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Abstract

In recent years, neural networks (NNs) have achieved remarkable results in event recog-
nition in medical image and video analysis. One of the main limitations of machine
learning approaches is the lack of available annotated training data. This lack refers
to the number of available datasets and the number of image and video variations in
existing datasets. Especially in the medical field, it is hard to extend the number of
datasets. The reasons for this are various. For example, legal issues may prevent the
publication of the data, or the occurrence of a disease is very rare, making it hard to
record it. Moreover, experts must annotate medical data in a time-consuming process and
therefore it is expensive. Existing image data augmentation methods are often applied
to the video domain. However, these methods are not created sufficiently independent
video samples from a dataset. Therefore, it is necessary to develop methods to extend
the video dataset retrospectively or generate new synthetic data.

In this thesis, two novel methods are introduced, explained and evaluated by applying
them to three medical applications in the field of surgery. First, the workflow augmentation
method is introduced, which uses semantic information, e.g., events of a surgical workflow,
to augment video data in the temporal domain. The workflow augmentation allows
the creation of independent videos from an existing dataset. The proposed method
is highly flexible and allows, furthermore, to balance the surgical phases or surgical
instruments in a dataset. By applying the method on exemplary medical datasets in
cataract surgery, and in laparoscopic cholecystectomy surgery, the method’s performance
is verified. For instrument recognition, in the example of the cataract surgery, an increase
in accuracy (ACC) of 2.8% to 93.5% could be achieved compared to established methods.
For phase recognition, in the cholecystectomy surgery example, an increase in ACC of
8.7% to 96.96% could be achieved compared to a previous study from literature. Both
studies impressively demonstrate the potential of the workflow augmentation method.

The second method is based on a generative adversarial network (GAN) approach. It
allows the creation of synthetic images. This approach is auspicious when only a few data
are available, and new data must be created. In the context of this thesis, cycle generative
adversarial networks (CycleGANs) are used to perform an image-to-image translation.
Additionally, it is possible to apply conditions to the transformation. The CycleGAN was
used in the third study to estimate a facial image of the patient after cranio-maxillofacial
surgery using a preoperative portrait photo and the 3D surgical planning model. Thereby,
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it was possible to estimate realistic, vivid-looking images without having any medical
training data. Instead, synthetically generated data were used to train the NN.

In conclusion, the developed methods in this thesis can overcome the lack of samples and
datasets.

In the future, the introduced methods can be used to design even better artificial
intelligence-based medical support systems that can further assist physicians in clinical
routines, diagnosis, therapy, or image-guided interventions, which can reduce clinical
workload and thus improve patient safety.



Kurzfassung

Neuronale Netze haben in den letzten Jahren erstaunliche Ergebnisse bei der Erkennung
von Ereignissen im Bereich der medizinischen Bild- und Videoanalyse erzielt. Dabei
stellte sich jedoch immer wieder heraus, dass ein genereller Mangel an Daten besteht.
Dieser Mangel bezieht sich nicht nur auf die Anzahl an verfügbaren Datensätzen, sondern
auch auf die Anzahl an individuellen Stichproben, das heißt an unabhängigen Bildern und
Videos, in bestehenden Datensätzen. Das führt wiederum zu einer schlechteren Erken-
nungsgenauigkeit von Ereignissen durch das neuronale Netz. Gerade im medizinischen
Bereich ist es nicht einfach möglich die Datensätze zu erweitern oder neue Datensätze
zu erfassen. Die Gründe hierfür sind vielfältig. Einerseits können rechtliche Belange die
Datenveröffentlichung verhindern. Andererseits kann es sein, dass eine Krankheit nur sehr
selten Auftritt und sich so keine Gelegenheit bietet die Daten zu erfassen. Ein zusätzliches
Problem ist, dass es sich bei den Daten meist um eine sehr spezifische Domäne handelt,
wodurch die Daten meist nur von Experten annotiert werden können. Die Annotation
ist aber zeitaufwendig und somit teuer. Existierende Datenaugmentierungsmethoden
können oft nur sinnvoll auf Bilddaten angewendet werden und erzeugen z.B. bei Videos
nicht ausreichend zeitlich unabhängige Daten. Deswegen ist es notwendig, dass neue
Methoden entwickelt werden, mit denen im Nachhinein auch Videodatensätze erweitert
oder auch synthetische Daten generiert werden können.

Im Rahmen dieser Dissertation werden zwei neu entwickelte Methoden vorgestellt und
beispielhaft auf drei medizinische Beispiele aus dem Bereich der Chirurgie angewendet.
Die erste Methode ist die sogenannte Workflow-Augmentierungsmethode, mit deren
Hilfe semantischen Information, z.B. Ereignissen eines chirurgischen Arbeitsablaufs, in
einem Video augmentiert werden können. Die Methode ermöglicht zusätzlich auch eine
Balancierung zum Beispiel von chirurgischen Phasen oder chirurgischen Instrumenten,
die im Videodatensatz vorkommen. Bei der Anwendung der Methode auf die zwei
verschiedenen Datensätzen, von Kataraktoperationen und laparoskopischen Cholezys-
tektomieoperationen, konnte die Leistungsfähigkeit der Methode gezeigt werden. Dabei
wurde Genauigkeit der Instrumentenerkennung bei der Kataraktoperation durch ein Neu-
ronales Netz während Kataraktoperation um 2,8% auf 93,5% im Vergleich zu etablierten
Methoden gesteigert. Bei der chirurgischen Phasenerkennung im Fall bei der Cholezystek-
tomie konnte sogar eine Steigerung der Genauigkeit um 8,7% auf 96,96% im Verglich zu
einer früheren Studie erreicht werden. Beide Studien zeigen eindrucksvoll das Potential
der Workflow-Augmentierungsmethode.
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Die zweite vorgestellte Methode basiert auf einem erzeugenden gegnerischen Netzwerk
(engl. generative adversarial network (GAN)). Dieser Ansatz ist sehr vielversprechend,
wenn nur sehr wenige Daten oder Datensätze vorhanden sind. Dabei werden mit Hilfe
eines neuronalen Netzes neue fotorealistische Bilder generiert. Im Rahmen dieser Disser-
tation wird ein sogenanntes zyklisches erzeugendes gegnerisches Netzwerk (engl. cycle
generative adversarial network (CycleGAN)) verwendet. CycleGANs führen meiste eine
Bild zu Bild Transformation durch. Zusätzlich ist es möglich weitere Bedingungen an die
Transformation zu knüpfen. Das CycleGAN wurde im dritten Beispiel dazu verwendet,
ein Passbild von einem Patienten nach einem Kranio-Maxillofazialen chirurgischen Kor-
rektur, mit Hilfe eines präoperativen Porträtfotos und der operativen 3D Planungsmaske,
zu schätzen. Dabei konnten realistisch, lebendig aussehende Bilder generiert werden, ohne
dass für das Training des GANs medizinische Daten verwendeten wurden. Stattdessen
wurden für das Training synthetisch erzeugte Daten verwendet.

Abschließend lässt sich sagen, dass die in dieser Arbeit entwickelten Methoden in der
Lage sind, den Mangel an Stichproben und Datensätzen teilweise zu überwinden und
dadurch eine bessere Erkennungsleistung von neuronalen Netzen erreicht werden konnte.

Die entwickelten Methoden können in Zukunft dazu verwendet werden, bessere medi-
zinische Unterstützungssysteme basierende auf künstlicher Intelligenz zu entwerfen, die
den Arzt in der klinischen Routine weiter unterstützen, z.B. bei der Diagnose, der
Therapie oder bei bildgesteuerten Eingriffen, was zu einer Verringerung der klinischen
Arbeitsbelastung und damit zu einer Verbesserung der Patientensicherheit führt.
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Chapter1
Introduction

1.1 Motivation

In recent years, the number of applications based on deep learning methods on image
and video analysis in the medical field has continuously increased [1, 2]. The number of
publications has also increased considerably, as shown in Figure 1.1. The application
domains of neural networks (NNs) are diverse. They are used in image and video analysis,
e.g., for methodical tasks like segmentation, recognition of surgical tools or classification
and registration of lesions or cancer. Thereby, they support physicians during clinical
interventions [3].

In the domain of image analysis and video analysis, outstanding results [1, 4–13] could be
achieved by deep learning NNs. Isensee et al. [4] showed in the field of image segmentation
that it is possible to segment ten different organs in computed tomography scans and
magnetic resonance images [14] with only one NN instead of ten separate ones as it was
customary before. In image recognition, Esteva et al. [5] showed that deep NNs provide
a similar diagnosis as dermatologists at identifying skin cancer, and in some cases, NN
was better than humans providing the diagnosis.

The application of supervised learning and NNs are often limited by the lack of annotated
data [1, 3, 15–18]. The lack consists of an adequate amount of samples and datasets (as
shown in Figure 1.2). Furthermore, datasets often suffer from balanced samples, diversity
of diseases, manifestation, gender, age, ethnicity, etc. [1, 3, 15].

The community has widely recognized the lack of annotated data. Recently, datasets are
becoming larger in quantity and diversity [13], e.g., the ChestX-ray8 [19] dataset consists
of approximately 110,000 X-ray images, or the DeepLesion [20] dataset consists of 10,600
body-stem computed tomography scans from 4400 patients.

Nevertheless, these are all image datasets. For video datasets, the number of records is
still very limited. As two examples for video datasets, the Cholec80 dataset [21] contains
only 80 videos of different laparoscopic cholecystectomies or the Cataract dataset [22],
consisting of only 50 different cataract surgical videos. This is countered by the generally
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Figure 1.1: Number of publications in the period from 2004 -2016 in the field of medical image and videoanalysis, adapted from [1, 2]

accepted fact that deep learning is very data hungry [23].
Small datasets have an additional drawback. Since usually the annotation of the data is
performed manually, the impact by inadvertently mislabeling in small datasets is larger
than in large datasets [1]. Mislabeled samples can harm the performance, especially if
only a few samples per class are available. These two issues, low amount of samples and
potentially wrong labels, represent the central problem of insufficient data.

Due to the growing medical imaging community, the number of datasets and samples is
expected to increase substantially in the next few years [24]. Nevertheless, it is possible
that only a limited number of records are available due to the prevalence or manifestation
of a specific disease. Additionally, the annotation has to be done by experts, i.e.,
physicians, which is very time-consuming and expensive. Therefore, expanding existing
annotated datasets by newly developed techniques is desired [25].

Nowadays, image augmentation is a standard technique in computer vision to extend
datasets artificially. Esteva et al. [5] or Al Hajj et al. [15] showed that image augmentation
is an effective technique for object recognition or classification. Simple functions can
generate a wide variety of images. Thus, simple functions like image shifting, cropping,
rotating, or scaling, can significantly improve the generalization of an NN. Image
augmentation works well in the medical image analysis domain for datasets with sufficient
diversity. However, these preconditions are often not fulfilled, and mainly only common
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Fig. 3. Representative publicly available medical image and video datasets. (e)–(h) represent one set of images from the same examination record,
with manual segmentations overlaid: these segmentations are only used for testing instance-level MIL algorithms or for training SIL algorithms.
(i) represents a uniform selection of frames from one video. (a) UCSB Breast (benign). (b) UCSB Breast (malignant). (c) Messidor (normal). (d)
Messidor (pathological). (e) DDSM (LCC view). (f) DDSM (LMLO view). (g) DDSM (RCC view). (h) DDSM (RMLO view). (i) UNBC-McMaster.

Fig. 4. Distribution of dataset sizes in MIVA studies.

features, are described in Section V-C and their results are sum-
marized in Table V. Note that MIL algorithms do not have SIL
counterparts in miscellaneous categorization tasks, due to their
holistic nature, so no comparisons were possible.

Various performance curves and performance scores were
adopted to compare algorithms in selected studies. Performance
curves include the receiver operating characteristic (ROC)
curve, which plots the sensitivity versus the false positive rate,
and free-response ROC curves, which plot the sensitivity ver-
sus the number of false positives per image or video. Perfor-
mance scores include the accuracy, the area under the ROC
curve (AUC-ROC), the area under the precision-recall curve
(AUC-PR) and the F1-score:

F1 = 2
precision · recall

precision + recall
. (29)

C. Description of Comparative Studies

A first set of experiments was performed by Kandemir et al. in
a dataset of 210 esophagus histology images with a resolution of

Figure 1.2: Distribution of dataset sizes in medical image and video analysis, adapted from [1]

disease patterns are included in the datasets. Though, physicians may need the most
artificial intelligence support for rare diseases, because here they are in a situation beyond
their everyday work [26].
Nevertheless, the improvements of using image augmentation in video analysis are limited
because, an essential part of the information is usually coded in the variation of the
frames over time or the events over time. Here, a model-based, or a generative adversarial
networks (GANs)-based approach is auspicious and can remedy the lack of adequate
data [27, 28].

Two of those approaches are developed and investigated in this work to enhance medical
datasets artificially. The thesis contributes to the state-of-the-art model-based video
augmentation and postoperative facial image estimation. Therefore, a method for the
semantical augmentation of videos, and a method for training a conditional generative
adversarial network (cGAN) on only synthetic training data, without including specific
patient data, were developed to solve the technical need. The two introduced methods
were finally evaluated on three surgical examples. The detailed objectives are formulated
in the next section.
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1.2 Objectives of the Thesis

The main focus of this work is set on the development and the usage of methods for
the generation of artificial image and video data to enhance medical datasets for deep
learning applications. As mentioned above, two different approaches are introduced in
the thesis:

• A novel approach, that aims to solve the lack of suitable data in video datasets.
For this purpose, a model-based augmentation method for video datasets has been
developed. The method, called workflow augmentation, uses the respective semantic
information, i.e., the workflow in the videos of a dataset, to generate retrospectively
new artificial videos.
• A GAN-based approach that uses a patient-specific modifying 3D face model, e.g.,
from the surgery planning, and an arbitrary facial photo to generate a new photo
with the face shape from the modified 3D model.

These two different approaches have been applied on three projects, each one with a
specific goal:

The goal of the first project, with the title: Workflow Augmentation of Video Data for
Event Recognition with Time-Sensitive Neural Networks, was to extend retrospectively
and balance the training dataset from an existing cataract video dataset. Therefore, we
use the workflow augmentation method to balance the frequency and timing of various
unique events.
The hypothesis of this project was that balancing and augmentation of events, i.e.,
surgical tools, that rarely occur in the original dataset would lead to a better recognition
performance of the NN. Therefore, the NN was trained with the augmented training
dataset and compared the recognition performance with the same NN trained on the
dataset using only image augmentation methods.

The goal of the second project, with the title: Improving Surgical Phase Recognition
in Videos using Workflow Augmentation, was to augment and balance the semantic
information with the workflow augmentation method. Hereby, the semantic information
are the surgical phases in the training dataset on the example of cholecystectomy. Such
semantic information cannot be augmented with state-of-the-art image augmentation
methods because the information is not present in a single frame, instead it is encoded
in the frame sequence that is not be manipulated by any image augmentation methods.
Besides augmenting the dataset, another objective of the augmentation was to vary the
lengths of the individual phase and balance the number of individual phase transitions.
The idea was to avoid a biasing concerning the existing distribution in the original dataset.
The project hypothesized that the classification accuracy of the individual phases can be
improved by workflow augmentation compared to the literature.
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The goal of the third project, with the title: 3D-Guided Face Manipulation of 2D Images
for the Prediction of Post-Operative Outcome after Cranio-Maxillofacial Surgery, was
to find a suitable input parameter representation for cGAN of a modified 3D model.
Since there was no suitable method or cGAN that could handle such an input vector
so far. A further goal was to find a methodology for training a cGAN without having
approximately enough pre- and post-operative image pairs of patients for supervised
learning. The research question of this project was: how to overcome the lack of training
data for training a cGAN with artificial, synthetically generated training data to estimate
realistic post-operative patient-specific facial images that appear vivid and natural.

1.3 Structure of the Thesis

Part I introduces the relevant technical and medical fundamentals for understanding
the presented approaches and results:
• Chapter 2 provides the technical fundamentals of neuronal networks.
• Chapter 3 introduces the three different surgical procedures that serve as examples
of the two developed approaches.

Part II presents the three different projects that were worked on as part of the thesis.
• Chapter 4 presents the first project entitled Workflow Augmentation of Video Data
for Event Recognition with Time-Sensitive Neural Networks. For this project, a
specific introduction is given with the goals of the research project and the hypothesis.
Then, the state-of-the-art in the field of video augmentation is presented. After that,
the developed workflow augmentation approach is described in detail. Subsequently,
the results are presented and compared to one state-of-the-art method using the
example of a cataract surgery. Finally, the results are discussed regarding the
hypotheses, and a conclusion is given.
• Chapter 5 is about the second project with the title Improving Surgical Phase
Recognition in Videos using Workflow Augmentation. An introduction to the state-
of-the-art surgical phase recognition using neural networks is given. The hypothesis
of the project is then formulated. Afterwards, the parameters for workflow aug-
mentation are defined. Subsequently, the augmented dataset is analyzed, and the
phase detection on cholecystectomy as an example is presented. Finally, the results
are classified and evaluated concerning the literature, and a conclusion is given.
• Chapter 6 covers the third project titled: 3D-Guided Face Manipulation of 2D
Images for the Prediction of Post-Operative Outcome after Cranio-Maxillofacial
Surgery. First, an introduction to cranio-maxillofacial surgery planning and state-
of-the-art facial manipulation approaches will be given, and then the research gap
and question will be identified. Subsequently, the procedure will be described with
developed methods and the training of the NN. After that, the qualitative and
quantitative results of the approach will be demonstrated with the use of celebrity
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portraits. Afterwards, the experiment results with real patient photos and 3D
models are shown. Finally, the results are discussed and summarized.

Part III summarizes and discusses the results of all projects regarding the developed
approaches from a general perspective and gives a conclusion. Furthermore, possible
future research topics are identified.
• Chapter 7 presents the general restriction of the developed approaches and the

general conclusion.
• Chapter 8 gives an outlook on possible future work based on the thesis results.



PART I

FUNDAMENTALS





Chapter2
Artificial Neural Network

Artificial neural networks (NNs) are a powerful approach for data analysis. Thereby, the
types of input data are not restricted. These can be, e.g., discrete 2D waveform signals,
images, or videos. The basic principles and different types of NNs will be explained in
the following.

2.1 Artificial Neuron

The artificial neuron is the fundamental component of NNs. Figure 2.1 shows the principal
components of an artificial neuron. It bases on the behavior observed in biological neurons.
Each neuron has at least one input and a single output. The output value is determined
by an input function ϕ(x,w) dependent on the input values x and the weights w, usually
with a constant bias term w0. The function f(ϕ) is the respective activation function
of the neuron. Neurons can be cascaded, so the output value y can be “sent” to other
neurons and can be used as an input value. The user can arbitrarily select the concrete
input function and activation function, see [29].

2.2 Perceptron

A perceptron is a network of connected neurons organized in layers. A perceptron
has at least an input and an output layer. The perceptron is characterized by linear
activation functions in the neurons, except the input node. The input neuron has only
the functionality to store the input values. The number of neurons of the input and
output layers corresponds to the number of input and output variables, respectively.
Furthermore, it is also possible to have several layers located in between. This layers
are called hidden layers. A perceptron consisting of at least one hidden layer is called
multi-layer perceptron. Each hidden layer consists of a predefined number of neurons. In
addition, the different layers are interconnected.

9



10 Chapter 2. Artificial Neural Network

f(φ)φ(x, w)

w0 = bk
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⋮

Figure 2.1: Concept of an artificial neuron model; x are the input values; w are the weights per input value;
w0 corresponds for the bias bk; ϕ(x,w) is the summing input function; f(ϕ) is the activation function; y isthe output of the neuron.

The way the layers are connected is called topology, shown in Figure 2.2. A layer where
every neuron of the previous layer is connected to every neuron of the succeeding layer is
called a fully connected layer, but not all neurons within one layer must be connected to
a neuron of the next layer. Besides, there can also be reversed or loop interconnection
between neurons of the same or different layers. [30]

f (φ)
φ (x, w)

hidden layers
output  
layer

input  
layer

Figure 2.2: Example of a three-layer perceptronwith two hidden layers (blue), an input (green), and an outputlayer (orange). The input layer and the first hidden layer are fully connected. Only forward connections areused, and the preceding and succeeding layers are connected.
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2.3 Convolutional Neural Networks

A convolutional neural network (CNN) is one derivative of the multi-layer perceptron.
Over time, CNNs replaced the multi-layer perceptrons, which were formerly used in
computer vision, for various reasons. For example, only linear problems can be separated
with a single layer perceptron. Multiple hidden layers were needed for more complex
tasks encountered in modern advanced computer vision or medical image analysis. In
the case of using a perceptron, the number of weights increases very fast due to the fully
connected layers. Additionally, the spatial information in an image would also not be
considered, which can only cover a small region of the entire image.

CNNs use flattening functions, so-called convolutional kernels, as shown in Figure 2.3,
to take the spatial information and relation into account. With the help of kernels, the
CNN tries to extract semantic features, e.g., edges, homogeneous faces and patterns [31].
For this purpose, a series of convolution operations (with different kernels) are applied to
the image. Here, the convolutional kernels usually grasp only small parts of the image.
In principle, the used kernels’ number, size, and shape are not limited. The results of
the convolutions form a series of outputs, and these are called feature maps. At the
same time, some operations allow reducing the number of variables. The reduction is
made by so-called pooling layers. This reduction can be repeated as often as needed
just by inserting these pooling layers into the NN structure, as shown in Figure 2.3 (3).
Finally, the outputs are fed into at least one fully connected layer that calculates the
regression output of the CNN, shown in Figure 2.3 (4). The convolution operation and
the down-sampling allow deeper neural networks consisting of a higher number of hidden
layers. Such a type of NNs is called deep NNs. Furthermore, it should be pointed out
that CNNs mostly contain only forward-directed connections, which allows using and
extracting only information from the current input.

Primary knife: Yes
Bonnforceps: No

Suture needle: No

… …

3. Feature maps
1. Input Image

Output 4. Classification

2. Convolutions SubsamplingConvolutionsSubsampling Fully  
connected

Figure 2.3: Illustrates the schematic procedure of a CNN. 1. is the entire input image. In 2. single regionsfrom the image are extracted by kernel functions of the CNN. In 3. feature maps are calculated by the CNNto output a classification vector for the input image in the final step 4.
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2.4 Recurrent Neural Networks

To consider the temporally encoded information or features from previous inputs, the
NN structure is extended by reverse connections to a preceding layer or feedback loops to
the current layer. Such a class of NNs is called recurrent neural networks (RNNs). RNNs
allow extracting information also from the input history. However, the time interval in
which the already seen information is considered is restricted. The limit results from the
fact that the influence of the current input decreases with each step, i.e., information
that lies longer in the past is taken into account less and less and at the same time leads
to a vanishing gradient. This problem is also known as the vanishing gradient problem.
Thereby, during the training of the NN, the update gradient is so tiny that the input
weight of the neuron barely or does not change its value. These tiny weight updates
lead to the situation that adjusting the weights either takes a very long time or the
network remains in one state [32]. The long short-term memory (LSTM) network tries
to overcome the problem of a long training time [33]. The concept will be presented in
the following section.

2.4.1 Long Short-Term Memory

A LSTM-block consists of three different gates and a central memory cell, see Figure 2.4.
The unique memory cell ct stores the value using a feedback loop. The three gates are
the input gate it, output gate ot, and forget gate ft. The input gate controls the extent
of the influence of a new value that flows into the memory cell at a time step t. The
forget gate determines the degree of a stored value stays in the cell or is forgotten. The
output gate controls whether the stored value is used to calculate the next module of
the network or not. For the interaction of the different components, tanh functions,

ot

ft

it

ct

Figure 2.4: Long short-term memory block with tanh activation function o⃝ and convolution operations⊗.The memory cell ct stores the value. The input gate it, that controls the extent a new value. The output gate
ot controls whether the stored value is output. The forget gate ft determines the degree to which a storedvalue stays of would forgot. Adapted from [34], licensed under Creative Commons Attribution-Share Alike4.0 International.
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various vectors, and matrix operations are used. Instead of the fixed weights (wi), the
product of weights and the associated gate is used. This structure tries to imitate the
natural behavior of memorization, which includes forgetting and memorization. The
LSTM-block allows keeping the information in the network for long periods, but also to
have an adaptive influence the impact on a current time point. [31, 35]

2.5 Generative Adversarial Networks

All the previously described network topologies solve discriminative tasks, but NN can
also perform well for generative tasks. Therefore, generative models like generative
adversarial networks (GANs) [36] are used. Thereby, GANs aim to generate samples that
follow real data distribution. GANs have shown remarkable results in image synthesis,
image translation, and other generative tasks in computer vision. GANs consist of two
neural networks, as shown in Figure 2.5. One part of the network is the generator G, the
second is the discriminator D. The generator produces the data, and the discriminator
judges them. The generator tries to mimic the real data distribution by generating new
images using 2D images containing, e.g., white Gaussian noise. The discriminator then
rates with which probability P the result of the generator belongs to the real Pr or fake
Pf distribution. Hence, the generator aims to learn generating results according to the
distribution of the real data, and the discriminator aims to distinguish the generator’s
results from the real data. This objective was formulated as a minimax objective by
Goodfellow et al. [36]:

min
G

max
D

V (D,G) = Ex∼Pr [log D(x)] + Ex∼Pf
[log(1−D(x))] (2.1)

Here, x is the input image, and Ex∼Pr is the expected value that the image belongs to
the set of real images and Ex∼Pf

[log(1 −D(x))] is the expected value that the image
belongs to the set of fake images. Thus, after successful training, the generator can
output images indistinguishable from real images.

Both NNs, G and D, were trained in an alternating manner. The update can result in
a zero-sum game, where each try to “win” the adversarial game. The main problem of
GANs is the loss of convergence during training [37], especially if the initial distributions
of real and fake images are too far from each other. This problem also correlates to
the vanishing gradients problem [32]. Both networks can end up in a deadlock, and the
generator produces only a limited number of sufficiently different samples, or they end
within oscillating results. In the following sections, one approach for overcoming these
training problems of GANs are presented.

2.5.1 Wasserstein Generative Adversarial Networks

To overcome the main problem of GANs, many proposals have been made in recent
years. One proposal is the Wasserstein generative adversarial network (WGAN) by
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update

update

fake

Figure 2.5: Setup of a GAN which was proposed by Goodfellow et al. [36]. The generator tries to mimic thereal data distribution by generating new images out of latent 2D noise vectors. The discriminator then rateswith which probability the result of the generator belongs to the real or fake distribution.

Arjovsky et al. [38], which is based on the Wasserstein distance, also known as the
earth-mover distance [39]:

W (Pr,Pf ) = inf
γ∈Π(Pr,Pf )

E(x,y)∼γ [||x− y||] (2.2)
The Wasserstein distance W (Pr,Pf ) is the minimum cost of moving and transforming
a mass, such as a pile earth x corresponding to data distribution Pf into a pile y of
a different shape, corresponding to data distribution Pr. The Wasserstein distance for
the real data distribution Pr and the generated data distribution Pf is mathematically
defined as the largest lower bound of all transformation cost Π(Pr,Pf ) (i.e., amount of
earth moved times the movement distance). The advantage of using a cost function based
on Wasserstein distance is that it has a more linear gradient, as shown in Figure 2.6.
The Figure shows a distribution plot for the value of D(X) for GAN and WGAN. For
the GAN, red line, in the ranges of high and low values for D, the gradients are close to
0 or 1. As a result, the update changes are very large or negligible during the training.
For WGAN (the blue line), gradient slope is always unequal or not close to zero, which
facilitates successful training.

2.6 Conditional Generative Adversarial Networks

An extension of this concept of GAN is the conditional generative adversarial network
(cGAN). In addition to the generated sample being realistic, an additional condition c
must be fulfilled. cGANs are used, for example, for image-to-image translation. Here
an image from one domain A is transferred into an image from another domain B. The
domain refers to a certain characteristic of a set of images. However, corresponding
cross-domain image pairs (xA, xB) must be available for the training of a cGAN.
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Figure 2.6: Comparison of the Wasserstein generative adversarial network discriminator and the GAN dis-criminator. The discriminator of the GAN has to be distinguished between real samples (dark blue) and fakesamples (green). After convergence, the red line shows the prediction across the x-axis where the sampleswere located. As it can be seen, the red line gradients were close to zero at the location of the fake samples,which hindered the training of the generatorG. On the other hand, themetric of theWasserstein generativeadversarial network (light blue) provided “sufficiently nice” [38] gradients between the distributions. Notethat Arjovsky et al. did not describe the axes. Image adapted from [38].
To overcome this problem, Zhu et al. introduced cycle generative adversarial net-
work (CycleGAN), which provides cross-domain image translation without requiring
corresponding image pairs for training [40]. For updating the weights of the CycleGAN,
the predicted image is not compared with the ground-truth image in domain B. Instead,
the predicted image is transposed back to the original domain A using the same NN and
compared against the original image.
Nevertheless, the CycleGAN has one major drawback: it must train k(k − 1) generators
G to translate bidirectionally between k domains. For example, if someone wants to
translate between images of people with brown, blond, and black hair, six generators
G and three discriminators D must be trained. To overcome this drawback again,
Choi et al. [41] proposed a modified CycleGAN that relies on a single generator G and
a single discriminator D. In addition, a label c was defined to describe the domain
transformations. Furthermore, the discriminator D is trained not only to discriminate
between fake and real images but also to predict the label c of the given image. Then, the
domain prediction of the discriminator D for a generated image was minimized by the
generator G in addition to the GAN objectives. As a result, the cGAN approach allowed
larger datasets for training, which led to a better generalization and image quality of the
generator G.
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2.7 Training Neuronal Networks

Training a NN means that the weights of the connections between the neurons are
optimized stepwise regarding an objective. In general, a distinction is made between
supervised and unsupervised learning strategies. The network does not receive pre-
assigned labels for the training data in unsupervised learning. Therefore, the network has
to recognize patterns in the images or input data on its own, which can be very difficult
depending on the domain. This kind of training is not used in this work and, for this
reason, is not described in detail.

In contrast, the NN’s output is mapped with the known label vector to the given
input vector for supervised learning or training. Thereby, the transition weights w are
incrementally adjusted according to the input label pair such that the output y of the
network matches given labels l concerning given inputs x [31]. The labels were assigned
manually before for the training data. Finally, supervised learning is an optimization
problem in which an objective function is solved during training. The estimation error,
which is defined by the loss function L , should be minimal [42]. Then optimization
problem that has to be solved during the training can described as:

w = argmin
w

L (fnet(w,x), l) (2.3)
Depending on the specific task, the loss function L is differently chosen. The optimization
methods which were used in this work are described below.

2.7.1 Stochastic Gradient Descent

The stochastic gradient descent (SGD) is an extension of the method of gradient descent.
Gradient descent is problematic when the NN has several million weights. The more
unknown variables (i.e., weights), the larger the dataset needed to calculate the optimal
solution. The gradient descent method searches for a locally optimal solution on the
entire dataset. Thereby, the idea is to move along the function’s gradient L towards
the minimum, as shown with the black line in Figure 2.7 (a). The gradient describes the
behavior of the network and is used to iteratively change w so that the loss function
becomes minimal [42, 43], as shown in Figure 2.7 (b).
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Figure 2.7: (a) Direct graphical comparison of the convergence steps to reach the minimum of the loss func-tion of the gradient descent approach (in black) and the stochastic gradient descent (in green). (b) Schematicof the loss function convergence for the initial state to the minimum.

