,1 −

65n f
27 + 1393

18

 ,

(3.33)

with the splitting of individual columns as in eq. (3.25).

The two-loop contribution to the mixing of evanescent to physical operators is given
by

Z(2,2)
QE =

 n f − 39
2

n f
6 −

143
24 − n f

18 −
17
72 0 0 5

48
11

144 0 0 0 0 0 0 0 0 0 0

0 0 0 8− n f
6

n f
18 −

8
9 0 0 11

144
5

48 0 0 0 0 0 0 0 0

0 0 0 665
72 −

7n f
36

5
8 −

n f
12 0 0 5

96
67
288 0 0 0 0 0 0 0 0

 .

(3.34)

The only non-vanishing entries of Z(2,1)
QE are given by

Z(2,1)

Q,E(1)
1

=
1
6

e(1)2,1 n f +
5n f

6
− 131

24
e(1)2,1 +

1
2

e(1)3,1 +
5
48

e(2)1,1 +
83
8

,

Z(2,1)

Q,E(1)
2

= −
n f

36
− 7

24
e(1)2,1 +

1
12

e(1)3,1 +
133
24

,

Z(2,1)

Q,E(1)
3

=
n f

108
− 1

8
e(1)2,1 −

1
36

e(1)3,1 +
71
72

,

Z(2,1)

Q,E(2)
1

= − 35
384

,
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Z(2,1)

Q,E(2)
2

= − 77
1152

,

Z(2,1)

QS,E(1)
4

=
n f

36
− 7

24
e(1)4,1,1 −

1
4

e(1)4,2,1 +
7

72
e(1)5,1,1 +

1
12

e(1)5,2,1 −
79
12

,

Z(2,1)

QS,E(1)
5

= −
n f

108
− 1

8
e(1)4,1,1 +

1
12

e(1)4,2,1 +
1
24

e(1)5,1,1 −
1
36

e(1)5,2,1 −
41
36

, (3.35)

Z(2,1)

QS,E(2)
3

= − 77
1152

,

Z(2,1)

QS,E(2)
4

= − 35
384

,

Z(2,1)

Q̃S,E(1)
4

=
7n f

216
− 49

144
e(1)4,1,1 −

7
24

e(1)4,2,1 −
7
48

e(1)5,1,1 −
1
8

e(1)5,2,1 −
1271
144

,

Z(2,1)

Q̃S,E(1)
5

=
n f

72
− 7

48
e(1)4,1,1 +

7
72

e(1)4,2,1 −
1
16

e(1)5,1,1 +
1
24

e(1)5,2,1 −
11
16

,

Z(2,1)

Q̃S,E(2)
3

= − 5
48

,

Z(2,1)

Q̃S,E(2)
4

= − 1
36

.

We observe that the dependence on the QCD gauge parameter ξ drops out of the
final renormalization matrix. This is expected from the fact that a ξ-dependence of
Z would also imply a ξ-dependence of the ADM. The latter is used for the running
of hadronic matrix elements down to the matching scale. Hence, the ∆B = 2
matching coefficients would also be ξ-dependent. Since physical quantities are
gauge independent, and neither the CMM Wilson coefficients nor the lattice results
depend on ξ, this dependence is expected to drop out in ZQQ as well.

Alternatively to the physical operator basis of eq. (3.21), one could also choose e.g.

Q′ ≡ {Q, Q̃S, R0} (3.36)

as described in ref. [47]. For illustration, we state only the sub-matrix for the
one-loop renormalization among physical operators. It is given by

Z(1,1)
Q′Q′ =

 2 0 0

− 4
3

8
3

8
3

2 8 −2

 . (3.37)

Without R0 in the basis (3.36) no solution of eq. (3.14) can be constructed.

The complete 20× 20 matrix can be found in the ancillary files of this thesis.

In the next chapter we use the renormalization matrices to relate the Wilson
coefficients at different renormalization scales.
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3.4 renormalization group of effective interactions

Since the bare Wilson coefficients do not depend on the renormalization scale µ in
the Hamiltonian, we can formulate the equation

0 = µ
d

dµ
~C0 = µ

d
dµ

(
~CZ
)

⇒ µ
d

dµ
~C = − ~C

(
µ

d
dµ

Z
)

Z−1

= − ~C β(αs, ε)

(
d

dαs
Z
)

Z−1

≡ ~Cγ ,

(3.38)

The matrix γ is called Anomalous Dimension Matrix (ADM) and eq. (3.38) is known
as Renormalization Group Equation (RGE). We further introduce the QCD β-function
which is defined as

β(αs, ε) ≡ µ
d

dµ
αs , (3.39)

with the parameterization

β(αs, ε) = −2αs

[
ε +

( αs

4π

)
β0 +

( αs

4π

)2
β1 +O

(
α3

s
)]

. (3.40)

This function is currently known up five-loop order [103–105]. However, only the
two-loop results are needed for the purposes of this thesis. They are given by [104]

β0 =
11
3

CA −
4
3

TFn f ,

β1 =
34
3

C2
A −

20
3

CATFn f − 4CFTFn f ,
(3.41)

with the Casimir operators CA = nc, CF = (n2
c − 1)/(2nc) and the color trace

normalization TF = 1/2.

Alternatively, the µ-dependence of the effective operators ~O can be expressed by
another ADM γ̃. With the renormalization matrix defined in eq. (2.38), we obtain

0 = µ
d

dµ

(
~C ~O
)

= µ
d

dµ

(
~C0 ~O0

)
= ~C0µ

d
dµ

(
Z−1 ~O

)
⇒ µ

d
dµ

~O = − β(αs, ε)Z
(

d
dαs

Z−1
)

~O

= β(αs, ε)

(
d

dαs
Z
)

Z−1 ~O

≡ γ̃~O ,

(3.42)

In eq. (3.42) we use the following matrix identity:

0 =
d

dx
1 =

d
dx

(
A−1A

)
=

(
d

dx
A−1

)
A + A−1

(
d

dx
A
)

⇒ d
dx

A−1 = −A−1
(

d
dx

A
)

A−1 ,
(3.43)
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which holds for any invertible matrix A.

The following relation between the two ADMs can be found by comparing eqs. (3.38)
and (3.42):

γ̃ = −γ . (3.44)

In the full theory side of a matching calculation, logarithms such as ln(M/µ)

appear from loop corrections, where M is the mass of a heavy particle. To get a
better perturbative convergence, a reasonable choice for the renormalization scale is
obviously µ ≈ M. On the effective field theory side, where M is integrated out, the
typical energy scales are of order m and corresponding logarithms ln(m/µ) occur.
The former choice µ ≈ M leads to numerically enhanced terms with ln(m/M),
which lead to large corrections in the perturbative expansion.

This problem can be solved by using RGE techniques. Since they describe the µ

dependence of a quantity, they can be used to relate quantities at different scales.
In general, we can describe the so-called running with a transition operator U. For
the Wilson coefficients we get

~C(µ1) = ~C(µ2)U(µ1, µ2) . (3.45)

The structure of U can be derived from the ADM in eq. (3.38). We use the following
parameterization:

γ =
∞

∑
i=0

( αs

4π

)(i+1)
γi . (3.46)

Equation (3.38) can be solved perturbatively as

~C(µ1) = ~C(µ2) exp
[∫ µ1

µ2

dµ

µ
γ

]
= ~C(µ2) exp

[∫ αs(µ1)

αs(µ2)
dαs

γ

β(αs, 0)

]
= ~C(µ2) exp

[∫ αs(µ1)

αs(µ2)
dαs

(
− γ0

2β0αs
− β0γ1 − β1γ0

8πβ2
0

+O(αs)

)]
= ~C(µ2) exp

[
− γ0

2β0
ln
(

αs(µ1)

αs(µ2)

)
−β0γ1 − β1γ0

8πβ2
0

(αs(µ1)− αs(µ2)) +O(α2
s )

]
,

(3.47)

where we set ε → 0 since all quantities are finite. It turns out that the large loga-
rithms which appear when relating results at two different scales are automatically
summed by the RGE running. Equation (3.47) enhances the Wilson coefficients to be
defined in RGE improved perturbation theory.
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If the scales µ1 and µ2 of eq. (3.47) are of the same order, the result can be expressed
in terms of αs at a single scale. The running of αs is defined by solving eq. (3.39).
We get

ln
(

µ1

µ2

)
=
∫ αs(µ1)

αs(µ2)
dαs

1
β(αs, 0)

⇒ αs(µ1) = αs(µ2)−
α2

s (µ2)

2π
β0 ln

(
µ1

µ2

)
+

α3
s (µ2)

8π2

[
2β2

0 ln2
(

µ1

µ2

)
− β1 ln

(
µ1

µ2

)]
+O(α4

s ) .

(3.48)

If µ1 and µ2 are not of the same order, we would again get large logarithms.

Inserting eq. (3.48) into eq. (3.47) and expanding the exponent, results in

~C(µ1) = ~C(µ2)

{
1 +

(
αs(µ2)

4π

)
γ0 ln

(
µ1

µ2

)

+

(
αs(µ2)

4π

)2 [
γ1 ln

(
µ1

µ2

)
+

(
γ2

0
2
− γ0β0

)
ln2
(

µ1

µ2

)]
+O(α3

s )

}
.

(3.49)

Starting at O
(
α3

s
)

also commutation relations have to be considered between the
γi [106].

The ADM can be represented in the following way:

γ =

(
γQQ γQE

γEQ γEE

)
. (3.50)

The sub-matrices γEQ and γEE describe the mixing into and of evanescent Wilson
coefficients. They can be ignored since physical quantities must not depend on
them.

In the basis of physical operators Q, QS and Q̃S, we find

γ0,QQ =

 4 0 0

0 − 28
3

4
3

0 16
3

32
3

 , (3.51)

which agrees with ref. [65]. The ADM sub-matrix which mixes evanescent Wilson
coefficients into physical ones reads

γ0,QE =

 6 1 − 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1
3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 − 7
6 − 1

2 0 0 0 0 0 0 0 0 0 0 0 0

 . (3.52)

At two-loops, the ADM is given by

γ1,QQ =
(

γ
(1)
1,QQ, γ

(2)
1,QQ, γ

(3)
1,QQ

)
, (3.53)
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with

γ
(1)
1,QQ =


2
3 n f e(1)2,1 −

2
9 n f e(1)3,1 − 11e(1)2,1 + 11

3 e(1)3,1 +
20n f

9 −
109

3

0

0

 , (3.54)

γ
(2)
1,QQ =


0

− 2
3 n f e(1)4,2,1 +

2
9 n f e(1)5,2,1 +

8
3 e(1)4,1,1 +

92
9 e(1)4,2,1 −

8
9 e(1)5,1,1 − 4e(1)5,2,1 +

232n f
27 −

484
3

− 7
9 n f e(1)4,2,1 −

1
3 n f e(1)5,2,1 +

28
9 e(1)4,1,1 −

3
2 e(1)4,2,1 +

4
3 e(1)5,1,1 +

25
18 e(1)5,2,1 +

92n f
27 + 82

 ,

(3.55)

γ
(3)
1,QQ =


0

− 2
3 n f e(1)4,1,1 +

2
9 n f e(1)5,1,1 +

182
9 e(1)4,1,1 +

2
3 e(1)4,2,1 −

22
3 e(1)5,1,1 −

2
9 e(1)5,2,1 −

40n f
27 + 116

3

− 7
9 n f e(1)4,1,1 −

1
3 n f e(1)5,1,1 +

61
6 e(1)4,1,1 +

7
9 e(1)4,2,1 +

115
18 e(1)5,1,1 +

1
3 e(1)5,2,1 −

260n f
27 + 422

3

 .

(3.56)

For γ1,QE only few entries are non-zero. They are given by

γ
1,QE(1)

1
=

2
3

e(1)2,1 n f +
10n f

3
− 131

6
e(1)2,1 + 2e(1)3,1 +

5
12

e2
1,1 +

83
2

,

γ
1,QE(1)

2
= −

n f

9
− 7

6
e(1)2,1 +

1
3

e(1)3,1 +
133
6

,

γ
1,QE(1)

3
=

n f

27
− 1

2
e(1)2,1 −

1
9

e(1)3,1 +
71
18

,

γ
1,QE(2)

1
= − 35

96
,

γ
1,QE(2)

2
= − 77

288
,

γ
1,QSE(1)

4
=

n f

9
− 7

6
e(1)4,1,1 − e(1)4,2,1 +

7
18

e(1)5,1,1 +
1
3

e(1)5,2,1 −
79
3

,

γ
1,QSE(1)

5
= −

n f

27
− 1

2
e(1)4,1,1 +

1
3

e(1)4,2,1 +
1
6

e(1)5,1,1 −
1
9

e(1)5,2,1 −
41
9

, (3.57)

γ
1,QSE(2)

3
= − 77

288
,

γ
1,QSE(2)

4
= − 35

96
,

γ
1,Q̃SE(1)

4
=

7n f

54
− 49

36
e(1)4,1,1 −

7
6

e(1)4,2,1 −
7
12

e(1)5,1,1 −
1
2

e(1)5,2,1 −
1271

36
,

γ
1,Q̃SE(1)

5
=

n f

18
− 7

12
e(1)4,1,1 +

7
18

e(1)4,2,1 −
1
4

e(1)5,1,1 +
1
6

e(1)5,2,1 −
11
4

,

γ
1,Q̃SE(2)

3
= − 5

12
,

γ
1,Q̃SE(2)

4
= − 1

9
.
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The transition operator U of eq. (3.45) can be computed by inserting this ADM into
eq. (3.47). The alternative approach is to define the transition operator for effective
operators:

〈O〉 (µ1) = Ũ(µ1, µ2) 〈O〉 (µ2) . (3.58)

The matrices U and Ũ are related by

Ũ(µ1, µ2) = U−1(µ1, µ2) . (3.59)

The running of the three physical operators at µ1 ∼ µ2 is given by

CQ(µ1) = CQ(µ2)

{
1− 4

(
αs(µ2)

4π

)
ln
(

µ1

µ2

)

+

(
αs(µ2)

4π

)2 [
ln
(

µ1

µ2

)(
−2

3
n f e(1)2,1 +

2
9

n f e(1)3,1 (3.60)

+11e(1)2,1 −
11
3

e(1)3,1 −
20n f

9
+

109
3

)
+

(
52−

8n f

3

)
ln2
(

µ1

µ2

)]}
,

CQS(µ1) = CQS(µ2)

{
1 +

28
3

(
αs(µ2)

4π

)
ln
(

µ1

µ2

)

+

(
αs(µ2)

4π

)2 [
ln
(

µ1

µ2

)(
2
3

n f e(1)4,2,1 −
2
9

n f e(1)5,2,1

−8
3

e(1)4,1,1 −
92
9

e(1)4,2,1 +
8
9

e(1)5,1,1 + 4e(1)5,2,1 −
232n f

27
+

484
3

)
+

(
56n f

9
− 500

9

)
ln2
(

µ1

µ2

)]}
(3.61)

+ CQ̃S
(µ2)

{
−4

3

(
αs(µ2)

4π

)
ln
(

µ1

µ2

)

+

(
αs(µ2)

4π

)2 [
ln
(

µ1

µ2

)(
2
3

n f e(1)4,1,1 −
2
9

n f e(1)5,1,1

−182
9

e(1)4,1,1 −
2
3

e(1)4,2,1 +
22
3

e(1)5,1,1 +
2
9

e(1)5,2,1 +
40n f

27
− 116

3

)
+

(
140

9
−

8n f

9

)
ln2
(

µ1

µ2

)]}
,

CQ̃S
(µ1) = CQS(µ2)

{
−16

3

(
αs(µ2)

4π

)
ln
(

µ1

µ2

)

+

(
αs(µ2)

4π

)2 [
ln
(

µ1

µ2

)(
7
9

n f e(1)4,2,1 +
1
3

n f e(1)5,2,1
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−28
9

e(1)4,1,1 +
3
2

e(1)4,2,1 −
4
3

e(1)5,1,1 −
25
18

e(1)5,2,1 −
92n f

27
− 82

)
+

(
560

9
−

32n f

9

)
ln2
(

µ1

µ2

)]}

+ CQ̃S
(µ2)

{
1− 32

3

(
αs(µ2)

4π

)
ln
(

µ1

µ2

)
(3.62)

+

(
αs(µ2)

4π

)2 [
ln
(

µ1

µ2

)(
7
9

n f e(1)4,1,1 +
1
3

n f e(1)5,1,1

−61
6

e(1)4,1,1 −
7
9

e(1)4,2,1 −
115
18

e(1)5,1,1 −
1
3

e(1)5,2,1 +
260n f

27
− 422

3

)
+

(
1600

9
−

64n f

9

)
ln2
(

µ1

µ2

)]}
.

Although the evanescent operators are absent in the running, their definition affects
the RGE-evolved coefficients through the e(i)x .

We observe that Wilson coefficients of evanescent operators do not mix into physical
ones. This is a direct consequence of the renormalization scheme that we specified
in section 2.4. To be more precise, the evanescent Wilson coefficients of the first
two generations do not mix into physical coefficients at two-loop order. Since we
only compute one-loop QCD corrections to the third generation operators, we see
no mixing from C

E(3)
i

at O(αs).

3.5 power suppression of r0

In appendix C we show that the structure of R0, as defined in eq. (3.4a), is twofold:

R0 = Rphys
0 + ER0 , (3.63)

where Rphys
0 is the physical, 1/mb-suppressed operator. The evanescent operator ER0

cannot be further specified and is given as a leading term in the 1/mb expansion.

The non-specification of ER0 is an issue if poles proportional to 〈R0〉 appear. This
becomes important in this section, where we analyze the power suppression of R0

up to NNLO in αs.

It is shown in ref. [65] that the matrix element of R0, as it is stated in eq. (3.4a), is
not O(Λ/mb) at higher orders in αs. To resolve this problem, ref. [47] introduces
correction factors αi according to

〈R0〉 =
αQ

2
〈Q〉+ αQS 〈QS〉+ αQ̃S

〈Q̃S〉 = O
(

Λ
mb

)
. (3.64)

The αi are perturbative objects and are defined in such a way that they restore the
correct Λ/mb scaling behavior of 〈R0〉 at each order in αs. Formally, eq. (3.64) can
be obtained by introducing the αi in the definition of R0 as in ref. [47]. Alternatively,
one could account for these corrections as finite renormalization factors and making
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them thus part of the renormalization scheme. Since both approaches are equivalent,
we simply define the matrix element 〈R0〉 by means of eq. (3.64).

The correction factors αi are known to O(αs) and O
(
n f α2

s
)

[47, 65, 68]. For our
calculation of Γ12 the knowledge of the full O

(
α2

s
)

corrections is required. Thus, we
can recover the correct scaling when removing one of the physical ∆B = 2 operator
matrix elements in favor of the suppressed 〈R0〉.

We can write the correction factors as

αi = α
(0)
i +

( αs

4π

)
α
(1)
i +

( αs

4π

)2
α
(2)
i , (3.65)

with the leading order result from appendix C,

α
(0)
Q = α

(0)
QS

= α
(0)
Q̃S

= 1 . (3.66)

The tree-level relation of eq. (3.64) can always be used to remove one physical
tree-level matrix element. Hence, one αi can be chosen freely. We define

αQS ≡ 1 . (3.67)

The further focus of this section is the computation of 〈R0〉 up to O
(
α2

s
)
.

3.5.1 One-Loop Corrections to αQ and αQ̃S

To compute 〈R0〉 we consider the process bs→ bs. Furthermore, it is important to
consider external on-shell particles, because the suppression of R0 is only given
in physical processes in which the HQE is valid. Since we are only interested in
the leading order in the Λ/mb expansion, the s-quark mass can be neglected,
whereas for the b-quark we have q2

b = m2
b. Hence, the simplest choice is qs = 0 and

q ≡ qb = (mb,~0).

The matrix elements of the Bs mixing process are infrared divergent at O(αs)
and beyond. Due to the unknown structure of ER0 in eq. (3.63), a computation
in dimensional regularization where IR- and UV-poles are expressed in terms of
the same regulator would lead to ambiguous results. Hence, we introduce a small
gluon mass as an alternative IR regulator. The gluon propagator is then given by

iGab
µν(p) =

iδab

p2 −m2
g

(
−gµν + ξ

pµ pν

p2 −m2
g

)
. (3.68)

Here we use a general Rξ gauge, where Feynman-’t Hooft gauge is indicated by
ξ = 0 and Lorenz gauge by ξ = 1. The Fadeev-Popov ghosts are kept massless. The
mass mg serves just as an ad hoc regulator in Feynman integrals. The Hamiltonian
itself formally does not describe a massive gluon. Thus, we circumvent the problem
of broken gauge symmetry, which becomes manifest in the three gauge boson
coupling. Nevertheless, this ancillary mass receives a counterterm contribution as
we will see later.
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The NLO matrix element of R0 is composed of tree-level and one-loop operator
insertions:

〈R0〉NLO ≡ 〈R0〉tree + 〈R0〉1-loop . (3.69)

The fermion fields are bare quantities in this relation. Thus, the tree-level amplitude
is given by

〈R0〉tree = Z2,sZ2,b

(
1
2
〈Q〉tree + 〈QS〉tree + 〈Q̃S〉

tree
)

= Z2,sZ2,b ∑
i

(
1
2

ZQi + ZQSi + ZQ̃Si

)
〈O0

i 〉
tree

.
(3.70)

The coefficients Zij are the renormalization constants of the effective operators,
presented in section 3.3. Thus, evanescent operators of the first generation have to
be considered in eq. (3.70) as well.

One can see that the O
(
α0

s
)

part of eq. (3.64) holds also for bare operator matrix
elements:

1
2
〈Q0〉tree

+ 〈Q0
S〉

tree
+ 〈Q̃0

S〉
tree

= O
(

Λ
mb

)
. (3.71)

This can be used for one-loop corrections if they are expressed in terms of bare
operator matrix elements. Schematically, the one-loop order result for 〈R0〉 is then
given by

〈R0〉1-loop = Z2,sZ2,b

(
1
2
〈Q〉1-loop + 〈QS〉1-loop + 〈Q̃S〉

1-loop
)

=
( αs

4π

) (
a 〈Q0〉tree

+ b 〈Q0
S〉

tree
+ c 〈Q̃0

S〉
tree)

+O(ε)

=
( αs

4π

) [(
a− b

2

)
〈Q0〉tree

+ (c− b) 〈Q̃0
S〉

tree
]

+O(ε) .

(3.72)

The coefficients a, b and c are O
(
ε0).

