Towards Reconfigurable Accelerators in HPC:
Designing a Multipurpose eFPGA Tile for
Heterogeneous SoCs

Tim Hotfilter*, Fabian Kref3,
Fabian Kempf, Jiirgen Becker
Karlsruhe Institute of Technology (KIT)
{hotfilter, fabian.kress, fabian.kempf,
becker} @kit.edu

Juan Miguel de Haro*, Daniel Jiménez-Gonzélez,
Miquel Moret6, Carlos Alvarez, Jesiis Labarta
Barcelona Supercomputing Center (BSC)
Universistat Politecnica de Catalunya (UPC)
{juan.deharoruiz, djimenez, miquel.moreto,

Imen Baili
Menta S.A.S.
imen.baili@menta-efpga.com

carlos.alvarez, jesus.labarta} @bsc.es

Abstract—The goal of modern high performance computing
platforms is to combine low power consumption and high
throughput. Within the European Processor Initiative (EPI), such
an SoC platform to meet the novel exascale requirements is
built and investigated. As part of this project, we introduce
an embedded Field Programmable Gate Array (eFPGA), adding
flexibility to accelerate various workloads. In this article, we show
our approach to design the eFPGA tile that supports the EPI
SoC. While eFPGAs are inherently reconfigurable, their initial
design has to be determined for tape-out. The design space of the
eFPGA is explored and evaluated with different configurations
of two HPC workloads, covering control and dataflow heavy
applications. As a result, we present a well-balanced eFPGA
design that can host several use cases and potential future
ones by allocating 1% of the total EPI SoC area. Finally, our
simulation results of the architectures on the eFPGA show great
performance improvements over their software counterparts.

Index Terms—FPGA, HPC, Design space exploration, SoC

INTRODUCTION

Recently, a trend from general purpose High-Performance
Computers (HPC) towards platforms with application-specific
accelerators due to lower energy consumption and faster exe-
cution can be observed [1]]. The European Processor Initiative
(EPI) builds such a high-performance platform. EPI with its
large consortium addresses multiple domains concurrently: A
processor cluster, dedicated EPI accelerators and an eFPGA,
among others [2]. All platform components are connected to
each other via a well-defined interconnect, which allows us to
develop different aspects of the platform independently.

In the scope of this article, we present the final design
and a performance evaluation of the eFPGA tile, which adds
flexibility to the SoC since it allows for reconfiguration during
run time. Although the eFPGA can be reconfigured, its initial
layout, like the amount of Look-Up Tables (LUTSs) has to be

European Processor Initiative (EPI) project has received funding from
the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 826647, from Spanish Government (PID2019-
107255GB-C21/AEI /10.13039/501100011033), and from Generalitat de
Catalunya (contracts 2017-SGR-1414 and 2017-SGR-1328). M. Moreto is
partially supported by the Spanish Ministry of Economy, Industry and
Competitiveness under Ramon y Cajal fellowship No. RYC-2016-21104.

*Both authors contributed equally

RTL Origami Origami
Architectures Designer Programmer
[£ ¥

Design eFPGA size, operating freq.,
parameters eFPGA primitives, static power,
routing resources, «____~ bitstream
FPGA parameter area Application parameter
exploration exploration

Fig. 1: Overview of the design flow using the Menta tools

defined before chip production. However, during design phase,
constraints such as the area or the power must be considered.
Hence, a careful exploration of the eFPGA design space along
the performance, power and area metrics is required to ensure
that it can host the given use cases and provides sufficient
eFPGA primitives to meet future applications as well.