During NN training the weights wj are updated as follows:

wj+1 = wj − δ∇wL ((fnet(wj ,x), l) (2.4)
It should be noted that an initial weight vector w0 or the step size, also known as the
hyperparameter learning rate δ, must be given. Mostly a random initialization is made
for the weight vector to avoid side effects like biasing.

As mentioned above, the gradient descent can fail for problems that are containing
several million variables. However, the computational problem of finding the optimal
solution for large networks can be solved by partial updating on a subset of the dataset.
For this purpose, the entire dataset is divided randomly into subsets, and the gradient
computation is solved on only a subset. It could be proven that the summed-up solution
of the sub-problems corresponds to the gradient descent solution [42]. This technique is
called stochastic gradient descent (SGD), and the strategy during the training for weight
updates can be formulated as follows:

wj+1 = wj − δ∇wL ((fnet(wj ,x), l) = wj −
δ

N

N∑
i

∇wL ((fnet(wji,xi), li) (2.5)

Here N is the total number of label-input pairs. Furthermore, SGD takes advantage
of the fact that the gradient can be approximated. For this purpose, a set M < N is
selected from the sub-problem. This subset, also-called mini-batch or batch, is then used
to update all the mesh weights. The batch size, a further hyperparameter, has to be
chosen. Furthermore, the practice has shown that for the SGD method, it is essential that
the learning δ adaptively decreases as the loss function is converged. The reason for the
decrease in the learning rate is that the random batch selection is comparable to a noise
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source because not all classifications are included in a batch. The random batch selection
can lead to the loss still oscillating slightly when the optimum is reached [42, 44].

2.7.2 Adaptive Moment Estimation

The adaptive moment estimation (ADAM) method is a gradient-based algorithm op-
timizing stochastic objective functions [45]. Compared to the SGD algorithm ADAM
does not have a fixed learning rate but it calculates it adaptively. For this purpose, an
individual learning rate is assigned to each parameter at each update. The weights w
are updated in the following way:

wj+1 = wj − δ
m̂j+1√
v̂j+1 + ε

(2.6)

Here, δ is the pre-defined learning rate and ε = 10−8 being a constant for numerical
stability. The first and second moments m̂ and v̂ are estimated by:

m̂j+1 = β1mj + (1− β1)gj+1
1− β1

(2.7)

v̂j+1 =
β2vj + (1− β2)g2

j+1
1− β2

(2.8)
Here gj+1 = ∇wL ((fnet(wj ,x), l) with the loss function L . β1 and β2 have to be
pre-chosen. For computer vision tasks, ADAM is one of the most popular optimizers
besides SGD due to its fast convergence. However, it must also be noted that the SGD
algorithm is significantly slower for some specific deep learning tasks but can find a better
solution [46].

2.8 Back-propagation Algorithm

The back-propagation algorithm is applied to update the weights in the different layers
in supervised learning [30]. Here, the chain rule is used to calculate the gradient for each
weight. The chain rule states that the weight in one layer depends only on the weights
and outputs of the subsequent layers. Thus, Equation (2.3) can be solved layer-wise,
and the weights are iteratively updated from the output layer backward. The weight
updating is always done after calculating the losses for a given batch. Therefore, the loss
is usually averaged over all samples.
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2.9 Regularization Methods

In machine learning, there are several regularization techniques to avoid overfitting.
Overfitting means that a NN memorizes instead of recognizing the input-label pairs.
Overfitting reduces the generalizability, i.e., the network’s performance on new unknown
data is considerably worse than on the training data. The transfer learning method is
often used in the medical field, and the data augmentation method is usually used in
image analysis. In practice, these methods are combined to improve the generalization of
NN. The two methods will be shortly introduced, in the following subsections.

2.9.1 Transfer Learning

Transfer learning are used since there is usually not enough data available to train deep
NN from scratch completely. Thereby, the NN uses the same characteristics in images on
two different datasets [42]. For example, in medical image analysis, the network is trained
on standard images, such as the ImageNet dataset [47], which contains dogs, flowers,
cats, and furthermore. The expectation is that the network learns to recognize semantic
content, like edges, monochromatic areas, patterns, and others. This semantic content
could also be found in medical images or other images. Afterwards, the pre-trained
network with the stored weights is taken and transferred to the application domain by
continuing the training with the available data, e.g., medical images. By doing this, the
required amount of data can be reduced, and overfitting can be avoided. For transfer
learning, the output layer, which is domain-dependent, must usually be adapted in
practice. Hence, a re-initialization of the weights in the output layer is necessary.

2.9.2 Data Augmentation

Data augmentation is another possibility, besides transfer learning to avoid overfitting
on small datasets. Data augmentation is an artificial extension of an existing dataset.
In practice, it is relatively easy for some machine learning tasks to create such data.
For example, by simple spatial transformations (rotating, scaling, adding noise, etc.),
a “new” image can be generated for, e.g., image classification using CNN. For a CNN,
the transformed image is new because the local information is swapped, and therefore
the input values look different for the CNN. As described in Section 2.3, a CNN tries
to extract semantic information from the input image. Hence, an image is rotated, the
semantic information in the image has to be shifted and therefore has to be extracted by
other neurons. In practice, dataset augmentation techniques have been shown to decrease
the generalization error of machine learning dramatically.
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In the following, the three different types of surgery are briefly described, which have
been necessary for this work. They form examples for the applications of the artificial
data generation approaches.

3.1 Cataract Surgery

With 19 million surgeries performed annually, cataract surgery is the most common
surgical procedure globally [48]. Cataract describes the disease where the natural lens
of the eye becomes cloudy. The reason for this is usually physiological aging of the
crystalline lens, but there are also other factors such as metabolic disorders [49].
The clouding reduces the field of view. In remarkably progressed disease states, the lens
clouding is so pronounced that the incident light can no longer be focused on the retina,
see Figure 3.1. Furthermore, it can also lead to complete blindness. The only treatment
option at the moment is the cataract surgery. Thereby, the most common procedure is
extracapsular cataract extraction, here the cloudy lens in the capsular bag is replaced
with an artificial lens implant.

Figure 3.1: Schematic of the eye from a healthy crystalline lens (left) and cataract lens (right). Modifiedfrom [50], licensed under Creative Commons Attribution-Share Alike 4.0 International.

21
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The operation is a minimally invasive surgical procedure that is highly standardized.
The entire procedure can be performed with only small incisions in the cornea. The
incisions are usually only about 2mm in width. Afterwards, the capsular bag is opened,
and the cloudy lens is removed. A femtosecond laser has been increasingly used to open
the capsular bag and cornea in recent years. This procedure is less invasive and more
precise [51].

Then the natural lens is usually removed by phacoemulsification, i.e., a high-frequency
ultrasound device is used to disrupt the lens into small pieces and simultaneously they
are aspirated. A so-called injector is used to insert the artificial lens. With its help, the
flexible artificial lens is rolled up before being inserted into the eye and positioned in the
capsular bag. The procedure usually takes 15 minutes. Immediately after the surgery,
the patient recovers his visual capability [52].

3.2 Cholecystectomy Surgery

Gallbladder removal, also called cholecystectomy, is performed more than 750,000 times
per year in the United States. Other studies says that 10– 15% of adults are affected by
gallstone disease in their lifetime [54]. The gallbladder is a hollow organ attached to the
liver. The gallbladder stores the digestive fluid bile, a fluid produced by the liver that
helps metabolize fat.

Removal of the gallbladder is usually necessary because of gallstones. Depending on
their size of the gallstones, they can lead to a blockage of the gallbladder system. It
results in an inflammation of the gallbladder (cholecystitis). The cholecystectomy is
usually performed by minimally invasive surgery, or more precisely laparoscopically. In
this treatment, a tiny video camera and special surgical instruments are inserted through

Figure 3.2: Schematic of a laparoscopic Cholecystectomy (left). A figure of a extracted gallbladder, whichwas filled with stones (right). Image from [53]
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small incisions in the abdominal wall, as shown in Figure 3.2. The abdominal chamber is
additionally inflated with carbon dioxide for better visibility and a larger working room.
Laparoscopic cholecystectomy takes about one to two hours.

3.3 Cranio-maxillofacial Surgery

Cranio-maxillofacial surgery is a standard treatment for temporomandibular joint disor-
ders or skeletal deformities, e.g., dysgnathia. Dysgnathia refers to the non-physiological
development of the masticatory apparatus components to a nominal jaw position. The
reason for these misalignments can be congenital or acquired. In the case of congenital
dysgnathia, the reason is usually a delay or irregularity in the embryonic development of
the skull. Acquired dysgnathia is usually the consequence of, e.g., trauma, tumors, or a
malfunction of the swallowing, chewing, and tongue muscles. [55]

The consequence of dysgraphia can be tooth misalignment, occlusion disorders, and
aesthetic and functional impairments, e.g., a crossbite, a cover bite, a scissor bite, or an
open bite [56]. In addition to conservative dental and orthodontic treatment, surgery may
be induced depending on the grade of this disease, e.g., in case of bone malformations.
During the operation, the jaw will be adjusted. The operation is performed at an adult
age so that bone growth does not lead to a new misalignment. Besides improving the
function, the jaw correction according to the standard shown in Figure 3.3 [57, 58], can
significantly change the patient’s facial appearance. The decision for or against the
surgery can be very burdensome for the patient.

Figure 3.3: Planning a dysgnathia surgery in which an underbite (A) is to be corrected. The lower jaw isdivided (green) and pushed forward slightly (B). [59]
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Chapter4
Workflow Augmentation of Video

Data for Event Recognition
with Time-Sensitive Neural

Networks

4.1 Introduction

In recent years, deep learning has shown excellent results in medical image analysis
and event recognition. Deep learning is a promising method to support physicians
in their diagnostic and clinical daily routine. Today, deep learning applications are
already assisting physicians in diagnosis [5], image registration [10], multi-modal image
analysis [11], and image segmentation [12]. The most common type of deep learning
network is the convolutional neural network (CNN) [60]. CNN is engineered to extract
information from an image using multiple convolutional kernels. However, CNNs have also
been used for event recognition in surgical workflows from videos, in recent years [15, 61–
64]. Event recognition is typically done by detecting surgical instruments in the images.
Nevertheless, the CNN still considers only the image information of individual frames
without including the information from the chronological sequence of events. However,
in most cases, a surgical procedure usually follows a predetermined established workflow.
Hereby, specific instruments appear in the characteristic phases of the workflow. As
context recognition has increasingly come into focus in surgery [65, 66], recognizing
the chronological sequence of events becomes very important. Morita et al. [67] used
for the surgical phase recognition in cataract surgery the Inception V3 model, which
is based on a CNN. Twinanda et al. [21] used the EndoNet, an extension of a CNN
by a hierarchical hidden Markov model (HHMM), for detecting the individual phase
of laparoscopy. The CNN extracts the image features, and the HHMM considers all
temporal information. Twinanda et al. also mention that the HHMM is trained separately

27
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from the CNN, due to less training data. Al Hajj et al. [15] were able to demonstrate that,
instead of a combination of CNN and HHMM, the combination of CNN and recurrent
neural network (RNN), i.e., long short-term memory (LSTM), can considerably increase
the recognition performance. However, both approaches from Al Hajj et al. [15] and
Twinanda et al. [21] still suffer from small and highly unbalanced training datasets. The
authors found out that the precision for detecting a specific tool is highly correlated with
the prevalence of the tool in the training set. This dependence of recognition rate and
frequency is another indicator of the main problem of many deep learning applications in
medicine. Frequently, medical datasets are too small and unbalanced for effective training.
The consequences are insufficient detection rates and a lack of robustness, especially for
rare events.

Therefore, we conclude that the availability of sufficiently large and adequately balanced
training datasets is a prerequisite for the use of deep neural networks (NNs). The
conclusion leads directly to this paper’s scientific question: How can existing surgical
video datasets be retroactively enlarged and balanced, specifically regarding the frequency
and the chronological sequence of events?

This study presents a novel end-to-end workflow-based approach for augmenting and
balancing surgical videos. In contrast to previous approaches [15, 61, 68], we propose
a combination of several methods whose starting point is the extraction of the surgical
workflow. Then using this workflow, the artificial videos are reassembled and augmented

Original data set

Workflow

Video 
segments

augmentation
assemble

⋮

⋮

Class 1

Class n
⋮?

Class 1

Class n
⋮?

Original 
annotation 

Figure 4.1: Overview of our approach to augmented videos. We extract the workflow from the annotationof the original training dataset and split the videos along their classifications. Afterwards, we assemble newartificial videos using the workflow graph and the sequences. Additionally, they are spatially and timelyaugmented.
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in both space and time, as shown in Figure 4.1. This methodology allows the creation of
new artificial videos that appear to the NN as originally recorded videos. Furthermore,
it is possible to create sequences of the same duration, with a variation of speed, and
a balancing of the classifications within the datasets, a posteriori. To the best of our
knowledge, there is no approach so far that can enlarge video datasets in a way that the
spatial and the temporal information is augmented, and furthermore balance the dataset.
We will demonstrate that with our method, it is possible to augment and balance a
cataract video dataset. Afterwards, we train a combined CNN and LSTM network whose
image classification performance is better than that of the same NN trained on a dataset
augmented using the state-of-the-art method.

This chapter is organized as follows: Section 4.2 provides an overview of the cataract
dataset and the current review of the state-of-the-art augmentation methods. We present
our methods and the state-of-the-art method we used for augmenting in Section 4.3.
Additionally, we describe in this section the networks and training strategies that were
used. The results are presented in Section 4.4. The chapter ends with a discussion and
conclusions in Section 4.5 and Section 4.6, respectively.

4.2 Related Work

In the following, we describe the current state-of-the-art for data augmentation in general,
and especially for time-series, and medical data. Furthermore, we depict the state-of-
the-art for classifying time-series data in medicine. We also highlight the differences in
previous work compared to our study. Lecun et al. [68] were the first who used data
augmentation, i.e., data wrapping, for handwriting recognition using a CNN. Nowa-
days, data augmentation is a well-established technique for image recognition. These
augmentations are based on random spatial image manipulations, such as geometric,
color, or noise transformations. Many CNN architectures used different types of these
transformations. For example, AlexNet by Krizhevsky [69] used clipping, mirroring,
and color augmentation. Hereby, AlexNet produced excellent classification results on
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset [47]. Other
transformations like scaling and cropping were used in the Visual Geometry Group
(VGG) by Simonyan and Zisserman [70] or scaling, cropping, and color augmentation
in the Residual Networks (ResNet) by He et al. [71], or translation and mirroring in
the DenseNet by Huang et al.[72], or cropping and mirroring in the Inception network
by Szegedy et al. [73]. These transformations are applied separately to the individual
images. For these applications, the temporal information was not relevant.

In contrast, only a few approaches are published to augment videos. Hajj et al. [15] and
Parmar et al. [74] suggest a sub-sampling of the original sequence for video augmentation.
The sub-sampling increases the size of the dataset, but the sequences of the videos are
identical. Kim et al. [75] suggest a temporal variation to skip some video frames. This
results in shorter videos, and therefore to an unwanted NN bias. Ji et al. [76] suggest
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a time-warping approach, to avoid this. In this case, the data are scaled in the time
domain. Nevertheless, there is a major drawback, because Ji et al. applied the method to
the extracted feature vector of the input data and not to the original dataset. However,
the feature data must be unambiguously human-interpretable for such an approach which
is rarely feasible. Therefore, an end-to-end augmentation approach that augments both
the spatial and temporal information in the videos is desirable.

4.3 Methods

Our approach is based on the workflow extracted from meta information in the videos.
This meta-information, i.e., workflow, is present in the data but not limited to them.
We can create a balanced dataset using this meta-information and the extracted video
segments. A balanced dataset is one of the most significant advantages of our approach.
We apply spatial image augmentation on the complete videos to avoid the fact that the
workflow augmentation is not a duplication of data sequences. The spatial augmentation
is an effective method to enhance the size and quality of the training data. Image
augmentation is crucial to successfully apply deep learning models when only insufficient
data are available. In addition, we apply temporal augmentation by using optical flow,
not on the extracted feature like Ji et al. [76], in order to generate sub-frames between
two frames as Niklaus et al. [77] suggested. The application of optical flow also allowed
us to use time-warping in the image domain, and not in the feature domain. Such an
end-to-end augmentation for videos, which is easily interpretable by humans, has never
been proposed before.

4.3.1 Database

This study aims to demonstrate the potential of our workflow augmentation method for
enlarging and balancing an existing dataset. Therefore, we chose the cataract dataset [22]
because it has a few videos and is highly imbalanced. Furthermore, the possible tool
set is limited due to the high standardization of the cataract surgery, which reduces the
dimensions of the workflow graph. We believe that the selection of the cataract dataset
as an example does not limit the power and generality of our method. A schematic
overview pipeline of our approach is shown in Figure 4.2.
The dataset contains videos from 50 cataract surgeries conducted at the university
hospital of Brest. A microscopic video and a surgical tray video were provided for the
complete surgical procedure for each surgery. The surgical video was recorded with a
ZEISS OPMI Lumera T microscope (Carl Zeiss Meditec AG, Jena, Germany). The videos
are stored as a sequence of images. The average duration of the videos is 10 minutes and
56 seconds. The image format is 1920×1080 pixels, and the frame rate was approximately
30 frames per second (fps). The videos of the surgical tray are provided in parallel, as a
side-by-side synchronous recording of the surgical tray to the microscope videos. Since the
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Figure 4.2: Pipeline of the workflow-based augmentation method.

tray videos are not used for this investigation, a more detailed description is omitted and
can be found in [22]. The authors also provide the frame-by-frame annotation separately
for each video for 21 different surgical tools used or not used. Two experts independently
did the annotation regarding the usage of a tool. Here, usage is defined by whether or
not the tool is in contact with the eyeball in the respective frame. The annotation of
both surgeons was corrected regarding the used tool but not to the exact time of use.
Here, the mean of the two experts’ annotations is used as the final frame annotation.
Therefore, a particular uncertainty in the annotation of the exact point in time must be
considered. The full dataset was divided into a training set and a test set of 25 videos
each. The training dataset is the starting point for all further steps of our approach.

4.3.2 Augmentation Method

In the following, we describe our end-to-end workflow augmentation methodology for
generating new artificial videos in chronological order. First, we explain how we extract
the basic workflow from the existing dataset. Next, we describe how we create our
modular construction kit of video segments and how we generate new videos with this
kit using the workflow as a sequence template. Then we describe our exact procedure
for varying the generated videos in appearance and temporal dimension. Afterwards, we
describe a state-of-the-art split augmentation method that we use for comparison.

4.3.2.1 Workflow Augmentation

Workflow extraction So that the artificial cataract operations videos mimic a real
cataract surgery. We require the workflow of cataract surgery as a template. A workflow
is a composed and defined sequence of single work steps. These work steps correspond,
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in our case, to typical phases of a surgical procedure. A phase of a surgical procedure
always refers to a specific goal or general activity, e.g., opening the surgical cavity. We
define a phase as a higher-level surgery action. When we look at the surgical phase at
the next level of detail, we see a sequence of basic actions. In our case, these actions
correspond to the events to be classified, namely the used surgical tools. A change in
the tool annotation defines the beginning and the end of an event. In the following, the
identified events are also named classes. The title of the class indicates the respective
tools.

In the literature, various studies on workflow recognition of cataract surgery can be
found. However, these workflows varied substantially from each other. For example,
Morita et al. [67] propose only a three-phase workflow that contains only the essential
steps. Yu et al. [78] propose eight phases, including two additional case differentiation.
Zisimopoulos et al. [79] propose 14 phases. The study based on the same dataset as
ours. However, Al Hajj et al. [22] suggested 18 phases for the same dataset. Nevertheless,
since the phase annotations are not available, we decided to extract the workflow semi-
automatically from the annotation files of the training dataset, inspired by [67, 78,
79].Our extracted workflow has six unique phases. These phases are marking, cutting,
capsulorhexis, phacoemulsification, implantation, and suturing. The phases are linked
by specific transitions, i.e., a specific sequence of events and characterized by different
anatomical situations and environmental conditions. Even if identical tools are used in
different phases, this leads to a different context in which the tools are used. Consequently,
even if they are identical but used in a different phase, these tools are later considered as
different tools and classes, respectively. By this, an ambiguity of the tool classification
of the NN should be prevented. Consequently, first all classes contained in the entire
dataset are identified. The identification has been made only based on the annotation.
The class sequence length varies in the 25 videos. The mean length of a video is 27 classes
with a standard variation of ±6.5. The maximum length is 130 (video 19 ), and the
minimum is 18 (video 23 ). To extract the workflow the individual sequences of classes
were sorted according to their length. Afterwards, they were manually merged to one
overall workflow. This step could be done automatically, but further investigation would
be necessary. However, this automated workflow extraction goes beyond the scope of
this work.
To reduce complexity, we decided to exclude specific surgical phases from the workflow
construction, such as IOL removal, which occurs only in the video 12 and 14. Furthermore,
for the stitching with the suture need, only one variation was considered for the workflow.
Video 4 was excluded for testing purposes. In the end, we completely excluded the
following videos: 4, 8, 12, 14, 19, and 25, due to appearing surgical problems. We know
that phases and the tools from the excluded files may not be classified correctly during
testing. However, we assume that these simplifications will not limit the methodology. A
more complex workflow model would only increase the size of the training dataset and
thus the training time.
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Figure 4.3: Illustration of the extracted workflow from the annotation of the training data of the cataractdataset. In greenmarked the starting classes, in orange the final classes, and square boxes the other detectedclasses. The gray boxes show the six different phases (marking, cutting, capsulorhexis, phacoemulsification,implantation, and suturing) that we identified from the dataset. The arrows represent the transitions be-tween the classes. For a better overview, the idle intervals are not shown explicitly.

The graph of the final workflow is shown in Figure 4.3. Out of the 25 videos, we identified
just four starting classes marked in green in round boxes (biomarker, Bonn forceps,
primary incision knife, secondary incision knife) and two final classes (cotton, Rycorft
cannula) marked in orange round boxes. The squared boxes are intermediate classes.
The arrows represent the transitions between the classes.
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Video segment database The workflow and video segments are required to assemble
the artificial cataract surgery video. Therefore, the dataset videos have to be split
into segments and sorted according to their classification. Before splitting the videos
into segments, we had to decide whether the segments should start precisely with the
annotation or a few frames before. The best case would be if the segment of a class starts
and ends with some frames of the class no tool in contact. Unfortunately, this is not
possible in the cataract dataset because, for example, if a surgical tool is annotated in
the current segment and another one is added, then the class changes without having
the classification no tool in contact in between. Therefore, we decided to split the video
in the middle of the previous and the current class, as illustrated in Figure 4.4. The
split at this position has the advantage that a high entropy of a sequence cut, due to
the image change, does not bias the NN. More precisely, the NN should not learn to
recognize any cuts in the generated video. Instead, the NN should interpret the cuts as
noise and does not react sensitively to them because the classification does not change.
In addition, it provides more opportunities for a variety of segment combinations in
artificial videos. The segments are stored in a database with their frames-by-frames
annotation. The current phase is also saved, allowing instruments used multiple times in
the workflow to be assembled according to the specific content. We included all videos
from the original dataset to have a higher diversity in the database, except video 4. This
video was excluded to have an original clinical test video with annotation because, at
that time, the annotations of the 25 test data from the cataract dataset were not publicly
available.

As a result, we obtain 124 different types of class transition, for the segment database.
The transitions with initial class no tool in contact to a class with one or more tools in
contact is the largest subset with 45 segments, and vice versa is the second-largest subset
with 35 segments. 44 subsets contain just one individual segment. The transition Rycroft
cannula implantation → no tool in contact contains the largest subset with 127 different
segments. In the mean, a class contains approx. 8.78 individual segments. The number
of frames per segment is in median 184.5 frames with the median absolute deviation of
253.2 frames. The minimal number of frames per segment is 1, and the maximal number
is 3733 frames.

Class A Class A Class A Class B Class B Class B Class B Class C Class C Class C Class D Class D

Seg. A→B Seg. B→C Seg. C→D

✁ ✁ ✁✁

Figure 4.4: Illustration of splitting the original videos in different segment along the classes.
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Workflow augmentation The artificial cataract surgical videos were created in the
next step based on the workflow graph and the video segment database. The workflow
augmentation allows generating videos that have not existed before in the concrete
sequence and class combination. The initial and final classes are equivalent to those of
the original videos. Furthermore, the transition probabilities between the classes for the
artificial videos have to be determined. They can be chosen according to the original
dataset, which leads in the case of the Cataract dataset to an unbalanced enlargement or
arbitrarily and uniformly distributed for a balanced enlargement. We decided to choose
transition probabilities uniformly because we wanted a balanced dataset. Therefore, we
chose the outgoing transition probabilities of each class wi that they sum up to one:

1 =
E∑
i=0

wi (4.1)

To prevent “endless” cycles of one class in the generated artificial videos, the corresponding
transition probability was reduced after selection, and the other outgoing transition
probabilities were increased simultaneously. The amendment can be determined by the
user. We decided to reduce the probability of the selected transition wj by 1/2. The
amendment is then:

1 = wj
2

E∑
i=0,i 6=j

wj
2 · (N − 1) + wi (4.2)

The transitions of the workflow graph were selected according to their probabilities to
generate a new video sequence. This class sequence and the segment database are used
to create the corresponding video in the next step. If there is more than one segment for
a class, the concrete segment in the database would be randomly but uniformly selected.
Since only tool- tool transitions are considered in the workflow graph, but the database
also contains sequences with the intermediate step no tool in contact, we check in advance
which variants are available and then choose randomly between both. As a result, we get
a balanced training dataset of artificial videos from an unbalanced original dataset.

Spatial augmentation Since the appearance of the produced videos can be very similar,
especially if the database contains only a few sequences, we additionally decided to
spatial augment the videos. Therefore, we used 15 different image augmentation types:
center-cropped, padding, rotating by 90◦, mirroring, zooming, rotating by ±90◦, contrast
changing, brightness additive or multiplicative changing, gamma-spreading, linearly
down-sampling, adding Rician noise, adding Gaussian noise, adding Gaussian blur, and
adding square-noise of the batch generator from Isensee et al. [80]. In addition, we used
two different types of color augmenting: inverting the colors and a randomly shuffling
the color channels. We expect that the color information in the data, e.g., iris color, will
be less important. Only geometric shapes, e.g., the instruments or the pupil, strongly
influence the correct classification.
Each of the 17 functions is chosen randomly with distribution of 33%. Afterwards, the
execution order is randomly shuffled. This procedure results in a larger variation of the
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augmentation. This fact can be explained by the circumstance that identical functions
with identical parameters, but executed in a different order, led to different results for some
functions due to the loss of information. The parameters for the specific augmentation
function can be taken from Table 4.1. The values were determined empirically for the
dataset, allowing that the user still recognizable content of classification.

Table 4.1: Specific augmentation parameter range of the different functions
function min max
center cropping (840,1080) (1080,1920)padding (1080,2160) (1920,3840)90 degree rotation 1 3mirror axis x,yzoom factor 0.03 1random rotation -90 90contrast 0.2 2additive brightness -64 64multiplicative brightness 0.5 1.5gamma spreading 0.2 2linear down-sampling 0.05 2Rician noise 0 20Gaussian noise 0 20Gaussian blur 0 7square noise (0,32) (0,300)

Temporal augmentation After augmenting the appearance of the videos using image
augmentation methods, the videos look different, but the video segments have the same
duration as the original segments. Since we also consider the temporal information during
training, there is still a risk that the NN can memorize the few original video segments,
which leads to overfitting. For this reason, we decided to augment the videos also in the
temporal domain.

A possible augmentation method would be to increase or decrease the segments’ duration
by changing the frame rate. A frame rate increase or decrease can be realized by
dropping or duplicating individual frames. However, these techniques have a substantiable
disadvantage. Dropping or duplicating frames leads to discontinuity of the optical flow
in the video. The discontinuity can be recognized by non-natural jumps or non-smooth
movements of the surgical tools. As a result, this could negatively affect the network’s
performance because the videos would have an unnatural character. Moreover, in case
of duplication, the inter-frame differences are zero and thus there is no new or different
information. For this reason, we decided to use the optical flow to generate new sub-
frames. For generating an inter sub-frame from two frames. Therefore, we used the
implementation from Niklaus et al. [77]. Niklaus et al. proposed an encoder-decoder
network that extracts features from two given frames. These features are the inputs of



4.3. Methods 37

four NNs. Each sub-network estimates, in a pixel-wise manner, a one-dimensional kernel
for each output pixel. Afterwards, the estimated kernels are convoluted with the two
input frames to obtain the interpolated sub-frame.

For speed variation, we chose a temporal augmentation range between
0.5×– 1×– 2×. The range are divided equally into 20 different factors. These fac-
tors are the following: 2, 1.8824, 1.778, 1.6842, 1.6, 1.4884, 1.3913, 1.3061, 1.2075, 1.1637,
1, 0.9552, 0.9014, 0.8533, 0.8, 0.7529, 0.7033, 0.6534, 0.5981, 0.5517 and 0.5. To achieve
the different speeds in the videos, the inter-frame space must be up-sampled 64 times.
The speed factors then correspond to the following sub-frames: 128, 116, 107, 98, 91, 85,
80, 75, 71, 67, 64, 58, 53, 49, 46, 43, 40, 38, 36, 34, and 32. The full up-sampling can also
be applied directly to the segment dataset. This would result in a speedup, especially in
the case of a small database or if many artificial videos have to be augmented. For the
annotation of the sub-frames [1, 32], the annotation of the original frame n was taken, and
for the sub-frames [33, 64], the annotation of the frame n+ 1. In contrast to the spatial
augmentation, we did not augment the entire generated video with one parameter set.
Instead, we divided the video into randomly long parts according to the mean plus/minus
the mean absolute deviation of the original class sequences. Then, we augmented the
individual parts of the video with a randomly selected discrete speed factor. We expect
this will lead to greater variability in the duration of individual surgical processes and
further to more classification robustness of the NN. To ensure that the complete range
for the augmentation length for a video and speed variations is covered as uniformly as
possible, we created a Halton sequence. We chose the Halton sequence, more precisely a
two-dimensional Halton sequence from [0− 1], because it has a small discrepancy, i.e., the
sequence is randomly and covers the complete range uniformly. Afterwards, we linearly
interpolated the samples to that the first dimension represents the sequence length and
the second dimension the speed factor. The concrete augmentation values are randomly
selected from the Halton sequence. The temporal augmentation was the last step of our
workflow augmentation approach, and as a result we got artificial videos.