We renormalize the quark field in the MS scheme in which Z2 is currently known to
five-loop accuracy [107–109]. For our purposes we need

Z2 = 1 +
( αs

4πε

)
Z(1,1)

2 +
( αs

4π

)2
(

Z(2,1)
2
ε

+
Z(2,2)

2
ε2

)
+O

(
α3

s
)

, (3.73)

with

Z(1,1)
2 = CF (ξ − 1) ,

Z(2,1)
2 = CF

[
+

3
4

CF −
25
8

CA − (1− ξ)CA −
1
8
(1− ξ)2 CA

+ TFn f

]
,

Z(2,2)
2 = CF

[3
4
(1− ξ)CA +

1
2
(1− ξ)2 CF +

1
4
(1− ξ)2 CA

]
.

(3.74)
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(i) (ii) (iii)

Figure 3.1: These sample Feynman diagrams contribute to 〈R0〉1-loop.

(i) (ii) (iii)

Figure 3.2: Only three master integrals remain after the reduction of 〈R0〉1-loop. Solid lines
denote denominators with the mass mb, curly lines are associated with mg.

The calculation of 〈R0〉1-loop includes the evaluation of diagrams as shown in fig. 3.1.
For this we employ the setup described in chapter 5. In the following we focus only
on the master integrals.

With the momenta of the s-quarks set to zero, only two-point On-Shell (OS) integrals
with q2 = m2

b occur. The one-loop problem reduces to three master integrals which
are shown in fig. 3.2. The result for the massive tadpole integrals (i) and (ii) can be
directly taken from e.g. [110]. The on-shell integral with two masses needs further
analysis.

The integral of fig. 3.2iii has the following analytic form:

I =
∫ ddk(

m2
b − (k + q)2

)(
m2

g − k2
) . (3.75)

This integral can be solved with exact mass- and ε-dependence in terms of Gaußian
hypergeometric functions. Nevertheless, the computation can be vastly simplified
if we expand the result in the limit mg � mb. This scaling is allowed because we
recover our original (infrared divergent) result in the limit mg → 0.

The expansion we apply is called asymptotic expansion and describes a formally
non-convergent series. The advantage is that the expansion to a fixed order has a
better convergence towards a limit point than a fixed order Laurent expansion. Thus,
truncating the series at a certain order leads to a comparable scaling behavior as
the original function with smaller deviations in comparison to a truncated Laurent
series. For the purposes of Feynman integrals this expansion leads to additional
logarithmic and fractional power scaling.

In eq. (3.75) we have q2 = m2
b � m2

g, which provides the possibility of a threshold
expansion [111, 112]. We follow here ref. [113] which gives a comprehensive overview
about asymptotic expansions in Feynman integrals. The procedure up to two-loop
order is first applied in ref. [114], where also eq. (3.75) is considered as an example.
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The easiest way to apply a threshold expansion is via the method of regions. It is
defined as a splitting of integrals in different regions in which the loop momenta
follow a certain scaling. After expanding the integrand accordingly, all separated
integration regions are extended over the full momentum space. The final expansion
is the sum of all these contributions. In eq. (3.75) we can find two regions, where
the scaling k ∼ mb is called hard, and k ∼ mg is called soft.

The integral of the hard region is given by

I(h) =
∫ ddk(

m2
b − (k + q)2

) Tm2
g

1(
m2

g − k2
) . (3.76)

The operator Tx describes a Laurent expansion in the limit x → 0. To the quadratic
term in mg we get

I(h) =
∫ ddk(

m2
b − (k + q)2

)(
−k2

)
−m2

g

∫ ddk(
m2

b − (k + q)2
)(
−k2

)2 +O
(

m4
g

)
.

(3.77)

The remaining integrals of eq. (3.77) can be directly solved as [110]

1
N I(h) =

1
ε
+ 2 + ln

(
µ2

m2
b

)
−

zg

2

[
1
ε
− 2 + ln

(
µ2

m2
b

)]
+O(ε) +O

(
m4

g

)
,

(3.78)

with the normalization factor N = iπd/2µ−εe−εγE and the abbreviation zg ≡ m2
g/m2

b.

Similarly, the soft region can be expressed as

I(s) =
∫ ddk(

m2
g − k2

) Tk2
1(

−k2 − 2k·q
)

=
∫ ddk(

m2
g − k2

)(
−2k·q

) − ∫ ddk (−k2)(
m2

g − k2
)(
−2k·q

)2 +O
(

m3
g

)
.

(3.79)

The second term can be simplified by partial fraction decomposition. We make the
following replacement in the numerator:

−k2 = (m2
g − k2)−m2

g . (3.80)

The first term on the right-hand side cancels the mass-dependent denominator
factor, leading to a scaleless integral which vanishes in dimensional regularization.
Thus, the numerator of eq. (3.79) is simply replaced by −m2

g.

The remaining integrals give the following result:

1
N I(s) = − π

√
zg +

zg

2

[
1
ε
+ ln

(
µ2

m2
b

)
− ln

(
zg
)]

+O(ε) +O
(

m3
g

)
. (3.81)
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By combining eqs. (3.78) and (3.81) we obtain

1
N I ≈ 1

ε
+ 2 + ln

(
µ2

m2
b

)
− π
√

zg + zg −
zg

2
ln
(
zg
)
+O(ε) +O

(
m3

g

)
, (3.82)

which is in agreement with ref. [114]. The poles proportional to zg, which appear in
the individual regions, vanish in the sum. This is a basic feature of the asymptotic
expansion, as it introduces new, spurious poles which only cancel in the sum of all
regions.

In the Integration-by-Parts (IBP) reduction additional spurious infrared divergences
may occur. For example, the integral I appears with a spurious factor of 1/m2

g in

〈R0〉NLO. Hence, it is necessary to compute also higher powers in zg. After inserting
the correct results for the master integrals, these inverse powers of zg disappear.

With these master integrals we can finally evaluate 〈R0〉NLO. By comparing the coef-
ficients of the tree-level matrix elements 〈Q0〉tree and 〈Q̃0

S〉
tree

, it is indeed possible
to specify the NLO correction factors in such a way that the finite contributions of
these matrix elements vanish. We get

α
1-loop
Q =

1
2

e(1)2,1 −
1
6

e(1)3,1 +
13
12

e(1)4,2,1 +
1
12

e(1)5,2,1 + 4 ln

(
µ2

m2
b

)
+

4
3

,

α
1-loop
Q̃S

= − 13
12

e(1)4,1,1 +
13
12

e(1)4,2,1 −
1
12

e(1)5,1,1 +
1
12

e(1)5,2,1 + 8 ln

(
µ2

m2
b

)
.

(3.83)

With the replacements of eq. (3.7), we get

α
1-loop
Q = 4 ln

(
µ2

m2
b

)
+

26
3

, α
1-loop
Q̃S

= 8 ln

(
µ2

m2
b

)
+ 8 , (3.84)

which agrees with ref. [65] with full nc-dependence. For nc = 3, eq. (3.84) is also in
accordance with ref. [47].

We observe that the individual coefficients a, b and c of eq. (3.72) contain additional
IR poles of the form ln(µ/mg). These poles cancel when applying the relation of
eq. (3.71). Additionally, to reduce terms with multiple Dirac matrices, leading order
matrix elements of evanescent operators are introduced. Thus, terms of the form

〈E〉tree ln
(
zg
)

(3.85)

remain which diverge for zg → 0. Since we have a clear splitting between IR- and
UV-poles, it is possible to take the limit ε→ 0 first. We then get an UV-safe quantity
which is furthermore IR-safe.

Alternatively, using dimensional regularization for the calculation of 〈R0〉1-loop leads
to terms of the form

〈E〉tree

εIR
, (3.86)

which are formally finite for εIR = εUV ≡ ε and cannot be removed by the αi.
Furthermore, if the definition of 〈E〉 is changed by a O(ε) term, the αi differ from
eq. (3.83).
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3.5.2 Two-Loop Corrections to αQ and αQ̃S

The determination of αQ and αQ̃S
at NNLO ensures the correct power suppression of

〈R0〉 to O
(
α2

s
)
. At this order we have to evaluate the renormalized amplitude

〈R0〉NNLO = 〈R0〉tree + 〈R0〉1-loop + 〈R0〉2-loop . (3.87)

The results for 〈R0〉1-loop have to be inserted up to O(ε), since in combination with
the renormalization constants, these terms contribute to O

(
α2

s ε0). Furthermore,
in 〈R0〉tree evanescent operators up to the second generation are needed for the
renormalization.

In addition to the quark field, the renormalization of the b-quark mass must
be taken into account. According to the Lehmann-Symanzik-Zimmermann (LSZ)
theorem [115], the mass of the external b-field is identified as the OS mass, i.e.
q2

b = (mOS
b )2. This complies with the on-shell condition of the considered process.

The corresponding renormalization constant is currently known to four-loop accu-
racy [116] and to three-loop with a second quark mass [117]. To order O(αs) it is
given by

ZOS
mb

= 1 +
( αs

4π

)
CF

{
−3

ε
− 3 ln

(
µ2

m2
b

)
− 4

+
ε

4

[
−6 ln2

(
µ2

m2
b

)
− 16 ln

(
µ2

m2
b

)
− π2 − 32

]}
+O

(
ε2)+O(α2

s
)

,

(3.88)

where we use the notation mb ≡ mOS
b . This renormalization constant would in

general be different when a massive gluon is considered. We explicitly checked that
the αi do not change with this altered ZOS

mb
.

It turns out that a counterterm for the auxiliary gluon mass has to be introduced to
remove all occurring poles. The gluon field- and mass-renormalization constants, Z3,
and Zmg , are defined in such way that the Green’s function of the gluon self-energy
is finite to all orders in perturbation theory. It is expected that Z3 is the same as in
regular QCD since the gluon mass is introduced as an ad-hoc IR regulator which
does not affect the UV poles.

Including one-loop corrections, the renormalized gluon propagator is given by

iGµν =
1

Z3

(
iG0

µν + iG0
µρ iΠρσ iG0

σν

)
, (3.89)

where we drop the color indices for simplicity.

The self-energy function Πµν can be separated into transversal (ΠT) and longitudinal
(ΠL) parts:

iΠµν ≡ iδab

( αs

4π

) [(
gµν −

pµ pν

p2

)
ΠT(p2) +

pµ pν

p2 ΠL(p2)

]
. (3.90)
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For the bare gluon propagator, this splitting can also be applied as

iG0
µν =

iδab

p2
[

p2 − (m0
g)

2
] (−gµν p2 + pµ pν

)
+

iδab

p2
[

p2 − (m0
g)

2
]2

[
(m0

g)
2 +

(
ξ0 − 1

)
p2
]

pµ pν ,
(3.91)

which is not transversal in Lorenz gauge (ξ = 1) due to the gluon mass. Similarly,
the renormalized gluon propagator is separated according to

iGµν ≡ i
(

gµν − pµ pν

p2

)
Gµν

T (p2) + i
pµ pν

p2 Gµν
L (p2) . (3.92)

The parameters ξ and mg are renormalized with

(ξ0 − 1) = Z3(ξ − 1) =
(

1 +
αs

4π
Z(1)

3

)
(ξ − 1) ,

m0
g = Zmg mg =

(
1 +

αs

4π
Z(1)

mg

)
mg .

(3.93)

The transversal and longitudinal parts, GT and GL, are renormalized independently.
Up to O(αs) the transversal part is given by

iGT(p2) = − iδab

p2 −m2
g

−
( αs

4π

) iδab

(p2 −m2
g)

2

[
Z(1)

3 (m2
g − p2) + 2Z(1)

mg m2
g + ΠT(p2)

]
,

(3.94)

which in the limit p2 � m2
g simplifies to

iGT(p2) = − iδab

p4

(
p2 + m2

g

)
+
( αs

4π

) iδab

p6

{
p4Z(1)

3 − p2
(

ΠT(p2)
)

mg→0

+ m2
g

[
p2Z(1)

3 − 2p2Z(1)
mg − p2

(
d

dm2
g

ΠT(p2)

)
mg→0

− 2
(

ΠT(p2)
)

mg→0

]}
+O

(
m4

g

)
(3.95)

Similarly, the longitudinal part is given in Feynman-’t Hooft gauge (ξ = 0) by

iGL(p2) =
iδab

p2 −m2
g
−
( αs

4π

) iδab

(p2 −m2
g)

2

[
m2

g(Z(1)
3 + 2Z(1)

mg ) + ΠL(p2)
]

p2�m2
g

= − iδab

p4

(
p2 + m2

g

)
−
( αs

4π

) iδab

p6

{
p2
(

ΠL(p2)
)

mg→0

+ m2
g

[
p2Z(1)

3 + 2p2Z(1)
mg + p2

(
d

dm2
g

ΠL(p2)

)
mg→0

+ 2
(

ΠL(p2)
)

mg→0

]}
+O

(
m4

g

)
(3.96)
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Figure 3.3: These diagrams contribute to the mass and field renormalization of the gluon at
one-loop order. Note that the diagram with the four-gluon interaction does not
vanish due to mg 6= 0.

The limit p2 � m2
g is allowed because the Green’s function Gµν is off-shell, and all

renormalization constants in the MS scheme do not depend on the chosen kinematics
of external particles.

The one-loop order contributions to Πµν are shown in fig. 3.3. For p2 � m2
g the

diagrams are evaluated using the large momentum expansion which is done with
the program exp [118, 119]. The resulting Feynman integrals are either massive
tadpoles or massless propagator-like integrals. Both can be evaluated in a highly
automated way using the programs MATAD [102] and MINCER [120], respectively.

From the requirement that in eqs. (3.95) and (3.96) all divergences cancel, the
renormalization constants in Feynman-’t Hooft gauge take the form

Z(1)
3 =

1
ε

(
5
3

CA −
4
3

n f TR

)
, (3.97)

Z(1)
mg =

1
ε

(
−19

12
CA +

2
3

n f TR

)
. (3.98)

The gluon field renormalization is in accordance with the MS result [109].

For the two-loop computation of 〈R0〉NNLO, in total 1554 diagrams have to be evalu-
ated. Sample diagrams are shown in fig. 6.9. As before, we use the computational
setup described in chapter 5.

The topology reduction with tapir [121] leads to 91 independent Feynman graph
topologies. Due to our special kinematics with ps = 0, 1126 symbolic Feynman inte-
gral families appear after applying partial fraction decomposition. The integrated
symbolic topology minimization of tapir reduces this number to 221 independent
integral families.

After applying an IBP reduction with FIRE [122] the results are expressed as 25

master integrals. Two of them will appear in the matching calculation of Γ12 as
shown in fig. 6.15. The remaining 23 are presented in fig. 3.4.

The integrals of figs. 3.4i, 3.4ii, 3.4v, 3.4vi and 3.4xiv are straightforward to compute
since they are products of one-loop integrals. For the computation of the remaining
master integrals a strategy similar to in the one-loop calculation is pursued. To
apply a threshold expansion with q2 = m2

b � m2
g, we first have to identify all

non-vanishing regions of loop momenta scaling. For this task we use the program
asy.m [123]. For every input integral it returns a list of vectors which contain the
scaling behavior of the propagators in the corresponding region. By applying shifts
in the loop momenta, it is then possible to identify the individual regions in the
momentum space representation of the integral.
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi)

(xvii) (xviii) (xix) (xx)

(xxi) (xxii) (xxiii)

Figure 3.4: We show the master integrals which emerge after the IBP reduction of 〈R0〉 at
NNLO. Solid lines denote propagators with mass mb, curly lines with mg and
dashed lines are massless. A dot on a line means that the according propagator
is squared.
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Hence, each region introduces a new integral family. The expanded master integrals
of fig. 3.4 can then be further reduced by an additional IBP reduction. This leads to
simpler master integrals, partially without graph representation. These are either
known, single scale, on-shell integrals [124], or can be evaluated straightforwardly
using Feynman parameterization and the program HyperInt [125], or other common
multi-loop techniques such as Mellin-Barnes representation (see e.g. ref. [110]). The
evaluation with the former is explained in appendix D.5.

The αi are again constrained by the fact that the finite part of 〈R0〉NNLO vanishes
at leading order in the Λ/mb expansion. We find that the individual NNLO matrix
elements of Q, QS and Q̃S are individually UV-finite in Feynman-’t Hooft gauge.
Their IR-divergences are regulated by ln(zg) terms which cancel in the combined

〈R0〉NNLO. The results for the αi as well as for 〈Q〉NNLO, 〈QS〉NNLO and 〈Q̃S〉
NNLO

are given in the ancillary files of this thesis.

For the correction factors we find
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2 − 2219
144

e(1)4,1,1 +
161
8

e(1)4,1,2 −
169
144

e(1)4,1,1e(1)4,2,1

+
2219
144

e(1)4,2,1 −
275
24

e(1)4,2,2 −
13
144

e(1)4,2,1e(1)5,1,1 −
263
144

e(1)5,1,1

− 1
24

e(1)5,1,2 −
13
144

e(1)4,1,1e(1)5,2,1 +
13
72

e(1)4,2,1e(1)5,2,1 −
1

144
e(1)5,1,1e(1)5,2,1

+
263
144

e(1)5,2,1 +
17
24

e(1)5,2,2 −
197e(2)3,1,1

1152
+

37
288

e(2)3,1,2 +
197e(2)3,2,1

1152

− 37
288

e(2)3,2,2 −
137e(2)4,1,1

1152
+

97
288

e(2)4,1,2 +
137e(2)4,2,1

1152
− 97

288
e(2)4,2,2

− 16ζ(3) +
188L2

3
+

388L
3

,

(3.100)

with L = ln(µ2/m2
b) and ζ(z) being the Riemann zeta function which is given by

ζ(z) =
∞

∑
n=1

1
zn , (3.101)

with the function value

ζ(3) ≈ 1.20206 . (3.102)

The symbol nh gives the number of quarks with the mass mb. The number of
massless flavors is denoted by nl .

An arbitrary choice for the evanescent coefficients which is in accordance with the
literature is given by

e(1)2,1 = − 4 , e(1)2,2 = − 4 , e(1)3,1 = − 4 , e(1)3,2 = − 4 ,

e(1)4,2,1 = 8 , e(1)4,2,2 = 0 , e(1)4,1,1 = 0 , e(1)4,1,2 = 4 ,

e(1)5,2,1 = 0 , e(1)5,2,2 = 4 , e(1)5,1,1 = 8 , e(1)5,1,2 = 0 ,

e(2)1,1 = 0 , e(2)1,2 = − 52
5

, e(2)2,1 = 0 , e(2)2,2 = 4 ,

e(2)3,2,1 = 0 , e(2)3,2,2 = 266 , e(2)3,1,1 = 0 , e(2)3,1,2 = 284 ,

e(2)4,2,1 = 0 , e(2)4,2,2 = − 88 , e(2)4,1,1 = 0 , e(2)4,1,2 =
932
5

.

(3.103)

With eq. (3.103) the correction factors read

α
(2)
Q = (nl + nh)

(
−4L2

3
− 52L

9
− 8π2

9
− 218

27

)
+ nh

(
8π2

3
− 8
)

+
58L2

3
+

649L
6

+
17π2

3
+

11183
48

+
16
3

π2 ln(2)− 8ζ(3) ,

(3.104)
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α
(2)
Q̃S

= (nl + nh)

(
−8L2

3
− 104L

9
− 16π2

9
− 422

27

)
+ nh

(
16π2

3
− 16

)
+

188L2

3
+ 220L +

320π2

27
+

326047
720

+
32
3

π2 ln(2)− 16ζ(3) .

(3.105)

Equations (3.104) and (3.105) are in accordance with ref. [68] where only terms
proportional to nh and nl are given at NNLO, but additionally with a non-vanishing
c-quark mass dependence. Thus, the results are complementary.
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M AT C H I N G C A L C U L AT I O N

The effective field theories of chapters 2 and 3 contain effective couplings which
describe interactions only correctly at certain energies. The renormalization con-
stants which are defined in section 2.5 not only render our theory UV-finite over
this valid energy range, but also introduce a renormalization scale µ. As we have
seen, the latter can be chosen such that the occurring logarithms do not lead to
large corrections in the perturbative series. Therefore, µ is usually set to the typical
energy scale of the problem at hand. In the EFT picture it can hence take values of
the range in which the theory leads to useful predictions. In perturbative QCD, for
example, µ can be formally used in the range (ΛQCD, EP] since we treat QCD as a
UV-complete theory. No matter if the upper bound is actually the Planck energy EP

or not, QCD has become the empirically established theory of the experimentally
accessible subset of this energy range. It is therefore treated as our “full theory” for
interactions of particles depending on their color charges.

The basic requirement on an EFT is that it predicts the same results as the full theory
in the limit where both are valid. The procedure to connect the different theories
is called matching. Relevant for this work is the connection of the ∆B = 1 theory
to the SM. The scale µ0 at which both theories agree is denoted as matching scale.
Renormalized, amputated Green’s functions with same external states are then
computed in both theories and one demands that they agree at µ0:

〈 f | SSM |i〉ren

∣∣∣∣∣
µ=µ0

!
= 〈 f | S∆B=1 |i〉ren

(
1 +O

(
1/m2

W
))∣∣∣∣∣

µ=µ0

. (4.1)

The resulting Wilson coefficients Ci(µ0) are then extended to the whole valid energy
regime through RGE techniques.

The HQE, as described in section 1.3, is an operator product expansion that marks the
transition from one EFT to another. Thus, for the computation of Γ12 the following
matching calculation at the scale µ1 is applied:

Γ12 =
1

2MB
Abs

(
i
∫

d4x 〈B|TH∆B=1(x)H∆B=1(0) |B〉
) ∣∣∣∣∣

µ=µ1

!
= 〈B| H∆B=2(0) |B〉

∣∣∣∣∣
µ=µ1

,

(4.2)

where the Wilson coefficients of the ∆B = 2 Hamiltonian are replaced by Γ12-specific
matching coefficients Hi. Using the operators of eq. (3.3), we obtain

Γ12 =
GFm2

b
24πMB

∑
i

Hi(µ1) 〈B| O∆B=2
i |B〉 (µ1) + Γ1/mb . (4.3)
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The matching coefficients Hi include the leading effects in the Λ/mb expansion,
whereas the higher orders are denoted by Γ1/mb . With the RGE running of section 3.4,
the resulting ∆B = 2 operator matrix elements can be expressed at a different scale
µ2. This scale can later be chosen as the point where the hadronic matrix elements
are evaluated by non-perturbative calculations. In the end, the ∆B = 2 matching
coefficients have the following structure:

Hi ≡ Hi
(
Cj (µ0, µ1) , µ1, µ2

)
, (4.4)

where Cj denotes the ∆B = 1 Wilson coefficients.

