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Kurzfassung

Die stetig fortschreitende Digitalisierung erlaubt einen immer autonomeren und intelligenteren Betrieb
von Produktions- und Fertigungslinien, was zu einer stärker werdenden Verzahnung der physikali-
schen Prozesse und der Software-Komponenten zum Überwachen, Steuern und Messen führt. Cyber-
physische Systeme (CPS) spielen hierbei eine Schlüsselrolle, indem sie sowohl die physikalischen als
auch die Software-Komponenten zu einem verteilten System zusammenfassen, innerhalb dessen Umge-
bungszustände, Messwerte und Steuerbefehle über ein Kommunikationsnetzwerk ausgetauscht werden.
Die Verfügbarkeit von kostengünstigen Geräten und die Möglichkeit bereits existierende Infrastruktur
zu nutzen sorgen dafür, dass auch innerhalb von CPS zunehmend auf den Einsatz von Standard-Netzen
auf Basis von IEEE 802.3 (Ethernet) und IEEE 802.11 (WLAN) gesetzt wird. Nachteilig bei der
Nutzung von Standard-Netzen sind jedoch auftretende Dienstgüte-Schwankungen, welche aus der
gemeinsamen Nutzung der vorhandenen Infrastruktur resultieren und für die Endsysteme in Form von
sich ändernden Latenzen und Daten- und Paketverlustraten sichtbar werden.

Regelkreise sind besonders anfällig für Dienstgüte-Schwankungen, da sie typischerweise isochrone
Datenübertragungen mit festen Latenzen benötigen, um die gewünschte Regelgüte zu garantieren. Für
die Vernetzung der einzelnen Komponenten, das heißt von Sensorik, Aktorik und Regler, setzt man
daher klassischerweise auf Lösungen, die diese Anforderungen erfüllen. Diese Lösungen sind jedoch
relativ teuer und unflexibel, da sie den Einsatz von spezialisierten Netzwerken wie z.B. Feldbussen
benötigen oder über komplexe, speziell entwickelte Kommunikationsprotokolle realisiert werden wie
sie beispielsweise die Time-Sensitive Networking (TSN) Standards definieren.

Die vorliegende Arbeit präsentiert Ergebnisse des interdisziplinären Forschungsprojekts CoCPN:
Cooperative Cyber-Physical Networking, das ein anderes Konzept verfolgt und explizit auf CPS
abzielt, die Standard-Netze einsetzen. CoCPN benutzt einen neuartigen, kooperativen Ansatz um
i) die Elastizität von Regelkreisen innerhalb solcher CPS zu erhöhen, das heißt sie in die Lage
zu versetzen, mit den auftretenden Dienstgüte-Schwankungen umzugehen, und ii) das Netzwerk
über die Anforderungen der einzelnen Regler in Kenntnis zu setzen. Kern von CoCPN ist eine
verteilte Architektur für CPS, welche es den einzelnen Regelkreisen ermöglicht, die verfügbare
Kommunikations-Infrastruktur gemeinsam zu nutzen. Im Gegensatz zu den oben genannten Lösungen
benötigt CoCPN dafür keine zentrale Instanz mit globaler Sicht auf das Kommunikationssystem, sodass
eine enge Kopplung an die Anwendungen vermieden wird. Stattdessen setzt CoCPN auf eine lose
Kopplung zwischen Netzwerk und Regelkreisen, realisiert in Form eines Austauschs von Meta-Daten
über den sog. CoCPN-Translator. CoCPN implementiert ein Staukontrollverfahren, welches den
typischen Zusammenhang zwischen erreichbarer Regelgüte und Senderate ausnutzt: die erreichbare
Regelgüte steigt mit der Senderate und umgekehrt. Durch Variieren der zu erreichenden Regelgüte
kann das Sendeverhalten der Regler so eingestellt werden, dass die vorhandenen Kommunikations-
Ressourcen optimal ausgenutzt und gleichzeitig Stausituationen vermieden werden.

In dieser Arbeit beschäftigen wir uns mit den regelungstechnischen Fragestellungen innerhalb von
CoCPN. Der Schwerpunkt liegt hierbei auf dem Entwurf und der Analyse von Algorithmen, die
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auf Basis der über den CoCPN-Translator ausgetauschten Meta-Daten die notwendige Elastizität
liefern und es dadurch den Reglern ermöglichen, schnell auf Änderungen der Netzwerk-Dienstgüte zu
reagieren. Dazu ist es notwendig, dass den Reglern ein Modell zur Verfügung gestellt wird, dass die
Auswirkungen von Verzögerungen und Paketverlusten auf die Regelgüte erfasst.

Im ersten Teil der Arbeit wird eine Erweiterung eines existierenden Modellierungs-Ansatzes vorgestellt,
dessen Grundidee es ist, sowohl die Dynamik der Regelstrecke als auch den Einfluss von Verzögerungen
und Paketverlusten durch ein hybrides System darzustellen. Hybride Systeme zeichnen sich dadurch aus,
dass sie sowohl kontinuierlich- als auch diskretwertige Zustandsvariablen besitzen. Unsere vorgestellte
Erweiterung ist in der Lage, Änderungen der Netzwerk-Dienstgüte abzubilden und ist nicht auf eine
bestimmte probabilistische Darstellung der auftretenden Verzögerungen und Paketverluste beschränkt.
Zusätzlich verzichtet unsere Erweiterung auf die in der Literatur übliche Annahme, dass Quittungen
für empfangene Datenpakete stets fehlerfrei und mit vernachlässigbarer Latenz übertragen werden.
Verglichen mit einem Großteil der verwandten Arbeiten, ermöglichen uns die genannten Eigenschaften
daher eine realistischere Berücksichtigung der Netzwerk-Einflüsse auf die Regelgüte.

Mit dem entwickelten Modell kann der Einfluss von Verzögerungen und Paketverlusten auf die
Regelgüte prädiziert werden. Auf Basis dieser Prädiktion können Stellgrößen dann mit Methoden der
stochastischen modellprädiktiven Regelung (stochastic model predictive control) berechnet werden.
Unsere realistischere Betrachtung der Netzwerk-Einflüsse auf die Regelgüte führt hierbei zu einer
gegenseitigen Abhängigkeit von Regelung und Schätzung. Zur Berechnung der Stellgrößen muss
der Regler den Zustand der Strecke aus den empfangenen Messungen schätzen. Die Qualität dieser
Schätzungen hängt von den berechneten Stellgrößen und deren Auswirkung auf die Regelstrecke ab.
Umgekehrt beeinflusst die Qualität der Schätzungen aber maßgeblich die Qualität der Stellgrößen:
Ist der Schätzfehler gering, kann der Regler bessere Entscheidungen treffen. Diese gegenseitige
Abhängigkeit macht die Berechnung von optimalen Stellgrößen unmöglich und bedingt daher die
Fokussierung auf das Erforschen von approximativen Ansätzen.

Im zweiten Teil dieser Arbeit stellen wir zwei neuartige Verfahren für die stochastische modellprä-
diktive Regelung über Netzwerke vor. Im ersten Verfahren nutzen wir aus, dass bei hybriden System
oft sogenannte multiple model-Algorithmen zur Zustandsschätzung verwendet werden, welche den
geschätzten Zustand in Form einer Gaußmischdichte repräsentieren. Auf Basis dieses Zusammenhangs
und einer globalen Approximation der Kostenfunktion leiten wir einen Algorithmus mit geringer Kom-
plexität zur Berechnung eines (suboptimalen) Regelgesetzes her. Dieses Regelgesetz ist nichtlinear
und ergibt sich aus der gewichteten Kombination mehrerer unterlagerter Regelgesetze. Jedes dieser
unterlagerten Regelgesetze lässt sich dabei als lineare Funktion genau einer der Komponenten der
Gaußmischdichte darstellen. Unser zweites vorgestelltes Verfahren besitzt gegensätzliche Eigenschaf-
ten. Das resultierende Regelgesetz ist linear und basiert auf einer Approximation der Kostenfunktion,
welche wir nur lokal, das heißt nur in der Umgebung einer erwarteten Trajektorie des geregelten Sys-
tems, berechnen. Diese Trajektorie wird hierbei durch die Prädiktion einer initialen Zustandsschätzung
über den Optimierungshorizont gewonnen. Zur Berechnung des Regelgesetzes schlagen wir dann
einen iterativen Algorithmus vor, welcher diese Approximation durch wiederholtes Optimieren der
System-Trajektorie verbessert. Simulationsergebnisse zeigen, dass unsere neuartigen Verfahren eine
signifikant höhere Regelgüte erzielen können als verwandte Ansätze aus der Literatur.

Der dritte Teil der vorliegenden Arbeit beschäftigt sich erneut mit dem hybriden System aus dem ersten
Teil. Die im Rahmen dieser Arbeit verwendeten Netzwerk-Modelle, das heißt die verwendeten proba-
bilistischen Beschreibungen der Verzögerungen und Paketverluste, werden vom CoCPN-Translator auf
Grundlage von im Netzwerk gesammelten Status-Informationen erzeugt. Diese Status-Informationen
bilden jedoch stets nur Ausschnitte ab und können nie exakt den “Zustand” des Netzwerks repräsen-
tieren. Dementsprechend können die resultierenden Netzwerk-Modelle nicht als fehlerfrei erachtet
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werden. In diesem Teil der Arbeit untersuchen wir daher den Einfluss möglicher Fehler in den
Netzwerk-Modellen auf die zu erwartende Regelgüte. Weiterhin gehen wir der Frage nach der Exis-
tenz von Reglern, die robust gegenüber solchen Fehlern und Unsicherheiten sind, nach. Dazu zeigen
wir zunächst, dass sich Fehler in den Netzwerk-Modellen immer als eine polytopische Parameter-
Unsicherheit im hybriden System aus dem ersten Teil manifestieren. Für solche polytopischen hybride
System leiten wir dann eine sowohl notwendige als auch hinreichende Stabilitätsbedingung her, was
einen signifikanten Beitrag zur Theorie der hybriden Systeme darstellt. Die Auswertung dieser Bedin-
gung erfordert es zu bestimmen, ob der gemeinsame Spektralradius (joint spectral radius) einer Menge
von Matrizen kleiner als eins ist. Dieses Entscheidungsproblem ist bekanntermaßen NP-schwer, was
die Anwendbarkeit der Stabilitätsbedingung stark limitiert. Daher präsentieren wir eine hinreichende
Stabilitätsbedingung, die in polynomieller Zeit überprüft werden kann, da sie auf der Erfüllbarkeit
von linearen Matrixungleichungen basiert. Schließlich zeigen wir, dass die Existenz eines Reglers,
der die Stabilität des betrachteten polytopischen hybriden Systems garantiert, von der Erfüllbarkeit
einer ähnlichen Menge von Matrixungleichungen bestimmt wird. Diese Ungleichungen sind weniger
restriktiv als die bisher in der Literatur bekannten, was die Synthese von weniger konservativen Reglern
erlaubt.

Schließlich zeigen wir im letzten Teil dieser Arbeit die Anwendbarkeit des kooperativen Konzepts
von CoCPN in Simulations-Szenarien, in denen stark ausgelastete Netzwerk-Ressourcen mit anderen
Anwendungen geteilt werden müssen. Wir demonstrieren, dass insbesondere das Zusammenspiel
unserer modellprädiktiven Verfahren mit dem Staukontrollverfahren von CoCPN einen zuverlässigen
Betrieb der Regelkreise ohne unerwünschte Einbußen der Regelgüte auch dann ermöglicht, wenn sich
die Kommunikationsbedingungen plötzlich und unvorhergesehen ändern. Insgesamt stellt unsere Arbeit
somit einen wichtigen Baustein auf dem Weg zu einem flächendeckenden Einsatz von Standard-Netzen
als flexible und adaptive Basis für industrielle CPS dar.





Abstract

The latest advancements in automation and digitalization have initiated a general transition towards a
more intelligent and autonomous operation of manufacturing and production systems that increasingly
pushes the traditional boundaries between the physical processes and the software components used for
sensing, monitoring, and actuation. Cyber-physical systems (CPS) play a leading role in this transition
as they tightly integrate physical and software (cyber) components that share a communication network
for the exchange of system states, sensor readings, and control commands. More and more CPS are
deployed with off-the-shelf networking equipment to benefit from the availability of cheap devices
and the option to re-use existing infrastructure. However, general-purpose networks based on the
IEEE 802.3 (Ethernet) and IEEE 802.11 (WLAN) standards are characterized by fluctuations of the
provided quality of service (QoS), which result in changing communication conditions that become
visible in the form of varying latencies, packet loss rates, and achievable data rates for all end systems
that share the communication resources.

Control loops that use a shared communication system to realize the communication between sensors,
actuators, and controllers are called networked control systems (NCS). They usually have strict
communication requirements and demand data transmissions with guaranteed latencies, rendering
them particularly vulnerable to fluctuations of the network QoS. State-of-the-art approaches ensure a
reliable operation without performance degradation by providing communication conditions that meet
the imposed requirements. However, this usually necessitates the deployment of highly specialized
networks such as fieldbuses, the use of complex, made-to-measure communication protocols such as
the time-sensitive networking (TSN) standards, or demands central entities with a global view on the
communication system, rendering these approaches expensive and relatively inflexible.

The present thesis covers results of the interdisciplinary research project CoCPN: Cooperative Cyber-
Physical Networking that pursues a different concept and specifically targets CPS deployed with
standard networking equipment. CoCPN implements a novel, cooperative approach to make the
control loops within such CPS elastic, that is, to increase their flexibility to cope with changing
communication conditions, and to render the communication system aware of the communication
requirements of the controllers. The cornerstone of the approach is a novel, distributed architecture
for CPS that allows the control loops to cooperatively share the available communication capacity.
This architecture forgoes a central entity with a global view on the communication resources, thereby
avoiding tight coupling between the communication infrastructure and the control loops that sit atop.
Instead, CoCPN introduces the CoCPN translator that keeps the implemented cooperation lightweight
and distributed by enabling the exchange of meta data between the communication system and the
control loops. The CoCPN architecture is motivated by the typical connection between achievable
control performance and sending rate – the control performance improves if the controller increases
its sending rate and vice versa. CoCPN leverages this connection and dynamically adjusts the target
control performance that the controllers shall achieve, which in turn adapt their sending rates as much
as is needed to achieve this target performance. Based on this connection, CoCPN implements a
control-aware congestion control mechanism to realize a fair sharing of the communication resources
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that avoids potentially severe degradations of the network QoS and keeps the performance of all control
loops in balance.

The present thesis centers around the “control-related portion” of CoCPN. More specifically, our
focus is on the design and analysis of algorithms that yield the desired elasticity and, based on the
information exchange provided by the CoCPN translator, enable networked controllers to quickly
respond to variations of the network QoS and to efficiently use the available communication capacity.
To achieve this goal, controllers must not only be aware of the shared communication system but also
need a model that accurately describes the impact of its most relevant influencing factors, namely the
impact of packet delays and losses.

The first part of this thesis develops an extension of an existing modeling approach for the design
and analysis of networked control algorithms that expresses the plant dynamics and the impact of the
packet delays and losses in terms of a single hybrid system. Hybrid systems are dynamical systems
with continuous- and discrete-valued state variables. The developed extension is flexible enough to
reflect changes of the network QoS, supports different probabilistic descriptions of the occurring
packet delays and losses, and does not rely on the typical assumption that acknowledgment packets
are transmitted instantaneously and received with negligible communication delay. Thanks to these
properties, we are able to model the influence of the shared communication system more realistically
compared to the vast majority of the literature.

Equipped with the developed hybrid system model, controllers can predict the influence of packet
delays and losses on the control performance, rendering stochastic model predictive control (SMPC)
well-suited to compute the control inputs. To that end, controllers must estimate the plant state based
on the information provided by the received measurements. However, our pursued more realistic
consideration of packet delays and losses results in an interdependency between decision-making and
state estimation: Each computed control input does not only affect the plant state, which is the desired
control action, but also the quality of the controller’s future state estimates, which in turn determine
the quality of future control inputs – when the estimation error is low, better decisions can be made.
This interdependency is known as dual effect and prevents the computation of control inputs that are
optimal with regards to a selected cost function. Hence, any practical SMPC approach is necessarily
an approximation.

In the second part of this thesis, we propose two novel approaches for the computation of suboptimal
control laws. The first approach exploits that estimates of the plant state in networked control
algorithms are often provided by multiple model estimation algorithms. We use this connection to
derive a control algorithm with low computational complexity that combines the output of multiple
individual controllers, each of which corresponds to one of the models used by the estimator. The
underlying control law is nonlinear, relies on a global approximation of the cost function, and neglects
the contribution of the dual effect on the cost. Our second proposed approach possesses contrasting
properties. The underlying control law is linear and minimizes a local approximation of the cost via
repeated improvements of a given reference trajectory, which is obtained by propagating an initial
state estimate over the optimization horizon. Moreover, the approach takes the influence of the dual
effect on the cost into account. In evaluation scenarios, we show that our novel approaches can achieve
significantly better control performance than state-of-the-art networked SMPC approaches from the
literature.

In the third part of this thesis, we return our attention to the hybrid system model developed in the first
part. The different probabilistic descriptions of the packet delays and losses supported by this model
are provided by the CoCPN translator, which creates them by translating monitoring information
collected inside the communication system into appropriate network models. The collected monitoring
data can only provide snapshots of the past so that the resulting network models are always estimates
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of the “state” of the communication system. Consequently, questions about the influence of modeling
errors on the achievable control performance and the existence of controllers that are robust to such
errors arise. We first show that uncertain or even completely unknown network models always lead to
a polytopic parameter uncertainty in the hybrid system model. Subsequently, we derive a necessary
and sufficient condition for the mean square stability of such polytopic systems, which constitutes a
substantial contribution to the theory of hybrid systems. The condition demands verifying whether
the joint spectral radius of a set of matrices is less than one, which, unfortunately, is known to be
NP-hard, thereby limiting the practical applicability of the derived condition. For this reason, we
propose a sufficient stability condition that requires to test the feasibility of a set of linear matrix
inequalities, which is typically done by state-of-the-art solvers in polynomial time. A by-product of
the derived condition is a similar set of inequalities whose feasibility guarantees the existence of a
state feedback controller that stabilizes the plant in the mean square sense. The set of inequalities is
less restrictive than related ones from the literature and, thus, enables the synthesis of less conservative
controllers.

In the final part of this thesis, we integrate our contributions into the CoCPN architecture and show-
case the applicability of its cooperative concept in simulation scenarios with highly utilized network
resources that have to be shared with unrelated traffic from other applications. Especially the col-
laboration between our SMPC approaches and the control-aware congestion control allows control
loops to operate reliably without undesirable performance degradations even when the communication
conditions change rapidly. Consequently, our work paves the way for the ubiquitous use of standard
networking equipment as a flexible and adaptable foundation for CPS in industrial applications.





Notation

Symbols

CoCPN translator.
R Set of real numbers.
Q Set of rational numbers.
N Set of natural numbers.
Rn n-dimensional Euclidean space.
Rn×m Vector space of all n-by-m-dimensional matrices.
∆n n-dimensional standard/probability simplex.
Sn n-dimensional simplex in Rm.
Hn Banach space of all (N + 1)-tuples of n-by-n-dimensional matrices.
δ(·) Dirac delta function.
1{a} Indicator function of the predicate a.
n! Factorial of the nonnegative integer n.
conv(A) Convex hull of the set A.
ai:j Sequence ai, ai+1, . . . , aj of elements of the same kind (e.g., vectors or matrices).
{ak} Infinite sequence a0, a1, . . . of elements of the same kind (e.g., vectors or matrices).
(a1, . . . , an) Tuple, i.e., an ordered list, of n elements of the same kind (e.g., vectors or matrices).
ȧ First derivative of a with respect to time.
ä Second derivative of a with respect to time.
� End of proof.

Special Vectors

0 Zero vector of arbitrary dimension.
1 Vector of ones of arbitrary dimension.
1n n-dimensional vector of ones.
e

(i)
n i-th standard basis vector in Rn.
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Operations on Vectors

xT Transpose of the vector x.
‖x‖2 Euclidean norm of the vector x.
‖x‖ Any norm of the vector x.
x⊗ y Kronecker product of the vectors x and y.
x > 0 All entries of the vector x are positive.
x ≥ 0 All entries of the vector x are nonnegative.
nx Dimension of the vector x, i.e., its number of entries.
E{x} Mean/first moment of the random vector x.

Special Matrices

0 Zero matrix of arbitrary dimension, not necessarily square.
0n×m n-by-m zero matrix.
0n n-by-n zero matrix.
1n n-by-n matrix of ones.
I Identity matrix of arbitrary dimension.
In n-by-n identity matrix.

Operations on Matrices

AT Transpose of the matrix A.
A−1 Inverse of the matrix A.
A† Moore-Penrose pseudoinverse of the matrix A.
tr [A] Trace of the matrix A.
det[A] Determinant of the matrix A.
‖A‖F Frobenius norm of the matrix A.
‖A‖ Any norm of the matrix A.
A⊗B Kronecker product of the matrices A and B.
vec (A) Vectorization of the matrix A.
A � 0 Matrix A is positive definite.
A < 0 Matrix A is positive semidefinite.
A > 0 All entries of the matrix A are positive.
A ≥ 0 All entries of the matrix A are nonnegative.
ρ(A) Spectral radius of the square matrix A.
ρ̂ (M) Joint spectral radius of a finite set of square matricesM.
Πk(M) All products of length k whose factors are from a set of square matricesM.
‖X‖H Norm on Hn.
ϕ̂ (X ) Vectorization of the element X ∈ Hn.
E(i)(X ) Family of mappings on Hn, defined as E(i)(X ) =

∑N+1
j=0 tijX

(j).

Variable Conventions

ACKk Acknowledgment sent by the actuator at time k.
ak (Uk′) Age (in time steps) of the control sequence Uk′ at time k.
A System matrix in the discrete-time plant dynamics.
Ac System matrix in the continuous-time plant dynamics.
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Ã(i) System matrix in the dynamics of ψ
k

associated with mode θk = i.

A
(i)
k System matrix in the dynamics of ξ

k
associated with mode θk = i at time k.

Ak Set of acknowledgments received by the controller at time k.
B Input matrix in the discrete-time plant dynamics.
Bc Input matrix in the continuous-time plant dynamics.
B̃(i) Input matrix in the dynamics of ψ

k
associated with mode θk = i.

B
(i)
k Input matrix in the dynamics of ξ

k
associated with mode θk = i at time k.

C Measurement matrix in the measurement model.
C Measurement matrix in the measurement model of ξ

k
at time k.

fa Controller sampling rate (in hertz).
F System matrix in the dynamics of η

k
.

G Input matrix in the dynamics of η
k
.

Gc System noise matrix in the continuous-time plant dynamics.
Ik Information set available to the controller at time k.
J Cost function to be minimized over the optimization horizon.
K Length of the optimization horizon (in time steps).
Ks Duration of a simulation run (in time steps).
Kk Observer gain of a linear control law at time k.
L The maximum number of stored measurements.
Lk Controller gain of a linear control law at time k.
L Set of all vertices of the transition matrix polytope.
Mac Maximum value of τac

k .
M Maximum value of τ ca

k .
M sc Maximum value of τ sc

k .
N Number of control inputs in a control sequence.
Ns Number of simulation runs in a Monte Carlo simulation.
Nt Covariance matrix of ot at stage t of the optimization horizon.
ot System noise in the dynamics of x̃t at stage t of the optimization horizon.
pca
ij Transition probability P[τ ca

k = j|τ ca
k−1 = i].

p
(i)
k Probability P[τ ca

k = i], the i-th element of p
k
.

p
k

Probability distribution of τ ca
k at time k.

Pca Transition matrix of τ ca
k .

P̃ca Transition matrix of τ ca
k .

P̃t Costate matrix associated with X̃t at stage t of the optimization horizon.
P̃

(i)
t Costate matrix associated with X̃

(i)
t at stage t of the optimization horizon.

P̃ t Tuple composed of costate matrices P̃
(i)
t at stage t of the optimization horizon.

P
(i)
t Costate matrix associated with X

(i)
t at stage t of the optimization horizon.

P
(i)
t Costate matrix associated with X

(i)
t at stage t of the optimization horizon.

Qt State weighting matrices in the cost function.
R Number of vertices of the transition matrix polytope.
Rt Input weighting matrices in the cost function.
ta Controller sampling interval, ta = 1/fa (in seconds).
ts Duration of a simulation run (in seconds).
tk,ij Transition probability from mode i to mode j at time k, i.e., P[θk+1 = j|θk = i].
Tk Transition matrix of θk.
uk Control input applied by the actuator at time k.
uk+i|k Control input computed at time k for application at time k + i.
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udf
k Default input applied by the actuator at time k if no applicable inputs are available.
Ubf
k Control sequence buffered by the actuator at time k.

Uk Control sequence computed at time k.
Ū Distribution matrix in the lumped dynamics for θk.
Uk Set of control sequences received by the actuator at time k.
vk Measurement noise at time k.
vk Measurement noise affecting y

k
at time k.

V Measurement noise covariance matrix.
V̄ Collection matrix in the lumped dynamics for θk.
V Covariance matrix of vk.
Vt Cost-to-go from stage t of the optimization horizon to the terminal stage K.
V(i)
t Mode-conditioned cost-to-go from stage t

of the optimization horizon to the terminal stage K.
Vt Upper bound for Vt.
wk System noise at time k.
w̃k System noise in the dynamics of ψ

k
at time k.

wk System noise in the dynamics of ξ
k

at time k.
W System noise covariance matrix.
Wc Intensity of the zero-mean white noise in the continuous-time plant dynamics.
W̃ Covariance matrix of w̃k.
W Covariance matrix of wk.
xk Plant state at time k.
x̂0 Mean of initial plant state x0.

x̃t Closed-loop state at stage t of the optimization horizon, defined as x̃t =
[
ξT
t
ξ̂

T

t

]T
.

X0 Covariance of initial plant state x0.
X̃t Second moment of x̃t at stage t of the optimization horizon,

defined as X̃t = E
{
x̃tx̃

T
t

}
.

X̃
(i)
t Second moment of x̃t at stage t of the optimization horizon,

defined as X̃
(i)
t = E

{
x̃tx̃

T
t 1{θt=i}

}
.

X
(i)
k Second moment of ξ̂

k
at time k, defined as X

(i)
k = E

{
ξ̂
k
ξ̂

T

k
1{θk=i}

}
.

X
(i)
k Estimation error covariance at time k,

defined as X
(i)
k = E

{(
ξ
k
− ξ̂

k

)(
ξ
k
− ξ̂

k

)T
1{θk=i}

}
.

y
k

Measurement taken by the sensor at time k.
y
k

Augmented measurement at time k,

defined as y
k

=
[
γk|kyT

k
γk|k−1y

T
k−1

. . . γk|k−LyT
k−L

]T
.

Yk Set of measurements received by the controller at time k.
zk Vectorized tuple of second moments at time k, defined as zk = ϕ̂ (Zk).
Zk Tuple composed of second moments Ψ

(i)
k at time k.

γk|k−l Binary variable encoding availability of measurement y
k−l at time k.

γ
k

Binary vector encoding availability of measurements y
k
, y
k−1

, . . . , y
k−l at time k.

Γ
(i)
t System matrix in the dynamics of x̃t associated with mode θt = i at stage t.

δ Upper bound for tk,NN , i.e., P[θk+1 = N |θk = N ] ≤ δ < 1.
η
k

All inputs from past control sequences that are applicable at time k or later.
θk Markov chain describing the mode dynamics in the augmented dynamical system.
Λ(i) i-th vertex of the transition matrix polytope.
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µ
(i)
k Probability P[θk = i], the i-th element of µ

k
.

µ
k

Probability distribution of θk at time k.

ξ
k

Augmented state at time k, defined as ξ
k

=
[
xT
k x

T
k−1 . . . x

T
k−L η

T
k

]T
.

ξ̂
k

Controller state, i.e., its estimate of ξ
k
, at time k.

πk Control law at time k.
τac
k Stochastic process to model delays (in time steps) and losses

in the transmission of acknowledgments, defined on the set {0, 1, . . . ,Mac}.
τ ca
k Stochastic process to model delays (in time steps) and losses

in the transmission of control sequences, defined on the set {0, 1, . . . ,M}.
τ sc
k Stochastic process to model delays (in time steps) and losses

in the transmission of measurements, defined on the set {0, 1, . . . ,M sc}.
τ ca
k Augmented stochastic process, defined as τ ca

k =
(
τ ca
k , τ

ca
k−1, . . . , τ

ca
k−(N−1)

)
.

ψ
k

Augmented state at time k, defined as ψ
k

=
[
xT
k η

T
k

]T
.

Ψk Second moment of ψ
k

at time k, defined as Ψk = E
{
ψ
k
ψT
k

}
.

Ψ
(i)
k Second moment of ψ

k
at time k, defined as Ψ

(i)
k = E

{
ψ
k
ψT
k
1{θk=i}

}
.
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CHAPTER
1

Introduction

In recent years, the traditional line in manufacturing and production between the physical processes
and higher-level services has become more and more blurred. This trend is part of a general transition
towards a more intelligent, flexible, and autonomous operation of manufacturing and production
systems, or power and water distribution systems [1–4]. This transition, often referred to by the
umbrella terms Industry 4.0 and Industrial Internet of Things, is driven by the recent advancements in
automation and digitalization and the desire to integrate higher-level (cloud-based) services for, e.g.,
lifecycle management or data analytics and visualization [5–7]. Cyber-physical systems (CPS) are
widely considered a cornerstone for a successful realization of this transition, as they tightly integrate
physical and software (cyber) components into a single distributed system [8, 9]. Conceptually, a CPS
can be viewed as an ensemble of control loops that share a communication system to exchange sensor
readings, control commands, and system or environmental states for sensing, monitoring, and actuation
of physical components [10, 11]. This is illustrated in Fig. 1.1.

Control Loop 1 Control Loop n

Control System

. . .Other
Traffic S C A S C A

Communication System S: Sensor
C: Controller
A: Actuator

Figure 1.1: High level view of a cyber-physical system (adapted from own publication [290]).

Control loops that use a shared communication system are called networked control systems (NCS) to
dissociate them from “traditional” control loops, where dedicated point-to-point wiring is employed to
connect sensors, actuators, and controllers [12, 13]. In industrial and automotive control applications,
highly specialized wired networks, so-called fieldbuses, have been standard to date. For instance,
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Communication System

Controller

Extract Combine

Figure 1.2: Illustration of the data exchange provided by the CoCPN translator (adapted from own publication [290]).

in 2018 the number of installed Profibus devices reached the mark of 60 million [14]. Other com-
mon fieldbuses are FlexRay [15], EtherCAT [16], and solutions based on Controller Area Network
(CAN), such as CANopen [17] or DeviceNet [18]. Properly designed fieldbus networks provide data
transmissions with guaranteed latencies and offer simplified installation and maintenance compared
to the traditional point-to-point wiring [13, 19]. Similarly, specialized wireless networks based on
the IEEE 802.15.4 standard, such as WirelessHART or ISA100.11a, have found widespread usage in
industrial environments since they also offer guaranteed latencies [20–22].

Lately, however, more and more CPS are deployed with off-the-shelf networking equipment. This
development is boosted by the availability of cheap devices, the ubiquitous presence of general-
purpose networks (e.g., the Internet), which offers the option to use already existing communication
infrastructure, and a gain in flexibility compared to fieldbuses [23]. Specifically devices that support
the IEEE 802.11 (WLAN) standards allow for significantly higher data rates compared to the wireless
technologies mentioned above, whose underlying physical layers constrain their reliable operation to
applications with sampling periods above 50 ms [24–26]. On the other hand, the quality of service
(QoS) provided by general-purpose networks is subject to fluctuations. These occur due to the co-
existence of data flows with different priorities, queuing at intermediate nodes that emerges from the
lack of any statically pre-determined scheduling, and protocol mechanisms for medium access or flow
and congestion control. For the end systems, variations of the QoS become visible in terms of varying
latencies, packet loss rates, and goodput. These factors can severely degrade the achievable performance
of control loops and, even worse, render the closed-loop dynamics unstable [27]. Consequently, for
a reliable operation within such CPS, control loops must be elastic, that is, they must be enabled to
operate reliably even under changing communication conditions.

The interdisciplinary research project CoCPN: Cooperative Cyber-Physical Networking achieves this
goal by implementing cooperation between control loops and the shared communication system. The
key idea is to cooperatively share the available communication resources by balancing the performance
that each control loop shall achieve. To avoid tight coupling between the control loops and the
communication system, CoCPN uses a flexible, distributed, and lightweight cooperation in the form
of a data exchange, which is illustrated in Fig. 1.2. To interact with the communication system, each
controller is equipped with a so-called CoCPN translator , which provides the formal interfaces for
the meta data passed from the controller to the communication system and vice versa. The CoCPN
translator supplies each controller with information about the QoS that the communication system
currently provides. To that end, it processes monitoring data collected inside the communication
system and translates it into a suitable representation in the form of a network model. The network
model enables the controller to take quantities such as expected packet delays or loss rates into
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account when computing new control inputs. Additionally, each controller is provided with a target
control performance and adapts its usage of the communication resources accordingly by decreasing
or increasing its sending rate. The target performance is computed by a control-aware congestion
control mechanism, which is part of the communication system, such that all control loops can achieve
the same performance. This does usually not lead to equal sending rates for all controllers, since the
individual communication requirements, for instance regarding the timely transmission of control
commands, are dependent on the control task. Hence, to compute the target control performance,
the communication system uses the CoCPN translator to obtain information on the communication
requirements of a controller.

Within CoCPN, the goal of this thesis is the realization of the “control-related portion” of the coop-
eration. This comprises, first, the design and the implementation of the related parts of the CoCPN
translator and its interfaces for the interaction with the communication system, and, second, the provi-
sioning and processing of the exchanged information. In particular, we focus on the design and analysis
of algorithms for networked control that, based on the information provided by the CoCPN translator,
enable controllers to 1) quickly respond to changes of the network QoS and 2) efficiently utilize the
available communication resources to achieve and maintain the wanted target control performance.

In the next section, we outline the structure and the contributions of this thesis. In the subsequent
section, then, we briefly discuss relevant related work.

1.1 Outline and Contributions

The main research question of this thesis is how to exploit the information provided by the CoCPN
translator so that the available communication resources are optimally used. This makes it necessary
to consider the plant dynamics, the potential impact of sensor noise and other unmodeled disturbances,
and also the impact of the shared communication system during the controllers’ decision-making. For
a consistent and rigorous consideration of the uncertainties resulting from these factors, we approach
the aforementioned research question with methods from stochastic control.

The structure of this thesis is visualized in Fig. 1.3. We begin with a more detailed description of the

Chapter 1:
Introduction

Chapter 2:
CoCPN: Cooperative Cyber-Physical Networking

Chapter 3:
Description of the Considered Networked Control System

Chapter 4:
Construction of the Augmented Dynamics

Chapter 5:
Sequence-Based

Stochastic Model Predictive Control

Chapter 6:
Sequence-Based Stochastic Robust Control

Chapter 7:
Integration into the CoCPN Architecture

Chapter 8:
Conclusions

Figure 1.3: The structure of this thesis.
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CoCPN architecture in Chapter 2. In particular, we formalize the interfaces provided by the CoCPN
translator and introduce the notion of quality of control (QoC), which is used i) by the controllers to
report their communication requirements to the communication system and ii) by the control-aware
congestion control to balance the usage of shared network resources between different NCS. Then,
the main contributions of this thesis are proposed, each of which is briefly summarized in one of the
subsections below.

The first contribution, presented in Chapters 3 and 4, is an extension of an existing model for the design
and analysis of networked control algorithms that allows us to pursue a more realistic consideration of
the impact of packet delays and losses in this thesis in comparison to the majority of the literature. This
model forms the basis for the two novel algorithms for networked stochastic model predictive control
that are derived in Chapter 5 and which constitute our second contribution. Likewise, the model is
used in Chapter 6, where we investigate the impact of uncertainties in the network model provided
by the CoCPN translator on the control performance. Conditions for the stability of the closed-loop
dynamics and the existence of stabilizing control laws in the presence of such uncertainties are the
final contribution of this thesis.

In Chapter 7, we integrate our contributions into the CoCPN architecture and illustrate CoCPN and
its cooperative concept in different simulation scenarios with a challenging control task. We show
that especially our proposed model predictive control algorithms, supported by the data exchange
provided by the CoCPN translator, avoid without undesirable performance degradations even when
the communication conditions change rapidly. Finally, we conclude this thesis in Chapter 8 with a
summary of our results and a discussion of potential future research topics.

1.1.1 Model for Design and Analysis of Networked Control Algorithms

Challenge To consider the influence of the shared communication system during the computation
of new control inputs, networked controllers need to be equipped with a network model. The model
needs to accurately describe the impact of the relevant influencing factors, namely the impact of packet
delays and losses, and must be flexible enough to reflect changes of the network QoS. In particular,
the network model shall not be limited to a specific representation of the occurring packet delays and
losses.

Contribution We extend an existing modeling approach for the design and analysis of networked
control algorithms, which compactly expresses the whole NCS, that is, the plant dynamics and the
impact of the shared communication system, in terms of a hybrid system, which is a special type
of a dynamical system whose state variables decompose into a continuous- and a discrete-valued
subset. Originally, this model was proposed under the assumption that packet delays and losses can be
accurately described by an independent and stationary random process. For a more realistic treatment
of packet delays and losses in this thesis, we relax this assumption. We show that the same hybrid
system model arises if we allow the random process to be non-stationary and correlated. Additionally,
we avoid the assumption that acknowledgments are instantaneously delivered without failure, which
is posited in the majority of the literature. Instead, we adopt a more practical point of view and take
delays and losses during their transmission into account.

1.1.2 Networked Stochastic Model Predictive Control

Challenge Given the obtained hybrid system model, we can predict the impact of packet delays
and losses on the plant behavior and the control performance. Hence, stochastic model predictive
control (SMPC) approaches are inherently well-suited for the computation of control inputs. However,



1.1 Outline and Contributions 5

for the considered NCS, the lack of reliable actuator feedback leads to the so-called dual effect: The
control inputs affect the plant state – namely, the desired control action – and also the controller’s
future uncertainty of the plant state, that is, the future estimation error. The presence of the dual effect
makes the analytical determination of control laws that are optimal with regards to a selected cost
function impossible, and even worse, renders their numerical computation intractable.

Contribution We propose two novel approaches for the computation of suboptimal control laws.
Both approaches exhibit contrasting properties. The first approach proposes a control law which is a
nonlinear function of the available information and based on a global approximation of the cost-to-go,
which we obtain by exploiting the connection between hybrid systems and multiple model algorithms
for state estimation. However, the impact of the dual effect on the cost is neglected. In contrast, in
the second approach, the underlying control law is a linear function of the available information and
derived based on a local approximation of the cost-to-go, i.e., we iteratively minimize an upper bound
of the cost via repeated improvements of a given reference trajectory. Moreover, this approximation
takes the impact of the dual effect into account. Simulations demonstrate that our approaches can
achieve markedly better control performance than state-of-the-art approaches for networked SMPC
from the literature.

Neither of the two proposed approaches can be deemed superior to the other. The second approach
belongs to the class of closed-loop feedback approaches and, as such, anticipates the availability of
future measurements during the computation of the control inputs. On the other hand, the first approach
lacks this feature due to the negligence of the dual effect, which is disadvantageous from a theoretical
perspective. However, as the simulation results confirm, the resulting performance loss is typically
only slight for short optimization horizons. Moreover, this approach might be more suitable from a
practical perspective because its computational complexity is by far lower.

1.1.3 Networked Stochastic Robust Control

Challenge The network model provided by the CoCPN translator is based on monitoring data
collected inside the communication system. Thus, it is always only an estimate of the “state” of the
underlying communication system. Errors or uncertainties in the provided model, however, directly
affect the control performance, since it is needed to construct the hybrid system model used to compute
the control inputs. Consequently, investigating the influence of modeling errors on the achievable
control performance and the design of control algorithms that are robust to this kind of modeling errors
is crucial.

Contribution To address this challenge, we first show that an uncertain or even completely unknown
network model results in a polytopic parameter uncertainty in the hybrid system model. We then
derive a necessary and sufficient condition for the mean square stability of such a polytopic system,
thereby extending existing results from the literature. As it isNP-hard to determine whether the found
condition is satisfied or not, we proceed with the search for a more practical criterion. To that end,
we propose a sufficient stability condition in terms of a set of linear matrix inequalities that are easy
to evaluate by state-of-the-art solvers and less restrictive than comparable ones from the literature.
Finally, we obtain a similar set of inequalities whose feasibility implies the existence of a linear state
feedback law that stabilizes the plant in the mean square sense.



6 1 Introduction

1.2 Related Work

In the literature, we can identify many research results that focus on the interaction of control and
communication in networked control systems or, more generally, in cyber-physical systems. In this
section, we provide an overview of approaches, which, similar to CoCPN, focus on the coupling effects
induced by the shared usage of communication resources. Relevant references in the fields of our
contributions are presented later in the respective chapters.

A broad spectrum of related work is concerned with the design and analysis of networked control
algorithms for communication networks with desired properties such as low latencies or packet error
rates. These properties, then, permit the design of specialized and made-to-measure algorithms with
provable performance guarantees. On the other hand, fulfilling the posited properties typically requires
the deployment of dedicated hardware, which limits the applicability of the resulting algorithms.
Recent approaches in this regard are [28–30], which develop methods for control over specially
tailored low power wireless networks [31, 32]. Similarly, the research published in [33–35] addresses
the control over wireless networks based on the IEEE 802.15.4 standard, and control over FlexRay
and EtherCAT fieldbus networks is considered in [36–39].

A second line of research aims to increase the predictability of general-purpose networks to support
real-time capable data transmissions. To that end, several dedicated communication protocols have
been standardized, the most notable of which are the time-sensitive networking (TSN) standards from
the IEEE 802.1 working group, the White Rabbit extension of the Precision Time Protocol (PTP),
and the standards resulting from the IETF deterministic networking (DetNet) effort [40, 41]. By
providing global transmission schedules, these protocols allow for time-triggered communication
with deterministic latencies and low jitter [42, 43]. However, the transmission schedules are typically
determined offline, and the high computational complexity renders necessary updates, e.g., due to
starting or stopping data flows, difficult [44,45]. Moreover, the required accurate time synchronization,
which is especially crucial for high-bandwidth applications, can be hard to maintain in wireless
environments [46–48].

Finally, a great deal of research addresses the coupling effects that arise from the shared usage of
the communication system by carrying out cross-layer optimizations. The key idea is to formulate
optimization problems, whose solutions maximize the performance of all networked control systems
in the CPS and at the same time optimize the sharing of the communication resources. To formulate
the optimization problems, the published results typically assume that the communication resources
are assigned to the senders according to some policy, e.g., the medium access is granted based on
time slots or transmission frequencies [49–56]. A different track is pursued in the works [57–60],
which indirectly optimize the sharing of the communication resources by finding optimal controller
sampling rates. However, cross-layer optimization demands a central entity with a global view of the
communication system and the communication demands of all end systems. Hence, the presented
approaches tightly couple the control loops and the communication system, rendering them relatively
inflexible.



CHAPTER
2

CoCPN: Cooperative Cyber-Physical
Networking

As introduced in the previous chapter, CoCPN specifically targets cyber-physical systems that are
deployed with standard networking equipment as an adaptable and flexible basis for networked
applications. To ensure a reliable operation of control loops within such applications, three main
challenges must be addressed. First, control loops typically have different requirements regarding data
rates or latencies and are assigned different priorities within the CPS. Second, the access to limited
communication resources must be balanced between all control loops such that high performance
of the whole CPS is ensured. Lastly, sharing common network infrastructure can cause undesirable
side effects as different end systems may interfere with each other. To illustrate these challenges,
consider Fig. 2.1, which shows two control loops that share a link within the network. Sharing this
link establishes an implicit coupling between the two control loops, even if they are unrelated in the
physical world. Any over-utilization of the link, which, for instance, might occur when C2 increases
its sending rate, leads to larger communication delays or, even worse, packet losses. As this affects all
packets traversing the link, the performance achieved by C1, and thus the performance of the overall
CPS, degrades.

CoCPN addresses the aforementioned challenges by a cooperative usage of the available communi-
cation resources. More precisely, it relies on cooperation i) between the communication system and
the control loops and ii) among the control loops themselves. For this purpose, CoCPN introduces
the CoCPN translator . The CoCPN translator enables the data exchange between control loops
and the communication system. Solely based on the exchanged data, the cooperation is realized in
a flexible, lightweight, and distributed manner, and tight coupling between the control loops and
the communication system is avoided. In particular, no central entity with a global view on the
communication resources is needed.

In the first section of this chapter, Section 2.1, we provide a detailed description of the CoCPN
architecture. In the course of the description, we formalize the interface provided by the CoCPN
translator and define the notion of quality of control (QoC), which is used within CoCPN to report
the controllers’ communication requirements to the communication system and to balance the usage
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Shared Link

C1 C2

S1 A1 S2 A2

S: Sensor
C: Controller
A: Actuator

Figure 2.1: Implicit coupling of two networked control systems due to a shared link (adapted from own publication [290]).

of the shared communication resources. The CoCPN architecture is fully implemented in CoCPN-
Sim, an open source simulation and evaluation framework for cyber-physical systems that has been
developed within the scope of our research [295].1 By combining well established tools from control
engineering (Matlab) and the communications community (OMNeT++/INET), it permits detailed and
fine-grained investigations of the interplay between the control loops and the internal mechanisms of
the communication system for, e.g., congestion and flow control. We briefly introduce CoCPN-Sim in
the second section of this chapter, Section 2.2.