4.3.2.2 Comparison Approach: Split Augmentation

Shen et al. [81] and Al Hajj et al. [15] introduced a more simple approach to increase
the samples of sufficient datasets artificially. Thereby, they split the videos into smaller
subsets. They take just every 10th frame of the video to get ten videos out of one video.
We decided to use this approach as a comparison method. This approach allows easily to
artificially increase the amount of data without including other videos or manipulating
the content of the videos. In addition, since the individual sub-videos do not differ
much from each other, we decided to spatial augment each sub-video individually that
they appear differently. For the spatial augmentation, we chose the same procedure and
parameters as described in Section 4.3.2.1, Spatial augmentation. Furthermore, for better
comparability, we chose only the videos used to create the workflow graph, as described
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in Section 4.3.2.1, Workflow extraction. These were, in total, 19 original cataract videos,
which resulted in 190 sub-videos.

4.3.3 Training strategy

To determine the performance of workflow augmentation versus split augmentation in
the study, and to ensure that the differences are only due to augmentation, we used the
identical NNs for the different, separate trainings. Furthermore, we first train a CNN
and then a combined CNN and LSTM classifier to test whether the additional semantic
augmentation provides any benefit. Besides, we converted the floating-point number
annotation for each image from or both datasets, the workflow augmented and the split
augmented, to a binary annotation. Therefore, labels greater than 0.5 were set to 1, others
to 0. Additionally, we transfer the multi-label annotation into a multiclass annotation.
This conversion resulted in 27 different classes instead of 21 classes. Furthermore, we
normalized the images over the complete dataset. For the training, validation and testing,
we divided the 5000 videos of the workflow augmented dataset into 3000 videos (60 %)
for training and 2×1000 videos (20 %) for validation and testing, respectively. These test
videos were never presented to the classifiers.

For the split dataset, we decided to take all 190 videos for the training and use the 1000
validation videos from the workflow augmented dataset for validation due to the small
number of videos in the split dataset.

For both trainings of the NN, we used the stochastic gradient descent (SGD) optimizer
with a learning rate of lr = 0.01 and a momentum = 0.9. The learning rate was linearly
decreased by 0.1 every 10th iteration. We trained our models in parallel on 8 NVIDIA
Tesla V100s with 32 GB using module-level data parallelism. Due to memory constraints,
the CNN classifier is trained on a maximum of 2400 frames whenever possible the complete
video is taken. Otherwise, the frames are randomly selected over the entire video. Finally,
the selected frames are shuffled. For the training and validation of CNN and LSTM
classifier, at least every 15th frame, which corresponds to a frame rate of 2 fps, and a
maximum of 2400 frames per video were equidistantly selected from the datasets. The
frame sequence was maintained. The videos of the training set were randomly selected
from both datasets. For the evaluation, we used the cross-entropy loss and the one-hot
classifier. We trained the models until they converged.

4.3.4 Implementation Details of the Neural Networks

CNN network We selected for CNN classifier the ResNet50 [82] network. Because
the ResNet50 showed that it was one of the best performing networks at the cataract
challenge [61] in comparison with other NNs. Additionally, we decided to use transfer
learning due to the limited available training data. We replaced the last fully connected
layer with a type-identical layer of 27 nodes representing the 26 binary multi-classes and
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the class no tool in contact. The weight of this layer was randomly initialized. Since
the complete dataset was normalized, we decided to disable the estimation of batch
normalization for each batch normalization layer. The variable track_running_stats
was set to False and the variables running_mean and running_var to None. This
results in a scaling factor γ of 1, and a shift factor β of 0 for each batch normalization
layer. Moreover, the batch normalization then based only on the current batch, which
representing one complete cataract surgery video. The normalization y of image x is
calculated with the following equation:

y(x) = x− E[x]√
V ar[x] + ε

, (4.3)
where E is the expected value, V ar the variance and ε are by default 10−5. For a better
overview, all described parameters with the chosen values are also listed in Table 4.2.

Table 4.2: Selected and changed parameters and their values for the training of the network ResNet50
Parameter Value
dataset split in % forworkflow augmentation 60/20/20(train/ valid/ test)Optimizer SGDClassifier one-hot classifierLearning rate 0.01− 0.1 · b epoch

10 cMomentum 0.9Max batch size 2400 framesStep width for LSTM 15 framesBatch normalization layer:track_running_stats Falserunning_mean Nonerunning_var None

LSTM network To keep the influence of the network selection as low as possible, we
extended the previously explained ResNet50 by a layer of 21 LSTM nodes [33] and a fully
connected linear output layer with 27 nodes. To avoid learning the network from scratch
and make the LSTM layer’s training more stable, we used the previously described
ResNet50 pre-trained on the images over 8 epochs.

4.4 Results

We conducted three experiments to evaluate the performance of our workflow augmenta-
tion approach. The first experiment is the classification performance of the CNN and
the combined CNN and LSTM network, in the following briefly called just LSTM, on
the workflow augmented test dataset. For the second, we evaluate both NNs on a real
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test dataset. Third, we evaluate the split trained combined NNs on the same real test
dataset. Before we evaluated the experiments, we further investigated the generated
dataset produced by our new approach.

4.4.1 Generated Videos of Workflow Augmented Dataset

The generated workflow dataset contains 5000 artificial videos. They are generated with
the workflow graph by using 19 original videos and the corresponding segments from 24
videos.
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Figure 4.5: Boxplots of indicators of the workflow augmented dataset, on the left side of each sub-figure,and the original dataset, on the right. Each boxplot shows in red the median and in blue the inter quantiledistance 25th percentile and the 75th percentile. In the black dashed line are the whiskers with the 25th
percentile minus, resp. 75th percentile plus 1.5 times the inter quantile distance. (a) Shows the plots for thetotal video length. (b) Shows the plots for the individual sequence length of the videos. (c) Shows the plotsfor the number of label changes of each video. (d) Shows the plots of the number of different labels for eachvideo.
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Table 4.3: Comparison of the dataset augmented by the workflow and original dataset

25th perc. median 75th perc.
Total videolength (frames) original 13993 14525 18061workflow aug. 15496.5 18134 21282.5
Sequencelength (frames) original 53 126 315workflow aug. 40 121 322
# label changesper video original 43.75 49 55workflow aug. 51 62 75
# diff. labelsper video original 13 15 16.75workflow aug. 15 17 18
(#): number of

The original videos have a frame count of 14525 in the median with the 25th percentile of
13993 and the 75th percentile of 18061 frames. The videos of the workflow augmented
dataset had a length of 18134 frames in the median, with the 25th percentile of 15496.5 and
the 75th percentile of 21282.5 frames (shown in Figure 4.5 (a) and Table 4.3). Figure 4.5 (b)
and Table 4.3 show a similar distribution for the workflow augmented and the original
dataset’s segment lengths. The segments in the original videos had the median frame
count of 126 with the 25th percentiles of 53 and the 75th percentiles of 315. The segments
of the workflow augmented dataset videos had the median length of only 121 frames with
the 25th percentile of 40 and the 75th percentile of 322 frames. As a result, we could note,
that the original videos are shorter, and the length variability is not uniformly distributed
in the workflow augmented dataset. Furthermore, the segment length variability of the
original and workflow augmented datasets is very similar.

Furthermore, the workflow augmented dataset had a higher alternation of classifications,
with the median of 62 changes and the 25th percentile of 51 and the 75th percentile 75
changes, within a video. The videos in the original dataset had in the median 49 class
changes per video and the 25th percentile of 43.75 changes and the 75th percentile of 55
changes (shown in Figure 4.5 (c) and Table 4.3). Also, the number of used tools and
tool combinations was greater than in the original dataset, with the median of 17 classes
and the 25th percentile of 15 and the 75th percentile of 18. In the original dataset, the
median of the classes is 15 and the 25th percentile 13 and the 75th percentile 16.75 classes
(shown in Figure 4.5 (d) and Table 4.3). Table 4.4 shows the class distribution in detail
of both datasets. The table also indicates that the classes of the workflow augmented
dataset are more balanced than those of the original dataset. Most of the classes ap-
peared more frequently in the workflow augmented dataset except the classes: Rycroft
cannula, phacoemulsifier handpiece, primary incision knife, phacoemulsifier handpiece &
micromanipulator, and irrigation/aspiration handpiece & micromanipulator. Further,
the workflow augmentation approach increased the rare class, e.g., hydrodissection can-
nula & micromanipulator, approximately by a factor of six from 0.039% of all frames in
the original dataset to 0.243% in the augmented dataset.
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Table 4.4: Class distribution of the different datasets in percent

Classes workf. org. testaugment. train set
no tool in contact 50.069 46.304 42.687biomarker 0.084 0.026 0.045hydrodissection cannula 2.057 2.021 1.843Rycroft cannula 0.734 3.201 3.382viscoelastic cannula 2.766 1.614 1.549cotton 1.417 0.147 0.010capsulorhexis cystotome 4.930 4.687 5.877Bonn forceps 0.209 0.184 0.028capsulorhexis forceps 1.255 0.970 0.537Troutman forceps 0.758 0.086 0.007irrigation/aspiration handpiece 17.197 16.769 16.479phacoemulsifier handpiece 2.410 3.274 3.999implant injector 1.705 1.464 1.522primary incision knife 0.429 0.448 0.576secondary incision knife 0.464 0.296 0.373micromanipulator 2.176 1.596 1.483suture needle 0.110 0.027 0.000Mendez ring 0.448 0.162 0.133Mendez ring & biomarker 0.003 0.001 0.014Bonn forceps &secondary incision knife 0.320 0.292 0.255
primary incision knife &Bonn forceps 0.567 0.324 0.174
capsulorhexis cystotome &Bonn forceps 2.781 0.361 0.028
phacoemulsifier handpiece &Bonn forceps 0.083 0.052 0.129
phacoemulsifier handpiece &micromanipulator 5.426 13.336 14.441
irrigation/aspiration handpiece &micromanipulator 1.229 2.280 4.429
hydrodissection cannula &micromanipulator 0.243 0.039 0.000
Troutman forceps &suture needle 0.127 0.040 0.000

4.4.2 Classification of the Neural Networks on the Workflow
Augmented Test Dataset

The first experiment is designed to test performance of both classifiers. We trained the
CNN classifier without the temporal information on the workflow augmented dataset to
have a baseline performance for comparison. Therefore, the classifiers were trained on
workflow augmented data until converges. That results in a validation loss: 0.0759 and
an accuracy (ACC): 97.78%, after 42 epochs of max. 50 epochs for the CNN and 38
epochs of 50 epochs with an evaluation loss: 0.952 and ACC: 97.49%, for the LSTM.
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Eight epochs take for the ResNet50 approx. one day and one epoch per day for the
LSTM on 8 NVIDIA Tesla V100 GPUs with 32GB RAM used in parallel.

We evaluated both classifiers on the workflow augmented test dataset. Therefore, we
choose every 15th image of the video due to above mention memory issues. For each NN,
we evaluated the following overall metrics for multi-class imbalanced datasets [83] for
each NN: ACC, mean accuracy (AvACC), class balanced accuracy (CBA), macro-mean
recall (RECM ), macro-mean precision (PRECM ), and macro F1-score (F1-scoreM ). For
the calculation, the classes which do not occur in the dataset are excluded.

CNN The CNN classifier predicted the classes with an overall ACC of 96.9% and an
AvACC of 99.77%. The CBA was lower, with 87.41%. With a PRECM of 96%, the
classifier hits the classification correctly. The RECM was 87.5%, and the F1-scoreM was
95.56%.

Table 4.5 shows the ACC, precision (PREC), recall (REC), specificity (SPEC), and
F1-score for the binary analysis of the classification. The respective class was evaluated
against all others aggregated into one class. In other words, the table shows the classifier’s
ability to recognize the presence or absence of a specific tool class. The classifier predicted
the classes correct with a probability over 99.2%, except the class no tool in contact with
an ACC of 97.85%. The PREC of all classifications was over 90%, and the RECs were
over 74%, with two exceptions: biomarker with 67.9% and Mendez ring & biomarker
with 19.5%. In contrast, the SPECs were above 99% with one exception: the class
no tool in contact with 96.7%. The table also shows that the F1-scores were above
77.76% except for the Mendez ring & biomarker of 32.65%. Additionally, we provide
the complete confusion matrix for the CNN classifier on the workflow augmented test
data in Table A.1.

LSTM The LSTM classifier showed in general similar results as the CNN classifier. The
LSTM classifier predicted the classes correctly with an ACC of 96.6% and a AvACC of
99.75%. All values, the CBA with 88.47%, the PRECM with 95.86%, and the F1-scoreM
with 92.08% were lower, compared to the CNN classifier. Just, the RECM with 88.59%
was a higher for the LSTM classifier.

Further, we also did a binary evaluation for the LSTM classifier, shown in Table 4.5.
Here the ACC scores were in the same range, from 97.5% (no tool in contact) to 100%
(Mendez ring & biomarker), as for the CNN classifier. PRECs and RECs were above
86.9% and 74.8%, respectively, which are lower than for CNN, excluding the outlier.
However, the REC outlier for the LSTM classifier was lower at 49.88% (biomarker). The
SPECs were above 99.5% for the LSTM with the same exception of the class no tool
in contact with 96% as for CNN. The table also shows that the F1-scores were above
81.46%, except for the biomarker with 65.14%. We also provide the complete confusion
matrix for the LSTM classifier in Table A.2.
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Table 4.5: Binary analysis of the classification for the CNN and LSTM classifier on the test data of theworkflow augmented dataset with the scores for accuracy (ACC), precision (PREC), recall (REC), specificity(SPEC), and F1-score, rounded on 4 digits.
CNN LSTM

ACC PREC REC SPEC F1-score ACC PREC REC SPEC F1-score
no tool in contact 0.9785 0.9668 0.9907 0.9666 0.9786 0.9750 0.9601 0.9908 0.9595 0.9752
biomarker 0.9997 0.9080 0.6799 0.9999 0.7776 0.9995 0.9385 0.4988 1 0.6514
hydrodissection cannula 0.9976 0.9487 0.9307 0.9990 0.9396 0.9974 0.9444 0.9239 0.9989 0.9340
Rycroft cannula 0.9980 0.9417 0.7879 0.9996 0.8579 0.9977 0.9341 0.7488 0.9996 0.8313
viscoelastic cannula 0.9966 0.9461 0.9307 0.9985 0.9383 0.9961 0.9385 0.9200 0.9983 0.9291
cotton 0.9981 0.9685 0.9001 0.9996 0.9331 0.9963 0.9820 0.7581 0.9998 0.8556
capsulorhexis cystotome 0.9963 0.9785 0.9463 0.9989 0.9621 0.9967 0.9682 0.9637 0.9984 0.9659
Bonn forceps 0.9993 0.9143 0.7487 0.9999 0.8232 0.9993 0.8692 0.7665 0.9998 0.8146
capsulorhexis forceps 0.9989 0.9770 0.9408 0.9997 0.9585 0.9993 0.9836 0.9659 0.9998 0.9747
Troutman forceps 0.9990 0.9657 0.9039 0.9997 0.9337 0.9989 0.9671 0.8912 0.9998 0.9276
irrigation/aspiration handpiece 0.9920 0.9776 0.9762 0.9953 0.9769 0.9921 0.9797 0.9745 0.9958 0.9771
phacoemulsifier handpiece 0.9975 0.9488 0.9458 0.9988 0.9473 0.9972 0.9652 0.9174 0.9992 0.9407
implant injector 0.9985 0.9707 0.9400 0.9995 0.9551 0.9986 0.9736 0.9435 0.9996 0.9583
primary incision knife 0.9991 0.9580 0.8494 0.9998 0.9004 0.9990 0.9317 0.8342 0.9997 0.8803
secondary incision knife 0.9989 0.9221 0.8184 0.9997 0.8671 0.9988 0.9078 0.8116 0.9996 0.8570
micromanipulator 0.9971 0.9506 0.9174 0.9989 0.9337 0.9973 0.9439 0.9304 0.9988 0.9371
suture needle 0.9997 0.9479 0.7575 1 0.8421 0.9997 0.9536 0.7258 1 0.8243
Mendez ring 0.9996 0.9810 0.9293 0.9999 0.9545 0.9996 0.9823 0.9375 0.9999 0.9594
Mendez ring &
biomarker 1 1 0.1951 1 0.3265 1 1 0.9756 1 0.9877
Bonn forceps &
secondary incision knife 0.9994 0.9177 0.9020 0.9997 0.9098 0.9994 0.9395 0.8707 0.9998 0.9038
primary incision knife &
Bonn forceps 0.9994 0.9629 0.9356 0.9998 0.9491 0.9993 0.9675 0.9121 0.9998 0.9390
capsulorhexis cystotome &
Bonn forceps 0.9994 0.9966 0.9818 0.9999 0.9892 0.9996 0.9984 0.9864 1 0.9924
phacoemulsifier handpiece &
Bonn forceps 0.9999 0.9596 0.9344 1 0.9468 0.9999 0.9393 0.9134 1 0.9261
phacoemulsifier handpiece &
micromanipulator 0.9978 0.9881 0.9717 0.9993 0.9798 0.9974 0.9944 0.9592 0.9997 0.9765
irrigation/aspiration handpiece &
micromanipulator 0.9984 0.9798 0.8976 0.9997 0.9369 0.9984 0.9739 0.9070 0.9997 0.9393
hydrodissection cannula &
micromanipulator 0.9999 0.9887 0.9836 1 0.9861 0.9999 0.9882 0.9845 1 0.9864
Troutman forceps &
suture needle 0.9998 0.9549 0.9287 0.9999 0.9416 0.9998 0.9586 0.9068 0.9999 0.9320

We can conclude a first result, that the accuracies of the two NNs are similar and do not
differ meaningfully from each other. Furthermore, we can note that the complexity of
the CNN is high enough to be able to extract appropriate features and thereby correctly
classify the tools and tool combinations. However, from these similar results of the
NNs, we cannot deduce if the temporal component, that we aimed to augment with
our approach, has any influence or was considered in the classification for the LSTM
classifier. The good results for both classifications could be due to the small differences
within the complete workflow augmented dataset. Therefore, we test both classifiers
again using original clinical videos. For this purpose, we take the excluded video of the
original training dataset and the original test dataset from the Cataract dataset. [22] to
retest the NNs.



4.4. Results 45

4.4.3 Classification of the Neural Networks on real Surgical
Videos

Al Hajj et al. [22] provided during our study the annotation of the test dataset from
the Cataract dataset. Therefore, we had the choice to test our classifiers on further real
cataract surgery videos and not only on the video 4 which we excluded for test purposes
from the augmentation procedure.

To perform a representative test, we must determine which tools and tool combinations
are present in the test data because not all were present in our training dataset. The
selection is important because classes that were not included in the training data can
strongly negatively bias the results. Especially if the temporal sequence is considered
and the spatial information in the individual frames, as for the LSTM network. After
evaluating the containing tool classes, we had to excluded eight of the 25 videos. The real
test dataset now contains only 17 in addition to video 4 of the training dataset. Table 4.4
shows for each class the distribution of the selected test videos. However, the test dataset
does not include all instrument classes. The following classes were not observed in
the selected videos: suture needle, hydrodissection cannula & micromanipulator, and
Troutman forceps & suture needle.

4.4.3.1 Trained on the Workflow Augmented Dataset

In the following, we present the results of the two classifiers trained on the workflow
augmented dataset and retested on the real video.

CNN On the real test dataset, the CNN classifier predicted the classes with an ACC of
82.12% and an AvACC of 98.68%. The CBA was 39.4%, excluding the classes where
row and column are zero, i.e., suture needle, Troutman forceps & suture needle, which
can be identified in Table A.3. The mean PRECM was 64.29%. The mean RECM
was 44.89%, and the F1-scoreM was 52.86%. The CNN classifier results on real videos
were markedly worse than for the workflow augmented test dataset. The ACC was 12
percentage points (pp) lower on the real video than on the workflow augmented test
videos. All other scores were also lower.

The binary analysis in Table 4.6 shows that the classes were detected with an ACC over
94.14%. The class no tool in contact, which occurred mostly in the training data, had
the lowest ACC with 90.23%. However, the high ACC was not achieved by the correctly
recognized classes. Instead, it was achieved by correctly classifying the non-classes,
as seen in the PREC and REC scores. The PREC can partly not be calculated, i.e.,
biomarker, Mendez ring, or Mendez ring & biomarker, because these classes were never
predicted. The PREC scores for these classes were n/a. For the classes Bonn forceps,
Troutman forceps, capsulorhexis cystotome & Bonn forceps, and hydrodissection cannula
& micromanipulator, the PRECs were zero due to less than 5 false-positive predictions
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per class. The PRECs ranged from 44.64% to 100% for the other classes. The REC
was in the range 0% to 98.54%. Thereby, 11 classes were 0% because these classes were
never correctly classified, which can be observed in the confusion matrix for the CNN
classifier in Table A.3. The CNN classified these classes as the class no tool in contact.
Furthermore, the SPEC for the class no tool in contact with 84.43%, also the lowest
score compared to the other classes. Here, the SPECs were above 94%.

Table 4.6: Binary analysis of the classification for the workflow trained CNN and LSTM classifier on theoriginal test dataset with the scores for accuracy (ACC), precision (PREC), recall (REC), specificity (SPEC), andF1-score, rounded on 4 digits. Entries with n/a could not be calculated, because they were not predictedand therefore, they are 0.
CNN LSTM

ACC PREC REC SPEC F1-score ACC PREC REC SPEC F1-score
no tool in contact 0.9023 0.8153 0.9854 0.8443 0.8923 0.9673 0.9426 0.9801 0.9584 0.9610
biomarker 0.9995 n/a 0 1 0 0.9995 n/a 0 1 0
hydrodissection cannula 0.9929 0.8210 0.7992 0.9966 0.8100 0.9973 0.9313 0.9242 0.9987 0.9278
Rycroft cannula 0.9778 0.9375 0.3870 0.9991 0.5478 0.9881 0.9109 0.7276 0.9974 0.8090
viscoelastic cannula 0.9871 0.5642 0.8311 0.9896 0.6721 0.9961 0.8833 0.8694 0.9981 0.8763
cotton 0.9999 n/a 0 1 0 0.9999 n/a 0 1 0
capsulorhexis cystotome 0.9818 0.9510 0.7375 0.9976 0.8308 0.9949 0.9562 0.9590 0.9972 0.9576
Bonn forceps 0.9997 0 0 1 0 0.9997 0 0 1 0
capsulorhexis forceps 0.9962 0.7526 0.4740 0.9991 0.5817 0.9980 0.9900 0.6429 1 0.7795
Troutman forceps 0.9997 0 0 0.9998 0 0.9999 n/a 0 1 0
irrigation/aspiration handpiece 0.9454 0.7827 0.9377 0.9469 0.8533 0.9814 0.9131 0.9837 0.9809 0.9471
phacoemulsifier handpiece 0.9804 0.8818 0.6056 0.9965 0.7181 0.9943 0.9295 0.9319 0.9970 0.9307
implant injector 0.9947 0.8186 0.8486 0.9970 0.8333 0.9978 0.9820 0.8761 0.9997 0.9261
primary incision knife 0.9970 0.8704 0.5697 0.9995 0.6886 0.9971 0.8268 0.6364 0.9992 0.7192
secondary incision knife 0.9971 0.7500 0.3645 0.9995 0.4906 0.9976 0.8421 0.4486 0.9997 0.5854
micromanipulator 0.9887 0.6115 0.7035 0.9931 0.6543 0.9962 0.8997 0.8447 0.9985 0.8714
suture needle 1 n/a n/a 1 n/a 1 n/a n/a 1 n/a
Mendez ring 0.9986 n/a 0 1 0 0.9987 1 0.0263 1 0.0513
Mendez ring &
biomarker 0.9999 n/a 0 1 0 0.9999 n/a 0 1 0
Bonn forceps &
secondary incision knife 0.9988 0.7191 0.8767 0.9991 0.7901 0.9988 0.7941 0.7397 0.9995 0.7660
primary incision knife &
Bonn forceps 0.9980 0.4464 0.5000 0.9989 0.4717 0.9985 0.6000 0.4800 0.9994 0.5333
capsulorhexis cystotome &
Bonn forceps 0.9996 0 0 0.9999 0 0.9997 0 0 1 0
phacoemulsifier handpiece &
Bonn forceps 0.9989 1 0.1622 1 0.2791 0.9987 1 0.0270 1 0.0526
phacoemulsifier handpiece &
micromanipulator 0.9414 0.9430 0.6443 0.9932 0.7655 0.9888 0.9512 0.9749 0.9913 0.9629
irrigation/aspiration handpiece &
micromanipulator 0.9672 0.8352 0.3475 0.9967 0.4908 0.9818 0.9320 0.6478 0.9977 0.7643
hydrodissection cannula &
micromanipulator 1 0 n/a 1 0 1 n/a n/a 1 n/a

Troutman forceps &
suture needle 1 n/a n/a 1 n/a 1 n/a n/a 1 n/a

LSTM The classification results of the LSTM were also worst on the videos of the real
test dataset than on the workflow augmented test dataset. Nevertheless, they were much
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better than the results of the CNN. The overall ACC was 93.49%, which was over 11 pp
higher than the ACC of the CNN. The AvACC was 99.52%, and the CBA was 52.43%
excluded classes, for which the rows and columns were zero. The PRECM was 81.42%,
which was better than the CNN with over 17 pp. The mean RECM was 53%, and the
F1-scoreM was 64.2%.

In the binary analysis of the classification, shown in Table 4.6, the LSTM generally
performed better than the CNN. The ACC was higher than 96.73% for every class.
However, the class no tool in contact also had the worst recognition rate. Furthermore,
the PREC was only in two classes 0% and for four classes n/a besides those classes which
were not included in the test videos. For the other classes, the PREC was at least above
60% (primary incision knife & Bonn forceps), but in most cases above 82%. The high
ACCs of the LSTM classifier was not based on the high true-negative rates like for the
CNN classifier, instead to the higher true-positive rates. The scores were either higher or
at least equivalent for each classification, except for two classes: primary incision knife
& Bonn forceps and phacoemulsifier handpiece & Bonn forceps, which had lower scores.
Table A.4 shows if a frame was misclassified, it was mostly placed in the class no tool in
contact or a neighboring class, e.g., the class secondary incision knife was classified as
Bonn forceps & secondary incision knife in 12 cases. More examples can be found in the
table. In contrast to Table A.3, the misclassification scatters of the LSTM were lower
than that of the CNN.

After the second experiment we can conclude that the LSTM must have considered the
temporal information during the training. Otherwise, a difference between CNN and
LSTM networks would not be observable and explainable. Having said this, another
question raised up: can the results also be achieved with a less complicated method, like
the split data augmentation? We answer this question with our third experiment.

4.4.3.2 Trained on the Split Dataset

To benchmark the results of our approach, we retrained and evaluated both network
CNN and LSTM described in Section 4.3.3. We used the split dataset, augmented based
on the video splitting approach as described in Section 4.3.2.2. We applied the same
termination criterion for training as for the workflow augmented dataset. The ACC of the
CNN converged after 16 of 50 epochs with 98.54% and a loss of 0.1092 for the training
dataset, and an ACC of 55.18% for the validation dataset. The ACC of the LSTM net
converged after 19 of 50 epochs with 98.61% and a loss of 0.0823 for the training dataset
and on the validation data with an ACC of 80.46%. One epoch takes for the CNN
approx. 1 hour and for the LSTM approx. 1.5 hours on 8 NVIDIA Tesla V100 GPUs
used in parallel was significantly faster than for other datasets. Afterwards, we evaluated
the NNs using the same parameters on the real test data as described previously.
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CNN The CNN achieved an overall ACC of 75.52% and an AvACC of 98.11%. The
CBA was 30.94%. Here, the ACC and the CBA were lower with about 8 pp as the
scores of the CNN trained on the workflow augmented data. The AvACC was also lower
but in the same order of magnitude. The scores for PRECM with 47.72%, the RECM
with 35.68%, and the F1-scoreM with 40.83% show that the classifier generally performs
worse than the workflow trained CNN.

The binary analysis, shown in Table 4.7, arise that the ACCs for the different classes
were in the same order of magnitude as the ACCs of the workflow trained CNN, but
the PRECs do not achieve more than 85.42%. In comparison, the PREC was 0% for
fewer classes, but for example, for the class phacoemulsifier handpiece & Bonn forceps,
the PREC was 85 pp lower than for the other CNN. The median for the PRECs was
66.49%. The scores for the RECs were generally lower than for the workflow trained
CNN, but there are two exceptions for class Rycroft cannula and irrigation/aspiration
handpiece & micromanipulator. Here, the REC increased to 52.73% (previously 38.7%)
and 40.19% (previously 34.75%), respectively. The scores for PRECs and RECs were
lower for the CNN trained on the split augmented dataset than for the CNN trained on
the workflow augmented dataset. The values for the F1-score were also lower for the
individual classes except for the two classes Rycroft cannula and irrigation/aspiration
handpiece & micromanipulator. The SPECs were like those of the workflow trained CNN.
The confusion matrix Table A.5 seen in Appendix A.1 also shows more entries that are
not 0 as in Table A.1.

LSTM The LSTM classifier achieved an ACC of 90.87% on the real surgical videos
and an AvACC of 99.32%. The CBA was 44.24%. Theses scores are lower than the
scores of the LSTM trained on the workflow augmented dataset. Also, for PRECM with
75.48%, the RECM with 45.38%, and the F1-score with 56.68% showed that the classifier
generally performs worse than the LSTM trained on the workflow augmented videos,
which were at least ≈ 6 pp higher. The binary analysis of the split trained LSTM, shown
in Table 4.7, yielded similar scores for the ACCs of the classes as the LSTM trained
on the workflow augmented videos. The scores of PREC were mostly worse. Only five
classes reached scores above 90%, compared to ten before. In addition, the PRECs could
not be calculated for eight classes in addition to the three, which could not be observed
in the real test data. They were neither true nor false-positive predicted by the network,
seen in Table 4.7. Similar results could also be obtained for the REC scores. Thereby,
the scores were 0% for eight classes, and for three classes above 90% instead of six. This
trend was also visible for the F1-scores.

Furthermore, in the confusion matrix Table A.6 in Appendix A.1, it can be observed
that more entries were not 0 as the comparison confusion matrix Table A.2 of the other
trained LSTM.