The eFPGA initial layout is derived based on two highly
customizable architectures to evaluate the design space, which
represent common HPC workloads, and thus the market EPI
addresses. Recently, open-source frameworks have been pub-
lished addressing the automated generation of eFPGA layouts
[3[l, [4]. However, these focus on generating the layout by con-
sidering only one use case rather than multiple applications.
In the scope of EPI, none of these tools could be applied
to determine the final eFPGA design. Consequently, to find
the best performance to area trade-off, we evaluate multiple
configurations for each architecture. Therefore, we utilize the
Menta toolflow (Figure I): With Origami Designer we can
adjust the eFPGA layout and derive power and area metrics,
and with Origami Programmer we can place and route our
architectures to get performance metrics. In particular, our
contributions are threefold:

o We describe two highly configurable architectures: Picos,

a hardware dependence manager and a convolutional
neural network (CNN) accelerator.

o We show how we co-designed the eFPGA tile to maxi-
mize the utilization of the eFPGA resources with a 1%
area constraint of the total EPI chip area.

o We present and evaluate the final eFPGA layout with our
architectures in a simulated EPI GPP environment.

This is the accepted version of [10.23919/DATES4114.2022.9774716, © 2022 1IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.23919/DATE54114.2022.9774716

@ new task
Task info
memory
task info GW dep info
. J task ID
finish task
———> TRS ready dep DCT
finish dep
ready task queue
T

reject task ﬁ {; ready task

Fig. 2: Overview of the internal design of Picos

ARCHITECTURES AND USE CASES

Although the eFPGA can be reconfigured during runtime,
the initial layout has to be defined before the chip is manufac-
tured. Therefore, we perform our architecture evaluation based
on two distinct use cases: One controlflow and one dataflow
driven. This approach allows us to cover a wide range of
potential, yet unknown architectures and future use cases.

Task Dependence Manager: Picos

Task-based programming models such as OpenMP and
OmpSs have proven helpful for developing parallel applica-
tions due to their simplicity and ease of use. By annotating
tasks and their data dependencies with pragmas, a software
runtime system dynamically determines which tasks can be
executed in parallel.

Picos [5] is a fast hardware implementation of the de-
pendence detection algorithm, suitable for any task-based
programming model. Therefore, it can substitute the traditional
software runtime and transparently speed up any fine-grained
parallel application by significantly reducing the runtime over-
head. shows a block diagram of Picos internal design.
The Gateway (GW) is the entry point of new tasks. It splits the
task properties (e.g. dependence addresses, identifier) between
the Task Reservation Station (TRS) and the Dependence Chain
Tracker (DCT). Additional information, which is irrelevant to
Picos but important to other components, may be stored in
the Task info memory. The TRS controls the state of a task
(ready/not ready to be executed), and the DCT controls the
state of a dependence (whether it depends on other tasks or it is
ready). The Ready Task Dispatcher (RTD) communicates with
the corresponding external scheduler (hardware or software-
based), notifying a processing element to execute a task. If a
task cannot be immediately executed due to lack of resources,
the reject task interface can be used to retry later.

Convolutional Neural Network Accelerator

CNN algorithms have shown tremendous results in image
recognition recently and are a key to autonomous driving and
moving now into embedded devices. To find a very versatile
embedded FPGA configuration, we choose in addition to Picos
a data-flow driven CNN accelerator. Our CNN accelerator is

scalable amount

- R of kernels
< B
Win = -5 & Micro- Activation
B B : > dout
kernel unit
din h
j dataT Tsum
Backpressure Data line
buffer buffer

Fig. 3: Overview of the CNN accelerator architecture

optimized towards scalability and a high degree of configura-
bility, which allows for the eFPGA design space exploration.
It can work with any prior unknown input data and optimizes
the computationally intense convolution operations (CONYV),
while not neglecting other steps like activation.

An overview of the accelerator is given in with the
microkernel units at its center, which compute the individual
CONVs. The number of microkernel units is scalable, as
well as the amount of MACs inside each of them. Besides
the number cruncher, the architecture features three buffers:
A line buffer to rearrange incoming data, a weight buffers
and a backpressure buffer. The microkernels and the buffering
scheme are inspired by a work from Qui et al. [6]], which we
extended with a coarse grained sparsity detection via the sum
of an input feature kernel. The reuse of the inputs allows us
to perform a convolution operation in a low-latency fashion,
especially with low batch sizes, which are common in embed-
ded real-time applications. Besides CONV and activation, the
configuration of the accelerator, the setup of memory streams
and operations such as pooling are handled by the GPP. Kernel
dimensions might be configured dynamically during runtime,
while number formats, the amount of microkernels or the
buffer sizes have to be synthesized into the accelerator.