The following descriptions of the CoCPN architecture and CoCPN-Sim are extended versions of the
descriptions given in the publication [290].

2.1 The CoCPN Architecture

As mentioned above, one aspect of CoCPN is to implement cooperation between the communication
system and the control loops. The cooperation is enabled by the CoCPN translator, which processes
monitoring data collected within the communication system. To provide secure and timely information
with low overhead, the monitoring building block SERUM (Secure Network Route Monitoring) was
developed [61]. Instances of SERUM are part of the network layer of the end systems and routers
and collect status information along the communication paths, such as link and queue utilizations and
packet loss and error rates. The CoCPN translator translates the collected data into a probabilistic
description of the occurring packet delays and losses that is suitable for the controller. We will
formalize the probabilistic network model later in Section 3.2.

The network model permits the controller to take the impact of potential packet delays and losses into
account during the computation of new control inputs. To that end, CoCPN leverages the sequence-
based control paradigm. Sequence-based control, which is often also called packetized predictive
control, is a well-established method to mitigate the impact of packet delays and losses [62–67]. The
general idea is to transmit a complete sequence Uk of control inputs that also contains predictive
inputs for the next, say N − 1, time steps, in addition to the current one uk. The actuator buffers these
predictive inputs and applies them to the plant if follow-up data packets sent by the controller do not
arrive in time. An appropriately chosen sequence length thus compensates for packet delays and losses
and prevents the plant from running in open-loop operation. We will formalize both the concept of a
control sequence and the buffering procedure employed by the actuator in Section 3.1.

1 CoCPN-Sim is released under the GNU General Public License (GPL) and available on github:
https://github.com/spp1914-cocpn/cocpn-sim

https://github.com/spp1914-cocpn/cocpn-sim
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To prevent undesired side effects from the implicit coupling between control loops mentioned above,
CoCPN additionally implements cooperation among the control loops to support a cooperative usage
of the shared communication resources. The key enabler of this cooperation is the control-aware
cooperative congestion control (CoCC), which seeks to distribute the available communication capac-
ity among the control loops such that their control performance is kept in balance [68,69]. The working
principle of CoCC is motivated by the fact that disturbance rejection and control performance of a
digital control controller improve with its sampling rate fa [70, 71]. In fact, the achievable control
performance typically increases monotonically with fa [72–74]. Thus, the relationship between control
performance and sampling rate can be written as performance = p(fa) for some function p that is
(strictly) increasing.

Exploiting this connection, CoCC dynamically adjusts the target control performance that the con-
trollers shall achieve. Each controller, then, in turn accordingly increases or decreases its sampling rate
and, consequently, its sending rate, as much as is necessary to reach this target performance. Based on
this principle, CoCC implements a fair sharing of the available communication capacity that avoids
over-utilized links and allows all controllers to achieve the same performance. This does usually
not lead to equal sending rates for all controllers because their communication requirements differ.
Thus, for the computation of the target control performance, CoCC must know the communication
requirements of each controller and relate them to the achievable control performance.

However, how control performance is assessed or measured depends on the control task, application-
specific requirements and constraints, and the type of controller in use. For instance, for classical
approaches such as proportional-integral-derivative (PID) controllers one uses other performance
measures than for MPC approaches [75–77]. Hence, CoCPN uses an abstract, normalized performance
index, referred to as quality of control (QoC), which is defined as follows.

Definition 2.1: (Quality of Control (QoC))
The notion of quality of control (QoC) defines an abstract measure of control performance that attains
values in [0, 1] and is comparable among all control loops in the CPS. Within the CoCPN architecture,
the controllers use it to report their communication requirements to the communication system, and
CoCC uses it to balance the available communication capacity. For this purpose, the CoCPN translator
provides a mapping

rate = r(QoC) , (2.1)

with rate ≥ 0 (in bits per second), that describes the relationship between control performance and
the data rate required to achieve it.

To provide the mapping r, the CoCPN translator first translates the application-dependent performance
measure performance into QoC. Their relationship must be specified by the system designer in
advance and should be such that QoC = 0 corresponds to some minimal performance that still
guarantees desirable properties such as stability of the closed-loop dynamics.

In Chapter 7, where we integrate the control algorithms to be developed in this thesis into the CoCPN
architecture, we use the control performance that can be achieved with different sampling rates between
minimum and maximum values famin and famax as the basis for the QoC calculation. Based thereon,
we first obtain a mapping performance = p(fa) such that p(famax) = 1 and 0 < p(fa) < 1 for
famin ≤ fa < famax . This mapping has an intuitive interpretation: p (fa) quantifies the “amount” of
control performance that remains when the sampling rate is reduced from famax to fa. A straightforward
normalization then defines a relationship between performance and QoC according to

QoC ,
p (fa)− p (famin)

1− p (famin)
,
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Figure 2.2: Illustration of possible mappings rate = r(QoC) provided by the CoCPN translator .

such that QoC = 1 for famax and QoC = 0 for famin.

Based on the defined relationship between performance and QoC, the CoCPN translator then translates
the mapping performance = p(fa) into a mapping of the form (2.1). This mapping is again application-
dependent and should satisfy r(QoC1) < r(QoC2) for QoC1 < QoC2, that is, it should be strictly
increasing to reflect that the achievable control performance increases with the sending rate. A
conceptual implementation of the interface between the controller and the communication system
provided by the CoCPN translator is given in Algorithm 2.1.2

Algorithm 2.1 Conceptual Implementation of the Interface: Controller→ Communication System
Input: performance = p (fa) // Application-dependent relationship
Output: rate = r(QoC) // Strictly increasing mapping

1: Translate performance into QoC // Application-dependent translation
2: Translate fa into rate // From Hz to bit/s
3: Compute mapping r
4: return r

To illustrate the notion of QoC, let us again consider the two control loops in Fig. 2.1 that share a
link within the network. Let the corresponding relationships between QoC and data rate be given
by the functions r1 and r2 depicted in Fig. 2.2. If QoC(C1) = QoC(C2), say 0.6 (marked by the
black dot in the figure), then from the perspective of CoCPN and CoCC the performance of the two
controllers is equal and the available link capacity is shared in a fair manner. However, as Fig. 2.2
exhibits, this sharing does not result in equal data rates since we get r1(0.6) = 164 kbit/s but
r2(0.6) = 200 kbit/s, indicating the different communication requirements of C1 and C2. If, on the
other hand, QoC(C1) 6= QoC(C2), the available link capacity is not shared in a fair way between C1

and C2 because then either C1 achieves better performance than C2 (in case QoC(C1) > QoC(C2)),
or C2 achieves better performance than C1 (in case QoC(C1) < QoC(C2)). Hence, CoCC must adjust
the sharing of the link capacity to restore fairness.

Based on the notion of QoC, the basic (simplified) working principle of CoCC is as follows. Given
a link l with capacity rl (in bits per second) that is shared by n control loops, CoCC tries to find the

2In our current implementation of the CoCPN architecture, Algorithm 2.1 is only called once at the beginning. That is,
we assume that the communication requirements of the controller, expressed by the mapping r, do not change over time.
However, CoCPN supports changes of r at runtime.
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Figure 2.3: Refined illustration of the data exchange provided by the CoCPN translator enabling the cooperative usage
of the communication resources.

maximum QoCtarget that satisfies

rl ≥
n∑

i=1

ri
(
QoCtarget

)
, (2.2)

where ri is the mapping (2.1) provided by the CoCPN translator associated with the i-th controller.
Note that (2.2) expresses the fairness goal of CoCPN since QoCtarget is equal for all control loops.
Based on Newton’s method, CoCC iteratively computes QoCtarget in a distributed, round-based
manner with fixed round durations. For a detailed description of the distributed implementation and
the challenges that arise in multi-hop networks, we refer the reader to [68, 69].

Continuing the example with the two control loops in Fig. 2.1, let us assume that the shared link
provides a capacity of rl = 450 kbit/s for the control data flows. Then, (2.2) becomes

450 ≥ r1

(
QoCtarget

)
+ r2

(
QoCtarget

)
.

With r1 and r2 as shown in Fig. 2.2, the maximum QoCtarget satisfying this inequality is 0.75,
highlighted by the blue square in the figure.

Using again the mapping r, the CoCPN translator extracts the corresponding target sampling rate
fatarget . The controller, finally, alters its sampling rate accordingly and sets fa = fatarget , which
in turn leads to a changed sending rate. A conceptual implementation of the interface between the
communication system and the controller provided by the CoCPN translator is shown in Algorithm 2.2.

Algorithm 2.2 Conceptual Implementation of the Interface: Communication System→ Controller
Input: Monitoring Data, QoCtarget

Output: Network Model, Target Sampling Rate fatarget

1: Translate monitoring data into network model // As formalized in Section 3.2
2: Translate QoCtarget back into target sampling rate fatarget

// Based on mapping r
3: return Network model, fatarget

The CoCPN architecture and the data exchange provided by the CoCPN translator are illustrated
in Fig. 2.3. CoCPN is fully implemented in the simulation and evaluation framework CoCPN-Sim,
which we introduce next.
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Figure 2.4: Illustration of the data flow between Matlab and OMNeT++/INET within CoCPN-Sim (adapted from own
publication [290]).

To conclude this section, we emphasize that QoC is not a suitable measure to determine which
controllers are superior to others in a given application. This would be a typical task of controller
performance assessment, where one usually draws on established (theoretical) benchmarks [78, 79].
Instead, within the CoCPN, we assume that all controllers are properly designed to achieve the intended
control goals.

2.2 CoCPN-Sim at a Glance

CoCPN-Sim integrates the event-driven simulation framework OMNeT++ [80] and the numerical
computing platform Matlab. Matlab is widely used in the control community for the design and
analysis of control systems, and OMNeT++ and its accompanying model suite INET [81] are often
used for network analyses. Hence, in CoCPN-Sim, Matlab supplies the mathematical computing
toolbox for all control-related tasks within a CPS, and OMNeT++ and INET are used to model the
communication system. Thanks to this combination, CoCPN-Sim allows the fine-grained analysis of
CPS and the consideration of sophisticated network scenarios and topologies.

To realize the required communication between the components of a networked control system – for
instance, control sequences sent from the controller to the actuator and measurements sent from the
sensor to the controller – in the simulation, data has to be exchanged between Matlab and OMNeT++
and then translated into an equivalent representation suitable for further processing in OMNeT++.
Additionally, we must integrate their clock-driven communication into the event-driven workflow of
OMNeT++. To that end, CoCPN-Sim defines a data flow interface with components that reside both
in its Matlab part and its OMNeT++ part. This interface is sketched in Fig. 2.4. Its main component is
called NcsContext and resides inside the OMNeT++ part. An NcsContext represents a control
loop within OMNeT++ and offers a polling event which is used by the simulation kernel to periodically
(with period ta = 1/fa) trigger the clock-driven communication between the components of the
NCS modeled in Matlab. As illustrated in the figure, the NcsContext calls the hook function
ncs_doLoopStep which then prompts Matlab to conduct all necessary computations. A conceptual
implementation of this function is shown in Algorithm 2.3.

As a result of this call, a set of DataPackets is handed back to OMNeT++. A DataPacket
is a unified and serializable representation of a message to be exchanged between the components
of the NCS, e.g., a control sequence to be sent to the actuator or a new measurement taken by the
sensor. After being transformed into an INET-compatible representation, the messages are forwarded
to the network model. From this moment on, all further processing steps happen asynchronously
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Algorithm 2.3 Conceptual Implementation of ncs_doLoopStep
Input: Time Step k, Network Model (optional), Target Sampling Rate fatarget

(optional)
Output: DataPacket[] // Output Packets

1: Fetch input packets from packet buffer
2: Process input packets // Control sequences, measurements, and acknowledgments
3: Update network model (optional) // As formalized in Section 3.2
4: Adapt sampling rate: fa = fatarget

(optional)
5: Create output packets // Control sequences, measurements, and acknowledgments
6: return Output Packets

with regards to the time domain of the NCS. Once a message arrives at a network node, i.e., at an
end system that corresponds to a component of the NCS, the NcsContext passes it back to Matlab
where it is stored in a buffer to be processed in the next control cycle, i.e., during the next invocation
of ncs_doLoopStep.

Additionally, the NcsContext provides the implementations of the CoCPN translator interface. That
is, it offers an implementation of Algorithm 2.1 to supply the communication system with the mapping
rate = r(QoC). Likewise, it provides an implementation of Algorithm 2.2, which is used by the
network monitoring SERUM and the congestion control CoCC to exchange the monitoring data and
the target QoC.3 The resulting network model and the target sampling rate fatarget are forwarded to
the controller via ncs_doLoopStep. Note that they are optional parameters because SERUM and
CoCC can operate at different rates, i.e., at rates other than fa.

To conclude our brief introduction of CoCPN-Sim, we outline the typical steps that are required to
create a simulation. First, one implements the components of the NCS, i.e., controller, actuator, sensor,
and plant, in Matlab. Then, second, these implementations are packaged into a single C++ shared
library by the Matlab Compiler SDK [82]. Next, the CoCPN translator interface is implemented.
Subsequently, the desired network topology is specified in OMNeT++. To that end, any of the models
shipped with INET can be used. Alternatively, one can also implement tailored models for, e.g., hosts,
switches, or routers. Finally, all components within OMNeT++ are parameterized according to the
desired scenario.

We will return to CoCPN-Sim in Chapter 7, when we integrate the sequence-based control algorithms
to be developed in this thesis into the CoCPN architecture. The design and analysis of the algorithms
is based on the consideration of a single networked control system, the description and formalization
of which is the goal of the next chapter.

3SERUM and CoCC are omitted in Fig. 2.4. They reside in the OMNeT++ part of CoCPN-Sim.





CHAPTER
3

Description of the Considered Networked
Control System

For the design and analysis of sequence-based control algorithms that fit into the CoCPN architecture
introduced in the previous chapter, we will consider a single NCS as depicted in Fig. 3.1 throughout
this thesis.

Network Network

Plant ActuatorSensor

Controller

ukxky
k

Ak
Uk

Uk
ACKk

Yk

Figure 3.1: The NCS with a sequence-based controller and application layer acknowledgments considered in this thesis.

All components of the NCS operate on a time-triggered basis, and we assume that the clocks of the
sensor, the controller, and the actuator are synchronized. This assumption is reasonable in practice
because dedicated, well-established networking protocols for clock synchronization are available. The
most prominent examples are the Network Time Protocol (NTP) and the Precision Time Protocol
(PTP) [83–85], both of which are supported by many operation systems and typically implemented on
standard network equipment. Under ideal communication conditions in local area networks, NTP can
achieve one millisecond accuracy. Among end systems connected over the Internet, accuracies of tens
of milliseconds are possible in the absence of asymmetric routes and heavy network congestion. PTP
is even more suitable for control applications because clock accuracy in the sub-microsecond range
can be obtained [86].

Thus, the following assumption is justified and stands for the rest of this thesis.
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Assumption 3.1:
Transmitted data packets are marked with timestamps so that the experienced delays can be computed
by the receivers.

The components of the NCS communicate with each other using networks with a best-effort packet
delivery subject to random transmission delays and data losses. In particular, the successful delivery of
data packets is not guaranteed, and no acknowledgments are sent back to the sender upon successful
delivery. Such a datagram-oriented service is provided by the User Datagram Protocol (UDP) [87],
one of the two most common transport protocols in IP-based communication networks. The other one
is the Transmission Control Protocol (TCP), which in contrast to UDP provides a reliable transport
service since it assures that all transmitted data arrives at the receiver side error-free and in order and
without losses or duplicates and additions [88]. TCP achieves reliability by retransmitting potentially
lost packets – a packet is assumed lost if a corresponding acknowledgment is not received in a certain
amount of time – and by using checksums and sequence numbers for packet reordering and the
detection of errors, duplicates, and phantom packets at the receiver side. However, retransmissions
result in additional packet delays, which are undesirable in control applications since the carried
payload may have become outdated [13, 89]. Outdated data, such as measurements of previous plant
states, is often discarded by the receiver anyhow because processing it would gain no or only little
information.1 Moreover, additional packet delays are also caused by flow and congestion control
mechanisms, as they may hold back packets at the sender side. Thus, in control applications, UDP is
typically preferred over TCP.

On the other hand, acknowledgments constitute the only means for the controller to determine which
packets were successfully transmitted to the actuator and, consequently, which control inputs were
actually applied to the plant. It is well known that even for linear plants, the instantaneous and failure-
free delivery of acknowledgments is required for the existence of computationally tractable optimal
control laws [90, 91]. In the NCS literature, networks that meet this requirement are called TCP-like
networks, whereas networks that do not provide acknowledgments are called UDP-like. The notion of
TCP-like networks is, however, only loosely related to real-world TCP implementations since TCP-like
communication does not require a reliable transport service. Moreover, in real-world communication
networks, acknowledgments are also affected by communication delays and packet losses. Arguably,
these effects can be mitigated by implementing preferred handling of acknowledgment packets, for
instance, by defining expedited forwarding [92] as offered by the Differentiated services (DiffServ)
architecture [93, 94], yet physical constraints such as propagation delay and processing speeds of the
intermediate nodes still apply.

To combine the advantages of UDP over TCP for control applications with the benefits for the controller
that arise when feedback about the status of sent packets is available, we will rely on application
layer acknowledgments in this thesis. This is motivated by the fact that the actuator actively discards
certain data packets from the controller once it is clear that the carried payload will never be processed.
This strategy is a variant of what is named active packet dropout or past packets rejection logic in
the literature [13, 95] and detailed in the next section. Based on this strategy, the actuator sends out
acknowledgments only for data packets that are actually used. We emphasize that, from the perspective
of the underlying communication system, these acknowledgments are regular data packets and hence
subject to delays and losses. We also emphasize that there are relatively few works in the literature
that consider the imperfect transmission of acknowledgments from the actuator, which is noticeable
compared to the multitude of contributions dealing with TCP-like and UDP-like communication
schemes. To the best of our knowledge, the only available results can be found in [96–98]. However,
these works only consider the potential loss of acknowledgments packets but do not investigate the

1This will become evident later in the next section.
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impact of transmission delays, and none of these works is embedded into the framework of sequence-
based control. In this regard, the more realistic treatment of acknowledgments packets compared to the
literature pursued in this thesis is our first contribution.

We note that, depending on the application, it is also beneficial for the sensor that the controller
acknowledges the successful reception of measurements. Typical examples are event-based methods
that try to minimize communication expenditure and transmit measurements to the controller only
when really necessary [99–102]. The transmission decision usually involves estimating the controller’s
expected information gain when the measurement is processed. Knowing which of the transmitted
measurements were received can significantly improve this estimate and, consequently, improve
the sensor’s decision-making. However, such methods are out of the scope of this thesis, so that
acknowledgments from the controller are not needed.

In the remainder of this thesis, whenever we use the term “acknowledgment” or its abbreviation “ACK”
we thus refer to an acknowledgment sent back from the actuator to the controller. We formalize the
actuator’s acknowledgment procedure in the next section, together with a detailed description of its
past packets rejection logic.

Before we proceed, we make the following assumption regarding the transmission of measurements,
control sequences and ACKs.

Assumption 3.2:
Measurements, control sequences, and ACKs fit into a single data packet and are not fragmented into
multiple individually transmitted and routed packets.

This assumption is justified because today’s general-purpose communication infrastructure is primarily
based on the IEEE 802.3 (Ethernet) and IEEE 802.11 (WLAN) standards. These allow packets to
contain payloads up to 1500 bytes and 2304 bytes, respectively, thus providing space for up to 187
(288) double-precision floating-point numbers [103, 104].

3.1 Formalization of the NCS

In the NCS shown in Fig. 3.1, the plant is linear with discrete-time dynamics given by

xk+1 = Axk + Buk + wk ,

y
k

= Cxk + vk ,
(3.1)

where k ∈ N ∪ {0} is the discrete time step, xk ∈ Rnx the plant state, uk ∈ Rnu the control input
applied by the actuator, y

k
∈ Rny the measurement, and A ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx

are the known system, input, and measurement matrix, respectively. State and measurement are
corrupted by mutually independent and zero-mean white noise wk and vk with covariance matrices W
and V. The initial plant state x0 is Gaussian with mean x̂0 and covariance matrix X0 and independent
of wk and vk′ for all k, k′.

Throughout this thesis, (3.1) results from the continuous-time plant dynamics

ẋ(t) = Acx(t) + Bcu(t) + Gcw(t) , (3.2)

where w(t) ∈ Rnw is zero-mean white noise with intensity Wc, i.e.,

E
{
w(t)w(t′)T

}
= Wcδ(t− t′) ,
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which is discretized with sampling interval ta = 1/fa during which u(t) is assumed constant.
Consequently, A, B, and W are given by

A = eActa , B =

∫ ta

0
eAcsBc ds , W =

∫ ta

0
eAcsGcWcG

T
c e

AT
c s ds . (3.3)

Recall from the previous chapter that the controller adapts its sampling rate during operation and sets
fa = fatarget according to Algorithm 2.2 whenever the desired target performance QoCtarget changes.
This in turn necessitates that A, B, and W in the plant dynamics (3.1) are recomputed using (3.3)
with ta = 1/fatarget . In this regard, the considered plant dynamics is time-invariant over a limited period
only, namely until the controller’s next rate adaptation.

To reflect the randomness of packet delays and losses in real networks, we treat them as realizations
of an underlying random phenomenon. To describe them formally, we use three distinct stochastic
processes τ ca

k , τac
k , and τ sc

k , each of which defined on a finite subset of N ∪ {0}. More precisely, τ ca
k

is defined on the set {0, 1, . . . ,M − 1,M}, and a realization τ ca
k = i for 0 ≤ i < M indicates that

the packet sent from the controller to the actuator at time k will experience a delay of i time steps.
The realization τ ca

k = M indicates that this packet will experience a delay of at least M time steps
or get lost. Similarly, τac

k is defined on {0, 1, . . . ,Mac − 1,Mac}, and τac
k = i for 0 ≤ i < Mac

indicates that the ACKs sent from the actuator to the controller at time k will suffer a delay of i
time steps. A higher delay or a packet loss is indicated by τac

k = Mac. Finally, τ sc
k is defined on

{0, 1, . . . ,M sc − 1,M sc}. For 0 ≤ i < M sc, τ sc
k = i indicates that the packet sent from the sensor to

the controller at time k will experience a delay of i time steps and, as before, τ sc
k = M sc indicates a

delay of at least M sc time steps or a packet loss.

Note that this modeling approach allows us to handle unbounded delays and to treat packet delays and
losses in a unified manner. Note also that due to Assumption 3.1 the values of τ ca

k , τac
k , and τ sc

k are
known to the respective receivers. The mathematical properties of the stochastic processes are further
specified later in Section 3.2.

As a result of the delays and losses, the controller can receive none, one, or multiple data packets from
the sensor and the actuator at a given time step. The corresponding set of received measurements is
denoted by

Yk = {y
k′
| k′ + τ sc

k′ = k} , (3.4)

and the corresponding set of received ACKs is

Ak = {ACKk′ | k′ + τac
k′ = k} . (3.5)

The acknowledgment procedure of the actuator is formalized later in this section.

Based on the received data, the controller computes a new control sequence Uk and sends it to the
actuator. Such a control sequence consists of N control inputs for the current and the next N − 1 time
steps and is of the form

Uk =
[
uT
k|k u

T
k+1|k . . . u

T
k+N−1|k

]T
∈ RNnu . (3.6)

In (3.6), we use the subscript k + i|k to indicate that the control input uk+i|k is computed at time k for
application at time k + i, i = 0, 1 . . . , N − 1.

Due to packet delays and losses, none, one, or multiple control sequences can become available at the
actuator at every time step. In analogy to (3.4) and (3.5), this set is given by

Uk = {Uk′ | k′ + τ ca
k′ = k} .
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However, in contrast to the controller, the actuator need not process all received data since the control
sequence Uk supersedes all older ones U0, U1, . . . , Uk−1. Hence, at every time step, the actuator
buffers only the newest available control sequence, that is, the one with the youngest age according to
the following definition.

Definition 3.1:
At time k, the age of a control sequence Uk′ , where k′ ≤ k, is the difference k − k′. It will be denoted
by ak (Uk′) in the following and we set ak (Uk′) =∞ whenever k′ > k.

Let Uk′′ denote the newest of the received control sequences, i.e.,

Uk′′ = arg min
Uk′∈Uk

ak (Uk′) .

Then, the buffered control sequence Ubf
k is given by

Ubf
k =




Uk′′ ak

(
Ubf
k−1

)
> ak (Uk′′)

Ubf
k−1 Uk = ∅ or ak

(
Ubf
k−1

)
< ak (Uk′′)

. (3.7)

If Uk′′ replaces the buffered control sequence, the actuator creates an ACK and sends it to the controller
to signal that Uk′′ is in use. Otherwise, no ACK is sent. We will show in the next chapter that this
acknowledgment strategy enables the controller to infer control inputs that were applied to the plant
from the set Ak.

The actuator subsequently applies the control inputs provided by Ubf
k until a newer control sequence

arrives to replace it according to (3.7). If the last control input provided by Ubf
k has been applied and

no newer sequence is available to replace it, the actuator falls back to a default value udf
k . We will

assume udf
k = 0 in this thesis. This strategy is known as the zero-input strategy in the literature [105].

We emphasize that the results of this thesis are not limited to the application of this strategy. They are
readily extended to other choices of the default input, such as holding the previously applied input, i.e.,
udf
k = uk−1. Finally, we assume that the default input is also applied initially until the first applicable

control sequence arrives at the actuator, that is, the buffer is initially empty.

To conclude this section, we make the following assumption that stands throughout this thesis. It
ensures that the controller can influence the plant and serves to rule out pathological cases where any
control effort is futile.2

Assumption 3.3:
The length of the control sequences, N , is chosen such that the probability of two consecutive
applications of the default input is less than one.

3.2 Properties of the Network Models

Recall that we defined the stochastic processes τ ca
k , τac

k , and τ sc
k in the previous section to model the

packet delays and losses that occur during operation of the NCS. In the remainder of this thesis, we
will often use the term “network model” to refer to any of them. The context should make clear which
one is meant.

2An example of such a pathological case would be to choose N = 2 if any packet experienced a delay of at least two
time steps.
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Assumption 3.4:
The stochastic processes τ ca

k , τac
k , and τ sc

k are mutually independent, non-stationary processes.

The non-stationarity assumption is appropriate to reflect the changing communication conditions that
originate from variations of the network QoS.

Since the controller knows the delays of received measurements and ACKs (cf. Assumption 3.1), we
need not specify further properties of τ sc

k and τac
k . We only require that the probabilities P[τ sc

k = i]
be computable by the controller for all i = 0, 1, . . . ,M sc at every time step k. This is needed for the
model predictive control algorithm proposed in Section 5.4. In this algorithm, the controller attempts
to anticipate the availability of future measurements during its prediction of the closed-loop plant
dynamics.

To consider the impact of delayed and lost control sequences on the closed-loop plant dynamics, we
will construct an augmented dynamical system in Chapter 4. The key idea is to express the plant
dynamics (3.1) and the actuator’s buffering procedure (3.7) jointly in a single model, which then
provides the basis for controller design and analysis. For this model, we need a characterization of τ ca

k

because its realizations determine the buffered sequence Ubf
k and, thus, the actual plant input. Recall

from Chapter 2 that the CoCPN translator processes monitoring data collected in the communication
system to create a probabilistic model of the packet delays and losses that is suitable for the controller.
Once new monitoring data becomes available, this model is updated and forwarded to the controller
(cf. Algorithm 2.2). Throughout this thesis, we do not make any assumption about the rate with which
new monitoring data reaches the CoCPN translator and whether this happens periodically or not. We
only assume that a probabilistic model of the packet delays and losses is available to the controller at
every time step.

Specifically, we consider two different cases, described in the sections below. In both cases, we
condense the controller’s knowledge at time k about the communication conditions in the form of a

discrete probability distribution, expressed by the stochastic vector p
k

=
[
p

(0)
k p

(1)
k . . . p

(M)
k

]T
, whose

entries provide the probability associated with each realization, i.e., we have

p
(i)
k = P[τ ca

k = i] ,

for i = 0, 1, . . . ,M .

3.2.1 Independent Packet Delays and Losses

In the first model, the CoCPN translator directly supplies the controller with the probability distribution
p
k
. We do not take possible temporal correlations of packet delays and losses into account. Then,

τ ca
k becomes a non-stationary independent process, that is, the delay and loss probabilities p(i)

k are
independent over time and in general not equal, i.e., p

k
6= p

k′
for k′ 6= k. However, the controller

cannot foresee future changes of the individual probabilities. Hence, it is reasonable to assume that
they remain constant until the next model update by the CoCPN translator.

3.2.2 Correlated Packet Delays and Losses

Packet delays and losses mainly result from the concurrence of different factors, including congestion,
queuing, and processing at intermediate nodes, protocol behavior such as packet retransmission and
congestion control mechanisms, and contention for medium access [35, 106, 107]. The impact of
these factors on successive packets is usually similar, implying that delays and losses are correlated
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over time. To model these correlations, we use a Markov chain approach, as is common in the
literature – in particular when wireless communication is considered [34, 108–115]. The probabilistic
model forwarded from the CoCPN translator to the controller is then a transition matrix Pca

k−1. The
entries of Pca

k−1 are the transition probabilities, which are given by pca
ij = P[τ ca

k = j|τ ca
k−1 = i]

for i, j = 0, 1, . . . ,M . Based on p
k−1

, the probability distribution at time k is then obtained by the
expression

pT
k

= pT
k−1

Pca
k−1 .

Since the controller cannot foresee future changes of the transition probabilities, it is reasonable to
assume that they remain constant until the next model update by the CoCPN translator. Then, τ ca

k is
a time-homogeneous Markov chain. Regarding the transition probabilities, we make the following
assumption.

Assumption 3.5:
All transition probabilities pca

ij are positive, i.e., Pca > 0.

Of course, this assumption need not be satisfied in reality. However, it is justified from a numerical
point of view. In software implementations, it is common practice to place a lower bound, say
10−50, on transition probabilities to avoid numerical problems such as arithmetic underflows or
divisions by zero [116, 117]. Also, the assumption is mathematically convenient. By the Perron-
Frobenius theorem (cf. Appendix A.6), it guarantees that τ ca

k has a unique stationary distribution
p =

[
p(0) p(1) . . . p(M)

]T
and that p > 0, i.e., all entries of p are positive. We shall make use of this

fact in the course of Chapter 4.





CHAPTER
4

Construction of the Augmented Dynamics

In this chapter, we construct an augmented dynamical system that jointly expresses the plant dynam-
ics (3.1) and the actuator’s buffering procedure (3.7) in a single model. This model then serves as the
starting point for the control algorithms we present later in Chapters 5 and 6. More specifically, we
construct a dynamical system of the form

ψ
k+1

= Ã(θk)ψ
k

+ B̃(θk)Uk + w̃k ,

y
k

=
[
C 0

]
ψ
k

+ vk ,
(4.1)

with ψ
k

a suitably augmented state and θk a discrete-valued variable, referred to as the mode or
operation mode of the system (4.1). Dynamical systems, whose state variables decompose into a
continuous- and a discrete-valued subset, are known in the literature as hybrid systems [118–120].
In a hybrid system, the dynamics of the continuous-valued state (here, in (4.1), the actual system
and input matrices Ã(θk) and B̃(θk)) are dependent on the discrete-valued state, i.e., the mode θk
causes “switchings” between different system dynamics. In networked control, switchings of the plant
dynamics naturally appear due to packet delays and losses. For instance, the plant switches from
closed-loop operation to open-loop operation once the actuator has to fall back to the default control
input as described in the previous chapter. Thus, it is not surprising that hybrid system models are
very often chosen for the synthesis and analysis of the networked control and estimation algorithms,
e.g., [33–35, 65, 116, 121–126], to name only a few. All these models have in common that both the
number of operation modes, i.e., the number of values that θk can attain, and the switchings between
the modes, i.e., the dynamics of θk, are given by the nature of the network effects.

Specifically for sequence-based control of linear plants with dynamics (3.1) and the buffering proce-
dure (3.7), a hybrid system of the form (4.1) was derived in the doctoral dissertation [123]. There,
the author showed that θk is a Markov chain with state space {0, 1, . . . , N}, rendering (4.1) a Markov
jump linear system (MJLS). A MJLS is a particular type of hybrid system where a Markov chain
governs the switchings between different linear dynamics [127]. In the doctoral dissertation [123],
however, τ ca

k was assumed to be an independent and stationary process, i.e., it was assumed that the
p

(i)
k were independent of each other for all k, i and required that p

k
= p

k′
for all k 6= k′.
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k − 5 k − 4 k − 3 k − 2 k − 1 k k + 1 k + 2 k + 3 k + 4

Uk

Uk−1

Uk−2

Uk−3

Uk−4

Uk−5

uk|k uk+1|k uk+2|k uk+3|k uk+4|k

uk−1|k−1 uk|k−1 uk+1|k−1 uk+2|k−1 uk+3|k−1

uk−2|k−2 uk−1|k−2 uk|k−2 uk+1|k−2 uk+2|k−2

uk−3|k−3 uk−2|k−3 uk−1|k−3 uk|k−3 uk+1|k−3

uk−4|k−4 uk−3|k−4 uk−2|k−4 uk−1|k−4 uk|k−4

uk−5|k−5 uk−4|k−5 uk−3|k−5 uk−2|k−5 uk−1|k−5

Figure 4.1: The possible inputs (without the default input udf
k ) at time k forN = 5 are highlighted by the colored rectangle.

In this chapter, we show that the same MJLS also arises when this assumption is relaxed. First, we
perform the state augmentation that is necessary to obtain the augmented dynamical system (4.1)
in Section 4.1. We then in Section 4.2 prove that θk forms a Markov chain whenever τ ca

k is an arbitrary
independent process as specified in Section 3.2.1. Then, in Section 4.3, we present a method that
allows us to use (4.1) also in case τ ca

k is a Markov chain with the properties introduced in Section 3.2.2.
Finally, we conclude this chapter in Section 4.4 with a brief discussion of the modeling approach
chosen in this thesis.

In the following, whenever the context is clear, we will use the term “state” for both the plant state xk,
as defined by (3.1) in Chapter 3, and the continuous-valued state ψ

k
of the augmented dynamics (4.1).

Also, with a slight abuse of terminology, “mode” and “operation mode” will not only refer to the
discrete-valued state θk of the augmented dynamics, but also to the corresponding dynamics of ψ

k
. For

example, the statement “The system is in mode j” means that θk = j and that ψ
k

evolves according to
the dynamics ψ

k+1
= Ã(j)ψ

k
+ B̃(j)Uk + w̃k. Similarly, the statement “The MJLS has m modes”

means that the Markov chain governing the switchings has m different states.

In parts, this chapter is based on results presented in our publication [286].

4.1 Definition of the Augmented State

At any time k, the applied plant input uk is either provided by the buffered control sequence Ubf
k or is

the default input udf
k . The latter can only happen if no control sequence has yet arrived at the actuator

or when Ubf
k has no more applicable inputs available. This is precisely the case when ak

(
Ubf
k

)
≥ N .

Thus, uk must be part of one of the control sequences Uk−N+1, Uk−N+2, . . . , Uk, or is the default
input udf

k , i.e., we have

uk =




uk|k−i ak

(
Ubf
k

)
= i

udf
k ak

(
Ubf
k

)
≥ N

, (4.2)

where i ∈ {0, 1, . . . , N − 1}. We visualize this observation in Fig. 4.1 for N = 5, where the five
possible inputs at time k, excluding the default input, are highlighted. Eq. (4.2) has an intuitive
interpretation: The plant has N + 1 possible operation modes, each of which is determined by the age
of the buffered sequence, and each of which causes the application of a different control input. Hence,
denoting the operation mode by θk, we can identify

θk =

{
i uk = uk|k−i

N uk = udf
k

, (4.3)
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with i ∈ {0, 1, . . . , N − 1}. Together with the vector η
k

that contains all inputs from past control
sequences that are still applicable at time k or later

η
k

=




[
uT
k|k−1 u

T
k+1|k−1 . . . u

T
k+N−3|k−1 u

T
k+N−2|k−1

]T

[
uT
k|k−2 u

T
k+1|k−2 . . . u

T
k+N−3|k−2

]T

...[
uT
k|k−N+2 u

T
k+1|k−N+2

]T

uk|k−N+1




∈ R
(N−1)Nnu

2 , (4.4)

the actual plant input uk is expressed as

uk = H(θk)η
k

+ J(θk)Uk , (4.5)

with H(θk) ∈ Rnu× (N−1)Nnu
2 , J(θk) ∈ Rnu×Nnu defined as

H(θk) =
[
1{θk=1}Inu 0nu×(N−2)nu 1{θk=2}Inu 0nu×(N−3)nu . . . 1{θk=N−1}Inu

]
,

J(θk) =
[
1{θk=0}Inu 0nu×(N−1)nu

]
,

(4.6)

and where 1{a} is the indicator function of the predicate a, i.e., 1a = 1 if a is true, and 0 otherwise.
For N = 5, the elements comprising η

k
and η

k+1
are visualized in Fig. 4.2. The dynamics of η

k
is

linear and time-invariant and given by

η
k+1

= Fη
k

+ GUk , (4.7)

with F ∈ R (N−1)Nnu
2

× (N−1)Nnu
2 and G ∈ R (N−1)Nnu

2
×Nnu as per

#columns: nu (N−2)nu nu (N−3)nu · · · nu nu #rows:





0 0 0 0 . . . 0 0 (N−1)nu

0 I 0 0 · · · 0 0 (N−2)nu

F = 0 0 0 I · · · 0 0 (N−3)nu

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · I 0 nu

, (4.8)

and
#columns: nu (N−1)nu #rows:[ ]

G =
0 I (N−1)nu

0 0 (N−1)(N−2)nu
2

. (4.9)

The purpose of F is to remove obsolete entries from η
k
, whereas G adds the relevant entries from the

new sequence Uk. This is illustrated in Fig. 4.2 for N = 5. For this example, we can deduce from the
figure that η

k
∈ R10nu and, accordingly,

F =




0 0 0 0 0 0 0
0 I3nu 0 0 0 0 0
0 0 0 I2nu 0 0 0
0 0 0 0 0 Inu 0


 ∈ R

10nu×10nu , G =

[
0 I4nu

0 0

]
∈ R10nu×5nu .
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η
k

η
k+1

Figure 4.2: Illustration of Uk, η
k

, and η
k+1

and their relationship according to (4.7) for N = 5.

Combining (3.1), (4.5), and (4.7) yields the dynamics
[
xk+1

η
k+1

]
=

[
A BH(θk)

0 F

] [
xk
η
k

]
+

[
BJ(θk)

G

]
Uk +

[
wk
0

]
,

y
k

=
[
C 0

] [xk+1

η
k+1

]
+ vk ,

which is (4.1) with the augmented state ψ
k

=
[
xT
k η

T
k

]T ∈ Rnψ , where nψ = nx + (N−1)Nnu
2 , and

Ã(θk) =

[
A BH(θk)

0 F

]
, B̃(θk) =

[
BJ(θk)

G

]
, w̃k =

[
wk
0

]
. (4.10)

The noise w̃k is zero-mean and white with covariance matrix

W̃ =

[
W 0
0 0

]
.

Since the buffer at the actuator is initially empty, we have the initial conditions θ0 = N and η
0

= 0.
Note that θk is a random process because it depends on the network model τ ca

k . This implies that the
actual control input uk is also a random variable because it directly depends on θk. To determine uk,
the controller thus needs to know the value of θk. However, only a subset of the complete mode history
θ0, . . . , θk−1, θk is available to the controller at time k. Recall from Section 3.1 that an ACK is sent
back by the actuator once its buffered sequence is replaced by a newer one. Thus, the controller can
infer mode realizations from the set of received ACKs Ak. This set, though, generally contains only
ACKs from previous time steps due to the communication delays. To illustrate this, suppose that at
time k − 2, the actuator receives the control sequence Uk−5 and buffers it due to (3.7). Accordingly,
ACKk−2 is generated and sent back to the controller. If we assume further that this packet reaches
the controller at time k, i.e., ACKk−2 ∈ Ak, we get from (4.2) and (4.3) that uk−2 = uk−2|k−5 and
θk−2 = 3.

Furthermore, note that the mode θk = N is never available to the controller as this corresponds to
the case that the actuator did not receive an applicable control sequence. From this discussion, it is
clear that θk remains completely unobserved if Ak = ∅ for all k. UDP-like communication, i.e., the
complete absence of acknowledgments, corresponds to this case. The opposite extreme case, TCP-like
communication, implies that the controller has access to the modes θ0, θ1, . . . , θk−1 for all k [91].

So far, we have constructed an augmented dynamics with N + 1 modes that switch according to the
age of the control sequence buffered at the actuator. To characterize the nature of the switchings,
that is, to obtain the dynamics of θk, we must take the network model τ ca

k into account. This is done
in the following two sections. We conclude this section with the remark that we obtain a similar
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augmented dynamical system if the actuator uses a hold-input strategy (i.e., udf
k = uk−1). The main

difference compared to the zero-input strategy udf
k = 0 is that the default input is time-varying with

dynamics udf
k+1 = 1{θk=N}udf

k + H(θk)η
k

+ J(θk)Uk and unknown to the controller. To handle this,
however, it is enough to add udf

k to the augmented state ψ
k

and to alter Ã(θk), B̃(θk), and w̃k in (4.1)
accordingly [123].

4.2 Dynamics of θk: Independent Packet Delays and Losses

The following result proves that θk is a Markov chain provided τ ca
k is an independent process as

specified in Section 3.2.1, so that the augmented dynamics (4.1) becomes an MJLS with N + 1 modes.

Theorem 4.1:
Let τ ca

k be an independent process as defined in Section 3.2.1. Then, θk forms a time-inhomogeneous
Markov chain with state space {0, 1, . . . , N} and transition probabilities tk,ij = P[θk+1 = j|θk = i]
given by

tk,ij =





p
(0)
k+1 j = 0

(
1− p(0)

k+1

) i−1∏

m=0

(
1− q(m)

k

)
j = i+ 1

0 j > i+ 1

q
(j−1)
k

(
1− p(0)

k+1

) j−2∏

m=0

(
1− q(m)

k

)
1 ≤ j ≤ i ≤ N − 1

(
1− p(0)

k+1

)N−2∏

m=0

(
1− q(m)

k

)
i = j = N

,

with p(i)
k = P[τ ca

k = i] and where q(j)
k is the conditional probability that Uk−j arrives at time k + 1

given that it has not been received up to time k

q
(j)
k = P[τ ca

k−j = j + 1|τ ca
k−j > j] =

p
(j+1)
k−j

1−∑j
m=0 p

(m)
k−j

. (4.11)

Proof. The proof is given in Appendix B.1.

Remark 4.1:
If τ ca

k is stationary, then θk becomes a time-homogeneous Markov chain. The corresponding time-
invariant transition probabilities tij were derived in [123, Lemma 3.1]. The same result is obtained by
setting p(i)

k = p(i) for all k in Theorem 4.1.

The transition matrix Tk with entries tk,ij allows to express the temporal evolution of θk in terms of

the probability distribution µ
k

=
[
µ

(0)
k µ

(1)
k . . . µ

(N)
k

]T
according to

µT
k+1

= µT
k
Tk , (4.12)

with µ(i)
k = P[θk = i] the mode probabilities.

A closer look at Theorem 4.1 reveals dependencies between the transition probabilities which impose a
special structure on the transition matrix Tk. This structure is illustrated for N = 5 in Fig. 4.3, where
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Figure 4.3: Illustration of the dependencies between the entries of Tk for N = 5. Equal entries are represented by the
same color.

equal entries are represented by the same color. We can conclude from the illustration that i) Tk is a
lower Hessenberg matrix, ii) the subdiagonal entries in each column are equal to the column’s diagonal
entry, and that iii) the last two rows are equal. Together with the constraint that each row must sum to
one, these properties imply that the elements of the last row completely determine Tk. For instance,
using the colors from Fig. 4.3, we have = + = 1− and similarly = + + . We
will exploit this observation later in Chapter 6 where we develop a method to tackle uncertainties in
the network model τ ca

k .

4.3 Dynamics of θk: Correlated Packet Delays and Losses

We now move our attention to the case of correlated packet delays and losses, modeled by a time-
homogeneous Markov chain with states {0, 1, . . . ,M} and transition matrix Pca as introduced in Sec-
tion 3.2.2. Unfortunately, θk forms no longer a Markov chain if τ ca

k is Markov chain.1 The reason for
this stems from the fact that by (4.3) and the actuator buffering procedure (3.7), the different values of θk
depend on the delays and losses experienced by a different number of control sequences Uk, . . . , Uk−i.
For example, it holds θk = 1 ⇔ τ ca

k > 0 and τ ca
k−1 ≤ 1, but θk = 2 ⇔ τ ca

k > 0, τ ca
k−1 > 1, and

τ ca
k−2 ≤ 2.