Finally, we conclude that the NNs that were trained on the workflow augmented dataset
was the best. In addition, we can also observe that workflow augmentation of temporal
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Table 4.7: Binary analysis of the classification for the split trained CNN and LSTM classifier on real surgicalvideos with the scores for accuracy (ACC), precision (PREC), recall (REC), specificity (SPEC), and F1-score,rounded on 4 digits. Entries with n/a could not be calculated, because theywere not predicted and therefore,they are 0.
CNN LSTM

ACC PREC REC SPEC F1-score ACC PREC REC SPEC F1-score
no tool in contact 0.9050 0.8335 0.9607 0.8662 0.8335 0.9619 0.9391 0.9700 0.9562 0.9543
biomarker 0.9995 n/a 0 1 n/a 0.9995 n/a 0 1 0
hydrodissection cannula 0.9791 0.4522 0.4924 0.9885 0.4522 0.9938 0.8447 0.8239 0.9971 0.8341
Rycroft cannula 0.9742 0.6611 0.5273 0.9903 0.6611 0.9808 0.6907 0.8091 0.9870 0.7452
viscoelastic cannula 0.9762 0.3744 0.7387 0.9800 0.3744 0.9915 0.7353 0.7320 0.9957 0.7336
cotton 0.9999 n/a 0 1 n/a 0.9999 n/a 0 1 0
capsulorhexis cystotome 0.9657 0.8542 0.5220 0.9943 0.8542 0.9886 0.9145 0.8955 0.9946 0.9049
Bonn forceps 0.9997 n/a 0 1 n/a 0.9997 n/a 0 1 0
capsulorhexis forceps 0.9941 0.3830 0.1169 0.9990 0.3830 0.9954 0.6582 0.3377 0.9990 0.4464
Troutman forceps 0.9994 0 0 0.9995 0 0.9999 n/a 0 1 0
irrigation/aspiration handpiece 0.9138 0.7222 0.7978 0.9374 0.7222 0.9819 0.9318 0.9636 0.9856 0.9474
phacoemulsifier handpiece 0.9625 0.5526 0.4677 0.9838 0.5526 0.9901 0.9274 0.8246 0.9972 0.8730
implant injector 0.9917 0.7164 0.7821 0.9951 0.7164 0.9959 0.8812 0.8509 0.9982 0.8658
primary incision knife 0.9956 0.7590 0.3818 0.9993 0.7590 0.9952 0.5812 0.6727 0.9971 0.6236
secondary incision knife 0.9969 0.7442 0.2991 0.9996 0.7442 0.9967 0.5660 0.5607 0.9983 0.5634
micromanipulator 0.9811 0.4056 0.5106 0.9884 0.4056 0.9881 0.6186 0.5647 0.9946 0.5904
suture needle 1 n/a n/a 1 n/a 1 n/a n/a 1 n/a
Mendez ring 0.9986 0 0 1 0 0.9986 n/a 0 1 0
Mendez ring &
biomarker 0.9999 n/a 0 1 n/a 0.9999 n/a 0 1 0
Bonn forceps &
secondary incision knife 0.9980 0.6545 0.4932 0.9993 0.6545 0.9980 1 0.2192 1 0.3596
primary incision knife &
Bonn forceps 0.9977 0.3684 0.4200 0.9987 0.3684 0.9982 0 0 1 0
capsulorhexis cystotome &
Bonn forceps 0.9996 0 0 0.9999 0 0.9997 n/a 0 1 0
phacoemulsifier handpiece &
Bonn forceps 0.9980 0.1538 0.1081 0.9992 0.1538 0.9987 n/a 0 1 0
phacoemulsifier handpiece &
micromanipulator 0.9009 0.7203 0.5433 0.9632 0.7203 0.9845 0.9515 0.9439 0.9916 0.9477
irrigation/aspiration handpiece &
micromanipulator 0.9636 0.6649 0.4019 0.9903 0.6649 0.9809 0.8367 0.7226 0.9933 0.7755
hydrodissection cannula &
micromanipulator 0.9997 0 n/a 0.9997 0 1 n/a n/a 1 n/a

Troutman forceps &
suture needle 1 n/a n/a 1 n/a 1 n/a n/a 1 n/a

information provides measurable benefits. The artificially generated videos for the
NNs are indistinguishable from real surgical videos and even enhance the recognition
performance of the classifiers.

4.5 Discussion

One goal of our workflow augmentation approach was to create new artificial videos with
a comparable duration to the original videos. This goal could be achieved by choosing the
initial transition probabilities uniformly. The chosen probabilities resulted in videos whose
duration is more balanced, and the alternation frequency of classes is higher. Additionally,
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the videos having a very similar length of the individual segment, see Table 4.3. The
median segment length is slightly shorter, with 121 frames than 126 frames of the original
dataset. The sub-frames variation of temporal augmentation can explain the shorter
length. The variation has a median score of 67.5 instead of 64 frames. However, this
should not lead to any noticeable effect on the NNs.

A further aim of our approach was that the prevalence of the individual classes within
the dataset would be more balanced. So that the recognition performance of classes,
which were underrepresented in the original dataset, would be improved. The results
in Section 4.4.1 showed that our workflow augmented dataset is more balanced than
the original dataset, although not for all classes. The result can also be obtained from
Table 4.4. For example, the percentage of the class Troutman forceps was increased by
a factor of 8.8, but the presence of the previously dominated class no tool in contact
was also increased from 46.3% to 50.06%. However, the relatively underrepresented
classes now appear more frequently, but the distribution of the classes is still not uniform.
The goal of equal class distribution might be too ambitious and could not be achieved
prospectively with the chosen transition probabilities. The underlying goal of better
detection of underrepresented classes could perhaps still be achieved by our approach.

Let’s look at the different experiments in detail. The first experiment in Section 4.4.2 shows
that the selected ResNet50 can separate and classify the individual classes. Unfortunately,
the addition of the LSTM layer did not yield any significant improvements for the test
videos of the workflow augmented dataset. An explanation for that could be because
CNN had already generalized very well due to the many training data images, averaging
43.5 million or the inter-video variability are slightly too low in the workflow augmented
dataset. However, this experiment cannot answer whether underrepresented classes are
better detected by training the network with a dataset augmented by our approach
because the ACCs of the binary analysis for all classes is above 99%, except for the class
no tool in contact. Also, the scores for the PRECs and the RECs are not unambiguous.
This also has validity for the LSTM classifier.

However, Section 4.4.3, the second experiment, shows considerable differences from the
first experiment’s results. From Table 4.6, we conclude that the additional LSTM layer
improves the recognition performance. All binary classification ACCs of the LSTM
network are at least as high or higher than the one for the CNN. The F1-scores are also
higher for the LSTM network, except the class Bonn forceps & secondary incision knife
and the class phacoemulsifier handpiece & Bonn forceps. Here, the F1-cores are lower
for the LSTM than for the CNN network. This can be explained by the worse score
for the RECs. The class phacoemulsifier handpiece & Bonn forceps is also an example
of an underrepresented class with 8.3%. It is the second least common class next to
the Biomarker class, the third least class, and the Mendez ring & biomarker the rarest
class. In contrast to the class phacoemulsifier handpiece & Bonn forceps, the PREC for
Biomarker and Mendez ring & biomarker could not be calculated because these classes
were not predicted by the LSTM network, seen in Table A.4. Furthermore, classes that
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occur more frequently in the training data but very rarely in the real surgical videos, like
cotton or Troutman forceps, were also not predicted by the network. These classes are
mostly detected exclusively as no tool in contact, see Table A.4. This misclassification
leads to the assumption that the tool’s timing in tissue contact is not 100% correct or
that the network has learned to identify every image that is not recognized as a different
class as no tool in contact. Furthermore, these would be also explained that the class
no tool in contact, which was most common in the training data, in the test data of the
workflow augmented dataset, and in the real surgical videos, performed worst for the
ACC in the binary evaluations.

Compare to the study of Al Hajj et al. [15], both NNs trained on the workflow augmented
dataset, created by our approach and tested on the real surgical videos, perform better.
The mean precision of the CNN network is 64.29% and 81.42% for the LSTM network.
This is higher than the pure CNN and the combined CNN and RNN from [15], which had
a mean precision between 52.93% and 60.86% for the CNN and 79.80% for the combined
network. Furthermore, in contrast to Al Hajj et al., we did not perform hyperparameter
tuning.
Nevertheless, the results are not directly comparable because not all instruments were
included in our workflow graph. For a better comparison, we used the same augmentation
method described in [15] with the same conditions as we used to create the workflow
augmented dataset, e.g., types of instruments, spatial augmentation parameter, and
retrain both NNs on this data.

In that third experiment, we also access a better recognition performance for the trained
NNs with the dataset augmented by our approach. The overall ACC for CNN is 82.12%
higher than 75.52% from the CNN trained on the split dataset. Also, PRECM with
64.29% and RECM with 44.89% are compared to 47.72% and 35.68%, respectively,
are higher for the CNN trained on the workflow augmented data. The differences in
the scores lead us to assume that the split dataset is, in general, too small for suitable
training of a NN like the ResNet50. For the LSTM network, we also obtained remarkably
better results for the trained model using our new approach. The ACC is 93.49% for the
NN trained workflow augmented dataset compared to 90.87% for the split trained. Also,
the PrecM with 81.42%, the RecM with 53% is higher than 75.48% and 45.38% for the
state-of-the-art augmentation method.

In contrast to the CNN networks, we could augment the image information and the
temporal sequence. Otherwise, the results of CNN and LSTM would not be so different.
Finally, we state that the classifier trained on data augmented with our approach provides
substantially better results in terms of tool recognition than the state-of-the-art method.

However, we also need to address some limitations. Not all training videos were considered
when creating the workflow diagrams. Therefore, direct comparisons cannot be made
without constraints on the other publication. Also, no explicit thresholds are used for
classification. Instead, the one-hot classifier was used, which means that the threshold
for a class can be different for each image, but the score for the predicted class must be
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the highest. Furthermore, a multi-class approach was used instead of a multiple-label
approach, which should not result in any differences. Also, a weighted cost function could
result in further improvements, as the dataset is more balanced than the original dataset,
but the balancing of the dataset is still not enough.

4.6 Conclusion

This work introduces a novel approach for augmenting videos for video-based event
recognition. This methodology allows the creation of new artificial videos that appear to
the NN as originally recorded videos. Furthermore, it is possible to create sequences of
the same duration, with a variation of speed, and balance the classifications in datasets a
posteriori.

Furthermore, the proposed approach has two novelties. The first novelty is that a combined
CNN and RNN can be trained end-to-end since sufficient data can now be generated
for training. The second novelty is the methodology of augmentation: combining meta
knowledge with the workflow, spatial and temporal augmentation makes it possible to
balance and completely augment temporal sequences such as videos of a dataset. The
proposed methodology is general and applicable outside the scope of cataract surgery.

We have shown that our approach can extend and balance small datasets, using only
information contained in the dataset. Furthermore, our method is not limited to only
this information. We designed a benchmark experiment in which we trained two identical
NNs with two different datasets. One NN was trained with the dataset extended by our
new proposed approach and one with the dataset extended by an established approach.
For both datasets, we used the same original data and parameters. Compared to
current approaches, the NNs trained with our workflow augmented data achieve a better
classification accuracy than the comparison network. Based on our preliminary results,
we believe that our proposed approach has a high potential to improve video classification
and recognition not only in the medical field. The approach will be validated in future
work, and its potential in other fields like gait analysis or further applications will
be shown. In addition, the workflow model could be extended, and refined by other
information, e.g., anatomical data or special patient data, because physicians often use
data on patient history, age, demographics for the decision-making process. Finally, we
were able to show that it is advantageous to build a workflow model from annotated data.
The synthetic data created with the workflow augmentation led to better classification
results by NNs.



Chapter5
Improving Surgical Phase

Recognition in Videos
using Workflow Augmentation

5.1 Introduction

Automatic recognition of surgical processes and workflows will be a key feature of future
intelligent context-aware operating rooms [84, 85]. The aim is to improve the quality and
safety of surgical treatment [86]. For this purpose, automatic context-aware systems are
a mandatory prerequisite for intelligent surgical assistance systems [87]. Such a system
can automatically monitor the procedures and surgical intervention, thus early alerting
possible anomalies and discrepancies [88–91] or improving personnel planning [92, 93]
and the coordination in the surgical team [94]. Retrospective workflow analysis of videos
could improve the surgical skills assessments, the automated documentation of surgical
reports, surgeon training, or postoperative patient monitoring [17, 21, 95].

Computational surgery and artificial intelligence can automatically extract workflow
steps, also called phases, from videos. However, pure video-based workflow recognition
is very complex because surgical scenes usually have only a small, limited variance
between adjacent phases, but they have a significant variance within a phase [96]. Various
attempts have been made to recognize the individual phases also by other information
such as binary instrument usage signals [17], radio-frequency identification (RFID) tags
[97], or by special sensors on tool tracking devices [98]. However, these techniques all have
fundamental drawbacks. They require either error-prone human interaction or additional
equipment for detection, which can affect the established workflow in operation and,
thereby, increasing the surgical risks.
However, video recording systems are a well-established approach to document surgery in
clinical practice. Concerning minimally surgical interventions, microscopes or endoscopic
systems often use a video streaming system to record parts of the operation. Therefore,
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phase detection based on videos, which were acquired routinely during the surgical
procedure [21, 89, 90], provides an easy and inexpensive concept for the operating room.

Several approaches have been developed to automatically detect surgical phases based
on endoscopic, or more precisely, laparoscopic video data, in recent years. Until 2015,
the hidden Markov model (HMM) and dynamic time warping (DTW) were mainly used
[17, 99–105]. The accurate recognition rate of the surgical phases was less than 90%.
In the following years, improvements of the recognition rate up to 92.8% could be
achieved with the help of a combined convolutional neural network (CNN) and HMM or
DTW [106, 107]. Recently, recurrent neural networks (RNNs) outperformed the previous
methods with a recognition rate of up to 96.3% [108–112]. In most cases, first, a CNN
is used for feature extraction, but instead of rigid HMMs or DTWs, RNNs are used
to model the temporal relationships. The advantage of using RNNs is that they can
adaptively learn the individual phase transitions based on the given labels. However,
there are major disadvantages to using RNNs. First, labels must be annotated before,
and second, RNNs require a large amount of training data [112].

For enlargement the trainings dataset, the videos can be augmented in the image domain
using traditional methods from computer vision. These methods include morphological
function, e.g., rotation, shifting, padding, ..., but also functions the change the contrast,
brightness or the signal-to-noise ratio. However, these methods do not increase temporal
or temporal structural variability, which can be very important for the RNNs to generalize
well in clinical application [113].

By using our novel approach, which we have presented in project Workflow Augmentation
of Video Data for Event Recognition with Time-Sensitive Neural Networks, described
in Chapter 4, it is possible to augment beside the image domain the temporal domain also.
This approach allows the creation of new artificial laparoscopic videos. Additionally, it is
possible to increase the balance of phase transition and the original tool variability within
a phase of an existing dataset. We hypothesize that the recognition rate of a neural
network (NN) based on CNNs and RNNs will be increased compared to the literature
if the training dataset has been previously augmented by the workflow augmentation
method.
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5.2 Methods

5.2.1 Database

This study aims to evaluate the potential of our workflow augmentation method for
extending and balancing the surgical phase transitions and simultaneously to increase
variability within the phases of a given dataset. Therefore, we chose the Cholec80 dataset
[21]. Compared to the previously used Cataract dataset [22], it includes frame-by-frame
annotation regarding the surgical phases in addition to the surgical tools. The Cholec80
dataset consists of 80 videos of cholecystectomy surgeries performed by 13 surgeons at the
University Hospital of Strasbourg. The videos were recorded with 25 fps. The recording
resolution was mostly 854×480 pixels, except for some recordings with a resolution of
1920×1080 pixels. A senior surgeon annotates the surgical phase and the surgical tools.
For each frame, a phase label was provided. The surgical phases are P1: preparation, P2:
calot triangle dissection, P3: clipping cutting, P4: gallbladder dissection, P5: gallbladder
packaging, P6: cleaning coagulation, P7: gallbladder retraction. Figure 5.1 shows the
sequence graph with transition probabilities of the phases from the Cholec80 dataset.
The graph shows also in green the start phases and in orange the terminal phases.
The presented surgical tools are only labeled every 25 frames, i.e., every second. A tool
was defined as present when at least half of the tooltip was visible. There are seven types
of surgical tools in total, namely: grasper, bipolar, hook, scissors, clipper, irrigator, and
specimen bag, depicted in Figure 5.2.
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Figure 5.1: Phases transition distribution of the original Cholec80 dataset. The start phases are shown ingreen and in orange the terminal phases. P1: preparation, P2: calot triangle dissection, P3: clipping cutting,P4: gallbladder dissection, P5: gallbladder packaging, P6: cleaning coagulation, P7: gallbladder retraction
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Phase 1: Preparation

Phase 7: Gallbladder Retraction Phase 6: Cleaning and CoagulationPhase 5: Gallbladder PackagingPhase 4: Gallbladder Dissection

Phase 3: Clipping and CuttingPhase 3: Clipping and CuttingPhase 2: Calot Triangle Dissection

T1: Grasper T1: Grasper

T3: Hook

T1: Grasper

T5: Clipper

T1: Grasper

T4: Scissors

T1: Grasper

T3: Hook

T1: Grasper

T7: Specimen bag

T6: Irrigator

T2: Bipolar

T1: Grasper

Figure 1: Illustration of definition and correlation of each phase and tool presence in surgical
videos, taking the cholecystectomy procedure as an example.

pends on domain knowledge and would be insu�cient to represent the compli-
cated characteristics of surgical videos. With the revolution of deep learning,
many attempts of adapting convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs) on surgical video analysis have been explored and
achieved promising performance (DiPietro et al. (2016); Sahu et al. (2017); Jin
et al. (2018)). Unfortunately, most existing deep learning based methods ad-
dressed the tool and phase recognition tasks independently, without considering
the intrinsic association between them.

According to the regulation of surgery procedure, surgeons are requested to
perform specified operations with corresponding sets of instruments for di↵erent
surgery phases. Therefore, there exists a high correlation between the surgical
phase and tool usage. Taking the cholecystectomy procedure as an example (see
Figure 1), hooks are often used to perform the dissection operations; clipper and
scissors are required in clipping and cutting stage. In fact, many previous works
directly employed binary instrument usage signals to perform phase recognition,
which manifested the benefit of tool information to phase recognition (Padoy
et al. (2012); Forestier et al. (2015)). Recently, Twinanda et al. (2017) imple-
mented a multi-task framework with shared early layers and incorporated tool
information in the feature learning process, which firstly achieved joint tool and
phase recognitions. The promising performance demonstrates that e↵ectively
leveraging such relatedness plays an essential role in improving both tasks, i.e.,
tool presence detection and phase recognition.

The correlation between the multiple tasks is often quite complicated. For
example, in surgical videos, the same tool may present in di↵erent phases, while
an operation phase may involve a variety of instrument combinations. To this
end, the shortcomings existing in the aforementioned approaches may fail to pre-
cisely capture the correlation. For example, the method proposed by Twinanda
et al. (2017) uses hidden Markov model (HMM) to enforce the temporal con-
straints on the phase prediction, instead of introducing sequential information
in the network training procedure, which plays a key factor in tackling video-
based tasks. Therefore, how to precisely capture and su�ciently leverage the

3

Figure 5.2: An overview of some presented surgical tools and all surgical phases from the Cholec80 dataset.Adapted from [114]

5.2.2 Data Augmentation

We describe the data augmentation pipeline and the parameter for the creation of the
training dataset in the following. Therefore, we used 60 out of the 80 videos for the
training dataset, the remaining 20 videos (1, 7, 8, 10, 15, 18, 19, 23, 24, 33, 35, 39, 41, 42,
47, 57, 64, 69, 72, 74 ) were kept for later testing purposes and were therefore excluded
from all data augmentation steps. The video selection for the training and test dataset
was performed randomly.

5.2.2.1 Extraction of Required Components for Workflow Augmentation

For the data augmentation, the following components are required: the transition matrix
of phases in combination with surgical tools, the spatial augmentation parameters, and
the temporal augmentation parameters. Next, these components are described in more
detail.

For the automatic extraction of the transition matrix, we used the original annotations
for the phases and the surgical instruments. Since the surgical tools are only available
for every 25th video frame, we used nearest-neighbor interpolation for the intermediate
25 frames before and after a labeled time step. The entries of the transition matrix
contain only transitions between two events. An event is defined by the unique phase
and, if presented, at least one surgical tool. Furthermore, the beginning and end of
an event are defined by the change of annotated phase or the annotated tools. This
results in 60 individual events. Afterwards, we performed a row-wise normalization of
the transition matrix such that the entries no longer represent the event transitions but
instead represent their probabilities. To balance the phase transitions after augmentation,
resulting in a more uniform distribution than in the original dataset, we have to adjust the
corresponding entries per line that implies a phase transition. The corresponding entries
are adjusted to equal the desired probability per line of the sum of phase transitions from
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a phase pi to a phase pj . For this purpose, the probabilities of all phase transitions are
summed up and divided according to their occurrence. The adjusted event entries E for
the phase transitions i→ j are defined as follows:

e(i→j)new
=

∥∥∥∑P
i,j=0;j 6=i

∑E
k=0 ek(i→j)old

∥∥∥
|ek(i→j) |

(5.1)
Here, P = 7 denotes the number of different phases, E the number of event entries, and i,
j is the dedicated phases transitions. The other transition matrix entries are not changed
because this could strongly influence the length of the artificial videos. One of our goals
was to create videos according to the original length artificially. At the same time, the
segment database was created while creating the event transition matrix. The original
videos were cut according to these events. The cut was made in the middle between two
events, as described in Section 4.3.2.1. The segments consist only one dedicated event
transition. The transition matrix and the segment database are the required ingredients
for workflow augmentation. In addition, the parameters for the variation in appearance
and time must be defined.

5.2.2.2 Spatial Augmentation Parameter

For this study, we chose only functions that varied the spatial image information, the
brightness or the signal-to-noise ratio. Therefore, we use the following 15 different
augmentation types shown in Table 5.1 of the batch generator of Isensee et al. [80]. We
did not augment the color information because, in cholecystectomy, the color, e.g., case
of spontaneous hemorrhage, can contain encoded information that also results in the use
of a specific instrument, e.g., in the case of hemorrhage, the bipolar forceps in the dataset
called bipolar. Each of the 15 functions is chosen randomly and uniformly distributed
with a probability of 33% afterwards, the execution order randomly shuffled due to higher
appearance variability. The parameters for the specific augmentation function can be
taken from Table 5.1. The values were determined empirically for the dataset.

5.2.2.3 Temporal Augmentation Parameter

For the temporal augmentation range, we chose the same 20 different factors for speed
variation, as described in Section 4.3.2.1. These are divided equally distributed between
0.5×– 1×– 2× and allow us to create videos that have the same distribution in duration as
the original dataset. The concrete speed factors are the following: 2, 1.8824, 1.778, 1.6842,
1.6, 1.4884, 1.3913, 1.3061, 1.2075, 1.1637, 1, 0.9552, 0.9014, 0.8533, 0.8, 0.7529, 0.7033,
0.6534, 0.5981, 0.5517 and 0.5. These factors correspond to the following sub-frames: 128,
116, 107, 98, 91, 85, 80, 75, 71, 67, 64, 58, 53, 49, 46, 43, 40, 38, 36, 34 and 32. Therefore,
the entire segment database was up-sampled by factor 64. For the annotation of the
sub-frames [1, 32], the labels of the original frame n were taken, and for the sub-frames
[33, 64], the labels of the frame n+ 1.
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5.2.3 Generating new Artificial Cholecystectomy Videos

We generated 1000 new artificial videos. Thereby, the new artificial videos are generated
with the help of the Markov chain. The Markov chain is created using the transition
matrix. A starting point is one of the start events in the transition matrix. These start
events are equal to the start events in the original dataset. Starting from this event, the
next event randomly selects, according to the transition probability, from the possible
events that follow the current event in the transition matrix. This procedure is continued
until a terminal event is reached.

As a result, we got 1000 different scripts for the new event sequences. To create a
concrete video for each script, it is necessary that for every event one segment is randomly
selected from the possible event segments in the database. All selected segments are
directly attached to each other. As a result, we get a raw video sequence containing new
inner phase variation. Since the complete database was up-sampled by a factor of 64
compared to the original video the raw videos are now longer and have no variation in
appearance and duration. For the temporal variation, we also used a two-dimensional
Halton sequence as described in Section 4.3.2.1. We linearly interpolated the samples
such that the first dimension represents mean length of the original event segments and
the second dimension the speed factor. The concrete values are randomly selected from
the Halton sequence. The frames of the raw videos are now selected over an interval
coded by the first dimension and the corresponding frame for the speed coded by the
second dimension. After reaching the end of the interval, a new Halton sequence is
randomly picked. The process is continued until the complete raw video is temporally
augmented. Then the spatial augmentation is applied to the videos, according to the

Table 5.1: Specific augmentation parameter range for the different functions

function min max
center cropping (380,480) (804,854)padding (480,720) (854,1281)90 degree rotation 1 3mirror axis x,yzoom factor 0.85 1random rotation -90 90contrast 0.2 2additive brightness -64 64multiplicative brightness 0.5 1.5gamma spreading 0.5 1.5linear down-sampling 0.75 1.25Rician noise 0 10Gaussian noise 0 10Gaussian blur 0 3.5square noise (0,32) (0,150)
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rule described above, see Section 5.2.2.2. As a result, the final dataset contains 1000
new artificial videos with a balanced number of phase transitions and a high inner phase
variability. The 1000 videos should allow us an end-to-end training of the NN.

5.2.4 Implementation Details of the Neural Networks

To test our hypothesis and to be able to compare our results better with the literature, we
chose the end-to-end NN framework proposed by Jin et al. [109] presented in Figure 5.3.
They used it for the tool and phase recognition for the Cholec80 videos. The NN consists
of a CNN followed by an RNN. Thereby, the idea is that the CNN extracts the feature
map of the single frames, and the RNN performs temporal modeling using the feature
maps. For the CNN, they chose the ResNet50 [71] and removed the output layer, and
for the RNN, a layer of 512 long short-term memory (LSTM) blocks [33] and append
a fully connected linear layer with seven nodes according to the surgical phases. The
ResNet was pre-trained on the ImageNet dataset [115]. Afterwards, the LSTM and the
linear layer weights were initialized randomly.
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Figure 2: An overview of the proposed MTRCNet-CL for joint tool presence detection and
phase recognition from surgical videos in a unified end-to-end framework. LSTM networks
are illustrated by diagrams to indicate how temporal information is modeled.

3.1. Multi-task Learning Network Architecture

To meet the challenges of surgical video recognition, in the shared backbone
part, we employ a 50-layer residual convolutional network to extract represen-
tative high-level features (He et al. (2016)). In each residual unit, we stack
three convolutional layers, each followed by a batch normalization layer and a
ReLU non-linearity layer. After constructing the residual unit, we gradually
stack 16 blocks to improve the network depth and finally form the deep residual
network. The backbone part ends with an average pooling layer and outputs a
2048-dimension feature vector.

For conducting multi-tasks, the network construction splits into two branches,
respectively targeting for tool presence detection and surgical phase recognition
tasks. Considering that tool presence is defined solely based on visual infor-
mation in the single frame, a fully-connected layer is directly connected to the
backbone network with a sigmoid layer followed to produce predictions for the
tools. As for phase recognition which relies on temporal information, we con-
nect the shared backbone layers with LSTM units in this branch. There are
several gates to modulate the interactions between the memory cell ct and its
environment. Hidden state ht retains the past information and supplies it to
the memory cell through the gates. The details are instantiated in the diagrams
in Figure 2. Di↵erent from the traditional linear models, such as HMM, our
employed LSTM takes full advantage of long-term temporal information (Don-
ahue et al. (2015)). Moreover, to capture richer dynamics in surgical videos, we
implement a distributed system enabling multiple GPUs computations, which
allows us to extend the length of input sequences easily.

The tool branch (with a fully-connected CNN layer) and phase branch (with
a RNN layer) are both seamlessly connected with the shared backbone convo-
lutional layers. Overall, we get a recurrent convolutional network to process

8

Figure 5.3: An overview of the used neural network for phase recognition from surgical videos in an end-to-end framework, modified from [114]

5.2.5 Training Strategy

For the training of the NN, the augmented datasets that contain 1000 artificial videos
were randomly divided into 800 training videos and 200 validation videos. Furthermore,
we normalized the frames over the complete dataset. We used the adaptive moment
estimation (ADAM) optimizer with a learning rate of lr = 0.00001 and the cross-entropy
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loss. The learning rate was constant over the training. The model has trained on one
NVIDIA RTX2080Ti with 11GB memory. Due to memory constraints, a maximum of
2400 frames per video and a batch size of 100 frames are selected in chronological order.
The video order of the training datasets was shuffled for each training epoch. In addition,
the starting point of the video was randomly selected in the range of the first 50 frames
of the 2400 selected frames. The goal was to achieve an additional variation at the phase
boundaries in the batches.

5.3 Results

The goal of the work was to improve semantic information recognition performance by
applying workflow augmentation. For this purpose, new artificial videos base on the
existing Cholec80 dataset were augmented, and the semantic information, phases of the
surgery, were balanced. The intra-phase variability should also be increased without
changing the overall length of the videos. Finally, an experiment was designed and
conducted to evaluate the performance of the workflow augmentation approach. The
experiment addresses the classification performance of the combined CNN and LSTM
network trained on the workflow augmented dataset. Before evaluating the experiment,
the created training dataset was compared to the original dataset.

5.3.1 Evaluation of the Augmented Dataset

The augmented dataset contained 1000 artificial videos. They were created using the
automatically extracted and modified original workflow with the 473 segment bins
according to the observed events. For the workflow and segment bins, 60 of the 80
original Cholec80 videos were used, as mentioned in Section 5.2.2.

Figure 5.4 compares the original and augmented dataset’s total video length. The original
videos had a median total frame number of 52376 with the 25th percentile of 41026 frames
and the 75th percentile of 72051 frames. The videos of the augmented dataset had a
median length of 53009 frames, with the 25th percentile of 35026.5 frames and the 75th

percentile of 76273 frames. The median length of the videos of the augmented dataset
are compared to the original dataset in the same range. The percentile distance is larger
due the 6000 frames lower 25th percentile and the 4000 frames higher 75th percentile of
the augmented dataset compares to the original dataset.

In contrast, most phases in the augmented videos became shorter in median than the
original videos, as seen in Table 5.2 and Figure 5.5, except P3: clipping cutting, which
became longer to 177 frames. The phases became up to 88% shorter (P6: cleaning
coagulation). The table also shows that the inter-quantile range increased for all phases.
On the other hand, the intra-phase variability, i.e., the change of events, increased up to
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Figure 5.4: Violin plot of the total video length in frames, for the augmented and the original Cholec80dataset.

89.6% (P5: gallbladder packaging) in the augmented dataset compared to the original
dataset (Figure 5.6).