A look at eq. (4.2) reveals that it involves the bound states |B〉 and |B〉, which cannot
be fully described as local quark field operators in perturbation theory. It is anyway
possible to access Hi if the final states are replaced, in first approximation, by their
valence quark fields, i.e. |Bs〉 → |b̄s〉, |Bs〉 → |bs̄〉 and |Bd〉 → |b̄d〉, |Bd〉 → |bd̄〉. The
matching equation simplifies to a comparison of local matrix elements describing
the process bs→ bs or bd→ bd

1
2MB

Abs
(

iM∆B=1
ren

) ∣∣∣∣∣
µ=µ1

!
= iM∆B=2

ren

∣∣∣∣∣
µ=µ1

. (4.5)

Both sides entail quark field renormalizations which cancel in the direct compar-
ison. It is nevertheless beneficial to work with UV-finite quantities, because the
corresponding regulator can then be set to zero before the actual matching. This
simplifies in general the whole procedure as evanescent operators are no concern.

Since in this work we focus solely on the matching of leading terms of the Λ/mb
expansion, the momenta of the external s-quarks (or respective d-quark) can be
chosen as qs/d = 0. Furthermore, the physical process is sensitive to the b-quark
mass, but the matching coefficients do not depend on the three-momentum of
the b. Thus, together with the on-shell condition q2

b = m2
b, the easiest choice is

qb = (mb, ~0)T.

Note that the matrix elements of eq. (4.5) are IR divergent. As described in section 3.5,
one possibility to regularize the divergences is to include a small gluon mass mg

into our Feynman integrals. This has the advantage of a simplified matching
calculation as the limit ε → 0 can be taken after the renormalization. Since both
sides of eq. (4.5) have by construction the same low energy behavior, the gluon mass
dependence drops out, and Hi becomes independent of the chosen IR-regulator.
The disadvantages of this approach are the appearance of more involved Feynman
integrals since we introduce an additional scale. Also, the implications of the gauge
breaking that come with a gluon mass may effect the UV-renormalization procedure,
as discussed in section 3.5.2.

Another approach is pursued in refs. [91, 126] where both IR and UV divergences are
regulated dimensionally. Hence, the matching must be performed in d dimensions.
Due to the presence of IR poles, this implies that evanescent parts of the matrix
elements contribute to the finite result. Thus, Wilson coefficients of evanescent
operators have to be considered on both sides of eq. (4.5), and coefficients of
physical operators are extended to include terms of higher order in ε. In the
following we describe this approach in more detail.
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At leading order there are no IR divergences and the two sides of eq. (4.5) are
schematically given by

1
2MB

Abs
(

iMLO,∆B=1
)

=
(

a(0,0) + a(0,1)ε
)
〈Q〉tree

+
(

b(0,0) + b(0,1)ε
)
〈E〉tree +O

(
ε2) ,

(4.6)

i
2MB

MLO,∆B=2 = H(0)
Q 〈Q〉

tree + H(0)
E 〈E〉

tree +O
(
ε2) , (4.7)

where we used the following parameterization for the ∆B = 2 Wilson coefficients:

Hi = 2MB

(
H(0)

i +
αs

4π
H(1)

i

)
+O

(
α2

s
)

. (4.8)

The terms 〈Q〉tree and 〈E〉tree indicate tree-level matrix elements of physical and
evanescent ∆B = 2 operators, and the coefficients a and b are finite. Comparing
the coefficients of the matrix elements in eqs. (4.6) and (4.7) gives for the ∆B = 2
Wilson coefficients

H(0)
Q = a(0,0) + a(0,1)ε +O

(
ε2) , H(0)

E = b(0,0) + b(0,1)ε +O
(
ε2) . (4.9)

Including O(αs) effects, the UV-renormalized matrix elements on the ∆B = 1 side
read

1
2MB

Abs
(

iMNLO,∆B=1
) ∣∣∣∣∣

αs

=
αs

4π

[(
a(1,−1)

ε
+ a(1,0)

)
〈Q〉tree

+

(
b(1,−1)

ε
+ b(1,0)

)
〈E〉tree

]
+O(ε) ,

(4.10)

where only O(αs) terms are considered. The coefficients a(1,−1) and b(1,−1) describe
the IR poles which appear at this order for the first time. Similarly, for the ∆B = 2
matrix element we obtain

i
2MB

MNLO,∆B=2

∣∣∣∣∣
αs

=
αs

4π

[
H(1)

Q 〈Q〉
tree + H(1)

E 〈E〉
tree

+

(
c(1,−1)

ε
+ c(1,0)

)
H(0)

Q 〈Q〉
tree

+

(
d(1,−1)

ε
+ d(1,0)

)
H(0)

Q 〈E〉
tree

+ e(1,0)H(0)
E 〈Q〉

tree

+

(
f (1,−1)

ε
+ f (1,0)

)
H(0)

E 〈E〉
tree

]
+O(ε) .

(4.11)

The first two terms stem from the LO amplitude, whereas in the remainder are
one-loop corrections of physical and evanescent operators. Except for the mixing
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of the evanescent into physical matrix elements (denoted by the prefactor e), the
one-loop terms are IR divergent.

In order to determine H(1)
Q we have to compare the coefficients of 〈Q〉tree in both

eqs. (4.10) and (4.11). We obtain

H(1)
Q =

a(1,−1) − c(1,−1)H(0)
Q

ε
+ a(1,0) − c(1,0)H(0)

Q − e(1,0)H(0)
E , (4.12)

which is IR-save if the following holds:

a(1,−1) = c(1,−1)H(0)
Q +O(ε) . (4.13)

From the contributions of H(0)
Q and H(0)

E to eq. (4.12), it is clear that the LO coeffi-
cients b(0,0) and a(0,1) become relevant due to eq. (4.9). Although the knowledge
of H(0)

E is apparently needed for H(1)
Q , physical results must not depend on the

chosen evanescent operators. Thus, their contribution is an artifact of the chosen
IR regularization. Since our renormalization condition requires 〈E〉 = O(εUV), the
multiplication with a dimensionally regularized IR pole makes this object finite.
In the end, IR artifacts in eq. (4.12) are canceled by H(0)

E and the O(ε) terms of
H(0)

Q . The same applies to the ∆B = 1 side, where evanescent contributions are
included in a(1,0) of eq. (4.10). Thus, the dependence on the Wilson coefficients of
the evanescent ∆B = 1 operators should cancel in this procedure, contributing only
to HE but not to HQ.

Compared to using a gluon mass as IR regulator, a drawback of the d-dimensional
matching procedure is that at O

(
α2

s
)

it requires the knowledge of renormalized
terms up to O

(
ε2) at LO and up to O(ε) at NLO. Nevertheless, the calculation of

the Feynman integrals is substantially simplified in comparison to the case with
mg 6= 0.

For the matching we choose the physical operator basis of Q, QS and Q̃S and the
evanescent operators of eqs. (3.6) and (3.8) to (3.10). Anticipating the discussion in
section 5.2, the fourth generation of evanescent operators are necessary since on
the ∆B = 1 side, structures with up to 9⊗ 9 Dirac matrices occur. Although these
operators do not contribute to the matching calculation of the physical operators,
they are needed for the reduction of Dirac matrix chains.

The matching of eq. (4.5) is performed up to O
(
α2

s
)
. Additionally, a single Next-

to-Next-to-Next-to-Leading Order (N3LO) contribution is regarded which is O
(
α3

s
)
.

It consists of two-loop corrections to the double insertion of the chromomagnetic
operator P8. Since every occurrence of P8 is proportional to αs, it is possible to
rescale the according Wilson coefficient by

C8 → C̃8 =
( αs

4π

)−1
C8 . (4.14)

Hence, with C̃8 both sides of the matching include a maximum order of α2
s . The

correct contribution is recovered if we return afterwards to the usual definition of
C8.
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As a final result of the matching, we obtain

Γ12 =
GFm2

b
24πMB

[
H 〈Q〉NNLO (µ2) + HS 〈QS〉NNLO (µ2) + H̃S 〈Q̃S〉

NNLO
(µ2)

+ ∑
i

HEi(µ1) 〈Ei〉NNLO (µ2)
]
+ Γ1/mb .

(4.15)

Since all UV and IR poles are absent at this point, we are allowed to put all regulators
to zero. Thus, the matrix elements of the evanescent operators vanish.

Equation (4.15) can be further simplified if we account for the power scaling of the
O(Λ/mb)-operator R0. With the results of section 3.5 we get

Γ12 =
GFm2

b
24πMB

[(
H − αQ

2
HS

)
〈Q〉NNLO (µ2)

+
(

H̃S − αQ̃S
HS

)
〈Q̃S〉

NNLO
(µ2)

]
+ O

(
Λ
mb

)
.

(4.16)

According to ref. [47] using the basis {Q , Q̃S , R0} has a positive effect on the
Λ/mb expansion since the numerical size of Γ1/mb is reduced in comparison to
the previously used basis {Q , QS , R0} [65]. Also, the uncertainties from the bag
parameters are decreased in the ratio ∆Γ/∆M.
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5
T E C H N I C A L I T I E S

In this chapter we focus on the technical aspects of the calculation of Γ12. We start
with a detailed summary of the evaluation of Feynman diagrams which contribute
to Γ12. We then turn to the topic of tensor reduction and how it is employed in
our setup. Finally, we present the renormalization constants which are additionally
needed to render Γ12 UV-finite.

5.1 details about the calculation of Γ12

For the calculation we use the program toolchain as described in appendix D.1.
The overall amount of computed one-, two- and three-loop Feynman diagrams is
O(140, 000), as it is described in chapter 6 in more detail. All diagrams are generated
with the use of qgraf [127] of which we also employ the implemented filter options
to remove unwanted diagrams. Other diagrams such as the one shown in fig. 5.1 are
not straightforward to select solely with qgraf. For this we employ the diagram filter
functionality of tapir [121] with the option external_self_energy_bridge_mixing.

After all diagrams are generated, we use tapir to analyze their topological structure.
As described in appendix D.2 this is done by generating the according Nickel index
of every diagram. After comparison these indices, the set of unique topologies
are used to generate according “topology files” which are used in our setup to
express scalar integral expressions in terms of integral families. For the ∆B = 1
computation without taking any other mass except for mb into account, we get
12 one-loop topologies, 260 at two-loop and 141 at three-loop order. The number
for the two-loop topologies is increased due to the fact that penguin operators
introduce a large variety of possible topological structures, whereas current-current
operators only have a restricted variety. The contributions with two insertions of
the latter are the only considered three-loop diagrams in this work. On the ∆B = 2
side, we have three one-loop and 15 two-loop topologies.

The overall amount of 413 integral families for ∆B = 1 is further reduced to 77

if we employ the algebraic minimization routines of tapir. Similarly, for ∆B = 2
the number of integral families reduces from 18 to 9. With the specification of the
integral families, we create the input files for FIRE [122].

Returning to the individual diagrams, we use tapir to insert the according Feynman
rules to create FORM [128] readable expressions. The respective momenta of the
lines in the diagram are then mapped on the corresponding topology using the
program exp [118, 119]. With our calc setup we express the amplitude, as the
sum of all diagrams, in terms of the previously defined integral families. The
individual integral members are then reduced to master integrals using an IBP

reduction procedure with FIRE which is described in appendix D.4. Only three
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Figure 5.1: A sample three-loop diagram which is easy to separate from other diagrams
with corrections to external legs, using a diagram filter which is implemented in
tapir.

(i) (ii) (iii)

Figure 5.2: At one-loop order three master integrals emerge after the IBP reduction. Solid
lines denote denominators with a mass mb, dashed lines are massless.

master integrals occur at one-loop order, as shown in fig. 5.2. At two-loop order,
we obtain the 14 master integrals of fig. 5.3 which are known in the literature for
several years [124]. The three-loop amplitude leads to 27 master integrals which
are computed by ref. [129] using either the program HyperInt [125] or MINCER [120].
They are depicted in fig. 5.4. In appendix D.5 the procedure of computing master
integrals with HyperInt is further discussed.

5.2 tensor reduction

A topic that has not yet been covered concerns the tensor structure of Feynman dia-
grams. In this section we present a straightforward way to handle tensor structures
in Lorentz- and color space without computing tensor integrals for interactions
with external fermions.

A matrix element of the process bs→ bs can in general be written as

M = ∑
m,n

X(m,n) Σ(m)
i1i2i3i4

Γ(n)
s1s2s3s4 si1

s1
bi2

s2
si3

s3
bi4

s4
. (5.1)

Each term has a distinct splitting of color indices in and spinor indices sn. The
coefficients X are scalar expressions with respect to the spinor- and color space.
Thus, all Lorentz- and color indices in X are contracted which also holds before
evaluating the loop integrals. The goal of a tensor reduction is to find the these
coefficients X.

The Lorentz structure can take only a limited set of possible forms. They read

Γ(n)
s1s2s3s4 =

(
PRB(n)

)
s1s2

(
PRB(n)

)
s3s4
≡
(

PRB(n)
)
⊗
(

PRB(n)
)

(5.2)

with

B(n) ∈
{

1, γµ1 , γµ1 γµ2 , γµ1 γµ2 γµ3 , . . .
}

. (5.3)
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

(xiii) (xiv)

Figure 5.3: These two-loop master integrals arise from the ∆B = 1 and ∆B = 2 calculation
of Γ12. Hence, real and imaginary part must be determined. A dot on a line
denotes an additional power of the respective denominator.

In four space-time dimensions, this set is reduced to a finite subset to all orders in
perturbation theory due to relations such as Fierz identities. This reduction is not
possible for d = 4− 2ε. However, at a fixed order in perturbation theory eq. (5.3) is
also finite, but with an increased cardinality.

The number of possible color structures is always finite in dimensional regulariza-
tion. In our case it can only be the following:

Σ(m) ∈
{

δi1i2 δi3i4 , δi1i4 δi2i3

}
. (5.4)

The coefficients X can be extracted from eq. (5.1) by defining a projection operator
P as

X(m,n) = P(m,n)M . (5.5)

Since color space and Lorentz space are independent, the corresponding projectors
factorize:

P(m,n) = C(m) L(n) . (5.6)

For the color projector we can make the following ansatz:

C(m) = ∑
i

c(m,i)Σ(i) . (5.7)
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi)

(xvii) (xviii) (xix) (xx)

(xxi) (xxii) (xxiii) (xxiv)

(xxv) (xxvi) (xxvii)

Figure 5.4: At three-loop order, the depicted master integrals emerge. All of them are
evaluated with HyperInt. Although only the imaginary part contributes to Γ12,
the real parts are calculated as well.
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The coefficients c are determined by the condition

X(m)
C

!
= C(m)MC

= C(m)

(
∑

i
X(i)

C Σ(i)

)
(5.7)
= ∑

i,j
X(i)

C c(m,j)Σ(j)Σ(i) .

(5.8)

Thus,

δij
!
= c(i,k)Σ(k)Σ(j) ≡ c(i,k)Gkj

(
{Σ(m)}

)
⇒ c(i,j) = G−1

ij

(
{Σ(m)}

)
,

(5.9)

where G denotes the Gram matrix of the vector space spanned by {Σ(m)}. The scalar
product of the latter is a simple multiplication with same color indices in both basis
vectors Σ(m). For the basis of eq. (5.4) we get

c(i,j) =


(

Σ(1)
)2

Σ(1)Σ(2)

Σ(1)Σ(2)
(

Σ(2)
)2


−1

ij

=
1

n2
c − 1

(
1 − 1

nc

− 1
nc

1

)
ij

. (5.10)

In principle one could also construct the projector from a different set of basis
vectors {vi}. For this purpose, the Gram matrix is extended to two vector spaces:

Gij({ak}, {bk}) = 〈ai|bj〉 , (5.11)

where 〈·|·〉 describes the scalar product.

The constraints on the new basis are (see e.g. ref. [130]):

• det [G({vi})] 6= 0 ,

• rank [G({vi})] ≥ rank [G({Σi})].

A non-vanishing Gram determinant is equivalent to linear independence of the
vectors vi and to the matrix having a full rank. The same must also hold for the
vectors {Σi} on which we want to project. The matrix G is invertible if the ranks
are equal in the second condition.

Thus, using a higher dimensional vector space to build the projector is possible as
well. If the rank of the new basis is larger, the matrix spanned by c(i,j) is

c ∈ Crank[G({Σi})]×rank[G({vi})] , (5.12)

and for the Gram matrix follows:

rank (c) = rank
[
G ({Σi}, {vi})

]
= rank

[
G ({Σi})

]
. (5.13)

Also, the inverse of eq. (5.9) is replaced by the Moore-Penrose inverse [131, 132]:

G−1 ({Σi}, {vi}) ≡
[
G∗ ({Σi}, {vi})G ({Σi}, {vi})

]−1
G∗ ({Σi}, {vi}) , (5.14)
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which is the definition of a left-inverse, i.e.

G−1 ({Σi}, {vi})G ({Σi}, {vi}) = 1rank[G({Σi})] . (5.15)

A similar procedure can be applied for the Lorentz-projector. First, we have to
define how the projector L of eq. (5.6) acts on a matrix element:

L(n)ML = L(n)

(
∑

i
X(i)

L B(i) ⊗ B(i)

)
≡ ∑

i,j
l(n,j)X(i)

L Trd

(
L(n)

1 B(i)
)

Trd

(
L(n)

2 B(i)
)

,
(5.16)

where the traces are taken in the four-dimensional spinor space with d-dimensional
Dirac matrices. Equation (5.16) also defines the scalar product of this space. With this
definition, traces with γ5 can arise in chiral interactions. This can be circumvented
if an additional chiral projector is included in L:

PR/L =
1± γ5

2
. (5.17)

After projecting the left- or right-handed chirality by commuting all occurrences of
γ5 together, all remaining γ5 in the traces of the Lorentz projector can be dropped.
Thus, we can adjust eq. (5.16) according to

L̃(n)ML ≡ ∑
i,j

l(n,j)X(i)
L Trd

(
L(n)

1 B(i)
∣∣∣
γ5→0

)
Trd

(
L(n)

2 B(i)
∣∣∣
γ5→0

)
. (5.18)

The chirality is not particularly relevant for our case since every basis vector of
eqs. (5.2) and (5.3) renders the s-quark left-handed and its chirality does not change
due to our treatment of ms = 0. Thus, the chirality is neglected in the following.

An ansatz for L(n)
1/2 is again given by the already known basis vectors:

L(n)
1 ⊗ L(n)

2 ≡ B(n) ⊗ B(n) . (5.19)

As before, the coefficients l(n,i) are determined from the requirement

X(n)
L

!
= L̃(n)ML

(5.19)
= ∑

i,j
X(i)

L l(n,j) Trd

(
B(j)B(i)

∣∣∣
γ5→0

)
Trd

(
B(j)B(i)

∣∣∣
γ5→0

)
︸ ︷︷ ︸

≡ Gji

, (5.20)

where we use the abbreviation Gji ≡ Gji

(
{B(i) ⊗ B(i)}

)
. The projector coefficients

are again given by the inverse of the Gram matrix:

l(i,j) = G−1
ij . (5.21)

A simple example of the Lorentz projector method is shown by means of the integral

I =
∫ ddk

(2π)d
/k

k2(k− p)2 , (5.22)
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where p is an external momentum. For the basis of possible Lorentz structures we
make the ansatz

B(n) ∈
{

1, /p
}

. (5.23)

Since there is only a single spinor line, the Gram matrix is given by

G =

(
Trd(1) Trd(/p)

Trd(/p) Trd(/p/p)

)
=

(
4 0

0 4p2

)
. (5.24)

For the projector coefficients, it follows

l(i,j) = G−1
ij =

 1
4 0

0 1
4p2


ij

. (5.25)

Thus, the Lorentz-projector has the form

L1 =
1

4
, L/p = /p

4p2 . (5.26)

One can see that the basis vectors do not have to be of the same mass dimension. If
we apply the constructed projector on eq. (5.22), we obtain

I = 1 · Trd(L1 I) + /p · Trd
(

L/p I
)

= /p
p2

∫ ddk
(2π)d

k·p
k2(k− p)2 .

(5.27)

For the integral I the basis {/p} would already be sufficient. However, we see from
the discussion below eq. (5.10) that projectors with a larger vector basis are always
applicable to problems with a smaller subset.

For the calculation of Γ12 we have in addition the external b-quark momentum q.
Thus, from the integrals a /q can appear in the chain of Dirac matrices which usually
drops out by using the Dirac equation. Because the latter cannot be applied at
this step, /q must also be considered in the projection. Hence, the basis of eqs. (5.2)
and (5.3) cannot be used, and we have to define an alternative which is given by

B(n)
1 ⊗ B(n)

2 ∈
{

1⊗ 1, 1⊗ /q , /q ⊗ 1, /q ⊗ /q ,

γµ1 ⊗ γµ1 , γµ1 ⊗ γµ1 /q , γµ1 /q ⊗ γµ1 , γµ1 /q ⊗ γµ1 /q ,

γµ1 γµ2 ⊗ γµ1 γµ2 , γµ1 γµ2 ⊗ γµ1 γµ2 /q , γµ1 γµ2 /q ⊗ γµ1 γµ2 ,

γµ1 γµ2 /q ⊗ γµ1 γµ2 /q , . . .
}

,

(5.28)

In order to fix the basis, it is important to know the longest string of occurring
Dirac matrices. For our problem we find diagrams shown in fig. 5.5 to have the
largest string simultaneously in both spinor lines. In principle, diagrams with a
single fermion line with more Dirac matrices are possible, as shown in fig. 5.5iii.
In that case, the Lorentz indices inside a single chain are contracted and can be
reduced. For example, fig. 5.5iii reduces to 3⊗ 3 matrices. Thus, diagrams with
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(i) (ii)

(iii)

Figure 5.5: Diagrams (i) and (ii) lead to an overall maximum of 9⊗ 9 Dirac matrices in
the two fermion lines if the traces are closed according to the dashed lines.
The penguin operator P5 introduces three Dirac matrices per line, the fermion
propagators and gluon interaction vertices another one, respectively. In (ii) the
evanescent operator E(1)

3 includes five matrices which leads to 9⊗ 9 already at
LO. In diagram (iii) Dirac chains with 3⊗ 15 matrices occur.

equally distributed Dirac matrices in both fermion lines are considered for the
limiting case.

The diagram in figs. 5.5i and 5.5ii lead to a maximum of 9⊗ 9 matrices. For possible
future applications, we implement the possibility to project on up to 10⊗ 10 matrices.
The cardinality of the basis thus becomes1 43. Projecting only on up 9⊗ 9 matrices
would involve a basis with 39 vectors. The computation of the Gram matrix as in
eq. (5.20) includes the evaluation of terms of the form

Trd(γ
µ1 γµ2 . . . γµ20)Trd

(
γµ1 γµ2 . . . γµ20

)
, (5.29)

which is challenging even for a specialized computer algebra system like FORM [128].