Fundamentally, the connection between θk and the delays and losses is formalized by considering
the expanded Markov chain τ ca

k =
(
τ ca
k , τ

ca
k−1, . . . , τ

ca
k−(N−1)

)
, where each state is an N -tuple of

successive states of τ ca
k . Then, θk induces a partitioning of the state space of τ ca

k into N + 1 disjoint
clusters Cj given by

C0 = {τ ca
k | τ ca

k = 0} ,
Cj = {τ ca

k | τ ca
k > 0, τ ca

k−1 > 1, . . . , τ ca
k−(j−1) > j − 1, τk−j ≤ j} ,

CN = {τ ca
k | τ ca

k > 0, τ ca
k−1 > 1, . . . τ ca

k−(N−1) > N − 1} ,
(4.13)

with j = 1, . . . , N − 1. For N = M = 3 the resulting partitioning of the 64 states of τ ca
k into four

clusters is exemplified in Table 4.1. With (4.13), we identify

θk = i⇔ τ ca
k ∈ Ci , (4.14)

i.e., modes express cluster membership and a transition from mode i to j corresponds to a transition
from cluster Ci to Cj . Yet, the transition probabilities depend on the initial distribution of τ ca

k and on
the membership history since

P[τ ca
k+1 ∈ C0|τ ca

k ∈ C1] = P[τ ca
k+1 = 0|τ ca

k > 0] ,

P[τ ca
k+1 ∈ C1|τ ca

k ∈ C1, τ
ca
k−1 ∈ C1] 6= P[τ ca

k+1 ∈ C1|τ ca
k ∈ C1, τ

ca
k−1 ∈ C0] ,

1In fact, θk forms a Markov chain if Pca has identical rows, meaning that τ cak+1 is independent of τ cak . In such cases,
however, the results presented in the sequel trivially hold.
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Table 4.1: The partitioning of the state space of τ cak induced by θk for N = M = 3.

Cluster τ cak = (τ cak , τ
ca
k−1, τ

ca
k−2) θk

C0 (0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 0, 3) (0, 1, 0) (0, 1, 1) (0, 1, 2) (0, 1, 3)
0

(0, 2, 0) (0, 2, 1) (0, 2, 2) (0, 2, 3) (0, 3, 0) (0, 3, 1) (0, 3, 2) (0, 3, 3)

C1 (1, 0, 0) (1, 0, 1) (1, 0, 2) (1, 0, 3) (1, 1, 0) (1, 1, 1) (1, 1, 2) (1, 1, 3)
1(2, 0, 0) (2, 0, 1) (2, 0, 2) (2, 0, 3) (2, 1, 0) (2, 1, 1) (2, 1, 2) (2, 1, 3)

(3, 0, 0) (3, 0, 1) (3, 0, 2) (3, 0, 3) (3, 1, 0) (3, 1, 1) (3, 1, 2) (3, 1, 3)

C2
(1, 2, 0) (1, 2, 1) (1, 2, 2) (1, 3, 0) (1, 3, 1) (1, 3, 2) (2, 2, 0) (2, 2, 1)

2(2, 2, 2) (2, 3, 0) (2, 3, 1) (2, 3, 2) (3, 2, 0) (3, 2, 1) (3, 2, 2) (3, 3, 0)
(3, 3, 1) (3, 3, 2)

C3 (1, 2, 3) (1, 3, 3) (2, 2, 3) (2, 3, 3) (3, 2, 3) (3, 3, 3) 3

implying that the clusters do not form a Markov chain. In mathematical terms, the reason for this is
that the expanded chain τ ca

k is not lumpable with respect to the partition {C0, C1, . . . , CN} [128, 129].
Thus, θk cannot be a Markov chain and the dynamics (4.1) is not a MJLS.

If we replace θk in (4.5) by τ ca
k according to

uk = Ȟ(τcak )η
k

+ J̌(τcak )Uk ,

with

Ȟ(τcak ) =
[
1{τcak ∈C1}Inu 0nu×(N−2)nu 1{τcak ∈C2}Inu 0nu×(N−3)nu . . . 1{τcak ∈CN−1}Inu

]
,

J̌(τcak ) =
[
1{τcak ∈C0}Inu 0nu×(N−1)nu

]
,

we arrive at the slightly different MJLS

ψ
k+1

= Ǎ(τcak )ψ
k

+ B̌(τcak )Uk + w̃k ,

y
k

=
[
C 0

]
ψ
k

+ vk ,
(4.15)

with

Ǎ(τcak ) =

[
A BȞ(τcak )

0 F

]
, B̌(τcak ) =

[
BJ̌(τcak )

G

]
. (4.16)

In (4.15), the switchings between the modes are directly governed by the network model, and, in
principle, this model could replace (4.1). However, (4.15) has (M + 1)N modes, which is exponential
in the sequence length, whereas (4.1) has only N + 1. For example, for N = M = 4, (4.15) has
already 625 modes but (4.1) has only five. The resulting computational burden might be prohibitively
high even for small N , in particular with regards to the model predictive controllers we develop
in Chapter 5. The practical usage of the MJLS (4.15) is thus limited. Inspection of (4.16) further
exhibits that (4.15) is redundant because Ȟ(τcak ) and J̌(τcak ), and, consequently, Ǎ(τcak ) and B̌(τcak ), are
equal for all values of τ ca

k belonging to the same cluster. As the above discussion showed, the cluster
membership of τ ca

k entirely determines the switchings between the operation modes. Its actual value is
only of secondary importance.

Based on this insight, the track we pursue to obtain a model of the form and complexity of (4.1) is to
compute a Markov chain model for θk that approximates the true mode dynamics, that is, the dynamics
of the induced clusters Cj in the expanded chain τ ca

k . Specifically, this model shall be such that the
approximation error vanishes as k increases. For this approximation to be possible, the asymptotic
behavior of τ ca

k must be well defined. The following lemma ensures that this is indeed the case. Before
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we present it, let us first introduce a multi-index notation that we will use extensively in the remainder
of this section. By definition, τ ca

k has d = (M + 1)N distinct states, each of which is an N -tuple of
successive states of τ ca

k . We shall use N -dimensional multi-indices to enumerate the tuples, i.e., the
notation

τ ca
k = (i0, i1, . . . , iN−1) ,

indicates the tuple composed of the successive states τ ca
k = i0, τ

ca
k−1 = i1, . . . , τ

ca
k−(N−1) = iN−1.

Also, let us recall that we assumed all transition probabilities pca
ij of τ ca

k to be positive, i.e., Pca > 0
(cf. Assumption 3.5). The Perron-Frobenius theorem (cf. Appendix A.6) then ensures that τ ca

k has
a unique stationary distribution p =

[
p(0) p(1) . . . p(M)

]T
and that p > 0, i.e., all entries of p are

positive.

Lemma 4.1:
For every initial distribution, the expanded chain τ ca

k converges to its unique stationary distribution p
with elements p(i0,i1,...,iN−1) given by

p(i0,i1,...,iN−1) = p(iN−1)pca
iN−1iN−2

pca
iN−2iN−3

· · · pca
i1i0 , (4.17)

with i0, i1, . . . , iN−1 ∈ {0, . . . ,M}, and where p =
[
p(0) p(1) . . . p(M)

]T
is the stationary distribu-

tion of τ ca
k .

Proof. The proof is provided in Appendix B.2.

Denote the transition matrix of τ ca
k , whose entries are given by (B.2), by P̃ca. Then, the above result

implies (again by the Perron-Frobenius theorem) that the k-th powers of P̃ca converge to a matrix in
which all rows are equal and given by p, that is,

lim
k→∞

(
P̃ca
)k

= 1dp
T , (4.18)

with 1d the d-dimensional vector of ones.

Reducing the state space of a Markov chain is known as Markov chain lumping in the literature [128,
130]. Here, one attempts to aggregate states to obtain a simpler model with fewer states such that
specific properties of the original chain are retained [131]. Applications of lumping are widespread
and range from the natural sciences and finance, where Markov chains with huge state spaces are
typical [132–136], over performance and network modeling [137, 138], to networked estimation and
the model reduction of hybrid systems [139,140]. We will use this concept to aggregate the (M + 1)N

states of τ ca
k into a lumped dynamics with only N + 1 states.

The basic idea to obtain the lumped dynamics for θk can be explained as follows. For any initial
distribution p̃

0
of τ ca

k , the probability µ(i)
k that τ ca

k is in cluster Ci, and hence the probability that θk = i
(cf. (4.14)), can be computed by first propagating p̃

0
from the initial time step to time k to obtain p̃

k
and then adding up the probabilities of all states forming the cluster. Mathematically, this is expressed

with µ
k

=
[
µ

(0)
k µ

(1)
k . . . µ

(N)
k

]T
as

µT
k

= p̃T
k
V̄ = p̃T

0

(
P̃ca
)k

V̄ , (4.19)

where V̄ ∈ Rd×N+1 is the collection matrix with elements

v(i0,i1,...,iN−1)j =

{
1 (i0, i1, . . . , iN−1) ∈ Cj
0 (i0, i1, . . . , iN−1) 6∈ Cj

. (4.20)
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That is, the j-th element of the (i0, i1, . . . , iN−1)-th row of V̄ is one if τ ca
k = (i0, i1, . . . , iN−1) ∈ Cj

and zero otherwise. By Lemma 4.1 and (4.19), the unique stationary cluster probabilities µ are then

µT = pTV̄ = lim
k→∞

p̃T
0

(
P̃ca
)k

V̄ . (4.21)

On the other hand, if θk was a Markov chain with transition matrix T, we would obtain the very
same probabilities if we first added up the initial probabilities of all states forming a cluster and then
propagated the resultant probabilities µ

0
in time, i.e.,

µT
k

= µT
0
Tk = p̃T

0
V̄Tk . (4.22)

However, as we have seen, such T does not exist, and any Markov chain model (4.22) can only

approximate the true probalilities (4.19), that is, it holds p̃T
0
V̄Tk 6= p̃T

0

(
P̃ca
)k

V̄.

The best we can do is to find an approximation such that the approximation error vanishes as k
increases, i.e., such that p̃T

0
V̄Tk → µ for k →∞. By (4.21) and (4.22) this necessitates that we must

choose T such that

lim
k→∞

V̄Tk !
= lim

k→∞

(
P̃ca
)k

V̄

= 1dp
TV̄ ,

(4.23)

where the second equality is due to (4.18). But by the definition of V̄ (cf. (4.20)) we have V̄1N+1 = 1d,
so that (4.23) can be rewritten by virtue of

lim
k→∞

V̄Tk !
= V̄1N+1p

TV̄ ,

or, equivalently,
lim
k→∞

Tk !
= 1N+1p

TV̄ ,

because V̄ has full rank since the clusters are disjoint.

Hence, we must choose T such that its powers Tk converge to a matrix in which all rows are given by
pTV̄. In other words, we must determine T such that the lumped dynamics converges to its unique
stationary distribution V̄Tp. As in [128, 141], this is achieved with a lumped dynamics of the form

T = ŪP̃caV̄ , (4.24)

with distribution matrix Ū ∈ RN+1×d. Specifically, we set the elements of Ū to

uj(i0,i1,...iN−1) =





p(i0,i1,...,iN−1)∑
(l0,l1,...lN−1)∈Cj

p(l0,l1,...,lN−1)
(i0, i1, . . . iN−1) ∈ Cj

0 (i0, i1, . . . iN−1) 6∈ Cj
,

i.e., the (i0, i1, . . . , iN−1)-th element of the j-th row of Ū is the stationary distribution of τ ca
k restricted

to the states belonging to the same cluster Cj , normalized such that the row sum is one. This yields the
desired result, confirmed by the theorem below.

Theorem 4.2:
The stationary distribution of the lumped dynamics (4.24) for θk is unique and given by V̄Tp, where p
is the stationary distribution (4.17) of τ ca

k and V̄ is given by (4.20). Moreover,

lim
k→∞

µT
0
Tk = lim

k→∞
µT

0

(
ŪP̃caV̄

)k
= pTV̄ , (4.25)

for any initial distribution µ
0
.
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Proof. We provide the proof of this result in Appendix B.3.

For correlated packet delays and losses, we have thus established two things. First, we can use the
lumped dynamics (4.24) for θk to approximate the true augmented dynamics (4.15) by the MJLS (4.1)
that was originally derived for independent packet delays and losses. This significantly reduces the
number of operation modes to only N + 1 and comes with a substantial reduction of computational
complexity. Second, the lumped dynamics ensures that the approximation error vanishes in the long
run, which means that for ψ′

0
= ψ

0
and

ψ
k+1

= Ǎ(τcak )ψ
k

+ B̌(τcak )Uk + w̃k ,

ψ′
k+1

= Ã(θk)ψ′
k

+ B̃(θk)U ′k + w̃′k ,

with Ǎ(τcak ), B̌(τcak ) as in (4.16) and Ã(θk), B̃(θk) as in (4.10), we have ψ
k
− ψ′

k
→ 0 as k increases,

provided Uk ≡ U ′k and w̃k ≡ w̃′k. Consequently, we can expect that control sequences computed by a
control algorithm based on the dynamics (4.1) yield similar performance as those computed by the
same algorithm based on (4.15).

As for independent packet delays and losses, the transition matrix T of the lumped dynamics is always
a lower Hessenberg matrix. However, the other properties discovered in Section 4.2 do not generalize.
In particular, T is no longer determined by its last row.

To conclude this section, we want to stress that the d-by-d transition matrix P̃ca of the expanded chain
τ ca
k is not needed explicitly to compute the lumped dynamics (4.24) because each nonzero entry equals

an entry of Pca (cf. (B.2)). Also, the computation of the stationary distribution p given by (4.17) is
relatively cheap. If p is available, only N multiplications per element are needed. The computation
of p itself has complexity O(M3) if a direct method is used or O(M2z) if the power method is used.
Here, z is the number of iterations that depends on the magnitude of the second largest eigenvalue of
Pca [142].

4.4 Discussion of the Modeling Approach

Over the years, Markov jump linear systems have proven to be a powerful tool for modeling and
control in various applications [127, 143]. Successful applications range from networked control, as
already mentioned at the beginning of this chapter, over target tracking [144–146] to control systems
with compoment failures or abrupt environmental disturbances [147–151]. Thus, we can leverage
a solid theoretical foundation which makes the augmented dynamics (4.1) very appealing for the
design and analysis of sequence-based controllers. However, one might argue that the additional
variables in (4.1), η

k
and θk, are superfluous. Indeed, a way to express the plant dynamics (3.1) and

the actuator’s buffering procedure (3.7) without η
k

and θk is [152]2

xk+1 = Axk + Buk + wk ,

fuk (uk) =

N−1∑

i=0

ω
(i)
k δ

(
uk − uk|k−i

)
+ ω

(N)
k δ

(
uk − udf

k

)
,

(4.26)

where δ(·) denotes the Dirac delta function. The gist of this model is to understand the actual plant
input uk as a random variable with probability density function (PDF) fuk rather than the output of
an (artificial) dynamical system with state η

k
(cf. (4.5)). fuk is a Dirac mixture density with N + 1

2For simplicity, we leave out the measurement equation.
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components, because uk can attain only N + 1 different values as per (4.2). Each component of the
mixture corresponds to one of the possible control inputs, and the weighting factors ω(i)

k given by

ω
(i)
k = P[uk = uk|k−i] , ω

(N)
k = P[uk = udf

k ] , (4.27)

denote the probability that the respective input is actually applied. These probabilities depend on the
network model τ ca

k and are computed according to (cf. (4.13))

ω
(0)
k = P[τ ca

k = 0] ,

ω
(i)
k = P[τ ca

k > 0, τ ca
k−1 > 1, . . . , τ ca

k−(i−1) > i− 1, τ ca
k−i ≤ i] ,

ω
(N)
k = P[τ ca

k > 0, τ ca
k−1 > 1, . . . , τ ca

k−(N−1) > N − 1] .

(4.28)

Hence, they express the dependence of the plant dynamics on the network. To calculate the weighting
factors, no assumptions about τ ca

k are needed, it suffices that the probabilities P[τ ca
k = i] are computable

by the controller for all i = 0, 1, . . . ,M at every time step k.

In this regard, (4.26) seems more general than the augmented dynamics (4.1), where the additional
assumptions about τ ca

k were pivotal to obtain a dynamics for θk. In (4.1), however, the dependence
of the plant state on the network becomes directly visible by θk. This explicit coupling facilitates the
investigation of closed-loop properties such as stability and allows the application of (approximate)
dynamic programming to obtain control laws that are optimal with regards to some cost function [153,
154]. Additionally, the actuator feedback (i.e., the ACKs) is simpler incorporated into the augmented
dynamics (4.1) than into the Dirac mixture fuk because it directly exhibits past system modes. When,
as in the example in Section 4.1, the controller infers from ACKk−2 that uk−2 = uk−2|k−5, we get

θk−2 = 3 and thus µ
k−2

= e
(3)
N+1, where e(i)

n denotes the i-th standard basis vector in Rn. By (4.12),

the mode probabilities at time k then directly become µ
k

=
(
T2
)T
e

(3)
N+1. Regarding (4.26), the

weighting factors of the Dirac mixture fuk are no longer given by (4.28) if actuator feedback is
available. For instance, given that uk−2 = uk−2|k−5 is known, they become

ω
(0)
k = P[τ ca

k = 0] ,

ω
(i)
k = P[τ ca

k > 0, τ ca
k−1 > 1, . . . , τ ca

k−(i−1) > i− 1, τ ca
k−i ≤ i

∣∣uk−2 = uk−2|k−5] ,

ω
(N)
k = P[τ ca

k > 0, τ ca
k−1 > 1, . . . , τ ca

k−(N−1) > N − 1
∣∣uk−2 = uk−2|k−5] .

In general, the probabilities on the right side of (4.28) must be conditioned on the information available
from all received ACKs

ω
(0)
k = P[τ ca

k = 0] ,

ω
(i)
k = P[τ ca

k > 0, τ ca
k−1 > 1, . . . , τ ca

k−(i−1) > i− 1, τ ca
k−i ≤ i

∣∣A0, . . . ,Ak] ,
ω

(N)
k = P[τ ca

k > 0, τ ca
k−1 > 1, . . . , τ ca

k−(N−1) > N − 1
∣∣A0, . . . ,Ak] ,

which makes their computation not straightforward.

On the other hand, the augmented dynamics (4.1) might be less suited than (4.26) when it comes
to the development of event-triggered and self-triggered control approaches. The general idea of
these approaches is to minimize the amount of communication needed to guarantee a certain level
of performance, and new control inputs are transmitted to the plant only if a predefined triggering
condition is violated [155–157]. Not transmitting a control sequence at every time step, however,
implies that the state space of θk varies over time. For example, if the controller does not send the
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sequence Uk−1, then the modes θk−1 = 0, θk = 1, θk+1 = 2, . . . , θk+N−2 = N − 1 as such do not
exist. Thus, the transition matrix of θk is necessarily time-varying. For independent packet delays
and losses, this poses no additional difficulties, and we can adapt Theorem 4.1 in the same way as
Lemma 3.1 of [123] was adapted in [123, Chapter 5]. The resulting transition matrices, however,
will have zero rows and columns, reflecting that the state space of θk varies over time. However, the
lumped dynamics for θk derived in Section 4.3 for correlated delays and losses is time-homogeneous
by construction. Hence, to take the time-varying nature into account, the controller must directly
manipulate the mode probabilities. Continuing the above example, if Uk−1 is not sent, the controller
must zero the corresponding mode probabilities at time k and later, i.e.,

µ
(0)
k−1 = µ

(1)
k = · · · = µ

(N−1)
k+N−2 = 0 ,

and then renormalize µ
k−1

, µ
k
, . . . , µ

k+N−2
. This manipulation, however, implies that typically

µ
k+1
6= TTµ

k
. Thus, it might be simpler to use (4.26) as a starting point for the design of event-

triggered or self-triggered controllers and directly work with the input probabilities (4.27).

To conclude this section, we emphasize that neither of the two models (4.1) and (4.26) allows the
computation of control sequences that are globally optimal with respect to some cost function. As
already indicated at the beginning of Chapter 3, this is inherent to the considered setup and due
to the potential loss of acknowledgments packets [90, 96, 98]. It is a well-known result that even
for a quadratic cost function the optimal control sequence U∗k is generally a nonlinear function of
the information Ik available to the controller.3 In particular, this implies that the optimal solution
does not exhibit a separation between estimation and control, i.e., providing the controller with the
optimal state estimate x̂k = E

{
xk
∣∣Ik
}

rather than Ik is always suboptimal [158]. The reason for this
lies in the controller’s imperfect knowledge of the buffered control sequences and consequently the
applied control inputs. As we show in the next chapter, this results in a so-called dual effect: Each
control sequence affects the plant state (namely, the desired control action) and also the controller’s
future uncertainty of the plant state (i.e., the future estimation error) [159]. The latter, however, also
determines the quality of the computed control sequences – the controller makes better decisions
when the estimation error is low [158]. Hence, an optimal control algorithm must achieve the control
objective and excite the plant such that its uncertainty of the plant state is reduced. These tasks,
however, are typically antagonistic.

4.5 Conclusions

In this chapter, we presented the first contribution of this thesis, which lays the groundwork for the
sequence-based control algorithms that we will develop in Chapter 5 and Chapter 6. Our goal was to
find a model that accurately reflects the influence of the shared usage of the available communication
resources, which enables networked controllers to take changing communication conditions into
account during the computation of new control sequences. To that end, we sought a model to describe
the impact of the most relevant influencing factors on the control task, namely the occurring packet
delays and losses. Moreover, we wanted a flexible model supporting the different probabilistic
representations of the packet delays and losses provided by the CoCPN translator.

To achieve this goal, we built upon a result presented in [123], where it was shown that sequence-based
control of linear plants with dynamics (3.1) can be addressed using an augmented dynamical system of
the form (4.1). More precisely, it was proved that for control sequences of length N , (4.1) becomes a
Markov jump linear system with N + 1 operation modes if one assumes that the delays and losses that

3The available information set Ik is made precise in the next chapter.
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occur during the transmission of the control sequences be governed by an independent and stationary
random process τ ca

k . Our key discovery leading to the results of this chapter was that the same MJLS
also arises when this assumption is jettisoned and replaced by either of the two representations provided
by the CoCPN translator. Starting from the definition of the augmented state ψ

k
, we first confirmed this

for the case that τ ca
k is still an independent process but no longer stationary as specified in Section 3.2.1.

However, confirming this for the second representation provided by the CoCPN translator, rendering
τ ca
k a Markov chain with the properties discussed in Section 3.2.2, turned out to be trickier. In a first

step, we showed that the resulting augmented dynamical system is a MJLS but with significantly more
operation modes (cf. (4.15)). To obtain the dynamics (4.1), we then employed Markov chain lumping
to aggregate the (M + 1)N operation modes into N + 1 modes.

In the course of our discussions, we also detailed that only a subset of the complete mode history
is known to the controller due to the lack of reliable feedback from the actuator. This is a direct
consequence of our decision to take delays and losses during the transmission of acknowledgment
packets into account. While this decision allows for a more realistic treatment of the impact of the
occurring communication imperfections compared to the vast body of related research, it precludes
us from deriving optimal control laws even for quadratic cost functions. We shall demonstrate this
issue in the next chapter, where we propose two novel approaches for sequence-based stochastic model
predictive control.

We conclude this chapter by emphasizing a valuable by-product of our results. Existing implementa-
tions of sequence-based controllers that were originally designed under the assumption of independent
packet delays and losses occurring with fixed probabilities, such as the optimal control law for tra-
jectory tracking presented in [123], can be readily used in the setup considered in this thesis without
adaptation or increase of computational complexity.





CHAPTER
5

Sequence-Based Stochastic Model
Predictive Control

Model predictive control (MPC) is a popular control approach in many fields, such as process control,
path planning, autonomous driving, or supply chain management [160–163]. MPC translates the
control objective into an optimization problem so that disturbances and uncertainties appearing in
real-world applications can be explicitly integrated into the computation of the control inputs. In
traditional MPC, one typically assumes unknown but bounded disturbances and performs worst-case
analyses, which leads to robust but conservative results, and neglects the often probabilistic nature
of the occurring uncertainties. To overcome these limitations, stochastic model predictive control
(SMPC) has gained much attention in recent years, both from a theoretical and a practical point of
view. Here, the general idea is to use techniques that have emanated from stochastic programming
and stochastic optimal control for a consistent treatment of all uncertainties to exploit their statistical
descriptions [164, 165].

Given the randomness of packet delays and losses, networked control tasks can inherently be addressed
by SMPC. It is thus not surprising that many research results have been published in recent years.
Focus, however, has been laid on packet losses rather than on delays. In [166] and [167], the authors
address SMPC for linear plants where the control inputs are subject to Bernoulli losses, i.e., get lost
according to a Bernoulli process.1 Due to the immediate availability of ACKs, i.e., ACKs are delivered
failure-free and without delays, the posed stochastic control problem is an easy-to-solve quadratic
program. A similar setup is considered in [113], where the packet losses are governed by a Markov
chain. In these works, however, state feedback is assumed, that is, the plant state xk is known to
the controller at every time step. This assumption is left out in [168]. There, the controller uses
a Kalman filter to estimate xk from noisy measurements that are sent over an unreliable network,
which drops them according to a Bernoulli process. Again, however, failure-free delivery of ACKs
from the actuator is assumed. Both Bernoulli and Markovian packet losses are covered by the SMPC
formulation developed in [112]. Targeting unreliable communication in wireless environments, the
authors modeled communication reliability via an underlying network state process with a finite state
space.

1In other words, packet losses are independent of each other and occur with fixed probability p.
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Sequence-based SMPC of a linear plant subject to Bernoulli losses was investigated in [63]. With
arguments similar to those we used in Chapter 4, the authors derived an augmented dynamical system.
Specifically for control sequences with N elements, they derived an MJLS with N + 1 modes with
mode transition probabilities solely determined by the packet loss probabilities. However, the authors
assumed a TCP-like connection between controller and actuator. This assumption enabled them to
find an analytical solution to the underlying control problem. Failure-free transmission of ACKs from
the actuator was also assumed in [169], where the authors modeled packet delays and losses by an
independent process with fixed delay and loss probabilities. This modeling approach was also used
in [67]. A case study, where sequence-based SMPC is used in an application from process control, is
presented in [170].

In this chapter, we deal with sequence-based SMPC for the NCS described in Chapter 3. Compared to
the works discussed above, this demands that we address two additional challenges. First, because the
plant state xk is not available, the controller must rely on the information provided by the received
measurements, which are corrupted by stochastic uncertainties themselves. Control problems of
this type are referred to as problems of imperfect information and are generally harder to solve than
state feedback problems [153]. Second, the lack of reliable actuator feedback results in a dual effect,
which forbids the analytical determination of optimal control laws and even makes their numerical
computation intractable. We present two suboptimal approaches in the course of this chapter. The first
approach draws inspiration from the connection between hybrid systems and multiple model estimation
algorithms. We use this connection to derive a control algorithm that combines the output of multiple
controllers, each of which corresponds to one operation mode of the augmented dynamics (4.1). The
second approach tackles the control problem from a different perspective. Here, we re-express the
underlying cost function in terms of the second moment of the plant state. Based on this reformulation,
we derive an upper bound of the cost function and then develop an iterative procedure to minimize this
bound in the neighborhood of a reference trajectory.

To facilitate the exposition, we present the results of this chapter under the assumption that θk is a
time-homogeneous Markov chain. Hence, throughout this chapter, we will always denote the mode
transition probabilities by tij . We recall from Section 3.2 that the controller cannot anticipate how
the information provided by the CoCPN translator, i.e., either the delay and loss probabilities or their
transition probabilities, might change in the future. To predict the evolution of the plant state over
a fixed number of time steps, it is thus reasonable to assume that they remain constant. This in turn
implies that the mode transition probabilities tk,ij , tk+1,ij , . . . become time-invariant anyhow even if
they are computed according to Theorem 4.1.

We start with a definition of the underlying stochastic optimal control problem in Section 5.1. Then,
in Section 5.2 we show that the optimal solution to this problem is intractable. Sections 5.3 and 5.4
constitute the main contribution of this chapter and present the two proposed control approaches.
Finally, we conclude the chapter with an evaluation in Section 5.5, where we compare the proposed
approaches in different control tasks with two state-of-the-art approaches from the literature.

This chapter is based on results presented in our publications [287, 288, 292, 296].

5.1 Problem Formulation

In the considered NCS, the true plant state xk is not known to the controller. Instead, the controller
must calculate the control sequences based on the received measurements, the received ACKs, and
the prior knowledge about the initial plant state x0. More precisely, the information available to the
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controller at time k is called information set and given by

I0 = {x̂0,X0} ,
Ik = Ik−1 ∪ {Uk−1,Ak,Yk} , k = 1, 2, . . . .

(5.1)

Remark 5.1:
The plant dynamics (3.1), the network models τ ca

k , τac
k , and τ sc

k , the initial conditions θ0 = N and
η

0
= 0, and the actuator behavior, i.e., its buffering procedure and its default input strategy, are also

known to the controller. For brevity, we did not add these pieces of information to the sets Ik.

In contrast to the traditional deterministic MPC, in SMPC one typically does not solve the underlying
optimal control problem directly with regards to control actions [171]. Rather, to account for the
uncertainties, one is interested in control laws, functions πk that map the available information Ik into
the space of control actions [165, 172].

Definition 5.1:
A control sequence Uk is admissible at time k if it is a function of the information set Ik, i.e., if we can
write Uk = πk (Ik) for some function πk. We then call πk a control law.

At every time step k, we seek control laws π∗k, π
∗
k+1, . . . , π

∗
k+K−1 that minimize the cost function

J (πk:k+K−1) = E
xk,

τcak:k+K−1,

τ sck:k+K ,

τack:k+K ,
wk:k+K−1,
vk:k+K

{
xT
k+KQKxk+K +

K−1∑

t=0

xT
k+tQtxk+t + uT

k+tRtuk+t

∣∣∣ Ik
}
, (5.2)

where K ∈ N is the horizon length, and Qt ∈ Rnx×nx and Rt ∈ Rnu×nu are weighting matrices such
that Qt < 0 for t = 0, 1, . . . ,K and Rt � 0 for t = 0, 1, . . . ,K−1. In (5.2), we used the abbreviation
ai:j to denote a sequence ai, ai+1, . . . , aj of elements of the same kind and the expectation on the
right side is with respect to all occurring random variables as indicated by the subscript. Note that it is
equivalent to take the expectation with respect to xk:k+K and uk:k+K−1, which depend on the random
variables in (5.2).

As we minimize the cost function (5.2) with regards to control laws rather than control sequences
Uk, Uk+1, . . . , Uk+K−1, the minimization need not be carried out repeatedly at every time step.
Instead, it suffices to determine the minimizing control laws π∗0, π

∗
1, . . . , π

∗
K−1 offline. Online, during

operation, the receding horizon principle then demands that the controller evaluates π∗0 and transmits
the resulting control sequence Uk = π∗0(Ik) to the plant. To obtain π∗0, π

∗
1, . . . , π

∗
K−1, we must solve

the stochastic optimal control problem

min
π0:K−1

J (π0:K−1)

subject to xt+1 = Axt + But + wt , t = 0, . . . ,K − 1 ,

y
t

= Cxt + vt , t = 0, . . . ,K ,

ut =




ut|t−i at

(
Ubf
t

)
= i

udf
t at

(
Ubf
t

)
≥ N

, t = 0, . . . ,K − 1 ,

U t = πt (It) , t = 0, . . . ,K − 1 .

(5.3)
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Algorithm 5.1 Conceptual Algorithm for Sequence-Based SMPC
1: Obtain π∗0 by solving the stochastic optimal control problem (5.3) // Offline
2: for k = 0, 1 . . . do
3: Create information set Ik according to (5.1)
4: Evaluate first optimal control law, Uk = π∗0(Ik)
5: Transmit Uk to the actuator
6: end for

The conceptual algorithm for sequence-based SMPC is summarized in Algorithm 5.1. To bring (5.3)
in a more convenient form, we reformulate the cost function (5.2) in terms of the augmented
dynamics (4.1) derived in the previous chapter. To that end, we define

Q̃K =

[
QK 0
0 0

]
∈ Rnψ×nψ ,

Q̃
(θt)
t =

[
Qt 0

0
(
H(θt)

)T
RtH

(θt)

]
∈ Rnψ×nψ ,

R̃
(θt)
t =

(
J(θt)

)T
RtJ

(θt) ∈ RNnu×Nnu ,

for t = 0, 1, . . . ,K−1. Observing that (4.6) implies H(i) 6= 0⇒ J(i) = 0 and J(i) 6= 0⇒ H(i) = 0
for all i = 0, 1, . . . , N , we may write the cost function as [123, Appendix A.1]

J (π0:K−1) = E
ψ
0:K

,

θ0:K−1

{
ψT
K

Q̃KψK +
K−1∑

t=0

ψT
t
Q̃

(θt)
t ψ

t
+ UT

t R̃
(θt)
t U t

∣∣∣ I0

}
, (5.4)

with U t = πt(It). Although (5.4) and (5.2) are equivalent, we emphasize that the weighting matrix
for the control actions in (5.2), Rt, is positive definite, whereas its counterpart in (5.4), R̃

(θt)
t , is only

positive semidefinite because J(θt) does not have full column rank. This will pose a technical difficulty
in Sections 5.2 to 5.4, as it leads to underdetermined systems of linear equations with infinitely many
solutions.

With the reformulated cost function and the augmented dynamics (4.1), the stochastic optimal control
problem to solve becomes

min
π0:K−1

J (π0:K−1)

subject to ψ
t+1

= Ã(θt)ψ
t
+ B̃(θt)U t + w̃t , t = 0, . . . ,K − 1 ,

y
t

=
[
C 0

]
ψ
t
+ vt , t = 0, . . . ,K ,

U t = πt (It) , t = 0, . . . ,K − 1 ,

(5.5)

with J (π0:K−1) given by (5.4). To solve this optimization problem, we can exploit Bellman’s principle
of optimality. Roughly speaking, this principle states that the optimal solution minJ (π0:K−1) is
obtained by concatenating the solutions of “tail subproblems” of increasing time length [153]. Based
on this principle, the dynamic programming (DP) technique translates the optimization problem (5.5)
into the backward recursion

VK (IK) = E
ψ
K

{
ψT
K

Q̃KψK

∣∣∣ IK
}
,

Vt (It) = min
Ut

E
ψ
t
,θt,

w̃t,
Yt+1,
At+1

{
ψT
t
Q̃

(θt)
t ψ

t
+ UT

t R̃
(θt)
t U t + Vt+1(It+1)

∣∣∣ It
}
, (5.6)
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for t = 0, 1, . . . ,K − 1, with Vt the cost-to-go at stage t of the optimization horizon. Thus, starting at
the terminal stage of the optimization horizon, the optimal control laws π∗0, . . . , π

∗
K−1 are computed

backward in time and at each stage given by

π∗t (It) = arg min E
ψ
t
,θt,

w̃t,
Yt+1,
At+1

{
ψT
t
Q̃

(θt)
t ψ

t
+ UT

t R̃
(θt)
t U t + Vt+1(It+1)

∣∣∣ It
}
. (5.7)

In particular, the optimal cost equals the cost-to-go at the initial stage, i.e., it holds

minJ = J (π∗0:K−1) = V0 (I0) .

Eq. (5.7) implies that the optimal control laws are necessarily closed-loop feedback laws because they
inherently anticipate the influence of future measurements during the decision-making [158].

5.2 Intractability of the Optimal Solution

The DP recursion (5.6) is conceptually simple but cannot be solved analytically. Even worse, the
numerical evaluation of the cost-to-go becomes computationally intractable already at stage K − 2,
although VK−1, and hence π∗K−1, can be expressed in closed-form. To demonstrate this issue, we
evaluate the cost-to-go at stage K − 1, which are given by

VK−1 = min
UK−1

E
{
ψT
K−1

Q̃
(θK−1)
K−1 ψ

K−1
+ UT

K−1R̃
(θK−1)
K−1 UK−1 + VK

∣∣∣ IK−1

}
,

where we dropped the subscripts below the expectation and the arguments of VK−1 and VK for
notational convenience. Plugging in the expression for VK yields

VK−1 = min
UK−1

E

{
ψT
K−1

Q̃
(θK−1)
K−1 ψ

K−1
+ UT

K−1R̃
(θK−1)
K−1 UK−1 + E

{
ψT
K

Q̃KψK

∣∣∣ IK
} ∣∣∣ IK−1

}

= min
UK−1

E
{
ψT
K−1

Q̃
(θK−1)
K−1 ψ

K−1
+ UT

K−1R̃
(θK−1)
K−1 UK−1 + ψT

K
Q̃KψK

∣∣∣ IK−1

}
,

where we used the law of total expectation.2 Using the augmented dynamics (4.1), we obtain

VK−1 = E

{
ψT
K−1

(
Q̃

(θK−1)
K−1 +

(
Ã(θK−1)

)T
Q̃KÃ(θK−1)

)
ψ
K−1

∣∣∣ IK−1

}

+ E
{
w̃T
K−1Q̃Kw̃K−1

∣∣∣ IK−1

}

+ min
UK−1

[
UT
K−1E

{
R̃

(θK−1)
K−1 +

(
B̃(θK−1)

)T
Q̃KB̃(θK−1)

∣∣∣ IK−1

}
UK−1

+2E

{
ψT
K−1

(
Ã(θK−1)

)T
Q̃KB̃(θK−1)

∣∣∣ IK−1

}
UK−1

]
,

(5.8)

since E
{
w̃K−1

}
= 0, and w̃K−1 and ψ

K−1
are independent. The term in square brackets is bounded,

quadratic, and convex with regards to UK−1. Setting its derivate to zero yields the necessary and
sufficient minimality condition

E

{
R̃

(θK−1)
K−1 +

(
B̃(θK−1)

)T
Q̃KB̃(θK−1)

∣∣∣ IK−1

}
UK−1

!
= −E

{(
B̃(θK−1)

)T
Q̃KÃ(θK−1)ψ

K−1

∣∣∣ IK−1

}
,

(5.9)

2Applied to our case, the law of total expectation implies that E
{

E
{
g(ψ

t+1
)
∣∣∣ It+1

} ∣∣∣ It} = E
{
g(ψ

t+1
)
∣∣∣ It} for

any measurable function g because It ⊆ It+1 [173, Lemma 1c].
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which is a system of linear equations. The matrix on the left side of (5.9) is only positive and thus rank
deficient, which implies that the system of equations has infinitely many solutions. The reason is that
the minimization problem is somewhat ill-posed because UK−1 contains entries to be applied after the
end of the optimization horizon, namely the entries uK|K−1, uK+1|K−1, . . . , uK+N−2|K−1. These do
not contribute to the cost-to-go and, hence, can be chosen arbitrarily. One particular solution of (5.9)
is the minimum norm solution given by

U+
K−1 = −L†K−1E

{(
B̃(θK−1)

)T
Q̃KÃ(θK−1)ψ

K−1

∣∣∣ IK−1

}
, (5.10)

where LK−1 denotes the matrix on the left side of (5.9), i.e.,

LK−1 = E

{
R̃

(θK−1)
K−1 +

(
B̃(θK−1)

)T
Q̃KB̃(θK−1)

∣∣∣ IK−1

}
, (5.11)

and with L†K−1 its Moore-Penrose pseudoinverse (cf. Appendix A.5).

Plugging (5.10) into (5.8) then leads to

VK−1 = E

{
ψT
K−1

(
Q̃

(θK−1)
K−1 +

(
Ã(θK−1)

)T
Q̃KÃ(θK−1)

)
ψ
K−1

∣∣∣ IK−1

}

−
(

E

{(
B̃(θK−1)

)T
Q̃KÃ(θK−1)ψ

K−1

∣∣∣ IK−1

})T

· L†K−1E

{(
B̃(θK−1)

)T
Q̃KÃ(θK−1)ψ

K−1

∣∣∣ IK−1

}

+ E
{
w̃T
K−1Q̃Kw̃K−1

∣∣∣ IK−1

}
,

for the cost-to-go at stage K − 1. Using the law of total probability, VK−1 can be expressed as

VK−1 =

N∑

i=0

µ
(i)
K−1E

{
ψT
K−1

(
Q̃

(i)
K−1 +

(
Ã(i)

)T
Q̃KÃ(i)

)
ψ
K−1

∣∣∣ IK−1, θK−1 = i

}

−
(

N∑

i=0

µ
(i)
K−1

(
B̃(i)

)T
Q̃KÃ(i)E

{
ψ
K−1

∣∣∣ IK−1, θK−1 = i
})T

· L†K−1

(
N∑

i=0

µ
(i)
K−1

(
B̃(i)

)T
Q̃KÃ(i)E

{
ψ
K−1

∣∣∣ IK−1, θK−1 = i
})

+ E
{
w̃T
K−1Q̃Kw̃K−1

∣∣∣ IK−1

}
,

where µ(i)
K−1 = P[θK−1 = i

∣∣ IK−1] is the mode probability. With the definitions

ẽ
(i)
K−1 = ψ

K−1
− E

{
ψ
K−1

∣∣∣ IK−1, θK−1 = i
}
, (5.12)

D
(i)
K−1 = Q̃

(i)
K−1 +

(
Ã(i)

)T
Q̃KÃ(i) −M

(i)
K−1 , (5.13)

M
(i)
K−1 =

(
Ã(i)

)T
Q̃KB̃(i)L†K−1

(
B̃(i)

)T
Q̃KÃ(i) , (5.14)
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for i = 0, 1, . . . , N , we may write this more compactly as

VK−1 =
N∑

i=0

µ
(i)
K−1E

{
ψT
K−1

D
(i)
K−1ψK−1

∣∣∣ IK−1, θK−1 = i
}

+
N∑

i=0

µ
(i)
K−1E

{(
ẽ

(i)
K−1

)T
M

(i)
K−1ẽ

(i)
K−1

∣∣∣ IK−1, θK−1 = i

}

+ E
{
w̃T
K−1Q̃Kw̃K−1

∣∣∣ IK−1

}
.

(5.15)

We see from (5.15) that the cost-to-go at stageK−1 are the sum ofN+1 functions, one for each mode
of the augmented dynamics. These functions are quadratic with regards to ψ

K−1
and each contributes

to the overall cost-to-go according to the mode probability µ(i)
K−1. The conditional expectation on the

right of (5.12) is the mode-conditioned estimate of the augmented state ψ
K−1

. Consequently, ẽ(i)
K−1 is

the mode-conditioned estimation error and the second sum in (5.15) quantifies the contribution of the
estimation error to the cost-to-go.

Similarly, we can rewrite (5.10) by evaluating the expectation with regards to θK−1 to reveal that the
optimal control law π∗K−1 is the weighted combination of N + 1 mode-conditioned control laws π∗

(i)

K−1

according to

π∗K−1 (IK−1) = −L†K−1

N∑

i=0

µ
(i)
K−1π

∗(i)
K−1 (IK−1) , (5.16)

where π∗
(i)

K−1 is linear in the mode-conditioned state estimate and given by

π∗
(i)

K−1 (IK−1) =
(
B̃(i)

)T
Q̃KÃ(i)E

{
ψ
K−1

∣∣∣ IK−1, θK−1 = i
}
.

Having obtained VK−1, the cost-to-go at stage K − 2 are given by

VK−2 = min
UK−2

E
{
ψT
K−2

Q̃
(θK−2)
K−2 ψ

K−2
+ UT

K−2R̃
(θK−2)
K−2 UK−2 + VK−1

∣∣∣ IK−2

}

= E
{
ψT
K−2

Q̃
(θK−2)
K−2 ψ

K−2

∣∣∣ IK−2

}
+ E

{
w̃T
K−1Q̃Kw̃K−1

∣∣∣ IK−2

}

+ min
UK−2

[
E
{
UT
K−2R̃

(θK−2)
K−2 UK−2

∣∣∣ IK−2

}

+

N∑

i=0

P[θK−1 = i
∣∣ IK−2]E

{
ψT
K−1

D
(i)
K−1ψK−1

+
(
ẽ

(i)
K−1

)T
M

(i)
K−1ẽ

(i)
K−1

∣∣∣ IK−2

}]
.

(5.17)

However, we cannot further simplify the right side. In particular, the term penalizing the estimation
error cannot be excluded from the minimization because it depends on UK−2 as the following lemma
shows.

Lemma 5.1:
For every time step k, the estimation error ẽk = ψ

k
− E

{
ψ
k

∣∣∣ Ik
}

is a function of the computed
control sequences U0, . . . , Uk−1.

Proof. The proof is given in Appendix C.1.