Table 5.2: Comparison of phase length in frame numbers between the original and augmented dataset

Phase dataset 25th perc. median 75th perc.
P1:
preparation

original 1175 2437.5 3875
augmented 853 1899 3727

P2:
calot triangle dissection

original 12905.25 20674 27292.75
augmented 7762 18695 37228.25

P3:
clipping cutting

original 2311.5 3249 4911.5
augmented 1347.75 3426 6874

P4:
gallbladder dissection

original 8605.25 14624 24236.5
augmented 4856.25 12138 23544.25

P5:
gallbladder packaging

original 1705.25 2024 2567.75
augmented 131 399 1241

P6:
cleaning coagulation

original 2324 3424 6836.5
augmented 75 411 1666

P7:
gallbladder retraction

original 1106.25 1575 2437.5
augmented 330.5 736 1486
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Figure 5.5: Boxplot for the different phase lengths in frames from (a) the augmented dataset and (b) theoriginal Cholec80. (P1: preparation, P2: calot triangle dissection, P3: clipping cutting, P4: gallbladder dissection,P5: gallbladder packaging, P6: cleaning coagulation, P7: gallbladder retraction)
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Figure 5.6: Boxplot for the tool changes per frames of the different phases from the augmented dataset(green) and the original Cholec80 dataset (blue). (P1: preparation, P2: calot triangle dissection, P3: clipping
cutting, P4: gallbladder dissection, P5: gallbladder packaging, P6: cleaning coagulation, P7: gallbladder retrac-
tion)
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Table 5.3: Quantitative phase transition of (a) the augmented 1000 videos and (b) the original 80 videosfrom the Cholec80 dataset. (P1: preparation, P2: calot triangle dissection, P3: clipping cutting, P4: gallbladder
dissection, P5: gallbladder packaging, P6: cleaning coagulation, P7: gallbladder retraction)

(a) Original dataset
P1 P2 P3 P4 P5 P6 P7

P1 0 71 0 0 0 0 0
P2 0 0 80 0 0 0 0
P3 0 0 0 80 0 0 0
P4 0 0 0 0 68 12 0
P5 0 0 0 0 0 59 21
P6 0 0 0 0 12 0 59
P7 0 0 0 0 0 3 0

(b) Augmented dataset
P1 P2 P3 P4 P5 P6 P7

P1 0 655 0 0 0 0 0
P2 0 0 1000 0 0 0 0
P3 0 0 0 1000 0 0 0
P4 0 0 0 0 571 429 0
P5 0 0 0 0 0 2021 547
P6 0 0 0 0 1997 0 1678
P7 0 0 0 0 0 1270 0

Comparing the graph of phase transitions of the original dataset in Figure 5.1 with
the graph of phase transitions of the augmented dataset in Figure 5.7, it gets apparent
that the probabilities for the transition, which correspond to the probabilities of the
outgoing edges, were more uniformly than in the original dataset. However, there was one
exception the outgoing edges of P5: gallbladder packaging. The phase transitions for P5 of
the augmented dataset was with 0.79 (P5→P6) and 0.21 (P5→ P7), almost identical with
0.74 (P5→P6) and 0.26 (P5→ P7) to those of the original dataset. Table 5.3 additionally
shows that the absolute number of transitions from P7: gallbladder retraction to P6:
cleaning coagulation has increased from 3 in the original dataset to 1270.
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Figure 5.7: Phases transition distribution of the augmented 1000 videos. The start phases are shown ingreen and the terminal phases in orange. (P1: preparation, P2: calot triangle dissection, P3: clipping cutting,P4: gallbladder dissection, P5: gallbladder packaging, P6: cleaning coagulation, P7: gallbladder retraction)

5.3.2 Phase Recognition

The evaluation of the phase recognition performance was done with the NN proposed by
Jin et al. [109] described in Section 5.2.4. The NN demonstrated its capability to detect
the phases in the surgical videos by being the best NN at the M2CAI 2016 challenge
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[116]. For the experiment, the NN was trained (details in Section 5.2.5) on the workflow
augmented dataset, and then the phases recognition performance was evaluated on 20
videos that were not used to create the augmented dataset. Due to time constraints, the
training was only performed over 20 epochs, and it did not fully converge yet. The training
of the NN ends with a validation misclassification loss of 1.1−6 and an accuracy (ACC) of
98.15%. A training epoch takes about 4.5 hours for the NN on a NVIDIA RTX2080Ti.

For the evaluation of the classifiers, we chose a sequence of a maximum of 2400 video frames
due to memory constraints. The following overall metrics for multi-class imbalanced
datasets were carried out [83]: accuracy (ACC), mean accuracy (AvACC), class balanced
accuracy (CBA), macro-mean recall (RECM ), macro-mean precision (PRECM ), and
macro F1-score (F1-scoreM ) for the network. The classifier predicted the correct phases
with an average ACC of 97.0% over the 20 videos and an overall frames ACC of 89.36%.
The AvACC of the test videos was 86.06%. The CBA was 82.95%. The classifier hits the
phase with a PRECM of 84.22% correctly. The RECM was 86.24%, and the F1-scoreM
was 85.22%.
Table 5.4 shows the accuracy (ACC), PREC, REC, SPEC, and F1-scores for the binary
analysis for each phase. The respective phase was evaluated against all others, aggregated
into one. In other words, the table shows the classifier’s ability to recognize a concrete
surgical phase. Thereby, P4 was predicted the worst with an ACC of 93.59% by the NN
compared to the other phases. P3 had the lowest PREC of all phases with 72.33%. P5,
with 77.97%, had the lowest REC of the phases. The SPEC was over 96.25% for every
phase. The F1-score was lowest for P5 with 78%.
The confusion matrix is presented in Table 5.5 of the NN for the selected frames of the
test dataset. As it can be seen, the labeled phases were mainly confused with their
neighboring phases, except P4, where a wrong prediction was distributed over all phases.
It is also noticeable that for P1 to P3, only the phases P1 to P4 were predicted, and for
phases P5 to P7 the phases P4 to P7 were predicted.

Table 5.4: Binary analysis of the phases for NN on the test video of the Cholec80 dataset with the scores foraccuracy (ACC), precision (precision (PREC)), recall (recall (REC)), specificity (specificity (SPEC)), and F1-score,rounded on 4 digits.

Phase ACC PREC REC SPEC F1-score
P1: preparation 0.9922 0.9015 0.9207 0.9955 0.911P2: calot triangle dissection 0.9629 0.937 0.9636 0.9625 0.9501P3: clipping cutting 0.9634 0.7233 0.881 0.9706 0.7944P4: gallbladder dissection 0.9359 0.9452 0.8622 0.9741 0.9018P5: gallbladder packaging 0.9791 0.7852 0.7797 0.9892 0.7824P6: cleaning coagulation 0.9714 0.812 0.812 0.9845 0.812P7: gallbladder retraction 0.9824 0.7908 0.818 0.990 0.8042
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Table 5.5: Confusion matrix rounded to 4 digits of the selected real test videos from the Cholec80 datasetfor the NN
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P1: preparation 1858 160
0.9207 0.0793 0 0 0 0 0 0.9207

P2: calot 194 16523 278 153
triangle dissection 0.0113 0.9636 0.0162 0.0089 0 0 0 0.9636
P3: clipping 1 90 3309 356
cutting 0.0003 0.024 0.881 0.0948 0 0 0 0.881
P4: gallbladder 8 860 988 13767 192 140 12
dissection 0.0005 0.0539 0.0619 0.8622 0.012 0.0088 0.0008 0.8622
P5: gallbladder 116 1755 285 95
packaging

0 0 0 0.0515 0.7797 0.1266 0.0422 0.7797
P6: cleaning 173 156 2893 341
coagulation

0 0 0 0.0486 0.0438 0.812 0.0957 0.812
P7: gallbladder 132 245 1694
retraction

0 0 0 0 0.0637 0.1183 0.818 0.818
Precision 0.9015 0.937 0.7233 0.9452 0.7852 0.8120 0.7908

5.4 Discussion

One goal of this work was to create new artificial laparoscopy videos while achieving a
balance of original phase transition and higher tool variability within a phase compared
to the original dataset. The hypothesis was that the recognition rate of CNN and RNN
combination would increase compared to the literature approaches when trained on a
training dataset augmented by the workflow method. For this purpose, we selected the
laparoscopic dataset Cholec80 as an example. The dataset contains 80 surgical video
recordings with the individual phases annotated.

Section 5.3.1 shows that the augmented training dataset videos have a similar median
duration of approx. 53000 frames. A similar duration was desired when creating and
adapting the transition matrix in Section 5.2.2.1. However, as seen in Figure 5.4, there
were also videos whose length was about four times longer than the median video length.
These longer videos are not a problem because these are only a few outliers, and most of
the 1000 videos have a length corresponding to the original dataset’s distribution.

The first goal of balancing the phase transitions was only partially achieved. The outgoing
edges of P4 and P6 are balanced, but the outgoing edges of P5 correspond to the original
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distribution. In the analysis, it turned out that the reason for the unbalanced edges
was the procedure for balancing the phase transitions. It is not enough to adjust the
phase transitions by an isolated adjustment and the individual modeling of the event
transitions. It is important to normalize all different phase transitions of an event and
a second step to change the probabilities that the phase transitions are uniform. The
procedure has been demonstrated to be suitable because the probability distribution of
the outgoing edges could be improved for the majority of cases.

The second goal of increasing intra-phase variability was markedly achieved, as shown
in Figure 5.6. However, the variability should be expected to decrease due to the decrease
of the single-phase length (see Table 5.2) and the design decision to augment the segments
so that the length remains in average the same length, as described in Section 5.2.2.3.The
length of the remaining augmented sections did not change the total video length, which
is visible in Table 5.2. Consequently, the median length of individual events should have
become shorter if the number of events stayed the same, but it became longer, as shown
in Figure 5.8. The median length of individual events increased from 57 frames to 74
frames with a similar distribution. However, the shortening of the duration of the event
is not harmful since the events play only an indirect role in the training. The event labels
often used in a separate training of CNN and RNN are not used since we use end-to-end
training by only using the phase labels and the videos.

Figure 5.8: Violin plot of the event’s length in frames for the augmented and the original Cholec80 dataset.
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In summary, we can state that the augmentation by the workflow augmentation method
has markedly enhanced the training dataset of the original Cholec80 dataset.

This raises the question, does the improvement of the training dataset also improve the
phase recognition performance of the NN, as initially claimed in our hypothesis?

After only a training period of 20 epochs on 800 videos, our network reaches an ACC of
96.96%, averaged over all test videos. The network is not yet converged, which makes the
result even more impressive. Jin et al. [109] achieved only an ACC of 89.2% overall phases.
The same network trained on the same original dataset performed seven percentage
points (pp) better when the workflow augmentation method is used to augment the
training dataset. Compared to other publications that used the same dataset and a
similar NN, our network still shows a better ACC. Yi et al., who also use a CNN and
LSTM, achieved an ACC of 91.5% [117]. Further studies and their results can be taken
from Table 5.6. However, the values for PRECM , RECM and F1-scoreM from our NN
are slightly lower with 84.22% (86.9%), 86.24% (88%) and 85.22% (87.4%) compared
to Jin et al. (values in brackets).

May a closer look at the individual phase evaluations should answer why the values are
slightly lower by better general ACC. Unfortunately, the values for ACC, PREC, REC,
and F1-score for the individual phases were not published by Jin et al. ACC values
for the individual phases could neither be found in the publication. Only Namazi et al.
published the PREC, REC, and F1-scores for the individual phases, shown in Table 5.7,
which were used for comparison in the following. Comparing the scores in Table 5.7

Table 5.6: Phase recognition results found in literature using the same Cholec80 dataset and similar NNtypes.

Reference Type ACC
Jin et al. [109] CNN+LSTM 89.2%Yi et al. [117] CNN+LSTM 91.5%Twinanda et al. [21] CNN+SVM 86%Namazi et al. [111] CNN+LSTM 90.8%Funke et al. [108] CNN+ LSTM 92.7%
ours CNN+ LSTM 97.0%

reveals small differences for the individual scores for P1 to P4. The PREC and REC for
P5 in our NN are about six pp worse than in Namazi et al. study, but the values for P6
and P7 are better in comparison. Namazi et al. also provides the confusion matrix for
the individual phases, which shows similar patterns for the online NN as ours (Table 5.5).
One possible explanation could be that there must be inconsistencies in the dataset,
especially regarding P4. However, this assumption could not be further proofed.

Another interesting observation was that there were also phase mismatches in the
neighborhood phases of each phase. This leads to the assumption that the mismatch
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Table 5.7: Comparison of scores for accuracy (ACC), precision (PREC), recall (REC), specificity (SPEC), andF1-score for the different phases, between this work and Namazi et al. [111]

Phase Namazi et al. oursPREC REC F1-score PREC REC F1-score
P1: preparation 0.88 0.90 0.89 0.9015 0.9207 0.911P2: calot triangle dissection 0.94 0.97 0.96 0.937 0.9636 0.9501P3: clipping cutting 0.72 0.81 0.76 0.7233 0.881 0.7944P4: gallbladder dissection 0.96 0.92 0.94 0.9452 0.8622 0.9018P5: gallbladder packaging 0.87 0.84 0.85 0.7852 0.7797 0.7824P6: cleaning coagulation 0.82 0.65 0.72 0.812 0.812 0.812P7: gallbladder retraction 0.65 0.74 0.69 0.7908 0.818 0.8042

occurs mainly at the transitions. We looked at three plots containing the temporal
progression of prediction and ground-truth label to check this assumption, as shown in
Figure 5.9. The first one is video 35 with the best ACC (98.45%), the second video
24 with medium ACC (98.45%), and the third video 74 with the worst ACC (56.28%).
The figure confirms the stated assumption for the first two cases. It is visible that there
are inconsistencies at the phase transitions. However, for the third case, we must note
that the phases at the beginning and end of the video are still correct, but large parts,
in the middle, have been incorrectly ordered. However, we must emphasize again that
video 74, was the video that had by far the worst recognition ACC with 56.28%. For all
other videos the ACCs were above 83%.

To conclude, the experiment confirmed our hypothesis, and the recognition performance
could be significantly increased. Using the workflow augmentation method, it is possible
to augment the semantic information, i.e., phases, in an existing dataset. Furthermore, it
could demonstrate that enhancing the training dataset by the presented method increased
the recognition rate significantly compared to the literature.
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Figure 5.9: Illustration of predicted phases compare to the ground-truth on the three test videos: 35 (bestACC), 24 (average ACC) and 74 (worst ACC) from the Cholec80 dataset. The different phases are colorcoded and horizontal axis represents the time progression in the surgery in frames. (P1: preparation, P2:
calot triangle dissection, P3: clipping cutting, P4: gallbladder dissection, P5: gallbladder packaging, P6: cleaning
coagulation, P7: gallbladder retraction)

5.5 Conclusion

In this project, we demonstrated that the novel approach presented for augmenting video
in the field of video-based event recognition in Chapter 4 could also be used to augment
semantic information, e.g., surgical phases in a video. This methodology enables the
creation of new artificial videos from originally recorded videos while at the same time
balancing the phase transitions. Moreover, it is possible to increase the intra-phase
variability compared to the original videos. We have demonstrated that a NN, consisting
of a CNN and LSTM, achieved significantly better performance in terms of surgical phase-
detection, compared to literature, if it’s trained on a dataset augmented by the workflow
augmentation method. Moreover, our approach outperformed all other known published
approaches regarding ACC with an increase in minimum of 4.5% (see Table 5.6).

However, there are also limitations to our approach. If there are inconsistencies in a
dataset, as we presume for P4, these could be eliminated by dropping the questionable
events in the workflow approach, but if they are not known, then the effect of the incorrect
segments could even be exacerbated by the workflow method. Therefore, the initial
intervention quality of the dataset must be sufficient, i.e., the recorded videos include only
professional standardized workflows by skilled physicians. Besides, the dataset should
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have sufficient diversity because the workflow method can increase the variability of
existing events over time but not generate new events.

Based on these results, the approach proposed in Chapter 6 has a high potential to
improve video classification and recognition, especially of rare events in the field of
computational-assisted surgery. The better automatic recognition of the context can
increase patient safety, as the surgeon can be warned at an early point that she/he does
not follow the standardized procedure, or assistance can be given especially, in rare cases.
With the help of workflow augmentation, a great step towards the future intelligent
context-aware operating room is taken.

The next logical step of artificial data generation is to synthetic generate realistic images
or videos for rare events. Such events, with low prevalence, are challenging to find in
datasets and are not likely to be recorded. With the workflow extension, such data
could improve sporadic events’ classification or recognition performance using artificial
intelligence.



Chapter6
3D-Guided Face Manipulation of 2D

Images for the Prediction of
Post-Operative Outcome after
Cranio-Maxillofacial Surgery

6.1 Introduction

Cranio-maxillofacial surgery is a common treatment of temporomandibular disorders or
skeletal malocclusion. Besides the improvement of function, this surgical intervention
often changes the aesthetics or identity of the face, which can be a heavy burden for
the patient. To support the patient’s decision-making in favor of or against surgery,
having a prediction of the patient’s face after surgery is highly desirable. At present,
physicians can predict the virtual post-operative face using surgery planning tools like
IPS CaseDesigner® [118] or Dolphin 3D® [119]. These surgery planning tools typically
require a tomography scan of the patient’s face, which includes both segmented soft-tissue
and segmented bone structure. The surgery planning tool allows the physician to virtually
manipulate the bone structure, e.g., to cut and move the jaw and subsequently predict
the deformation of the soft tissue using, e.g., finite element methods [120–122] or mass
tensor models [123]. In the next step, the texture of the face has to be predicted to allow
a rendering of the post-operative face. For this, a 3D scan of the facial texture must
be captured by a 3D camera system, wrapped on the virtual pre-operative face, and
subsequently interpolated according to the predicted deformation of the soft-tissue [124].

71
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This procedure to predict the post-operative texture has multiple disadvantages:
1. The procedure requires a 3D texture scanner which might not be available at every

clinical site. In such a case, patients can only be provided with a single-color
prediction of the post-operative face.

2. The quality of the mapped texture of the face is limited by the registration accuracy
and the resolution of both the texture and the tomography scans.

3. Existing methods to translate the pre-operative texture to the predicted post-
operative soft-tissue, e.g., interpolation, might be unsuitable to predict realistic
textures since they do not consider illumination or skin properties.

In practice, these disadvantages often result in predictions of the post-operative face that
do not look realistic or lively looking and are therefore ill-suited to support the patient’s
decision-making.

In this study, we propose a novel deep learning-based idea to directly predict a realistic
2D image of the post-operative face given only a 2D image of the patient before surgery
and a 3D simulation of the post-operative soft tissue. In other words, we hypothesize
that the current method to capture, wrap and interpolate the 3D texture can be replaced
by a neural network to make a realistic prediction of the post-operative face and thus,
does not require a 3D texture scanner. Our main contribution is a conditional generative
adversarial network (cGAN) for post-operative face prediction which translates a 2D
image of the pre-operative face of a patient to a 2D image of the post-operative face.
Compared to previous approaches to predict the post-operative face [118–124], we propose
a deep learning-based solution, i.e., we aim to train a suitable model directly from data.
However, acquiring large numbers of corresponding image pairs between pre- and post-
operative faces of cranio-maxillofacial surgery is difficult and often includes data with
large time gaps of several months between images of a pair due to the long healing phase
of the swelling. To bypass this lack of feasible training data, we propose a semi-supervised
cycle generative adversarial network (CycleGAN) [125] strategy to train our model on
non-clinical data and subsequently transfer our model to predict the post-operative face,
as shown in Figure 6.1.
More precisely, we first train a modified CycleGAN on “in-the-wild” images of the
3DDFA dataset [126], where we aim to manipulate distinct local face properties of 2D
images such as changing the size of the chin or the nose. In contrast to recent state-
of-the-art models used to manipulate facial properties, we cannot describe the desired
manipulation or a surgery plan by discrete attributes (e.g., brown/blond/black hair color
in StarGAN [127, 128]), domain transfer between two images [128, 129], or concealed
representations in latent space [130, 131]. Instead, we define the geometric shape of the
manipulation using a 3D surface template of the face which enables precise manipulation
according to the 3D shape of the face. Using this 3D template, we use a statistical model
to generate distinct local face modifications and pass these locally modified 3D faces
together with an unmodified 2D image to our model to predict a face that comprises the
desired local manipulation. We then transfer our model to the second stage of our study,
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(a)

(b) G

Training on in-the-wild images

Prediction of patient outcome

Figure 6.1: Overview of our approach to predict the post-operative face. In (a) we first train our model topredict various face modifications (marked in red) at the chin and the nose using a CycleGAN strategy. Aftertraining, we are able to apply local modifications to a 2D image of a face as seen on the right. Afterwards,we transfer our model to (b) where we use our trained model to predict the face of a patient after cranio-maxillofacial surgery. More precisely, we use a 2D image of the pre-operative face as shown on the leftand a 3D simulation of the post-operative surface as shown in the middle to generate a prediction of thepost-operative face as shown on the right. Hereby, our approach requires neither clinical data for trainingnor 3D texture scans for inference.

where we predict the post-operative face for two different views of four clinical subjects
that underwent cranio-maxillofacial surgery. To create such a prediction, we simulate
a 3D face template of the post-operative face without texture using a surgery planning
tool and pass it together with an image of the pre-operative face to our model. As a
result, we demonstrate the reasonability of our approach to train on non-clinical data
and subsequently predict realistic 2D images of the post-operative face. Based on these
promising first results, we believe that our approach has a high potential as a future
tool for post-operative face prediction. Compared to previous approaches [118–124], our
approach does not require 3D texture scans or registration procedures for inference, nor
do we need sparsely available clinical data, physical models, or detailed surgery expertise
for training.

6.2 Related Work

Our study aims to mainly contribute to the state-of-the-art in image processing for
predicting the post-operative face. In the following, we describe the state-of-the-art
for the prediction of the post-operative outcome as well as the state-of-the-art for
manipulating 2D images of faces. Moreover, we highlight the differences of previous work
compared to our study.
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Post-operative face prediction. Previous research studies [122, 124, 132–134] on the
prediction of the post-operative face as well as commercially available surgery planning
tools [118, 119] are mainly focused on the needs of orthodontics, i.e., the planning of
bone structures and the prediction of the facial soft-tissue. As a result, the prediction
of the post-operative texture is often neglected or replaced by a texture of constant
skin color [122, 132] which is poorly suited to guide the patient’s decision whether or
not to undergo surgery. On the other hand, commercial planning software such as
IPS CaseDesigner® [118] or Dolphin 3D® [119] as well as Harris et al. in [133] and
Premjani et al. in [135] offer the prediction of the post-operative texture based on a
3D picture of the pre-operative face. Hereby, the soft-tissue and the bone structure are
typically extracted from a cone-beam computed tomography (CBCT) scan while the
facial texture is captured using a 3D stereo camera system [118, 119, 124, 133, 135]. The
3D texture is then registered and wrapped on the segmented soft-tissue. However, this
procedure is both time-consuming and potentially inaccurate since the registration of the
texture must typically be accomplished by surface matching algorithms using manually
annotated landmarks [124, 135] or manual alignment [133]. To overcome this registration
problem, other studies have proposed a simultaneous data acquisition of the stereo camera
scan and the CBCT scan [134, 136]. However, such stereo photogrammetry systems are
expensive to acquire and rare available since they offer hardly any additional benefit for
clinical diagnostics. Once the texture is wrapped on the soft-tissue of the face, available
surgery planning tools allow the physician to virtually cut and move the bone structure
of the face and subsequently simulate the deformation of the corresponding soft-tissue.
Afterwards, the texture of the pre-operative face must be interpolated according to the
simulated soft-tissue deformation to enable a rendering of the predicted post-operative
face. This procedure to simulate the post-operative texture typically does not result in
lively looking and realistic rendering of faces (compare, e.g., [133, 134]) since the texture
quality is limited by the resolution of the stereo camera system, the resolution of the
soft-tissue scan, and the registration accuracy. Additionally, the interpolation method
to manipulate the pre-operative texture according to the soft-tissue deformation does
not account the illumination properties of the skin or the preservation of high-frequency
details, which might further reduce image quality. In contrast, we propose a generative
adversarial network (GAN)-based neural network to directly manipulate a 2D image
according to a 3D plan of the simulated post-operative soft-tissue. To the best of our
knowledge, using neural networks to predict the post-operative face has never been
proposed before. As its most important advantage, our approach neither requires the
acquisition nor registration of 3D texture scans. With regard to the impressive results of
recent GANs to generate and manipulate fine-detailed and realistic images of faces in
high-resolution, we further hypothesize that a GAN-based approach is able to generate
more realistically-looking images of the post-operative face compared to traditional
approaches and therefore, might be better suited to guide the patient’s decision-making
before surgery.
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Face manipulation of 2D images. In recent years, GANs have shown remarkable
success in generating and manipulating 2D images of faces. To manipulate a face
according to a desirable attribute, numerous studies have been proposed for both purely
generative models and cGANs. To enable a controlled manipulation of the face, the
desired manipulation has to be represented as an interpretable input to the model. To
achieve this, Guan [137] and Liu et al. [130] both found representations in the input feature
vector of GANs to manipulate desired properties of the face image. In contrast, He et al.
(AttGAN) [131] defined the manipulation by using both discrete attributes as well as a
feature vector in latent space to manipulate the facial properties of an image. Alternatively,
Bao et al. [129] and Shen et al. [138] trained a cGAN to swap key facial properties between
two images, which enabled manipulation of, e.g., expression, illumination, pose, wearing
sunglasses, or having beards. Also, Bansal et al. (RecycleGAN) [139] proposed a
CycleGAN [125] transfer facial expressions of video data from one person to another
person. Closely related to this work, Choi et al. (StarGAN) [127] adapted a CycleGAN
strategy and defined the manipulation information by a vector of discrete attributes like
hair color, gender, or age to manipulate faces in 2D. Most recently, Choi et al. [128]
released StarGAN v2 which receives both discrete attributes and style information from
another image to manipulate faces in a 2D image. As seen above, all the described
studies to modify faces in 2D images defined the modification information by either
abstract features in latent space, information extraction by transferring properties of
other images, or discrete attributes. However, none of the above studies manipulated
2D images according to a 3D plan of the face. Consequently, their approaches would
be unsuitable to manipulate a face according to a precise and individual surgery plan.
In contrast, we propose a model which receives a representation of a 3D surface mesh
of the face to define the manipulation of the 2D face. Hereby, our representation of
the face modification is continuous, easily interpretable, and enables a precise definition
of the targeted geometrical shape of the face. To the best of our knowledge, such a
representation to manipulate distinct properties of a face according to a 3D plan of facial
shape has never been proposed before.

6.3 Methods

The goal of this study was to train a single generator G which receives a 2D image of
a face and a modified 3D shape of a face as inputs. Then, the model generates a 2D
image of a face that yields the desired modification as an output. More precisely, let In
be an image of a person’s face n and Sn be the corresponding estimation of the 3D shape
of the same person’s face as shown in Figure 6.2 (a). Subsequently, we applied a local
modification Smod to every unmodified 3D shape Sn in our dataset to create a locally
modified 3D shape Snmod = Sn + Smod.

As a proof-of-concept, we applied four distinct modifications Smod to each face in this
study: increased size of the chin, increased size of the nose, a decreased size of the chin,
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Figure 6.2: Pre-processing of the training data. (a) shows an example of the 300W-LP dataset with in-planeface rotations around the vertical axis with the angle θ by Zhu et al. [126]. Hereby, the upper image showsthe original image, and the lower two images show the augmented images. Additionally, the estimated 3Dshape Sn of the face was also given by the dataset. (b) shows all four face modifications Smod that weapplied to Sn to create the modified faces Sn

mod (c) shows the inputs and different outputs of the neuralnetworkG. Hereby,G received an image In and a projected normalized coordinate code (PNCC) projectionof the modified 3D shape Sn
mod as input. The model then predicted the desired modification in the image

Ĩn
mod.

and a decreased size of the nose as seen in Figure 6.2 (b). Technically, this approach can
be extended to other deformations of the face (e.g., mouth or head modifications) as well.
Next, we trained a neural network G to apply the modification described by Snmod on the
original image In which was supposed to result in a modified image Ĩnmod:

Ĩnmod = G(In, Snmod) (6.1)
For example, this might be an image of a face with an enlarged nose, as seen in Fig-
ure6.2 (c). To train such a model, we utilized the corresponding image In and 3D shape
Sn pairs from the open-source “in-the-wild” 300W-LP dataset [126] and propose a semi-
supervised training strategy inspired by CycleGANs [125]. Since the ground-truth of
the modified faces Inmod are unknown for these “in-the-wild” images, we instead propose
a training strategy that leverages four sources of a-priori knowledge to formulate our
training objective:

1. a reconstruction loss as introduced by Zhu et al. [125]
2. knowledge of the statistics of real-world images of faces via an adversarial discrimi-

nator,
3. a learned mapping to translate a 2D image to a 3D shape of a face, and
4. information of the approximate location of the local modification in the image.

In the following, the applied local modification Smod and the objectives for training are
described in more detail.
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6.3.1 Local Face Modifications

The ultimate incentive of training G was to create a model which ultimately can predict
a 2D image of a patient’s face after cranio-maxillofacial surgery. Generally, cranio-
maxillofacial surgery does not only affect the appearance of the jaw but other regions
of the face as well, e.g., the nose and the mouth, for the treatment of cleft palates.
Therefore, we aimed to demonstrate that our model can be trained on arbitrary regions
of the face. In this preliminary study, we chose to train our model on size variations of
the nose and the chin. These local regions of the face have the advantage that they are
easily recognizable in almost all images of faces and in most head positions. For training,
the applied modification was required to be automatically applicable and physically
plausible, i.e., that the existence of Snmod in the real world was theoretically possible.
To achieve this, we expressed each 3D face Sn and each local modification Smod as a
parameter vector of the BFM2009 [140] statistical point distribution model. To find such
local modifications Smod, we annotated different local regions of the 3D face template
of the BFM2009. We then implemented an optimization algorithm to find parameter
vectors that result in a maximal deformation of the annotated region while minimally
deflecting all other regions of the face (see Appendix B.1 for more details). Next, we
scaled the computed parameter vectors in a negative and positive direction until the
deformation of the desired region was maximally deflected without being unrealistic as
judged by subjective inspection. The resulting four local deformations Smod can be seen
in Figure 6.2 (c). During training, we randomly drew one of these four modifications for
each sample and applied it to the estimated 3D shape of each unmodified shape Sn of
the dataset to create a modified 3D face Snmod:

Snmod = Sn + Smod (6.2)

6.3.2 Objectives

Image reconstruction loss. To enforce the preservation of the identity of the face
in Ĩnmod, we minimized the “identity reconstruction” loss LI−rec where we aimed to
reconstruct the original image In from the predicted modified image Ĩnmod:

LI−rec = EIn, Ĩn
mod

, Sn

[
LPerceptual

(
In, G

(
Ĩnmod, S

n
))] (6.3)

As seen in the equation, we calculated the image distance LPerceptual to compare the
original image In with the reconstructed image Ĩn = G

(
Ĩnmod, S

n
)
as illustrated in

Figure 6.3. The incentive of LI−rec was to ensure that G only changes the geometric shape
in Ĩnmod without modifying properties like skin color, facial hair, or other facial attributes
independent from the facial shape that are required to translate back to the original image
In. Consequently, these independent shape properties would have to be present in Ĩnmod
to achieve a perfect reconstruction score. As stated in the original CycleGAN paper [125],
Zhu et al. struggled to translate between images that required geometric changes (e.g.,
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translate dogs to cats). As a possible solution, Gokaslan et al. [141] proposed the use of
a perceptual loss instead of a pixel-wise loss and achieved convincing results to translate
between geometrically changing images using CycleGANs. Motivated by these results,
we also used a perceptual loss LPerceptual [142] to compare between In and Ĩn. During
training, we had to prevent G from learning an “arranged” encoding of these properties
in Ĩnmod and learning a specialized decoder to reconstruct Ĩn. To impede the learning of
such an arranged encoding, we predicted Ĩnmod with G and then froze the weights of G
for the reconstruction of the original image Ĩn, i.e., all gradients induced by the second
forward pass were not considered for updating G as indicated in Figure 6.3.