DESIGN SPACE EXPLORATION

Finding a viable eFPGA configuration poses the challenge
to host both presented use cases and future user architectures
in an eFPGA. Even they do not run at the same time, each use
case requires different FPGA primitives and IPs. Since both
are designed highly configurable, multiple configurations of
each use case are mapped on different eFPGA configurations
while meeting the project requirements like a total area budget
of 1% and the application requirements.

Picos Parameter Exploration

For Picos, we study different configurations to find the
best performance for a variety of applications. The following
parameters can be configured in Picos:

o Task Memory (TM) size. The TM stores task data such
as the identifier and the number of free dependencies.

« Dependence Memory (DM) size. The DM stores depen-
dence addresses for address matching.

e Version Memory (VM) size. The VM is used to find
dependence relationships between tasks with the same
addresses, and establish an execution order.

TABLE I: Overview of the dimensions and static power of
the eFPGA, the number of macro blocks and the utilization as
well as operation frequency of the two architectures

Utilization / Perf.

Parameter Value NN Acc Picos
Technology 7 nm - -
Static Power 1.7393 mW - -
LUT6 9632 78% 51%
Flip-Flops 12086 72% 29%
DSPs 52 x 116_32P 92% 0%
Memories 80 x 2Kx16 5% 46%
Operating freq. [MHz] 159 100
Matrix shape 38 x 40 - -

A task with n dependencies uses a single slot in the TM
and n slots in the VM. On the DM side, depending on if
previous tasks reference the same addresses, the number of
slots may range from O to n. When any of the three memories
are full, Picos is not able to accept more tasks. Hence, the DM
and VM should be bigger than the TM to maximize memory
usage. The size of TM should be maximized, however, we
have to maintain a good ratio with the other memories. Based
on the benchmarks introduced in the performance evaluation,
we found that four dependencies per task are sufficient.

Microkernel Parameter Exploration

First we evaluate common neural network structures that
are used as benchmarks, such as SqueezeNet [7], which is the
basis for the face recognition use case in EPI [§]], because of
its small memory footprint. The size of the input buffers is
determined by the size of the input features. For 3x3 CONVs,
we have to store at least two lines of 244x244 pixel input
features. Thus, the input buffer size is set to 488 words.

The DSP configuration depends on the width of the
operands and accumulators. With linear quantization, we can
reduce the precision of weights and input features. Although
this has an impact on the prediction accuracy, little quanti-
zation as only small impact, while the computational effort
can be reduced massively. We achieve a SqueezeNet baseline
accuracy of 86 % while training from scratch with CASIA-
Web faces dataset [9]] and found 8 bit an optimal quantization
level with 81 % accuracy. Hence, the DSP operands can be
set to 8 bit. For the accumulator we choose 16 bit, which is
sufficient, as the intermediate values do not exceed 16 bit.

The performance of the CNN accelerator heavily depends
on the number of available DSPs. Each microkernel has three
MACs and SqueezeNet has an even amount of CONVs, thus
we have to set the amount of DSP to a multiple of six.

Exploration Results

Our eFPGA configuration has to meet the requirements of
the two presented use cases, with enough spare resources
to be capable of hosting future, yet unknown architectures.
Picos has to optimize towards a large memory, while the CNN
accelerator optimizes towards a high number of MACs. Since
the interface to the processor cluster was not established at
the time of the eFPGA layout, we had to leave margin for the
communication protocol with the NoC.

[Odolooon/on/do
0/00/0(00/D/DDO o0
‘:EI}:D\DDD\DDJ}[
] 000
00

Fig. 4: Architecture segment of the eFPGA configuration,
showing DSPs, I/0Os and memories highlighted in teal, white
and yellow, respectively

With respect to the 1% share of total area, in a square shape,
we can fit an overall of 38 columns and 40 rows. The final
eFPGA configuration is detailed in and the layout is
shown in All parameters are derived from Origami
Designer and the frequency from Origami Programmer after
the place and route of each individual architecture. The design
features four columns of DSPs and four columns of memories.
Memory cells are evenly distributed over the eFPGA and DSPs
are located close to the memories with some logic resources
in between to enable quick access to the data.