This observation is a manifestation of the dual effect that we already mentioned in Section 4.4: The
control sequence UK−2 affects the plant state (namely, the desired control action) and also the future
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estimation error ẽK−1. At stage K − 1, the controller achieves no cost savings by reducing the
estimation error since no subsequent control inputs will be computed. At all other stages, however, it
might be more beneficial to generate control sequences that excite the plant such that the estimation
error is reduced, as this yields lower cost-to-go at later stages.3 The dual effect is also reflected by
the matrix L†K−1 in the expressions for D

(i)
K−1 and M

(i)
K−1, (5.13) and (5.14). LK−1, given by (5.11),

is dependent on all modes so that L†K−1 nonlinearly couples D
(i)
K−1 and D

(j)
K−1, and M

(i)
K−1 and

M
(j)
K−1, respectively. This coupling results from the fact that the controller’s knowledge of the

structure of the augmented dynamics (i.e., its mode) is not perfect but limited to the probabilities
µ

(i)
K−1. An unpleasant consequence of Lemma 5.1 is that we cannot further simplify the expectations

E

{
ψT
K−1

D
(i)
K−1ψK−1

+
(
ẽ

(i)
K−1

)T
M

(i)
K−1ẽ

(i)
K−1

∣∣∣ IK−2

}
in the sum in (5.17), because evaluating

them demands the computation of products that contain L†K−1, i.e., the pseudoinverse of a conditional
expectation. This leads to non-convex minimization problems so that the DP recursion (5.6) becomes
intractable and prevents a numerical determination of the optimal control laws. This is even true for
the state feedback case [175, Chapter 3]. Approximate algorithms for the optimal control of MJLS
with imperfect mode observation have thus been actively researched over the years. Yet, focus has
been laid on state feedback [148, 176–179] and static output feedback, where noise-free measurements
of the plant state are available [149, 180–182].

To conclude this section, we note that any practical implementation of the optimal control law (5.10),
or equivalently (5.16), is necessarily suboptimal. Here, the reason is that the computation of the
minimum mean square error (MMSE) estimate

ψ̂
k

= E
{
ψ
k

∣∣ Ik
}

=
N∑

i=0

µ
(i)
k E

{
ψ
k

∣∣ Ik, θk = i
}
,

is intractable [183, 184]. As the modes θ0:k−1 of the MJLS (4.1) – or, in other words, the actual plant
inputs u0:k−1 in (3.1) – are not perfectly known, the number of hypotheses increases exponentially
in time, and so does the computational and memory complexity of the MMSE estimator [125].
Consequently, a variety of approximations have been proposed. The proposed approaches range from
linear MMSE estimators [185–187] to estimators that keep only a fixed number hypotheses by applying
some merging strategy [145, 188]. Among the latter, multiple model estimators have gained much
attraction. Here, the general idea is to run a bank of Kalman filters, one for each mode of the MJLS, in
combination with a method to estimate the mode probabilities µ(i)

k . For the augmented dynamics (4.1),
a multiple model estimator thus consists of N + 1 Kalman filters. The state estimate is then maintained
in the form of a mixture distribution with N + 1 components. Each component is a Gaussian with
mean and covariance

ψ̂
(i)

k
= E

{
ψ
k

∣∣ Ik, θk = i
}
, Σ

(i)
k = E

{
ẽ

(i)
k

(
ẽ

(i)
k

)T ∣∣ Ik, θk = i

}
, (5.18)

for i = 0, 1 . . . , N , which is provided by one of the mode-conditioned Kalman filters, and weighted
according to the estimated mode probability µ(i)

k . Eq. (5.18) exhibts a connection between multiple

model estimation and the stochastic optimal control problem (5.3), because both ψ̂
(i)

K−1
and Σ

(i)
K−1

naturally appear in the cost-to-go (5.15) and (5.17).4

3Using control inputs for uncertainty reduction is often called probing in the literature [159, 174].
4The covariance of the estimation error Σ

(i)
K−1 appears if we rewrite E

{(
ẽ
(i)
K−1

)T
M

(i)
K−1ẽ

(i)
K−1

}
as tr[M

(i)
K−1Σ

(i)
K−1].
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5.3 Multiple Model Based SMPC

The previous section showed that any tractable solution of the stochastic optimal control problem (5.3)
is necessarily approximate. In this section, we present a computationally cheap algorithm for sequence-
based SMPC that exploits the Gaussian mixture representation of the state estimate provided by a
multiple model estimator. Using ideas akin to those in [189], this enables us to write the cost-to-go
Vt at each stage t of the DP recursion as a weighted combination of N + 1 quadratic functions.
These functions are linearly coupled by matrices P

(i)
t that are propagated backward according to

mode-conditioned Riccati-like equations. However, relying on the particular representation of the
state estimate alone is not enough as it does not eliminate the dual effect. Thus, to obtain the desired
representation of the cost-to-go, we must assume that the estimation error is independent of previous
control actions. This assumption allows us to exclude the portion of the cost-to-go related to the
estimation error from the minimization and removes the nonlinear coupling introduced by the matrix
L† (cf. (5.11)). At each stage, the resulting control law π∗t is then a weighted combination of N + 1
linear mode-dependent control laws, i.e., of the form (5.16).

In the following, we first derive the control laws by carrying out the DP recursion in Section 5.3.1.
Then, in Section 5.3.2, we present a conceptual algorithm for the associated multiple model estimation.
Finally, the proposed algorithm for sequence-based SMPC is summarized in Section 5.3.3.

5.3.1 Derivation of the Control Laws

We start with recalling the DP recursion (5.6)

VK = E
{
ψT
K

Q̃KψK

∣∣∣ IK
}
,

Vt = min
Ut

E
{
ψT
t
Q̃

(θt)
t ψ

t
+ UT

t R̃
(θt)
t U t + Vt+1

∣∣∣ It
}
,

for t = 0, 1, . . . ,K−1, where we again omitted the subscripts below the expectation and the arguments
of the cost-to-go for notational convenience. Our goal is to express the cost-to-go Vt at each stage t as
a weighted sum of quadratic functions according to

Vt !
=

N∑

i=0

µ
(i)
t

[
E

{
ψT
t
P̂

(i)
t ψt +

(
ẽ

(i)
t

)T
Ŝ

(i)
t ẽ

(i)
t

∣∣ It, θt = i

}
+ α

(i)
t

]
, (5.19)

with P̂
(i)
t , Ŝ

(i)
t < 0, α(i)

t ≥ 0, ẽ(i)
t the mode-conditioned estimation error as per (5.12), and where

µ
(i)
t = P[θt = i

∣∣ It] is the mode probability. Note that (5.19) trivially holds at the terminal stage K

with P̂
(i)
K = Q̃K , Ŝ

(i)
K = 0, and α(i)

K = 0 for i = 0, 1, . . . , N . Similarly, we observed in the previous
section that this representation also holds for the cost-to-go VK−1 at stage K − 1 (cf. (5.15)). For all
other stages, however, the representation (5.19) is only an approximation.

To obtain this approximation, we first define the mode-conditioned cost-to-go V(i)
t by means of the

recursion

V(i)
K = E

{
ψT
K

Q̃KψK

∣∣ IK , θK = i
}
,

V(i)
t = min

Ut
E
{
ψT
t
Q̃

(i)
t ψt + UT

t R̃
(i)
t U t + Vt+1

∣∣ It, θt = i
}
,

(5.20)

for t = 0, 1, . . . ,K − 1 and i = 0, 1, . . . , N .
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Now, for the time being, let us assume that for t = 0, 1, . . . ,K, we can express V(i)
t as the quadratic

function

V(i)
t

!
= E

{
ψT
t
P

(i)
t ψt +

(
ẽ

(i)
t

)T
S

(i)
t ẽ

(i)
t

∣∣ It, θt = i

}
+ α

(i)
t , (5.21)

with P
(i)
t ,S

(i)
t < 0. Note that the mode-conditioned cost-to-go (5.21) are simular but not equal to

functions on the right of (5.19). As we shall see soon, there is a slight but important difference between
the matrices Ŝ

(i)
t and S

(i)
t and, likewise, between P̂

(i)
t and P

(i)
t . Note also that the representation (5.21)

holds true at the terminal stageK when we set P
(i)
K = Q̃K , S

(i)
K = 0, and α(i)

K = 0 for i = 0, 1, . . . , N .
For all other stages, however, (5.21) is only an approximation.

Then, we use the law of total probability to write the recurring expression E
{
Vt+1

∣∣ It
}

in the DP
recursion (5.6) as

E
{
Vt+1

∣∣ It
}

=
N∑

r=0

P[θt+1 = r
∣∣ It]E

{
Vt+1

∣∣ It, θt+1 = r
}
,

for t = 0, 1, . . . ,K − 1. Similar to [189], we then assume that we can approximate the sum on the
right by replacing Vt+1 inside the expectation by the mode-conditioned cost-to-go V(r)

t+1 according to

N∑
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∣∣ It]E
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∣∣ It, θt+1 = r
}
.

With this assumption, we obtain, using the representation (5.21),

E
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which, by the law of total expectation, yields

E
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Plugging this approximation back into the expression for the cost-to-go Vt gives
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which, under the assumption that ẽ(r)
t+1, S

(r)
t+1, and α(r)

t+1 be independent of U t, becomes
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Note that the assumption that the portion of the cost related to the estimation error ẽ(r)
t+1 be independent

of U t contradicts Lemma 5.1, implying that the impact of the dual effect is neglected. Using the
augmented dynamics (4.1), we obtain
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The expression to minimize is quadratic and convex with regards to U t. Hence, the necessary and
sufficient condition for a minimizer is
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(5.22)

As in (5.9), the matrix on the left side of (5.22) is rank deficient, implying the existence of infinitely
many solutions. We again pick the minimum norm solution
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which, after evaluating the expectations with regards to θt becomes
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Since R̃
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t is only nonzero for θt = 0 due to (4.6), we may write this as
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with
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Using this result, we define
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(5.25)

and

α
(i)
t = E

{
w̃T
t Y

(i)
t w̃t

∣∣ It, θt = i
}

+
N∑

r=0

tirE

{
E

{(
ẽ
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which allow us to represent the cost-to-go according to (5.19), i.e., as desired, we can write Vt as a
weighted sum of N + 1 quadratic functions
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(5.26)

Observe that (5.26) depends on P
(r)
t+1, S

(r)
t+1, and α(r)

t+1 that appear in the quadratic representation (5.21)

of the mode-conditioned cost-to-go V(r)
t+1.

To obtain recursive expressions for P
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t , S

(i)
t , and α(i)

t , we first note that the representation (5.21)
trivially holds at the terminal stage K with P
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We then again use the law of total probability to approximate the expectation E
{
VK

∣∣ IK−1, θK−1 = i
}

that appears on the right of V(i)
K−1 by means of the sum of the mode-conditioned cost-to-go V(r)

K

E
{
VK

∣∣ IK−1, θK−1 = i
}

=

N∑

r=0

tirE
{
VK

∣∣ IK−1, θK−1 = i, θK = r
}

!≈
N∑

r=0

tirE
{
V(r)
K

∣∣ IK−1, θK−1 = i, θK = r
}
.

With the definition (5.20) for V(r)
K , this approximation then results in

V(i)
K−1 = min

UK−1

E
{
ψT
K−1

Q̃
(i)
K−1ψK−1

+ UT
K−1R̃

(i)
K−1UK−1 + VK

∣∣ IK−1, θK−1 = i
}

≈ E
{
ψT
K−1

Q̃
(i)
K−1ψK−1

∣∣ IK−1, θK−1 = i
}

+ min
UK−1

[
E
{
UT
K−1R̃

(i)
K−1UK−1

∣∣ IK−1, θK−1 = i
}

+

N∑

r=0

tir

[
E
{
ψT
K

P
(r)
K ψ

K

∣∣ IK−1, θK−1 = i, θK = r
}]

.

Using the dynamics (4.1) and setting the derivate with regards to UK−1 to zero yields the minimizer
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Observe that P
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K−1, whereas P̂
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K−1 in (5.25) depends on all Y
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Proceeding now to stage K − 2, we can use the same reasoning to obtain an approximation of the
mode-conditioned cost-to-go V(i)

K−2 according to
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Assuming again that the estimation error ẽ(r)
K−1 does not depend on UK−2 allows us to exclude it from

the minimization, which we carry out to arrive at

V(i)
K−2 ≈ E

{
ψT
K−2

P
(i)
K−2ψK−2

+
(
ẽ
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Ã(i)

)T
Y

(i)
K−2B̃

(i)

(
R̃

(i)
K−2 +

(
B̃(i)

)T
Y

(i)
K−2B̃

(i)

)† (
B̃(i)

)T
Y

(i)
K−2Ã

(i) ,

Y
(i)
K−2 =

N∑

r=0

tirP
(r)
K−1 ,

and

α
(i)
K−2 = E

{
w̃T
K−2Y

(i)
K−2w̃K−2

∣∣ IK−2, θK−2 = i
}

+

N∑

r=0

tirE
{
α

(i)
K−1

∣∣ IK−2, θK−2 = i, θK−1 = r
}

+
N∑

r=0

tirE

{
E

{(
ẽ

(r)
K−1

)T
S

(r)
K−1ẽ

(r)
K−1

∣∣ IK−1, θK−1 = r

} ∣∣∣ IK−2, θK−2 = i, θK−1 = r

}
.

Eq. (5.27) shows that V(i)
K−2 is again of the form (5.21). Thus, we can establish the quadratic represen-

tation of the mode-conditioned cost-to-go for each stage t by inductive reasoning under the assumption
that ẽ(i)

t+1 and α(i)
t+1 be independent of U t. For t = 0, 1, . . . ,K − 1, P

(i)
t , S

(i)
t , and α(i)

t are then given
by the backward recursions

P
(i)
t = Q̃

(i)
t +

(
Ã(i)

)T
Y

(i)
t Ã(i) − S

(i)
t , (5.28)

S
(i)
t =

(
Ã(i)

)T
Y

(i)
t B̃(i)

(
R̃

(i)
t +

(
B̃(i)

)T
Y

(i)
t B̃(i)

)† (
B̃(i)

)T
Y

(i)
t Ã(i) ,

α
(i)
t = E

{
w̃T
t Y

(i)
t w̃t

∣∣ It, θt = i
}

+

N∑

r=0

tirE
{
α

(i)
t+1

∣∣ It, θt = i, θt+1 = r
}

+

N∑

r=0

tirE

{
E

{(
ẽ

(r)
t+1

)T
S

(r)
t+1ẽ

(r)
t+1

∣∣ It+1, θt+1 = r

} ∣∣∣ It, θt = i, θt+1 = r

}
,
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that are initialized with P
(i)
K = Q̃K , S

(i)
K = 0, and α(i)

K = 0, and where

Y
(i)
t =

N∑

r=0

tirP
(r)
t+1 , (5.29)

for i = 0, 1, . . . , N . Note that the Riccati-like equations (5.28) that govern the evolution of P
(i)
t are

linearly coupled via (5.29). This can be interpreted as mixing or interaction of the results from the
previous stage t+ 1.

Hence, we conclude that (5.19) holds for all t so that the cost-to-go at each stage are approximated
by a weighted sum of mode-conditioned quadratic functions. As per (5.23), with regards to this
approximation the optimal control law is then

π∗t
(
µ
t
, ψ̂

(0)

t
, . . . , ψ̂

(N)

t

)
= −

(
µ

(0)
t R̃

(0)
t +

[
N∑

i=0

µ
(i)
t

(
B̃(i)

)T
Y

(i)
t B̃(i)

])† N∑

i=0

µ
(i)
t π
∗(i)
t

(
ψ̂

(i)

t

)
, (5.30)

for t = 0, 1, . . . ,K − 1, with π∗
(i)

t given by

π∗
(i)

t

(
ψ̂

(i)

t

)
=
(
B̃(i)

)T
Y

(i)
t Ã(i)ψ̂

(i)

t
,

and Y
(i)
t as per (5.29) for i = 0, 1, . . . , N . That is, the optimal control law consists of the weighted

combination of the output of N + 1 mode-conditioned control laws. Although each π∗
(i)

t is linear in

the mode-conditioned state estimate ψ̂
(i)

t
, π∗t is highly nonlinear because the involved pseudoinverse

depends on the estimated mode probabilities µ(i)
t .

Note that the derived control law is a function of ψ̂
(i)

t
and µ

t
only and not of the information set It.

Thus, an estimator that provides the controller with these quantities can be designed separately. As we

pointed out at the end of the previous section, both ψ̂
(i)

t
and µ

t
are naturally provided by a multiple

model estimator. A tailored estimator that can process delayed and out-of-sequence measurements and
incorporate the information supplied by received ACKs is presented next.

5.3.2 Tailoring of a Multiple Model Estimator

Among the class of multiple model estimators, the interacting multiple model (IMM) filter has gained
much popularity because it exhibits a good tradeoff between estimation quality and computational
complexity [184]. In essence, the IMM filter consists of a bank of Kalman filters, which are individually
reinitialized at each time step by “mixing” all mode-conditioned estimates from the previous time
step. After a measurement is processed, the mode probabilities are updated according to the mode-
conditioned measurement likelihoods. The mixing step is a particular feature of the IMM filter and not
shared with other multiple model approaches. In [190] it is shown that such a mixing step is also part
of the optimal yet intractable estimator, which mathematically justifies the widespread success of the
IMM filter. Another merit of the IMM filter is its wide usage in target tracking applications, where
delayed and out-of-sequence arrivals of measurement are typical [144, 145, 191]. Consequently, it has
received some attraction also in the scope of networked control [126, 192, 193].

To handle arbitrarily delayed and out-of-sequence measurements, it was proposed to use retrodiction
techniques in [191]. Retrodiction requires that Ã(θk) in (4.1) be invertible for all modes, which,
however, is never the case since F (cf. (4.8)) is nilpotent and thus necessarily singular. As an
alternative to retrodiction, the filter presented in [193] is equipped with a buffer to store received
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measurements and estimates from previous time steps. Once a delayed measurement is received, the
filter stores it in the buffer and updates the current state estimate using the buffered data. In addition to
being simple, this approach is well suited to deal with multiple measurements that arrive at the same
time step as they can be processed one after another. Moreover, it is easily extended to integrate the
mode observations inferred from the received ACKs from the actuator. We introduce this extension in
the following.

Since our network model τ sc
k allows unbounded measurement delays, it would require infinite mem-

ory to guarantee that all successfully transmitted measurements can be stored and eventually pro-
cessed [194]. Thus, for a feasible solution with finite and fixed-size memory, the assumption below is
necessary.

Assumption 5.1:
Measurements with a delay larger than L ∈ N ∪ {0} time steps are discarded upon reception.

Discarding measurements is always suboptimal so that the value of L must be chosen carefully by
the designer and traded off against a potential reduction of storage and computational complexity. To
determine an appropriate value, one should also consider that the lack of measurements – be it due
to too many packet losses or due to a too small buffer – can lead to an unbounded estimation error
covariance and eventually to the instability of the filter [195–197].

As previously stated, an IMM filter for the augmented dynamics (4.1) maintains the state estimate in

the form of a Gaussian mixture with N + 1 components with mean ψ̂
(i)

k
and covariance Σ

(i)
k as given

by (5.18). The component weights are determined by the estimated mode probability distribution µ
k
.

We already demonstrated in Section 4.4 that once we know that θk = i this probability distribution
reduces to the (i+ 1)-th standard basis vector

µ
k

= e
(i+1)
N+1 . (5.31)

At time k, integrating a mode observation, say from time k′ < k, then consists of updating µ
k′

according to (5.31), followed by a recomputation of the state estimates from time k′ + 1 to k using all
the available measurements and mode observations. One cycle of the resulting IMM filter is given
in Algorithm 5.2. For a detailed description of the IMM-specific mixing step in lines 7 to 14 and the
update of the mode probabilities in line 30 based on the mode-conditioned measurement likelihoods
l(i) refer to, for instance, [184,190]. The initial conditions for the mode-conditioned Kalman filters are

ψ̂
(i)

0
=

[
x̂0

0

]
, Σ

(i)
0 =

[
X0 0
0 0

]
,

for i = 0, 1, . . . , N , and the initial mode probability distribution is set to µ
0

= e
(N+1)
N+1 to reflect that

the buffer at the actuator is initially empty. During the first time steps k′ = 0, 1, . . . , L, the input

arguments ψ̂
(i)

k−(L+1)
, Σ

(i)
k−(L+1), and µ(i)

k−(L+1) are not yet existent. Instead, we call the algorithm

with the initial conditions ψ̂
(i)

0
, Σ

(i)
0 , and µ(i)

0 , and the outermost loop runs from r = k′ − 1 to 0.

The memory footprint of the algorithm increases linearly with the buffer length. Specifically, it is
necessary to allocate memory for the mode observations θk−(L+1), . . . , θk−1, the control sequences
Uk−(L+1), . . . , Uk−1, the measurements y

k−L, . . . , yk, and the Gaussian mixture representing the

estimate at time k− (L+ 1). For the latter, N + 1 mode-conditioned means ψ̂
(i)

k−(L+1)
and covariance

matrices Σ
(i)
k−(L+1), and the estimated mode distribution µ

k−(L+1)
must be stored.
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Algorithm 5.2 One Cycle of the Proposed IMM Filter

Input: Ak, Yk, ψ̂
(i)

k−(L+1)
, Σ

(i)
k−(L+1), µ

(i)
k−(L+1)

Output: ψ̂
(i)

k
, Σ

(i)
k , µ

k
1: Store mode observations inferred from Ak // As described in Section 4.1
2: Store measurements Yk
3: for r = L to 0 do
4: if mode θk−(r+1) is available then
5: Update µ

k−(r+1)
according to (5.31)

6: end if
// Mode-conditioned reinitialization (Mixing step)

7: for i = 0 to N do
8: µ̄(i) =

∑
j tjiµ

(j)
k−(r+1)// Mode probability prediction

9: for j = 0 to N do

10: µj|i = tji
µ
(j)

k−(r+1)

µ̄(i) // Mixing weight between modes i and j

11: end for
// Mixing estimate for mode i

12: ψ̂
(i)

m
=
∑
j µ

j|iψ̂
(j)

k−(r+1)

13: Σ
(i)
m =

∑
j µ

j|i
[
Σ

(i)
k−(r+1) +

(
ψ̂

(i)

m
− ψ̂(j)

k−(r+1)

)(
ψ̂

(i)

m
− ψ̂(j)

k−(r+1)

)T
]

14: end for
// Mode-conditioned prediction step

15: for i = 0 to N do
16: ψ̂

(i)

k−r = Ã(i)ψ̂
(i)

m
+ B̃(i)Uk−(r+1)

17: Σ
(i)
k−r = Ã(i)Σ

(i)
m

(
Ã(i)

)T

+ W̃

18: end for
19: if y

k−r is available then
20: // Mode-conditioned measurement update
21: for i = 0 to N do
22: z = y

k−r −
[
C 0

]
ψ̂

(i)

k−r // Innovation

23: Σz =
[
C 0

]
Σ

(i)
k−r

[
CT 0

]T
+ V // Innovation covariance matrix

24: K = Σ
(i)
k−rC

T(Σz)
−1

25: ψ̂
(i)

k−r = ψ̂
(i)

k−r + Kz

26: Σ
(i)
k−r = Σ

(i)
k−r −KΣz(K)

T

27: l(i) = 1√
det[2πΣz ]

exp
{
− 1

2z
T (Σz)

−1
z
}
// Measurement likelihood

28: end for
29: for i = 0 to N do
30: µ

(i)
k−r = µ̄(i)l(i)∑

j µ̄
(j)l(j)

// Mode probability update

31: end for
32: else
33: for i = 0 to N do
34: µ

(i)
k−r = µ̄(i) // Mode probability update

35: end for
36: end if
37: end for
38: return ψ̂

(i)

k
, Σ

(i)
k , µ

k
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Algorithm 5.3 Conceptual Algorithm for the Proposed Multiple Model Based SMPC

1: Compute P
(0)
1 , . . . ,P

(N)
1 by means of the backward recursion (5.28) initialized with P

(i)
K = Q̃K

2: Compute Y
(0)
0 , . . . ,Y

(N)
0 using P

(0)
1 , . . . ,P

(N)
1 in (5.29)

3: for k = 0, 1 . . . do
4: Estimate ψ̂

(i)

k
, Σ

(i)
k , and µ

k
with the IMM filter (Algorithm 5.2)

5: Compute Uk = π∗0

(
µ
k
, ψ̂

(0)

k
, . . . , ψ̂

(N)

k

)
using Y

(0)
0 , . . . ,Y

(N)
0 in (5.30)

6: Transmit Uk to the actuator
7: end for

5.3.3 Summary of the Proposed SMPC Algorithm

Combining the results of the previous two sections yields the proposed multiple model approach for
sequence-based SMPC. The resulting conceptual algorithm is summarized in Algorithm 5.3. The
algorithm is straightforward to implement and has fixed, moderate computational complexity at each
time step. In particular, for the computation of the control sequence Uk no costly iterative optimization
is required at runtime. Moreover, the algorithm is inherently parallelizable. The mode-conditioned
Kalman filters can run concurrently, and, similarly, the mode-conditioned control laws in (5.30) can
be evaluated in parallel. We note that the matrices P

(i)
1 and Y

(i)
0 need to be recomputed once the

controller updates the mode transition probabilities due to an update of the network model provided
by the CoCPN translator. We also note that we can replace any occurrence of tji in the IMM filter
algorithm by tk−r,ji if θk is a time-inhomogeneous Markov chain.

To conclude this section, we emphasize that the assumption that ẽ(r)
t+1, S

(r)
t+1, and α(r)

t+1 were independent
of U t was crucial to eliminate the dual effect, and, thereby, to obtain a tractable solution. Algorithm 5.3
is thus an open-loop feedback control approach because the impact of future measurements on the
decision-making is not taken into account. However, as the impact of the dual effect on the cost
increases with the considered horizon length K, one can expect only a slight loss of performance for
small K. We illustrate this with simulation results in Section 5.5.

5.4 SMPC Based on Local Approximation of the Cost-to-Go

The two main building blocks of the control algorithm presented in Section 5.3 are both nonlinear with
regards to the available information Ik. The IMM filter because the mixing step at the beginning of
each iteration and the mode probability update at the end of each iteration are nonlinear functions of
the mode-conditioned state estimates and the estimated mode probabilities. The control law π∗0 because
the pseudoinverse in (5.30) is a function of all estimated mode probabilities. To obtain a tractable
solution, we approximated the cost-to-go at each stage of the DP recursion by imposing a particular
representation. This approximation of the cost-to-go is global because the imposed representation
is valid for all possible Ik, or, more precisely, for all possible state estimates, i.e., for all possible
Gaussian mixtures provided by the IMM filter. For the approximated cost-to-go, we then obtained the
optimal control law by disregarding the impact of the dual effect on the cost.

In this section, we present an approach for sequence-based SMPC with opposite properties. The
underlying control law is a linear function of the available information Ik, the approximation of the
cost-to-go is only local, and, most importantly, the dual effect is taken into account. The gist of the
approach is summarized as follows. At every step, a given estimate of the plant state is propagated
forward over the optimization horizon using given control laws π0, . . . , πK−1. This “forward pass”
yields a reference trajectory, i.e., a sequence of predicted state estimates. Then, the DP recursion is
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carried out backward over the horizon, and at every stage t an upper bound of the cost-to-go, evaluated
at the predicted state estimate, is obtained. This “backward pass” yields improved control control laws
π0, . . . , πK−1, which, in turn lead to a better reference trajectory in the next forward pass. Both steps,
forward and backward pass, are repeated until convergence of the cost (5.2). As we wish to consider
the impact of the dual effect on the cost, we must anticipate future measurements during the forward
pass because they affect the quality of the predicted state estimates. This is challenging since i) the
number of available measurements depends on the delays and losses during their transmission to the
controller and ii) the values that will be measured in the future cannot be known in advance.

Similar to [124], we address the first challenge by an additional state augmentation in Section 5.4.1,
leading to a hybrid system with a second discrete-valued variable γ

k
that encodes the measurement

availability. Based on this state augmentation, we then tackle the second challenge in Section 5.4.2
and reformulate the cost function (5.2) assuming linear control laws π0, . . . , πK−1. In contrast to the
reformulation (5.4), the key idea here is to express the cost in terms of the second moment of the
augmented state rather than in terms of the augmented state directly. This is a common strategy in
literature because the dynamics of the second moment is linear and depends only on the availability of
measurements and not on the measured values [127, 177, 180, 198]. Predicting a given second moment
in time thus inherently anticipates future measurement information. Equipped with these prerequisites,
we then derive the proposed iterative method for the computation of the control laws in Section 5.4.3.
Finally, Section 5.4.4 summarizes the resulting algorithm for sequence-based SMPC.

5.4.1 Definition of the Augmented Dynamical System

Assumption 5.1 implies that it suffices to consider the availability of the measurements y
k−L, . . . , yk.

Whether y
k−l is available to the controller for processing at time k is encoded by the binary random

variable γk|k−l ∈ {0, 1} defined as

γk|k−l =

{
1 y

k−l ∈ Yk
0 y

k−l 6∈ Yk
, (5.32)

for l = 0, 1, . . . , L. Note that γk|k−l = 0 means that y
k−l has already arrived at an earlier time step

or has not yet arrived at all. In particular, (5.32) states that γk|k−l = 1 ⇒ γk′|k−l = 0 for k′ > k so
that each measurement is processed at most once. Based on (5.32), we then introduce the augmented
measurement

y
k

=
[
ỹT
k|k ỹ

T
k|k−1

. . . ỹT
k|k−L

]T
∈ R(L+1)ny ,

with

ỹ
k|k−l = γk|k−lyk−l = γk|k−lCxk−l + γk|k−lvk−l , (5.33)

for l = 0, 1, . . . , L. Note that if y
k−l is not available (γk|k−l = 0), the corresponding element ỹ

k|k−l
in y

k
becomes 0. On the other hand, in case the measurement y

k−l = 0 is available, we always have
γk|k−l = 1. Hence, the two situations with ỹ

k|k−l = 0 can be distinguished by the controller. In
addition to the current state xk, y

k
also affects the past states xk−1, . . . , xk−L, so that it is natural to

define an augmented state ξ
k

according to

ξ
k

=
[
xT
k x

T
k−1 . . . x

T
k−L η

T
k

]T ∈ Rnξ ,

with η
k

as defined in (4.4) and where nξ = (L+ 1)nx + (N−1)Nnu
2 .
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With wk =
[
wT
k 0 . . . 0

]T, (3.1), and (4.7), we get

ξ
k+1

= A
(θk)
k ξ

k
+ B

(θk)
k Uk + wk , (5.34)

for the dynamics of ξ
k
, where A

(θk)
k ∈ Rnξ×nξ and B

(θk)
k ∈ Rnξ×Nnu are given given by

#columns: nx nx · · · nx
(N−1)Nnu

2
#rows:






A 0 . . . 0 BH(θk) nx

I 0
. . .

... 0 nx

A
(θk)
k =

...
. . . . . .

...
...

...
0 . . . I 0 0 nx

0 . . . . . . 0 F (N−1)Nnu
2

,

#columns: Nnu #rows:






BJ(θk) nx

0 nx

B
(θk)
k =

...
...

0 nx

G (N−1)Nnu
2

,

with H(θk) and J(θk) as per (4.6), and F and G according to (4.8) and (4.9). The noise wk is zero-mean
and white with covariance matrix

W =

[
W 0
0 0

]
∈ Rnξ×nξ .

Similarly, with the binary vector

γ
k

=
[
γk|k γk|k−1 . . . γk|k−L

]T ∈ {0, 1}L+1 , (5.35)

we then define the augmented measurement equation

y
k

= S̄(γ
k
)Cξ

k
+ S̄(γ

k
)vk , (5.36)

with vk =
[
vT
k v

T
k−1 . . . v

T
k−L

]T, and where S̄(γ
k
) ∈ R(L+1)ny×(L+1)ny and C ∈ R(L+1)ny×nξ are

given by

S̄(γ
k
) =




γk|kIny 0 . . . 0

0 γk|k−1Iny
. . .

...
...

. . . . . . 0
0 . . . 0 γk|k−LIny



, C =




C 0 . . . . . . 0

0 C
. . . 0

...
. . . . . . . . .

...
0 . . . 0 C 0



.

The augmented measurement noise vk is zero-mean and white with covariance matrix

V =




V 0 . . . 0

0 V
. . .

...
...

. . . . . . 0
0 . . . 0 V



∈ R(L+1)ny×(L+1)ny .

We emphasize that although γ
k

is a random quantity, its realization is always known to the controller
because Yk ∈ Ik.

The combination of (5.34) and (5.36) yields the augmented dynamical system

ξ
k+1

= A
(θk)
k ξ

k
+ B

(θk)
k Uk + wk ,

y
k

= S̄(γ
k
)Cξ

k
+ S̄(γ

k
)vk .

(5.37)
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Eq. (5.37) describes a hybrid system with two independent operation modes θk and γ
k
. As before, θk

is a Markov chain with state space {0, 1, . . . , N} and only a subset of its history θ0, . . . , θk is known
to the controller. In contrast, the state space of γ

k
consists of 2L+1 distinct states and its history

γ
0
, . . . , γ

k
is completely known. Nothing can be said about the properties of the stochastic process γ

k
without further assumptions regarding the network model τ sc

k . However, we can predict the availability
of measurements at future time steps k′ > k by virtue of

P[γk′|k′−l = 1|Ik] = P[τ sc
k′−l = l|Ik] ,

P[γk′|k′−l = 0|Ik] = P[τ sc
k′−l 6= l|Ik] = 1− P[τ sc

k′−l = l|Ik] ,

for l = 0, 1, . . . , L. For example, if at time k the measurement y
k−2

has not been received yet5, we
get for its availability at time k + 1

P[γk+1|k−2 = 1|Ik] = P[τ sc
k−2 = 3|τ sc

k−2 > 2] ,

P[γk+1|k−2 = 0|Ik] = P[τ sc
k−2 > 3|τ sc

k−2 > 2] .

Similarly, if at time k the measurement y
k−1

is available, it holds

P[γk′|k−1 = 1|Ik] = 0 ,

P[γk′|k−1 = 0|Ik] = 1 .

for k′ > k. Using (5.35), the probability of a future mode realization γ
k′

= (i0, i1, . . . , iL), where
i0, i1, . . . , iL ∈ {0, 1}, is then given by

P[γ
k′

= (i0, i1, . . . , iL)
∣∣ Ik] = P[γk′|k′ = i0, γk′|k′−1 = i1, . . . , γk′|k′−L = iL

∣∣ Ik] . (5.38)

5.4.2 Reformulation of the Cost Function

With the augmented dynamical system (5.37) derived in the previous section, the availability of mea-
surements can be anticipated during the propagation of a state estimate over the optimization horizon.
Hence, the dual effect is taken into account during computation of the control laws π0, . . . , πK−1. To
remain computationally tractable, we restrict our attention to control laws with a fixed parametrization.
More precisely, we demand that each πt be a linear function of the available information It. That is, at
each stage of the optimization horizon we seek to find a linear control law of the form

ξ̂
t+1

= Âtξ̂t + B̂tU t + Kt

(
y
t
− ŜtCξ̂t

)
,

U t = Ltξ̂t ,
(5.39)

for t = 0, 1, . . . ,K − 1, where ξ̂
t
∈ Rnξ is the controller’s estimate of the augmented state ξ

t
and

with Ât ∈ Rnξ×nξ , B̂t ∈ Rnξ×Nnu , and Ŝt ∈ R(L+1)ny×(L+1)ny given by6

Ât = E
θt

{
A

(θt)
t

∣∣∣ I0

}
, B̂t = E

θt

{
B

(θt)
t

∣∣∣ I0

}
, Ŝt = E

γ
t

{
S̄(γ

t
)
∣∣∣ I0

}
. (5.40)

The parameters of the control law Kt ∈ Rnξ×(L+1)ny and Lt ∈ RNnu×nξ shall minimize the
cost (5.2), i.e., they shall be such that (K0,L0), . . . , (KK−1,LK−1) minimizes (5.2) among all
possible sequences of parameters (K′0,L

′
0), . . . , (K′K−1,L

′
K−1). Note that Kt plays the role of an

5In other words, y
k−2

is not contained in Yk−2,Yk−1, or Yk and, thus, not part of Ik.
6In the following, I0 always denotes the information set at the initial stage t = 0 of the optimization horizon.
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estimator gain in (5.39). Hence, we do not separate the design of a state estimator from the design of a
controller, as we did in Section 5.3.

The expectations in (5.40) can be evaluated according to

Ât = E
{

A
(θt)
t

∣∣∣ I0

}
=

N∑

i=0

µ
(i)
t A

(i)
t , (5.41)

B̂t = E
{

B
(θt)
t

∣∣∣ I0

}
=

N∑

i=0

µ
(i)
t B

(i)
t , (5.42)

Ŝt = E
{

S̄(γ
t
)
∣∣∣ I0

}
=
∑

(i0,i1,...,iL)
i0,i1,...,iL∈{0,1}

P[γ
t

= (i0, i1, . . . , iL)
∣∣ I0]S̄(i0,i1,...,iL) , (5.43)

with µ(i)
t = P[θt = i

∣∣ I0] and P[γ
t

= (i0, i1, . . . , iL)
∣∣ I0] as in (5.38). Note that the controller

knows the realization γ
0

= (i0, i1, . . . , iL) at the initial stage of the optimization horizon, so that

Ŝ0 = S̄(i0,i1,...,iL). Thus, using Ŝt in place of S̄(γ
t
) in the control law (5.39) seems unnecessary.

However, propagating the state estimate ξ̂
0

forward over the horizon with S̄(γ
t
) would require to

consider all possible paths of the evolution of γ
0

which is impractical because the number of paths

grows exponentially with t. As will become clear soon, using Ŝt instead of S̄(γ
t
) ensures that the

optimization problem remains tractable.

Propagating a given state estimate over the horizon by means of (5.39) involves an innovation term
y
t
− ŜtCξ̂t at each stage. Computing the innovation for future stages t+ i is, however, not possible

since the measurement vector y
t+i

is not yet known at stage t. Thus, (5.39) cannot be used directly to
obtain control laws that consider the impact of future measurement information. The first step towards
a solution of this problem is the construction of the closed-loop dynamics, which, by combining the
augmented dynamics (5.37) and the control law (5.39), is

x̃t+1 = Γ
(θt)
t x̃t + ot , (5.44)

for t = 0, 1, . . . ,K − 1, with x̃t ∈ R2nξ , Γ
(θt)
t ∈ R2nξ×2nξ , and ot ∈ R2nξ given by

x̃t =

[
ξ
t

ξ̂
t

]
, Γ

(θt)
t =

[
A

(θt)
t B

(θt)
t Lt

KtŜtC Ât + B̂tLt −KtŜtC

]
, ot =

[
wt

KtŜtvt

]
. (5.45)

Then, we decompose the second moment of the closed-loop state X̃t = Ex̃t
{
x̃tx̃

T
t

∣∣ I0

}
into N + 1

matrices by means of the indicator function according to

X̃
(i)
t = E

x̃t,θt

{
x̃tx̃

T
t 1{θt=i}

∣∣ I0

}
, (5.46)

for i = 0, 1, . . . , N , so that it holds [127, p. 31]

X̃t =
N∑

i=0

X̃
(i)
t . (5.47)

Note that X̃
(i)
t is closely related to the mode-conditioned second moment Ex̃t

{
x̃tx̃

T
t

∣∣ I0, θt = i
}

since evaluation of the expectation in (5.46) reveals that

X̃
(i)
t = µ

(i)
t E

x̃t

{
x̃tx̃

T
t

∣∣ I0, θt = i
}
.
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Thus, (5.47) is a compact formulation of the law of total expectation.

Let Nt denote the covariance matrix of ot given by

Nt =

[
W 0

0 KtŜtV
(
KtŜt

)T

]
∈ R2nξ×2nξ . (5.48)

Regarding the dynamics of X̃
(i)
t , we then have the following result.

Lemma 5.2:
For t = 0, 1, . . . ,K − 1, it holds for all j = 0, 1, . . . , N

X̃
(j)
t+1 =

N∑

i=0

tij

(
Γ

(i)
t X̃

(i)
t

(
Γ

(i)
t

)T
+ µ

(i)
t Nt

)
. (5.49)

Proof. The proof involves straightforward calculations and can be found in Appendix C.2.

Note that the dynamics (5.49), and hence also the dynamics of the second moment X̃t, is linear and
only dependent on the availability of measurements (via Ŝt) and not on the measured values. We can
observe the same for the dynamics of the covariance matrix. This is a consequence of the linearity
of the control laws (5.39) and in stark contrast to the approach presented in Section 5.3. There, the
dynamics of the estimation error covariance matrix was nonlinear and dependent on the measured
values due to the mixing step and the mode probability update of the IMM filter (cf. Algorithm 5.2).

For the reformulation of the cost function (5.2) in terms of the second moment, we first define

J
(θt)
t =

(
J(θt)Lt

)T
RtJ

(θt)Lt ∈ Rnξ×nξ ,

H
(θt)
t =

(
H(θt)

)T
RtH

(θt) ∈ R
(N−1)Nnu

2
× (N−1)Nnu

2 ,

and

QK =




QK 0 0
0 0 0
0 0 0


 ∈ Rnξ×nξ , Q

(θt)
t =




Qt 0 0
0 0 0

0 0 H
(θt)
t


 ∈ Rnξ×nξ ,

Q̂K =

[
QK 0
0 0

]
∈ R2nξ×2nξ , Q̂

(θt)
t =

[
Q

(θt)
t 0

0 J
(θt)
t

]
∈ R2nξ×2nξ ,

(5.50)

for t = 0, 1, . . . ,K − 1. Then, we write the cost function in terms of the closed-loop state x̃t as

J(K0:K−1,L0:K−1) = E
x̃0:K ,
θ0:K−1

{
x̃T
KQ̂K x̃K +

K−1∑

t=0

x̃T
t Q̂

(θt)
t x̃t

∣∣∣ I0

}
. (5.51)
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For the expectation on the right side of (5.51) we may use that

E
x̃K

{
x̃T
KQ̂K x̃K

∣∣ I0

}
=

N∑

i=0

E
x̃K ,θK

{
x̃T
KQ̂K x̃K1{θK=i}

∣∣ I0

}

=
N∑

i=0

E
x̃K ,θK

{
tr
[
x̃T
KQ̂K x̃K1{θK=i}

] ∣∣ I0

}

=

N∑

i=0

tr

[
E

x̃K ,θK

{
Q̂K x̃K x̃

T
K1{θK=i}

∣∣ I0

}]

=

N∑

i=0

tr
[
Q̂KX̃

(i)
K

]
,

and, similarly, for t = 0, 1, . . . ,K − 1

E
x̃t,θt

{
x̃T
t Q̂

(θt)
t x̃t

∣∣ I0

}
=

N∑

i=0

E
x̃t,θt

{
x̃T
t Q̂

(i)
t x̃t1{θt=i}

∣∣ I0

}
=

N∑

i=0

tr
[
Q̂

(i)
t X̃

(i)
t

]
,

which yields

J(K0:K−1,L0:K−1) =

N∑

i=0

tr
[
Q̂KX̃

(i)
K

]
+

K−1∑

t=0

N∑

i=0

tr
[
Q̂

(i)
t X̃

(i)
t

]
. (5.52)

For a given sequence of control law parameters (K0,L0), . . . , (KK−1,LK−1), (5.52) expresses the
cost in terms of the second moment of the closed-loop state. Minimizing (5.52) subject to the
second moment dynamics (5.49) leads to closed-loop feedback laws because the influence of future
measurement information is considered. Similarly, the impact of the control law parameters (Kt,Lt)

on future state estimates, expressed by means of the second moments X̃
(i)
t+1, X̃

(i)
t+2, . . . , X̃

(i)
t+K is taken

into account. Note that using S̄(γ
t
) in place of Ŝt in the control law (5.39) would have made the

closed-loop dynamics and the second moment dynamics dependent on γ
t
. This, in turn, would have

led to a decomposition of the second moment into (N + 1)2L+1 matrices X̃
(i,j0,j1,...,jL)
t , rendering the

minimization of (5.52) intractable even for small L.

We can formulate the cost function (5.52) more conveniently as a backward recursion similar to the
DP recursion (5.6). Before we do so, let us first introduce some notation to simplify the exposition.
Define the space

Hn ,
{(

X(0),X(1), . . . ,X(N)
) ∣∣ X(i) ∈ Rn×n

}
,

that is composed of all (N + 1)-tuples of n-by-n matrices. Hn is a vector space with addition and
scalar multiplication defined as

X + Y ,
(
X(0) + Y(0),X(1) + Y(1), . . . ,X(N) + Y(N)

)
,

αX ,
(
αX(0), αX(1), . . . , αX(N)

)
,

for X =
(
X(0),X(1), . . . ,X(N)

)
,Y =

(
Y(0),Y(1), . . . ,Y(N)

)
∈ Hn, and α ∈ R, i.e., the usual

addition and scalar multiplication on Rn×n is applied elementwise.7 On Hn, define the family of

7More precisely, Hn is a Banach space (cf. Appendix A.7). We will make use of this fact in Chapter 6.
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mappings E(i) : Hn 7→ Rn×n according to

E(i)(X ) ,
N+1∑

j=0

tijX
(j) ,

for any X =
(
X(0),X(1), . . . ,X(N)

)
∈ Hn for i = 0, 1, . . . , N . With this definition, we can evaluate

the cost (5.52) for a given sequence of control law parameters recursively according to the following
theorem.