Shape reconstruction loss. To enforce a face manipulation in Ĩnmod, we aimed to
reconstruct the modified input shape Snmod from Ĩnmod. For this, we first trained another
neural network GS to predict the 3D shape of an image: S̃n = GS(In). After training
GS , we froze the model weights of GS and optimized the weights of G to minimize
the distance LS−rec between the input modification Snmod and the reconstructed shape
prediction S̃nmod = GS(Ĩnmod):

LS−rec = ESn
mod

, Ĩn
mod

[
LShape

(
Snmod, GS

(
Ĩnmod

))] (6.4)
with LShape being a distance metric (described below) between Snmod and GS(Ĩnmod). To
calculate LS−rec, we first trained GS to reach convergence using the image-shape pairs
(In, Sn) of the 300W-LP dataset [126] and minimized the prediction error LGS

in the
shape domain:

LGS
= EIn,Sn [LShape (Sn, GS (In))] (6.5)

Hereby, we assumed that the estimated 3D shape Sn of the 300W-LP dataset of each image
was the ground-truth. Estimating a 3D shape of a face from a single 2D image is a highly
ill-posed problem that is yet to be resolved. To solve this estimation task, current state-
of-the-art studies propose either the use of iterative template fitting approaches [140,
143, 144] or regression approaches using neural networks [126, 145–148]. In initial
experiments, we considered openly available algorithms or neural networks to serve as
GS and calculate LS−rec. However, we concluded that iterative algorithms [140] are
unfeasible for backpropagation, and publicly available neural networks required either
too much GPU RAM [145] or were locally too inaccurate [126, 147] to be used in our
CycleGAN setup to calculate LS−rec. Compared to these previous studies, we aimed to
facilitate the estimation task for GS by predicting only a projection of the 3D shape.
For the 3D shape, we used the PNCC proposed by Zhu et al. [126]. To calculate the
PNCC, we first converted the XYZ coordinates of the mean face of the BFM2009 to
the RGB color range by normalizing the coordinate range to [0, 1]. We mapped these
colors on the 3D shape Sn and subsequently calculated the projection to the image plane
using the projection parameters of Sn as seen in Figure 6.2 (c). By using a PNCC to
represent the 3D shape of a face, we attempted to facilitate the estimation task for GS ,
and we changed the translation task of our CycleGAN to a 2D problem which saved
GPU RAM and enabled the use of established 2D convolutional neural network (CNN)
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Figure 6.3: Schematic overview of our training strategy. As input, G receives an image In and a modifiedshape Sn
mod represented as a PNCC and predicts a modified image Ĩn

mod. To the left, GS estimates theprojected shape S̃n
mod from Ĩn

mod which is then compared with the input shape Sn
mod to enforce the visibilityof the modified shape in Ĩn

mod. On the right, G is supposed to reconstruct the original image In from themodified prediction Ĩn
mod and the unmodified shape Sn. Notably, the gradients of the right-side pass werenot considered for updating G during training. On the bottom, the two adversarials D and DRoi aim todistinguish between generated predictions byG (fake data) and images from our dataset (real data). Hereby,

D received all images at full resolution (128×128pixels) whileDRoi received all images at various resolutionscentered around the local modification (here: 32×32pixels).
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architectures. Notably, we also split the prediction task of GS by separately predicting
a color map of the PNCC and a mask of the PNCC, which, in practice, appeared to
strongly increase convergence speed when training GS . To calculate the distance metric
between the PNCCs s LShape, we calculated the binary cross-entropy LCE between the
masks and the L1 norm L1 between the color maps:

LShape(S, S̃) =LCE(SMask, S̃Mask)
+ λL1(SColor, S̃Color)

(6.6)

Hereby, with λ = 10 and we masked S̃Color with the predicted PNCC mask S̃Mask. In
the following, we name Sn or Snmod and mean the PNCC representation of the 3D face.

Adversarial loss. To restrict G to only predict realistic images Ĩnmod, we used an
adversarial loss. To calculate the adversarial loss LAdv we randomly drew images In from
the real data distribution PR and modified images Ĩnmod from the fake data distribution PG
generated by G and random modifications Snmod. Thereafter, we alternately approximated
the Wasserstein-distance by training an evaluator D and minimizing the estimated
Wasserstein-distance by optimizing G according to Wasserstein generative adversarial
network (WGAN) theory [38]. To enforce local 1-Lipschitz continuity in D, we adopted
the gradient penalty loss (WGAN-GP) by Gulrajani et al. [149]:

LAdv =EIn [D (In)]− EĨn
mod

[
D
(
Ĩnmod

)]
− λGPEİ

[(∥∥∥∇D (İ)∥∥∥
2
− 1

)2
] (6.7)

with İ being a linear interpolation between an image pair (In, Ĩnmod) and λGP = 10.
Hereby, D aimed to maximize LAdv while G aimed to minimize LAdv. To increase
convergence speed and image quality, we implemented a multi-scale discriminator setup
by training a second evaluator DRoi on a cropped region of the local modification as
seen in Figure 6.3. To automatically compute this region of interest, images In and
Ĩnmod were cropped around the location of the modification, i.e., an annotated center
point of the nose or the chin. To find the approximate center in the prediction of the
modified face Ĩnmod, we projected the center-point of the modified 3D shape Snmod on the
image plane. During the training of G and DRoi, we varied the size of these regions of
interest between 16×16 pixels and 48×48 pixels before presenting them to our second
evaluator DRoi (see Section 6.3.4 for further details). As a result, the use of this second
discriminator appeared to significantly increase convergence speed and the image quality
of the predictions Ĩnmod.
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6.3.3 Datasets

For training, we used the 300W-LP dataset by Zhu et al. [126], which comprises corre-
sponding pairs of 2D images In of faces, estimated parameters of the BFM2009 [140]
statistical point distribution model, and projection parameters of each face. For aug-
mentation, Zhu et al. rotated and flipped all faces in-plane around the vertical axis to
comprise more training samples with high degrees of face rotations θ as seen in Fig-
ure 6.2 (a). These in-plane rotations resulted in 300 575 image and 3D shape pairs with a
baseline of 7690 independent pairs. For validation, we excluded eight baseline pairs before
augmentation which resulted in 112 pairs after augmentation. Additionally, we rotated
each image between −90◦ and 90◦ for further augmentation during training. Lastly, we
cropped the original image resolution of 450×450 pixels around the center of the face
to a resolution of 315×315 pixels and subsequently rescaled each image to a resolution
of 128×128 pixels due to memory constraints of our GPU during training. For testing,
we used the AFLW2000 dataset by Zhu et al. [126], which includes 2000 images, fitted
3D shapes, and projection parameters derived using the same semi-automatic template
fitting approach by Paysan et al. [140] as the 300W-LP dataset.

6.3.4 Implementation Details

Training strategy. In a first step, we trained the shape estimator GS on the 300W-LP
dataset by minimizing LGS

:
min
GS

LGS
(6.8)

We used Adam [150] for optimization with β1 = 0.5, β2 = 0.999, a batch-size of 32,
and a constant learning rate of lr = 10−4 over the first 150 000 iterations. Then we
linearly decreased lr to zero over another 150 000 iterations, which took approximately
two days on an NVIDIA RTX2080Ti. After training GS , the mean absolute pixel-wise
error was L1 = 0.015 and the cross-entropy loss was LCE = 0.160 on the 300W-LP
dataset and L1 = 0.072 and LCE = 0.338 on the AFLW2000 dataset. Next, we trained
our CycleGAN by updating the evaluators D and DRoi alternatingly on every iteration
using the objective function

max
D
LAdv (6.9)

while updating the generator G every fifth iteration using the objective function:

min
G
LG =λ1 LI−rec + λ2W LS−rec

+ λ3 LAdv,D + λ4 LAdv,DRoi

(6.10)

with λ1 = 10, λ2 = 75, λ3 = 1, λ4 = 100. Additionally, we weighted the shape
reconstruction loss LS−rec more heavily at pixels close to the center of the modification
by multiplying the error LS−rec at each pixel with a 128×128 pixel weight map W . This
weight map W was calculated by projecting the Euclidean distance of each vertex in 3D
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between Sn and Snmod and subsequent normalization between zero and one. Using this
weight map W , we aimed to both increase convergence speed and facilitate the prediction
task by weighting shape reconstruction errors more lightly at regions of the neck, the
forehead, and the ear. For optimization we used Adam with β1 = 0.5, β2 = 0.999 and
a batch-size of 16. We trained G, D, and DRoi with a learning rate of lr = 10−5 over
1million iterations. For initial experimental runs, we experienced heavy difficulties in
stabilizing the training, and in general, we observed slow convergence speed and poor
image quality of the modifications. To achieve a better initialization, we pre-trained our
model over another 1million iterations using supervised learning on a synthetic dataset,
which comprised corresponding ground-truth images Inmod. To create this synthetic
dataset, we used the OpenGL library to render random faces using the BFM2009 face
model [140], random expressions that we randomly drew from the 300W-LP dataset, and
random background images from the indoor dataset by Quattoni et al. [151]. Example
images of our synthetic pretraining can be seen in Figure 6.4. This dataset enabled
supervised learning on synthetic face templates to pre-train our model. For this, we
optimized LG in (6.10) except that we replaced LI−rec with a synthetic loss LSyn:

LSyn = EIn
mod

, Ĩn
mod

[
L1
(
Inmod, Ĩ

n
mod

)] (6.11)
After pre-training our model on synthetic data, we trained our model 3DDFA dataset by
linearly increasing the region-of-interest-size of DRoi from 16×16 pixels to 48×48 pixels
over the first 500 000 iterations. For the remaining 500 000 iterations, we used a random
uniform region-of-interest-size between 32×32 pixels and 48×48 pixels. In total, we trained
our model for 1million iterations on the synthetic data and another 1million iterations on
the 300W-LP dataset, which took approximately fifteen days on an NVIDIA RTX2080Ti.

Network architectures. The detailed architectures of our models are given in Appendix
B.2. For the generator G, we used the tiramisu U-Net [152]. G received six channels with
an image resolution of 128×128 pixels as input which comprised the unmodified image In
as well as the PNCC of the modified 3D shape Snmod. The output of G comprised three
RGB channels for the predicted modified image Ĩnmod. For the discriminators, we used
PatchGAN [115] architectures. For the shape estimator GS , we used another tiramisu
U-Net which received In as input and predicted the projected PNCC of Sn. As described
in Section 6.3.2, GS predicted both a mask and a color map of the PNCC. Therefore, the
output of GS comprised five output channels: two channels for the mask (background
and face pixels) and three channels for the color values of the PNCC.

6.4 Experiments and Results

We conducted three experiments to evaluate the performance of our model G on both
“in-the-wild” images and on a clinical example. Hereby, we evaluated G qualitatively
on selected samples of the AFLW2000 dataset in experiment 6.4.1 and quantitatively
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Figure 6.4: Four randomly chosen images of the synthetic dataset used for pre-training G. Each row showsone of the four image modifications that were considered in this study. The figure shows syntheticallygenerated samples of the training set after trainingG over 1 million iterations. The columns show the inputimage In, the modified input shape Sn
mod, the prediction Ĩn

mod of G and the synthetic ground-truth In
mod.

in experiment 6.4.2. Lastly, we aimed to predict the post-operative face using G in
experiment 6.4.3.

6.4.1 Qualitative Results

Experiment. We evaluated G on the AFLW2000 dataset [126], which yields 2000 pairs
of images and corresponding shape parameters of the statistical point distribution model
as well as the camera parameters to project the 3D shape to the 2D image plane. Like
the 300W-LP dataset, these 3D faces were estimated using a semi-automatic fitting
procedure [140] and were assumed as ground-truth in this study. For inference, we
tested our model on all 2000 images of the AFLW2000 dataset using all four different
modifications Snmod as input that was proposed in this study and are visualized in Figure
6.2 (b): larger chin, smaller chin, larger nose, and smaller nose.
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(a) (b)

Figure 6.5: Selected predictions on the AFLW2000 dataset. The middle row shows the original images In

which were used as input forG. The top rows show predictions of a smaller chin (a) and nose (b), respectively.The bottom rows show predictions of a larger chin (a) and nose (b), respectively.

(a) (c)(b)
Figure 6.6: Three most frequent types of “failure” that we observed for predictions on the AFLW2000dataset. In (a) our model was tasked to predict a smaller chin. However, the original chin is still visiblewhich results in an unrealistic prediction of the background. (b) shows the prediction of a nose enlargementwhere the model only generated the outlines of the desired shape of the nose. In (c) the enlarged chin ofthe woman yields an unnatural dark texture which was frequently observed for chin enlargements of femalefaces.

Results. Figure 6.5 (a) and Figure 6.5 (b) show the predictions of G for selected images
that we visually judged to be both realistic and accurate compared with the given input
Snmod. In detail, the top rows show the predictions Ĩnmod for a smaller chin and a smaller
nose, respectively, while the bottom row shows the predictions for a larger chin and
nose. For comparison, the original unmodified images In are given in the middle row. As
can be seen in our best examples, G was able to modify the desired region for images
with varying head pose and illumination settings. The applied modification appeared
to be realistic, and the integration of the modified face with the rest of the face was
plausible. Notably, our model was also able to predict a plausible background of regions
that were previously occluded by face, as seen in the top row of the figures. However,
the overall performance was moderate as our model did not consistently predict realistic
and accurate facial modifications on all images of the dataset. As an example, Figure 6.6
shows three of the most frequent types of “failure” that we observed on the AFLW2000
dataset. In Figure 6.6 (a), G was tasked to predict a smaller chin. However, the model
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did not remove the previously larger part of the chin, which resulted in an unrealistic
prediction of the background. Figure 6.6 (b) shows the prediction of a nose enlargement.
However, the model only generated the outlines of the desired shape of the nose, which
was sufficient to fool the shape estimator GS and achieve a low shape reconstruction
error LS−rec. These cases of failure could be found for both chin enlargements and nose
enlargements and suggest a weak adversarial loss LAdv. Lastly, we observed a specific
case of failure that mostly affected predictions of large chins in women. As seen in the
example in Figure 6.6 (c), the enlarged chin of the female face yielded an unnatural dark
texture at the tip of the chin, which could be interpreted as either artifact, facial hair,
or heavy shading and generally resulted in chin predictions that appeared more manly
compared to the overall appearance of the original face. A potential explanation for this
observation is given in Section 6.5. The described cases can also be seen in Figure 6.7, in
which we show the predictions for all four modifications on the first eight samples of the
AFLW2000 dataset to provide the reader with an unbiased selection of images.
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input imagesmaller chin bigger nosebigger chin smaller nose

Figure 6.7: Nose and chin modifications on the first eight AFLW2000 dataset samples. Third column showsthe baseline input images In for the generator G. First and second column show the predictions of G for abigger chin and a smaller chin, respectively. Fourth and fifth column show the predictions of G for a biggernose and a smaller nose, respectively.
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6.4.2 Quantitative Results

Experiment. In this section, we aim to analyze the accuracy of the predicted modified
regions in Ĩnmod. To enable a fully automatic approach, we used a facial landmark
predictor [153] and calculated the normalized Euclidean distance between landmarks of
Ĩnmod and the projected landmarks of the corresponding shape Snmod.

(a) (c)(b)

Figure 6.8: Facial landmark annotations to evaluate the accuracy of our model. (a) shows the 68 facial land-marks that we annotated on the 3D shape via the vertex indices. Landmarks of the chin region #[1-17] areannotated in cyan. Landmarks of the nose region #[28-36] are annotated in green. (b) shows the predictedlandmarks in white on the prediction Ĩn
mod for an enlarged chin. The ground-truth landmarks derived fromthe modified shape Sn

mod are shown in red. (c) shows the landmark annotations on the prediction Ĩn
mod foran enlarged nose.

To generate Ĩnmod, we rerun the pipeline on all 2000 images of the AFLW2000 as described
in section 6.4.1. To calculate the “ground-truth” facial landmarks, we annotated 68
landmarks on the 3D shape Snmod via their indices provided by [154]. After that, we
projected the landmarks in 3D to the 2D image plane as visualized in Figure 6.8 (a).
Additionally, we annotated the first 17 landmarks (#[1-17]) to belong to the chin region
and nine landmarks (#[28-36]) to belong to the nose region as annotated in Figure 6.8 (a).
We then predicted all 68 facial landmarks of the modified faces Ĩnmod using the face-
alignment network by Bulat et al. [153]. For comparison, we also predicted the facial
landmarks of the original images In and calculated the ground-truth facial landmarks
using Sn. Examples of the predicted 68 landmarks and the corresponding ground-truth
landmarks are given in Figure 6.8 (b), (c). To create a comparable setting to [153], we also
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up-scaled all images from 128×128 pixel to 450×450 pixel resolution before applying the
landmark predictor and calculating the normalized mean error (NME) proposed by [153]:

NME = 1
N

N∑
k=1

‖xk − yk‖2
d

(6.12)

Hereby, x was the landmark predictions, y was the projected landmarks of the 3D shape,
and d =

√
w × h was a normalization factor derived by the width w and height h of

the bounding boxes given by the AFLW2000 dataset for each unmodified image In.
Additionally, we separately calculated the NME for the chin region using the landmarks
#[1-17] with N = 17 and for the nose region using the landmarks #[28-36] with N = 9
as shown in Figure 6.8 (a).

Results. Figure ?? shows the cumulative distribution functions (CDFs) of the NME
across all samples of the AFLW2000. In both figures, a baseline CDF is provided as a
dotted line in red which was calculated on the original baseline images In using all 68
landmarks #[1-68]. When compared to the reported results in [153], we were able to
reproduce similar baseline CDFs, and thus, we are confident that we correctly implemented
the face-alignment framework and the NME calculation described by Bulat et al. [153].
For a meaningful analysis of the prediction accuracy of G, the CDFs of the modified
images Ĩnmod must not be interpreted on their own since prediction errors of G might
be confused with prediction errors of the landmark predictor or fitting errors of the 3D
shapes in the dataset. Instead, we compared the CDFs of the baseline images In with the
CDFs of the modified images Ĩnmod in an attempt to compensate the landmark prediction
errors and the fitting errors of the dataset. Figure ?? (a) shows a CDF in cyan solid line
which was calculated using the landmarks of the chin #[1-17] on the unmodified baseline
images In. The CDFs of the modified images Ĩnmod are given for a larger chin as a black
dashed line and a smaller chin as a gray dash-dotted line. Likewise, Figure ?? (b) shows
the CDFs using the landmarks of the nose #[28-36] on the baseline images In as a solid
green line and the predictions Ĩnmod of the modifications (larger nose as a black dashed
line, smaller nose as a gray dash-dotted line). For a better visual comparison, we cropped
both figures on the x-axis at 13.25% and 3.68% to exclude the worst 3% of all calculated
NME errors that belonged to the baseline CDFs #[1-17] shown as a cyan solid line and
#[28-36] as a solid green line, respectively. As reported by [153], these high NMEs that
we excluded were mostly attributed to poor ground-truth annotations of the AFLW2000
dataset or faces in the background that led to wrong landmark predictions. As seen
in Figure ?? (a), the CDFs for larger or smaller chins were comparable to the CDFs of
the baseline #[1-17]. Quantitatively, the normalized area under the curve (AUC) of the
baseline #[1-17] was slightly worse with an AUC of 57.13% compared to the larger chin
predictions with an AUC of 59.11% and smaller chin predictions with an AUC of 57.43%.
For the nose modifications, the CDFs were worse compared to the baseline #[28-36]
which led to a baseline AUC of 51.39%, a larger nose AUC of 47.62%, and a smaller
nose AUC of 45.58%. Thus, our quantitative results on our in-the-wild dataset suggested
that our model predictions were more accurate for chin modifications compared to nose
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modifications. These quantitative findings are in accordance with our qualitative findings,
where we visually observed that the predictions of the chin modifications appeared to be
both more realistic and more accurate compared to the modifications of the nose.
The AFLW2000 dataset yielded a high variation of head pose rotations around the vertical
axis with the angle θ, which might have been an additional challenge to G. To analyze the
effect of such head rotations around θ, we provide the AUCs for three different absolute
ranges of the vertical axis in Table 6.1. Hereby, we calculated the AUCs on all baseline
images and modified images using trapeze integration and using the same boundaries
for the x-axis that are given in Figure ?? (a) and ?? (b), respectively. Additionally, we
also normalized each AUC by dividing by the respective length of the x-axis. When
comparing the baseline AUCs in Table 6.1 for different angles, one can see that the AUCs
strongly decrease for larger θ which can be attributed to a worse prediction accuracy of
the landmark predictor as previously reported by [153]. To allow a better comparison
with the baseline, Table 6.1 shows the difference between the AUC of the modified images
Ĩnmod and the AUC of the baseline images In for each modification and angle θ. For the
chin modifications, the AUCs show no clear indication that large head rotations impede
the prediction accuracy of G when compared to the baseline AUCs. While the AUC for
large angles (θ ≥ 60◦) decreased for larger chins by 2.04%, the AUC for smaller chins even
improved by 7.95% compared to the baseline. This improvement of the AUC compared
to the baseline might be explained by a better alignment of the prediction Ĩnmod with Snmod
compared to the given sample pairs In and Sn of the AFLW2000 dataset. For the nose
modification, in contrast, larger head rotations with 30◦ ≤ θ < 60◦ resulted in a strong
decrease of the AUC by 11.81% and 6.52% with 60◦ ≤ θ ≤ 90◦. On the other hand, the
AUCs for the predictions of smaller noses showed no clear tendency for large θ. Hereby,
one should keep in mind that for a frontal view of the head with θ = 0◦, the landmark
predictions are highly insensitive against modifications of the nose length. Therefore,
inaccurate predictions of the nose by G might still yield low NMEs for small θ. As a
consequence, the AUCs for small head rotations θ < 30◦ should be interpreted with care
when regarding the nose modifications. However, overall, the lower AUCs for the nose
modifications with θ ≥ 30◦ suggest that the accuracy of the “larger nose” predictions
was poor compared to the baseline, while the landmark accuracy of the “smaller nose”
predictions was comparable to the baseline.

Table 6.1: Area Under the Curve of the Baseline and the Modified Images
head pose number of baseline #[1-17] larger chin smaller chin baseline #[28-36] larger nose smaller nose

θ (°) images AUC (%) AUC diff. (%) AUC diff. (%) AUC (%) AUC diff. (%) AUC diff. (%)
[0 - 30) 1312 61.16 +1.06 -1.08 54.76 -4.62 -5.02
[30 - 60) 383 57.60 +0.73 +3.86 51.56 -11.81 -2.84
[60 - 90] 305 45.11 -2.04 +7.95 40.68 -6.52 -0.96
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6.4.3 Prediction of the Post-Operative Face

Experiment. In this section, we aim to demonstrate the potential of our approach to
predict 2D images of the post-operative face. For this, we evaluated our model on pre-
operative and post-operative measurements of four patients that underwent orthognathic
surgery to serve as a proof-of-concept. The images of the patients before surgery are
given in Figure 6.9 (b) for a frontal and lateral head position, respectively. Before surgery,
patients P1, P2, and P3 suffered from a class III malocclusion, and P4 suffered from
a class II malocclusion. All four patients were treated by bimaxillary surgery, and the
resulting post-operative faces can be seen in Figure 6.9 (d) which were captured eight
weeks after surgery. To test our model for the prediction of post-operative outcome,
we passed two inputs to our model G: A cropped image of the pre-operative face as
seen in Figure 6.9 (b) and a simulation of the post-operative 3D shape that we derived
from the surgical planning tool IPS CaseDesigner® [118] as seen in Figure 6.9 (a). More
precisely, we used a CT image scan from the pre-operative face, segmented soft-tissue,
and bone tissue, and subsequently applied a bimaxillary surgery to the virtual bone
structure of the jaw. We used IPS CaseDesigner® to simulate the soft-tissue deformations
induced by the correction of the underlying bone structure. Based on this prediction of
the post-operative 3D shape, we iteratively fitted a surface template of the BFM2009
model [140] on the 3D virtual face by adopting the approach described in [155]. Next, we
estimated the camera matrix to project the fitted surface template onto the pre-operative
face in Figure 6.9 (b) by aligning the surface mesh to the upper half of the pre-operative
face. The resulting projection of the simulated post-operative face to the image plane
can be seen in Figure 6.9 (a). We converted the projected surface mesh to a PNCC by
encoding the color of the surface template via their vertex indices. Lastly, we passed the
resulting PNCC and the pre-operative image to our model G to predict a 128×128 pixel
image of the post-operative face shown in Figure 6.9 (c). Note that we only trained G on
the 3DDFA dataset, i.e., the model was never shown images or shape modifications from
our clinical test case.

To compare our predictions in Figure 6.9 (c) with the ground-truth post-operative face in
Figure 6.9 (d), we aimed to calculate the distance between two images of a face which we
call face distance in the following. Hereby, we used a face-recognition neural network to
mitigate the effect of changing illumination, skin color, hair color, hair cut, and other
changes that were not related to bimaxillary surgery when comparing the prediction of the
post-operative face with the post-operative ground-truth. More precisely, we calculated
an embedding of each image using the InceptionResnetV1 by Esler et al. [156] which
was trained on the VGGFace2 dataset for face recognition [157]. Then, we measured the
Frobenius norm between two embeddings to calculate the distance between two images of
a face. For every row in Figure 6.9, we measured the face distance between the model’s
prediction of the post-operative face in Figure 6.9 (c) and the ground-truth post-operative
face in Figure 6.9 (d). For reference, we also calculated the face distance between the
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pre-operative face in Figure 6.9 (b) and the post-operative face Figure 6.9 (d). Next, we
also calculated the structural similarity index (SSIM) [158] between the prediction and
the post-operative image. Hereby, we first manually aligned the predicted image with
the post-operative face, converted the image to a grayscale, and performed a histogram
matching with the post-operative face to mitigate differences in illumination and skin
color. Again, we also calculated the SSIM between the pre-operative face and the
post-operative face to serve as a reference. Lastly, we showed our predictions to two
clinician experts with years of experience regarding cranio-maxillofacial surgery to form
a combined statement about the context of this study as well as the perceived quality of
the predictions.
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Figure 6.9: Prediction of the post-operative face on four clinical examples. The upper row shows eachpatient’s inputs, predictions, and ground-truths in lateral view. The lower row shows the same patient in afrontal view. (a) shows the fitted and projected face templates derived froma simulation of a surgery planningtool to predict the 3D shape of the post-operative face. The visualized 3D shapes were converted to PNCCsand passed as input to our model. (b) shows the images of the patient’s face before cranio-maxillofacialsurgery, which were passed as a second input to our model. (c) shows the predictions of the post-operativeface generated by our model. For a better visibility, the images were up-scaled from the original outputresolution of 128×128pixels. (d) shows the patient’s face eight weeks after cranio-maxillofacial surgery asa ground-truth. All images were published with the patient’s consent.
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Results. The resulting predictions Ĩnmod of the post-operative face are shown in Fig-
ure 6.9 (c) for the frontal and the lateral view. Additionally, the face distance and the
SSIM are given in Table 6.2. Hereby, two identical faces would ideally lead to a face
distance of 0, and two identical images would lead to an SSIM of 1. 4 and 0 correspond
to the opposite, respectively.

When comparing the lateral view of the pre-operative face in Figure 6.9 (b) with the
predictions for the lateral view, one can see a clear upward and right shift of the chin for
all three patients P1, P2, and P3. For the lateral view of P4, the difference between the
pre-operative face and the prediction was less clear. Note hereby that P4 suffered from
a different class of malocclusion which made the difference between the pre-operative
face and the post-operative face visually less obvious. Nonetheless, the face distance in
Table 6.2 was smaller for all lateral predictions, which indicates a closer resemblance to
the ground-truth image of the prediction compared to the pre-operative face. For the
frontal views, the prediction of P1 yielded a clear upwards shift, while the effect of cranio-
maxillofacial surgery on the frontal prediction of P2 and P3 was less pronounced. For P4,
however, the frontal prediction of the chin appeared unnatural and strongly differed from
the ground-truth in Figure 6.9 (d). Accordingly, the face distance between the prediction
and the ground-truth in Table 6.2 increased compared to the face distance between the
pre-operative face and the ground-truth. Thus, the face distance measurements suggest
the frontal prediction of P4 to be a failed example of our approach. In contrast, the
SSIM scores between the predictions and the ground-truth were slightly higher compared
to the reference for all patients except for the frontal and lateral predictions of P2. This
suggests that the prediction of the post-operative face of P2 was less accurate. On the
other hand, the differences between the SSIM scores of the prediction and the reference
were only minor, i.e., less than 0.2 %.

Overall, the facial appearance of a majority of the predictions in Figure 6.9 (c) were
similar to the facial appearance of the ground-truth images of the post-operative face
in Figure 6.9 (d). Notably, our model also predicted a white background on the lateral
views in Figure 6.9 (c) and plausible backgrounds of the throat on the frontal views in
Figure 6.9 (c). On the other hand, minor artifacts were present in all predictions, which
included locally blurred regions of the face (particularly at the lips) and smaller artifacts
on the skin, the lips, and the throat region. Hereby, one should keep in mind that model
G was never trained on modifications Smod that substantially altered regions of the mouth
or the throat. Additionally, when comparing the silhouette of the pre-operative face of P1
in the top row in Figure 6.9 (b) with the simulated post-operative face in Figure 6.9 (a),
one can see a shape difference at the throat which had to be adapted by G. A particular
reason for this deviation of the simulated shape compared to the pre-operative face in
Figure 6.9 (b) might be that the simulated post-operative face was derived from a CT scan
which means that the patient was lying on the CT table. Therefore, the head position
and the tissue of the throat might have varied compared to the up-right position of the
patient during the capturing of the image in Figure 6.9 (b). Conveniently, our model
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Table 6.2: Face Distance and SSIM between the Post-Operative Image (Ground-truth) and the Pre-OperativeFace or the Post-Operative Prediction, respectively.

patient view
face distance to the
post-operative image

SSIM to the
post-operative image

pre-operative prediction pre-operative prediction
P1 lateral 0.924 0.894 0.9847 0.9851

frontal 0.758 0.632 0.9735 0.9750
P2 lateral 0.718 0.656 0.9853 0.9838

frontal 0.398 0.398 0.9708 0.9705
P3 lateral 1.092 1.051 0.9893 0.9907

frontal 0.683 0.676 0.9112 0.9112
P4 lateral 0.647 0.639 0.9866 0.9867

frontal 0.747 0.819 0.9823 0.9824

learned to almost fully ignore shape variations of the neck since a) the ground-truth
shapes of the neck were poorly aligned with the images in our 3DDFA training set and
b) the shape reconstruction loss LS−rec for necks was only lightly weighted as described
in Section 6.3.4.