The total of 52 DSPs and 80 memories allow for a wide
range of applications. However, while more DSPs or memories
might favor the CNN accelerator or Picos, respectively, we
aimed for a relatively high amount of LUTs and FFs to
keep the eFPGA tile versatile towards future architectures that
might run on the EPI chip. Therefore, we also choose 16-bit
inputs and 32-bit accumulators for the DSPs, especially for
applications that require higher precision. The memory cells
are configured with a fixed word count and word bit-width
of 2048 and 16 respectively. In order to maximize memory
usage of Picos, we set the DM and VM memory size to the
2048 word count and to maintain the 4:1 ratio with the TM,
we set its size to 512 accordingly. This configuration allows
an average of four unique dependencies per task, and a total
of 512 in-flight tasks. Regarding the CNN accelerator, with
the total of four DSP columns we can place 16 microkernels,
which accounts for an overall utilization of 48 of the 52
total available DSPs. Given the available memories of the
architecture, we are able to place all required buffers in the
memory cells.

PERFORMANCE EVALUATION

The eFPGA tile can be developed independently. Hence, to
evaluate the performance of the architecture configurations, we
carry out functional verification in simulation and on FPGA
devices. The communication overhead and latency is added to
the simulation to generate numbers that fit the later platform.

For Picos, we measure the performance of a selected set
of benchmarks in a simulated SMP environment on a Xilinx
Zynq UltraScale+ FPGA@100MHz that represents a similar
setup to the EPI chip. Our setup simulates the execution time
of an application with an arbitrary number of cores. These
cores are controlled directly by Picos and a simple hardware
scheduler, which receives tasks extracted from a real execution
trace and schedules them on the first free simulated core. The

Cholesky N-body
60 60
Qo o
3 40 > 40
T °
0) QJ
(9 19
Q. Q
n 20 » 20
e Yo
01 0
0 20 40 60 0 20 40 60
#cores #cores
Heat

—=— Nanos6 A64FX
—e— Gomp A64FX
Picos A64FX
—— Nanos6 KNL
Gomp KNL
—— Picos KNL
— Ideal

0 20 40 60
#cores

Fig. 5: Speedup against sequential execution of different
runtimes

benchmarks used are the following: The N-body simulation
of the force interaction between astronomical objects, their
movement, and speed; Cholesky factorization of a matrix and
heat propagation on a 2-dimensional surface using a Gauss-
Seidel method.

We execute the benchmarks in two different clusters to
generate simulator traces and measure the performance with
Gomp (OpenMP) and Nanos6 (OmpSs-2) as software run-
times: An Intel Xeon Phi CPU 7230 64-core processor (KNL)
and a 48-core Fujitsu A64FX ARM CPU node. We run each
benchmark with the same task granularity and problem size
of 500k-1M tasks, only changing the number of cores. Since
the artificially introduced communication overhead heavily
depends on the final processor architecture, we use a very
pessimistic latency estimation, according to the lat_mem_rd
benchmark of the Imbench suite on the A64FX core. We add
40 extra cycles or 400ns to each task execution.

displays speedup plots scaling with the number of
cores. Except for the Heat benchmark, the results show that
Picos can scale almost perfectly. This is due to the limited
memory of Picos, mainly the TM, which prevents it from
finding enough parallelism for further scaling. All results show
that Picos outperforms Gomp and Nanos6 with a significant
difference, in short tasks. Nanos6 shows a stable speedup when
it reaches the core limit, whereas Gomp tends to scale down
with high variability. However, In most cases, both runtimes
cannot scale with more cores due to the overhead they add
to the execution time. While long tasks can benefit from both
software and hardware runtimes, fine-grain applications can
be handled much faster by Picos.