Theorem 5.1:
Fix a sequence of control law parameters (K0,L0), . . . , (KK−1,LK−1). Then, the cost-to-go at each
stage t = 0, 1, . . . ,K is given by

Vt =

N∑

i=0

tr
[
P̃

(i)
t X̃

(i)
t

]
+ µ

(i)
t ω̃

(i)
t , (5.53)

with P̃
(i)
t and ω̃(i)

t computed according to the backward recursions

P̃
(i)
t = Q̂

(i)
t +

(
Γ

(i)
t

)T
E(i)
(
P̃ t+1

)
Γ

(i)
t , (5.54)

ω̃
(i)
t = E(i)(ω̃t+1) + tr

[
E(i)
(
P̃ t+1

)
Nt

]
, (5.55)

that are initialized with P̃
(i)
K = Q̂K and ω̃(i)

K = 0 for i = 0, 1, . . . , N , and where

P̃ t =
(
P̃

(0)
t , P̃

(1)
t , . . . , P̃

(N)
t

)
∈ H2nξ ,

ω̃t =
(
ω̃

(0)
t , ω̃

(1)
t , . . . , ω̃

(N)
t

)
∈ H1 .

Proof. The proof is given is Appendix C.3.

In particular, we have J(K0:K−1,L0:K−1) = V0. Note that at each stage, Vt is a function of the
corresponding control law parameters (Kt,Lt) only (via Q̂

(i)
t , Γ

(i)
t , and Nt in (5.54) and (5.55)).

The contribution of the control law parameters (Kt+1:K−1,Lt+1:K−1) to Vt is latent via P̃ t+1 and
ω̃t+1, which can be interpreted as the costate variables [199]. Consequently, (5.53) can be viewed as
the Hamiltonian associated with the minimization of the cost (5.52) subject to the second moment
dynamics (5.49).

5.4.3 Derivation of the Control Laws

Theorem 5.1 suggests a straightforward approach for the iterative computation of the control law
parameters that minimize the cost (5.52) for a given second moment X̃

(0)
0 , . . . , X̃

(K)
0 . Starting with

initial control law parameters (K
[0]
0:K−1,L

[0]
0:K−1) with cost J [0] = J

(
K

[0]
0:K−1,L

[0]
0:K−1

)
, a forward

pass is carried out to propagate the initial condition X̃
(i)
0 over the horizon, yielding a reference trajectory

X̃
(0,[1])
0:K , X̃

(1,[1])
0:K , . . . , X̃

(N,[1])
0:K . Then, in a backward pass that starts at the end of the optimization

horizon, a new sequence of improved control law parameters (K
[1]
0:K−1,L

[1]
0:K−1) with cost J [1] ≤ J [0]

is obtained by minimizing the cost-to-go (5.53) at each stage. In the next iteration, (K
[1]
0:K−1,L

[1]
0:K−1)

is then used in the forward pass to compute a new reference trajectory X̃
(0,[2])
0:K , X̃

(1,[2])
0:K , . . . , X̃

(N,[2])
0:K ,
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which in turn leads to new control law parameters (K
[2]
0:K−1,L

[2]
0:K−1) with cost J [2] ≤ J [1] in a

subsequent backward pass. This process is repeated until convergence of the cost, i.e., until we have
J [c−1] − J [c] ≤ ε for some small ε, say ε = 10−8, after the backward pass of iteration c.

In the literature, such iterative methods are often used to compute control laws for finite or receding
horizon control of MJLS. Specifically for state feedback and static output feedback control, where the
controller need not estimate the plant state, provably convergent algorithms have been introduced [148,
177,180,200]. However, a straightforward implementation of the iterative method sketched above does
not result in a convergent algorithm because the cost-to-go (5.53) is not guaranteed to be convex with
respect to (Kt,Lt). This observation is in line with a conclusion drawn in [198] where an algorithm
for the computation of linear control laws for finite horizon control of MJLS without mode observation
was presented. To illustrate the non-convexity, consider the dynamics (5.37) with ξ

k
, Uk ∈ R, N = 1,

L = 0, and parameters8

A
(0)
k = 1.1 , A

(1)
k = 3.1 , B

(0)
k = 1.1 , B

(1)
k = 7 ,

C = 2 , W = 0.1 , V = 0.1 , Tk =

[
0.4 0.6
0.8 0.2

]
.

Furthermore, we let P[γk|k = 1|Ik] = 1 for all k, i.e., every measurement is processed without delay,
and the parameters of the cost function (5.52) are

Q̂K =

[
1 0
0 0

]
, Q̂

(0)
t = Q̂

(1)
t =

[
1 0
0 2

]
,

with K = 3 and t = 0, 1, 2. For the initial conditions

µ
0

=

[
0.2
0.8

]
, X̃

(0)
0 =

[
0.26 0.01
0.01 0.01

]
, X̃

(1)
0 =

[
2.75 2.25
2.25 2.25

]
,

and L0 ∈ [−3, 3] and K0 ∈ [−3, 3], we obtain the cost-to-go V0 plotted in Fig. 5.1. The figure
illustrates that the cost-to-go V0 is non-convex with respect to the control law parameters (K0,L0).

To obtain a convergent algorithm, we demand that, at each stage t of the horizon, X̃
(i)
t and P̃

(i)
t have a

certain structure. This is similar to what was done [198] and restricts their possible trajectories. This
restriction, then, yields an upper bound Vt of the cost-to-go (5.53). In contrast to (5.53), Vt is convex
with respect to (Kt,Lt), which enables us to prove that the iterative method discussed above indeed
converges.

To start, we note that the closed-loop second moment X̃t can be partitioned as

X̃t = E
{
x̃tx̃

T
t

∣∣ I0

}
=


E
{
ξ
t
ξT
t

∣∣ I0

}
E
{
ξ
t
ξ̂

T

t

∣∣ I0

}

E
{
ξ̂
t
ξT
t

∣∣ I0

}
E
{
ξ̂
t
ξ̂

T

t

∣∣ I0

}

 =

[
X̃t,1 X̃t,12

X̃T
t,12 X̃t,2

]
, (5.56)

using the definition of the closed-loop state (5.45). By definition, X̃t is at least positive semidefinite,
X̃t < 0, so that it must hold (cf. Theorem A.7 in Appendix A.4)

X̃t,2 < 0 ,

X̃t,12 = X̃t,12X̃
†
t,2X̃t,2 ,

X̃t,1 < X̃t,12X̃
†
t,2X̃

T
t,12 .

(5.57)

8The MJLS considered here does not represent an augmented dynamical system as introduced in Section 5.4.1. Instead,
we use an ordinary MJLS with two modes, scalar state and control input for illustration purposes.
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Figure 5.1: Illustration of the non-convex cost-to-go V0 at stage t = 0 for different values of L0 and K0.

Hence, there exist Xt < 0 such that we may write [201]

X̃t =

[
X̃t,12X̃

†
t,2X̃

T
t,12 + Xt X̃t,12X̃

†
t,2X̃t,2

X̃t,2X̃
†
t,2X̃

T
t,12 X̃t,2

]
. (5.58)

The matrix Xt appearing in (5.58) is the estimation error covariance of an unbiased estimator of ξ
t
. To

see this, we write ξ
t

as

ξ
t

= X̃t,12X̃
†
t,2ξ̂t + ξ

t
− X̃t,12X̃

†
t,2ξ̂t , (5.59)

and interpret X̃t,12X̃
†
t,2ξ̂t as an unbiased estimator of ξ

t
with zero-mean estimation error

ẽt = ξ
t
− X̃t,12X̃

†
t,2ξ̂t . (5.60)

The estimation error and the estimator are uncorrelated since

E
{

X̃t,12X̃
†
t,2ξ̂tẽ

T
t

∣∣ I0

}
= X̃t,12X̃

†
t,2E

{
ξ̂
t
ξT
t

∣∣ I0

}
− X̃t,12X̃

†
t,2E

{
ξ̂
t
ξ̂

T

t

∣∣ I0

}
X̃†t,2X̃

T
t,12

= X̃t,12X̃
†
t,2X̃

T
t,12 − X̃t,12X̃

†
t,2X̃t,2X̃

†
t,2X̃

T
t,12

= 0 ,

where we used that X̃†t,2X̃t,2X̃
†
t,2 = X̃†t,2 (cf. (A.13)). Thus, by the orthogonality principle, X̃t,12X̃

†
t,2ξ̂t

is the linear MMSE estimator. Using (5.60), the estimation error covariance matrix is given by

E
{
ẽtẽ

T
t

∣∣ I0

}
= X̃t,1 + X̃t,12X̃

†
t,2X̃t,2X̃

†
t,2X̃

T
t,12 − X̃t,12X̃

†
t,2X̃

T
t,12 − X̃t,12X̃

†
t,2X̃

T
t,12

= X̃t,1 + X̃t,12X̃
†
t,2X̃

T
t,12 − 2X̃t,12X̃

†
t,2X̃

T
t,12

= X̃t,1 − X̃t,12X̃
†
t,2X̃

T
t,12

= Xt .

(5.61)
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Thus, the controller state ξ̂
t

is generally not an unbiased estimate of the augmented plant state ξ
t
.

However, the parametrization (5.58) of the closed-loop second moment remains valid for any X̃t,12

that fulfills (5.57). In particular, we may demand that

X̃t,12
!

= X̃t,2 , (5.62)

so that (5.59) becomes
ξ
t

= ξ̂
t
+ ẽt ,

with
ẽt = ξ

t
− ξ̂

t
,

rendering the controller state the linear MMSE and, hence, unbiased estimate of ξ
t
. The error

covariance matrix is then given by

E
{
ẽtẽ

T
t

∣∣ I0

}
= E

{(
ξ
t
− ξ̂

t

)(
ξ
t
− ξ̂

t

)T ∣∣ I0

}

= X̃t,1 + X̃t,2 − X̃t,12 − X̃T
t,12

= X̃t,1 − X̃t,2 .

But, on the other hand, we have E
{
ẽtẽ

T
t

∣∣ I0

}
= Xt by (5.61), so that we can conclude

X̃t,1 = Xt + Xt , (5.63)

where we let Xt = X̃t,2.

Thus, the second moment (5.56) becomes

X̃t =

[
Xt + Xt Xt

Xt Xt

]
. (5.64)

Eq. (5.64) allows us to express the second moment of the augmented plant state, X̃t,1, as the sum
of the second moment of the controller state, Xt, and the estimation error covariance Xt. We again
emphasize that (5.64) implies that the controller state ξ̂

t
is the linear MMSE estimate of ξ

t
at each

stage of the optimization horizon. Note that this also demands that the controller state ξ̂
t

and the
estimation error ξ

t
− ξ̂

t
are uncorrelated. This property, for instance, also holds for the Kalman filter

when used to estimate the state of a linear system. Asymptotic uncorrelatedness between estimator
and estimation error has also been shown to be a necessary condition for optimality in many infinite
horizon control problems with randomly varying parameters [202–205]. Similarly, a closed-loop
second moment of the form (5.64) is necessary for a linear control law to be optimal in infinite horizon
networked control scenarios without ACKs [124, 206].

With the aid of (5.47), we get the desired parametrization of X̃
(i)
t from (5.62), (5.63), and (5.64)

according to

X̃
(i)
t =

[
X

(i)
t + X

(i)
t X

(i)
t

X
(i)
t X

(i)
t

]
, (5.65)

with the identifications

X
(i)
t = X̃

(i)
t,2 = X̃

(i)
t,12 ,

X
(i)
t = X̃

(i)
t,1 + X̃

(i)
t,2 − X̃

(i)
t,12 −

(
X̃

(i)
t,12

)T
= X̃

(i)
t,1 −X

(i)
t ,

(5.66)

for t = 0, 1, . . . ,K and i = 0, 1, . . . , N . The dynamics of X
(i)
t and X

(i)
t are provided by the following

lemma.
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Lemma 5.3:
Let X̃

(i)
t be parameterized according to (5.65) and let (5.66) hold. Then, the dynamics of X

(i)
t and

X
(i)
t are given by

X
(j)
t+1 =

N∑

i=0

tij

[
µ

(i)
t KtŜtV

(
KtŜt

)T

+
(
Ât + B̂tLt

)
X

(i)
t

(
Ât + B̂tLt

)T
+ KtŜtC X

(i)
t

(
KtŜtC

)T
]
,

X
(j)
t+1 =

N∑

i=0

tij

[
µ

(i)
t

(
W + KtŜtV

(
KtŜt

)T
)

+
(
A

(i)
t − Ât +

(
B

(i)
t − B̂t

)
Lt

)
X

(i)
t

(
A

(i)
t − Ât +

(
B

(i)
t − B̂t

)
Lt

)T

+
(
A

(i)
t −KtŜtC

)
X

(i)
t

(
A

(i)
t −KtŜtC

)T
]
,

(5.67)

for t = 0, 1, . . . ,K and j = 0, 1, . . . , N .

Proof. The proof of this result is given in Appendix C.4.

To obtain an appropriate parametrization of P̃
(i)
t , we recall from (5.53) that P̃

(i)
t is the costate matrix

associated with the second moment X̃
(i)
t . Hence, we can regard it as the second moment of the costate

λ̃t =
[
λT
t λ̂

T

t

]T
associated with the closed-loop state x̃t. With this interpretation, we have

P̃t = E
{
λ̃tλ̃t

T ∣∣ I0

}
=

[
P̃t,1 P̃t,12

P̃T
t,12 P̃t,2

]
=

N∑

i=0

P̃
(i)
t , (5.68)

with

P̃
(i)
t =


E
{
λtλ

T
t 1{θt=i}

∣∣ I0

}
E
{
λtλ̂

T

t 1{θt=i}
∣∣ I0

}

E
{
λ̂tλ

T
t 1{θt=i}

∣∣ I0

}
E
{
λ̂tλ̂

T

t 1{θt=i}
∣∣ I0

}

 =


 P̃

(i)
t,1 P̃

(i)
t,12(

P̃
(i)
t,12

)T
P̃

(i)
t,2


 .

Similar to what we did above, we now demand that −λ̂t be the linear MMSE estimate of the costate λt
that is associated with the augmented plant state. The corresponding error covariance matrix is then

Pt = E

{(
λt + λ̂t

)(
λt + λ̂t

)T ∣∣ I0

}
= P̃t,1 + P̃t,2 + P̃t,12 + P̃T

t,12 .

Uncorrelatedness of estimator and estimation error requires that

P̃t,12
!

= −P̃t,2 = Pt ,

and hence

Pt = P̃t,1 + P̃t,2 + P̃t,12 + P̃T
t,12

= P̃t,1 −Pt .

With this parametrization, P̃t reads

P̃t =

[
Pt + Pt −Pt

−Pt Pt

]
. (5.69)
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Similar to (5.64), we can express the second moment of the costate associated with the augmented
plant state as the sum of the second moment of the costate associated with the controller state
and the estimation error covariance. Again, a costate matrix of the form (5.69) is known to be a
necessary condition for optimal control laws in infinite horizon control problems with randomly
varying parameters and networked control scenarios without ACKs [124, 202–206].

By (5.68), we can use (5.69) to parameterize P̃
(i)
t according to

P̃
(i)
t =

[
P

(i)
t + P

(i)
t −P

(i)
t

−P
(i)
t P

(i)
t

]
, (5.70)

with the identities

P
(i)
t = P̃

(i)
t,2 = −P̃

(i)
t,12 ,

P
(i)
t = P̃

(i)
t,1 + P̃

(i)
t,2 + P̃

(i)
t,12 +

(
P̃

(i)
t,12

)T
= P̃

(i)
t,1 −P

(i)
t ,

(5.71)

for t = 0, 1, . . . ,K and i = 0, 1, . . . , N .

Theorem 5.2:
Fix a sequence of control law parameters (K0,L0), . . . , (KK−1,LK−1) and let X̃

(i)
t and P̃

(i)
t be

parameterized as per (5.65) and (5.70), respectively. Further, let denote

P t =
(
P

(0)
t ,P

(1)
t , . . . ,P

(N)
t

)
∈ Hnξ ,

P t =
(
P

(0)
t ,P

(1)
t , . . . ,P

(N)
t

)
∈ Hnξ ,

ωt =
(
ω

(0)
t , ω

(1)
t , . . . , ω

(N)
t

)
∈ H1 .

Then, the cost-to-go at each stage t = 0, 1, . . . ,K is given by

Vt =

N∑

i=0

tr
[
P

(i)
t X

(i)
t + P

(i)
t

(
X

(i)
t + X

(i)
t

)]
+ µ

(i)
t ω

(i)
t , (5.72)

with X
(i)
t and X

(i)
t given by Lemma 5.3, and where P

(i)
t , P

(i)
t , and ω(i)

t are computed by means of the
backward recursions

P
(i)
t =

(
J(i)Lt

)T
RtJ

(i)Lt +
(
B

(i)
t Lt

)T
E(i)
(
P t+1

)
B

(i)
t Lt

+
(
Ât +

(
B̂t −B

(i)
t

)
Lt −KtŜtC

)T
E(i)
(
P t+1

) (
Ât +

(
B̂t −B

(i)
t

)
Lt −KtŜtC

)
,

P
(i)
t = Q

(i)
t +

(
J(i)Lt

)T
RtJ

(i)Lt +
(
A

(i)
t + B

(i)
t Lt

)T
E(i)
(
P t+1

) (
A

(i)
t + B

(i)
t Lt

)

+
(
A

(i)
t − Ât +

(
B

(i)
t − B̂t

)
Lt

)T
E(i)
(
P t+1

) (
A

(i)
t − Ât +

(
B

(i)
t − B̂t

)
Lt

)
,

ω
(i)
t = E(i)(ωt+1) + tr

[
E(i)
(
P t+1 + P t+1

)
W + E(i)

(
P t+1

)
KtŜtV

(
KtŜt

)T
]
,

(5.73)

that are initialized with P
(i)
K = 0nξ , P

(i)
K = QK , and ω(i)

K = 0 for i = 0, 1, . . . , N .

Proof. The proof is given in Appendix C.5.
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Observe that we denote the cost-to-go in Theorem 5.2 by Vt and not by Vt as we did in Theorem 5.1.
As already indicated above, the parametrizations (5.65) and (5.70) of X̃

(i)
t and P̃

(i)
t restrict their

possible trajectories. For any sequence of control law parameters (K0:K−1,L0:K−1), the costate
matrices P̃

(i)
t represent the contribution of the control law parameters (Kt:K−1,Lt:K−1) to Vt. Thus,

restricting their trajectories means that Vt ≥ Vt, i.e., Vt bounds the cost-to-go from above, and in
particular, V0 ≥ V0 = J(K0:K−1,L0:K−1). Note also, that a minimizer (K∗t ,L

∗
t ) of (5.72) is, in

general, not a minimizer of (5.53). Hence, any sequence of control law parameters (K∗0:K−1,L
∗
0:K−1)

that is obtained by minimizing Vt for each stage t, is, in general, only suboptimal with regards to the
cost (5.52).

Using (5.73) reveals that (5.72) is given by

Vt =

N∑

i=0

tr
[
KT
t E(i)

(
P t+1

)
KtD

(i)
t,1

]
+ tr

[
LT
t D

(i)
t,2LtX

(i)
t

]

+2 tr

[(
D

(i)
t,3

)T
Kt

]
+ 2 tr

[(
D

(i)
t,4

)T
Lt

]
+ c

(i)
t ,

(5.74)

with

D
(i)
t,1 = Ŝt

(
µ

(i)
t V + C X

(i)
t C

T
)

ŜT
t ,

D
(i)
t,2 =

(
J(i)
)T

RtJ
(i) +

(
B

(i)
t

)T
E(i)
(
P t+1

)
B

(i)
t +

(
B

(i)
t − B̂t

)T
E(i)
(
P t+1

) (
B

(i)
t − B̂t

)
,

D
(i)
t,3 = −E(i)

(
P t+1

)
A

(i)
t X

(i)
t

(
ŜtC

)T
,

D
(i)
t,4 =

((
B

(i)
t − B̂t

)T
E(i)
(
P t+1

) (
A

(i)
t − Ât

)
+
(
B

(i)
t

)T
E(i)
(
P t+1

)
A

(i)
t

)
X

(i)
t ,

and where c(i)
t ≥ 0 contains only terms independent of Kt and Lt. Eq. (5.74) implies that Vt is convex

with regards to Kt and Lt, as the following lemma shows.

Lemma 5.4:
Vt is convex with regards to (Kt,Lt).

Proof. The proof is given in Appendix C.6.

For the example from the beginning of this section, the resulting convexified cost-to-go V0 is depicted
in Fig. 5.2. Comparing the figure with Fig. 5.1 also illustrates what we mentioned above: V0 constitutes
an upper bound of the cost.

Lemma 5.4 implies that any minimizer of Vt is globally optimal. Setting the derivatives of (5.74) with
respect to Kt and Lt to zero yields the necessary and sufficient minimality conditions

N∑

i=0

E(i)
(
P t+1

)
KtD

(i)
t,1 + D

(i)
t,3

!
= 0nξ×(L+1)ny , (5.75)

N∑

i=0

D
(i)
t,2LtX

(i)
t + D

(i)
t,4

!
= 0Nnu×nξ , (5.76)

for t = 0, 1, . . . ,K − 1, where we used the identities [207]

dtr[AX]

dX
= AT ,

dtr[XTAXB]

dX
= AXB + ATXBT .
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Figure 5.2: Illustration of the convexified cost-to-go V0 at stage t = 0 for different values of L0 and K0.

Eqs. (5.75) and (5.76) are generalized Sylvester equations that arise frequently in control theory [208–
211]. Although being linear with respect to Kt and Lt, respectively, (5.75) and (5.76) cannot be solved
directly. They are, however, equivalent to a system of linear equations due to the relationship between
the Kronecker product and vectorization of a matrix (cf. Appendix A.3).

Corollary 5.1:
A necessary and sufficient condition for (K∗t ,L

∗
t ) to minimize Vt is

(
N∑

i=0

D
(i)
t,1 ⊗ E(i)

(
P t+1

)
)

vec (K∗t ) +
N∑

i=0

vec
(
D

(i)
t,3

)
= 0nξ(L+1)ny ,

(
N∑

i=0

X
(i)
t ⊗D

(i)
t,2

)
vec (L∗t ) +

N∑

i=0

vec
(
D

(i)
t,4

)
= 0Nnunξ ,

(5.77)

for t = 0, 1, . . . ,K − 1, where ⊗ denotes the Kronecker product (cf. (A.4)) and vec (·) vectorization
of a matrix (cf. (A.10)).

Proof. The result follows directly from the application of (A.11) to (5.75) and (5.76).

As in the systems of linear equations that appeared in Section 5.3, the matrices on the left side
of (5.77) are in general rank deficient, implying the existence of infinitely many solutions. Again, one
particularly attractive solution is the minimum norm solution

vec
(
K+
t

)
= −

(
N∑

i=0

D
(i)
t,1 ⊗ E(i)

(
P t+1

)
)†( N∑

i=0

vec
(
D

(i)
t,3

))
, (5.78)

vec
(
L+
t

)
= −

(
N∑

i=0

X
(i)
t ⊗D

(i)
t,2

)†( N∑

i=0

vec
(
D

(i)
t,4

))
. (5.79)
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Algorithm 5.4 Iterative Procedure for the Computation of the Control Laws

Input: X
(i)
0 , X

(i)

0 , µ(i)
0 , γ

0
Output: (K0,L0), . . . , (KK−1,LK−1)

1: for t = 0 to K − 1 do
2: Compute Ât and B̂t using µ(i)

t in (5.41) and (5.42)
3: Compute Ŝt using γ

0
, (5.38), and (5.43)

4: for i = 0 to N do
5: µ

(i)
t+1 =

∑
j tjiµ

(j)
t // Mode probability prediction

6: end for
7: end for
8: Initialize the iteration counter c = 0 and set V [0]

0 =∞
9: Choose initial sequence of control law parameters (K

[0]
0 ,L

[0]
0 ), . . . , (K

[0]
K−1,L

[0]
K−1)

10: repeat
11: c = c+ 1

// Forward pass: Update reference trajectory

12: Set X
(i,[c])
0 = X

(i)
0 and X

(i,[c])

0 = X
(i)

0

13: for t = 0 to K − 1 do
14: for j = 0 to N do
15: Compute X

(j,[c])
t+1 and X

(j,[c])

t+1 using (K
[c−1]
t ,L

[c−1]
t ) in (5.67) // Lemma 5.3

16: end for
17: end for

// Backward pass: Update control laws

18: Set P
(i,[c])
t = 0nξ , P

(i,[c])

K = QK , and ω(i,[c])
K = 0

19: for t = K − 1 to 0 do
20: Evaluate (5.78) and (5.79) to obtain minimizing control law parameters (K

[c]
t ,L

[c]
t )

21: for i = 0 to N do
22: Compute P

(i,[c])
t , P

(i,[c])

t , and ω(i,[c])
t using (K

[c]
t ,L

[c]
t ) in (5.73) // Theorem 5.2

23: end for
24: end for

// Evaluate cost improvement

25: Evaluate either (5.72) or (5.74) to obtain V [c]

0

26: until V [c−1]

0 − V [c]

0 ≤ ε
27: return Sequence of control law parameters (K

[c]
0 ,L

[c]
0 ), . . . , (K

[c]
K−1,L

[c]
K−1)

Based on the convexified cost-to-go Vt, we present an iterative procedure for the computation of the
control law parameters (K0,L0), . . . , (KK−1,LK−1) in Algorithm 5.4. The algorithm is straight-
forward to implement since Corollary 5.1 enables us to determine minimizers of Vt directly without
the need for numerical optimization. In each iteration c, a sequence of control law parameters
(K

[c]
0 ,L

[c]
0 ), . . . , (K

[c]
K−1,L

[c]
K−1) is computed that leads to an improvement of the cost, i.e., it holds

V [c]
0 ≤ V

[c−1]
0 . Convergence of the proposed iterative procedure is guaranteed by the following theorem.

Theorem 5.3:
Let (K

[c]
0 ,L

[c]
0 ), . . . , (K

[c]
K−1,L

[c]
K−1) be the control law parameters at the end of iteration c in Algo-

rithm 5.4, i.e., after the completion of the backward pass of the algorithm. Then, it holds V [c]
0 ≤ V

[c−1]
0

and, moreover, (K0,L0), . . . , (KK−1,LK−1) = limc→∞(K
[c]
0 ,L

[c]
0 ), . . . , (K

[c]
K−1,L

[c]
K−1) exists.

Proof. The proof is given in Appendix C.7.
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Algorithm 5.5 Conceptual Algorithm for the Proposed SMPC

1: Set initial conditions ξ̂
0
, X

(i)
0 , X

(i)

0 , and µ
0

according to (5.80) and (5.81)
2: for k = 0, 1 . . . do
3: Get newest mode realization θk−r′ = j from Ak// As described in Section 4.1

4: µ
k−r′ = e

(j+1)
N+1 // Update µ

k−r′ according to (5.31)
5: for r = r′ − 1 to 0 do
6: for i = 0 to N do
7: µ

(i)
k−r =

∑
j tjiµ

(j)
k−(r+1)// Update of previous mode probability

8: end for
9: end for

// Process measurements
10: Construct y

k
from Yk and determine the corresponding mode γ

k
according to (5.32) and (5.35)

// Compute control law parameters

11: Call Algorithm 5.4 with X
(i)
k , X

(i)

k , µ(i)
k , and γ

k
to obtain (K0,L0)

12: Compute Uk = L0ξ̂k according to (5.39)
13: Transmit Uk to the actuator

// Propagate state estimate
14: Predict ξ̂

k+1
using ξ̂

k
, y
k
, and K0 in (5.39)

15: for j = 0 to N do
16: Compute X

(j)
k+1 and X

(j)

k+1 using (K0,L0) in (5.67)
17: end for
18: end for

5.4.4 Summary of the Proposed SMPC Algorithm

The results of the previous sections are the basis for the proposed SMPC approach based on a local
approximation of the cost-to-go. We present the final conceptual algorithm in Algorithm 5.5. The
controller state is initialized with

ξ̂
0

=

[
1L+1 ⊗ x̂0

0

]
, (5.80)

i.e., we stack the mean x̂0 of the initial plant state L+ 1 times and set η
0

= 0 to reflect that the buffer

at the actuator side is initially empty. Accordingly, we set µ
0

= e
(N+1)
N+1 . Estimation error covariance

and second moment of the controller state are set to

X
(i)
0 = 0 , X

(i)
0 = 0 , (5.81)

X
(N)
0 =

[
1L+1 ⊗X0 0

0 0

]
, X

(N)
0 = ξ̂

0
ξ̂

T

0
+ X

(N)
0 ,

for i = 0, 1, . . . , N − 1, with 1L+1 ∈ RL+1×L+1 the matrix of ones, and where we recall X0 as the
covariance matrix of the initial plant state x0. To construct the augmented measurement y

k
from Yk

in line 10, recall from (5.33) that we can safely set the element ỹ
k|k−l to 0, if the measurement y

k−l
is not available. At k = 0, when Algorithm 5.4 is called for the first time, the parameters (K,L)
of the infinite horizon control law presented in [124] can be used as the initial sequence of control
law parameters (K

[0]
0 ,L

[0]
0 ), . . . , (K

[0]
K−1,L

[0]
K−1). This control law, however, need not always exist.

Alternatively, the initial control law parameters can be chosen at random. Then, at the subsequent
time steps k = 1, 2, . . . , the control law parameters from the previous time step can serve as the initial
guess. We note that we can replace tji in line 7 by tk−r,ji if θk is a time-inhomogeneous Markov chain.
We also note that the computational complexity of the algorithm is higher than that of Algorithm 5.2
proposed in Section 5.3. In particular, its computational demand per time step depends on the number
of iterations needed until convergence of the cost and is thus not fixed. One option to circumvent this is
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(a) Probability distribution governing the packet delays τ cak , τ sck , and τack in network N1. The notation ∞
indicates a packet loss, treated as infinite delay.
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Figure 5.3: Characteristics of the networks N1 and N2 considered in the evaluation.

to trade-off computation time against solution quality by carrying out only a small number of iterations
instead of iterating until convergence.

To conclude this section, we highlight that Algorithm 5.5 is a closed-loop feedback control approach
because the availability of future measurements is anticipated during the computation of the control
laws. In doing so, the impact of the dual effect on the cost is taken into account. Specifically in
control tasks, where the dual effect substantially contributes to the cost, it is reasonable to expect
that Algorithm 5.5 achieves a better control performance than the open-loop feedback approach
(Algorithm 5.3) from Section 5.3. The simulation results we provide in the next section show that this
is indeed the case.

5.5 Evaluation

In this section, we assess the performance of the proposed approaches by means of a simulation. To that
end, we consider two setups with different networks N1 and N2 . In the first network, N1, the packet
delay and loss probabilities are independent over time as introduced in Section 3.2.1. For simplicity,
we assume that they occur with fixed probabilities according to the probability distribution p given
by (F.1) in Appendix F.1 that is depicted in Fig. 5.3a. In the second network, N2, the packet delays
and losses are Markovian as introduced in Section 3.2.2. The Markov chain is shown in Fig. 5.3b and
the corresponding transition matrix is given by (F.2) in Appendix F.1.

Our goal is to evaluate the performance of our approaches in two different control tasks. The first
task is the control of a double integrator plant and the second one is the control of an overhead crane
maneuvering a load. In each task, we compare the two proposed SMPC algorithms with the open-
loop feedback control approaches presented in [152] and [169].9 Rather than using the augmented
dynamics (4.1), these approaches use the model (4.26) and interpret the actual plant input uk+t at each
stage of the optimization horizon as a random variable with Dirac mixture PDF fuk+t. The key idea of

9The earlier approach presented in [212] uses similar ideas, but its applicability is, however, restricted to plants with
discrete-valued inputs.
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the approach from [152] is to propagate a given state estimate x̂k = E
{
xk
∣∣ Ik

}
over the optimization

horizon according to
x̂k+t+1 = Ax̂k+t + Bûk+t , (5.82)

with ûk+t = E
{
uk+t

∣∣ Ik
}

the expected input at stage t, which is calculated based on the weighting

factors ω(i)
k+t of the Dirac mixture fuk+t. The expected inputs depend on uk|k, uk+1|k, . . . , uk+N−1|k,

which form the control sequence Uk, and in [152] it was proposed to compute them based on a
pre-defined controller gain L by virtue of the propagated state estimate

uk+t|k = Lx̂k+t .

However, here, we choose uk|k, uk+1|k, . . . , uk+N−1|k as the minimizers of an approximation of the
cost function (5.2) given by

J̃ = x̂T
k+KQK x̂k+K +

K−1∑

t=0

x̂T
k+tQtx̂k+t + ûT

k+tRtûk+t , (5.83)

which can be obtained by numerical optimization. To provide the required state estimate, we use the
IMM filter presented in Section 5.3.2.

Instead of solely considering expected inputs, the approach presented in [169] enumerates all possible
realizations of the random variables uk, uk+1, . . . , uk+K−1 so as to determine all possible evolutions
of a given the state estimate x̂k over the optimization horizon. This leads to a tree-like structure, where
each path from the root node to a leaf, referred to as scenario, corresponds to one possible sequence of
applied inputs. Based on this tree, an approximation of the cost function (5.2) is then computed as the
weighted sum of the cost of all scenarios

J̃ =
∑

j

s
(j)
k J (j) , (5.84)

with J (j) the cost of the j-the scenario, which is given by (5.83) evaluated with the predicted states
and the inputs belonging to the scenario, and where the weighting factor s(j)

k denotes the probability
that the inputs are actually applied. This probability depends on the packet delay and loss probabilities
and is calculated based on the weighting factors ω(i)

k+t of the Dirac mixtures fuk+t given by (4.27).
Finally, the input sequence Uk is composed of the inputs uk|k, uk+1|k, . . . , uk+N−1|k that minimize
the approximated cost (5.84), which need to be determined numerically. To provide the required state
estimate, we again use the IMM filter presented in Section 5.3.2.

We present the evaluation results in the following two sections. To facilitate the presentation, we will
refer to the approach from [152] as MPC Expected Input and to the approach from [169] as MPC
Scenario. Similarly, we will use the terms MPC IMM and MPC Bound for the SMPC approaches we
derived in Sections 5.3 and 5.4.

5.5.1 Control of a Double Integrator

The first control task we consider is the canonical example of a double integrator plant, which is used
to model the horizontal movement of a mass due to a force applied to it. Denoting by q the horizontal
position (in meters) of a body with mass m = 2 kg, the continuous-time plant dynamics is of the
form (3.2) and given by

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0

1/m

]
u(t) +

[
0

1/m

]
w(t) ,
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Figure 5.4: Control of the double integrator: Medians of the average incurred cost Javg in the simulations with network
N1 (left) and network N2 (right).

with state x(t) =
[
q(t) q̇(t)

]T, control input u(t) the applied force (in newtons), and where w(t) is a
Gaussian, zero-mean white disturbance (in newtons) with intensity Wc = 0.001 N2. Discretization
with the sampling interval ta = 0.4 s during which the control input and the disturbance are assumed
constant yields the corresponding discrete-time dynamics (3.1) with A, B, and W computed according
to (3.3). Additionally, we set

C =
[
1 0

]
, V = 0.04 ,

i.e., a sensor device provides noisy measurements of q. Since we focus on the impact of the packet
delays and losses, both W and V are deliberately chosen small so as to keep the impact of the noise
on the control performance low.

The weighting matrices in the cost function (5.2) are

Qt = Q =

[
5 0
0 2

]
, Rt = R = 1 , (5.85)

for t = 0, 1, . . . ,K − 1, and QK is chosen as the unique stabilizing solution X of the associated
discrete-time algebraic Riccati equation

X = ATXA−ATXB
(
BTXB + R

)−1
BTXA + Q , (5.86)

resulting in the matrix given by (F.3) in Appendix F.1.

For the comparison, we conduct several Monte Carlo simulations in each setup, where we increase the
horizon length from K = 3 to K = 8. In each simulation, we carry out Ns = 1000 simulation runs.
In each run, the plant is simulated over ts = 20 s, i.e., over Ks = 50 time steps, and the initial plant
state x0 is randomly drawn from a Gaussian distribution with mean and covariance

x̂0 =

[
5
0

]
, X0 = 0.25

[
1 1
1 2

]
.

In the first setup with network N1, the realizations τ ca
k , τ

sc
k , τ

ac
k are independently drawn according to

the probability distribution shown in Fig. 5.3a. We set N = 4 and choose to discard measurements
that experience a delay of more than five time steps so that Assumption 5.1 is met with L = 5. In the
second setup with network N2, τ ca

k , τ
sc
k , τ

ac
k are determined according to the Markov chain depicted

in Fig. 5.3b, where state 6 indicates a packet loss. The initial conditions τ ca
0 , τ sc

0 , τ
ac
0 are uniformly

drawn at random prior to each run. For the computation of the lumped dynamics for θk according
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Figure 5.5: Control of the double integrator: Evolution of the plant states qk (left) and q̇k (right) in exemplary runs with
K = 3 (top row) and K = 8 (bottom row) and network N1.

to (4.24), we replace all zero entries in the transition matrix (F.2) by 10−15 and then re-normalize the
rows to meet Assumption 3.5. Moreover, we again choose N = 4 and L = 5.

To measure the performance of the controllers, we compute the average incurred cost Javg in each run
according to

Javg =
1

Ks

[
xT
Ks

QxKs
+

Ks−1∑

k=0

xT
kQxk + u2

kR

]
. (5.87)

For both setups, the resulting medians of Javg are plotted in Fig. 5.4, and exemplary state trajectories
for K = 3 and K = 8 are depicted in Figs. 5.5 and 5.6, respectively.

For the MPC Scenario, the MPC IMM, and the MPC Bound the results indicate an improvement of
the control performance as the optimization horizon increases. This is an expected outcome because
longer optimization horizons permit better predictions of the impact of the occuring packet delays and
losses on the plant state, which in turn improve the controllers’ decision-making. On the other hand,
no performance gain can be observed for the MPC Expected Input for horizon lengths K ≥ N = 4.
This results from the fact that the expected inputs ûk+t at stages t = N + 1, . . . ,K − 1 coincide with
uk+t|k, i.e., the control inputs to be computed for these stages, so that the impact of occuring packet
delays and losses is no longer included in the propagation of the state estimates (5.82). The MPC
Scenario and the MPC Bound perform significantly worse for K = 3, but exhibit sharp performance
increases, so that, ultimately, their inferiority vanishes. In the simulations with network N1 they even
outperform the other approaches for horizon lengths K ≥ 7.

The simulation results also reveal that in this control task neither of our proposed approaches can
be deemed superior to the other. While the MPC Bound achieves better performance than the MPC
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Figure 5.6: Control of the double integrator: Evolution of the plant states qk (left) and q̇k (right) in exemplary runs with
K = 3 (top row) and K = 8 (bottom row) and network N2.

IMM in the simulations with network N1 for all considered horizon lengths but K = 3, we observe
the opposite in the simulations with network N2. Here, the MPC IMM outperforms the the MPC
Bound for all horizon lengths. At first glance, this observation seems to be contrary to the closed-loop
feedback property of the MPC Bound that renders it advantageous from a theoretical perspective.
However, in this control task, the impact of the dual effect is negligibly small, so that the assumptions
and approximations we had to make in the course of Section 5.4 to consider its contribution to the
cost do not pay off. Instead, they render the derived bound Vt of the cost-to-go, and consequently the
resulting control laws, too conservative, in particular for short optimization horizons.

We conclude from the results that the control performance achieved by our proposed SMPC approaches
is comparable to that of state-of-the-art approaches from the literature when the impact of the dual
effect on the cost is small enough to be neglected. The results presented in the next section show
that both the MPC IMM and the MPC Bound achieve a markedly better performance than the MPC
Expected Input and the MPC Scenario in more challenging control tasks, where the contribution of the
dual effect to the cost is more significant.

5.5.2 Control of an Overhead Crane

The second task we consider is to control an overhead crane that maneuvers a load as sketched
in Fig. 5.7. Let q and θ denote the horizontal position of the trolley (in meters) and the deviation of the
load (in radians) from the vertical, chosen such that positive values correspond to the counter-clockwise
direction. Then, with the parameters listed in Table 5.1 the continuous-time nonlinear dynamics can be
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θ
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Figure 5.7: Sketch of an overhead crane that maneuvers a load.

Table 5.1: Parameters of the overhead crane used in the simulation.

Parameter Symbol Value

Mass of trolley mt 1 kg
Mass of load ml 2 kg
Length of wire rope l 0.5 m
Gravitational acceleration g 9.81 m/s2

Damping coefficent of trolley bt 0.5 N s/m
Damping coefficent of load bl 0.1 N s/m

written as [213]

ẋ(t) =




q̇(t)

θ̇(t)
M(θ(t))−1f(x(t), u(t), w(t))


 ,

where x(t) =
[
q(t) θ(t) q̇(t) θ̇(t)

]T
is the state, u(t) is the force (in newtons) applied to move the

trolley along the bridge, w(t) is an external disturbance (in newtons) acting on both the trolley and the
load, and where M and f are given by10

M(θ) =

[
cos(θ) l
mt +ml mll cos(θ)

]
,

f(x, u, w) =

[
−g sin(θ)− l

ml
blθ̇ + w

ml
cos(θ)

u− btq̇ − bl
(
q̇ + lθ̇ cos(θ)

)
+mllθ̇

2 sin(θ) + w

]
.

Linearization around the equilibrium xe(t) = 0 yields a linear dynamics of the form (3.2)

ẋ(t) = Acx(t) + Bcu(t) + Gcw(t) ,

with Ac, Bc, and Gc as per (F.4) in Appendix F.1.

Assuming that w(t) is a Gaussian, zero-mean white disturbance with intensity Wc = 0.001 N2 and
setting the sampling interval to ta = 0.1 s yields the discrete-time dynamics (3.1) with A, B, and W

10For better readability, we omit the dependence of x, u, and w on the time t.
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Figure 5.8: Control of an overhead crane: Medians of the average incurred cost Javg in the simulations with network N1
(left) and network N2 (right).

computed according to (3.3). Furthermore, we set

C =

[
1 0 0 0
0 1 0 0

]
, V = 0.04I2 ,

that is, a sensor takes noisy measurements of the trolley position and the deviation of the load from the
vertical. Again, W and V are chosen small so that the impact of the noise on the control performance
is kept low.

We choose the weighting matrices in the cost function (5.2) as

Qt = Q =




5 0 0 0
0 50 0 0
0 0 5 0
0 0 0 50


 , Rt = R = 1 , (5.88)

for t = 0, 1, . . . ,K − 1, and set QK to the matrix given by (F.5), which is the unique stabilizing
solution X of the discrete-time algebraic Riccati equation (5.86).

For the comparison, we conduct several Monte Carlo simulations with both networks, where we
increase the horizon length from K = 4 to K = 9. In each simulation, we carry out Ns = 500
simulation runs. In each run, the plant is simulated over ts = 40 s, i.e., over Ks = 400 time steps, and
the initial plant state x0 is randomly drawn from a Gaussian distribution with mean and covariance

x̂0 =




−0.5
0
0
0


 , X0 = 1 · 10−4I4 .

In the simulation runs, we again let N = 4, L = 5, and the realizations τ ca
k , τ

sc
k , τ

ac
k are determined as

described in Section 5.5.1. To measure the performance of the controllers, we compute the average
incurred cost Javg in each run according to (5.87), of which the resulting medians are plotted in Fig. 5.8.

The results show that both proposed approaches perform signifincatly better than the MPC Expected
Input and the MPC Scenario for all considered optimization horizons in the simulations with network
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Figure 5.9: Control of an overhead crane: Evolution of the plant states θk (left) and θ̇k (right) in exemplary runs with
K = 4 (top row) and K = 9 (bottom row) and network N1.

N1 and for all but the shortest one K = 4 in the simulations with network N2. In particular for K = 9,
the cost incurred by the proposed approaches in the simulation runs with network N1 are up to 20 %
lower compared to the cost incurred by the MPC Expected Input, while in the runs with network N2 up
to 13 % of the cost are saved. The increased control performance achieved by the MPC IMM and the
MPC Bound leads to reduced oscillations of the load maneuvered by the crane, which is desirable in
practice. We illustrate this observation with exemplary trajectories of the load angle θk and its angular
velocity θ̇k from simulation runs with both networks N1 and N2 that are depicted in Figs. 5.9 and 5.10
for K = 4 and K = 9 .

Similar to the control task considered in the previous section, the MPC Bound exhibits a substantial
performance gain as the length of the optimization horizon increases, rendering it clearly superior to
the MPC IMM for horizon lengths K ≥ 6. This results demonstrates the distinctive feature of the
MPC Bound – its ability to take the impact of the dual effect into account. As the optimization horizon
increases, the contribution of the dual effect to the cost becomes more and more significant, and
neglecting it, as is done by the open-loop feedback approaches MPC Expected Input, MPC Scenario,
and MPC IMM, entails a considerable loss of control performance.