Lastly, we provide the statement of our clinical experts on the context of this study
and the perceived image quality of the predictions: “In most cases, patients want to see
realistic photographs of their facial appearance after correction of a skeletal deformity.
Commercial software offers a 3D mesh with the possibility of texture overlay, still most
patients are not able to identify with the displayed data. The provided predictions
appear realistic and arguably closer to a natural image of a face a patient can relate
to. As there is a risk of body dysmorphophobic disorder in severe changes to the facial
appearance, preparing the patient with a relateable prediction and adequate counseling
before obtaining informed consent for the procedure. The contours of the predicted
faces appear smooth while the predictions of our commercial software produces uneven
contours at the jaw after simulating the planned surgery protocol. [Authors note: These
uneven contours can be seen at the jaw in Figure 6.9 (a). on the lateral view of, e.g.,
subject P2 simulated using [118] or, for instance, in Figure 6 of [123].] On the other hand,
the applied face modifications partly appear a bit extreme (compare, e.g., the lateral
prediction of P1 and P2), and the contours of some predictions are locally ambiguous,
in particular at the lips. The main advantage we see, however, is that the proposed
approach does not require a 3D texture scanner. While every clinical site has a CT
scanner and a camera, the availability of compatible 3D camera systems remains limited.
In such cases, patients would have to make their decision based on a prediction that
looks similar to Figure 6.9 (a), which is inadequate. Using the approach proposed in
this study, however, we might be able to provide the patient in the future with a fast,
non-committal, and natural-looking prediction of her/his face after only one CT scan.”
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6.5 Discussion

In the results in Section 6.4.1, we showed that our CycleGAN was capable of predicting
realistic and recognizable modifications of the chin and the nose on selected examples.
Subsequently, we aimed to measure the accuracy of our predictions in Section 6.4.2 by
evaluating the Euclidean distance of facial landmarks on the AFLW2000 dataset. Hereby,
we found the accuracy of the chin modifications to be similar compared to the accuracy
of the matched 3D shapes of the AFLW2000 dataset. For the nose modifications, we
found worse accuracy across the dataset compared to the baseline which was particularly
pronounced for large head rotations. Lastly, we showed our proof-of-concept on four
clinical patients where we predicted 2D images of the post-operative face according to
the soft-tissue deformations of a surgery planning tool. Through this, we demonstrated
that our model was indeed able to apply realistic modifications on four clinical patients
without requiring additional training. Concerning the desired use case in clinical practice,
one could argue that the task to train on “in-the-wild” images was a much more difficult
task (in particular background prediction, illumination, and head pose) compared to
the expected more controlled environment of the clinical use case. Thus, the results of
our model might improve for a training dataset that is closer to the clinical test case.
Likewise, one could also argue that the training on modifications of the nose was not
required to predict the post-operative face in Section 6.4.3, which only affected the
jaw. Therefore, we like to note that cranio-maxillofacial surgeries, in general, are not
only concerned with jaw deformations but other regions of the face as well, and, in
particular, nose modifications can have a strong impact on the identity or appearance of
the patient’s face. Thus, our motivation was to propose a more generalized approach that
theoretically enables modifications of any facial region that can be represented by both
the statistical shape model and the dataset. Such an approach would require a model
G that learned a continuous understanding of the desired 3D shape and accordingly
applied facial modifications wherever the 3D shape differed from the given input image.
However, we found qualitatively and quantitatively that our model performed worse
on nose modifications than on chin modifications in terms of robustness and accuracy.
To explain the worse performance of our model on nose manipulations, we suggest the
following reasons: First, we hypothesize that modifying noses is a much more complex
task to solve compared to chins as noses yield arguably more fine-detailed textures and
vary more strongly across different head poses. Consequently, this would suggest that
our proposed approach to predict the post-operative outcome of faces might be limited
at the moment to spatially less complex structures like the chin. On the other hand, our
training procedure might still be biased in favor of chins. Although the number of chin
and nose modifications was balanced, and we used a weight map in the reconstruction
loss to account for the size differences between noses and chins, our discriminator might
have been more sensitive to detect unrealistic chins due to the larger affected area in the
image.
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From a theoretical point of view, the suitability of our proposed training strategy
for manipulating faces using CycleGANs can be discussed controversially. While our
method has the advantage of not requiring ground-truth images Inmod or knowledge of
physical models, one could argue that a training strategy based on GANs will always
bias the predicted face towards the mean face to maximize the expected reward from the
discriminator. Therefore, attempts to manipulate facial properties that are “far away”
from the mean face, like an extremely enlarged chin, might result in closer predictions to
the mean face, i.e., less “extreme” than the desired modification. Similarly, the model
might have learned that extremely enlarged chins are far more likely to belong to male
faces. This hypothesis might explain why we found some predictions for enlarged chins
of female faces to yield facial hair or artifacts, resulting in a more manly appearance of
the chin in Figure 6.6 (c). Additionally, our approach using neural networks might also
be vulnerable to ethnic imbalances of the training dataset. Consequently, applying our
trained model to predict post-operative outcome might end up favoring, e.g., patients of
light skin color by providing a higher prediction quality compared to faces of dark skin
color. However, such a racial bias is unacceptable for a clinical use case and would have
to be ruled out by thorough testing before considering a model for a clinical application.

The above passages highlighted both empirical and theoretical limitations of our current
model to modify facial regions and predict the post-operative face. However, despite
these current limitations, we are confident that these challenges can be overcome in the
near future, especially in light of the rapid advances of GANs in recent years. In more
detail, we particularly would like to improve the training and regularization strategy
of the adversarials, the accuracy of the shape estimator GS , and the image quality,
accuracy, and ethnic balance of the dataset used for training. Afterwards, we would
like to test our approach for the prediction of medical outcomes in a thorough clinical
study. Hypothetically, one might go even further and replace our current representation
of the 3D soft-tissue with a 3D bone structure of the jaw. To achieve this, one would
have to train a model to estimate the jaw’s bone structure from 2D images directly and
subsequently train a CycleGAN to manipulate 2D images based on a modification of the
bone structure provided by the physician. Having such a model, physicians would have a
fast and cheap means to directly predict the post-operative face from 2D images without
the need for expensive and time-consuming tomography scans.

6.6 Conclusion

In this study, we introduced a novel idea to predict the post-operative face using a neural
network. Hereby, we showed that our prototype model was indeed capable of generating
realistic predictions of the patient’s face after cranio-maxillofacial surgery according
to a given soft-tissue simulation. To train our model, we proposed a novel CycleGAN
strategy to learn to modify facial regions of “in-the-wild” images according to a 3D plan
of facial shape. Compared to current approaches to render the post-operative face, our
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approach can directly translate and manipulate the facial texture of a patient in 2D and
therefore does not require the acquisition of 3D texture scans. Moreover, we achieved
this prediction by merely training our model on open-source images without requiring
clinically relevant face modifications or hand-crafted physical models. Based on our
preliminary results and the rapid improvements of GANs in recent years, we believe that
our proposed approach has a high potential to help the patient in their decision process
in favor or against surgery. In future work, we aim to increase the robustness of our
model and test our model to predict the post-operative face in a clinical follow-up study.
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Chapter7
Conclusion

The main objective of this thesis was to counteract the lack of sufficient images and videos
in medical datasets for the training of neural networks (NNs) and thereby contribute novel
approaches to the state-of-the-art in this field. Two different approaches, a model-based,
described in Section 4.3.2, and generative adversarial network (GAN)-based, described
in Section 6.3, were developed, and their performance was investigated by training an
NN using a dataset of three different surgical procedures.

The study of Al Hajj et al. [15] and Twinanda et al. [21] showed that it is beneficial
for the performance to include the temporal component. The temporal component
contains coded information about the operation process, and the occurrence of surgical
instruments generally correlates with the progress of the surgical intervention. However,
the number of recorded videos is not sufficient for the end-to-end training of an NN with
temporal modeling. For this purpose, the model-based approach, also called workflow
augmentation, was developed to generated new artificial videos using the workflow of
events and the individual event video segments. Both were retrospectively extracted
from the existing dataset. With the rule-based recombination of events, the variation of
the event combination in the training’s dataset can be increased, and thus previously
non-existent combinations of events can be generated. This was demonstrated in the
Workflow Augmentation of Video Data for Event Recognition with Time-Sensitive Neural
Networks described in Chapter 4 using cataract surgery. The surgical tool classification in
surgical videos was improved with the help of the novel approach. Thereby, the original
dataset was enlarged and enhanced using the developed workflow augmentation method,
i.e., the variability in the videos was increased, and the distribution of the video length
was balanced. The augmentation resulted in an improved classification accuracy (ACC)
of the 33 surgical classes of surgical tools and tool combinations by 2.8% to 93.5%.

Since the results were promising, it was consequential to investigate in a second step if the
semantic information in the dataset that was used to generate the new artificial videos
can be augmented by the workflow augmentation method. The hypothesis was that
augmentation enhanced the recognition performance of the semantic information. For this
purpose, the project with the title Improving Surgical Phase Recognition in Videos using
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Workflow Augmentation, described in Chapter 5 was conducted. Thereby the example
of laparoscopic cholecystectomy surgery is used to investigate: how the recognition
performance of semantic information, i.e., surgical phases, can be improved with the
workflow augmentation method compared to the literature. Thereby, the challenge is that
the desired information is encoded in consecutive frames rather than individual frames.
Using the workflow method to augment the training dataset, an improvement in phase
recognition of 8.7% to an ACC of 96.96% was achieved compared to other approaches
in the literature.

In the two examples, the developed workflow augmentation approach could mitigate
the lack of adequate data very well, but some limitations cannot be compensated by
this approach and should be mentioned. The performance of the NN is most likely not
sufficient for the application in the medical field. An ACC of 93.5% in the tool and
96.96% in phase recognition might have harmful consequences for the patient (in six out
of 100 and three out of 100 cases). The reason for these inaccuracies in the recognition
could be, for example, errors in the annotation of the datasets, as already suggested
by Quellec et al. [1]. Such errors exist is generally undisputed and suspected in the
presented two examples in this thesis. In the dataset of the cataract surgery, we were able
to identify and correct them based on a comparison of the annotations of the number of
tools on the surgical tray. However, in the example of cholecystectomy, we could only
suspect them in P4 due to the pattern in the confusion matrix performed in second study.
A possible proof could not be performed due to a lack of expertise. Moreover, there are
also temporal errors of the annotations in the datasets. In the case of the cataract dataset,
the exact time at which a tool contacts the tissue or, in the case of cholecystectomy, the
transition between the phases is noise-affected. This can be explained by the definition
of the exact time points, which allows more than one possible interpretation, as in the
case of the exact phase delimitation, or by technical limitations like frame rate and video
resolution in case of the tools which were in tissue contact. However, in the confusion
matrices (e.g., Table 5.5, Table A.4) and in Figure 5.9a or Figure 5.9b, we can see exactly
this fluttering in predicting the event at the transitions between adjacent classes. Our
workflow approach cannot mitigate these inconsistencies. Instead, they are amplified by
the redundancy use of the segments, leading to worse performance. Furthermore, surgical
workflow events or event combinations that are possible and conceivable in theory (also
reported in the literature) may not be included in the dataset because they are very rare
or have not yet appeared. At this point, the workflow augmentation method reaches its
limits. Although it allows for variations of events in the workflow, on the other hand, it
requires real event recordings to integrate them into the artificial videos. Exactly at this
point the GAN-based approach, which could generate realistic images of artificial events,
could be a remedy.
In the third project, 3D-Guided Face Manipulation of 2D Images for the Prediction of
Post-Operative Outcome after Cranio-Maxillofacial Surgery, described in Chapter 6, we
generate a realistic image after cranio-maxillofacial surgery using a GAN, a real patient
image, and a modified 3D model. Since there were no suitable datasets that contain pre-
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and postoperative images for supervised learning of a NN, a cycle generative adversarial
network (CycleGAN) was chosen. A CycleGAN performs an image-to-image translation
where the output can act as input with a transformed condition. This approach allows
the network to train itself by evaluating the output with an additional quality checker
NN and providing feedback to the CycleGAN. However, the available data were still
not sufficient for this kind of training. Therefore, in the first step, synthetic portrait
photos of 3D computer face models with arbitrary backgrounds were generated, see
Figure 6.4. The synthetic data allows a supervised pre-training of the generator of the
CyleGAN. However, the synthetic images are not very realistic and vivid, so further
training on another dataset was necessary. Since patients were not available in sufficient
quantity, the decision was taken to use the 300W-LP dataset by Zhu et al. [126], which
contained photographs of celebrities and the parameters for the BFM2009 [140] shape
model. Finally, both datasets were used together to train the CycleGAN, that in the end,
it was capable of predicting the postoperative images of a patient (see in Figure 6.9).
However, an issue related to the training in the second dataset appeared and is visualized
in Figure 6.6(c). The image creates the impression that the woman has a beard. This
beard is not present in the original images, which leads to the assumption that the
CycleGAN additionally modulated a beard into the image when enlarging the chin. The
results are also worse for images of people of color than for other people. A possible
explanation for these phenomena could be a biased dataset that is unbalanced and
contains more men with beards and people with light skin color. The described problems
explicitly demonstrate once again how insufficient data can influence the performance
of NN and can cause problems in the generation of synthetic data. Therefore, it is
important to have a balanced, error and bias-free input dataset. The meta-information,
i.e., features that are not primarily in the foreground and therefore have no label, can also
negatively influence the training. Therefore, it is important that sufficient basic diversity,
such as gender, skin color, disease characteristics, surgical procedures, etc., is included in
the dataset. It is important to keep in mind that the entire image is used for feature
extraction, and therefore, the meta-information included unclearly in the decision-making
process should also be considered. As a result, gendering or lack of fairness in training
can arise.

In conclusion, the methods that were developed in this thesis can partially overcome
the lack of samples and datasets, and therefore a better performance of NN could be
achieved. The methods can be used to design better artificial intelligence-based medical
support systems. The support system can assist the physician in clinical routine, e.g.,
diagnosis, therapy, or image-guided interventions, reducing the clinical workload and
thus improving patient safety.





Chapter8
Outlook

The thesis explicitly underlines the statement of Lundervold et al. [25] that it is worthwhile
to invest effort in developing new methods for the expansion and enhancement of existing
datasets. Therefore, it is important to continue on this track in future work. The
combination of the workflow augmentation and the generative adversarial network (GAN)-
based approaches could considerably increase the performance of neural networks (NNs).
With the help of adequate synthetic datasets, better balancing and further unbiasing of
datasets could be achieved, or complete synthetic datasets for image and video analysis
could be generated according to predefined rules and with the help of computer models.
Through verified models, errors in the artificial datasets could be eliminated. Because
imbalance and errors in the datasets are the biggest risks in training an NN. Here, it is
important to have an automatic method to check the quality of the datasets based on
defined parameters and correct them in the best case.

Nevertheless, it is also important to have a sufficient quantity of original data for testing
and developing new methods in the future. For this reason, it is important to automate
the annotation process of the data as much as possible, although this might initially
require more technical or organizational effort. Because a good original dataset is still
the best prerequisite for the respective artificial extension of datasets.
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A.1 Confusion Matrices of different Classifier

Table A.1: Confusion matrix rounded to 4 digits of the workflow augmented test data for the CNN classifier.

Label

Prediction

no
too

lin
con

tact

bio
mar

ker

hyd
rod

isse
ctio

n
can

nul
a

Ryc
roft

can
nul

a

visc
oela

stic
can

nul
a

cot
ton

cap
sulo

rhe
xis

cys
toto

me

Bon
nfo

rcep
s

cap
sulo

rhe
xis

forc
eps

Tro
utm

an
forc

eps

irrig
atio

n/a
spir

atio
n

han
dpi

ece

pha
coe

mu
lsifi

er
han

dpi
ece

imp
lant

inje
cto

r

prim
ary

inci
sion

knif
e

sec
ond

ary
inci

sion
knif

e

mic
rom

anip
ulat

or

sut
ure

nee
dle

Me
nde

zrin
g

Me
nde

zrin
g&

bio
mar

ker
Bon

nfo
rcep

s&
sec

ond
ary

inci
sion

knif
e

prim
ary

inci
sion

knif
e&

Bon
nfo

rcep
s

cap
sulo

rhe
xis

cys
toto

me
&

Bon
nfo

rcep
s

pha
coe

mu
lsifi

er
han

dpi
ece

&
Bon

nfo
rcep

s
pha

coe
mu

lsifi
er

han
dpi

ece
&

mic
rom

anip
ulat

or
irrig

atio
n/a

spir
atio

n
han

dpi
ece

&
mic

rom
anip

ulat
or

hyd
rod

isse
ctio

n
can

nul
a&

mic
rom

anip
ulat

or
Tro

utm
an

forc
eps

&
sut

ure
nee

dle

Rec
all
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480524 53 288 289 551 403 268 51 72 190 981 323 182 46 232 331 25 52 0 72 14 22 0 50 9 0 16 0.99070.9907 0.0001 0.0006 0.0006 0.0011 0.0008 0.0006 0.0001 0.0001 0.0004 0.002 0.0007 0.0004 0.0001 0.0005 0.0007 0.0001 0.0001 0.0001 0 0 0.0001 0 0

biomarker 272 582 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67990.3178 0.6799 0.0012 0.0012
hydrodissectioncannula

854 0 18439 2 31 0 77 1 21 1 118 84 5 0 0 102 0 0 0 1 0 5 0 57 6 9 0 0.93070.0431 0.9307 0.0001 0.0016 0.0039 0.0001 0.0011 0.0001 0.006 0.0042 0.0003 0.0051 0.0001 0.0003 0.0029 0.0003 0.0005
Rycroft cannula 1398 0 14 5875 41 9 7 0 0 0 51 5 5 1 6 33 1 0 0 1 1 1 0 2 5 0 1 0.78790.1875 0.0019 0.7879 0.0055 0.0012 0.0009 0.0068 0.0007 0.0007 0.0001 0.0008 0.0044 0.0001 0.0001 0.0001 0.0001 0.0003 0.0007 0.0001
viscoelasticcannula

1546 0 18 11 25241 0 69 5 9 1 97 13 5 7 4 65 0 0 0 7 4 0 0 9 8 2 0 0.93070.057 0.0007 0.0004 0.9307 0.0025 0.0002 0.0003 0 0.0036 0.0005 0.0002 0.0003 0.0001 0.0024 0.0003 0.0001 0.0003 0.0003 0.0001
cotton 1402 0 1 3 1 12746 1 0 1 0 2 0 0 1 0 2 0 0 0 0 0 0 0 1 0 0 0 0.90010.099 0.0001 0.0002 0.0001 0.9001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001
capsulorhexiscystotome

1667 0 102 6 350 0 45463 0 74 0 164 14 26 7 2 116 0 0 0 3 0 23 0 12 13 1 1 0.94630.0347 0.0021 0.0001 0.0073 0.9463 0.0015 0.0034 0.0003 0.0005 0.0001 0 0.0024 0.0001 0.0005 0.0002 0.0003 0 0
Bonn forceps 411 0 3 0 2 0 0 1558 0 1 0 1 1 0 1 1 0 0 0 48 52 1 0 1 0 0 0 0.74870.1975 0.0014 0.001 0.7487 0.0005 0.0005 0.0005 0.0005 0.0005 0.0231 0.025 0.0005 0.0005
capsulorhexisforceps

463 0 18 1 24 0 47 0 12464 3 159 18 16 1 0 27 0 0 0 0 1 1 0 3 1 1 0 0.94080.0349 0.0014 0.0001 0.0018 0.0035 0.9408 0.0002 0.012 0.0014 0.0012 0.0001 0.002 0.0001 0.0001 0.0002 0.0001 0.0001
Troutmanforceps

593 0 11 0 4 1 1 1 4 6919 48 16 20 0 2 20 0 1 0 0 0 4 2 5 2 0 1 0.90390.0775 0.0014 0.0005 0.0001 0.0001 0.0001 0.0005 0.9039 0.0063 0.0021 0.0026 0.0003 0.0026 0.0001 0.0005 0.0003 0.0007 0.0003 0.0001
irrigation/aspirationhandpiece

2647 0 177 19 122 0 168 1 59 12 165619 311 91 9 0 168 0 0 0 5 3 14 5 72 156 3 4 0.97620.0156 0.001 0.0001 0.0007 0.001 0 0.0003 0.0001 0.9762 0.0018 0.0005 0.0001 0.001 0 0 0.0001 0 0.0004 0.0009 0 0
phacoemulsifierhandpiece

585 0 74 2 6 0 10 0 5 2 300 22123 22 1 0 16 0 0 0 0 0 3 19 223 0 0 1 0.94580.025 0.0032 0.0001 0.0003 0.0004 0.0002 0.0001 0.0128 0.9458 0.0009 0 0.0007 0.0001 0.0008 0.0095 0
implant injector 696 0 27 5 11 0 35 1 5 10 113 38 15789 12 3 31 0 0 0 6 7 2 1 2 2 0 0 0.94010.0414 0.0017 0.0003 0.0007 0.0021 0.0001 0.0003 0.0006 0.0067 0.0023 0.94 0.0007 0.0002 0.0018 0.0004 0.0004 0.0001 0.0001 0.0001 0.0001
primaryincision knife

448 0 0 0 20 0 8 1 0 0 15 0 20 3806 21 1 1 0 0 30 107 1 0 0 2 0 0 0.84940.1 0.0045 0.0018 0.0002 0.0033 0.0045 0.8494 0.0047 0.0002 0.0002 0.0067 0.0239 0.0002 0.0004
secondaryincision knife

714 0 3 2 6 0 1 0 0 0 6 0 4 11 3645 1 0 0 0 57 3 0 0 1 0 0 0 0.81840.1603 0.0007 0.0004 0.0013 0.0002 0.0013 0.0009 0.0025 0.8184 0.0002 0.0128 0.0007 0.0002
micromanipulator 991 0 147 13 142 0 130 0 12 12 242 24 21 3 0 19692 2 0 0 0 0 2 0 23 5 3 1 0.91740.0462 0.0068 0.0006 0.0066 0.0061 0.0006 0.0006 0.0113 0.0011 0.001 0.0001 0.9174 0.0001 0.0001 0.0011 0.0002 0.0001 0
suture needle 215 0 3 1 0 0 1 0 0 3 11 0 1 0 0 3 837 0 0 0 0 0 0 0 0 0 30 0.75750.1946 0.0027 0.0009 0.0009 0.0027 0.01 0.0009 0 0.0027 0.7575 0.0271
Mendez ring 321 5 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 4340 0 0 0 0 0 0 0 0 0 0.92930.0687 0.0011 0.0002 0.0002 0.0002 0.0002 0.9293
Mendez ring &biomarker

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 8 0 1 0 0 0 0 0 0 0.19510.0244 0.7561 0.1951 0.0244
Bonn forceps &secondaryincision knife

200 1 0 2 3 0 0 28 0 0 11 1 6 7 34 1 0 0 0 2798 7 2 0 0 1 0 0 0.9020.0645 0.0003 0.0006 0.001 0.009 0.0035 0.0003 0.0019 0.0023 0.011 0.0003 0.902 0.0023 0.0006 0.0003
primaryincision knife&Bonn forceps

186 0 2 0 16 0 3 57 2 1 7 2 15 56 1 0 0 0 0 12 5320 0 3 2 1 0 0 0.93560.0327 0.0004 0.0028 0.0005 0.01 0.0004 0.0002 0.0012 0.0004 0.0026 0.0098 0.0002 0.0021 0.9356 0.0005 0.0004 0.0002
capsulorhexiscystotome &Bonn forceps

158 0 7 0 11 0 123 0 9 0 126 13 0 3 1 11 0 0 0 6 3 25853 0 3 5 0 1 0.98180.006 0.0003 0.0004 0.0047 0.0003 0.0048 0.0005 0.0001 0 0.0004 0.0002 0.0001 0.9818 0.0001 0.0002 0
phacoemulsifierhandpiece &Bonn forceps

13 0 0 0 0 0 0 0 1 1 6 29 0 0 0 0 0 0 0 0 0 0 712 0 0 0 0 0.93440.0171 0.0013 0.0013 0.0079 0.0381 0.9344
phacoemulsifierhandpiece &micromanipulator

492 0 74 5 36 0 15 0 9 8 506 291 30 0 0 53 0 0 0 0 0 1 0 53239 28 4 0 0.97170.009 0.0014 0.0001 0.0007 0.0003 0.0002 0.0001 0.0092 0.0053 0.0005 0.001 0 0.9717 0.0005 0.0001
irrigation/aspirationhandpiece &micromanipulator

189 0 13 3 61 0 33 0 9 0 817 8 5 1 1 30 0 0 0 1 2 3 0 174 11846 1 0 0.89760.0143 0.001 0.0002 0.0046 0.0025 0.0007 0.0619 0.0006 0.0004 0.0001 0.0001 0.0023 0.0001 0.0002 0.0002 0.0132 0.8976 0.0001
hydrodissectioncannula &micromanipulator

7 0 14 0 0 0 0 0 1 0 1 0 0 0 0 8 1 0 0 0 0 0 0 3 0 2097 0 0.98360.0033 0.0066 0.0005 0.0005 0.0038 0.0005 0.0014 0.9836
Troutmanforceps &suture needle

41 0 1 0 0 0 4 0 1 1 18 1 1 0 0 3 16 0 0 2 0 2 0 0 0 0 1186 0.92870.0321 0.0008 0.0031 0.0008 0.0008 0.0141 0.0008 0.0008 0.0023 0.0125 0.0016 0.0016 0.9287
Precision 0.9668 0.908 0.9487 0.9417 0.9461 0.9685 0.9785 0.9143 0.977 0.9657 0.9776 0.9488 0.9707 0.958 0.9221 0.9506 0.9479 0.981 1 0.9177 0.9629 0.9966 0.9596 0.9881 0.9798 0.9887 0.9549
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Table A.2: Confusionmatrix rounded to 4 digits of the workflow augmented test data for the LSTM classifier.
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480560 27 291 311 659 186 446 64 63 177 956 119 189 72 273 424 26 77 0 47 9 0 0 43 12 1 12 0.99080.9908 0.0001 0.0006 0.0006 0.0014 0.0004 0.0009 0.0001 0.0001 0.0004 0.002 0.0002 0.0004 0.0001 0.0006 0.0009 0.0001 0.0002 0.0001 0 0.0001 0 0 0

biomarker 423 427 0 0 1 1 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0.49880.4942 0.4988 0.0012 0.0012 0.0012 0.0023 0.0012
hydrodissectioncannula

948 1 18305 0 142 0 241 0 17 1 59 39 0 7 3 25 0 0 0 0 0 2 0 14 0 9 0 0.92390.0478 0.0001 0.9239 0.0072 0.0122 0.0009 0.0001 0.003 0.002 0.0004 0.0002 0.0013 0.0001 0.0007 0.0005
Rycroft cannula 1606 0 2 5584 37 3 0 0 0 0 147 0 9 0 0 58 0 0 0 0 0 0 0 1 10 0 0 0.74880.2154 0.0003 0.7488 0.005 0.0004 0.0197 0.0012 0.0078 0.0001 0.0013
viscoelasticcannula

1700 0 35 15 24950 0 176 0 6 1 95 1 5 11 3 112 0 0 0 0 1 1 0 6 3 0 0 0.92000.0627 0.0013 0.0006 0.92 0.0065 0.0002 0 0.0035 0 0.0002 0.0004 0.0001 0.0041 0 0 0.0002 0.0001
cotton 3423 0 0 0 0 10735 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0.75810.2417 0.7581 0.0001 0.0001
capsulorhexiscystotome

1298 0 103 1 195 1 46299 0 28 0 80 2 1 5 5 11 0 0 0 0 0 13 0 1 0 1 0 0.96370.027 0.0021 0 0.0041 0 0.9637 0.0006 0.0017 0 0 0.0001 0.0001 0.0002 0.0003 0 0
Bonn forceps 383 0 0 0 6 0 0 1595 0 0 0 0 0 0 1 0 0 0 0 49 42 1 4 0 0 0 0 0.76650.184 0.0029 0.7665 0.0005 0.0235 0.0202 0.0005 0.0019
capsulorhexisforceps

288 0 15 0 9 0 114 2 12796 1 14 2 2 3 0 0 0 0 0 1 0 0 0 1 0 0 0 0.96590.0217 0.0011 0.0007 0.0086 0.0002 0.9659 0.0001 0.0011 0.0002 0.0002 0.0002 0.0001 0.0001
Troutmanforceps

744 0 1 4 2 0 0 0 1 6822 28 2 34 0 0 14 0 0 0 0 0 0 0 0 0 1 2 0.89120.0972 0.0001 0.0005 0.0003 0.0001 0.8912 0.0037 0.0003 0.0044 0.0018 0.0001 0.0003
irrigation/aspirationhandpiece

3121 0 46 26 162 0 91 5 56 11 165342 96 82 20 3 330 0 0 0 0 6 3 1 48 215 0 1 0.97450.0184 0.0003 0.0002 0.001 0.0005 0 0.0003 0.0001 0.9745 0.0006 0.0005 0.0001 0 0.0019 0 0 0 0.0003 0.0013 0
irrigation/aspirationhandpiece

1060 0 296 0 24 0 50 3 18 4 259 21459 28 2 9 4 0 0 0 4 0 7 28 136 0 1 0 0.91740.0453 0.0127 0.001 0.0021 0.0001 0.0008 0.0002 0.0111 0.9174 0.0012 0.0001 0.0004 0.0002 0.0002 0.0003 0.0012 0.0058 0
implantinjector

679 0 0 17 0 0 0 0 0 15 193 6 15847 1 0 37 0 0 0 0 1 0 0 0 0 0 0 0.94350.0404 0.001 0.0009 0.0115 0.0004 0.9435 0.0001 0.0022 0.0001
primaryincision knife

504 0 11 0 44 0 25 0 4 0 12 11 7 3738 15 0 0 0 0 8 102 0 0 0 0 0 0 0.83420.1125 0.0025 0.0098 0.0056 0.0009 0.0027 0.0025 0.0016 0.8342 0.0033 0.0018 0.0228
secondaryincision knife

758 0 3 0 7 0 6 0 0 0 1 9 0 10 3615 0 0 0 0 43 0 2 0 0 0 0 0 0.81160.1702 0.0007 0.0016 0.0013 0.0002 0.002 0.0022 0.8116 0.0097 0.0004
micromanipulator 987 0 1 14 106 0 0 0 0 8 324 0 31 0 0 19971 0 0 0 0 0 0 0 9 8 6 0 0.93040.046 0 0.0007 0.0049 0.0004 0.0151 0.0014 0.9304 0.0004 0.0004 0.0003
suture needle 239 0 0 1 1 0 0 0 0 0 16 0 2 1 0 8 802 0 0 0 0 0 0 0 0 0 35 0.72580.2163 0.0009 0.0009 0.0145 0.0018 0.0009 0.0072 0.7258 0.0317
Mendez ring 291 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4378 0 0 0 0 0 0 0 0 0 0.93750.0623 0.0002 0.9375
Mendez ring &biomarker

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0.97560.0244 0.9756
Bonn forceps &secondaryincision knife

244 0 1 0 7 0 4 55 3 0 3 3 2 13 49 0 0 0 0 2701 9 6 2 0 0 0 0 0.87070.0787 0.0003 0.0023 0.0013 0.0177 0.001 0.001 0.001 0.0006 0.0042 0.0158 0.8707 0.0029 0.0019 0.0006
primaryincision knife &Bonn forceps

196 0 4 0 17 3 7 109 3 1 4 2 1 126 2 0 0 0 0 13 5186 6 5 1 0 0 0 0.91210.0345 0.0007 0.003 0.0005 0.0012 0.0192 0.0005 0.0002 0.0007 0.0004 0.0002 0.0222 0.0004 0.0023 0.9121 0.0011 0.0009 0.0002
capsulorhexiscystotome &Bonn forceps

73 0 12 0 12 0 216 0 3 0 23 2 0 0 0 1 0 1 0 5 0 25975 5 3 2 0 0 0.9860.0028 0.0005 0.0005 0.0082 0.0001 0.0009 0.0001 0 0 0.0002 0.9864 0.0002 0.0001 0.0001
phacoemulsifierhandpiece &Bonn forceps