The CNN accelerator is evaluated with SqueezeNet for face
recognition, which requires about 962 million 8 bit MAC
operations. This translates into 306 million microkernel opera-
tions. Since the neural network computation is dataflow driven
and most of its operations are independent, the simulation
shows that we can reach full utilization if the bandwidth is
sufficient. Running the eFPGA at the maximum operation

frequency this yields a bandwidth of 159 MB/s for reading
inputs and writing results back. Different microkernels can
operate on the same input data with a different set of weights,
which might be reused and hence not be reloaded from
the memory. Considering a worst-case scenario in the given
SqueezeNet topology, the smallest convolution layer performs
12,544 CONVs with the same set of weights. After this amount
of operations the weights have to be exchanged, which adds on
average 1 MB/s over the course of the processing. Due to the
availability of a high-performance NoC, this bandwidth can be
reached. With full utilization, we can compute all operations
of the optimized SqueezeNet in ~ 150ms.

CONCLUSION

An embedded FPGA in a SoC like the EPI platform allows
for a fast deployment of specific hardware accelerators. In the
scope of this work, we elaborated on a tightly-coupled setup
of an eFPGA in a System on Chip and guided the design
process for the initial eFPGA structure. Therefore, we defined
two state-of-the-art use cases that represent a broad range of
HPC workloads, to evaluate the design possibilities. Our found
eFPGA configuration can fit both in a 1% share of the total
chip area, without suffering in performance. With 38 rows and
40 columns, we are able to embed 9632 LUTSs, 12086 FFs,
52 DSPs and 80 memories. The configuration maintains the
flexibility of the eFPGA by budgeting enough spare resources,
which enables the eFPGA to host further yet unknown use
cases. The final eFPGA design supports the EPI platform in
accelerating various applications in an adaptive way. In the
phase of the project, it can be easily integrated into the silicon
to demonstrate the performance of the overall platform.

REFERENCES
[1

—

Iris Walter et al. Embedded face recognition for personalized services in

the assistive robotics. In ECML PKDD Workshops. Springer, 2021.

[2] Mario Kovac, Philippe Notton, Daniel Hofman, and Josip Knezovic.
How europe is preparing its core solution for exascale machines and
a global, sovereign, advanced computing platform. Mathematical and
Computational Applications, 25(33):46, Sep 2020.

[3] Dirk Koch, Nguyen Dao, Bea Healy, Jing Yu, and Andrew Attwood.
Fabulous: An embedded fpga framework. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’21, page 45-56, New York, NY, USA, 2021.

[4] Ang Li and David Wentzlaff. Prga: An open-source fpga research and
prototyping framework. In The 2021 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA 21, page 127-137,
New York, NY, USA, 2021. Association for Computing Machinery.

[5] Xubin Tan, Jaume Bosch, Carlos Alvarez, Daniel Jiménez-Gonzilez,

Eduard Ayguadé, and Mateo Valero. A hardware runtime for task-based

programming models. [EEE Transactions on Parallel and Distributed

Systems, 30(9):1932-1946, 2019.

Jiantao Qiu et al. Going deeper with embedded fpga platform for

convolutional neural network. In Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, FPGA

’16, page 26-35, New York, NY, USA, 2016.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,

William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and <0.5mb model size, 2016.

Tim Hotfilter, Fabian Kempf, Jiirgen Becker, Dominik Reinhardt, and

Imen Baili. Embedded image processing the european way: A new

platform for the future automotive market. In 2020 IEEE 6th World

Forum on Internet of Things (WF-1oT), pages 1-6, 2020.

Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Learning face

representation from scratch. arXiv:1411.7923 [cs], Nov 2014.

[6

—_

[7

—

[8

—_

[9

[

	Introduction
	Architectures and Use Cases
	Task Dependence Manager: Picos
	Convolutional Neural Network Accelerator

	Design Space Exploration
	Picos Parameter Exploration
	Microkernel Parameter Exploration
	Exploration Results

	Performance Evaluation
	Conclusion
	References