For our calculation, one frequently encounters structures like eq. (5.29) with a
maximum of 18× 18 matrices when applying the projection operator. To circumvent
an expensive recalculation of these traces every time, we build a lookup table of
FORM id-statements which replaces the traces by a previously evaluated quantity.
id-statements have the advantage that the property of traces to be symmetric under
cyclic permutation can be used for the identification. We can also benefit from the
pattern-matching of FORM. After evaluating all Feynman diagrams of chapter 6, our
lookup table includes O(380, 000) entries and has a size of O(400) MB.

1 The 11 strings of 1⊗ 1, ..., γµ1−µ10 ⊗ γµ1−µ10 are counted four times due to the different occurrences
of /q . The case γµ1−µ10 /q ⊗ γµ1−µ10 /q is excluded since it has 11⊗ 11 matrices.
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Figure 5.6: The computation of eq. (5.29) needs approximately 12 h on one core of a modern
CPU. The double exponential scaling predicts for the evaluation of traces with
22× 22 matrices a duration of 617 CPU Hours, or 26 days on a single core.
This estimation demonstrates a lower limit for parallelized evaluation with e.g.
tform.

The traces are computed with the consecutive use of the tracen command of
FORM. For products of long traces the needed computation time rises approximately
exponentially with the number of matrices, as shown in fig. 5.6.

This scaling behavior makes it increasingly difficult to project to basis elements with
an increasing number Dirac matrices. With the presented techniques and current
soft- and hardware, the projection on more than 10 matrices in both fermion lines
is not feasible. Alternative approaches to increase this limit could be:

• Usage of a different tool than tracen. A promising approach based on graph
coloring algorithms is presented in ref. [133]. Unfortunately, it is only formu-
lated in four dimensions and an extension to d-dimensional Dirac matrices
would be necessary.

• Usage of a different scalar product than eq. (5.20). An alternative would be,
for example:

G′ij = Trd

(
B(i)B(j)B(i)B(j)

∣∣∣
γ5→0

)
. (5.30)

In our case this would result in one large trace with a maximum of 40 Dirac-
matrices, but with all indices contracted.

• Usage of other tensor reduction approaches such as Passarino–Veltman reduc-
tion [134]. This ansatz is used in the cross-check calculation of this work, where
we use the program FeynCalc [135] with additional support of FERMAT [136]
to perform the tensor reduction. Unfortunately, this leads to other problems
like a proliferation of terms for high tensor ranks.
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Figure 5.7: OS quark field and mass renormalization constants are sensitive to other quark
masses starting at two-loop order.

5.3 renormalization

We have seen in chapter 4 that the matrix elements on both sides of the matching
have to be renormalized. In this section we summarize the used renormalization
constants in addition to the ones already described in sections 2.5 and 3.3.

The external quarks of the regarded process sb→ bs usually require a wave function
renormalization. The constant Z2 factorizes on both sides of the matching equation
eq. (4.5). However, we introduce it for convenience according to eqs. (3.73) and (3.74).

Since we compute the matrix elements in arbitrary Rξ gauge, the gauge parameter
ξ has to be renormalized according to eq. (2.32) up to O(αs) with

Z3 = 1 +
( αs

4πε

)(5
3

CA +
ξ

2
CA −

4
3

n f TF

)
, (5.31)

defined in MS.

To the same order we need the renormalization of the QCD coupling constant which
is given by

Zαs = 1 +
( αs

4πε

)(
−11

3
CA +

4
3

n f TF

)
. (5.32)

Equations (5.31) and (5.32) are both directly applicable to theories with n f active
quark flavors since renormalization constants are mass-independent in MS. Both
renormalization constants are currently known up to five-loop order [104, 105].

We further need the renormalization of the b-quark mass toO(αs). In this calculation
we choose the OS mass renormalization, as given in eq. (3.88). Zmb is mass dependent
in this scheme and also sensitive to the masses of other quarks through diagrams
shown in fig. 5.7. Since this dependence first occurs at O

(
α2

s
)
, ZOS

mb
can be used as

stated in eq. (3.88).

For a non-vanishing charm-mass, Zmc is needed to O
(
α2

s
)

since the leading order
diagrams on the ∆B = 1 side of the matching are mc dependent. In the OS scheme
this renormalization constant, expanded for mc � mb, is given by [117, 137]

ZOS
mc

= 1 +
( αs

4π

){
−4

ε
− 4 ln

(
µ2

m2
c

)
− 16

3

+ ε

[
−2 ln2

(
µ2

m2
c

)
− 16

3
ln
(

µ2

m2
c

)
− π2

3
− 32

3

]}

+
( αs

4π

)2
{

1
ε2

(
30−

4n f

3

)
+

1
ε

[
16 ln

(
µ2

m2
c

)
+

10n f

9
− 37

3

]
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+ n f

[
4
3

ln2
(

µ2

m2
c

)
+

52
9

ln
(

µ2

m2
c

)
+

8π2

9
+

71
9

]
(5.33)

+ nh

[
463z2

2450
− 2

315
(
27z2 + 112z− 910

)
ln(z) +

304z
225

− 4 ln2(z)
3

− 8π2

9
− 302

27

]
+ nv

(
8− 8π2

3

)
+

8ζ(3)
3
− 20π2

9
− 2537

18
− 6 ln2

(
µ2

m2
c

)
− 250

3
ln
(

µ2

m2
c

)
− 16π2 ln(2)

9

}
+ O

(
z3) ,

where we set nc = 3. The variables nh and nv denote the numbers of active flavors
with the masses mb and mc, respectively. We also use the abbreviation

z =
m2

c

m2
b

. (5.34)

All masses in eq. (5.33) are defined in the OS scheme.
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A N A LY T I C R E S U LT S

In this chapter we present the results for Γ12, and thus for the physical matching
coefficients in the ∆B = 2 basis. Our results are stated in the form of

Γ12 =
GFm2

b
24πMB

[
H(z) 〈B|Q |B〉 (µ2) + H̃S(z) 〈B| Q̃S |B〉 (µ2)

]
+O

(
Λ
mb

)
, (6.1)

with mb defined in the OS scheme. The coefficients H and H̃S are reformulated in
comparison to eq. (4.16) to describe the physical basis of {Q, Q̃S, R0}. The Wilson
coefficients contain the primary results of this work. They are decomposed as

H(z) ≡ −λ2
c Hcc(z)− 2λcλuHuc(z)− λ2

uHuu(z) , (6.2)

and similarly for H̃S.

In our calculation we expand “naively” up to linear order in the small parameter

z =

(
mc

mb

)2

≡
(

mOS
c

mOS
b

)2

. (6.3)

A naive expansion is defined as a Laurent series of the integrand of a Feynman
integral. A priori this leads to wrong results in comparison to the asymptotic
expansion described in section 3.5. We explicitly checked that the naive expansion
up to O(z) differs from the asymptotic expansion only for diagrams in which a
charm-quark loop arises from a gluon propagator correction. Thus, up to O(αs)
the naive expansion is sufficient to the linear order in z. At order O

(
α2

s
)

and
beyond diagrams as shown in fig. 6.1 cannot be treated with the naive expansion.
Fortunately, the leading z-contributions for three-loop diagrams such as figs. 6.1i
and 6.1ii are known in the literature [68, 69]. For one-loop and two-loop diagrams
with insertions of the chromomagnetic operator P8, we find agreement of the
naive and the asymptotic expansion up to O(z). Sample diagrams of the latter are
presented in figs. 6.1iii and 6.1iv.

In the following sections we present the results in different orders in αs. They are
further distinguished according to their contributions of CMM Wilson coefficients:

Hab(z) ≡ ∑
i,j∈{1,...,6,8},

j≥i

CiCj pab
ij (z) ,

H̃ab
S (z) ≡ ∑

i,j∈{1,...,6,8},
j≥i

CiCj pS,ab
ij (z) , ab ∈ {cc, uc, uu} .

(6.4)

As shown in table 2.2, the ∆B = 1 Wilson coefficients of the current-current opera-
tors are numerically more significant. Hence, the inclusion of penguin operators are
numerically subleading. For this reason we consider penguin operator contributions

81
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(i) (ii)

(iii) (iv)

Figure 6.1: A priori these diagrams lead to wrong results when a Laurent expansion
around z→ 0 under the integral sign is applied instead of using an asymptotic
expansion. For diagrams (iii) and (iv) the naive and asymptotic expansion agree
up to O(z).

Operator Publications

contributions 1-loop 2-loop 3-loop

P12 × P12 [63] (LO) [65–67] (NLO) [68, 69] (NNLO)

P12 × P3−6 [63] (LO) [69, 70] (NLO)

P3−6 × P3−6 [63] (LO) [71] (NLO)

P12 × P8 [65, 66] (NLO) [68, 69, 71] (NNLO)

P3−6 × P8 [69, 71] (NLO) [71] (NNLO)

P8 × P8 [69, 71] (NNLO) [71] (N3LO)

1/mb [47, 63, 67] (LO)

Table 6.1: The appearances of the different Γ12 contributions are summarized according to
their operator insertions. The entry for 1/mb denotes higher order contributions
in the Λ/mb expansion. In refs. [68, 69] only partial results are given.

only up to two-loop order. For the more involved three-loop calculation we focus
solely on the numerically dominant current-current insertions.

Not all results presented in this chapter are new. Some of them are known for more
than 20 years. Table 6.1 summarizes the individual contributions and their, also
partial, appearances in publications.

The coefficients pab
ij are given as an expansion in the strong coupling constant and

in z:

pab
ij (z) ≡

3

∑
n=0

(
α
(5)
s (µ1)

4π

)n

pab,(n)
ij (z) ,

pS,ab
ij (z) ≡

3

∑
n=0

(
α
(5)
s (µ1)

4π

)n

pS,ab,(n)
ij (z) ,

(6.5)

where terms of O
(
z3/2) and beyond are discarded. All results are presented with

nc = 3, but in the ancillary files given for arbitrary nc.
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LO contributions Number of diagrams Number of loops

P1,2 × P1,2 32 1

P1,2 × P3−6 64 1

P3−6 × P3−6 1312 1

P1,2 × E 320 1

P3−6 × E 2352 1

E × E 192 1

Table 6.2: The number of evaluated O
(
α0

s
)

diagrams in the ∆B = 1 theory are shown. The
entry for E also includes evanescent operators which do not directly contribute
to the O

(
α0

s
)

results but are either needed for the renormalization of higher order
results or for consistency checks discussed in section 6.5. The stated numbers are
the amount of diagrams generated by qgraf.

6.1 leading order results

At leading order in αs, the ∆B = 1 side of the matching consists of one-loop
diagrams, whereas there are only tree-level diagrams on the ∆B = 2 side. Sample
diagrams are shown in fig. 6.2. To this order all results are fully known in the
literature. We present them here for completeness.

By including evanescent operators the number of diagrams are shown in table 6.2.
There, also combinations of evanescent operators like E(1)

1 × E(2)
1 are included

which are not directly needed for the results of this work. We include them as
well to analyze their possible contributions in the matching. Which evanescent
operators must necessarily be regarded can be seen from their contributions in the
renormalization, as presented in appendix A.

All diagrams with two current-current operator insertions (P1/2) have the structure
of fig. 6.2i with u- and c-quark propagators in the loop. From them, we get

pcc,(0)
11 (z) =

23
72
− 11z

6
, pS,cc,(0)

11 (z) = − 5
9

,

pcc,(0)
12 (z) =

1
6
− 2z , pS,cc,(0)

12 (z) = − 4
3

,

pcc,(0)
22 (z) = 1− 3z , pS,cc,(0)

22 (z) = 1 .

(6.6)

Taking also penguin contributions into account leads to three new diagram classes
as shown in figs. 6.2ii to 6.2vi. The diagrams (v) and (vi) allow only cuts through
b-propagators and thus have no imaginary (absorptive) part.

The mixed current-current and penguin contributions read

pcc,(0)
13 (z) =

4
3

, pS,cc,(0)
13 (z) = − 8

3
,

pcc,(0)
14 (z) = − 5

36
, pS,cc,(0)

14 (z) = − 2
9

,

pcc,(0)
15 (z) =

64
3
− 96z , pS,cc,(0)

15 (z) = − 128
3

,
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(i) (ii) (iii)

(iv) (v) (vi)

(vii)

Figure 6.2: Diagrams of the leading order contribution to Γ12 are at one-loop order on the
∆B = 1 side and at tree-level for ∆B = 2. Orange dots depict current-current
operators, green ones penguins, and blue ones ∆B = 2 operators.

pcc,(0)
16 (z) = 4z− 20

9
, pS,cc,(0)

16 (z) = − 32
9

, (6.7)

pcc,(0)
23 (z) = 1 , pS,cc,(0)

23 (z) = − 2 ,

pcc,(0)
24 (z) =

5
6

, pS,cc,(0)
24 (z) =

4
3

,

pcc,(0)
25 (z) = 16− 72z , pS,cc,(0)

25 (z) = − 32 ,

pcc,(0)
26 (z) =

40
3
− 24z , pS,cc,(0)

26 (z) =
64
3

.

For the penguin-penguin diagrams the closed fermion loop introduces a summation
over all active quark flavors. This is evident from the appearance of the factors
nl = 3 describing a sum over all massless flavors, and nv = 1 which is the number
of flavors with the mass mc. Note that nl and nc only count flavors that appear in
closed fermion loops in which no flavor changes occur. The results are given by

pcc,(0)
33 (z) = 3(nl + nv) + 2 , pS,cc,(0)

33 (z) = − 6(nl + nv)− 1 ,

pcc,(0)
34 (z) =

7
3

, pS,cc,(0)
34 (z) = − 8

3
,

pcc,(0)
35 (z) = 60(nl + nv) + 64 , pS,cc,(0)

35 (z) = − 120(nl + nv)− 32 ,

pcc,(0)
36 (z) =

112
3

, pS,cc,(0)
36 (z) = − 128

3
,

pcc,(0)
44 (z) =

5(nl + nv)

12
+

13
72

, pS,cc,(0)
44 (z) =

2(nl + nv)

3
− 7

9
,

pcc,(0)
45 (z) =

112
3

, pS,cc,(0)
45 (z) = − 128

3
,
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pcc,(0)
46 (z) =

25(nl + nv)

3
+

52
9

, pS,cc,(0)
46 (z) =

40(nl + nv)

3
− 224

9
, (6.8)

pcc,(0)
55 (z) = − 1296nvz + 408(nl + nv) + 512 ,

pS,cc,(0)
55 (z) = − 816(nl + nv)− 256 ,

pcc,(0)
56 (z) =

1792
3

,

pS,cc,(0)
56 (z) = − 2048

3
,

pcc,(0)
66 (z) = − 72nvz +

170(nl + nv)

3
+

416
9

,

pS,cc,(0)
66 (z) =

272(nl + nv)

3
− 1792

9
.

The coefficients for “uu” can be constructed from the “cc” ones:

puu,(0)
ij (z) = pcc,(0)

ij (0) for i ∈ {1, 2} and j ∈ {1, . . . , 6} ,

puu,(0)
ij (z) = pcc,(0)

ij (z) for i, j ∈ {3, . . . , 6} .
(6.9)

The “uc” coefficients are given by

puc,(0)
ij (z) =

pcc,(0)
ij (z) + puu,(0)

ij (z)

2
for i, j ∈ {1, . . . , 6} . (6.10)

Equations (6.9) and (6.10) hold similarly for pS. They can be explained from the fact
that the penguin operators introduce a factor (λc + λu), whereas current-current
operators multiply λi according to their flavors.

The results of eqs. (6.6) to (6.10) agree with [63, 65] after applying a transformation
into the traditional basis according to eq. (2.49). In the referenced publications the
full z-dependence is considered.

6.2 nlo results

At order αs the number of diagrams which have to be evaluated increases substan-
tially which can be seen from table 6.3. Furthermore, one-loop diagrams occur on
the ∆B = 2 theory side of the matching. According to table 6.4, their amount is
small in comparison to the ∆B = 1 side, but the real part of the matrix element
have to be computed as well. Sample diagrams in the ∆B = 2 effective theory are
shown in fig. 6.3.

We give the results for the full O(αs) corrections to Γ12 in the leading order of the
Λ/mb expansion. This includes four-fermion penguin operators P3−6 as well as
chromomagnetic P8 contributions.

In the following sections we show a shortened version of the results using the
replacements of eq. (3.103) and

nl = 3 , nh = 1 , nv = 1 ,



86 analytic results

NLO contributions Number of diagrams Number of loops

P1,2 × P1,2 832 (960) 2

P1,2 × P3−6 7296 (8064) 2

P3−6 × P3−6 36416 (41664) 2

P1,2 × E 6976 (7872) 2

P3−6 × E 29152 (32928) 2

E × E 832 (960) 2

P1,2 × P8 48 1

P3−6 × P8 528 1

P8 × E 624 1

Table 6.3: The number of evaluated two-loop, as well as one-loop diagrams in the ∆B =
1 theory at O(αs) are shown. Additional evanescent operator insertions are
included here as well. The numbers represent the diagrams which are left after
the tapir external_self_energy_bridge_mixing filter is applied. The numbers
in brackets are the amount of diagrams originating from qgraf.

NLO contributions Number of diagrams Number of loops

Q∆B=2 48 1

E∆B=2 144 1

Table 6.4: At O(αs) the shown number of one-loop diagrams for the ∆B = 2 theory are
computed. We split the contributions into physical (Q∆B=2) and evanescent
(E∆B=2) operator insertions. Note that Q̃ is included in the physical counting,
although it is only needed to construct E(1)

1 .

where nh is the number of flavors with the mass mb. The extended results with
these terms and the e(i)x kept unspecified are given in the ancillary files.

In the following we discuss the contributions of different CMM operator combina-
tions in their respective sections.

6.2.1 Current-Current Double-Insertion

At two-loop order most diagrams with two current-current operators are con-
structed from the LO ones by attaching a gluon line in all possible combinations,
as shown in figs. 6.4i and 6.4ii. The additional diagram class of fig. 6.4iii consists
of One-Particle Reducible (1PR) diagrams which connects two separated fermion
loops by a gluon bridge.

The results proportional to λ2
c are given by

pcc,(1)
11 (z) = z

(
−14L1

3
− 11L2

3
− 44 ln(z)

3
+

π2

54
− 4133

216

)
+

337L1

324
+

149L2

108
− 5π2

108
+

1789
486

,
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(i) (ii) (iii)

Figure 6.3: Feynman diagrams of the ∆B = 2 theory at NLO are given by the tree-level
contributions with additional gluon lines.

(i) (ii) (iii)

Figure 6.4: At NLO, double insertions of current-current operators include 1PI and 1PR

diagrams.
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26L1 − 4L2 − 16 ln(z)− 2π2
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− 323L1
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(6.11)
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9
+

2L2

3
− 5π2

3
+

91
54

,
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11 (z) = − 38L1
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+
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,
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− 656
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,
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− 16π2
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z− 8π2
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27

,

with L1/2 = ln(µ2
1/2/m2

b). Note that the z ln(z) terms originate from the c-quark
mass renormalization in the OS scheme. In fact, if z is expressed through MS masses,
i.e.

z → z =
m2

c(µc)

m2
b(µb)

, (6.12)

large logarithms like z ln(z) vanish when choosing the newly introduced scales at
the matching scale µc = µb = µ1 [67, 138].

As before the “uu” and “uc” contributions are obtained from the “cc” ones:

puu,(1)
ij = pcc,(1)

ij (0) ,

puc,(1)
ij (z) =

pcc,(1)
ij (z) + puu,(1)

ij

2
for i, j ∈ {1, 2} ,

(6.13)
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(i) (ii) (iii)

(iv) (v)

Figure 6.5: Several new diagram classes appear for simultaneous current-current and pen-
guin insertions at NLO.

where again analogous relations hold for pS. Equations (6.11) and (6.13) are in
agreement with [65–67], where the full z dependence is given.

6.2.2 Current-Current-Penguin Contribution

If a penguin operator is inserted together with a current-current operator, new
diagram classes as shown in fig. 6.5 occur. For example, diagrams such as fig. 6.5v
appear which have a non-amputated leg. They cannot be discarded because the
self-energy correction changes the quark flavor due to an FCNC. They have to be
added to render the result gauge-parameter independent.

The O(αs) results proportional to C1,2 × C3−6 are given by
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pcc,(1)
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The “uu” contributions incorporate a z-dependence due to diagrams like in fig. 6.5iii,
where a c-quark loop appears independently of the current-current operator. Hence,
we get

puu,(1)
13 (z) = pcc,(1)

13 (0) , pS,uu,(1)
13 (z) = pS,cc,(1)

13 (0) ,

puu,(1)
14 (z) = pcc,(1)

14 (0) +
5z
9

, pS,uu,(1)
14 (z) = pS,cc,(1)

14 (0) +
8z
9

,

puu,(1)
15 (z) = pcc,(1)

15 (0) , pS,uu,(1)
15 (z) = pS,cc,(1)

15 (0) ,

puu,(1)
16 (z) = pcc,(1)

16 (0) +
50z
9

, pS,uu,(1)
16 (z) = pS,cc,(1)

16 (0) +
80z
9

,

puu,(1)
23 (z) = pcc,(1)

23 (0) , pS,uu,(1)
23 (z) = pS,cc,(1)

23 (0) , (6.15)

puu,(1)
24 (z) = pcc,(1)

24 (0)− 10z
3

, pS,uu,(1)
24 (z) = pS,cc,(1)

24 (0)− 16z
3

,
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(i) (ii) (iii)

(iv) (v) (vi)

Figure 6.6: With two penguin insertions at NLO, a large variety of different diagram classes
have to be taken into account.

puu,(1)
25 (z) = pcc,(1)

25 (0) , pS,uu,(1)
25 (z) = pS,cc,(1)

25 (0) ,

puu,(1)
26 (z) = pcc,(1)

26 (0)− 100z
3

, pS,uu,(1)
26 (z) = pS,cc,(1)

26 (0)− 160z
3

.

The “uc” contributions are again given by

puc,(1)
ij (z) =

pcc,(1)
ij (z) + puu,(1)

ij (z)

2
for i ∈ {1, 2} and j ∈ {3, . . . , 6} . (6.16)

The nh, nl and nv dependent terms of eqs. (6.14) to (6.16) agree with ref. [69]. The
remaining terms have been computed for the first time in the framework of this
thesis [70].

6.2.3 Penguin Double-Insertion

In this section we consider the contributions involving C3−6 × C3−6. Sample Feyn-
man diagrams which have to be calculated in this context are shown in fig. 6.6. The
corresponding two-loop diagrams are the majority of all evaluated diagrams in this
work. Since in the Hamiltonian the penguin operators are proportional to (λc + λu),
we have

pcc,(1)
ij (z) = pcu,(1)

ij (z) = puu,(1)
ij (z) , (6.17)

which holds similarly for pS
ij.

The matching coefficients read
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Figure 6.7: Only a single diagram type contributes to P1,2 × P8 at one-loop order. In the
loop are either c- or a u-quark propagators.
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These results are published in ref. [71].