5.6 Conclusions

Stochastic model predictive control (SMPC) is well-suited for networked control tasks thanks to its
consistent and rigorous framework for the handling of uncertainties, allowing us to use the probabilistic
network models provided by the CoCPN translator to predict the impact of packet delays and losses on
the future evolution of the plant state. Hence, the goal of this chapter was to develop algorithms for
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Figure 5.10: Control of an overhead crane: Evolution of the plant states θk (left) and θ̇k (right) in exemplary runs with
K = 4 (top row) and K = 9 (bottom row) and network N2.

sequence-based SMPC based on the augmented dynamics (4.1) derived in Chapter 4. Conceptually,
such an algorithm obtains control laws by formulating a stochastic optimal control problem, whose
solutions then, in principle, can be found by means of the dynamic programming (DP) recursion (5.6)
exploiting Bellman’s principle of optimality. However, the absence of reliable actuator feedback in
the considered NCS introduces a dual effect, which prevented us from carrying out the DP recursion
analytically and, even worse, rendered the numerical evaluation of the cost-to-go intractable. Thus,
we focused on tractable approaches for the computation of suboptimal control laws and proposed two
novel algorithms for sequence-based SMPC.

For the first algorithm, we exploited the connection between Markov jump linear systems and multiple
model estimators, which maintain the estimate of the plant state in terms of a Gaussian mixture. Based
on this connection and a tailored interacting multiple model filter, the proposed algorithm consists of a
nonlinear control law that combines the output of multiple linear control laws, one for each mode of
the augmented dynamics (4.1). Our key step in the course of the derivation was to write the cost-to-go
at each stage of the DP recursion as a weighted sum of quadratic, mode-conditioned cost-to-go. To
that end, we employed a global approximation of the cost-to-go, i.e., one that is valid for all possible
state estimates provided by the filter, and neglected the portion of the cost related to the dual effect.

Our second presented algorithm possesses contrasting features – the underlying control law is linear,
the cost-to-go is approximated only locally in the neighborhood of a reference trajectory obtained by
propagating a given state estimate over the optimization horizon, and the impact of the dual effect on
the cost is taken into account. For the last aspect, we had to find a way to anticipate the information
provided by measurements to be received in the future and their impact on the quality of the propagated
state estimates. The key idea to achieve this was to introduce an additional state augmentation and, then,
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to reformulate the cost-to-go in terms of the second moment of this augmented state. The dynamics
of the second moment is linear and depends only on the availability of measurements and not on the
measured values. This property allowed us to generate closed-loop reference trajectories that integrate
the information gained from measurements received in the future. For a given reference trajectory, we
then derived an upper bound Vt of the cost-to-go. Finally, we obtained a convergent iterative procedure
for the computation of the parameters of a linear control law by minimizing the bound Vt via repeated
improvements of a given reference trajectory.

We evaluated the performance of the proposed algorithms in simulations with two different control
tasks. Compared to state-of-the-art sequence-based SMPC approaches from the literature, the results
showed that our approaches can achieve markedly better control performance. The simulation results
also revealed that neither of the proposed approaches can be deemed superior to the other. The first
one belongs to the class of open-loop feedback approaches and, as such, neglects the contribution of
the dual effect to the cost-to-go, which necessarily yields suboptimal control laws. Especially for short
optimization horizons K, however, the resulting loss of control performance can become insignificant.
The second approach, on the other hand, is of the closed-loop feedback type, rendering it advantageous
from a theoretical perspective as this implies that the impact of the dual effect on the cost is considered.
However, this advantage comes at the cost of higher computational complexity and only pays off in
terms of substantially improved control performance if the contribution of the dual effect is significant
enough to outweigh the approximations we had to make during the derivation of the bound Vt of the
cost-to-go.

In Chapter 7, we will integrate the approaches for sequence-based SMPC developed in this chapter into
the CoCPN architecture. For both approaches, we shall implement the CoCPN translator interface as
described in Chapter 2 and demonstrate their applicability to quickly respond to changes of the network
QoS and to achieve and maintain the given QoCtarget in simulation scenarios with a challenging
control task – the stabilization of an inverted double pendulum on a cart.

Before we do so, we will again turn our attention to the augmented dynamics (4.1) in Chapter 6. The
mode transition probabilities are determined by the properties of the network model τ ca

k , which itself
is derived based on status information collected inside the communication system, such as link and
queue utilizations or packet error and loss rates (cf. Section 2.1 and Algorithm 2.2). Thus, τ ca

k is
always an estimate of the “state” of the communication system and, consequently, the mode transition
probabilities cannot be assumed perfectly known. Hence, questions about the influence of modeling
errors on the control performance and about the existence of controllers that are, to some extent, robust
to modeling errors naturally arise. We shall answer these questions in the next chapter.



CHAPTER
6

Sequence-Based Stochastic Robust Control

We have seen in the course of the discussion in Section 4.1 that the actual plant input uk directly bears
upon the mode θk of the augmented dynamical system (4.1). The subsequent results presented in Sec-
tions 4.2 and 4.3 then showed that the mode transition probabilities are determined by the properties
of the network model τ ca

k , which is in turn based on monitoring feedback from the communication
system. The collected monitoring data is based on noisy measurements itself and can only provide
snapshots of the past. The resulting network model τ ca

k is thus always an estimate of the “state” of
the underlying communication system. Consequently, the dynamics of θk, and specifically the mode
transition probabilities tk,ij , are subject to modeling errors and cannot be assumed perfectly known.
The SMPC approaches developed in Chapter 5, however, require the mode transition probabilities
for the prediction of the plant behavior and the computation of the control sequences. Hence, it is
natural to investigate the impact of modeling errors on the control performance and to devise control
algorithms that are robust to modeling errors.

Research in this direction can be roughly divided into two categories. The first category comprises
research that utilizes data-driven methods to estimate the unknown model parameters. For instance, an
approach to estimate the parameters of a Gilbert-Elliott model for a wireless channel, which models
packet losses by a Markov chain with two states [214, 215], is proposed in [216]. Similarly, for
MJLS, estimators for the unknown mode transition probabilities have been proposed by the target
tracking community [217–220]. Estimates of the plant state are provided as a by-product, making their
usage very appealing in many control applications. However, the unknown transition probabilities are
typically required to be time-invariant. Additionally, assessing the impact of estimation errors on the
control performance is not straightforward.

Data-driven approaches that attempt to synthesize and analyze controllers without the need to estimate
unknown model parameters also belong to the first category. In [221] and [222], control over wireless
channels with Bernoulli losses is considered, where the packet loss rate is unknown. Having only a
fixed number of channel samples at hand, i.e., for a set of packets it was recorded whether they were
transmitted successfully, the authors present a data-driven approach to assess the performance of a
given controller. The recent works [223–227] go one step further, as they combine the analysis of the
impact of an unknown packet loss rate with the development of methods for controller synthesis. The
key idea here is to apply methods from reinforcement learning which generally aims at finding control
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laws for plants with unknown parameters or only partially known dynamics [228, 229]. However, the
unknown packet loss rate is typically assumed to be fixed over time. Control approaches based on
reinforcement learning are also presented in [230, 231], where the authors consider unknown delays
in the communication of control inputs and measurements. Although the delays can be time-varying,
they are assumed to be bounded by some known value. Model-free reinforcement learning methods
based on policy iteration have also been successfully applied to compute control laws for MJLS
with unknown mode transition probabilities in [232–235]. They demand, however, that the transition
probabilities be time-invariant.

The second category of research that aims to take the impact of modeling errors into account consists
of methods from robust control [236]. The general idea of these methods is to assume a particular
representation of the unknown or uncertain model parameters. Then, one seeks to design controllers
such that desired performance properties are satisfied for all uncertainties that are admissible with
respect to the chosen representation. Specifically for MJLS a common approach in this regard is
to assume that the mode transition matrix Tk lies in the neighborhood of some nominal transition
matrix [237] or varies in a finite set [238–240]. The latter is in fact a special case of a polytopic
uncertainty, where the mode transition matrix is allowed to vary within a convex polytope [241–246].
That is, there exist R transition matrices Λ(1),Λ(2), . . . ,Λ(R), referred to as vertices, such that at each
time step, Tk can be expressed in terms of a convex combination

Tk =

R∑

r=1

α
(r)
k Λ(r) ,

R∑

r=1

α
(r)
k = 1 , α

(1)
k , α

(2)
k , . . . , α

(R)
k ≥ 0 . (6.1)

If we denote the set of vertices by L, then (6.1) is compactly written by means of its convex hull
conv(L) as

Tk ∈ conv(L) . (6.2)

Markov jump linear systems with mode transition transition matrices that fulfill (6.1), or, equiv-
alently, (6.2) are referred to as polytopic MJLS. They have gained significant research attention
because they also cover cases where some transition probabilities are bounded or even completely
unknown [247–249]. In that regard, (6.1) can be seen as the natural representation of uncertain
transition matrices.

In this chapter, we exploit the observation made in Chapter 4 that the mode transition matrix Tk

associated with the augmented dynamics (4.1) is always a lower Hessenberg matrix. We use this
observation to show that Tk varies within a convex polytope as defined by (6.1), whose number of
verticesR solely depends on the control sequence lengthN . A polytopic MJLS is thus a convenient way
to tackle uncertainties in the network model. Consequently, the synthesis of sequence-based controllers
that are robust to uncertainties in the network model translates into the synthesis of controllers for
polytopic MJLS. The goal of this chapter is to synthesize a mode-independent state feedback controller
for polytopic MJLS that guarantees the stability of the closed-loop dynamics. More specifically, we
seek a control law that stabilizes (4.1) in the mean square sense according to the following definitions.

Definition 6.1: (Costa et al. [127, Definition 3.8])
The MJLS (4.1) with Uk ≡ 0 is mean square stable (MSS) if for any initial condition ψ

0
and θ0 it holds

lim
k→∞

∥∥∥E
{
ψ
k

}∥∥∥ = 0 , (6.3)

lim
k→∞

∥∥∥E
{
ψ
k
ψT
k

}
−Ψ

∥∥∥ = 0 , (6.4)

for some Ψ ∈ Rnψ×nψ that is independent of ψ
0

and θ0.
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Definition 6.2: (Costa et al. [127, Definition 3.40])
The MJLS (4.1) is mean square stabilizable if there is a matrix L ∈ RNnu×nψ such that (4.1) is MSS
when Uk = Lψ

k
. In this case, L is said to stabilize the MJLS.

Note that the conditions (6.3) and (6.4) are independent of the chosen norm because on finite-
dimensional spaces all norms are equivalent (cf. Appendix A.2). Based on Definition 6.1, we first
derive a necessary and sufficient condition for the mean square stability of polytopic MJLS, which
requires the calculation of the joint spectral radius (JSR) of a set of matrices. The condition itself is
not new and has already appeared in [244, 250, 251]. There, however, only noise-free polytopic MJLS
and polytopic MJLS with bounded disturbances were considered, whereas, here, the polytopic MJLS
is driven by wide-sense stationary noise. To determine whether a given polytopic MJLS is MSS based
on the derived condition is NP-hard, so that its practical usefulness is limited. However, it enables us
to derive a sufficient stability condition in terms of a linear matrix inequality (LMI) feasibility problem.
The LMI condition is less restrictive than the ones proposed in [245, 248] and can be evaluated by
state-of-the-art solvers (usually) in polynomial time. As a by-product, it immediately enables us
to determine the existence of a state feedback law that stabilizes the polytopic MJLS according to
Definition 6.2.

In Section 6.1, we first introduce the joint spectral radius and summarize some properties that are
needed for the derivation of the chief results of this chapter. Then, in Section 6.2, we construct the
polytope for the mode transition matrix Tk based on the observations from Sections 4.2 and 4.3.
Sections 6.3 and 6.4 constitute the main contribution of this chapter and present the derivation of the
conditions for mean square stability and the existence of a stabilizing control law. Finally, we provide
a numerical example in Section 6.5 to illustrate the results.

This chapter is based on results presented in our publication [286].

6.1 The Joint Spectral Radius

Recall that the spectral radius of a square matrix M ∈ Rn×n is defined as the maximum modulus of
its eigenvalues, i.e.,

ρ(M) = max{|λ| : λ is eigenvalue of M} .
The spectral radius quantifies the asymptotic growth rate of any norm of the powers of a matrix because
of Gelfand’s formula [252, Corollary 5.6.14], which states that

ρ(M) = lim
k→∞

k

√
‖Mk‖ .

The desire to have a related characterization for the asymptotic growth rate of the norm of “long”
products of a set of matrices led to the introduction of the joint spectral radius (JSR) [253, 254]. For a
formal defintion, letM be a set of square matrices and denote by Πk(M) the set of all products of
length k whose factors are elements ofM, i.e.,

Πk(M) =

{
k∏

i=1

Mi

∣∣Mi ∈M
}
. (6.5)

For any Pk ∈ Πk(M) and any norm, we call k
√
‖Pk‖ its averaged norm and define

ρ̂k(M) = sup
Pk∈Πk(M)

k
√
‖Pk‖ . (6.6)
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For bounded sets, the limit limk→∞ ρ̂k(M) is well-defined and thus always exists. Moreover, it is
independent of the chosen norm [254, 255]. Consequently, the following definition is justified.

Definition 6.3:
For a bounded set of square matricesM, its joint spectral radius, denoted by ρ̂ (M), is defined as the
limit of the sequence {ρ̂k(M)} defined by (6.6), that is,

ρ̂ (M) = lim
k→∞

ρ̂k(M) .

In the remainder, we will make use of the following two facts. The first one, given in Theorem 6.1, is
the analog of the well-known result that ρ(M) < 1⇔ limk→∞Mk = 0. The second one, given in
Theorem 6.2, states that the taking the convex hull of a set of matrices does not change the JSR. Proofs
are, for instance, given in [255] and [254], respectively.

Theorem 6.1:
For any bounded set of matricesM, ρ̂ (M) < 1 if and only if any Pk ∈ Πk(M) converges to 0 as
k →∞.

Theorem 6.2:
For any bounded set of matricesM, it holds ρ̂ (M) = ρ̂ (conv(M)), where conv(M) is the convex
hull ofM.

Addtionally, the results presented in the next lemma will prove useful in the subsequent derivations.

Lemma 6.1:
LetM be a finite set of n-by-n matrices and suppose ρ̂ (M) < 1. Then the following propositions are
true:

(i) There exist ξ ≥ 1 and β ∈ (0, 1) such that for all Pk ∈ Πk(conv(M)) it holds ‖Pk‖ ≤ ξβk

for all k ∈ N.

(ii) For any Pk ∈ Πk(conv(M)), ‖Pk‖ → 0 as k →∞.

(iii) The series
∑∞

k=0 ‖Pk‖ is convergent for all possible Pk ∈ Πk(conv(M)).

Proof. The proof is provided in Appendix D.1.

In the next section, we will show that the mode transition matrix, for any realization of the network
model τ ca

k , always lies in a polytope spanned by R vertices, where R is a function of the employed
sequence length N . Subsequently, in Section 6.3, we will construct a set AR that consists of R
matrices, each of which is associated with one vertex of the polytope. Stability of the polytopic MJLS
then proves to hinge on the question if ρ̂ (AR) < 1.

6.2 Derivation of the Polytopic MJLS

In Chapter 3, we posited Assumption 3.3 to ensure that the control sequences are “long enough” so
that the probability of two succesive applications of the default input udf

k is less than one. From the
disscussion in Chapter 4 it is clear that this assumption implies that

P[θk+1 = N |θk = N ] ≤ δ , (6.7)
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for some δ < 1. We will exploit this assumption in the following sections. If it were not to hold, i.e., if
we allowed P[θk+1 = N |θk = N ] = 1, we would allow the pathological case that the plant eventually
remains in open-loop operation, rendering any control effort futile.1 In this case, however, stability of
the closed-loop dynamics necessitates that the plant has stable dynamics in the first place.

Before we proceed, let us denote by ∆n the n-dimensional standard simplex or probability simplex [256,
p. 33]

∆n =
{
x ∈ Rn+1

∣∣x ≥ 0, 1T
n+1x = 1

}
,

that contains all (n+ 1)-dimensional vectors with nonnegative entries that sum to one. The vertices of
∆n are the n+ 1 standard basis vectors e(i)

n+1 in Rn+1 [256, p. 33].

More generally, any set of n+1 affinely independent2 vectors v1, . . . , vn+1 ∈ Rm,m ≥ n, determines
an n-dimensional simplex in Rm given by [256, p. 32]

Sn =
{
α1v1 + · · ·+ αn+1vn+1

∣∣αi ≥ 0, α1 + · · ·+ αn+1 = 1
}
.

6.2.1 Polytopic MJLS: Independent Packet Delays and Losses

We first recall our observations from Section 4.2 (cf. Fig. 4.3). There, we concluded from Theorem 4.1
that the mode transition matrix Tk is a lower Hessenberg matrix, whose subdiagonal entries in each
column are equal to the column’s diagonal entry, and whose last two rows are equal. These observations
imply that the N +1 elements tk,N0, tk,N1 . . . , tk,NN of the last row complete determine Tk. Eq. (6.7)
states that for the last element it always holds tk,NN ∈ [0, δ] for some δ < 1, whereas the other
elements can attain any value in [0, 1] subject to the constraint that

∑N
i=0 tk,Ni = 1. The following

result is a direct consequence.

Theorem 6.3:
Consider the augmented dynamics (4.1) with mode transition matrix Tk computed according to
Theorem 4.1. Then, there exist R = 2N vertices Λ(1),Λ(2), . . . ,Λ(R) ∈ RN+1×N+1 such that Tk

can be written according to (6.1), i.e.,

Tk =

R∑

r=1

α
(r)
k Λ(r) ,

R∑

r=1

α
(r)
k = 1 , α

(1)
k , α

(2)
k , . . . , α

(R)
k ≥ 0 .

for some coefficients α(r)
k .

Proof. The proof is constructive and exploits that the last row tTk =
[
tk,N0 tk,N1 . . . tk,NN

]
com-

pletely determines Tk. All elements tk,Ni must be nonnegative and sum to one and additionally we
have tk,NN ∈ [0, δ] for some δ < 1, so that we can write tk ∈ F with F given by

F =
{
x ∈ RN+1

∣∣x ≥ 0, 1T
n+1x = 1, xTe

(N+1)
N+1 ≤ δ

}
. (6.8)

With the definition of the half-space G according to

G =
{
x ∈ RN+1

∣∣xTe
(N+1)
N+1 ≤ δ

}
,

we may compactly express the set as F = ∆N ∩ G. The intersection of a simplex with a half-space is
called a frustum of a simplex [257]. For N = 2, the frustum F is an isosceles trapezoid as illustrated
in Fig. 6.2.

1Note that this case could also eventuate if the actuator used a hold-input strategy instead of the zero-input strategy.
2The vectors v1, . . . , vn+1 are affinely independent if v2 − v1, . . . , vn+1 − v1 are linearly independent.
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Figure 6.1: State transition diagrams of the vertices Λ(1),Λ(2), . . . ,Λ(6) resulting from the application of Theorem 6.3
with N = 3. For better readability, we set δ̄ = 1− δ.

The vertices of F are given by the N vertices of ∆N that reside in G

v(r) = e
(r)
N+1 , (6.9)

in addition to the N intersection points of ∆N with the boundary of G

v(N+r) =

[
(1− δ)e(r)

N

δ

]
, (6.10)

with r = 1, 2, . . . , N .

Consequently, the last row is expressed as

tTk =
N∑

r=1

α
(r)
k

(
v(r)
)T

+ α
(N+r)
k

(
v(N+r)

)T
,

which is a convex combination of the R = 2N vectors given by (6.9) and (6.10). The vertices
Λ(1),Λ(2), . . . ,Λ(R) then directly follow from the dependencies between the elements of Tk.

For N = 3, the state transition diagrams of the resulting six vertices are depicted in Fig. 6.1. The figure
allows an interpretation of the vertices in terms of the delay and loss probabilities. The vertices depicted
in the top row correspond to networks with “deterministic” behavior where it holds P[τ ca

k = 0] = 1,
P[τ ca

k = 1] = 1, and P[τ ca
k = 2] = 1, respectively. The vertices in the bottom row describe networks

where control sequences either experience a fixed delay of i time steps or reach the actuator too late to
be applied (or get lost), i.e., it holds

P[τ ca
k = i] = 1− δ , P[τ ca

k > N − 1] = δ ,

for i = 0, 1, 2. We conclude this section with the remark that the number of vertices reduces to R = N
in case P[θk+1 = N |θk = N ] = 0, i.e., if we have δ = 0 in (6.7). The frustum F then becomes an
(N − 1)-dimensional simplex SN−1 in RN+1, which, for N = 2, is a line segment (cf. Fig. 6.2).
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6.2.2 Polytopic MJLS: Correlated Packet Delays and Losses

As mentioned in Section 4.3, the mode transition matrix is no longer determined by its last row in case
of correlated packet delays and losses when it is computed according to (4.24). Moreover, there are
generally no dependencies between the entries. However, it is always a lower Hessenberg matrix of
the form

T =




[0, 1] [0, 1] 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

... [0, 1] [0, 1]
[0, 1] . . . . . . [0, 1] [0, δ]



, (6.11)

where the notation [0, a] indicates that the respective element can take any value between zero and a.
Together with (6.7), this observation suffices to establish the following result.

Theorem 6.4:
Consider the augmented dynamics (4.1) with mode transition matrix T computed according to (4.24).
Then, there exist R = 2N(N + 1)! vertices Λ(1),Λ(2), . . . ,Λ(R) ∈ RN+1×N+1 such that T can be
written according to (6.1), i.e.,

T =
R∑

r=1

α(r)Λ(r) ,
R∑

r=1

α(r) = 1 , α(1), α(2), . . . , α(R) ≥ 0 .

for some coefficients α(r).

Proof. We prove the proposition constructively by showing that T always lies in a proprism, which
is defined as the Cartesian product of multiple polytopes. More specifically, we show that T lies in
a proprism P resulting from the Cartesian product of N simplexes Sn in RN+1 and the frustum F
given by (6.8) that we already encountered in the proof of the preceding theorem. To that end, we use
that T is of the form (6.11) subject to the constraint that all rows must sum to one.

The first row has two unknown entries that must sum to one so that it can be written as tT1 =
[
zT

1 0
]

for some z1 ∈ ∆1. Hence, for some α(1)
1 , α

(2)
1 ≥ 0, α(1)

1 + α
(2)
1 = 1

t1 = α
(1)
1

[
e

(1)
2

0

]
+ α

(2)
1

[
e

(2)
2

0

]

= α
(1)
1 v

(1)
1 + α

(2)
1 v

(2)
1 ,

i.e., t1 lies in a 1-simplex S1 (a line segment, cf. Fig. 6.2) spanned by the vertices v(1)
1 and v(2)

1 .
Similarly, the second row has three unknown entries that must sum to one so that it can be written
as tT2 =

[
zT

2 0
]

for some z2 ∈ ∆2. Consequently, it lies in a 2-simplex S2 (a triangle, cf. Fig. 6.2)

determined by the vertices v(1)
2 , v(2)

2 , and v(3)
2 as per

t2 = α
(1)
2 v

(1)
2 + α

(2)
2 v

(2)
2 + α

(3)
2 v

(3)
2 ,

= α
(1)
2

[
e

(1)
3

0

]
+ α

(2)
2

[
e

(2)
3

0

]
+ α

(3)
2

[
e

(3)
3

0

]
.
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Figure 6.2: Graphical illustration of the simplexes S1, S2, and the frustum F for N = 2 and δ = 0.75.

In the same vein, we obtain that the i-th row lies in an i-simplex Si spanned by the i+ 1 vertices v(r)
i

ti =

i+1∑

r=1

α
(r)
i v

(r)
i =

i+1∑

r=1

α
(r)
i

[
e

(r)
i+1

0

]
,

for i = 3, . . . , N , and where 0 ∈ R(N−i). The last row tTN+1 is again of the form
[
[0, 1] . . . . . . [0, 1] [0, δ]

]
,

so that it lies in the frustum F given by (6.8). According to (6.9) and (6.10), F is spanned by the 2N
vertices

v
(r)
N+1 = e

(r)
N+1 , v

(N+r)
N+1 =

[
(1− δ)e(r)

N

δ

]
,

with r = 1, 2, . . . , N . For N = 2, F is an isosceles trapezoid as illustrated in Fig. 6.2.

The resulting proprism P is the Cartesian product of the N simplexes S1, . . . ,SN , and the frustum F
according to

P = S1 × S2 × · · · × SN ×F =
{(
t1, t2, . . . , tN , tN+1

) ∣∣ tN+1 ∈ F , ti ∈ Si, i = 1, 2, . . . , N
}
.

Every tuple
(
t1, t2 . . . , tN , tN+1

)
in P then yields a transition matrix T if we arrange its elements

row-wise, i.e.,

T =




tT1
tT2
...
tTN
tTN+1



.

The vertices of P are the Cartesian product of the vertices of the individual polytopes, i.e., every vertex
is a tuple of the form (

v
(r1)
1 , v

(r2)
2 , . . . , v

(rN )
N , v

(rN+1)
N+1

)
,

with r1 ∈ {1, 2}, r2 ∈ {1, 2, 3}, . . . , rN ∈ {1, . . . , N + 1}, and rN+1 ∈ {1, . . . , 2N}, implying that
P has

R = 2N
N+1∏

j=2

j = 2N(N + 1)! ,

vertices. Row-wise arrangement of the elements v(rj)
i then yields the vertices Λ(r).
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Note that again the number of vertices is reduced by half if δ = 0 in (6.7), i.e., we haveR = N(N+1)!
in case P[θk+1 = N |θk = N ] = 0.

6.3 A Necessary and Sufficient Stability Condition

The previous section showed that an uncertain or unknown network model τ ca
k renders the augmented

dynamical system (4.1) a polytopic MJLS, thereby translating modeling errors into a polytopic
parameter uncertainty. Mean square stability as defined in Definition 6.1 is an asymptotic property
and demands the investigation of the convergence properties of the sequences

{∥∥∥ψ̂
k

∥∥∥
}

and {‖Ψk‖},
where

ψ̂
k

= E
{
ψ
k

}
,

Ψk = E
{
ψ
k
ψT
k

}
,

are the first and second moment of the augmented state ψ
k
. These sequences are convergent if and

only if

lim
k→∞

ψ̂
k

= ψ , (6.12)

lim
k→∞

Ψk = Ψ , (6.13)

hold, that is, if and only if the first and second moment converge. In this section, we establish
a condition that is both necessary and sufficient for the mean square stability of the uncontrolled
version of the MJLS (4.1) whose mode transition matrix varies within a polytope with vertices
L = {Λ(1),Λ(2), . . . ,Λ(R)}, i.e.,

ψ
k+1

= Ã(θk)ψ
k

+ w̃k ,

Tk ∈ conv(L) .
(6.14)

Denoting the entries of Λ(r) by λ(r)
ij , (6.14) implies that we can write the mode transition probabilities

as

tk,ij =

R∑

r=1

α
(r)
k λ

(r)
ij ,

R∑

r=1

α
(r)
k = 1 , α

(1)
k , α

(2)
k , . . . , α

(R)
k ≥ 0 . (6.15)

We shall establish the stability condition in two steps. First, we derive a necessary and sufficient
condition for the convergence of the second moment as per (6.13). Then, we show that (6.12) holds
with ψ = 0 whenever the second moment converges.

The main machinery for the derivation of a necessary and sufficient condition for the convergence
of the second moment Ψk is a vector-valued sequence {zk} that is convergent if and only if the
matrix-valued sequence {Ψk} is convergent. To construct {zk}, we proceed similar to Section 5.4 and
decompose Ψk into N + 1 matrices according to

Ψ
(i)
k = E

ψ
k
,θk

{
ψ
k
ψT
k
1{θk=i}

}
, (6.16)

for i = 0, 1, . . . , N , so that it holds [127, p. 31]

Ψk =

N∑

i=0

Ψ
(i)
k . (6.17)
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Letting
Zk =

(
Ψ

(0)
k ,Ψ

(1)
k , . . . ,Ψ

(N)
k

)
, (6.18)

we may write Zk ∈ Hnψ , where we recall from Section 5.4.2 the space Hnψ as the set of all
(N + 1)-tuples of nψ-by-nψ matrices, i.e.,

Hnψ ,
{(

X(0),X(1), . . . ,X(N)
) ∣∣ X(i) ∈ Rnψ×nψ

}
.

Hnψ is a finite-dimensional Banach space (cf. Appendix A.7) with addition and scalar multiplication
defined as

X + Y ,
(
X(0) + Y(0),X(1) + Y(1), . . . ,X(N) + Y(N)

)
,

αX ,
(
αX(0), αX(1), . . . , αX(N)

)
,

for X =
(
X(0),X(1), . . . ,X(N)

)
,Y =

(
Y(0),Y(1), . . . ,Y(N)

)
∈ Hnψ , α ∈ R, and with norm ‖·‖H

given by

‖X‖H ,
N∑

i=0

∥∥∥X(i)
∥∥∥ , (6.19)

for any matrix norm ‖·‖. Moreover, Hnψ is uniformly homeomorphic to R(N+1)n2
ψ via the mapping

ϕ̂ : Hnψ 7→ R
(N+1)n2

ψ defined as [127, 258]

ϕ̂ (X ) ,




vec
(
X(0)

)

vec
(
X(1)

)
...

vec
(
X(N)

)


 . (6.20)

Hence, the sequence of tuples {Zk} as introduced above in (6.18) converges if and only if the
corresponding sequence of vectors {zk} with zk = ϕ̂ (Zk) converges (cf. Theorem A.1).

The first result of this section states that the dynamics of zk is linear. To facilitate its presentation, let
us first introduce

W̃
(i)
k = E

w̃k,θk

{
w̃kw̃

T
k 1{θk=i}

}
∈ Rnψ×nψ ,

W̃k =
(
W̃

(0)
k ,W̃

(1)
k , . . . ,W̃

(N)
k

)
∈ Hnψ ,

w′k = ϕ̂
(
W̃k

)
∈ R(N+1)n2

ψ ,

(6.21)

and

A =




Ã(0) ⊗ Ã(0) 0 . . . 0

0 Ã(1) ⊗ Ã(1) . . .
...

...
. . . . . . 0

0 . . . 0 Ã(N) ⊗ Ã(N)



∈ R(N+1)n2

ψ×(N+1)n2
ψ . (6.22)

Lemma 6.2:
Let zk = ϕ̂ (Zk) with Zk and ϕ̂ (·) according to (6.18) and (6.20). Then, the dynamics of zk is linear
and given by

zk+1 = A′kzk + G′kw
′
k , z0 = ϕ̂ (Z0) , (6.23)
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with w′k as per (6.21), A′k,G
′
k ∈ R(N+1)n2

ψ×(N+1)n2
ψ according to

A′k =

R∑

r=1

α
(r)
k

((
Λ(r)

)T
⊗ In2

ψ

)
A , (6.24)

G′k =

R∑

r=1

α
(r)
k

((
Λ(r)

)T
⊗ In2

ψ

)
, (6.25)

and where
R∑

r=1

α
(r)
k = 1 , α

(1)
k , α

(2)
k , . . . , α

(R)
k ≥ 0 .

Proof. The proof is provided in Appendix D.2.

In view of (6.24), denote by AR the set

AR =

{((
Λ(1)

)T
⊗ In2

ψ

)
A,

((
Λ(2)

)T
⊗ In2

ψ

)
A, . . . ,

((
Λ(R)

)T
⊗ In2

ψ

)
A

}
, (6.26)

with A given by (6.22), so that we can write A′k ∈ conv(AR) for all k. The following result reveals a
connection between the global asymptotic stability of the dynamics of zk and the JSR of AR.

Theorem 6.5:
Consider the dynamics (6.23) with zk = ϕ̂ (Zk) and Zk and ϕ̂ (·) according to (6.18) and (6.20), and

let AR be given by (6.26). Then limk→∞ zk = z for some z ∈ R(N+1)n2
ψ that is independent of z0 if

and only if ρ̂ (AR) < 1.

Proof. The proof of this result can be found in Appendix D.3.

With these prerequisites, we are now in a position to establish a necessary and sufficient condition for
the convergence of the second moment Ψk according to (6.13) based on the JSR of AR.

Corollary 6.1:

Consider the polytopic MJLS (6.14) with second moment Ψk = E
{
ψ
k
ψT
k

}
and let AR be given

by (6.26). Then limk→∞Ψk = Ψ for some Ψ ∈ Rnψ×nψ that is independent of ψ
0

and θ0 if and only
if ρ̂ (AR) < 1.

Proof. The mapping ϕ̂ (·) is uniformly homeomorphic. Thus, by Theorem A.1, the sequence of tuples
{Zk} as introduced above in (6.18) converges to some Z =

(
Ψ(0),Ψ(1), . . . ,Ψ(N)

)
∈ Hnψ whenever

the sequence of vectors {zk} converges. Consequently, limk→∞Ψ
(i)
k = Ψ(i) for i = 0, 1, . . . , N and,

by (6.17), limk→∞Ψk =
∑N

i=0 Ψ(i) = Ψ.

Corollary 6.1 implies that one of the two conditions for mean square stability, namely condition (6.4) in
Definition 6.1, is equivalent to the condition ρ̂ (AR) < 1. The next result also associates the remaining
condition (6.3) with the JSR of AR. An immediate consequence of the result is that the first moment
converges to 0 whenever the second moment converges.



92 6 Sequence-Based Stochastic Robust Control

Theorem 6.6:
Consider the polytopic MJLS (6.14) with first moment ψ̂

k
= E

{
ψ
k

}
and let AR be given by (6.26).

Then (6.12) holds with ψ = 0 whenever ρ̂ (AR) < 1 holds, i.e., the first moment ψ̂
k

converges to 0 if
the JSR of AR is less than one.

Proof. The proof is given in Appendix D.4.

The combination of Theorems 6.5 and 6.6 yields the main result of this section and establishes the
connection between the mean square stability of (6.14) and the JSR of the set AR.

Corollary 6.2:
The polytopic MJLS (6.14) is MSS according to Definition 6.1 if and only if ρ̂ (AR) < 1, where AR is
given by (6.26).

Remark 6.1:
For an ordinary MJLS (4.1) with time-invariant mode transition matrix T, the set AR contains only
the element M =

(
TT ⊗ In2

ψ

)
A. Then, Corollary 6.2 reduces to the well-known result that mean

square stability holds if and only if the spectral radius ρ(M) is smaller than one [127, 258].

As already mentioned in the introduction of this chapter, the condition ρ̂ (AR) < 1 appearing in
Corollary 6.2 is not new [244, 250, 251]. However, thus far, it has only been reported to be necessary
and sufficient for the stability of polytopic MJLS (6.14) that are noise-free, i.e., for which it holds
w̃k ≡ 0, or are subject to bounded and square-summable disturbances, i.e., for which it holds∑∞

k=0 ‖w̃k‖2 <∞. Thus, our result constitutes a substantial theoretical contribution since it extends
the applicability of the condition ρ̂ (AR) < 1 to the broader class of polytopic MJLS that are subject
to wide-sense stationary noise.

Unfortunately, the practical usefulness of Corollary 6.2 is limited because it is NP-hard to decide
whether ρ̂ (AR) < 1 for any AR with at least two elements [250]. In fact, to determine if ρ̂ (M) ≤ 1
is even undecidable for any nontrivial set of matricesM [254]. In consequence, there cannot exist
any polynomial time algorithm to decide whether (6.14) is MSS or not unless NP = P . However,
Corollary 6.2 enables us to propose sufficient conditions for mean square stability and stabilizability in
terms of LMI feasibility problems. LMI feasibility problems are convex and, as such, usually solved
efficiently by state-of-the-art solvers in polynomial time [259]. The proposed conditions are presented
in the next section.

To close this section, let us add that several other notions of stability exist in the literature, the
most popular of which are referred to as stochastic stability and exponential mean square stability.
Specifically for noise-free polytopic MJLS, these two are known to be equivalent to the notion of
mean square stability considered in this thesis [250]. The numerical example provided in Section 6.5
strongly suggests that this also carries over to polytopic MJLS driven by wide-sense stationary noise.
A formal verification, however, is yet to be brought forth.

6.4 Sufficient Conditions for Stability and Stabilizability

The first result of this section links mean square stability to the existence of positive definite solutions
of a set of coupled Lyapunov-like equations. The key observation leading to this result is that
such solutions, if existent, allow the construction of radially unbounded Lyapunov functions for
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the dynamics (6.23) of zk. The global asymptotic stability of (6.23) then implies ρ̂ (AR) < 1
(Thereom 6.5) and, hence, the mean square stability of the polytopic MJLS (6.14) (Corollary 6.2).

Theorem 6.7:
If there exist positive definite matrices D̃(0), D̃(1), . . . , D̃(N) ∈ Rnψ×nψ such that it holds

D̃(i) −
N∑

j=0

R∑

r=1

α
(r)
k λ

(r)
ij

(
Ã(i)

)T
D̃(j)Ã(i) � 0 , (6.27)

for i = 0, 1, . . . , N and any set of coefficients α(1)
k , α

(2)
k , . . . , α

(R)
k ≥ 0 satisfying

∑R
r=1 α

(r)
k = 1,

then the polytopic MJLS (6.14) is MSS.

Proof. The proof is provided in Appendix D.5.

Remark 6.2:
For an ordinary MJLS with time-invariant mode transition probabilities tij , Theorem 6.7 reduces to
the well-known result that mean square stability holds if

D̃(i) −
N∑

j=0

tij

(
Ã(i)

)T
D̃(j)Ã(i) � 0 , (6.28)

for i = 0, 1, . . . , N . In stark contrast to (6.27), however, (6.28) is not only sufficient but also
necessary [127, Theorem 3.9].

Theorem 6.7 cannot be evaluated in practice because it requires to determine the feasibility of infinitely
many LMIs. However, it constitutes a paramount intermediate result on the way to a testable condition
because (6.27) is equivalent to a finite set of LMIs. Roughly speaking, this equivalence stems from
the fact that the set of positive definite matrices is convex so that it suffices that (6.27) is satisfied for
MJLS with mode transition matrices restricted to the vertices Λ(r), i.e., for which Tk ∈ L holds. More
formally, this intuition comes to the fore in the following theorem.

Theorem 6.8:
The following two assertions are equivalent:

(i) There exist positive definite matrices D̃(0), D̃(1), . . . , D̃(N) ∈ Rnψ×nψ such that (6.27) is
satisfied for i = 0, 1, . . . , N .

(ii) There exist positive definite matrices D(0),D(1), . . . ,D(N) ∈ Rnψ×nψ and positive definite
matrices E(0),E(1), . . . ,E(N) ∈ Rnψ×nψ satisfying




2E(i) −D(i) E(i)
(
Ã(i)

)T (
λ(i,r) ⊗ Inψ

)

(
λ(i,r) ⊗ Inψ

)T
Ã(i)E(i) D̄


 � 0 , (6.29)

for i = 0, 1, . . . , N , and r = 1, 2, . . . , R, where

λ(i,r) =
[√

λ
(r)
i0

√
λ

(r)
i1 . . .

√
λ

(r)
iN

]
∈ R1×N+1 , (6.30)

D̄ =




D(0) 0 . . . 0

0 D(1) . . .
...

...
. . . . . . 0

0 . . . 0 D(N)



∈ R(N+1)nψ×(N+1)nψ . (6.31)
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Proof. The proof is given in Appendix D.6.

Eq. (6.29) describes a set of R(N + 1) LMIs that are (usually) evaluated efficiently by interior-point
methods [256, 260]. Similar sets of LMI conditions were derived in [245, 248], where the authors dealt
with polytopic MJLS and MJLS with partly unknown transition probabilities, respectively. Our results
are, however, less restrictive since the number of inequalities to be satisfied is smaller.

Theorem 6.8 enables us to determine the existence of a mode-independent state feedback law

Uk = πk(ψk) = Lψ
k
, (6.32)

that stabilizes the polytopic MJLS

ψ
k+1

= Ã(θk)ψ
k

+ B̃(θk)Uk + w̃k ,

Tk ∈ conv(L) ,
(6.33)

according to Definition 6.2. The chief result of this section is summarized by the corollary below.

Corollary 6.3:
The polytopic MJLS (6.33) is mean square stabilizable by mode-independent state feedback (6.32)
according to Definition 6.2 if there exist positive definite matrices D(0),D(1), . . . ,D(N),E ∈ Rnψ×nψ
and a matrix M ∈ RNnu×nψ such that the LMIs




2E−D(i)
(
Ã(i)E + B̃(i)M

)T (
λ(i,r) ⊗ Inψ

)

(
λ(i,r) ⊗ Inψ

)T (
Ã(i)E + B̃(i)M

)
D̄


 � 0 , (6.34)

are satisfied for i = 0, 1, . . . , N , and r = 1, 2, . . . , R, and where λ(i,r) and D̄ are as per (6.30)
and (6.31). In the affirmative case, the stabilizing controller gain is then given by L = ME−1.

Proof. Plugging (6.32) into (6.33) yields the closed-loop dynamics

ψ
k+1

=
(
Ã(θk) + B̃(θk)L

)
ψ
k

+ w̃k ,

Tk ∈ conv(L) ,

and condition (6.29) in Theorem 6.8 becomes



2E(i) −D(i)
(
Ã(i)E(i) + B̃(i)LE(i)

)T (
λ(i,r) ⊗ Inψ

)

(
λ(i,r) ⊗ Inψ

)T (
Ã(i)E(i) + B̃(i)LE(i)

)
D̄


 � 0 .

Eq. (6.34) then results from the change of variables M = LE when we demand that

E
!

= E(0) !
= E(1) !

= · · · !
= E(N) .

Before we illustrate the derived results in the next section, let us briefly discuss the role of the parameter
δ, which appears in the computation of the vertices Λ(r) in Theorems 6.3 and 6.4. According to (6.7),
the value of δ is such that

tk,NN = P[θk+1 = N |θk = N ] ≤ δ < 1 ,
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holds for all k, i.e., it is an upper bound for the probability of two successive applications of the default
input udf

k . However, given that the mode transition probabilities are prone to modeling errors and
updated once the CoCPN translator has updated its underlying probabilistic model of the packet delays
and losses, a tight upper bound is hard to determine in advance. Hence, δ can be interpreted as a
hyperparameter to be set by the designer. A small value of δ is appropriate if high packet delays and
packet losses are assumed unlikely, but the resulting controller gain L might no longer stabilize the
plant if this assumption is violated. On the other hand, a large value of δ, i.e., a value close to one,
increases the robustness to successive packet losses and huge delays but might result in a controller that
acts overly conservatively for most of the time during operation. One option to circumvent a tradeoff
is to adapt δ during operation once new information is available from the CoCPN translator. This is
easily realized with a gain scheduling approach. Stabilizing controller gains Lδ(i) are precomputed
offline by means of Corollary 6.3 for a set of different values δ(i) ∈ [0, 1), i = 1, . . . , I for some
I ∈ N. During operation, once new information is available from the CoCPN translator, tk,NN is first
calculated as described in Chapter 4. Then, we select the controller gain as L = Lδ(j) , where

δ(j) = min{δ(i) | δ(i) ≥ tk,NN} ,

which is then in use until tk,NN is recalculated.

6.5 Numerical Example

In this section, we provide a numerical example to illustrate the results of the chapter by means of a
simulation. For simplicity, we consider the canonical example of a double integrator plant. Denoting
by q the horizontal position (in meters) of a body with mass m = 2 kg, the continuous-time dynamics
is of the form (3.2) and given by

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0

1/m

]
u(t) +

[
0

1/m

]
w(t) ,

with state x(t) =
[
q(t) q̇(t)

]T, control input u(t) the applied force (in newtons), and where w(t) is a
Gaussian, zero-mean white disturbance (in newtons) with intensity Wc = 0.001 N2. Discretization
with the sampling interval ta = 0.01 s during which the control input is assumed constant yields the
corresponding discrete-time dynamics (3.1) with

A =

[
1 ta
0 1

]
, B =

[
t2a/m2

ta/m

]
, W = 0.1

[
t2a/m2

ta/m

] [
t2a/m2

ta/m

]T

.

Our goal is to synthesize a stabilizing controller that transmits the control sequences to the plant
over a network with unknown characteristics, i.e., the network model τ ca

k is not available. More
specifically, we consider two scenarios, S1 and S2. In the first scenario, S1, the packet delay and loss
probabilities are time-varying and independent over time as introduced in Section 3.2.1 and not known
to the controller. In the second scenario, S2, the packet delays and losses are Markovian as introduced
in Section 3.2.2 with time-varying transition probabilities that are unknown to the controller.

In both scenarios, we assume that control sequences of length N = 4 are long enough to meet Assump-
tion 3.3 so that the augmented dynamics (4.1) is a polytopic MJLS with five modes. According to Theo-
rems 6.3 and 6.4, the resulting transition matrix polytopes haveRS1 = 8 andRS2 = 960 vertices. With
the aid of the JSR toolbox [261], we verify that 1 ≤ ρ̂ (ARS1

) ≤ 1.186 and 1 ≤ ρ̂ (ARS2
) ≤ 1.03125,

implying that the augmented dynamics is not MSS. This is expected because the plant dynamics taken
by itself is not asymptotically stable.
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However, letting δ = 0.1, that is, assuming that P[θk+1 = 4|θk = 4] ≤ 0.1 holds for all k, we can
invoke Corollary 6.3 to obtain the stabilizing gains

LS1 =




−31.371 −180.336 −1.065 −11.840 −15.885 −0.798 −11.034 −0.766
−0.186 −0.411 0.021 0.026 0.029 0.016 0.023 0.016
−0.174 −0.385 0.020 0.022 0.027 0.014 0.019 0.014
−0.192 −0.403 0.020 0.022 0.026 0.015 0.018 0.014


 ,

LS2 =




−26.476 −178.825 −0.620 − 7.643 −16.526 −0.322 −11.713 −0.229
−0.137 −0.424 0.015 0.018 0.026 0.010 0.019 0.016
−0.124 −0.373 0.013 0.013 0.021 0.008 0.015 0.011
−0.226 −0.667 0.019 0.018 0.023 0.011 0.012 0.013


 .