7 0 0 0 0 3 0 2 1 2 6 42 0 0 0 0 0 0 0 1 2 0 696 0 0 0 0 0.91340.0092 0.0039 0.0026 0.0013 0.0026 0.0079 0.0551 0.0013 0.0026 0.9134
phacoemulsifierhandpiece &micromanipulator

795 0 248 0 178 0 144 0 9 6 221 436 32 2 2 87 0 0 0 3 1 1 0 52553 69 4 0 0.95920.0145 0.0045 0.0032 0.0026 0.0002 0.0001 0.004 0.008 0.0006 0 0 0.0016 0.0001 0 0 0.9592 0.0013 0.0001
irrigation/aspirationhandpiece &micromanipulator

136 0 0 5 18 0 1 0 1 4 962 1 0 0 0 66 0 0 0 0 0 0 0 31 11970 2 0 0.90700.0103 0.0004 0.0014 0.0001 0.0001 0.0003 0.0729 0.0001 0.005 0.0023 0.907 0.0002
hydrodissectioncannula &micromanipulator

9 0 8 0 5 0 0 0 0 0 1 0 0 0 0 9 0 0 0 0 0 0 0 0 1 2099 0 0.98450.0042 0.0038 0.0023 0.0005 0.0042 0.0005 0.9845
Troutmanforceps &suture needle

76 0 0 0 3 0 0 0 0 1 20 0 4 0 0 0 13 0 0 0 1 0 0 0 1 0 1158 0.90680.0595 0.0023 0.0008 0.0157 0.0031 0.0102 0.0008 0.0008 0.9068
Precision 0.9601 0.9385 0.9444 0.9341 0.9385 0.982 0.9682 0.8692 0.9836 0.9671 0.9797 0.9652 0.9736 0.9317 0.9078 0.9439 0.9536 0.9823 1 0.9395 0.9675 0.9984 0.9393 0.9944 0.9739 0.9882 0.9586
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Table A.3: Confusion matrix rounded to 4 digits of the real surgical videos for the workflow augmentedtrained CNN classifier.
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11284 0 3 17 30 0 5 0 3 0 55 13 8 3 7 20 0 0 0 2 0 0 0 0 1 0 0 0.98540.9854 0.0003 0.0015 0.0026 0.00044 0.0003 0.0048 0.0011 0.0007 0.0007 0.0006 0.0017 0.0002 0.0001

biomarker 11 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 00.8462 0 0.1538
hydrodissectioncannula

49 0 422 0 9 0 1 0 0 0 19 7 0 0 0 19 0 0 0 0 0 0 0 2 0 0 0 0.79920.0928 0.7992 0.017 0.0019 0.036 0.0133 0.036 0.0038
Rycroft cannula 456 0 8 375 64 0 6 0 0 1 21 1 10 0 1 22 0 0 0 2 1 0 0 1 0 0 0 0.3870.4706 0.0083 0.387 0.066 0.0062 0.001 0.0217 0.001 0.0103 0.001 0.0227 0.0021 0.001 0.001
viscoelasticcannula

62 0 1 1 369 0 1 0 1 0 3 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0.83110.1396 0.0023 0.0023 0.8311 0.0023 0.0023 0.0068 0.0135
cotton 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
capsulorhexiscystotome

194 0 19 2 92 0 1242 0 11 0 66 1 9 0 0 46 0 0 0 0 0 2 0 0 0 0 0 0.73750.1152 0.0113 0.0012 0.0546 0.7375 0.0065 0.0392 0.0006 0.0053 0.027 0.0012
Bonn forceps 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 00.625 0 0.125 0.25
capsulorhexisforceps

24 0 1 0 1 0 2 0 73 0 42 3 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0.4740.1558 0.0065 0.0065 0.013 0.474 0.2727 0.0195 0.026 0.026
Troutmanforceps

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
irrigation/aspirationhandpiece

220 0 13 1 4 0 5 0 5 0 4428 14 8 0 0 8 0 0 0 0 0 0 0 5 11 0 0 0.93770.0466 0.0028 0.0002 0.0008 0.0011 0.0011 0.9377 0.003 0.0017 0.00169 0.0011 0.0023
phacoemulsifierhandpiece

248 0 13 1 0 0 4 0 0 2 113 694 28 1 0 2 0 0 0 0 0 0 0 40 0 0 0 0.60560.2165 0.0113 0.0009 0.0035 0.0017 0.0986 0.6056 0.0244 0.0009 0.0017 0.0349
implantinjector

46 0 0 0 0 0 3 0 0 1 13 0 370 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0.84860.1055 0.0069 0.0023 0.0298 0.8486 0.0069
primaryincision knife

34 0 0 0 1 0 1 0 0 0 4 1 1 94 0 1 0 0 0 2 26 0 0 0 0 0 0 0.56970.2061 0.0061 0.0061 0.0242 0.0061 0.0061 0.567 0.0061 0.0121 0.1576
secondaryincision knife

56 0 0 0 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 12 0 0 0 0 0 0 0 0.36450.5234 0.3645 0.1121
micromanipulator 69 0 5 0 23 0 15 0 1 0 4 3 3 0 0 299 0 0 0 0 0 0 0 3 0 0 0 0.70350.1624 0.0118 0.0541 0.0353 0.0024 0.0094 0.0071 0.0071 0.7035 0.0071
suture needle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Mendez ring 35 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 00.9211 0.0263 0 0.0526
Mendez ring &biomaker

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 00.5 0 0.5
Bonn forceps &secondaryincision knife

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 0 0 0 0 0 0 0 0.87670.1233 0.8767
primaryincision knife &Bonn forceps

8 0 0 0 0 0 0 0 0 0 0 0 0 9 3 0 0 0 0 5 25 0 0 0 0 0 0 0.50.16 0.18 0.06 0.1 0.5
capsulorhexiscystotome &Bonn forceps

2 0 0 0 4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.25 0.5 0.25 0
phacoemulsifierhandpiece &Bonn forceps 0 0 0 0 0 0 0 0 2 1 1 20 4 0 0 3 0 0 0 0 0 0 6 0 0 0 0 0.16220.0541 0.027 0.027 0.5405 0.1081 0.081 0.1622
phacoemulsifierhandpiece &micromanipulator

966 0 28 3 43 0 19 0 0 0 246 30 7 0 0 52 0 0 0 0 0 2 0 2666 75 1 0 0.64430.2334 0.0068 0.0007 0.0104 0.0046 0.0594 0.0072 0.0017 0.0126 0.0005 0.6443 0.0181 0.0002
irrigation/aspirationhandpiece &micromanipulator

56 0 1 0 14 0 0 0 1 0 642 0 0 0 0 4 0 0 0 0 0 0 0 110 441 0 0 0.34750.0441 0.0008 0.011 0.0008 0.5059 0.0032 0.0867 0.3475
hydrodissectioncannula &micromanipulator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
Troutmanforceps &suture needle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Precision 0.8153 n/a 0.8210 0.9375 0.5642 n/a 0.951 0 0.7526 0 0.7827 0.8818 0.8186 0.8704 0.75 0.6115 n/a n/a n/a 0.7191 0.4464 0 1 0.943 0.8352 0 n/a
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Table A.4: Confusion matrix rounded to 4 digits of the real surgical videos for the workflow augmentedtrained LSTM classifier.
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11223 0 11 69 17 0 20 0 1 0 60 23 4 0 6 14 0 0 0 1 0 0 0 2 0 0 0 0.98010.9801 0.0009 0.006 0.0015 0.0017 0.0001 0.0052 0.002 0.0003 0.0005 0.0012 0.0001 0.0002

biomarker 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00.9231 0 0.0769
hydrodissectioncannula

31 0 488 0 0 0 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.92420.0587 0.9242 0.0152 0.0019
Rycroft cannula 217 0 0 705 9 0 0 0 0 0 25 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0.72760.2239 0.7276 0.0093 0.0258 0.0134
viscoelasticcannula

46 0 1 0 386 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.86940.1036 0.0023 0.8694 0.0248
cotton 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
capsulorhexiscystotome

39 0 5 0 14 0 1615 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0.9590.0232 0.003 0.0083 0.959 0.0006 0.0059
Bonn forceps 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
capsulorhexisforceps

19 0 8 0 0 0 26 0 99 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.64290.1234 0.0519 0.1688 0.6429 0.0065 0.0065
Troutmanforceps

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.5 0.5 0
irrigation/aspirationhandpiece

51 0 0 0 0 0 0 0 0 0 4645 2 0 0 0 5 0 0 0 0 0 0 0 6 13 0 0 0.98370.0108 0.9837 0.0004 0.0011 0.0013 0.0028
phacoemulsifierhandpiece

33 0 5 0 0 0 0 0 0 0 12 1068 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0.93190.0288 0.0044 0.0105 0.9319 0.0244
implantinjector

31 0 0 0 0 0 0 0 0 0 16 0 382 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0.87610.0711 0.0367 0.8761 0.0161
primaryincision knife

36 0 5 0 1 0 0 0 0 0 0 1 0 105 1 0 0 0 0 0 16 0 0 0 0 0 0 0.63640.2182 0.0303 0.0061 0.0061 0.6364 0.0061 0.097
secondaryincision knife

47 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 12 0 0 0 0 0 0 0 0.44860.4393 0.4486 0.1121
micromanipulator 40 0 0 0 10 0 0 0 0 0 6 0 2 0 0 359 0 0 0 0 0 0 0 8 0 0 0 0.84470.0941 0.0235 0.0141 0.0047 0.8447 0.0188
suture needle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Mendez ring 36 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.02630.9474 0.0263 0.0263
Mendez ring &biomarker

3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00.75 0.25 0
Bonn forceps &secondaryincision knife

16 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 54 0 0 0 0 0 0 0 0.73970.2192 0.0137 0.0137 0.0137 0.7397
primaryincision knife &Bonn forceps

5 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 1 24 0 0 0 0 0 0 0.480.1 0.4 0.02 0.48
capsulorhexiscystotome &Bonn forceps 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
phacoemulsifierhandpiece &Bonn forceps 0 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.0270.973 0.027
phacoemulsifierhandpiece &micromanipulator

3 0 1 0 0 0 0 0 0 0 35 18 0 0 0 0 0 0 0 0 0 0 0 4034 47 0 0 0.97490.0007 0.0002 0.0085 0.0043 0.9749 0.0114
irrigation/aspirationhandpiece &micromanipulator

7 0 0 0 0 0 0 0 0 0 286 0 0 0 0 1 0 0 0 0 0 0 0 153 822 0 0 0.64780.0055 0.2254 0.0008 0.1206 0.6478
hydrodissectioncannula &micromanipulator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
Troutmanforceps &suture needle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Precision 0.9426 n/a 0.9313 0.91085 0.8833 n/a 0.9562 0 0.99 n/a 0.9131 0.9295 0.9820 0.8268 0.8421 0.8997 n/a 1 n/a 0.7941 0.6 0 1 0.9512 0.932 n/a n/a
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Table A.5: Confusionmatrix rounded to 4 digits of the real surgical videos for the split trained CNNClassifier.
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11001 0 10 78 21 0 4 0 4 4 115 90 10 6 4 31 0 1 0 4 0 0 0 62 6 0 0 0.96070.9607 0.0009 0.0068 0.0018 0.0003 0.0003 0.0003 0.01 0.0079 0.0009 0.0005 0.0003 0.0027 0.0001 0.0003 0.0054 0.0005

biomarker 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
hydrodissectioncannula

61 0 260 10 6 0 2 0 1 0 85 29 0 0 0 32 0 0 0 0 0 0 0 42 0 0 0 0.49240.1155 0.4924 0.0189 0.0114 0.0038 0.0019 0.161 0.0549 0.0606 0.0795
Rycroft cannula 326 0 2 511 53 0 10 0 0 0 6 1 3 0 1 6 0 0 0 0 0 0 0 42 8 0 0 0.52730.3364 0.0021 0.5273 0.0547 0.0103 0.0062 0.001 0.0031 0.001 0.0062 0.0433 0.0083
viscoelasticcannula

53 0 5 16 328 0 15 0 0 0 13 0 0 2 0 10 0 0 0 0 0 0 0 1 0 1 0 0.73870.1194 0.0113 0.036 0.7387 0.0338 0.0293 0.0045 0.0225 0.0023 0.0023
cotton 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
capsulorhexiscystotome

241 0 66 13 209 0 879 0 10 0 111 3 14 1 0 104 0 0 0 0 0 1 0 12 20 0 0 0.5220.1431 0.0392 0.0077 0.1241 0.522 0.0059 0.0659 0.0018 0.0083 0.0006 0.0618 0.0006 0.0071 0.0119
Bonn forceps 4 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 00.5 0.125 0 0.125 0.125 0.125
capsulorhexisforceps

35 0 3 0 6 0 2 0 18 0 83 1 1 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0.11690.2273 0.0195 0.039 0.013 0.1169 0.539 0.0065 0.0065 0.026 0.0065
Troutmanforceps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 00 1
irrigation/aspirationhandpiece

307 0 71 17 66 0 25 0 6 0 3767 180 24 0 0 38 0 0 0 0 0 0 7 189 24 1 0 0.79780.065 0.015 0.0036 0.014 0.0053 0.0013 0.7978 0.0381 0.0051 0.008 0.0015 0.04 0.0051 0.0002
phacoemulsifierhandpiece

196 0 38 3 1 0 5 0 2 0 228 536 31 2 0 0 0 0 0 0 0 0 6 98 0 0 0 0.46770.171 0.0332 0.0026 0.0009 0.0044 0.0017 0.199 0.4677 0.0271 0.0017 0.0052 0.0855
implantinjector

37 0 0 5 0 0 12 0 0 2 8 20 341 4 0 4 0 0 0 0 1 0 0 2 0 0 0 0.78210.0849 0.0115 0.0275 0.0046 0.0183 0.0459 0.7821 0.0092 0.0092 0.0023 0.0046
primaryincision knife

27 0 1 7 3 0 0 0 0 0 9 6 11 63 2 0 0 0 0 2 33 1 0 0 0 0 0 0.38180.1636 0.0061 0.0424 0.0182 0.0545 0.0364 0.0667 0.3818 0.0121 0.0121 0.2 0.0061
secondaryincision knife

46 0 0 16 0 0 0 0 0 0 3 0 2 0 32 0 0 0 0 7 0 0 0 1 0 0 0 0.29910.4299 0.1495 0.028 0.0187 0.2991 0.0654 0.0093
micromanipulator 52 0 37 14 26 0 44 0 1 1 2 8 7 0 1 217 0 0 0 0 0 1 0 10 1 3 0 0.51060.1224 0.0871 0.0329 0.0612 0.1035 0.0024 0.0024 0.0047 0.0188 0.0165 0.0024 0.5106 0.0024 0.0235 0.0024 0.0071
suture needle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Mendez ring 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
Mendez ring &biomaker

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
Bonn forceps& secondaryincision knife

29 0 0 2 0 0 0 0 0 0 3 0 0 0 2 0 0 0 0 36 0 0 0 0 1 0 0 0.49320.3973 0.0274 0.0411 0.0274 0.4932 0.0137
primaryincision knife &Bonn forceps

9 0 0 3 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 4 21 0 6 2 0 0 0 0.420.18 0.06 0.02 0.08 0.08 0.42 0.12 0.04
capsulorhexiscystotome &Bonn forceps 0 0 0 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.75 0.25 0
phacoemulsifierhandpiece &Bonn forceps

1 0 0 0 0 0 0 0 2 3 8 4 2 0 0 0 0 0 0 0 0 0 4 12 1 0 0 0.10810.027 0.0541 0.0811 0.2162 0.1081 0.0541 0.1081 0.3243 0.027
phacoemulsifierhandpiece &micromanipulator

644 0 74 73 125 0 24 0 1 2 566 87 26 0 0 67 0 0 0 0 1 1 2 2248 196 1 0 0.54330.1556 0.0179 0.0176 0.0302 0.0058 0.0002 0.0005 0.1368 0.021 0.0063 0.0162 0.0002 0.0002 0.0005 0.5433 0.0474 0.0002
irrigation/aspirationhandpiece &micromanipulator

71 0 8 4 25 0 5 0 2 2 209 5 4 1 0 20 0 0 0 0 0 0 1 400 510 2 0 0.40190.0559 0.0063 0.0032 0.0197 0.0039 0.0016 0.0016 0.1647 0.0039 0.0032 0.0008 0.0158 0.0008 0.3152 0.4019 0.0016
hydrodissectioncannula &micromanipulator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
Troutmanforceps &suture needle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Precision 0.8335 n/a 0.4522 0.6611 0.3744 n/a 0.8542 n/a 0.383 0 0.7222 0.5526 0.7164 0.7590 0.7442 0.4056 n/a 0 n/a 0.6545 0.3684 0 0.1538 0.7203 0.6649 0 n/a
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TableA.6: Confusionmatrix rounded to 4 digits of the real surgical videos for the split trained LSTMclassifier.

Label

Prediction

no
too

lin
con

tact

bio
mar

ker

hyd
rod

isse
ctio

n
can

nul
a

Ryc
roft

can
nul

a

visc
oela

stic
can

nul
a

cot
ton

cap
sulo

rhe
xis

cys
toto

me

Bon
nfo

rcep
s

cap
sulo

rhe
xis

forc
eps

Tro
utm

an
forc

eps

irrig
atio

n/a
spir

atio
n

han
dpi

ece

pha
coe

mu
lsifi

er
han

dpi
ece

imp
lant

inje
cto

r

prim
ary

inci
sion

knif
e

sec
ond

ary
inci

sion
knif

e

mic
rom

anip
ulat

or

sut
ure

nee
dle

Me
nde

zrin
g

Me
nde

zrin
g&

bio
mar

ker
Bon

nfo
rcep

s&
sec

ond
ary

inci
sion

knif
e

prim
ary

inci
sion

knif
e&

Bon
nfo

rcep
s

cap
sulo

rhe
xis

cys
toto

me
&

Bon
nfo

rcep
s

pha
coe

mu
lsifi

er
han

dpi
ece

&
Bon

nfo
rcep

s
pha

coe
mu

lsifi
er

han
dpi

ece
&

mic
rom

anip
ulat

or
irrig

atio
n/a

spir
atio

n
han

dpi
ece

&
mic

rom
anip

ulat
or

hyd
rod

isse
ctio

n
can

nul
a&

mic
rom

anip
ulat

or
Tro

utm
an

forc
eps

&
sut

ure
nee

dle

Rec
all

no tool incontact
11108 0 14 130 12 0 17 0 14 0 40 9 13 12 6 67 0 0 0 0 1 0 0 8 0 0 0 0.970.97 0.0012 0.0114 0.001 0.0015 0.0012 0.0035 0.0008 0.0011 0.001 0.0005 0.0059 0.0001 0.0007

biomarker 11 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 00.8462 0 0.0769 0.0769
hydrodissectioncannula

39 0 435 4 6 0 28 0 0 0 0 4 3 2 0 6 0 0 0 0 0 0 0 1 0 0 0 0.82390.0739 0.8239 0.0076 0.0114 0.053 0.0076 0.0057 0.0038 0.0114 0.0019
Rycroft cannula 155 0 0 784 5 0 0 0 0 0 2 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0.80910.16 0.8091 0.0052 0.0021 0.0237
viscoelasticcannula

46 0 0 6 325 0 30 0 0 0 1 0 0 0 0 34 0 0 0 0 0 0 0 2 0 0 0 0.7320.1036 0.0135 0.732 0.0676 0.0023 0.0766 0.0045
cotton 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
capsulorhexiscystotome

86 0 39 2 39 0 1508 0 4 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0.89550.0511 0.0232 0.0012 0.0232 0.8955 0.0024 0.0006 0.003
Bonn forceps 5 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 00.625 0 0.25 0.125
capsulorhexisforceps

30 0 9 0 1 0 54 0 52 0 1 2 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0.33770.1948 0.0584 0.0065 0.3506 0.3377 0.0065 0.013 0.0195 0.013
Troutmanforceps 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.5 0.5 0
irrigation/aspirationhandpiece

74 0 1 50 13 0 1 0 1 0 4550 4 1 0 0 7 0 0 0 0 0 0 0 6 14 0 0 0.96360.0157 0.0002 0.0106 0.0028 0.0002 0.0002 0.9636 0.0008 0.0002 0.0015 0.0013 0.003
phacoemulsifierhandpiece

56 0 10 2 1 0 0 0 1 0 68 945 21 2 0 0 0 0 0 0 0 0 0 39 1 0 0 0.82460.0489 0.0087 0.0017 0.0009 0.0009 0.0593 0.8246 0.0183 0.0017 0.034 0.0009
implantinjector

34 0 1 22 0 0 0 0 1 0 5 0 371 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0.85090.078 0.0023 0.0505 0.0023 0.0115 0.8509 0.0046
primaryincision knife

33 0 3 1 4 0 1 0 1 0 0 5 6 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67270.2 0.0182 0.0061 0.0242 0.0061 0.0061 0.0303 0.0364 0.6727
secondaryincision knife

36 0 0 1 0 0 0 0 0 0 0 0 0 10 60 0 0 0 0 0 0 0 0 0 0 0 0 0.56070.3364 0.0093 0.0935 0.5607
micromanipulator 32 0 2 104 28 0 2 0 0 0 3 0 4 0 0 240 0 0 0 0 0 0 0 10 0 0 0 0.56470.0753 0.0047 0.2447 0.0659 0.0047 0.0071 0.0094 0.5647 0.0235
suture needle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Mendez ring 35 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 00.9211 0.0789 0
Mendez ring &biomaker

3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.75 0.25 0
Bonn forceps &secondaryincision knife

12 0 0 0 0 0 0 0 0 0 0 0 0 11 34 0 0 0 0 16 0 0 0 0 0 0 0 0.21920.1644 0.1507 0.4658 0.2192
primaryincision knife &Bonn forceps

10 0 0 0 0 0 0 0 0 0 0 0 0 36 4 0 0 0 0 0 0 0 0 0 0 0 00.2 0.72 0.08 0
capsulorhexiscystotome &Bonn forceps 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0
phacoemulsifierhandpiece &Bonn forceps

1 0 0 0 0 0 0 0 3 0 0 28 2 0 0 0 0 0 0 0 0 0 3 0 0 0 00.027 0.0811 0.7568 0.0541 0 0.0811
phacoemulsifierhandpiece &micromanipulator

16 0 0 2 0 0 0 0 0 0 30 22 0 0 0 0 0 0 0 0 0 0 0 3906 162 0 0 0.94390.0039 0.0005 0.0072 0.0053 0.9439 0.0391
irrigation/aspirationhandpiece &micromanipulator

3 0 0 26 8 0 0 0 1 0 183 0 0 0 0 1 0 0 0 0 0 0 0 130 917 0 0 0.72260.0024 0.0205 0.0063 0.0008 0.1442 0.0008 0.1024 0.7226
hydrodissectioncannula &micromanipulator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
Troutmanforceps &suture needle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Precision 0.9391 n/a 0.8447 0.6907 0.7353 n/a 0.9145 n/a 0.6582 n/a 0.9318 0.9274 0.8812 0.5812 0.566 0.6186 n/a n/a n/a 1 0 n/a n/a 0.9515 0.8367 n/a n/a





AppendixB
Project: Post-operative Image

Prediction

B.1 Implementation Details to Calculate Smod

In this section, we describe the optimization algorithm to automatically find the shape
modifications Smod in more detail. Based on the statistical point distribution model
(BFM2009) by [140], the coordinates xi (x,y, and z) of each vertex i of each 3D face Sn
can be described by

x = V α+ x (B.1)
with V being a matrix of 199 eigenvectors to maximally describe the variance of faces, α
being a parameter vector with 199 elements, and x being the mean face. To define the
locally modified region, we manually selected a facial region, e.g., the nose or the chin
and labeled all vertices xi within the selected region to belong to Mask. Consequently,
all other vertices were labeled to belong to Mask. We aimed to find such an α̂ that
maximally deflects all vertices within Mask while minimally deflecting all other vertices
within Mask. To achieve this, we optimized the following objective:

min
α

∑
xi∈Mask

‖xi‖F − λ1
∑

xi∈Mask

‖xi‖F + λ2 (‖α‖F − 1)2 (B.2)

with ‖.‖F being the Frobenius norm, λ1 = 4 to control the deflection, and λ2 = 1000 to
regularize the solution α̂ to a constant length. Having such an optimized α̂, we were able
to create a linearly scalable local modification Smod using a scalar λ:

Smod = λα̂ (B.3)
As an example, we generated an enlarged nose modification by choosing λ > 0 and a
shrunken nose modification by choosing λ < 0. On one hand, this approach to derive Smod
can generate local deflections on any region of the face as long as these deflections can be
represented by the point distribution model. On the other hand, this approach has the
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disadvantage that it cannot generate specific local modifications since the optimization
algorithm only focuses on a maximal deflection of the selected vertices.

B.2 Network Architectures

In the Tables B.1 to B.4, the detailed architectures are given for all neural networks of this
study using the following abbreviations: CONV=2D convolutional layer, DECONV=2D
transposed convolutional layer, BN=batch normalization, N=number of output channels,
K=kernel size, S=stride size, P=padding size. The width and height are set to the image
resolution, i.e., h = 128, w = 128 except for the local discriminator DRoi where we set
the width and height between 16 and 48. All leaky rectifying linear units (LeakyReLU)
were implemented using a negative slope of 0.01.

Table B.1: Architecture of G

description input shape→output shape layer details
input layer (h,w, 6)→( h

2 ,
w
2 , 64) CONV-(N64, K4×4, S2, P1), LeakyReLU

down-sampling ( h
2 ,

w
2 , 64)→( h

4 ,
w
4 , 128) CONV-(N128, K4×4, S2, P1), BN, LeakyReLU

down-sampling ( h
4 ,

w
4 , 128)→( h

8 ,
w
8 , 256) CONV-(N256, K4×4, S2, P1), BN, LeakyReLU

down-sampling ( h
8 ,

w
8 , 256)→( h

16 ,
w
16 , 512) CONV-(N512, K4×4, S2, P1), BN, LeakyReLU

down-sampling ( h
16 ,

w
16 , 512)→( h

32 ,
w
32 , 512) CONV-(N512, K4×4, S2, P1), BN, LeakyReLU

up-sampling ( h
32 ,

w
32 , 512)→( h

16 ,
w
16 , 512) DECONV-(N512, K4×4, S2, P1), BN, LeakyReLU

up-sampling ( h
16 ,

w
16 , 1024)→( h

8 ,
w
8 , 256) DECONV-(N256, K4×4, S2, P1), BN, LeakyReLU

up-sampling ( h
8 ,

w
8 , 512)→( h

4 ,
w
4 , 128) DECONV-(N64, K4×4, S2, P1), BN, LeakyReLU

up-sampling ( h
4 ,

w
4 , 256)→( h

2 ,
w
2 , 64) DECONV-(N64, K4×4, S2, P1), BN, LeakyReLU

output layer ( h
2 ,

w
2 , 128)→(h,w, 3) DECONV-(N3, K4×4, S2, P1), Tanh



Table B.2: Architecture of D

description input shape→output shape layer details
input layer (h,w, 3)→( h

2 ,
w
2 , 48) CONV-(N48, K4×4, S2, P1), LeakyReLU

hidden layer ( h
2 ,

w
2 , 48)→( h

4 ,
w
4 , 96) CONV-(N96, K4×4, S2, P1), LeakyReLU

hidden layer ( h
4 ,

w
4 , 96)→( h

8 ,
w
8 , 192) CONV-(N192, K4×4, S2, P1), LeakyReLU

hidden layer ( h
8 ,

w
8 , 192)→( h

16 ,
w
16 , 384) CONV-(N384, K4×4, S2, P1), LeakyReLU

hidden layer ( h
16 ,

w
16 , 384)→( h

32 ,
w
32 , 768) CONV-(N768, K4×4, S2, P1), LeakyReLU

hidden layer ( h
32 ,

w
32 , 768)→( h

64 ,
w
64 , 1536) CONV-(N1536, K4×4, S2, P1), LeakyReLU

hidden layer ( h
64 ,

w
64 , 1536)→( h

64 ,
w
64 , 1) CONV-(N1, K3×3, S2, P1), LeakyReLU

output layer ( h
64 ,

w
64 , 1)→(1) mean

Table B.3: Architecture of DRoi

description input shape→output shape layer details
input layer (h,w, 3)→(h,w, 48) CONV-(N48, K3×3, S1, P1), LeakyReLU
hidden layer (h,w, 48)→( h

2 ,
w
2 , 96) CONV-(N96, K4×4, S2, P1), LeakyReLU

hidden layer ( h
2 ,

w
2 , 96)→( h

2 ,
w
2 , 192) CONV-(N192, K3×3, S1, P1), LeakyReLU

hidden layer ( h
2 ,

w
2 , 192)→( h

4 ,
w
4 , 384) CONV-(N384, K4×4, S2, P1), LeakyReLU

hidden layer ( h
4 ,

w
4 , 384)→( h

4 ,
w
4 , 768) CONV-(N768, K3×3, S1, P1), LeakyReLU

hidden layer ( h
4 ,

w
4 , 768)→( h

8 ,
w
8 , 1536) CONV-(N1536, K4×4, S2, P1), LeakyReLU

hidden layer ( h
8 ,

w
8 , 1536)→( h

8 ,
w
8 , 1) CONV-(N1, K3×3, S1, P1), LeakyReLU

output layer ( h
8 ,

w
8 , 1)→(1) mean

Table B.4: Architecture of GS

description input shape→output shape layer details
input layer (h,w, 3)→( h

2 ,
w
2 , 48) CONV-(N64, K4×4, S2, P1), LeakyReLU

down-sampling ( h
2 ,

w
2 , 48)→( h

4 ,
w
4 , 96) CONV-(N128, K4×4, S2, P1), BN, LeakyReLU

down-sampling ( h
4 ,

w
4 , 96)→( h

8 ,
w
8 , 192) CONV-(N256, K4×4, S2, P1), BN, LeakyReLU

down-sampling ( h
8 ,

w
8 , 192)→( h

16 ,
w
16 , 384) CONV-(N512, K4×4, S2, P1), BN, LeakyReLU

down-sampling ( h
16 ,

w
16 , 384)→( h

32 ,
w
32 , 384) CONV-(N512, K4×4, S2, P1), BN, LeakyReLU

up-sampling ( h
32 ,

w
32 , 384)→( h

16 ,
w
16 , 384) DECONV-(N512, K4×4, S2, P1), BN, LeakyReLU

up-sampling ( h
16 ,

w
16 , 768)→( h

8 ,
w
8 , 192) DECONV-(N256, K4×4, S2, P1), BN, LeakyReLU

up-sampling ( h
8 ,

w
8 , 384)→( h

4 ,
w
4 , 96) DECONV-(N64, K4×4, S2, P1), BN, LeakyReLU

up-sampling ( h
4 ,

w
4 , 192)→( h

2 ,
w
2 , 48) DECONV-(N64, K4×4, S2, P1), BN, LeakyReLU

output layer ( h
2 ,

w
2 , 96)→(h, w, 5) DECONV-(N5, K4×4, S2, P1), Tanh
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