6.2.4 Current-Current-Chromomagnetic Contribution

The contribution of P8 appears for the first time at O(αs) since its Feynman rule
introduces a factor gs/(4π). For matching coefficients proportional to C1,2 × C8 the
one-loop diagrams of fig. 6.7 have to be evaluated. They are UV-finite and necessary
for the renormalization of C1,2 × C1,2 at O

(
α2

s
)
. The matching coefficients p(1)i8 have

no terms of linear order in z.

These contributions are calculated in ref. [65], and are in agreement with our results.
We obtain

pcc,(1)
18 (z) =

5
18

, pS,cc,(1)
18 (z) =

4
9

,

pcc,(1)
28 (z) = − 5

3
, pS,cc,(1)

28 (z) = − 8
3

,
(6.19)

with

puu,(1)
i8 = pcc,(1)

i8 (0) , pS,uu,(1)
i8 = pS,cc,(1)

i8 (0) ,

puc,(1)
i8 =

pcc,(1)
i8 (z) + puu,(1)

i8 (z)
2

, pS,uc,(1)
i8 =

pcc,(1)
i8 (z) + pS,uu,(1)

i8 (z)
2

,
(6.20)
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(i) (ii)

Figure 6.8: In addition to the 1PR diagrams in (i), a class of 1PI diagrams (ii) with two virtual
s-quarks appear in the P3−6 × P8 contribution at one-loop order.

for i ∈ {1, 2}.

6.2.5 Penguin-Chromomagnetic Contribution

As for the previous matching coefficients, no O(z) terms appear in the results
proportional to C3−6 × C8. Note that in comparison to the C1,2 × C8 case, there is
an additional class of Feynman diagrams which is One-Particle Irreducible (1PI), as
illustrated in fig. 6.8ii. The matching coefficients are given by

pcc,(1)
38 (z) = − 32

3
, pS,cc,(1)

38 (z) =
64
3

,

pcc,(1)
48 (z) = − 169

18
, pS,cc,(1)

48 (z) = − 20
9

,

pcc,(1)
58 (z) = − 512

3
, pS,cc,(1)

58 (z) =
1024

3
,

pcc,(1)
68 (z) = − 992

9
, pS,cc,(1)

68 (z) =
256

9
.

(6.21)

Equation (6.20) holds also here. The results of eqs. (6.19) to (6.21) are needed to
renormalize the NNLO contributions of C1−6 × C8. This result is published in [71]
and the n f dependent terms of it are in agreement with ref. [69].

6.3 nnlo results

At NNLO only partial results are known. The primary aim of this thesis is the
determination of O

(
α2

s
)

corrections to Γ12 proportional to C1,2 × C1,2. Furthermore,
all NNLO one-loop and two-loop contributions including P8 have been computed.
The number of diagrams at this order are shown in table 6.5 for the ∆B = 1 side,
and in table 6.6 for ∆B = 2. For the latter two-loop corrections are considered
including evanescent operators of the first and second generation. Sample diagrams
are shown in fig. 6.9.

6.3.1 Current-Current Double-Insertion

The numerically dominant NNLO contribution originates from O
(
α2

s
)

terms propor-
tional to C1,2 × C1,2. Sample diagrams are shown in fig. 6.10. The flavor changing
self-energy corrections, which we know from NLO penguin contributions, occur
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NNLO contributions Number of diagrams Number of loops

P1,2 × P1,2 26560 (31744) 3

P1,2 × P8 2064 (2256) 2

P3−6 × P8 20368 (22480) 2

P8 × P8 100 (108) 1

Table 6.5: The numbers of diagrams are shown which are needed for the ∆B = 1 part of the
NNLO contributions up to three loops. The presented format is similar to table 6.3.
Note that no evanescent operator contributions are considered at this order.

NNLO contributions Number of diagrams Number of loops

Q∆B=2 1016 2

E∆B=2 2032 2

Table 6.6: The numbers of ∆B = 2 diagrams at NNLO are shown. Corrections to evanescent
operator insertions of the first two generation are also considered. Note that Q̃ is
counted here as a physical operator in addition to Q, QS and Q̃S.

for two current-current operator insertions for the first time at three-loop order, as
shown in fig. 6.10ix.

Also, diagrams such as figs. 6.10i and 6.10ii appear which have a gluon self-energy
correction with a c-quark loop. Since they contribute to terms of O

(√
z
)
, we cannot

apply the naive z-expansion for these diagrams. Fortunately, the terms of the
expansion stemming from only gluon propagator corrections are known in the
literature [68, 69].

To construct a complete O(z) result, we proceed as follows:

• Computation of all NNLO C1,2 × C1,2 corrections with naive expansion in z.

• Discarding all terms which are proportional to nv.

• Shifting nl → nl + nv to recover the correct terms proportional to nv up to
O(z) excluding only the z-dependence stemming from gluon propagator
corrections.

• Transformation of the results from ref. [68] into the CMM basis using eq. (2.50)
and adding the z-dependent terms proportional to nv to our result.

The separate treatment of the gluon propagator corrections is allowed since the
simultaneous corrections of gluon propagator sub-diagrams and c-propagators
from the remaining diagram are O

(
z3/2).

The terms taken from [68] are highlighted in orange and indicated by the prefactor
nv below. The so constructed results are given by
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(i) (ii) (iii)

Figure 6.9: Sample NNLO diagrams on the ∆B = 2 side are shown. The first dependence on
mc comes at two-loop order from corrections to the gluon propagator.

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Figure 6.10: These three-loop diagrams contribute to current-current double insertions at
NNLO.
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7097π2

108
− 50π

9
√

3
− 12332857

16200
+

32
3

π2 ln(2)

− 274
9

π2 ln(2)− 16
15

π2 ln

(
1
2
+

√
5

2

)]
+

239L2
1

18

− 202L2L1

27
− 15π2L1 −

25πL1

27
√

3
+

106199L1

972
− 19L2

2
3

+
2π2L2

9
− 5117L2

81
+

10t2

9
√

3
− 3157ζ(3)

54
+

971π4

540
(6.22)

− 13
√

5π2

27
− 177247π2

3888
− 50π

81
√

3
+

74041
14580

+
148
27

π2 ln(2)
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− 5π ln(3)
54
√

3
− 4

9
π2 ln

(
1
2
+

√
5

2

)
+

224Cl2
(

π
3

)
27
√

3

+nv

(
2.22222 L1z + 70.6121 z− 105.276

√
z− 32.z ln(z)

)
,

pS,cc,(2)
11 (z) = z

[
−4π2L1 −

98023L1

243
− 32π2L2

81
− 9272L2

81

− 32
27

π2 ln(z)− 9272 ln(z)
27

+
29ζ(3)

3
− 27529π4

14580

− 344
√

5π2

81
− 7103π2

486
− 20π

81
√

3
− 33198263

36450

+
1826
81

π2 ln(2)

]
− 902L2

1
243

− 3064L2L1

243
− 2π2L1

− 10πL1

243
√

3
− 77617L1
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+
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2

27
− 16π2L2

81
− 5504L2
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√

3
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28528ζ(3)
243

+
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+
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√

5π2
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− 44209π2
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− 20π
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√

3
− 67489177

262440
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243
π2 ln(2)− π ln(3)
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√

3

+
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81

π2 ln

(
1
2
+

√
5

2

)
+

104Cl2
(

π
3

)
243
√

3

+nv

(
0.0987654 L1z− 26.8617 z + 27.7812

√
z
)

,
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12 (z) = z
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23276L1

81
+
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27
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27

+
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9

π2 ln(z)− 5248 ln(z)
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− 160
√
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27
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3238π2
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+
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+

5060009
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]
+
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− 16t2

27
√

3

+
13934ζ(3)

81
+

226π4

405
+
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√

5π2
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39995π2

1458
+

80π

243
√

3

− 1336127
2187

− 1624
81

π2 ln(2) +
4π ln(3)
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√

3

+
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π2 ln

(
1
2
+

√
5

2

)
−
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(

π
3

)
81
√

3

+nv

(
−1.18519 L1z− 72.3265 z + 87.73

√
z
)

,



98 analytic results

pS,cc,(2)
22 (z) = z

[
−48π2L1 +

18740L1

27
− 128π2L2

9
+

928L2

9

− 128
3

π2 ln(z) +
928 ln(z)

3
− 600ζ(3) +

7991π4

405

− 32
√

5π2

9
− 8038π2

27
− 80π

9
√

3
+

6836747
2025

+
272
9

π2 ln(2)

]
+

604L2
1

27
+

1064L2L1

27
− 24π2L1 −

40πL1

27
√

3

+
40370L1

243
− 52L2

2
3
− 64π2L2

9
+

6928L2

81
+

16t2

9
√

3

− 4388ζ(3)
27

+
398π4

135
+

104
√

5π2

27
− 41279π2

486
− 80π

81
√

3

+
27476329

58320
− 656

27
π2 ln(2)− 4π ln(3)

27
√

3

+
32
9

π2 ln

(
1
2
+

√
5

2

)
+

416Cl2
(

π
3

)
27
√

3

+nv

(
3.55556 L1z + 176.979 z− 105.276

√
z
)

,

We use the following abbreviation:

t2 ≡ Im

[
Li2

(
3− i
√

3
6

)]
≈ −0.389012 , (6.23)

which stems from the one-loop master integral in fig. 5.2ii.

Cl2(z) is the Clausen function, defined as (see e.g. ref. [139])

Cl2(θ) ≡
∞

∑
n=1

sin(nθ)

n2 = −
∫ θ

0
dx ln

[
2 sin

( x
2

)]
, (6.24)

with a function value of

Cl2

(π

3

)
≈ 1.014941 , (6.25)

which occurs in the two-loop master integral shown in fig. 5.3viii and the three-loop
master integral in fig. 5.4i.

The terms adapted from ref. [68] are the only part of our result which is not known
analytically.

The difference between the “cc” and “uu” contributions is again proportional to
powers of z:

puu,(2)
11 (z) = pcc,(2)

11 (0)+nv

(
−5.55556 z ln(z) + 0.0617284 L1z

+4.60031 z + 4.75206
√

z
)

,

puu,(2)
12 (z) = pcc,(2)

12 (0)+nv

(
2.66667 z ln(z)− 0.740741 L1z− 85.8705 z
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(i) (ii) (iii)

(iv) (v)

Figure 6.11: The two-loop corrections to P1,2 × P8 include additional 1PI diagrams and the
Feynman rule of P8 with two gluons contributes.

+48.2515
√

z
)

,

puu,(2)
22 (z) = pcc,(2)

22 (0)+nv

(
−32 z ln(z) + 2.22222 L1z + 70.6121 z (6.26)

−105.276
√

z
)

,

pS,uu,(2)
11 (z) = pS,cc,(2)

11 (0)+nv

(
0.0987654 L1z− 26.8617 z + 27.7812

√
z
)

,

pS,uu,(2)
12 (z) = pS,cc,(2)

12 (0)+nv

(
−1.18519 L1z− 72.3265 z + 87.73

√
z
)

,

pS,uu,(2)
22 (z) = pS,cc,(2)

22 (0)+nv

(
3.55556 L1z + 176.979 z− 105.276

√
z
)

.

The z-dependence of the “uu” terms is due to charm propagators which are not
connected to the spinor lines of P1,2. The only occurrences are diagrams such as
figs. 6.10i and 6.10ii which match the terms taken from ref. [68].

The “uc” terms can be obtained via

puc,(n)
ij =

pcc,(n)
ij (z) + puu,(n)

ij (z)

2
,

pS,uc,(n)
ij =

pS,cc,(n)
ij (z) + pS,uu,(n)

ij (z)

2
.

(6.27)

The n f dependent parts of eqs. (6.22) and (6.26) agree with ref. [68] in the limit
z→ 0 but only for µ1 = µ2.

6.3.2 Current-Current-Chromomagnetic Contribution

The two-loop corrections to P1,2 × P8 contribute first at order α2
s . For this, diagrams

as shown in fig. 6.11 have to be evaluated. The Feynman rule of the chromomagnetic
operator with two gluons attached appears for the first time at this order.

The corresponding matching coefficients are given by

pcc,(2)
18 (z) =

208L1

81
− L2

27
+

(
2615

54
− 10π2

9

)
z− 5π2

9
+

25π

54
√

3
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− 115
486

,

pcc,(2)
28 (z) = − 11L1

27
+

2L2

9
+

(
20π2

3
− 833

9

)
z +

10π2

3
− 25π

9
√

3

− 3125
81

, (6.28)

pS,cc,(2)
18 (z) =

448L1

81
+

32L2

27
+

(
1192
27
− 16π2

9

)
z− 8π2

9
+

20π

27
√

3

+
3580
243

,

pS,cc,(2)
28 (z) = − 248L1

27
− 64L2

9
+

(
32π2

3
− 1088

9

)
z +

16π2

3
− 40π

9
√

3

− 4568
81

.

For the “uu” results we get

puu,(2)
18 (z) = pcc,(2)

18 (0)− 10z
9

,

puu,(2)
28 (z) = pcc,(2)

28 (0) +
20z
3

,

pS,uu,(2)
18 (z) = pS,cc,(2)

18 (0)− 16z
9

,

pS,uu,(2)
28 (z) = pS,cc,(2)

28 (0) +
32z
3

,

(6.29)

and “uc” is again determined by eq. (6.20).

The n f -parts of these results are in agreement with [68, 69].

6.3.3 Penguin-Chromomagnetic Contribution

For the two-loop contributions of P3−6 × P8 similar diagrams as in the previous
section occur. In addition, graphs with closed fermion loops have to be taken into
account, as shown in fig. 6.12.

The corresponding matching results at O
(
α2

s
)

read

pcc,(2)
38 (z) = − 85L1

27
− 448L2

9
− 196z

3
+

25π2

6
− 107π

18
√

3
− 17201

81
,

pcc,(2)
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27
+

(
20π2

3
− 404
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)
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27
√

3
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243
,

pcc,(2)
58 (z) =

5120L1

27
− 7168L2

9
− 760z

3
+

770π2

9
− 28π

9
√

3
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81
,

pcc,(2)
68 (z) = − 8962L1

81
− 6976L2

27
+

(
200π2

3
− 4222

3

)
z +

3761π2

27

− 3220π

27
√

3
− 474656

243
, (6.30)
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(i) (ii)

(iii) (iv)

Figure 6.12: Most diagrams of the P3−6 × P8 contribution at two-loop order include closed
fermion loops. An exception looks similar to the diagram of fig. 6.11v with
internal s-quark lines.
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440L1

27
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9
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27
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√

3
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81
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+
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√
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27
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9
+
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27
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9
√

3

+
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81
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27
+

(
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81

− 8416π

27
√

3
− 423440

243
,

For the “uu” contributions we get

puu,(2)
38 (z) = pcc,(2)

38 (0)− 196z
3

,

puu,(2)
48 (z) = pcc,(2)

48 (0) +
(
−404

3
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20π2
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,
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38 (0) +
608z

3
,
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3
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3

)
z ,

pS,uu,(2)
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58 (0) +
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(6.31)
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(i) (ii)

(iii) (iv)

Figure 6.13: Sample one-loop order diagrams with two P8 insertions are presented. The box
diagrams (iii) and (iv) only have allowed cuts through at least one gluon line.

Equation (6.20) can be used to extract the “uc” terms. These results are published
in [71].

6.3.4 Chromomagnetic Double-insertions

The leading order diagram with two P8 operator insertions to the process bs→ bs
is a simple tree-level graph with a gluon bridge. Since this diagram has no loop
corrections, it has no absorptive part as well and does not contribute to Γ12. The
matter changes at NNLO where one-loop diagrams shown in fig. 6.13 are considered.
The matching coefficients proportional to C8 × C8 are only known up to their n f
dependence [68, 69]. Our results agree with them and are given by

pcc,(2)
88 (z) = puu,(2)

88 (z) = puc,(2)
88 (z) = −13

18
,

pS,cc,(2)
88 (z) = pS,uu,(2)

88 (z) = pS,uc,(2)
88 (z) = −68

9
,

(6.32)

as shown in ref. [71]. These contributions have manifestly no linear z dependence.

6.4 n
3
lo results

In addition to the contributions to Γ12 we computed in the previous sections, the
question arises how large the effect of the last missing two-loop correction to
P8 × P8 is. The latter is formally N3LO, i.e. of order α3

s . It is reasonable to expect
that the contributions could be large due to the manifold interaction possibilities
of QCD, especially when the two gluon vertex of P8 is considered. The occurring
Feynman diagrams are counted in table 6.7 and illustrated in fig. 6.14. For their
renormalization only the finite diagrams from section 6.3.4 have to be evaluated.

Our resulting matching coefficients are given by

pcc,(3)
88 (z) = puu,(3)

88 (z) = puc,(3)
88 (z) ,

pS,cc,(3)
88 (z) = pS,uu,(3)

88 (z) = pS,uc,(3)
88 (z) .

(6.33)
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N3LO contributions Number of diagrams Number of loops

P8 × P8 4174 (4690) 2

Table 6.7: The regarded subset of N3LO diagrams involves only a moderate amount of two-
loop diagrams in comparison to other contributions at NNLO or potentially N3LO.
The shown numbers are presented similarly as in table 6.3.

(i) (ii) (iii)

(iv) (v)

Figure 6.14: Sample diagrams for P8 × P8 at two-loop order are shown.

with

pcc,(3)
88 (z) = − 13L1

3
+

233L2

27
+

(
373
9
− 20π2

3

)
z− 208π2

27

+
151π

9
√

3
+

18743
486

,

pS,cc,(3)
88 (z) = − 136L1

3
− 544L2

27
+

(
−152

9
− 32π2

3

)
z +

28π2

81

+
440π

9
√

3
− 57632

243
.

(6.34)

Most likely the dominant N3LO contributions arise from P1,2 × P1,2 which would
require the calculation of corresponding four-loop integrals. Additionally, three-
loop corrections with evanescent and penguin operators would be necessary for the
renormalization of the latter. However, all this is beyond the scope of this thesis.

6.5 discussion of the results

The presented results of the previous chapter are in accordance with prior calcula-
tions, except for the µ2 dependence of ref. [68]. To test the consistency of the new
contributions to Γ12 we include several consistency checks.
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Contribution Order

P1−6 × E(1)
1−4 α0

s

P1−6 × E(2)
1,2 α0

s

P1,2 × E(2)
3,4 α0

s

E(1)
1,2 × E(1)

1−4 α0
s

E(1)
1,2 × E(2)

1,2 α0
s

P8 × E(2)
1,2 αs

P1−6 × E(1)
1,2 αs

P1,2 × E(1)
3,4 αs

E(1)
1,2 × E(1)

1,2 αs

Table 6.8: In the matching we keep the evanescent ∆B = 1 Wilson coefficients of the
operators stated in the left column up to the specified order.

Gauge parameter dependence

Throughout the calculation everything was computed within a general Rξ gauge.1

For physical quantities we expect that they are free from the gauge parameter ξ,
and hence manifestly gauge invariant. We observe that this is indeed the case for
Γ12.

Evanescent Wilson coefficient dependence

We further traced the behavior of the evanescent operators during the whole
calculation. This implies keeping the renormalized evanescent Wilson coefficients
on the ∆B = 1 as well as on the ∆B = 2 side of the matching. The contributions
of table 6.8 were taken into account for the former. Not all combinations of the
in section 2.4 introduced operators could be analyzed since evanescent operators
contribute with large Dirac matrix chains. For example, the matrix element of
E(2)

3 × E(2)
3 would involve a projection on up to 14⊗ 14 Dirac matrices. This exceeds

the limit of 10⊗ 10 γ-matrices we encountered in section 5.2.

For the matrix elements of the ∆B = 2 theory we keep the Wilson coefficients of all
four generations of evanescent operators at LO, the first three at O(αs) and the first
two at O

(
α2

s
)
. We observe that the ∆B = 1 evanescent Wilson coefficients contribute

after the matching only to the evanescent coefficients of the ∆B = 2 side. Although
it is required in dimensional regularization to match also evanescent coefficients,
the dependence on the evanescent ∆B = 1 Wilson coefficients drops out for the
physical matching results, as it was expected in chapter 4.

1 With exception of the scaling parameters αQ and αQ̃S
which were obtained in Feynman-’t Hooft

gauge.
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Renormalization scale dependence

In chapter 4 we describe the matching of the matrix elements at a common scale
µ1. Afterwards, we use RGE techniques of the ∆B = 2 theory to relate the matching
coefficients H and H̃S to the hadronic matrix elements defined at an a priori different
scale µ2. Hence, the µ1 dependence of H and H̃S should be of higher order in αs.
This can be tested from following requirement:

µ1
d

dµ1
H =

[(
µ1

d
dµ1

αs(µ1)

)
∂

∂αs(µ1)
+ ∑

i

(
µ1

d
dµ1

Ci

)
∂

∂Ci
+ µ1

∂

∂µ1

]
H

=

[
β (αs(µ1))

∂

∂αs(µ1)
+ ∑

i,j
γjiCj

∂

∂Ci
+ µ1

∂

∂µ1

]
H

!
= higher order in αs ,

(6.35)

and similarly for H̃S. The matrix γ is the ADM of the ∆B = 1 theory. It is currently
known up to three-loop order [79, 140], and it can be constructed from the effective
renormalization constants presented in appendix A.

For the results proportional to the ∆B = 1 Wilson coefficients and orders in αs

shown previously in this chapter, we find that the derivative of eq. (6.35) is indeed
of higher orders in αs. This means, for example, that the µ1 dependence of the
C1,2 × C1,2 contributions is O

(
α3

s
)
.

IR-regulator dependence

To test the consistency of our matching procedure we used a finite a gluon mass to
regulate IR-divergences up to O(αs) on both sides of the matching. We followed the
same approach as in section 3.5. The corresponding master integrals which appear
additionally to figs. 3.2 and 3.4 are shown in fig. 6.15 and given in the ancillary files.

For the considered subset we find the same results as with dimensional regulariza-
tion.

Further Crosschecks

Every result stated in this chapter was computed by two independent calculations.
As already mentioned in section 5.2, the cross-check calculation uses a different
approach for tensor reduction. Furthermore, the usage of tapir was employed
in only one calculation. The agreement of both approaches provides a non-trivial
check of the used setups.