To illustrate that LS1 and LS2 do indeed stabilize the plant, we carry out Ns = 5000 simulation runs in
each scenario. In each run, the plant is simulated over ts = 100 s, i.e., over Ks = 10 000 time steps,
and the initial plant state is a random draw from a Gaussian distribution with mean and covariance

x̂0 =

[
5
0

]
, X0 = 0.25

[
1 1
1 2

]
.

To simulate a network with time-varying delay and loss probabilities (scenario S1), at each time step a
probability distribution p

k
is chosen by randomly selecting a row from the stochastic matrix S given

by (F.6) in Appendix F.2, according to which the actual realization τ ca
k ∈ {0, 1, . . . , 4} is then drawn.

Note that for each row of S, Assumption 3.3 is satisfied with N = 4. Moreover, computing the mode
transition probabilities tk,ij by means of Theorem 4.1 shows that P[θk+1 = 4|θk = 4] ≤ δ for each row.
In scenario S2, we first randomly draw an initial condition τ ca

0 ∈ {0, 1, . . . , 5} prior to each run. Then,
at each time step, the transition matrix Pca is randomly picked from the ten candidates given in (F.7),
according to which τ ca

k is then determined. The candidates are chosen such that the corresponding
lumped dynamics for θk, computed by virtue of Theorem 4.2, fulfills P[θk+1 = 4|θk = 4] ≤ δ.

After the simulation runs, we calculate an estimate of E{xk} and E
{
xkx

T
k

}
in terms of the sample

mean x̄k and the sample second moment X̄k, which are given by

x̄k =
1

Ns

Ns∑

n=1

x
[n]
k ,

X̄k =
1

Ns

Ns∑

n=1

x
[n]
k

(
x

[n]
k

)T
,

where x[n]
k denotes the plant state at time step k in run n.

The evolutions of ‖x̄k‖2 and
∥∥X̄k

∥∥
F

over time are depicted in Fig. 6.3 for both scenarios. Exemplary
state trajectories from five simulation runs are shown in Fig. 6.4. The simulation results indicate that
the closed-loop system is mean square stable. They even suggest exponential mean square stability.

6.6 Conclusions

This chapter was motivated by the observation that the network model τ ca
k is always an estimate of

the “state” of the communication system because it bases on the monitoring data collected inside the
communication system. Since the properties of τ ca

k determine the dynamics of the mode θk of the
MJLS (4.1), the mode transition probabilities are subject to modeling errors. Hence, the goal of this
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Figure 6.3: Norms of the sample mean x̄k (left) and the sample second moment X̄k (right) of the plant state over time in
scenario S1 (top row) and scenario S2 (bottom row).

chapter was to investigate the impact of erroneous mode transition probabilities and to devise control
algorithms that are robust to these modeling errors.

Our first result was the insight that an uncertain or even completely unknown network model τ ca
k

renders the augmented dynamics (4.1) a polytopic MJLS, that is, an MJLS whose mode transition
matrix is allowed to vary within a convex polytope spanned by a set of R vertices. Using the result
from Chapter 4 that the mode transition matrix is always a lower Hessenberg matrix, we showed that
the number of vertices solely depends on the control sequence length N for both independent and
Markovian packet delays and losses. Then, we derived a necessary and sufficient condition for the
mean square stability of arbitrary polytopic MJLS that are subject to wide-sense stationary noise. More
specifically, we proved that mean square stability hinges on the question if the joint spectral radius of
a particular set AR of R matrices, each of which associated with one vertex of the polytope, is less
than one, i.e., one must determine if ρ̂ (AR) < 1. The key idea for the derivation of this condition was
the construction of a vector-valued sequence that is convergent if and only if the second moment of
the state is convergent. Although the condition ρ̂ (AR) < 1 itself is not new, our result constitutes a
substantial theoretical contribution because it extends its applicability to a broader class of systems.

On the other hand, the practical usefulness of the condition ρ̂ (AR) < 1 is limited since it is NP-hard
to decide whether it is satisfied when R ≥ 2. Aspiring after a more tractable solution, we decided to
sacrifice necessity and then proposed a sufficient stability condition that consists in determining the
feasibility of R(N + 1) linear matrix inequalities, which is usually efficiently done by state-of-the-art
solvers. Based on this condition, finally, we presented a similar set of linear matrix inequalities, whose
feasibility implies the existence of a stabilizing mode-independent state feedback control law.

Next, in Chapter 7, we will integrate the results of this and the previous chapters into the CoCPN
architecture. In simulation studies with CoCPN-Sim, we shall illustrate the applicability of CoCPN
and demonstrate how the contributions of this thesis enable the reliable operation of control loops
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Figure 6.4: Evolution of the plant states qk (left) and q̇k (right) in five exemplary runs from scenario S1 (top row) and
scenario S2 (bottom row).

under changing communication conditions, in the presence of cross traffic with different properties,
and when links are highly utilized.

To conclude this chapter, we note that the number of vertices R grows faster than exponentially with
the sequence length N in case the polytopic MJLS is constructed for Markovian packet delays and
losses. For instance, we have R = 144 for N = 3, but already R = 564 480 for N = 7. Depending
on the available computing capacity, the resulting number of linear matrix inequalities to be evaluated
might be prohibitively big even for small values of N . In such situations, we recommend constructing
the polytope under the assumption of independent packet delays and losses, where the number of
vertices is only R = 2N .



CHAPTER
7

Integration into the CoCPN Architecture

In the previous chapters, we concerned ourselves with the main research goal of this thesis – rendering
control loops elastic, i.e., to make them flexible enough to manage changing communication conditions.
For this purpose, we developed novel networked control algorithms which, supported by the data
exchange realized by the CoCPN translator, allow sequence-based controllers to respond to changes
of the network QoS so as to efficiently use the available communication resources. In the present
chapter, we shall use CoCPN-Sim to illustrate how CoCPN and its cooperative concept work in two
scenarios that simulate typical cases of application. In the first one, multiple control loops use the
same network network but start and stop at different points in time, which leads to an overstretched
link once a certain number of them is active concurrently. In the second one, a cloud-based controller
must share the available communication capacity with unrelated traffic from other applications, which
leads to rapid and unforeseeable changes of the communication conditions. Using the example of
these two scenarios, we show how the cooperation between our algorithms and the congestion control
CoCC enables CoCPN to realize a fair distribution of the available communication capacity without
severe degradations of the network QoS. To that end, we first need to integrate our approaches into the
CoCPN architecture. As described in Chapter 2, this demands implementing the CoCPN translator
interface. In particular, we must develop an appropriate notion of QoC that meets the requirements
of Definition 2.1 and, additionally, provide the mappings rate = r(QoC) (cf. (2.1)) needed by the
congestion control (cf. Algorithm 2.1).

We begin this chapter in Section 7.1 with a description of the double inverted pendulum on a cart,
whose stabilization is the control task considered in all simulation runs. Then, in Section 7.2, we
integrate all our proposed control algorithms into the CoCPN architecture by deriving the mappings
rate = r(QoC). The required QoC calculation will be grounded on the average deviation from the
upright position in steady-state operation. Finally, we present the two mentioned simulation scenarios
in Section 7.3.

In all simulation runs carried out in this chapter, the CoCPN translator supplies the controllers with
discrete probability distributions that model the occurring packet delays and losses (cf. Section 3.2.1).
They are exchanged between OMNeT++ and Matlab via the hook function ncs_doLoopStep
according to Algorithm 2.3. For simplicity, we do not compute the probability distributions based on
collected monitoring data. Instead, we obtain them directly from histograms that we create based on
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Figure 7.1: Sketch of the double inverted pendulum.

the recorded packet delays and losses. In all simulation runs, we use an Ethernet-based network. The
most relevant parameters configured in OMNeT++/INET are listed in Table F.2 in Appendix F.3.2.
Furthermore, unless otherwise noted, all network links are perfect, that is, no bit errors occur and all
packets are transmitted with zero propagation delay.

In the following, we shall use the terms MPC IMM and MPC Bound to refer to the SMPC algorithms
we developed in Sections 5.3 and 5.4. The controller resulting from the application of Corollary 6.3
will be referred to as Robust Controller.

7.1 Description of the Considered Control Task

Throughout this chapter, the control task we consider is to stabilize the double inverted pendulum on
a cart that is illustrated in Fig. 7.1. Let xc, θl, and θu denote, respectively, the horizontal position of
the cart (in meters) and the deviations (in radians) of the lower and the upper pendulum rod from the
upright position, chosen such that positive values correspond to the clock-wise direction, and define
the state x(t) ∈ R6 as

x(t) =
[
xc(t) θl(t) θu(t) ẋc(t) θ̇l(t) θ̇u(t)

]T
.

Then, the derivation provided in Appendix E shows that the continuous-time nonlinear dynamics can
be written as

ẋ(t) = f (x(t), u(t), w(t)) , (7.1)

with control input u(t) the force (in newtons) applied to move the cart, w(t) =
[
wc(t) wl(t) wu(t)

]T
external disturbances acting on the cart (wc(t), in newtons) and on both pendulum tips (wl(t) and
wu(t), in newton-meters), and where the system function f is given by (E.5).

With the parameters listed in Table F.1 in Appendix F.3 we can linearize (7.1) around the unstable
upward equilibrium xe(t) = 0 to obtain a linear dynamics of the form (3.2)

ẋ(t) = Acx(t) + Bcu(t) + Gcw(t) ,

with Ac, Bc, and Gc as per (E.6). Assuming that w(t) is a Gaussian, zero-mean white disturbance
with intensity

Wc = 1 · 10−11




1 0 0
0 1 0
0 0 0.1


 ,
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Figure 7.2: Basic network topology used to obtain the mapping rate = r(QoC) provided by the CoCPN translator.

we obtain the discrete-time dynamics (3.1) with A, B, and W according to (3.3). Furthermore, we set

C =




1 0 0 0 0 0
0 1 0 0 0 0
0 1 −1 0 0 0


 , V = 1 · 10−8I3 ,

that is, a sensor takes noisy measurements of the cart position, the deviation of the lower pendulum
rod, and the difference between the deviations of the two pendulum rods. Since we are interested in
the impact of the packet delays and losses, both Wc and V are chosen small so that the influence of
the noise on the control performance is kept low.

In all simulation runs carried out in this chapter, the initial plant state x0 is randomly drawn from a
Gaussian distribution with mean and covariance

x̂0 = 0 , X0 = 1 · 10−6I6 . (7.2)

To simulate the plant, we numerically integrate the nonlinear differential equation (7.1). For the
integration, we use fixed intervals of length 0.001 s, i.e., we use a sampling rate of 1 kHz to simulate
the plant. Note that the controllers operate at a lower rate fa, which, in all simulation runs will lie
between famin= 50 Hz and famax= 200 Hz. Thus, control sequences will be computed every ta = 1/fa
seconds.

7.2 Implementation of the CoCPN Translator Interface

To use the approaches developed in Chapters 5 and 6 in CoCPN, we must implement the CoCPN
translator interface as described in Chapter 2. In particular, we need to define the notion of QoC for the
control task at hand so that we can derive the mappings rate = r(QoC). For this purpose, we compare
the control performance that is achieved with different sampling rates fa between famin= 50 Hz and
famax= 200 Hz. To exclude performance fluctuations due to changing communication conditions, we
consider a simulation setup with a single NCS that exclusively uses the communication resources.

The network topology used in this section is depicted in Fig. 7.2. The actuator and the sensor are
physically co-located and thus connected to the same router. The controller is connected to this network
via a second router. For their communication, actuator, sensor, and controller use UDP and IPv6 with
the parameters listed in Table F.2. As Fig. 7.3 illustrates, this setup results in end-to-end delays in the
sub-millisecond range. Furthermore, no packet losses occur. Hence, the impact of the communication
system on the control performance is negligible. Differences in the achieved performance solely
originate from better disturbance rejection that is possible with higher sampling rates.

To quantify the relationship between control performance and sampling rate, we conduct several Monte
Carlo simulations with the MPC IMM, the MPC Bound, and the Robust Controller, respectively. In
the simulations, we gradually lower the sampling rate from fa = famax to fa = famin in steps of five
hertz, i.e., we consider the 31 different sampling rates 200 Hz, 195 Hz, 190 Hz, . . . , 50 Hz. We carry
out Ns = 50 simulation runs with each sampling rate. In each run, the NCS is simulated over ts = 30 s,
and the initial plant state x0 is randomly drawn from a Gaussian distribution with mean and covariance
given by (7.2). The MPC IMM, the MPC Bound, and the Robust Controller are configured as described
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Figure 7.3: Excerpt of the recorded end-to-end delays with the basic network topology shown in Fig. 7.2.

in Appendix F.3.3. Furthermore, in view of the negligibly small end-to-end delays, we set N = 2 and
L = 1 in all runs.1

To measure the achieved control performance, we denote by x[n]
k (fa) the plant state at time step k in

the n-th simulation run with sampling rate fa, where k is with respect to the plant sampling rate. As
decribed in Section 7.1, we numerically integrate the continuous-time plant dynamics (7.1) using fixed
integration intervals of length 0.001 s. Hence, with ts = 30 s, we have k ∈ {0, 1, . . . , 30 000}. Then,
the sample mean of the norm of the deviation of the plant state from the upward equilibrium xe = 0 at
time k is given by

ēk (fa) =
1

Ns

Ns∑

n=1

∥∥∥x[n]
k (fa)− xe

∥∥∥
2

=
1

Ns

Ns∑

n=1

∥∥∥x[n]
k (fa)

∥∥∥
2
.

(7.3)

The evolutions of ēk over time for some of the considered sampling rates are depicted in the top rows
of Figs. 7.4 to 7.6 for the MPC IMM, the MPC Bound, and the Robust Controller, respectively.
For all control algorithms, ēk decreases as fa increases, which implies that the achievable control
performance increases with fa. This result nicely illustrates the idea behind CoCPN and its cooperative
concept – the sharing of the available communication resources can be improved by adjusting the
desired control performance. The curves also indicate that the performance gain decreases as the
sampling rate approaches famax= 200 Hz, so that increasing it further would only marginally raise the
achievable performance.

To express the relationships between control performance and sampling rate in the form of mappings
performance = p(fa) as required by Algorithm 2.1, we first compute the time average of ēk for each
fa according to

ēavg (fa) =
1

k2 − k1 + 1

k2∑

k=k1

ēk (fa) , (7.4)

with k1 = 10 001, which corresponds to t1 = 10.001 s and k2 = 30 000, which corresponds to
t2 = ts = 30 s. That is, we interpret the first 10 s of each simulation run as transient response to
the initial excitation of the plant, where the controller attempts to drive the state back to the upward

1Even with fa = famax = 200 Hz, the controller’s sampling period is ta = 5 ms, whereas the packet delays are in the
sub-millisecond range. Hence, any transmitted packet is available at the next sampling instant.
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Figure 7.4: Derivation of the mapping fa = f(QoC) (bottom row) based on ēk (7.3) (top row), ēavg (7.4) (second row),
and performance (7.5) (third row) for the MPC IMM.

equilibrium. After that, the NCS is in steady-state operation and the true evaluation phase commences.
The second rows of Figs. 7.4 to 7.6 show ēavg for all considered sampling rates. As expected, ēavg is
minimal for famax= 200 Hz.
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and performance (7.5) (third row) for the MPC Bound.

Based on ēavg, we now define the relative performance measure

performance = p (fa) ,
ēavg (famax)

ēavg (fa)
∈ (0, 1] . (7.5)

For famax, we have performance = 1, whereas for fa < famax , we always have performance < 1.
Thus, p (fa) quantifies the “amount” of control performance that remains when the controller lowers its
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Figure 7.6: Derivation of the mapping fa = f(QoC) (bottom row) based on ēk (7.3) (top row), ēavg (7.4) (second row),
and performance (7.5) (third row) for the Robust Controller.

sampling rate from famax to fa. For all considered sampling rates, performance computed according
to (7.5) is plotted in the third rows of Figs. 7.4 to 7.6.

Using (7.5), an appropriate notion of QoC is obtained by virtue of the transformation

QoC ,
p (fa)− p (famin)

1− p (famin)
, (7.6)
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Algorithm 7.1 Implementation of the Interface: Controller→ Communication System
Input: 31 data pairs (fa, ēavg) whith ēavg as per (7.4)
Output: rate = r(QoC) // Strictly increasing mapping

1: Translate ēavg into QoC using (7.5) and (7.6)
2: Compute mapping fa = f(QoC) by fitting a suitable function to the pairs (QoC, fa)
3: Determine packet size s (in bits) // Depends on control sequence length
4: Obtain mapping rate = r(QoC) using (7.7)
5: return r

Algorithm 7.2 Implementation of the Interface: Communication System→ Controller
Input: Monitoring Data, QoCtarget

Output: Network Model, Target Sampling Rate fatarget

1: Translate monitoring data into network model // As formalized in Section 3.2
2: Evaluate f(QoCtarget) to obtain fatarget

with f given by (F.8), (F.10), or (F.12)
3: return Network model, fatarget

as we now have QoC = 1 for famax and QoC = 0 for famin. We then find continuous, smooth, and
strictly increasing mappings fa = f(QoC) by fitting suitable functions to the 31 pairs (QoC, fa),
where QoC is computed according to (7.6). They are depicted in the bottom rows, respectively,
of Figs. 7.4 to 7.6 for the MPC IMM, the MPC Bound, and the Robust Controller. Their expressions
are given by (F.8), (F.10), and (F.12) in Appendix F.3.3. Note that these mappings are the inverses
of the mappings defined by (7.6). Finally, the mappings rate = r(QoC) with rate in bit/s, which
are returned by Algorithm 2.1 and required by CoCC, are immediately obtained by multiplication of
f(QoC) with the packet size, which depends on the employed control sequence length. That is, we
simply need to compute

rate = r(QoC) , sf(QoC) , (7.7)

with packet size s in bits.

The resulting implementations of the CoCPN translator interface are summarized in Algorithm 7.1 (con-
troller→ communication system) and Algorithm 7.2 (communication system→ controller).

7.3 Simulation Scenarios

In this section, we demonstrate the CoCPN architecture in two different simulation scenarios. As
outlined at the beginning of this chapter, we focus on its cooperative approach for a fair distribution
of the available communication capacity. In particular, we illustrate how the cooperation between
our proposed SMPC algorithms and the congestion control CoCC, backed by the CoCPN translator,
enables a reliable operation without degradations of the network QoS. In the first simulation scenario,
presented in Section 7.3.1, we consider multiple NCS that start and stop at different points in time
during the simulation. The communication resources have to be shared with UDP traffic from an
unrelated application, which results in a highly utilized bottleneck link. In the second simulation
scenario, presented in Section 7.3.2, we are a concerned with a single NCS where the controller is
located in the cloud and connected to the sensor and the actuator via multiple routers. Co-existing
mixed UDP and TCP cross traffic then leads to rapidly changing communication conditions and to
end-to-end delays of up to one hundred fifty milliseconds.

Recall from Chapter 2 that CoCPN seeks to implement fairness by computing the same target QoC for
all NCS (cf. (2.2)). A fair sharing of the communication capacity with respect to QoC, however, only
results when the NCS actually achieve and maintain the given target QoC. Yet, in the previous section
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Figure 7.7: Mappings QoC = q (ēavg) for the MPC IMM, the MPC Bound, and the Robust Controller.

we defined QoC as a function of fa. Hence, we can only obtain the achievable QoC for a given
sampling rate by evaluating (7.6).2 Thus, to verify that CoCPN indeed achieves a fair sharing of the
communication resources, we must extend our notion of QoC, so that we can meaningfully quantify
the control performance at any time k, where k is with respect to the plant sampling rate. That is, we
need a mapping that directly translates ēk into QoC, where we compute ēk according to (7.3), i.e., ēk
is the sample mean of the norm of the plant state

ēk =
1

Ns

Ns∑

n=1

∥∥∥x[n]
k

∥∥∥
2
, (7.8)

with x[n]
k the plant state at time step k in the n-th simulation run.

To obtain this mapping, we first plug (7.5) into (7.6), which shows that for a given fa ∈ [famin , famax ],
the relationship between QoC and ēavg (fa) is expressed as

QoC =
p (fa)− p(famin)

1− p(famin)

=

(
ēavg (famax)

ēavg (fa)
− ēavg (famax)

ēavg (famin)

)(
1− ēavg (famax)

ēavg (famin)

)−1

,

with ēavg (fa) as per (7.4). Omitting the dependency on fa, we get a function q that directly maps ēavg

onto QoC according to
QoC = q (ēavg) ,

a

ēavg
− a

ēavg (famin)
, (7.9)

with a given by

a = ēavg (famax)

(
1− ēavg (famax)

ēavg (famin)

)−1

.

The values for ēavg (famin) and ēavg (famax) obtained in the previous section lead to the functions given
by (F.9), (F.11), and (F.13) for the MPC IMM, the MPC Bound, and the Robust Controller. They are
plotted in Fig. 7.7.

Based on (7.9), we then define the achieved QoC at time k as

QoCk , q (ēk) , (7.10)

2Or for a given data rate rate by evaluating the inverse of r.
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Figure 7.8: The network topology considered in the first simulation scenario.

Table 7.1: Configuration of the eight NCS in the first simulation scenario.

NCS Control Algorithm Time of Operation

NCS 1 MPC IMM 0 s to 450 s
NCS 2 MPC Bound 30 s to 90 s
NCS 3 Robust Controller 130 s to 300 s
NCS 4 MPC Bound 130 s to 250 s
NCS 5 MPC Bound 170 s to 280 s
NCS 6 MPC IMM 190 s to 350 s
NCS 7 MPC IMM 240 s to 410 s
NCS 8 Robust Controller 300 s to 350 s

with ēk as introduced above in (7.8). That is, we directly use the sample mean ēk in q rather than its
time average ēavg. This decision is motivated by the results from the previous section, where significant
fluctuations of ēk only occurred during the transient response of the NCS to the initial excitation of the
plant. Hence, once the NCS is in steady-state operation, we expect only slight gaps between ēk and
ēavg.

7.3.1 Multiple NCS with UDP Cross Traffic

In the first simulation scenario, we consider a CPS with eight independent NCS that use the network
shown in Fig. 7.8. The controller and the sensor of each NCS are connected to the same router. The
actuators are connected to this network via a second router. All communication within the individual
NCS is based on UDP and IPv6 with the parameters listed in Table F.2. The NCS share the network
with two hosts H1 and H2, which we use to model the integration of higher-level applications for,
e.g., data visualization. H1 communicates with H2 at a fixed rate of 8 Mbit/s via UDP, where each
transmitted packet is 400 B. The link between the two routers, denoted by B in Fig. 7.8, constitutes a
bottleneck because it only provides a data rate of 10 Mbit/s, whereas all others provide 100 Mbit/s.

We deploy the MPC IMM, the MPC Bound, and the Robust Controller as listed in Table 7.1. They are
configured as described in Appendix F.3.3. We simulate the CPS over ts = 450 s, during which the
eight NCS start and stop at different points in time. The start and stop times are given in the rightmost
column of Table 7.1 and the corresponding times of operation are depicted in Fig. 7.9. They are chosen
such that up to six NCS operate concurrently. However, due to the co-existing traffic from H1 to H2,
the bottleneck link B becomes utilized to the full with already three NCS being active at the same
time. Thus, in order to avoid over-utilization of the bottleneck link, the congestion control CoCC must
distribute its capacity among the NCS by appropriately adjusting the target performance QoCtarget as
described in Chapter 2. The CoCPN translator then extracts the corresponding target sampling rate
fatarget by means of Algorithm 7.2, allowing each controller to alter its sampling rate accordingly.

Fig. 7.10 shows the evolution of QoCtarget over the simulation time. At the beginning, CoCC can keep
the target QoC maximal (QoCtarget = 1), since only NCS 1 and NCS 2 are active. Then, starting at
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Figure 7.9: The times of operation of the NCS in the first simulation scenario.

t1 = 170 s, CoCC must gradually lower the target QoC as more NCS begin to operate. The minimum
value is reached between t2 = 240 s and t3 = 250 s, when six NCS, namely NCS 1 and NCS 3 to
NCS 7, are active. After that, the number of active NCS decreases, so that the target QoC gradually
rises again. Finally, it spikes back to the peak value (QoCtarget = 1) at t4 = 350 s when NCS 6 and
NCS 8 stop, leaving only NCS 1 and NCS 7 active. For some of the NCS, the corresponding controller
sampling rates fatarget are plotted in Fig. 7.11. Although the target QoC is the same for all NCS, the
sampling rates, and, hence, the resulting data rates differ due to the different control algorithms.

By adjusting the desired target QoC, CoCPN is able to maintain a high utilization of the bottleneck
link without overstretching its capacity inspite of the co-existing cross traffic. Thereby, congestion
and potentially harmful degradations of the network QoS are avoided. Latency is kept low and, as
illustrated in Fig. 7.12, the packets sent from the controllers to the actuators (i.e., the control sequences)
only experience end-to-end delays in the single-digit millisecond range even when six NCS operate
concurrently between t2 and t3. Note that the cross traffic is unidirectional (from host H1 to host H2)
and, thefore, neither affects the packets sent from the sensors to the controllers (i.e., the measurements)
nor the packets sent from the actuators to the controllers (i.e., the ACKs). Thus, their experienced
end-to-end delays are smaller and do not disperse much.

To evaluate whether all NCS achieve the desired target QoC, we carry out Ns = 200 simulation runs.
In each run, we randomly draw the initial plant state x0 from a Gaussian distribution with mean and
covariance given by (7.2). Afterwards, we determine ēk according to (7.8). The evolutions of ēk over
time are plotted in Fig. 7.13, together with the corresponding 1-sigma intervals ēk ± σk, where the
standard deviation σk is given by

σk =

√√√√ 1

Ns − 1

Ns∑

n=1

(∥∥∥x[n]
k

∥∥∥
2
− ēk

)2
. (7.11)

In Fig. 7.13, the adjustments of the target QoC made during operation according to Fig. 7.10 are
clearly recognizable. Let us exemplarily consider its top left plot, which shows ēk and ēk ± σk over
time for NCS 1 that is active from the beginning to the end of the simulation time. After the transient
phase (due to the initial excitation of the plant), ēk remains relatively constant until t1 = 170 s, when
CoCC starts to lower the target QoC. Subsequently, ēk reaches its peak value between t2 = 240 s and
t3 = 250 s, during which the target QoC is minimal. After that, ēk gradually peaks off and, once the
target QoC jumps to its maximum again at t4 = 350 s, eventually returns to the range of values it
attained prior to t1. Upper and lower boundary of the corresponding 1-sigma interval exhibit similar
behavior. Moreover, the width of the 1-sigma interval increases as ēk increases. We can draw alike
conclusions for the remaining NCS (NCS 2 to NCS 8) from the other plots in Fig. 7.13.

Based on ēk, we then compute QoCk = 1 by virtue of (7.10). We set QoCk = 1 in case q (ēk) > 1 to
ensure that QoCk ∈ [0, 1] for all k. The eight plots in Fig. 7.14 depict the evolutions of QoCk over
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Figure 7.10: Evolution of QoCtarget computed by the congestion control CoCC for all NCS over the simulation time in
the first simulation scenario.
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Figure 7.12: Excerpt of the recorded end-to-end delays in the first simulation scenario.

time for all NCS. For comparison, the desired target QoC according to Fig. 7.10 is also displayed in
each plot. On the whole, the results show that, once the transient response to the initial excitation of
the plant is over, all NCS manage to react to changes of the target QoC by decreasing or increasing
their achieved QoC. The QoC achieved by NCS 2, NCS 4, and NCS 5, which employ the MPC Bound,
is in line with the desired target QoC. Similarly, NCS 1, NCS 6, and NCS 7, which use the MPC IMM,
are also able to quickly adjust their achieved QoC, but with more distinct oscillations of QoCk around
QoCtarget. For NCS 3, which uses the Robust Controller, we can observe a gap between the desired
target QoC and the achieved QoC. Once the target QoC drops from its maximum at time t1, QoCk
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NCS 8 (bottom right).

falls below QoCtarget for the remaining time of operation. NCS 8, which uses the Robust Controller
as well, maintains the desired target QoC during its time of operation with only slight oscillations,
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Figure 7.14: The desired target QoC (QoCtarget) in comparison to the achieved QoC (QoCk) for NCS 1 (top left) to
NCS 8 (bottom right) in the first simulation scenario.

but needs more time to increase its QoC to the desired peak value (QoCtarget = 0.8) after the initial
transient phase.
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Figure 7.15: The network topology considered in the second simulation scenario.

The last observations show that the Robust Controller lacks adaptivity compared to the SMPC algo-
rithms and, thus, cannot respond as fast as the latter to changes of the target QoC. This is not completely
unexpected since we developed the Robust Controller with a different goal – being robust to changing
or uncertain/unknown communication conditions. As already discussed at the end of Section 6.4,
increased robustness typically leads to controllers that act conservatively and, in particular, respond
only slowly to changing operating points. On the other hand, the results underline that both the MPC
IMM and MPC Bound enable NCS to quickly adjust their achieved QoC, allowing for fast responses to
changes of the desired target QoC. In turn, in the considered scenario an efficient and fair usage of
the communication resources is possible – CoCPN can distribute the capacity of the bottleneck link B
such that all NCS achieve the same performance.

7.3.2 Single NCS with Mixed TCP/UDP Cross Traffic

In the second simulation scenario, we consider a CPS with only a single NCS but many other
applications that concurrently use the network shown in Fig. 7.15. The actuator and the sensor are
physically co-located and connected to the same router. The controller is cloud-based and connected
to the sensor and the actuator via multiple routers. All network links have a capacity of 100 Mbit/s
and are error-free, that is, no bit errors occur. The propagation delay of the ten links marked with B
in Fig. 7.15 is set to 250 ns, which corresponds to link lengths of 50 m. The propagation delay of the
remaining links is either zero or 50 ns. For their communication, actuator, sensor, and controller use
UDP and IPv6 with the parameters listed in Table F.2 in Appendix F.3.2. The cross traffic from the
other applications consists of a mix of 924 UDP data flows and nine TCP flows.

We carry out Ns = 200 simulation runs with the MPC IMM, the MPC Bound, and the Robust
Controller, respectively. They are configured are as described in Appendix F.3.3. In each run, we
simulate the CPS over ts = 40 s, during which the NCS is active the entire time. Prior to each run,
we randomly draw the initial plant state x0 from a Gaussian distribution with mean and covariance
given by (7.2). The UDP flows are active from the beginning to the end of the simulation time and
configured such that they vary their data rates between 49 kbit/s and 2 Mbit/s during operation. The
TCP flows start at random between t1 = 10 s and t2 = 20 s. They transmit data in chunks of 5 MB
every ten seconds. The random starting times are chosen to reflect rapid changes of the communication
conditions due to the sudden appearance of unrelated traffic that has high priority or requires high
data rates, such as video footage or software updates. TCP is configured with the parameters given
in Table F.3 in Appendix F.3.2.

Due to this choice of cross traffic, the packets sent from the cloud-based controller to the actuator
(i.e., the control sequences) can experience delays of up to one hundred fifty milliseconds. Fig. 7.16
shows the end-to-end delays recorded in one of the simulation runs and illustrates nicely that the delays
spike regularly whenever the TCP flows are active. The TCP cross traffic is unidirectional and, thus,
does not impair the communication of the measurements sent from the sensor to the controller and
the communication of the ACKs sent back from the actuator. Accordingly, their delays stay in the
single-digit millisecond range.
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Figure 7.16: Recorded end-to-end delays (controller→ actuator) in one of the simulation runs of the second simulation
scenario.
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Figure 7.17: Evolution of QoCtarget computed by the congestion control CoCC in five exemplary runs with the MPC
IMM. The range between the 0.99- and 0.01-quantiles Q0.99 and Q0.01 is shaded in gray.

In contrast to the pevious simulation scenario, the target QoC computed by the congestion control
CoCC now differs from run to run because the TCP cross traffic starts at different times. We illustrate
this in Fig. 7.17, which depicts the adjustments of the target QoC made by CoCC in five simulation
runs with the MPC IMM. The graphs show that the target QoC remains maximal (QoCtarget = 1) at
the beginning. Then, between t1 = 10 s and t2 = 20 s, we observe short but sudden declines that can
reduce the target QoC below 0.6 once one of the TCP data flows becomes active. After that, decreases
and increases of the target QoC alternate with each other rather periodically – CoCC is only able to
keep the target QoC maximal at times when no TCP flows are active. Consequently, the sampling rate
adaptations made by the controller also differ from run to run. Moreover, the computed target QoC
is now also dependent on the employed control algorithm because of their different communication
requirements, i.e., because of the different relationships fa = f(QoC) obtained in Section 7.2. Hence,
for a meaningful determination whether the NCS is able to achieve the desired QoC, we must take
the dispersion of the computed target QoC into account. Fur this purpose, we consider the (empirical)
0.99- and 0.01-quantiles Q0.99 and Q0.01 of the computed target QoC. Then, the QoC achieved by the
NCS should lie in the range betweenQ0.99 andQ0.01. For instance, the QoC achieved in the simulation
runs with the MPC IMM should reside inside the area shaded in gray in Fig. 7.17.

To obtain the achieved QoC, we first determine ēk according to (7.8). The three plots in the left column
of Fig. 7.18 show the evolutions of ēk and the corresponding 1-sigma intervals over time for the MPC
IMM (top row), the MPC Bound (middle row) and the Robust Controller (bottom row). The standard
deviation σk is calculated by virtue (7.11). Based on ēk, we then compute QoCk according to (7.10).
We again set QoCk = 1 in case q (ēk) > 1 to ensure that QoCk ∈ [0, 1] for all k. The evolutions of
QoCk over time are depicted in the plots on the right of Fig. 7.18 in comparison to the desired QoC,
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Figure 7.18: Sample mean ēk and 1-sigma interval ēk ± σk of the norm of the plant state over time (left) and the achieved
QoC in comparison to the target QoC (right) for the MPC IMM (top row), the MPC Bound (middle row) and
the Robust Controller (bottom row).

which is expressed as explained above, i.e., as the range between the quantiles Q0.99 and Q0.01 of the
target QoC in the corresponding simulation runs.

Similar to the previous simulation scenario, the results confirm that our control algorithms enable the
NCS to react to changes of the target QoC by decreasing or increasing their achieved QoC. The QoC
achieved by the NCS in the simulation runs with the MPC IMM lies between Q0.99 and Q0.01, apart
from two short periods after t2 and a around t = 30 s, where it remains slightly below. The achieved
QoC does not decrease much between t1 and t2, during which all TCP flows become active, but stays
relatively constant with oscillations around QoCk = 0.8. Afterwards, no significant changes can be
observed until the end of the simulation time. This is also reflected by ēk and σk, which do not vary
much after the transient phase has ended. The QoC achieved in the simulation runs with the MPC
Bound is almost consistently between Q0.99 and Q0.01, with only few short-lasting drops below. These
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drops coincide with sudden increases of σk, which other than that does not vary much. Between t1
and t2, the achieved QoC falls below 0.7, which is not the case in the runs with the MPC IMM. On
the other hand, the QoC achieved with the MPC Bound then rises to reach its peak value QoCk = 1
again. Also, we can observe that the achieved QoC reaches the peak more quickly after the initial
transient phase than the QoC achieved with the MPC IMM. The results of the simulation runs with
the Robust Controller resemble the results of the previous simulation scenario since they reveal a gap
between the desired QoC and the achieved QoC. As the target QoC starts to diminish at time t1, QoCk

steadily decreases, so that it falls below Q0.01, where it remains until the end of the simulation time.
The decrease of the achieved QoC between t1 and t2 goes along with increases of ēk and σk.

We can again conclude that the robustness of the Robust Controller makes it less adaptive so that it
acts overly conservatively. In particular, the controller does not exploit that a significant portion of the
transmitted control sequences experiences only small delays even when the TCP cross traffic is active
(cf. Fig. 7.16). Nonetheless, the Robust Controller guarantees stability of the closed-loop system and,
hence, a reliable operation of the NCS in spite of the changing communication conditions. Regarding
the MPC IMM and MPC Bound, this simulation scenario shows that both algorithms render the NCS
flexible enough to cope with rapidly changing communication conditions and enable them to achieve
the desired performance even in the presence of a multitude of co-existing data flows with different
properties.

7.4 Conclusions

In the last part of this thesis, we integrated the networked control algorithms developed in Chapters 5
and 6 into the CoCPN architecture. Our goal was to demonstrate CoCPN and its cooperative concept in
simulation scenarios with CoCPN-Sim. Focusing on the collaboration between our control algorithms
and the congestion control CoCC, we wanted to illustrate how CoCPN avoids potentially harmful
degradations of the network QoS and, at the same time, implements a fair sharing of the available
communication capacity.

We considered two simulation scenarios, in which the controllers were tasked with the stabilization
of double inverted pendulums over networks with highly utilized links that had to be shared with
co-existing cross traffic with different properties and requirements. For this control task, we first
defined the notion of QoC, which we then used to implement the CoCPN translator interface defined
in Chapter 2 for our developed algorithms. Specifically, we derived the mappings rate = r(QoC)
needed by the congestion control CoCC to determine the target performance QoCtarget that leads to a
fair sharing of the available communication capacity.

The simulation results illustrated that our developed control algorithms enable the NCS to react to
changes of the target QoC by decreasing or increasing their achieved QoC. The Robust Controller,
however, responded only slowly to changes of the target QoC. This was not completely against
expectation because, by design, adaptivity was traded for increased robustness against changing or
uncertain communication conditions. Still, the stability of the closed-loop system was guaranteed all
the time and, consequently, enough elasticity provided to ensure the reliable operation of the NCS.
Both SMPC algorithms, the MPC IMM and the MPC Bound, displayed fast reponses to changes of the
network QoS and allowed the NCS to achieve the desired performance even when the communication
conditions changed rapidly. Supported by the CoCPN translator and its data exchange, undesirable
degradation of the control performance was avoided, thereby enabling CoCPN to realize the desired
fair distribution of the communication resources.



CHAPTER
8

Conclusions

The deployment of general-purpose networking equipment that supports the IEEE 802.3 (Ethernet) and
IEEE 802.11 (WLAN) standards is becoming increasingly popular in industrial cyber-physical systems
(CPS). This development is primarily fueled by the availability of inexpensive devices, the option to re-
use already existing infrastructure, and increased flexibility compared to traditional fieldbus networks.
On the other hand, the quality of service (QoS) provided by general-purpose networks is characterized
by fluctuations, which appear for the end systems in the form of changing latencies, packet loss rates,
and usable data rates. Control loops are particularly vulnerable to variations of the network QoS as
they typically require guaranteed latencies for the exchange of sensor data and control commands.
Consequently, approaches that render control loops elastic, that is, approaches that enable control
loops to cope with changing communication conditions, are demanded for a reliable operation within
such CPS. In this thesis, we developed approaches for networked control that provide the required
elasticity in the context of the research project CoCPN: Cooperative Cyber-Physical Networking.
We placed special emphasis on the design and analysis of sequence-based control algorithms that
allow controllers to quickly respond to changes of the network QoS and to efficiently use the available
communication capacity. Based on the results of this thesis, CoCPN realizes a novel, distributed, and
cooperative concept for a fair sharing of the available communication capacity without overstretching
individual resources. Thereby, potentially harmful degradations of the network QoS can be studiously
avoided and the performance of all control loops can be kept in balance.

We summarize the key contributions of this thesis in the next section. The subsequent section, then,
discusses potential starting points for future research.

8.1 Summary

In the first part of this thesis, we extended an existing modeling approach that compactly expresses
the networked control system (NCS) in terms of a Markov jump linear system (MJLS), which is a
particular type of hybrid system where a Markov chain governs the “switchings” between different
linear dynamics. For a number of reasons, the developed model extension enabled us to pursue a more
realistic treatment of the impact of the shared communication resources in relation to the majority
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of the literature. First, it does not rely on the assumption that packet delays and losses occur with
fixed probabilities. Instead, it models them as realizations of non-stationary processes, so that their
probability of occurrence can change over time. Hence, it is flexible enough to reflect changes of
the network QoS. Second, the temporal correlation of the packet delays and losses can be expressed,
allowing for the integration of the impact of factors such as congestion and queuing at intermediate
nodes, which affect successive packets in a similar way. Finally, it forgoes the (theoretically convenient)
assumption that acknowledgment packets are transmitted instantaneously and received with negligibly
small latency. Instead, our developed extension is based on a more practical point of view and takes
delays and losses during their transmission into account.

The derived MJLS enables controllers to predict the influence of packet delays and losses on the control
performance, making stochastic model predictive control (SMPC) well-suited for the computation of
control sequences. Thus, in the second part of this thesis, we concerned ourselves with the development
of algorithms for sequence-based SMPC. In principle, such algorithms determine control laws by
formulating optimal control problems that are then solved via the dynamic programming (DP) recursion.
Yet, our chosen modeling approach introduced an interdependency between decision-making and
state estimation: The computed control sequences influence the quality of the controller’s future state
estimates, which in turn influence the quality of the control sequences to be computed in the future.
This interdependency, typically referred to as dual effect, prevented us from solving the DP recursion
in closed-form and, even worse, rendered its numerical evaluation intractable. Accordingly, we focused
on computationally tractable approaches for the determination of suboptimal control laws. To that
end, we proposed two novel algorithms. The first one relies on the close connection between MJLS
and multiple model algorithms for state estimation. These estimation algorithms maintain the state
estimate in terms of a Gaussian mixture. We used this representation to derive an algorithm for the
computation of a nonlinear control law that combines the output of multiple individual controllers.
Each of these is associated with one component of the Gaussian mixture, which is provided by an
interacting multiple filter we tailored to our purposes. In the second proposed algorithm, the control
law is linear and obtained by means of an iterative procedure that is based on repeated improvements
of a reference trajectory. This reference trajectory is created by propagating a given estimate of the
plant state over the optimization horizon. Our simulation results displayed that both algorithms can
significantly outperform state-of-the-art algorithms for networked SMPC from the literature.

The third part of this thesis was motivated by the observation that the transition probabilities of
the Markov chain that governs the switchings between the modes of the MJLS are dependent on
the network models, i.e., the probabilistic descriptions of the packet delays and losses. These are
forwarded to the controller by the CoCPN translator, which creates them by processing monitoring
data gathered inside the network. The monitoring data, however, is itself based on measurements
of, e.g., link utilizations or packet loss and error rates, and cannot capture the complete “state” of
the network. Consequently, the mode transition probabilities cannot be assumed perfectly known,
making it natural to explore conditions for the existence of controllers that are robust to uncertainties
in the network models. Our first result in this regard was the insight that uncertain or even completely
unknown network models render the MJLS polytopic, that is, the mode transition matrix always lies in
a convex polytope. Consequently, we translated the problem of synthesizing robust sequence-based
controllers into the problem of finding stabilizing controllers for polytopic MJLS. In the literature,
a necessary and sufficient condition for the mean square stability of such systems has to date only
been reported for noise-free polytopic MJLS and for polytopic MJLS that are subject to bounded
disturbances. We substantially contributed to the theory of hybrid systems by establishing that this
condition also holds true for the broader class of polytopic MJLS that are driven by wide-sense
stationary noise. Unfortunately, the practical applicability of the condition is limited because it requires
to determine whether the joint spectral radius (JSR) of a set of matrices is less than one, which is
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NP-hard and, thus, generally cannot be done efficiently. On the other hand, this result enabled us to
obtain a sufficient stability condition in terms of a linear matrix inequality (LMI) feasibility problem.
This sort of feasibility problems is convex and, as such, can be evaluated by standard solvers in
polynomial time. Finally, we proposed a similar set of inequalities whose feasibility guarantees the
existence of stabilizing state feedback laws. This set is less restrictive than the ones already known in
the literature and, thus, leads to less conservative controllers.

In the last part of this thesis, we integrated our developed algorithms into the CoCPN architecture.
We demonstrated the applicability of CoCPN and its cooperative approach in challenging simulation
scenarios with highly utilized links and rapidly changing comunication conditions. Especially the
collaboration between our proposed SMPC algorithms and the control-aware congestion control CoCC,
realized by the data exchange provided by the CoCPN translator, enabled a reliable operation of the
control loops without unwanted performance drops even when the available communication capacity
had to be shared with multiple data flows from unrelated applications.

To conclude this section, we remark that open source implementations of all algorithms developed in the
scope of this thesis are part of CoCPN-Sim [295].1 CoCPN-Sim also contains implementations of the
SMPC algorithms from [152, 169] that we used in Section 5.5 and implementations of other sequence-
based control algorithms such as the ones developed in [123, 124]. Furthermore, it also contains
standalone functions for the computation of the mode transition matrices according to Theorem 4.1
and for the computation of the lumped dynamics (4.24).