Only the results for the master integrals were used in both setups simultaneously.
This is however not bothersome since their results are checked numerically. This
check also includes the asymptotic expansion of the integrals of section 3.5, which
can be tested with the programs FIESTA [141] and pySecDec [142]. Furthermore, the
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

Figure 6.15: These master integrals occur additionally to the ones of figs. 5.2 and 5.3 if the
IR divergences are regulated with a non-zero gluon mass (curly lines). With this
alternative regularization we find the same result for Γ12 as with dimensional
regularization up to NLO.

master integrals are additionally checked by expanding in q2 � m2
b and afterwards

taking the limit q2 → m2
b.
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P H E N O M E N O L O G Y

In the following we analyze the results of the previous chapter and their numerical
effects on physical observables. We begin with a discussion of Γ12. From eq. (6.1)
the following relation is evident:

Γ12 ∝ m2
b . (7.1)

Since this prefactor stems from q2 = m2
b, we choose mb ≡ mOS

b and express the
Wilson coefficients according to this choice. From this starting point, we could
alternatively express the prefactor of Γ12 with a different mass definition. From the
perturbation theory point of view, different renormalization conditions are equiv-
alent and can be translated into each other. The differences between observables
expressed in various mass definitions are of higher order in αs. Taking these orders
into account should lead to a reduction of the scheme dependence. For comparison,
we hence define three different renormalization schemes which we distinguish by
their prefactor mass definitions:

• pole: mOS
b ,

• MS: mb(µb) ,

• Potential Subtracted (PS): mPS
b .

The latter definition subtracts contributions of the heavy quark potential from the
OS mass [143]. It is assumed that quantities expressed in terms of mPS

b have a better
convergence behavior when taking higher orders in αs into account in comparison
to the OS mass. The subtraction term is currently known up to O

(
α4

s
)

[144, 145].

Except for the prefactor mass, the remaining terms of Γ12 are expressed in terms
of MS variables using the relation which transforms the OS mass to MS mass at
O
(
α2

s
)

[117]. For example, at O(αs) these relations for q = b, c are given by

mOS
q = mq(µq)

[
1 + CF

( αs

4π

)(
3 ln

(
µ2

q

m2
q(µq)

)
+ 4)

)]
+O

(
α2

s
)

,

z = z

[
1− 6CF

( αs

4π

)(
ln

(
µ2

b
µ2

c

)
+ ln (z)

)]
+O

(
α2

s
)

,

(7.2)

with

z =

(
mc(µc)

mb(µb)

)2

. (7.3)

Together with the MS masses mc and mb, new renormalization scales µc and µb are
introduced. Using z in favor of z has the advantage of a better convergence behavior.
Instead of measuring mOS

c directly, it is determined from its relation to mc [146].
This relation suffers from large corrections in the αs expansion since the OS mass

107
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mc(3 GeV) = 0.993± 0.008 GeV [148] αs(mZ) = 0.1179± 0.001 [149]

mb(mb) = 4.163± 0.016 GeV [150] mOS
t = 172.9± 0.4 GeV [149]

Ms
B = 5.36688± 0.00014 GeV [149] Md

B = 5.27963± 0.00012 GeV [149]

f s
B = 0.2307± 0.0013 [151] f d

B = 0.1905± 0.0013 [151]

∆Mexp
s = 17.7656± 0.0057 ps−1 [152] ∆Mexp

d = 0.5065± 0.0019 ps−1 [153]

Bs
Q = 0.813± 0.034 [41] Bd

Q = 0.806± 0.041 [41]

Bs
Q̃S

= 1.31± 0.09 [41] Bd
Q̃S

= 1.20± 0.09 [41]

B′sR0
= −0.43± 0.17 [41] B′dR0

= −0.35± 0.19 [41]

B′sR1
= 0.07 [154] B′dR1

≈ 0

B′sR̃1
= 0.04 [154] B′dR̃1

≈ 0

B′sR2
= −0.18± 0.07 [154] B′dR2

= B′sR2
[69]

B′sR3
= 0.38± 0.13 [154] B′dR3

= B′sR3
[69]

|Vcb|incl = 0.04216± 0.00051 [155] |Vcb|excl = 0.03936± 0.00068 [156]

δ = 1.196+0.045
−0.043 [149] |Vub|/|Vcb| = 0.083± 0.006 [157]

GF = 1.1663787× 10−5 GeV−2 [149]

λs
u/λs

t = −(0.00865± 0.00042) + (0.01832± 0.00039)i [69, 158]

λd
u/λd

t = (0.0122± 0.0097)− (0.4203± 0.0090)i [69, 158]

Table 7.1: Summary of numeric values needed for the determination of ∆Γ and afs for Bs/Bs

and Bd/Bd. The values for B′dR1
and B′dR̃1

are neglectable since they are suppressed
by md/mb [154]. Also, the uncertainties for GF, B′sR1

and B′sR̃1
are negligible due

to their marginal contribution. We use the abbreviation λ
q
x ≡ V∗xqVxb. For |Vcb|incl

we use an updated value instead of ref. [159].

definition is affected by the renormalon ambiguity (see e.g. ref. [147]). Hence, using
mc and mb prevents this issue. For the numeric evaluation of Γ12, we use the exact
z-dependence for the contributions for which it is known in the literature. The
remainder is expanded to leading order in z after transforming the results to the
CMM basis and expanding the ∆B = 1 matching coefficients in αs.

According to eqs. (1.15) and (1.17), the real and imaginary part of Γ12/M12 has to
be considered for the determination of ∆Γ/∆M and afs. ∆Γ can be extracted from
the approximate formula:

∆Γ ≈ 2|Γ12| , (7.4)

which is affected from the large uncertainty of the prefactor λt. If we use instead
the ratio Γ12/M12 to extract ∆Γ, λt cancels from eqs. (1.40) and (1.48). Additionally,
the bag parameter of the dominant matrix element 〈Q〉 drops out from Γ12/M12

and only the relative size of the remaining bag parameters according to BQ is
considered.

The next-to-leading order corrections to Γ12 in the Λ/mb expansion are known
at tree-level and added to our result [47, 63, 67]. For these terms the same mass
definition is used for all schemes. We choose mPS

b determined from the N3LO MS-PS

relation [64].
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For the numerical analysis we use the input parameters from table 7.1. Furthermore,
the hadronic ∆B = 2 matrix elements are parametrized according to

〈Bq|Q(µ2) |Bq〉 =
8
3
(

Mq
B f q

B
)2 Bq

Q(µ2) ,

〈Bq| Q̃S(µ2) |Bq〉 =
1
3
(

Mq
B f q

B
)2 Bq

Q̃S
(µ2) ,

〈Bq| Ri |Bq〉 =
(

Mq
B f q

B
)2 B′qRi

.

(7.5)

From eq. (3.5) we see that not all bag parameters B′Ri
are independent:

B′q
R̃2

= − B′qR2

B′q
R̃3

= B′qR3
+

1
2

B′qR2
.

(7.6)

Additionally, we use the program RunDec [64] for the QCD running and flavor-
decoupling of quark masses and αs. For a better comparison, we set the renormal-
ization scales, as defined in chapter 4, to the same values for all schemes. We choose

µ0 = 165 GeV , µb = µc = µ1 = 4.2 GeV , µ2 = mOS
b . (7.7)

With table 7.1 we get mOS
b = 4.757 GeV from the two-loop MS-OS relation, mb(4.2 GeV) =

4.156 GeV and mPS
b = 4.479 GeV from the four-loop definition of the PS mass at

µ = mb(mb). We employ mPS
b ≡ mPS

b (µ f ) at the infrared scale µ f = 2 GeV.

Since µ1 is the matching scale for the HQE of Γ12, we utilize it as a measure to
express our restricted knowledge of higher orders in αs. According to the RGE

improved perturbation theory we employ for the ∆B = 2 matching coefficients, the
dependence of Γ12 on µ1 is expected to decrease with higher orders in αs.

7.1 Bs /B s

With the NLO result of M12 [49], we get the following for Bs/Bs:(
∆Γs

∆Ms

)pole

=
(

3.79+0.76
−0.81scale ± 0.11B ± 0.781/mb ± 0.05input

)
× 10−3 , (7.8a)(

∆Γs

∆Ms

)MS

=
(

4.33+0.29
−0.44scale ± 0.12B ± 0.781/mb ± 0.05input

)
× 10−3 , (7.8b)(

∆Γs

∆Ms

)PS

=
(

4.20+0.50
−0.60scale ± 0.12B ± 0.781/mb ± 0.05input

)
× 10−3 . (7.8c)

The uncertainties indicated by “scale” are given by the minimal and maximal values
for the variation of µ1 in the range between 2.5 and 10 GeV. The “B” uncertainty
is propagated from the leading order bag parameters BQ and BQ̃S

. “1/mb” are the
uncertainties stemming from the bag parameters of the power suppressed hadronic
matrix elements. The numbers denoted by “input” include the uncertainties of the
remaining input parameters of table 7.1.
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A non-negligible part of the scaling uncertainty is accounted to the µ1 variation of
the power suppressed Λ/mb terms. Numerically, the shift of the central value and
the effect on the scale uncertainty stemming from Γ1/mb

12 are given by(
∆Γs

∆Ms

)1/mb

=
(
−1.53+0.11

−0.13scale

)
× 10−3 . (7.9)

By multiplying the experimental value of ∆Ms to eq. (7.8), the following results are
obtained for the width differences:

(∆Γs)
pole =

(
6.73+1.34

−1.43scale ± 0.20B ± 1.381/mb ± 0.10input

)
× 10−2 ps−1 ,

(7.10a)

(∆Γs)
MS =

(
7.69+0.52

−0.78scale ± 0.21B ± 1.381/mb ± 0.08input

)
× 10−2 ps−1 ,

(7.10b)

(∆Γs)
PS =

(
7.46+0.89

−1.07scale ± 0.21B ± 1.381/mb ± 0.08input

)
× 10−2 ps−1 .

(7.10c)

For the combination of the results in the MS and PS schemes, we obtain

(∆Γs)
comb = (7.57± 1.63)× 10−2 ps−1 , (7.11)

where the uncertainties of the individual schemes are symmetrized, averaged and
finally combined with the standard deviation from both mean values. The reason
not to consider the pole scheme in eq. (7.11) is explained below.

This result is compared with the experimental determination [153]:

(∆Γs)
exp = (8.2± 0.5)× 10−2 ps−1 . (7.12)

Within the theoretical uncertainties this is in agreement with eq. (7.11).

Similarly, we obtain for the CP asymmetry:

(as
fs)

pole =
(

2.20+0.01
−0.07scale ± 0.01B ± 0.061/mb ± 0.07input

)
× 10−5 , (7.13a)

(as
fs)

MS =
(

2.16+0.09
−0.16scale ± 0.01B ± 0.061/mb ± 0.06input

)
× 10−5 , (7.13b)

(as
fs)

PS =
(

2.22+0.05
−0.12scale ± 0.01B ± 0.061/mb ± 0.07input

)
× 10−5 , (7.13c)

with the combined result of the MS and PS scheme:

(as
fs)

comb = (2.19± 0.14)× 10−5 . (7.14)

For comparison, at the time of writing the experimental world average is given
by [153]

(as
fs)

exp = (−60± 280)× 10−5 . (7.15)

Our determined results lie in all schemes within this error bar.

From eq. (7.8) we see a relatively large difference between the scale uncertainties
in the different schemes. The µ1 dependence of ∆Γs/∆Ms and as

fs are depicted in
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Figure 7.1: The µ1 dependence of ∆Γs/∆Ms (i) and as
fs (ii) is shown in all three schemes.

The gray band marks the region of µ1 which is used to quantify the scale
uncertainties. The scales µb and µc are fixed to 4.2 GeV.
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fig. 7.1. For ∆Γs/∆Ms, all three curves of fig. 7.1i show a monotonous behavior and
the function value bands overlap mostly for µ1 between 2.5 GeV and 10 GeV. The
curves for as

fs in fig. 7.1ii also show an overlap, but the curves have a local maximum
which lies for the pole scheme inside the regarded µ1 variation range.

To further analyze the scheme differences, the different ∆B = 1 contributions to
∆Γs/∆Ms are presented in tables 7.2 to 7.4. The splitting between the orders in αs

shows that for P1,2 × P1,2 the NLO contribution is of comparable size as the NNLO

contribution for the MS and PS scheme. Furthermore, we see a clear suppression
of the penguin contributions in comparison to the current-current ones. Also, the
higher order corrections in the Λ/mb expansion have an effect which is of similar
size as the leading Λ/mb terms at NLO.

The µ1-dependence of ∆Γs/∆Ms according to the different perturbative corrections
with Γ1/mb

12 , µb and µc held fixed are shown in fig. 7.2. In these illustrations one
can see no flattening in the curves when comparing O(αs) and O

(
α2

s
)

effects. This
can also be observed in figs. 7.2i, 7.2iii and 7.2iii where only the contributions of
current-current operators to different orders in αs are considered.

However, varying instead the renormalization scales µ1 = µb = µc simultaneously,
shows the expected flattening in the scale dependence of ∆Γs/∆Ms in the compar-
ison of NLO and NNLO for the case with penguin contributions in figs. 7.3i, 7.3iii
and 7.3v, as well as if only P1,2 × P1,2 are taken into account in figs. 7.3ii, 7.3iv
and 7.3vi.

Concerning the different schemes in which we define the prefactor of Γ12, we see
from figs. 7.2 and 7.3 that the MS scheme leads to the most overlap between the
values of ∆Γs/∆Ms according to different orders in αs. In the PS scheme the bands
are further separated but still closer together than in the pole scheme, where the
bands barely overlap. Especially when estimating the uncertainty due to unknown
corrections in αs with a variation of only µ1, as in fig. 7.2, the pole scheme leads
to a clear underestimation. This is related to the fact that the corrections of the
OS-MS mass relation are large due to the renormalon ambiguity. Thus, the bands
separate further when taking higher orders in αs into account in comparison to other
schemes. We conclude that the pole scheme should be replaced in favor of other
physically motivated mass schemes, such as the PS scheme which is renormalon
free [160]. The differences between the PS and MS schemes are additionally depicted
in fig. 7.4, where the simultaneous µ1 = µb = µc variation is illustrated. In the
latter one can see a clear convergence between both schemes towards the NNLO

corrections.

The numerical values of the evanescent factors e(i)x which are not given in the
literature, i.e. the ones that are not stated in eq. (3.7), have only a small effect on the
NNLO corrections of ∆Γs/∆Ms. For example, if we vary all of them simultaneously
between 0 and 100 the central values of Γ12/M12 change by O(1) percent. For our
analysis we use the choice of eq. (3.103).

Another point of interest is the validity of the z expansion. In table 7.5 we compare
the expansion to O

(
z0) and up to O(z) according to their effects on the relative

size of P1,2 × P1,2 contributions to ∆Γs/∆Ms. One can see that the linear order in z
has an overall effect which is not negligible. For the O

(
α2

s
)

corrections which are
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not known with exact z dependence, the z corrections have a moderate size which
shows that the expansion in z is a useful approximation. For afs this expansion is
more significant since it depends strongly on mc due to the GIM mechanism.

Contribution Combined α0
s αs α2

s α3
s

P1,2 × P1,2 151.% 259.% −70.2% −37.7% –

P1,2 × P3−6 −13.9% −16.1% 2.17% – –

P3−6 × P3−6 2.52% 2.34% 0.187% – –

P1,2 × P8 1.52% – 1.38% 0.139% –

P3−6 × P8 −0.513% – −0.381% −0.132% –

P8 × P8 −0.00508% – – −0.00357% −0.00151%

1/mb −40.3% −40.3% – – –

Table 7.2: Relative sizes of individual ∆Γs/∆Ms contributions to central value in the pole
scheme.

Contribution Combined α0
s αs α2

s α3
s

P1,2 × P1,2 144.% 173.% −13.6% −15.3% –

P1,2 × P3−6 −11.4% −10.7% −0.66% – –

P3−6 × P3−6 1.99% 1.56% 0.427% – –

P1,2 × P8 1.2% – 0.923% 0.274% –

P3−6 × P8 −0.392% – −0.255% −0.138% –

P8 × P8 −0.00385% – – −0.00238% −0.00147%

1/mb −35.3% −35.3% – – –

Table 7.3: Relative sizes of individual ∆Γs/∆Ms contributions to central value in the MS

scheme.

Contribution Combined α0
s αs α2

s α3
s

P1,2 × P1,2 146.% 207.% −37.2% −23.9% –

P1,2 × P3−6 −12.3% −12.8% 0.54% – –

P3−6 × P3−6 2.19% 1.87% 0.321% – –

P1,2 × P8 1.32% – 1.1% 0.214% –

P3−6 × P8 −0.438% – −0.304% −0.134% –

P8 × P8 −0.00432% – – −0.00285% −0.00147%

1/mb −36.3% −36.3% – – –

Table 7.4: Relative sizes of individual ∆Γs/∆Ms contributions to central value in the PS

scheme.

In fig. 7.5 we compare in the MS scheme the determination of ∆Γs from eq. (7.4)
with the ratio ∆Γs/∆Ms. The SM prediction for ∆Ms is shown as well which is given
by the approximate formula

∆Ms ≈ 2|M12| . (7.16)
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α0
s αs α2

s

Scheme z0 z z0 z z0 z

Pole 286.% 260.% −68.% −69.8% −36.6% −37.7%

MS 191.% 174.% −8.56% −13.1% −13.2% −15.3%

PS 229.% 208.% −33.5% −36.8% −21.8% −23.9%

Table 7.5: The relative contributions of P1,2 × P1,2 to ∆Γs/∆Ms are shown in different
schemes and orders in αs. The contributions are shown either to O

(
z0) or up to

O(z). Contributions from Γ1/mb
are not considered.

Since M12 does not depend on the Γ12 matching scale µ1, and has only a neglectable
dependence on µ0 according to ref. [49], no µ-variation is considered for ∆Ms. The
main uncertainty of ∆Ms stems from the input parameter λt, for which the CKM

matrix elements Vts and Vtb have to be inserted. Since only absolute values are
needed, we can assume for the former:

|Vts| = |Vcb| + O
(

λ4
)

, (7.17)

which holds according to the Wolfenstein parameterization of eq. (1.30). The precise
values for |Vtb| and |Vts| are determined using a program by ref. [161] with the CKM

parameters δ and |Vub|/|Vcb| as input as given in table 7.1. Another problem arises
from the tension between different determinations of |Vcb| from either inclusive
or exclusive B-decays. Both are shown for comparison in fig. 7.5. In table 7.1 we
use an updated result for |Vcb|incl. The standard input is referenced as |Vcb|incl =

0.042± 0.0064 [159]. An alternative approach for the determination from inclusive
decays is provided in ref. [162]. We conclude from fig. 7.5 that the determination
of ∆Γs from ∆Γs/∆Ms leads to a more reliable result due the ambivalent Vcb input.
Additionally, the positions of the measured results in this plot show that they agree
the most with the inclusive determination of Vcb.

7.2 Bd /Bd

For the Bd/Bd system the same arguments hold that we discussed for Bs/Bs. The
only differences between both predictions are the input values for λu/λt, the bag
parameter Bi, the decay constant fB and the averaged meson mass MB. Since
some Λ/mb suppressed matrix elements are proportional to mq/mb, where q is the
spectator quark flavor, they can be neglected for Bd. With the input of table 7.1 we
obtain from Γd

12/Md
12 the width difference

(∆Γd)
pole =

(
1.92+0.40

−0.41scale ± 0.06B ± 0.401/mb ± 0.03input

)
× 10−3 ps−1 ,

(7.18a)

(∆Γd)
MS =

(
2.19+0.17

−0.23scale ± 0.06B ± 0.401/mb ± 0.02input

)
× 10−3 ps−1 ,

(7.18b)

(∆Γd)
PS =

(
2.13+0.27

−0.31scale ± 0.06B ± 0.401/mb ± 0.03input

)
× 10−3 ps−1 ,

(7.18c)
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and the CP asymmetry(
ad

fs

)pole
=
(
−5.06+0.17

−0.01scale ± 0.02B ± 0.141/mb ± 0.15input

)
× 10−4 , (7.19a)(

ad
fs

)MS
=
(
−4.97+0.36

−0.2 scale ± 0.02B ± 0.141/mb ± 0.15input

)
× 10−4 , (7.19b)(

ad
fs

)PS
=
(
−5.11+0.28

−0.11scale ± 0.02B ± 0.141/mb ± 0.16input

)
× 10−4 . (7.19c)

Since the mentioned differences to Bs are either GIM suppressed or cancel substan-
tially in the ratio ∆Γ/∆M, we can alternatively use the following to estimate ∆Γd:

∆Γd

∆Md
≈ ∆Γs

∆Ms
. (7.20)

From this assumption, we get

(∆Γd)
pole
alt =

(
1.92+0.38

−0.41scale ± 0.06B ± 0.391/mb ± 0.03input

)
× 10−3 ps−1 ,

(7.21a)

(∆Γd)
MS
alt =

(
2.19+0.15

−0.22scale ± 0.06B ± 0.391/mb ± 0.02input

)
× 10−3 ps−1 ,

(7.21b)

(∆Γd)
PS
alt =

(
2.13+0.25

−0.31scale ± 0.06B ± 0.391/mb ± 0.03input

)
× 10−3 ps−1 ,

(7.21c)

where the mean values as well as the uncertainties are comparable to eq. (7.18).

For the combination of the results of eqs. (7.18) and (7.19) in the MS and PS schemes,
we obtain

(∆Γd)
comb = (2.16± 0.47)× 10−3 ps−1 , (7.22)(

ad
fs

)comb
= (−5.04± 0.33)× 10−4 . (7.23)

The according determinations from experiment are given by [69, 153]

(∆Γd)
exp = (−1.32± 6.58)× 10−3 ps−1 , (7.24)

(ad
fs)

exp = (−21± 17)× 10−4 . (7.25)

Due to large experimental error, no qualitative statement for ∆Γd in comparison to
the SM prediction can be made except that they agree within the uncertainty. The
same holds for ad

fs.
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Figure 7.2: The µ1 dependence of ∆Γs/∆Ms is presented with the different corrections in
αs for the pole, MS and PS scheme. For the left-hand side all CMM operators
are considered, whereas on the right-hand side the penguins contributions are
neglected. For these plots the CMM Wilson coefficients are expanded in αs and
only the terms up to α0

s are kept for LO, α1
s for NLO and α2

s for NNLO. The Λ/mb
terms are not varied and equal in each scheme. The scales µb and µc are fixed to
4.2 GeV.
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Figure 7.3: The scale variations between the different orders in αs show a significant differ-
ence when the scales µ1 = µb = µc are varied simultaneously in comparison to
fig. 7.2.
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is held
fixed.



7.2 Bd /Bd 119

0 5 10 15 20 25
Δ𝑀𝑠 [ps−1]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ΔΓ
𝑠

[p
s−

1 ]

MS scheme

Δ𝑀theo,incl
𝑠

Δ𝑀theo,excl
𝑠

ΔΓtheo,incl
𝑠

ΔΓtheo,excl
𝑠 exp

( ΔΓ𝑠
Δ𝑀𝑠

)
theo
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visualization.





8
C O N C L U S I O N A N D O U T L O O K

In this work, we computed new predictions for the width difference ∆Γ and the
flavor-specific CP-asymmetry afs of neutral Bs- and Bd-mesons. For the ∆B = 1
side of the matching calculation we used the CMM basis which is a novelty in
the determination of ∆Γ and afs. Furthermore, the ∆B = 2 basis was extended
by several new evanescent operators. We computed the corresponding ∆B = 2
renormalization matrix and specified the RGE running of the effective operators or
Wilson coefficients together with the two-loop ADM. All results were computed with
unspecified evanescent parameters e(i)x which could provide a future crosscheck
for non-perturbative calculations of the hadronic ∆B = 2 operator matrix elements.
Other novel results of this work are the finite renormalization factors αi which give
the two-loop matrix element of R0 the correct power scaling of Λ/mb. These factors
are a necessary input for the determination of the bag parameter of R0 in lattice or
sum rule computations.

For the calculation of ∆Γ and afs we took contributions of penguin operators
P1−6,8 into account which describe subleading effects due to their numerically
suppressed Wilson coefficients. With them, we completed the calculation of the
order αs corrections at leading order in the HQE. Furthermore, contributions at NNLO

were computed including two insertions of current-current operators P1,2 which are
expected to be the numerically dominant terms of that order. Additionally, further
one-loop and two-loop corrections including the chromomagnetic penguin operator
P8 are presented which are formally NNLO and N3LO. Our results were computed up
to the second power in mc using a naive integrand expansion where it is applicable
and gives the same result as the asymptotic expansion. Although this expansion
leads to small corrections, they are needed for afs which is sensitive to mc due to
the GIM suppression. Consecutive calculations may include higher orders in mc to
improve the predictions of ∆Γ and especially afs. We also showed that the NNLO

corrections to ∆Γ are of comparable size as the NLO ones which is due to the small
size of the latter. This leads to the conclusion that further contributions should
be considered, including penguin effects at NNLO and the presumably dominant
current-current effects at N3LO. We have also seen that the power suppressed Λ/mb
corrections are of the same magnitude as NLO contributions of the leading powers
in Λ/mb. Thus, future calculations should consider αs corrections to Γ1/mb as well.

We employed a plethora of tools to handle the O
(
105) Feynman diagrams which

occurred in the framework of this work. One of them is tapir which was developed
in the light of the problems that emerged during the presented calculations. We also
encountered the problem of tensor reduction and explained the general idea behind
the projection ansatz. During the calculation of Γ12 we reached the limitations of this
approach and encountered them with technical finesse. However, future projects
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have to invest more work in pushing these limits further or using a different tensor
reduction method.

Our ambition to reduce the theory uncertainties of ∆Γs down to the size of the
experimental one has not yet succeeded. However, we improved on the current
phenomenological results and laid the groundwork for further calculations. For the
observables ∆Γd, as

fs and ad
fs the uncertainties of the SM predictions are below the

ones of experimental determinations. This provides further motivation for more
precise experimental results.
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A
R E N O R M A L I Z AT I O N M AT R I X O F T H E C M M B A S I S

In this appendix, we describe the renormalization of the CMM basis of eqs. (2.26),
(2.27) and (2.16) according to the results of refs. [75, 140], and extend it to the
current-current operators Puu

1,2 , Puc
1,2 and Pcu

1,2 which are not stated in the literature.
However, their renormalization constants can be reconstructed from the known ones
if the renormalization matrix is extended, and the requirement that only operators
can mix which describe interactions of the same particles. This means that Pcu

1,2 and
Puc

1,2 operators do not mix with Pcc
1,2, Puu

1,2 or any penguin operator. For simplicity, we
refer here to the renormalization of the Wilson coefficients according to

~C0
i = ~CjZji , with Z =

(
ZQQ ZQE

ZEQ ZEE

)
. (A.1)

The indices i and j can describe either a physical operator,

P ≡ {Pcc
1 , Pcc

2 , Pcu
1 , Pcu

2 , Puc
1 , Puc

2 , Puu
1 , Puu

2 , P3, P4, P5, P6, P8} , (A.2)

or an evanescent operator

E ≡ {E(1),cc
1 , E(1),cc

2 , E(1),cu
1 , E(1),cu

2 , E(1),uc
1 , E(1),uc

2 , E(1),uu
1 ,

E(1),uu
2 , E(1)

3 , E(1)
4 , E(2),cc

1 , E(2),cc
2 , E(2),cu

1 , E(2),cu
2 , E(2),uc

1 ,

E(2),uc
2 , E(2),uu

1 , E(2),uu
2 , E(2)

3 , E(2)
4 } ,

(A.3)

in the given order. Note that we introduce additional evanescent “uu”, “uc” and
“cu” operators which are in accordance to the “cc” operators. We use the same
parameterization as eq. (2.40).

The renormalization among Wilson coefficients of physical operators up to O
(
α2

s
)

is given by

Z(1,1)
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The variable n f denotes the number of active quark flavors. The asterisk “∗” in-
dicates unknown entries. In the case of eqs. (A.5) and (A.6) the only unspecified
renormalization constants are the ones which mix the bare C8 into other coefficients
at O

(
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)
. Due to our definition of P8 this effect is O

(
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)
. Note that our P8 definition

is different from the one in ref. [140].
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−
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−
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                             .
(A
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The renormalization matrix ZEQ includes finite terms which are already present at
O
(
α0

s
)
, but describe O(αs) effects due to P8. The only non-vanishing contributions

are given by

Z(0,0)

E(1)
3 P8

= −64 , Z(0,0)

E(1)
4 P8

=
32
3

,

Z(0,0)

E(2)
3 P8

= −512 , Z(0,0)

E(2)
4 P8

=
256
3

.
(A.10)

The contributions at O(αs) are partially unknown. They are given by

Z(1,0)
EQ =



64 32
3 0 0 0 0 0 0 0 4

9 0 0 − 761
162

48 −64 0 0 0 0 0 0 0 − 8
3 0 0 − 454

27

0 0 64 32
3 0 0 0 0 0 0 0 0 0

0 0 48 −64 0 0 0 0 0 0 0 0 0

0 0 0 0 64 32
3 0 0 0 0 0 0 0

0 0 0 0 48 −64 0 0 0 0 0 0 0

0 0 0 0 0 0 64 32
3 0 4

9 0 0 − 761
162

0 0 0 0 0 0 48 −64 0 − 8
3 0 0 − 454

27

0 0 0 0 0 0 0 0 8960
3 −2432 − 1280

3 320 −180n f − 15824
3

0 0 0 0 0 0 0 0 − 4480
9 −40n f − 8864

3
640

9
1280

3
2116

9 −
1165n f

18

∗ ∗ 0 0 0 0 0 0 0 16 0 0 ∗
∗ ∗ 0 0 0 0 0 0 0 −96 0 0 ∗
0 0 ∗ ∗ 0 0 0 0 0 0 0 0 0

0 0 ∗ ∗ 0 0 0 0 0 0 0 0 0

0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0

0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 16 0 0 ∗
0 0 0 0 0 0 ∗ ∗ 0 −96 0 0 ∗
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗



.

(A.11)

All entries of Z(1,1)
EQ are either zero or unknown, except for

Z(1,1)

E(1)
3 P8

=
3616

3
−

128n f

3
, Z(1,1)

E(1)
4 P8

=
64n f

9
− 80

9
. (A.12)

The O
(
α2

s
)

terms of ZEQ are not known as well.
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The renormalization matrix which mixes the Wilson coefficients of evanescent
operators among themselves is also only partially known. The O(αs) terms read

Z(1,1)
EE =



−7 − 4
3 0 0 0 0 0 0 0 0 5

12
2
9 0 0 0 0 0 0 0 0

−6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 −7 − 4
3 0 0 0 0 0 0 0 0 5

12
2
9 0 0 0 0 0 0

0 0 −6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 −7 − 4
3 0 0 0 0 0 0 0 0 5

12
2
9 0 0 0 0

0 0 0 0 −6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 −7 − 4
3 0 0 0 0 0 0 0 0 5

12
2
9 0 0

0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 − 64
3 −14 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 − 28
9

13
3 0 0 0 0 0 0 0 0 2

9
5
12

∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0

0 0 ∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0

0 0 ∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0

0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0

0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗ 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗ 0 0

0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 ∗ ∗



.

(A.13)

The entries of Z(2,i)
EE are throughout unknown.



B
F I E R Z I D E N T I T I E S

In this appendix, we recall a simple way to derive Fierz identities in four space-time
dimensions as it is stated in ref. [163]. The bilinear covariants basis can be stated
by several combinations of independent basis vectors. Instead of using the ones of
eq. (2.21), we could as well choose the following 16 basis vectors:

ΓA ∈
{

PR, PL, PRγµ, PLγµ, σµν

}
, (B.1)

with PR/L = (1± γ5)/2 and σµν = i[γµ, γν]/2.

The fact that eq. (B.1) is a closed basis can be used to reduce any spinor space tensor
build out of Dirac matrices. First, one has to define a scalar product between the
ΓA. The necessary dual vectors ΓA for the scalar product are in general different
from the ΓA, and have to fulfill the orthogonality relation of

Tr4

(
ΓAΓB

)
!
= 2δAB . (B.2)

Note that in eq. (B.2) no sum over Lorentz indices is applied. Thus, the dual basis
of eq. (B.1) is given by

ΓA ∈
{

PR, PL, PLγµ, PRγµ,
1
2

σµν

}
. (B.3)

Using the completeness of eq. (B.1), we can write a general bilinear term as

X = xAΓA , with xA =
1
2

Tr4(XΓA) , (B.4)

where we assume Einstein’s summation convention.

By inserting eq. (B.2) into eq. (B.4), a completeness relation can be found according
to

Xij =
1
2 ∑

k,l
XklΓA,lkΓA

ij

⇔ ∑
α,β

Xαβδαiδβj =
1
2 ∑

α,β
Xαβ ∑

k,l
δαkδβlΓA,lkΓA

ij

⇒ δαiδβj =
1
2

ΓA,βαΓA
ij .

(B.5)

The last line follows by comparing the coefficients of every matrix element Xαβ.

Thus, for a combination of two Dirac chains we get(
X
)

ij

(
Y
)

kl
= η

1
2

(
XΓAY

)
il

(
ΓA
)

kj

= η
1
4

Tr4[XΓAYΓB]

(
ΓB
)

il

(
ΓA
)

kj
.

(B.6)
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We introduce the parameter η to account for a different treatment of fermion
operators as anti-commuting Graßmann numbers (η = −1), and commuting spinors
which originate from Feynman rules (η = 1).

As an example, we prove eqs. (3.2b) and (3.2c):

4 (σµνPL)ij
(
σµνPL

)
kl = − Tr4

[
σµνσµνPL

]
(PL)il (PL)kj

− 1
2

Tr4
[
σµνσρσσµνPL

]
(PL)il(σ

ρσ)kj

− 1
2

Tr4
[
σµνσµνσρσPL

]
(σρσ)il(PL)kj

− 1
4

Tr4
[
σµνσαβσµνσρσPL

]
(σρσ)il(σ

αβ)kj

= − 24 (PL)il (PL)kj − 2(−δραδσβ

+ δρβδσα − ερσαβ)(σ
ρσ)il(σ

αβ)kj .

(B.7)

To reduce this further, let us examine the terms on the right-hand side of eqs. (3.2b)
and (3.2c):

4 (PL)ij (PL)kl = − Tr4[PL] (PL)il (PL)kj

− 1
4

Tr4
[
σαβσρσPL

]
(σρσ)il(σ

αβ)kj

= − 2 (PL)il (PL)kj +
1
2
(−δραδσβ

− δρβδσα − ερσαβ)(σ
ρσ)il(σ

αβ)kj .

(B.8)

Combining eqs. (B.7) and (B.8) and putting the expressions between the correspond-
ing fermion operators gives

4 (σµνPL)ij
(
σµνPL

)
kl + 16 (PL)ij (PL)kl = 32 (PL)il (PL)kj

⇒ QT + 4QS = −8Q̃S .
(B.9)

For spinors, the right-hand side would have a different sign.



C
E VA N E S C E N C E O F R 0

As stated in eq. (3.4), a certain combination of the operators Q, QS and Q̃S is
of higher order in the Λ/mb expansion. In this section, we prove the following
four-dimensional identity with respect to possible implications in dimensional
regularization:

〈R0〉tree =
1
2
〈Q〉tree + 〈QS〉tree + 〈Q̃S〉

tree
= O

(
Λ
mb

)
, (C.1)

which holds up to corrections of order αs.

Equation (C.1) can only be proven with the usage of explicit four-dimensional
relations. In dimensional regularization the power suppression only applies to
the O

(
ε0) term. The O(ε) remainder is still defined at the leading order in the

Λ/mb. Thus, the usage of four-dimensional identities is only allowed by introducing
evanescent operators in order to define the scaling of R0 appropriately.

We start with a four-dimensional Fierz identity and resolve it with the relations
derived in appendix B. It is given by

(γµPL)ij (γ
νPL)kl

d=4
= − 1

4
Tr4(γ

µPLγρPRγνPLγτPR) (γτPL)il
(
γρPL

)
kj

= − 1
8

[
Tr4(γ

µγργνγτ) + Tr4(γ
µγργνγτγ5)

]
× (γτPL)il

(
γρPL

)
kj

= − 1
2
(γνPL)il (γ

µPL)kj −
1
2
(γµPL)il (γ

νPL)kj

+
1
2

gµν (γρPL)il
(
γρPL

)
kj

+
i
2

εµρντ (γτPL)il
(
γρPL

)
kj .

(C.2)

Furthermore, the equations of motion are needed which hold exactly in d dimen-
sions. Since we discard terms of higher orders in Λ/mb and assume ms � mb, we
can use the Dirac equation in the ∆B = 2 Hamiltonian as

ib̄
←
/∂ = ib̄

←
/D +O(m0

b) = −mbb̄ +O(m0
b) ,

i/∂s = O(m0
b) .

(C.3)

Thus, only the leading kinematic term of the b-quark is considered.

By neglecting total derivatives we find the following relations:

(b̄
←
/∂ PLs)(b̄

←
/∂ PLs) = −m2

b(b̄PLs)(b̄PLs) +O(mb) (C.4a)(
(∂µb̄)γνPLs

) (
(∂νb̄)γµPLs

)
= −m2

b
(
b̄PLs

) (
b̄PLs

)
+O(mb) (C.4b)
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(
(∂µb̄)γνPLs

) (
(∂µb̄)γνPLs

)
= −

(
b̄γνPLs

) (
(�b̄)γνPLs

)
= m2

b
(
b̄γνPLs

) (
b̄γνPLs

)
+O(mb) .

(C.4c)

In eq. (C.4c) the analogy of eq. (C.3) for the Klein-Gordon equation has been used.

It is now possible to rewrite QS in d dimensions according to

QS =
(
b̄iPLsi

) (
b̄jPLsj

)
= − 1

m2
b

(
b̄i

←
/∂ PLsi

)(
b̄j

←
/∂ PLsj

)
+O(1/mb)

(C.2)
=

1
2m2

b

[(
b̄i

←
/∂ PLsj

)(
b̄j

←
/∂ PLsi

)
+
(
(∂µb̄i)γ

νPLsj
) (

(∂νb̄j)γµPLsi
)

−
(
(∂µb̄i)γ

νPLsj
) (

(∂µb̄j)γνPLsi
)

− iε̃µρντ
(
(∂µb̄i)γτPLsj

) (
(∂νb̄j)γρPLsi

)]
+ E0 +O(1/mb)

(C.4)
= − Q̃S −

1
2

Q̃− i
2m2

b
ε̃µρντ

(
(∂µb̄i)γτPLsj

) (
(∂νb̄j)γρPLsi

)
+ E0 +O(

1
mb

) .

(C.5)

In eq. (C.5) we introduce the evanescent operator E0. It is defined as the difference
between the relation which is derived by the four-dimensional eq. (C.2).

The object ε̃µρντ is formally defined in dimensional regularization as

ε̃µρντ ≡ i
4

Trd(γ
µγργνγτγ5) , (C.6)

which is total antisymmetric. In our employed NDR scheme, this term must not be
evaluated since it leads to ambiguous results. Nevertheless, if only its antisymmetric
property is taken into account, the usage of eq. (C.6) is of no concern. The factor of
ε̃µρντ in eq. (C.5) is symmetric under the exchange of the Lorentz indices µ and ν.
This can be seen from integration by parts relation and using Schwarz’s theorem to
allow a symmetric interchange of the derivatives. Hence, the term vanishes, and we
are left with the evanescent operator E0 which is given by

E0 =
1
2

Q̃ + QS + Q̃S . (C.7)

However, this does not provide any further information. The only difference be-
tween E0 and e.g. E(1)

1 of eq. (3.6a) arises from the fact that E0 is only evanescent
in the leading order in 1/mb, whereas the evanescence of E(1)

1 follows solely from
Fierz symmetry.

For eq. (C.1) it follows,

〈R0〉tree =
1
2
〈Q〉tree + 〈QS〉tree + 〈Q̃S〉

tree

= 〈E0〉 −
1
2
〈E(1)

1 〉+O
(

Λ
mb

)
,

(C.8)

where leading term in Λ/mb manifestly vanishes in four dimensions.



D
C A L C U L AT I O N S E T U P

In this appendix, we summarize the software and the employed methods for the
evaluation of Feynman diagrams which is used in the context of this work. In
fig. D.1 a flowchart is presented which contains the various programs used for this
purpose.

d.1 program toolchain

The diagram generation according to the allowed Feynman rules is performed with
the program qgraf [127]. For this, we specify which particles are present in our
theory and if they are fermions or bosons. It is also necessary to state the interactions
of the particles, such that qgraf can build Feynman graph representations of the
regarded amplitude. A graph consists of edges, corresponding to the particle
propagators, and vertices for particle interactions. qgraf also offers filter options
to restrain diagram classes. With the option onshell, for example, it is possible to
generate only diagrams without self-energy corrections on external legs, so-called
amputated diagrams. In addition to the graph representation, the program provides
the symmetry factor and the relative sign for each diagram.

The next program takes the generated graphs of qgraf and inserts the corresponding
Feynman rules to build an amplitude. This task is accomplished with tapir [121]
which is further described in appendix D.2. The output is provided as processable
FORM [128] code.

The next program is exp [118, 119] which is used to map momenta of a Feynman
graph onto a set of predefined topologies. The result is a makefile which is the
entry point for the evaluation setup for all individual graphs, called “calc”. In the
calc setup the programs MATAD [102] and MINCER [120] are included to compute
massive tadpole- and massless propagator integrals up to three-loop order. If other
integral classes are considered, one can use tapir to generate FORM scripts which
combine the scalar factors of the integral to an integral family function of the form

I (a1, . . . , an) =
∫

. . .
∫ ddk1 . . . ddkl

(2π)ld

n

∏
i=1

1
Dai

i
. (D.1)

The set {ai} are denoted as indices to describe different members of the family I.
The Di are denominator functions which depend on the masses, external- and loop
momenta.

We also use the FORM program color [164] in calc. It enables the computation of
group theory factors in various gauge groups. With the help of calc, it is possible to
express our results in terms of Casimir operators of the QCD gauge group SUc(nc).
However, the ∆B = 2 operators of chapter 3 are not defined in a distinct group
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FORTRAN

C++

C
+
+

FORM

Nogueira 1993

Gerlach, Herren, Lang 2022

Harlander, Seidensticker,
Steinhauser 1998

Ritbergen, Schellekens,
Vermaseren 1999

qgraf

tapir

exp

color

[

[

[

[

[

[

[

[

P
Y
T
H
O
N

Larin,Tkachov,Vermaseren
1991

MINCER

[[

Special
integral
families Steinhauser 2000

MATAD

[ [

MATHEMATICA

A.V. Smirnov, Chukharev
2019 Lee 2013

FIRE LiteRed

[ [[ [

CALC

Figure D.1: Our toolchain uses a variety of different programs. Additionally, there are
several unmentioned auxiliary scripts which connect the main programs.
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representation, like the ∆B = 1 operators. Hence, the matching results can only be
stated in terms of the number of colors, nc.

d.2 the program tapir

As described in appendix D.1, qgraf is the first program we use to generate all
Feynman diagrams of the according process. For several subsequent steps we use
the program tapir [121] which stands for Topologies, Amplitudes, Partial fraction
decomposition and Input for Reduction. tapir is build on the main functionalities
of the program q2e [118, 119] but extends them in many ways. To explain all features
and to set it in context for future applications, we describe the procedure for the
computation of the numerically dominating three-loop contributions to Γ12 with a
non-vanishing c-quark mass. Thus, we consider the process b(q1)s(q2)→ s(q3)b(q4)

with q1 = q4 = (mb,~0)T and q2 = q3 = 0 in the ∆B = 1 theory of chapter 2 with
two current-current operator insertions.

The first problem arises from the fact that diagrams such as shown in fig. D.2i
contribute which have self-energy corrections on external legs. To account for
these diagrams, tapir provides diagram filters to complement the ones of qgraf.
The latter generates with the option offshell only diagrams with self-energy
corrections on the external legs, but also including the ones which do not change
the flavor of the particle. With respect of the LSZ reduction formula [115], such
diagrams must not be taken into account for the calculation of Γ12. The option
self_energy_bridge_mixing of tapir searches in the topological structure of the
diagram for so-called bridges, which denote edges of a graph which do not belong to
a loop. If two or more bridges are found, it is checked if all lines between two bridges
are 1PI. If this is the case, then a self-energy sub-diagram is found. Additionally,
when the two regarded bridges belong to different particle types the filter applies.
The same is done for the option external_self_energy_bridge_mixing with the
additional restriction that one of the bridges must be an external line. Applying
this filter to the output of qgraf reduces the number of three-loop diagrams from
O(32000) to O(27000).

After filtering the diagrams, it is often advantageous to combine different diagrams
according to their topological structure. Thus, the problem size reduces substantially
and scalar integral families can be expressed more easily. For this purpose, tapir
includes routines to analyze and manipulate the topology of a diagram as well. As
a graph topology we denote the general graph information, i.e. the set of edges ei
which are given by the set of vertices they connect, and the according edge colors
which corresponds to the masses of the propagators. In Feynman graphs there are
also external edges which carry the external momenta.

One way to express a Feynman graph is given by the so-called Nickel notation [165,
166] which consists of two parts. For the example topology of fig. D.2ii, it is given
by

11ee|2|e3|554|5e|| : Mc_Mc_q1_q2||q3_|Mc_Mc_Mb|_q4|| .
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(i) (ii)

(iii)

Figure D.2: The example three-loop diagram (i) has a self-energy correction on an external
line. Its graph topology is shown in (ii), whereas in (iii) we have applied the
topology simplifications of tapir. Dashed lines denoted massless edges, solid
bold ones have the mass mb and solid thin lines stand for mc.

The first part specifies the topological structure of the graph in which each entry
describes a vertex and its connection to other vertices. The different entries are
separated by a vertical line “|” and describe the vertex of the number at which
position it is stated in the notation. For example, the first entry describes the vertex
which is labeled as “0”. It is connected to vertex “1” via two edges and to two
external vertices which are denoted by “e” in the notation. For the subsequent
entries the already mentioned connections must not be repeated. Thus, it is sufficient
for the entry of vertex “1” to describe only its connection to vertex “2” et cetera.
The second part of the Nickel notation defines the coloring of the edges of the first
entry. Massive lines are represented by the name of their mass, massless lines are
kept empty, and external lines are distinguished by their momenta. The colorings
are separated by an underscore “_”.

Since the vertices can be numbered in different ways, this notation is not unique. To
compare topologies of different graphs, we iterate though all possible enumerations
and extract the Nickel notation with the least lexicographic order. This unique label
is called Nickel index. For the topology of fig. D.2ii, the Nickel index is given by

1123|2|e|e4|55|ee| : Mc_Mc_Mb_||q4|q3_|Mc_Mc|q1_q2| .

As mentioned, tapir includes additional topology manipulation routines which
simplify the topological structure without changing the according integral family.
For example, since bridges are not part of a loop, their corresponding propagators
are loop-momentum independent, and we can remove them from the graph topol-
ogy. The same is true for auxiliary particles which are used to express complex
vertices, e.g. the four-gluon vertex, in way which is better suited for automatized
computations. Also, the external s-lines can be removed since their momenta are set
to zero. With these simplifications, the topology of our example diagram becomes
as shown in fig. D.2iii.

By computing all Nickel indices of the considered three-loop diagrams with the
mentioned simplifications, we conclude with O(1000) different topologies. tapir
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is capable of generating so-called “topology files” which combine scalar integral
expressions in the calc setup to scalar integral family functions. In general these
families have linear dependent denominators. To apply an IBP reduction we have
to perform a partial fraction decomposition first. tapir does this step according to
the procedure described in appendix D.3. In our three-loop example, this step is
not necessary if the option topo_remove_duplicate_lines is used which removes
duplicate lines with the same momentum and mass.

After applying partial fraction decomposition, several smaller integral families
emerge which have in general no graph representation. To be able to reduce the
number of these analytic objects, the strategy according ref. [167] is employed.
It starts by computing the Symanzik polynomials U and F of the family which
is described in more detail in appendix D.5. Then, a renaming of the Feynman
parameters is applied in such a way that the polynomial U ×F is lexicographically
minimal. The so found polynomial uniquely characterizes an integral family such
that it can be used to identify a priori different families. However, symmetries in
an integral family lead to equal lexicographic Feynman parameter labels without
an equal U ×F . Thus, when comparing different polynomials, one has to iterate
over all found symmetries. This symmetry handling is characteristic for the Light
Pak algorithm [142]. The algebraic minimization routine of tapir utilizes the algebra
system sympy [168]. Unfortunately, the reduction of the O(1000) integral families is
too involved for the current implementation of the minimization algorithm. Never-
theless, the output for these families can be used as a direct input for subsequent
programs such as FIRE [122].

To build amplitudes from the qgraf output, tapir also provides the insertion of
Feynman rules to a FORM readable expression. The according rules can either be
build manually or by using FeynRules [169] with the according UFO [170] format.
The latter can be processed by tapir to get proper FORM expressions.

To make use of all these routines, tapir supports several output formats. For
example, the diagram and topology information is provided in such a way that it
serves as an input for exp.

d.3 partial fraction decomposition

After expressing the Feynman diagrams in terms of integral families, several reduc-
tion steps follow to simplify the problem. In general, the denominators Di are linear
dependent which can be reduced using partial fraction decomposition. Diagram
families with linear independent denominators are required to apply the reduction
step described in appendix D.4. We illustrate the procedure with a simple example
which is given by the integral family

I (a1, a2) =
∫ ddk

(2π)d
1

[k2 −m2
1]

a1 [k2 −m2
2]

a2
, (D.2)

with a1, a2 ∈ Z+. Obviously, the following relation between the denominators holds:

m2
2 −m2

1 = (k2 −m2
1)− (k2 −m2

2) . (D.3)
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Since the left-hand side does not dependent on the loop momentum, eq. (D.3) can
be used to gradually decrease the indices of I1(a1, a2) by multiplying the ratio of
the right- and the left-hand side. We get

I (a1, a2) =
1

m2
2 −m2

1

∫ ddk
(2π)d

(
1

[k2 −m2
1]

a1−1[k2 −m2
2]

a2

− 1
[k2 −m2

1]
a1 [k2 −m2

2]
a2−1

)

=
1

m2
2 −m2

1

[
I(a1 − 1, a2)− I(a1, a2 − 1)

]
.

(D.4)

A subsequent application of this rule leads to a reduction into two new integral
families:

I1 (a1) =
∫ ddk

(2π)d
1

[k2 −m2
1]

a1
,

I2 (a1) =
∫ ddk

(2π)d
1

[k2 −m2
2]

a1
.

(D.5)

Additionally, the reduction is also applicable for a1 < 0 < a2 or a1 > 0 > a2. In
these cases, eq. (D.4) can be restated to increase the appropriate index.

If more than one relation can be found between the denominator functions, one
has to find a way to subsequently remove the denominators without re-inserting
another one that was already canceled out. For this purpose, we employ the idea of
ref. [167] in tapir which states the usage of Gröbner bases [171] for partial fraction
decomposition. In principle, the Gröbner basis of the denominator relations directly
gives the symbolic substitutions in the correct order to reduce any member of the
integral family to subsequent families.

Let us exemplify this idea with the following integral family:

I (a1, a2, a3) =
∫ ddk

(2π)d
1

[k2]a1 [k2 −m2
1]

a2 [k2 −m2
2]

a3

=
∫ ddk

(2π)d
1

Da1
1 Da2

2 Da3
3

,

(D.6)

where we have a1, a2, a3 ∈ Z. As an input we need a complete basis of polynomials
with the denominator functions Di as algebraic variables. To also account for
numerators, we treat the reciprocal of the denominator function D̃i ≡ 1/Di as
an independent variable as well. As polynomial functions, we construct algebraic
relations which are equal to zero, such as

K = {D1D̃1 − 1, D2D̃2 − 1, D3D̃3 − 1, D1 − D2 −m2
1, D1 − D3 −m2

2} . (D.7)

The Gröbner basis of K can be determined with the Buchberger algorithm [171]. In
tapir we utilize an improved version of this algorithm which is implemented in
sympy [172]. The result is given by a reduced polynomial basis expressed in a similar
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form one would get from Gaussian elimination. This basis can be then restated as
substitution rules. For K we get

D1 = D3 + m2
2 ,

D2 = D3 −m2
1 + m2

2 ,

D3

D1
= 1− m2

2
D1

,

D3

D2
= 1 +

m2
1 −m2

2
D2

,

1
D1D2

=
1

m2
1

(
1

D2
− 1

D1

)
,

1
D2D3

=
1

m2
1 −m2

2

(
1

D2
− 1

D3

)
,

1
D1D3

=
1

m2
2

(
1

D3
− 1

D1

)
.

(D.8)

By repeated application of eq. (D.8), every member of I can be reduced to subfami-
lies with only one remaining denominator function.

d.4 integration by parts

If all diagrams are expressed in terms of integral families with linear independent
denominators, the commonly used next step is to apply an IBP reduction. The
general idea to use this kind relations for Feynman integrals dates back to ref. [173].

A simple example is provided if we take the following integral family into account:

I(a1, a2) =
∫ ddk

(2π)d
1

[k2]a1 [k2 − 2k·q]a2
. (D.9)

An IBP relation can be derived from the requirement that the integrand evaluates to
zero at the boundary. Hence, also a total derivative under the integral leads to zero,
as in

0 =
∫ ddk

(2π)d
∂

∂kµ
·kµ

1
[k2]a1 [k2 − 2k·q]a2

= (−2a1 − a2 + d)I(a1, a2)− a2 I(a1 − 1, a2 + 1) .

(D.10)

A second relation can be found by changing the differentiation according to

0 =
∫ ddk

(2π)d qµ ·
∂

∂kµ

1
[k2]a1 [k2 − 2k·q]a2

= 2a2q2 I(a1, a2 + 1)− a2 I(a1 − 1, a2 + 1)

+ (a2 − a1)I(a1, a2) + a1 I(a1 + 1, a2 − 1) .

(D.11)

If we combine eqs. (D.10) and (D.11) and shift the indices, we get

I(a1, a2) = − (a1 + a2 − d)(2(a1 + a2 − 1)− d)
2(a2 − 1)q2(2a1 + a2 − d)

I(a1, a2 − 1) . (D.12)
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This can be used to iteratively move the second index to a2 = 1, except for a2 ≤ 1
in which the integral vanishes. Inserting this result in eq. (D.10) gives

I(a1, 1) =
a1 − d + 1

2q2(2a1 − d + 1)
I(a1 − 1, 1) , (D.13)

which can be used to move the first index to a1 = 0. Thus, every member of the
family I can be expressed in terms of the master integral I(0, 1).

In multi-loop calculations IBP relations are in general more complicated, and solving
the difference equations in a closed form is very time-consuming. A solution to this
problem is provided by Laporta’s algorithm [174]. It became the standard to reduce
scalar Feynman integrals to a linear combination of a finite set of master integrals.

For our purposes we use the program FIRE [122], which makes use of LiteRed [175]
to identify and utilize symmetries of integral families. FIRE also offers a function to
find identical master integrals of different families.

After applying the IBP reduction we are left with a small amount of master integrals
in comparison to the original size of the problem. The further treatment of master
integrals is the topic of the next section.

d.5 computation of master integrals

Over the past decades, the evaluation of Feynman integrals became an art form in
itself, leading to a vast spectrum of ideas and computer programs (see e.g. ref. [176]
for an extensive overview). Here, we focus only on the methods used in the context
of this work.

An important representation of a scalar Feynman integral I is via Feynman parame-
ters xi. We get (see e.g. ref. [110])

I(a1, . . . , an) =
il

(4π)dl/2

Γ
(

a− ld
2

)
∏
i

Γ(ai)

∞∫
0

. . .
∞∫

0

(
n

∏
i=1

dxi xai−1
i

)

× δ

(
n

∑
i=1

xi − 1

)
U a− (l+1)d

2

F a− ld
2

,

(D.14)

with l denoting the number of loops, and

a =
n

∑
i=1

ai . (D.15)

U and F are the so-called graph- or Symanzik-polynomials. They can be computed
in various ways from the momentum representation (see e.g. ref. [177] for an
overview).

A straightforward way to compute U and F is given by the forest formula. For
this, all spanning forests of the Feynman graph must be taken into account. We
differentiate between one-forests T1, also called spanning trees, and two-forests
T2. A spanning tree is a set of edges (propagators) {ei} which connects all vertices
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without forming a loop. A two-forest is defined as a spanning tree with two disjoint
connected components. The Symanzik polynomials are then given by [177]

U = ∑
T∈T1

∏
ei /∈T

xi ,

F = ∑
(T1,T2)∈T2

(
∏

ei /∈(T1,T2)

xi

) ∑
qi∈{q(T1)}

∑
qj∈{q(T2)}

qi.qj

+ U∑
i

xim2
i .

(D.16)

The set {q(Ti)} consists of the external momenta whose corresponding legs are
attached to the tree Ti. mi denotes the mass of edge ei.

Equation (D.14) is useful to reveal some features of the regarded integral. Here we
follow ref. [178].

For two disjoint sets of Feynman parameters X, Y ⊂ {xi} with ∅ 6= X ∪Y 6= {xi},
we describe the scaling behavior at the integration boundaries of an integrand F
with

ωX,Y(F) = |X| − |Y|+ degX,Y(F) . (D.17)

|X| is defined as the number of elements in set X. degX,Y(F) is the scaling degree of
F for λ→ 0 with the replacements xi → λxi for xi ∈ X, and xj → λ−1xj for xj ∈ Y.
Thus, degX,Y(F) is defined such that

lim
λ→0

λ−degX,Y(F)F

∣∣∣∣∣ xi → λxi for xi ∈ X

xj → λ−1xj for xj ∈ Y

 (D.18)

is finite and non-zero. Therefore, ωX,Y describes the degree of divergence at the
integration boundaries, i.e. it is not sensitive to divergences that occur inside the
integration region. If ωX,Y ≤ 0 for any X and Y, the integral is divergent. It is finite
if min(ωX,Y) > 0 holds for all X and Y.

It can be shown [178] that the integrand F can be replaced by F̃ = DX,YF without
changing the value of the integral, but with

ωX,Y(F̃) > ωX,Y(F) , (D.19)

and

ωX′,Y′(F̃) ≥ ωX′,Y′(F̃) ∀X′, Y′ ⊂ {xi} . (D.20)

Thus, DX,Y describes an analytic regularization operator that can be used to extract
poles from a Feynman integral. It is given by

DX,Y =
1

ωX,Y

degX,Y − ∑
xi∈X

xi
∂

∂xi
− ∑

xj∈Y
xj

∂

∂xj

 . (D.21)

Hence, only those ωX,Y must be regarded for which holds

lim
ε→0

(ωX,Y) = 0 . (D.22)
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Sometimes, the form of eq. (D.14) is already sufficient to be evaluated with the
integration functionality of a computer algebra system such as Mathematica [179].
For more complicated integrals additional tools have to be used.

For example, the idea of ref. [180] is to use Multiple Polylogarithms (MPLs) and their
relations in the context of Feynman integrals. These special functions are defined
by the recursive relation (see e.g. ref. [176])

G(a1, . . . , an; z) =
∫ z

0

dz′

z′ − a1
G(a2, . . . , an; z′) , (D.23)

with the initial condition G(; z) = 1. The arguments {ai} are called letters. A special
notation of G concerns arguments with zeros:

Gm1,...,mn(a1, . . . , an; z) = G(0, . . . , 0︸ ︷︷ ︸
m1−1

, a1, 0, . . . , 0︸ ︷︷ ︸
m2−1

, a2, . . . , 0, . . . , 0︸ ︷︷ ︸
mn−1

, an; z) .
(D.24)

It is used to express MPLs in a sum representation:

Gm1,...,mn(a1, . . . , an; z) = (−1)nLim1,...,mn

(
z
a1

,
a1

a2
, . . . ,

an−1

an

)
, (D.25)

with the nested sum defined by

Lim1,...,mn(a1, . . . , an) = ∑
∞>i1>i2>···>in>0

ai1
1

im1
1
· · · ain

n

imn
n

. (D.26)

A special subclass of MPLs are the multiple Zeta values. They are given by

ζm1,...,mn = Lim1,...,mn(1, . . . , 1) . (D.27)

Another related function class are Harmonic Polylogarithms (HPLs) [181], they are
defined as

Hm1,...,mn(z) = Lim1,...,mn(z, 1, . . . , 1) . (D.28)

A Feynman integral can be expressed as an MPL if it is regularized and linearly
reducible. The latter condition states that for an integration order of Feynman
parameters {x1, x2, . . . , xn} the integrand is given as a product of a rational function,
which is only linear in the integration variable, and an MPL. Not all Feynman
integrals fulfill the condition of linear reducibility. For those, an expansion in ε

leads to a closed analytic form which benefits from several transformation identities.
In our case, all master integrals that occur at three-loop order are linearly reducible
after proper variable transformations and integration orders.

The translation to MPLs and the subsequent simplifications are performed with
the program HyperInt [125]. Also, the arising two-loop master integrals are either
known in the literature or can be evaluated with HyperInt as well.

In the following, we illustrate the integration procedure described in this section by
two simple examples.
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(i) (ii) (iii)

Figure D.3: The integral of eq. (D.29) is shown pictorially (i), as well as its spanning trees
(ii) and the two-forest (iii). Note that the latter does not contain any internal
edges.

One-loop example

We begin with the following one-loop integral:

I1 =
∫ ddk

k2(k2 − 2k·q) , (D.29)

with q2 = m2.

The Symanzik polynomials can be computed with the help of eq. (D.16) and the
spanning forests as shown in figs. D.3ii and D.3iii. We get

U = x1 + x2 ,

F = x1x2 q·(−q) + Ux2m2 = x2
2m2 .

(D.30)

Thus, I2 in Feynman parameter representation according to eq. (D.14) is given by

I1 = iπd/2Γ (ε)
∫ ∞

0
dx1

∫ ∞

0
dx2 δ (x2 − 1)

(x1 + x2)
−2+2ε(

m2x2
2

)ε . (D.31)

Here we used the Cheng-Wu theorem [182] which states that the argument in the
δ-function can be replaced by a subset of Feynman parameters. Whereas, the
integration region of the remaining parameters is extended to infinity.

Equation (D.29) is easily evaluated in terms of Γ-functions:

I1 = iπd/2 (m2)−ε
Γ (ε)

1
1− 2ε

. (D.32)

Two-loop example

As an example at two-loops, we take the following integral into account:

I2 =
∫∫ ddk ddl

(k2 − 2k·q) l2 (k + l)2 , (D.33)

which is shown in fig. D.4 together with its one- and two-forests. The Symanzik
polynomials of I2 are given by

U = x1x2 + x1x3 + x2x3 ,

F = m2 (x2
1x2 + x2

1x3
)

.
(D.34)
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(i) (ii) (iii)

Figure D.4: The two-loop example of eq. (D.33) has three possible spanning trees. The
two-forest is the same as for eq. (D.29).

After applying the Cheng-Wu theorem and evaluating the δ-function to remove x1,
the Feynman parameter integral is given by

I2 = −πdΓ (−1 + 2ε)
(
m2)1−2ε

∫ ∞

0
dx2

∫ ∞

0
dx3

(x2 + x3 + x2x3)
−3+3ε

(x2 + x3)
−1+2ε

. (D.35)

Since every term in U and F is individually non-negative, the degree of divergence
ωX,Y as given in eq. (D.17) represents the actual divergence behavior of the integral.
We find a minimum value of

ω{x2,x3},∅ = ε . (D.36)

According to eq. (D.21), we can thus replace the integrand of eq. (D.35) by

D{x2,x3},∅
(x2 + x3 + x2x3)

−3+3ε

(x2 + x3)
−1+2ε

= −3(ε− 1)x2x3(x2 + x3 + x2x3)−4+3ε

ε(x2 + x3)−1+2ε
. (D.37)

By analyzing the degree of divergence of this new integral, we find that it is
min(ωX,Y) > 0, and hence finite. Since all divergences are now separated from the
integral, we can safely expand it in ε. The different orders in ε are stated by

I2 =
∞

∑
i=−2

I(i)2 with I(n)2 = O(εn) . (D.38)

For the leading term we get

1
N 2 I(−2)

2 = −3m2

2ε2

∫ ∞

0
dx2

∫ ∞

0
dx3

x2x3(x2 + x3)

(x2 + x3 + x2x3)4 , (D.39)

with the usual prefactor N = iπd/2µ−εe−εγE . Both integrals are straightforward to
evaluate using the Euler beta function. We arrive at

1
N 2 I(−2)

2 = −m2

2ε2 . (D.40)

The O
(
ε−1) term is given by

1
N 2 I(−1)

2 =
3m2

2ε

∫ ∞

0
dx2

∫ ∞

0
dx3

x2x3(x2 + x3)

(x3x2 + x2 + x3)4

·
[
−1− 2 ln

(
µ2

m2

)
+ 2 ln(x2 + x3)− 3 ln(x2 + x3 + x2x3)

]
.

(D.41)
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HyperInt can solve these integrals by iteratively identifying the linear reducible
integrands in terms of MPLs and linear rational functions. Then, the integrals are
iteratively solved using eq. (D.23):∫ ∞

0
dx

1
x− a1

G(a2, . . . , an; x) ≡ Reg
z→∞

G(a1, . . . , an; z) , (D.42)

where we defined a regularized limit of an MPL whose expansion around z0 → ∞
is uniquely given by [183]

G(a1, . . . , an; z) =
n

∑
i=0

ci(z) lni(z) , (D.43)

with

Reg
z→∞

G(a1, . . . , an; z) ≡ c0(∞) . (D.44)

If the resulting term, after taking the limit, is again an MPL multiplying a linear
rational function, the procedure can be repeated for the next integration step.

With HyperInt we find:

1
N 2 I(−1)

2 = − m2

ε

[
5
4
+ Reg

z→∞
G
(
−m2

µ2 ; z
)]

= − m2

ε

[
5
4
+ ln

(
µ2

m2

)]
.

(D.45)

The last step is evident from the splitting of the MPL:

G (−a; z) = ln
(

a + z
a

)
= ln (z) + ln

(
1
a
+

1
z

)
. (D.46)

The latter term is c0(z) which evaluates to

Reg
z→∞

G (−a; z) = − ln(a) . (D.47)

Finally, we regard the finite part of I2:

1
N 2 I(0)2 =

m2

4

∫ ∞

0
dx2

∫ ∞

0
dx3

x2x3(x2 + x3)

(x3x2 + x2 + x3)4

{
2π2 + 12

+ 12 ln
(

µ2

m2

)2

+ 12 ln
(

µ2

m2

)
+ 12 ln2(x2 + x3)

+ 18
[

2 ln
(

µ2

m2

)
+ 1
]

ln(x3x2 + x2 + x3)

− 12 ln(x2 + x3)

[
2 ln

(
µ2

m2

)
+ 3 ln(x3x2 + x2 + x3) + 1

]
+ 27 ln2(x3x2 + x2 + x3)

}
.

(D.48)
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HyperInt evaluates these integrals to

1
N 2 I(0)2 = −m2Reg

z→∞

[
3
2

G (0,−1; z) +
5
2

G
(
−m2

µ2 ; z
)

+
11
8

+
π2

6
+ 2G

(
−m2

µ2 ,−m2

µ2 ; z
)]

.

(D.49)

The following new objects occur [139, 181]:

G (0,−1; z)
(D.25)
= − Li2(−z) = ζ(2) +

1
2

ln2 (z) + Li2

(
−1

z

)
,

G (−a,−a; z) = Li1,1(−
z
a

, 1)
(D.28)
= H1,1(−

z
a
) =

1
2

ln2
(

1 +
z
a

)
=

1
2

[
ln
(

1
a
+

1
z

)
+ ln(z)

]2

.

(D.50)

Thus, the finite part of the integral becomes

1
N 2 I(0)2 = −m2

[
ln2
(

µ2

m2

)
+

5
2

ln
(

µ2

m2

)
+

5π2

12
+

11
8

]
. (D.51)

Note that both described example integrals can be computed more easily with other
methods. They were only taken into account for illustration purposes. The described
methods can be used to evaluate e.g. massless four-loop four-point integrals [178]
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