8.2 Future Research

Within the scope of this thesis, we touched several differents aspects of networked control, each of
which is an active research field on its own. Some starting points for follow-up research in these fields,
based on the outcome of this thesis, are given below, together with potential future activities in the
context of CoCPN.

Modeling Networked Control Systems Using an MJLS of the form (4.1) for the design and
analysis of sequence-based controllers in this thesis was appealing since this class of hybrid systems
is well understood. However, for general nonlinear plants, the augmented dynamics will be a hybrid
system of the form

ψ
k+1

= ã
(θk)
k (ψ

k
, Uk, wk) , (8.1)

with ã(i)
k nonlinear. For general stochastic hybrid systems, the literature is relatively scarce. Even for

the important special case that θk is a Markov chain, optimal control problems have not been explored
much, so that only few notable results seem available [262, 263] . Hence, for NCS with nonlinear
plants a model of the form (4.26) that expresses the actual plant input in terms of a Dirac mixture
PDF might be a more promising starting point for the design of control algorithms. To corroborate
(or disprove) this supposition, the pros and cons of the two modeling approaches could be studied in
greater detail.

Sequence-Based Stochastic MPC Both algorithms for sequence-based stochastic MPC that we
proposed within this thesis rely on different approximations of the cost-to-go. The approximations were
necessary to overcome the main obstacle – the presence of the dual effect rendered the computation
of optimal control laws intractable. Future research could check the reasonableness of the made
approximations and, based thereon, seek to find conditions under which (mean square) stability of

1 CoCPN-Sim is released under the GNU General Public License (GPL) and available on github:
https://github.com/spp1914-cocpn/cocpn-sim

https://github.com/spp1914-cocpn/cocpn-sim
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the closed-loop system can be established. In this regard, investigation of the convergence properties
of IMM filter associated with the control algorithm developed in Section 5.3 based on the recent
results [126, 188, 264] would be a suitable starting point. For the algorithm developed in Section 5.4,
future work in this regard should attempt to reveal the connection between the convergence of the
control law parameters according to Theorem 5.3 and the stability of the closed-loop system.

Additionally, the development of the sequence-based stochastic MPC approaches for nonlinear plants
based on the augmented dynamics (8.1) could draw inspiration from the control algorithm from Sec-
tion 5.3. Combining the multiple model estimator for hybrid systems from [265] with the quadratic
approximation of the cost-to-go proposed in [293] should result in a set of mode-conditioned affine
control laws. On the other hand, with a model of the form (4.26) at our disposal, it might be worthwhile
to research scenario-based approaches [266, 267].

Sequence-Based Stochastic Robust Control In Chapter 6, we showed that polytopic MJLS
constitute a natural way to tackle uncertainties in the network models provided by the CoCPN translator.
Consequently, the synthesis of sequence-based controllers that are robust to such uncertainties has
been tantamount to the synthesis of stabilizing controllers for polytopic MJLS. For stochastic systems,
several definitions of stability exist in the literature [268]. For ordinary MJLS and for noise-free
polytopic MJLS, the notion of mean square stability considered in this thesis is known to be equivalent
to the notions of stochastic stability and exponential mean square stability. Although our numerical
example in Section 6.5 indicated that this equivalence also holds for polytopic MJLS driven by
wide-sense stationary noise, a formal verification is, to the best of our knowledge, still missing.

In the simulation studies with CoCPN-Sim presented in Chapter 7, the augmented state ψ
k

was not
directly available. Hence, we made use of the certainty equivalence principle [158] and replaced the
mode-independent state feedback law

Uk = Lψ
k
,

that resulted from the application of Corollary 6.3 by

Uk = Lψ̂
k
,

i.e., we used the estimate ψ̂
k

in place of the true state ψ
k
. This control law is suboptimal and, in

particular, not guaranteed to stabilize the plant. Thus, future research activities should concentrate on
the design of (mean square) stabilizing dynamic output feedback laws. Using our results, it should
be possible to show that the existence of such laws depends on the feasibility of matrix inequalities
similar to the ones we obtained in Theorem 6.8 and Corollary 6.3.

CoCPN To date, the CoCPN architecture is implemented in our simulation and evaluation frame-
work CoCPN-Sim [295]. We used CoCPN-Sim to demonstrate the applicability of CoCPN and its
cooperative concept in different simulation scenarios. Experimental validation of the results constitutes
an important next steps towards the deployment of CoCPN in real-world applications. The integration
of wireless networks based on the IEEE 802.11 (WLAN) standards into the CoCPN architecture,
which has been out of scope so far, could accompany the experimental validation as such networks
become more and more popular in industrial applications.

Currently, controllers react to changes of the target QoC by adapting their sampling rates. However, it is
known that variations in the controller’s sampling rate can render the closed-loop system unstable [269,
270]. Thus, future work should investigate the impact of these rate adaptations in greater detail
and research conditions under which (mean square) stability of the closed-loop dynamics can be
guaranteed. Additionally, it might be interesting to explore other strategies to adjust the sending
rates of the controllers. In this regard, the recently developed resource-aware MPC approaches,
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which incorporate given traffic specifications such as desired average packet rates directly into the
optimization, seem promising [271–273].

Our definition of QoC in Chapter 7 was straightforward and grounded on the time average of the
control error in steady-state operation of the NCS. Future work could research alternative definitions
of QoC based on other statistical measures. In particular, measures used for control performance
monitoring in industrial applications could be explored [274,275]. Similarly, it might be worthwhile to
find ways to detect mismatches between the actually achieved QoC and the desired QoC computed by
CoCC according to the mapping rate = r(QoC) provided by the CoCPN translator. Based thereon,
one could then research methods to adapt this mapping at runtime.

Finally, we observed in the second evaluation scenario in Chapter 7 that a considerable proportion of
the packets sent from the controller to the actuator experienced only small delays even when the TCP
cross traffic was active (cf. Fig. 7.16)). This is due to the fact CoCC always prioritizes a certain amount
of packets to guarantee some minimum control performance. It might be useful to devise network
models for the controllers that incorporate the effects caused by mechanisms inside the communication
protocols. Based on the gathered monitoring information, the CoCPN translator could also obtain more
sophisticated network models by applying approaches based on nonparametric statistics. In this regard,
methods for nonparametric density estimation based on Pitman-Yor processes, which are especially
suited for heavy-tailed distributions, could be studied [276].





APPENDIX
A

Mathematical Concepts and Results

In this appendix, we state mathematical concepts, terminology, and expressions that are used throughout
this thesis. To keep the presentation concise, we present all results without proof.

A.1 Metric Space Concepts

The notion of a metric, as defined below, extends the fundamental concept of distances in the Euclidean
plane to elements of arbitrary sets.

Definition A.1: (Naylor and Sell [277, p. 45])
The pair (X, dx) is called a metric space if X is a set and dx(x1, x2) is a real-valued function, called
the metric, defined for x1, x2 ∈ X that satisfies the following conditions:

(i) dx(x1, x2) ≥ 0 and dx(x1, x1) = 0 for all x1, x2 ∈ X .

(ii) If dx(x1, x2) = 0, then x1 = x2 for all x1, x2 ∈ X .

(iii) dx(x1, x2) = dx(x2, x1) for all x1, x2 ∈ X .

(iv) dx(x1, x2) ≤ dx(x1, x3) + dx(x2, x3) for all x1, x2, x3 ∈ X .

Let (X, dx) and (Y, dy) be arbitrary metric spaces and F : X 7→ Y a mapping from (X, dx) into
(Y, dy). Furthermore, let G : X 7→ Y be a bijection, i.e., G is a one-to-one and surjective mapping
from (X, dx) onto (Y, dy) and thus invertible. Finally, let {xk} = {x0, x1, . . . } be a sequence of
points in (X, dx).

Definition A.2: (Naylor and Sell [277, Definition 3.5.1])
The mapping F is said to be continuous at the point x0 in X if for every real number ε > 0, there
exists a real number δ = δ(ε, x0) > 0 such that dy (F (x), F (x0)) < ε whenever dx(x, x0) < δ. The
mapping F is said to be continuous if it is continuous at each point in its domain.
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Definition A.3: (Naylor and Sell [277, Definition 3.5.2])
The mapping F is said to be uniformly continuous if for each ε > 0, there exists δ = δ(ε) > 0 such
that for any x0 one has dy (F (x), F (x0)) < ε whenever dx(x, x0) < δ.

In particular, any uniformly continuous mapping is continuous.

Definition A.4: (Naylor and Sell [277, Definitions 3.10.1 and 3.13.7])
The bijection G is called a homeomorphism if both G and G−1 are continuous. If both G and G−1

are uniformly continuous, then G is said to be a uniform homeomorphism.

If a (uniform) homeomorphism exists, (X, dx) and (Y, dy) are called (uniformly) homeomorphic.
Definitions A.3 and A.4 imply that every isometry, i.e., every bijection G from (X, dx) onto (Y, dy)
for which dy (G(x1), G(x2)) = dx(x1, x2) holds for every x1, x2 ∈ X , is a uniform homeomorphism.

Definition A.5: (Naylor and Sell [277, Definition 3.6.1])
The sequence {xk} in (X, dx) is said to be convergent if there is a point x in (X, dx) with the property
that for each ε > 0 there is an integer N such that dx(xn, x) < ε whenever n ≥ N . The point x is
called the limit of the sequence {xk}.

For a convergent sequence {xk}, we write limk→∞ xk = x.

Theorem A.1: (Naylor and Sell [277, Theorem 3.10.2])
The following statements are equivalent:

(i) The bijection G is a homeomorphism.

(ii) A sequence {xk} in (X, dx) converges to a point x if and only if the sequence {G(xk)} in
(Y, dy) converges to G(x).

Definition A.6: (Naylor and Sell [277, Definition 3.13.1])
The sequence {xk} in (X, dx) is said to be a Cauchy sequence if for each ε > 0 there exists an integer
N = N(ε) such that dx(xn, xm) < ε for any n,m ≥ N .

It is evident from the definition that any convergent sequence is also a Cauchy sequence. The opposite,
however, is generally not true. For instance, the sequence defined by xk+1 = xk

2 + 1
xk

with x0 = 1
is a Cauchy sequence in the metric space (Q, | · |), but it is not convergent in (Q, | · |), since its limit
limk→∞ xk =

√
2 is not a rational number. Metric spaces possessing the property that any convergent

sequence is a Cauchy sequence are called complete according to the following definition.

Definition A.7: (Naylor and Sell [277, Definition 3.13.3])
A metric space (X, dx) is called complete if each Cauchy sequence in (X, dx) is also convergent in
(X, dx).

A.2 Norms and Banach Spaces

The notion of a norm, as defined below, extends the fundamental concept of length of vectors in the
Euclidean space to elements of arbitrary vector spaces.
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Definition A.8: (Naylor and Sell [277, Definition 5.2.1])
A real-valued function ‖x‖ defined on a vector space X is a norm if

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

(iii) ‖αx‖ = |α| ‖x‖ for any scalar α.

A pair (X, ‖·‖), whereX is a vector space and ‖·‖ a norm defined on X, is called a normed vector space.
Since any norm on X generates a metric by the function dx(x, y) = ‖x− y‖, every normed vector
space is also a metric space. A normed vector space that is also complete according to Definition A.7
is called a Banach space. In particular, any finite-dimensional normed vector space is a Banach
space [277, Theorem 5.10.2]. Another remarkable property of finite-dimensional normed vector spaces
is that all linear mappings are continuous.

Theorem A.2: (Naylor and Sell [277, Theorem 5.10.4])
Let X and Y be normed vector spaces and let L : X 7→ Y be a linear mapping. If X is finite-
dimensional, then L is continuous.

To conclude this section, we state some further properties of norms in general and, in particular, of some
matrix norms. It follows directly from the definition that every norm is a convex mapping. Hence, by
Jensen’s inequality we have for any random variable x that ‖E{x}‖ ≤ E{‖x‖} [256, p. 77]. Although
there are typically many norms that can be defined on a vector space X , if X is finite-dimensional
any two of them are equivalent [277, Theorem 5.10.6]. That is, if ‖·‖a and ‖·‖b are two norms on a
finite-dimensional vector space X , then for any x ∈ X

m ‖x‖a ≤ ‖x‖b ≤M ‖x‖a ,

with m,M > 0.

Finally, in the case of X = Rn×n, the vector space of n-by-n matrices, some norms are also
submultiplicative [252, p. 290], i.e., it holds for all A,B ∈ Rn×n

‖AB‖ ≤ ‖A‖ ‖B‖ . (A.1)

One prominent submultiplicative norm is the Frobenius norm ‖·‖F which for a general, not necessarily
square matrix A ∈ Rn×m is given by

‖A‖F =

√√√√
n∑

i=1

m∑

j=1

a2
ij =

√
tr [ATA] . (A.2)

The Frobenius norm is also compatible with the standard Euclidean norm on Rn because we have

‖Ax‖2 ≤ ‖A‖F ‖x‖2 . (A.3)

for all x ∈ Rn, A ∈ Rn×n.



126 A Mathematical Concepts and Results

A.3 Kronecker Product and Vectorization

The Kronecker product A⊗B of two arbitrarily sized matrices A ∈ Rn×m and B ∈ Rp×q produces
the np-by-mq block matrix [278]

A⊗B =




a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

...
...

an1B an2B . . . anmB


 ∈ R

np×mq . (A.4)

The following properties of the Kronecker product are easily verified and frequently used within this
thesis. For matrices of A,B,C,D of appropriate dimensions and any scalar α, it holds [278]

(A⊗B)T = AT ⊗BT ,

(A + B)⊗ (C + D) = A⊗C + A⊗D + B⊗C + B⊗D ,

(αA)⊗B = A⊗ (αB) = α (A⊗B) .

Next, we note that an expression of the form

y = a1M1z1 + a2M2z2 + · · ·+ alMlzl ,

with Mj ∈ Rn×m, zj ∈ Rm, and aj arbitrary coefficients can be written by means of the Kronecker
product according to

y =
(
aT ⊗ In

)
M̃z̃ ,

with

a =




a1

a2
...
al


 , z̃ =




z1

z2
...
zl


 , M̃ =




M1 0 . . . 0

0 M2
. . .

...
...

. . . . . . 0
0 . . . 0 Ml



. (A.5)

Accordingly, the set of equations

y(1) = a
(1)
1 M1z1 + a

(1)
2 M2z2 + · · ·+ a

(1)
l Mlzl ,

y(2) = a
(2)
1 M1z1 + a

(2)
2 M2z2 + · · ·+ a

(2)
l Mlzl ,

...

y(r) = a
(r)
1 M1z1 + a

(r)
2 M2z2 + · · ·+ a

(r)
l Mlzl ,

(A.6)

can be compactly expressed in terms of the stacked vector ỹ =
[(
y(1)
)T (

y(2)
)T

. . .
(
y(r)
)T]T

ỹ =
(
AT ⊗ In

)
M̃z̃ , (A.7)

where M̃ and z̃ as in (A.5), and

A =




a
(1)
1 a

(2)
1 . . . a

(r)
1

a
(1)
2 a

(2)
2 . . . a

(r)
2

...
...

...
...

a
(1)
l a

(2)
l . . . a

(r)
l



.
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In the same vein, a weighted sum of l square matrices

Y = a1M1 + a2M2 + · · ·+ alMl , (A.8)

with Mj ∈ Rn×n and aj nonnegative coefficients is equivalently expressed as

Y = (α⊗ In) M̃ (α⊗ In)T , (A.9)

where M̃ is as in (A.5) and α =
[√
a1
√
a2 . . .

√
al
]
.

In applications, the Kronecker product is frequently encountered in conjunction with the vectorization
operation, which converts a matrix into a vector by stacking its columns. Formally, the vectorization
of a matrix A ∈ Rn×m is defined as the mapping vec: Rn×m 7→ Rnm with [279]

vec (A) = vec







a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm





 =




a11

a21
...
an1

a12
...
an2

...

...
a1m

...
anm




. (A.10)

It is evident from (A.10) that vectorization is a linear mapping, since vec (αA) = α vec (A) and
vec (A + B) = vec (A) + vec (B) for all A,B and all scalars α. Moreover, because ‖vec (A)‖2 =
‖A‖F, vectorization is an isometry and thus uniformly continuous (cf. Definition A.3) with a uniformly
continuous inverse vec−1 : Rnm 7→ Rn×m [277, Thoerem 5.7.1].1 Hence, vectorization is a uniformly
homeomorphic mapping from the vector space of all n-by-m matrices onto the Euclidean space Rnm.
Using Theorem A.1 this means that, if we shall determine whether a sequence of matrices {Xk}
converges, it is enough to study the corresponding sequence of vectors {vec (Xk)}.
Additionally, vectorization allows to express the usual matrix multiplication as a linear transformation.
In particular, for matrices A, B, and C of conformable dimensions we have

vec (ABC) =
[
CT ⊗A

]
vec (B) . (A.11)

Eq. (A.11) has found widespread application in control engineering and system theory. For instance, a
solution (if existent) of the Lyapunov equation

AXAT + Q = X ,

with X unknown, is obtained by appropriately reshaping the solution of the linear system

[I− (A⊗A)] vec (X) = vec (Q) .

1 An explicit expression for the inverse is vec−1(x) =
(

vec (Im)T ⊗ In
)

(Im ⊗ x).
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A.4 Positive Definite and Positive Semidefinite Matrices

In this section, we state some properties of positive definite and positive semidefinite matrices, respec-
tively. We start with an immediate consequence of Sylvester’s law of inertia [252, Theorem 4.5.8].

Theorem A.3:
Let A,P ∈ Rn×n such that A is symmetric and P is invertible. Then A is positive definite if and only
if B = PAPT is.

Submultiplicative matrix norms give an explicit upper bound for the spectral radius of a matrix A
since ρ(A) ≤ ‖A‖ [252, Theorem. 5.6.9]. The following lemma is an immediate consequence.

Lemma A.1:
Let A ∈ Rn×n be positive semidefinite with eigenvalues λj ≥ 0. Then it holds

tr [A] =
n∑

j=1

λj ≤
n∑

j=1

ρ(A) ≤ n ‖A‖ ,

for any submultiplicative matrix norm ‖·‖.

The next result follows from the fact that the set of positive semidefinite matrices, when equipped with
the inner product 〈A,B〉 = tr[AB], is a self-dual cone [256, p. 52].

Theorem A.4:
Let A,B ∈ Rn×n be positive semidefinite. Then tr[AB] ≥ 0.

The following fact provides explicit bounds for tr[AB], when one of the matrices is positive defi-
nite [280, Lemma 5].

Lemma A.2:
Let A be positive definite and let its minimal and maximal eigenvalue be denoted by λmin(A) and
λmax(A). Then for any B < 0, we have λmin(A) tr[B] ≤ tr[AB] ≤ λmax(A) tr[B].

The next result shows that for any positive semidefinite matrix B, we can always find a positive definite
matrix A such that A � B [252, Theorem 7.7.3].

Theorem A.5:
Let A,B ∈ Rn×n such that A � 0 and B < 0. Then A � B if and only if ρ(BA−1) < 1.

The following basic property of positive definite matrices is easily verified and has found widespread
application in the literature [198, 281].

Lemma A.3:
Let A,B ∈ Rn×n such that A � 0. Then it holds BTA−1B < B + BT −A.

The following result proves that the Cholesky decomposition exists for any positive semidefinite
matrix [282, Lemma 1.1].
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Theorem A.6:
Let A ∈ Rn×n such that A < 0. Then, there exists at least one upper triangular matrix R ∈ Rn×n
with nonnegative diagonal elements such that A = RTR.

Finally, we consider a handy characterization of positive definite block matrices, namely the Schur
complement, and its generalization to positive semidefinite matrices. Both have found widespread
application in control engineering and concern conformably partitioned matrices of the form

Q =

[
Q11 Q12

QT
12 Q22

]
, (A.12)

with Q11 and Q22 square.

Theorem A.7: (Kreindler and Jameson [283])
Let Q be partitioned according to (A.12). Then:
Q � 0 if and only if

Q22 � 0 , Q11 −Q12Q
−1
22 QT

12 � 0 ,

or
Q11 � 0 , Q22 −QT

12Q
−1
11 Q12 � 0 .

Q < 0 if and only if

Q22 < 0 , Q12 = Q12Q
†
22Q22 , Q11 −Q12Q

†
22Q

T
12 < 0 ,

or
Q11 < 0 , Q12 = Q11Q

†
11Q12 , Q22 −QT

12Q
†
11Q12 < 0 ,

where † denotes the Moore-Penrose pseudoinverse (cf. Appendix A.5).

A.5 The Moore-Penrose Pseudoinverse

The Moore-Penrose pseudoinverse of a matrix A, denoted by A† throughout this thesis, satisfies [284]

AA†A = A ,

A†AA† = A† ,
(
AA†

)T
= AA† ,

(
A†A

)T
= A†A .

(A.13)

It always exists and is unique but coincides with A−1 if A is square and nonsingular. A† is symmetric
if A is. Additionally, A† enjoys the property that the equation Ax = b has solutions if and only if
AA†b = b. In the affirmative case, any solution is of the form

x = A†b+
(
I−A†A

)
v , (A.14)

with v an arbitrary vector of conformable dimension. Eq. (A.14) yields a unique solution x+ = A†b
only if A has full column rank, in which case I −A†A = 0. Otherwise, x+ is the minimum norm
solution to Ax = b, i.e., ‖x+‖2 ≤ ‖x‖2 for all solutions x. To see this, we use (A.13) to establish that
A†b and

(
I−A†A

)
v are orthogonal since

(
A†b

)T (
I−A†A

)
v = 0 for any v. It thus follows

‖x‖22 =
∥∥∥A†b+

(
I−A†A

)
v
∥∥∥

2

2
=
∥∥∥A†b

∥∥∥
2

2
+
∥∥∥
(
I−A†A

)
v
∥∥∥

2

2
≥
∥∥∥A†b

∥∥∥
2

2
=
∥∥x+

∥∥2

2
.
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A typical way to compute the Moore-Penrose pseudoinverse is to use the singular value decomposition,
according to which any A ∈ Rn×m can be factored as A = UΣVT with orthogonal matrices
U ∈ Rn×n and V ∈ Rm×m, and where Σ is a conformable (rectangular) diagonal matrix with
nonnegative elements. Then, A† = VΣ†UT, where Σ† is simply the transpose of Σ with all positive
diagonal elements replaced by their reciprocals [252, p. 421].

A.6 The Perron-Frobenius Theorem and Stochastic Matrices

The Perron-Frobenius theorem is a well-known result from matrix theory with many applications. In
the scope of this thesis, we apply it to stochastic matrices (i.e., transition matrices of Markov chains)
in Chapters 3 and 4.

We state the theorem in its version for square matrices with positive entries [252, Theorem 8.2.11].
However, its remains valid for primitive matrices, i.e., nonnegative matrices with a strictly positive
power [252, p. 516].2

Theorem A.8: (Perron-Frobenius)
Let A ∈ Rn×n have only positive entries, that is, A > 0, and denote by ρ(A) its spectral radius.
Then:

(i) ρ(A) > 0.

(ii) ρ(A) is an eigenvalue of A.

(iii) There exists an eigenvector v of A with eigenvalue ρ(A) and only positive entries, i.e., v > 0
and Av = ρ(A)v. Likewise, there exists a left eigenvector w of A with eigenvalue ρ(A) and
only positive entries, i.e., w > 0 and wTA = ρ(A)wT.

(iv) ρ(A) is an algebraically simple eigenvalue of A, i.e., its eigenspace is one-dimensional.

(v) ρ(A) is the unique eigenvalue with maximum modulus, i.e., |λ| < ρ(A) for every eigenvalue
λ 6= ρ(A).

(vi) limk→∞ Ak

ρ(A)k
= vwT where v, w are as in (iii), normalized such that vTw = 1.

Recall that a stationary distribution p of a Markov chain with transition matrix T is a stochastic
vector (i.e., p > 0 and

∑
i pi = 1) that satisfies the relation pTT = pT, i.e., p is a left eigenvector of

T with eigenvalue 1. The following result confirms that every Markov chain3 has at least one such
distribution [285, Lemma 9.1].

Lemma A.4:
Let T be a stochastic matrix. Then 1 is an eigenvalue and every eigenvalue λ satisfies |λ| ≤ 1.

In general, the stationary distribution p is not unique. However, if all transition probabilities are positive,
i.e., T > 0, then the uniqueness of p is guaranteed by the Perron-Frobenius theorem. Moreover, p > 0

holds. Finally, we can conclude that p is also the limiting distribution of the chain, that is, pT
k+1

= pT
k
T

converges to p for any initial distribution p
0
. To see this, we note that 1 is an eigenvector of T with

eigenvalue 1 satisfying 1Tp = 1. Hence, we may write using the last item of the Perron-Frobenius

2A square matrix A is called primitive if A ≥ 0 and Am > 0 for some integer m ≥ 1.
3We tacitly assume a finite state space here.
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theorem
lim
k→∞

pT
k
T = pT

0
lim
k→∞

Tk = pT
0

1pT = pT .

A.7 The Banach Space of Tuples of Square Matrices

It is common practice in the literature to analyze Markov jump linear systems by investigating the
properties of the second moment of the state variable. As in Chapters 5 and 6 of this thesis, this is
conveniently done by breaking down the second moment into a tuple of matrices, each of which is
associated with one mode of the system. Throughout this thesis, we consider jump systems with N + 1
modes, resulting in tuples consisting of N + 1 square matrices.

In formal terms, such a tuple X =
(
X(0),X(1), . . . ,X(N)

)
, where each X(i) is n-by-n, is an element

of the space
Hn ,

{(
X(0),X(1), . . . ,X(N)

) ∣∣ X(i) ∈ Rn×n
}
,

that is composed of all (N + 1)-tuples of square matrices. It is a routine matter to verify that Hn is a
vector space with addition and scalar multiplication defined as

X + Y ,
(
X(0) + Y(0),X(1) + Y(1), . . . ,X(N) + Y(N)

)
,

αX ,
(
αX(0), αX(1), . . . , αX(N)

)
,

for X ,Y ∈ Hn and α ∈ R, i.e., the usual addition and scalar multiplication on Rn×n is applied
elementwise. It is also readily verified that Hn is finite-dimensional and that for any matrix norm

‖X‖H ,
N∑

i=0

∥∥∥X(i)
∥∥∥ ,

is a norm on Hn according to Definition A.8, so that Hn is a Banach space (cf. Appendix A.2).

Just as Rn×m is uniformly homeomorphic to Rnm, Hn is uniformly homeomorphic to R(N+1)n2
.

To see this, we first note that the elementwise application of the vectorization operation yields an
n2-by-(N + 1)-dimensional matrix if the resulting vectors, vec

(
X(i)

)
, are column-wise arranged.

Vectorizing this matrix then results in a vector in R(N+1)n2
. This idea is formalized by the mapping

ϕ̂ : Hn 7→ R(N+1)n2
defined as [127, 258]

ϕ̂ (X ) ,




vec
(
X(0)

)

vec
(
X(1)

)
...

vec
(
X(N)

)


 . (A.15)

It is easy to verify that (A.15) is a uniformly homeomorphic mapping from the vector space of all
(N + 1)-tuples of n-by-n matrices onto the Euclidean space R(N+1)n2

according to Definition A.4.
By Theorem A.1 this implies that, if we are asked to determine whether a sequence of tuples {X k} is
convergent, it is enough to consider the corresponding sequence of vectors {ϕ̂ (X k)}.





APPENDIX
B

Proofs of the Results in Chapter 4

In the following three sections, we provide the proofs of Theorem 4.1, Theorem 4.2, and Lemma 4.1,
each of which is restated here for convenience. The proofs are presented in the order of appearance of
the results.

B.1 Proof of Theorem 4.1

Theorem 4.1:
Let τ ca

k be an independent process as defined in Section 3.2.1. Then, θk forms a time-inhomogeneous
Markov chain with state space {0, 1, . . . , N} and transition probabilities tk,ij = P[θk+1 = j|θk = i]
given by

tk,ij =





p
(0)
k+1 j = 0

(
1− p(0)

k+1

) i−1∏

m=0

(
1− q(m)

k

)
j = i+ 1

0 j > i+ 1

q
(j−1)
k

(
1− p(0)

k+1

) j−2∏

m=0

(
1− q(m)

k

)
1 ≤ j ≤ i ≤ N − 1

(
1− p(0)

k+1

)N−2∏

m=0

(
1− q(m)

k

)
i = j = N

,

with p(i)
k = P[τ ca

k = i] and where q(j)
k is the conditional probability that Uk−j arrives at time k + 1

given that it has not been received up to time k

q
(j)
k = P[τ ca

k−j = j + 1|τ ca
k−j > j] =

p
(j+1)
k−j

1−∑j
m=0 p

(m)
k−j

. (4.11)
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Proof. The proof is similar to the time-homogeneous case discussed in [123, Lemma 3.1] and exploits
that τ ca

k is an independent process. First, j = 0 indicates a transition from θk = i to θk+1 = 0, which
means that Uk+1 arrives at the actuator without delay. The corresponding probability is thus p(0)

k+1. For
the remaining cases, we note that the probability that Uk−j arrives at time k + 1 given that it has not
been received up to time k is equal to the conditional probability P[τ ca

k−j = j + 1|τ ca
k−j > j]. This

probability is given by

P[τ ca
k−j = j + 1|τ ca

k−j > j] =
P[τ ca

k−j = j + 1, τ ca
k−j > j]

P[τ ca
k−j > j]

=
P[τ ca

k−j = j + 1]

1− P[τ ca
k−j ≤ j]

,

which yields (4.11). Thus, 1− q(j)
k denotes the probability that Uk−j does not arrive at the actuator

at time k + 1, given that is has not arrived earlier. Then we note that a transition from θk = i to
θk+1 = i+1 corresponds to the event that the currently buffered sequence Ubf

k = Uk−i is not replaced.
Hence, none of the sequences Uk−(i−1), . . . , Uk+1 will arrive at time k + 1 and we get

tk,i(i+1) =
(

1− p(0)
k+1

) i−1∏

m=0

(
1− q(m)

k

)
.

Transitions from θk = i to θk+1 ≥ i + 2 are impossible since the age of the buffered sequence can
only increase by one, namely in case it is not replaced. Hence, tk,ij = 0 for j > i+ 1.

For 1 ≤ j ≤ i ≤ N − 1, we have transitions from θk = i to θk+1 = j that indicate a replacement of
the buffered sequence Ubf

k = Uk−i by a newer sequence Uk−(j−1). The corresponding probability is

tk,ij = q
(j−1)
k

(
1− p(0)

k+1

) j−2∏

m=0

(
1− q(m)

k

)
,

since the control sequences Uk−(j−2), . . . , Uk cannot be available yet.

Finally, we note that the case i = j = N corresponds to the event that at time k + 1 no valid control
sequence is buffered given that no valid control sequence was available at time k either. This means
that none of the sequences Uk−(N−2), . . . , Uk, Uk+1 that provide inputs for time k+1 will be received.
Hence,

tk,NN =
(

1− p(0)
k+1

)N−2∏

m=0

(
1− q(m)

k

)
,

which concludes the proof.

B.2 Proof of Lemma 4.1

Lemma 4.1:
For every initial distribution, the expanded chain τ ca

k converges to its unique stationary distribution p
with elements p(i0,i1,...,iN−1) given by

p(i0,i1,...,iN−1) = p(iN−1)pca
iN−1iN−2

pca
iN−2iN−3

· · · pca
i1i0 , (4.17)

with i0, i1, . . . , iN−1 ∈ {0, . . . ,M}, and where p =
[
p(0) p(1) . . . p(M)

]T
is the stationary distribu-

tion of τ ca
k .
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Proof. We proceed similar to the proof of Theorem 6.5.2 in [129]. We have p(i0,i1,...,iN−1) > 0 by
Assumption 3.5 and

∑

(i0,i1,...,iN−1)

p(i0,i1,...,iN−1) =
∑

i0

∑

i1

. . .
∑

iN−2

∑

iN−1

p(iN−1)pca
iN−1iN−2

pca
iN−2iN−3

· · · pca
i1i0

=
∑

i0

∑

i1

. . .
∑

iN−2

p(iN−2)pca
iN−2iN−3

· · · pca
i1i0

=
∑

i0

∑

i1

p(i1)pca
i1i0

=
∑

i0

p(i0) = 1 ,

hence p is a stochastic vector. To conclude that p is a stationary distribution, it remains to show that
∑

(i0,i1,...,iN−1)

p(i0,i1,...,iN−1)p̃(i0,i1,...,iN−1)(j0,j1,...,jN−1) = p(j0,j1,...,jN−1) , (B.1)

with p̃(i0,i1,...,iN−1)(j0,j1,...,jN−1) the transition probabilities of τ ca
k . These are given by

p̃(i0,i1,...,iN−1)(j0,j1,...,jN−1)

= P[τ ca
k+1 = (j0, j1, . . . , jN−1)

∣∣τ ca
k = (i0, i1, . . . , iN−1)]

= P[τ ca
k+1 = j0, τ

ca
k = j1, . . . , τ

ca
k−(N−2) = jN−1

∣∣τ ca
k = i0, τ

ca
k−1 = i1, . . . , τ

ca
k−(N−1) = iN−1]

= P[τ ca
k+1 = j0

∣∣τ ca
k = i0, τ

ca
k = j1]

· P[τ ca
k = j1, τ

ca
k−1 = j2, . . . , τ

ca
k−(N−2) = jN−1∣∣τ ca

k = i0, τ
ca
k−1 = i1, . . . , τ

ca
k−(N−2) = iN−2, τ

ca
k−(N−1) = iN−1]

= pca
i0j0δi0,j1 P[τ ca

k = j1, τ
ca
k−1 = j2, . . . , τ

ca
k−(N−2) = jN−1∣∣τ ca

k = j1, τ
ca
k−1 = i1, . . . , τ

ca
k−(N−2) = iN−2, τ

ca
k−(N−1) = iN−1]

= pca
i0j0δi0,j1δi1,j2 · · · δiN−3,jN−2δiN−2,jN−1 ,

(B.2)

with δi,j the Kronecker delta, i.e., δi,j = 1 if i = j, and 0 otherwise. But using (4.17) and (B.2)
in (B.1) yields

∑

i0

∑

i1

. . .
∑

iN−2

∑

iN−1

p(iN−1)pca
iN−1iN−2

pca
iN−2iN−3

· · · pca
i1i0p

ca
i0j0δi0,j1δi1,j2 · · · δiN−3,jN−2δiN−2,jN−1

=
∑

i0

∑

i1

. . .
∑

iN−2

p(iN−2)pca
iN−2iN−3

· · · pca
i1i0p

ca
i0j0δi0,j1δi1,j2 · · · δiN−3,jN−2δiN−2,jN−1

= p(jN−1)pca
jN−1jN−2

pca
jN−2jN−3

· · · pca
j1j0 = p(j0,j1,...,jN−1) .

The Perron-Frobenius theorem (cf. Appendix A.6)) ensures that p is the only stationary distribution and
that τ ca

k converges towards it for any initial p̃
0

provided the transition matrix of τ ca
k , P̃ca, is primitive,

i.e., provided that there exists an l ∈ N such that (P̃ca)l > 0. To show this, we use that the element
a

(l)
ij of the l-th power of a general square matrix A is given by the expression

a
(l)
ij =

∑

k1

∑

k2

. . .
∑

kl−1

aikl−1
akl−1kl−2

akl−2kl−3
· · · ak1j . (B.3)

Using (B.2) in (B.3) reveals that

p̃
(N)
(i0,i1,...,iN−1)(j0,j1,...,jN−1) = pca

i0jN−1
pca
jN−1jN−2

· · · pca
j1j0 > 0 ,

holds for any element of (P̃ca)N due to Assumption 3.5 and hence (P̃ca)N > 0.
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B.3 Proof of Theorem 4.2

Theorem 4.2:
The stationary distribution of the lumped dynamics (4.24) for θk is unique and given by V̄Tp, where p
is the stationary distribution (4.17) of τ ca

k and V̄ is given by (4.20). Moreover,

lim
k→∞

µT
0
Tk = lim

k→∞
µT

0

(
ŪP̃caV̄

)k
= pTV̄ , (4.25)

for any initial distribution µ
0
.

Proof. Due to the particular choice of Ū, it holds pT = pTV̄Ū.1 Multiplying both sides to the right
by P̃caV̄ gives

pTP̃caV̄ = pTV̄ŪP̃caV̄ .

Because p is the stationary distribution of τ ca
k , we have pT = pTP̃ca, and hence

pTV̄ = pTP̃caV̄ = pTV̄ŪP̃caV̄ = pTV̄T ,

with (4.24), so that V̄Tp is a stationary distribution. Now assume that µ̄ is another stationary
distribution. Then, there must exist some p̃ such that p̃TV̄ = µ̄T and µ̄TŪ = p̃T, so that

p̃TV̄ = µ̄T

= µ̄TT

= µ̄TŪP̃caV̄

= p̃TP̃caV̄ .

This implies p̃T = p̃TP̃ca because by construction (cf. (4.20)) V̄ has full rank. Thus, by Lemma 4.1,
p̃ = p must hold and hence µ̄T = pTV̄ = µT, proving uniqueness of the stationary distribution.
Finally, (4.25) follows from (4.19) and (4.21) since

µT
k+1

= µT
k
T = µT

k
ŪP̃caV̄ = p̃T

k
P̃caV̄ = p̃T

0

(
P̃ca
)k+1

V̄
k→∞−−−→ pTV̄ .

1On the other hand, we have zTŪV̄ = zT for any z ∈ RN+1, since ŪV̄ = IN+1, which motivates the naming: V̄
collects what Ū distributes [141].



APPENDIX
C

Proofs of the Results in Chapter 5

In the following sections, we give the proofs of Lemmas 5.1, 5.2, 5.3, and 5.4 and of Theorems 5.1, 5.2,
and 5.3, each of which is restated here for convenience. The proofs are presented in the order of
appearance of the results.

C.1 Proof of Lemma 5.1

Lemma 5.1:
For every time step k, the estimation error ẽk = ψ

k
− E

{
ψ
k

∣∣∣ Ik
}

is a function of the computed
control sequences U0, . . . , Uk−1.

Proof. Fix two arbitrary sequences of control sequences U0, . . . , Uk−1 and U ′0, . . . , U
′
k−1. We

proceed similar to the proof of Lemma A.3 in [123] and consider two versions of the augmented
dynamics (4.1), namely

ψ
k+1

= Ã(θk)ψ
k

+ B̃(θk)Uk + w̃k ,

y
k

=
[
C 0

]
ψ
k

+ vk ,
(C.1)

and

ψ′
k+1

= Ã(θ′k)ψ′
k
B̃(θ′k)U ′k + w̃′k ,

y′
k

=
[
C 0

]
ψ′
k

+ v′k .
(C.2)

We consider the temporal evolution of these systems when the initial conditions and the noise vectors
are identical, i.e., we have ψ

0
= ψ′

0
, θ0 = θ′0, w̃t = w̃′t, and vt = v′t for t = 0, 1, . . . , k − 1. Also, let

the packet delays and losses be identical for both systems. Hence, the mode trajectories θ0:k−1 and
θ′0:k−1 are fixed and identical, so that (C.1) and (C.2) become linear time-varying systems. We may
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thus write

ψ
k

= Ωkψ0
+ Λk



U0
...

Uk−1


+ Γk



w̃0
...

w̃k−1


 ,

ψ′
k

= Ωkψ0
+ Λk



U ′0
...

U ′k−1


+ Γk



w̃0
...

w̃k−1


 ,

for some matrices Ωk, Λk, and Γk that depend on θ0:k−1. Then, it holds for the conditional expectations

E
{
ψ
k

∣∣ Ik
}

= E
{
Ωk

∣∣ Ik
}

E
{
ψ

0

∣∣ Ik
}

+ E
{
Λk

∣∣ Ik
}


U0
...

Uk−1


 ,

E
{
ψ′
k

∣∣ Ik
}

= E
{
Ωk

∣∣ Ik
}

E
{
ψ

0

∣∣ Ik
}

+ E
{
Λk

∣∣ Ik
}


U ′0
...

U ′k−1


 .

We thus obtain for the estimation errors ẽk = ψ
k
− E

{
ψ
k

∣∣ Ik
}

and ẽ′k = ψ′
k
− E

{
ψ′
k

∣∣ Ik
}

ẽk = Ωkψ0
− E

{
Ωk

∣∣ Ik
}

E
{
ψ

0

∣∣ Ik
}

+
(
Λk − E

{
Λk

∣∣ Ik
})


U0
...

Uk−1


+ Γk



w̃0
...

w̃k−1


 , (C.3)

ẽ′k = Ωkψ0
− E

{
Ωk

∣∣ Ik
}

E
{
ψ

0

∣∣ Ik
}

+
(
Λk − E

{
Λk

∣∣ Ik
})


U ′0
...

U ′k−1


+ Γk



w̃0
...

w̃k−1


 . (C.4)

We see that the estimation errors are only equal if U t = U ′t for all t = 0, . . . , k − 1. Consequently, ẽk
is not independent of the previous control sequences U0, . . . , Uk−1.

We note that the expressions for ẽk and ẽ′k exhibit why the assumption of TCP-like communication
between controller and actuator drastically simplifies the dynamic programming recursion (5.6). This
assumption implies that θ0:k−1 ∈ Ik and hence E

{
Λk

∣∣ Ik
}

= Λk, so that the third summands in (C.3)
and (C.4), respectively, vanish. Hence, the estimation error is independent of past control actions and
its contribution to the cost-to-go can be excluded from the minimization, which in turn eliminates the
dual effect.

C.2 Proof of Lemma 5.2

Lemma 5.2:
For t = 0, 1, . . . ,K − 1, it holds for all j = 0, 1, . . . , N

X̃
(j)
t+1 =

N∑

i=0

tij

(
Γ

(i)
t X̃

(i)
t

(
Γ

(i)
t

)T
+ µ

(i)
t Nt

)
. (5.49)
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Proof. The result is similar to Proposition 3.14 in [175] and proved in an akin fashion. Denote by
f(z) the probability density function of z, conditioned on the available information I0. The direct
evaluation of the underlying expectation yields

X̃
(j)
t+1 = E

x̃t+1,
θt+1

{
x̃t+1x̃

T
t+11{θt+1=j}

∣∣ I0

}

=

∫

R
2nξ

N∑

r=0

x̃t+1x̃
T
t+11{θt+1=j}f(x̃t+1, θt+1 = r) dx̃t+1

=

∫

R
2nξ

∫

R
2nξ

∫

R
2nξ

N∑

r=0

N∑

i=0

x̃t+1x̃
T
t+11{θt+1=j}f(x̃t+1, x̃t, ot, θt+1 = r, θt = i) dx̃t+1 dx̃t dot

=

∫

R
2nξ

∫

R
2nξ

∫

R
2nξ

N∑

r=0

N∑

i=0

x̃t+1x̃
T
t+11{θt+1=j}

· tirf(x̃t+1

∣∣ x̃t, θt = i, ot)f(x̃t, θt = i)f(ot) dx̃t+1 dx̃t dot .

From (5.44), we have that for given realizations of x̃t and ot it holds

f(x̃t+1

∣∣ x̃t, θt = i, ot) = δ
(
x̃t+1 −

(
Γ

(i)
t x̃t + ot

))
,

for any i = 0, 1, . . . , N . Hence, exploiting the sifting property of the Dirac delta function, we get

X̃
(j)
t+1 =

∫

R
2nξ

∫

R
2nξ

∫

R
2nξ

N∑

r=0

N∑

i=0

x̃t+1x̃
T
t+11{θt+1=j}

· tirδ
(
x̃t+1 −

(
Γ

(i)
t x̃t + ot

))
f(x̃t, θt = i)f(ot) dx̃t+1 dx̃t dot

=

∫

R
2nξ

∫

R
2nξ

N∑

r=0

N∑

i=0

(
Γ

(i)
t x̃t + ot

)(
Γ

(i)
t x̃t + ot

)T
1{θt+1=j}tirf(x̃t, θt = i)f(ot) dx̃t dot

=

∫

R
2nξ

∫

R
2nξ

N∑

i=0

(
Γ

(i)
t x̃t + ot

)(
Γ

(i)
t x̃t + ot

)T
tijf(x̃t, θt = i)f(ot) dx̃t dot ,

which gives (5.49).

C.3 Proof of Theorem 5.1

Theorem 5.1:
Fix a sequence of control law parameters (K0,L0), . . . , (KK−1,LK−1). Then, the cost-to-go at each
stage t = 0, 1, . . . ,K is given by

Vt =

N∑

i=0

tr
[
P̃

(i)
t X̃

(i)
t

]
+ µ

(i)
t ω̃

(i)
t , (5.53)

with P̃
(i)
t and ω̃(i)

t computed according to the backward recursions

P̃
(i)
t = Q̂

(i)
t +

(
Γ

(i)
t

)T
E(i)
(
P̃ t+1

)
Γ

(i)
t , (5.54)

ω̃
(i)
t = E(i)(ω̃t+1) + tr

[
E(i)
(
P̃ t+1

)
Nt

]
, (5.55)
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that are initialized with P̃
(i)
K = Q̂K and ω̃(i)

K = 0 for i = 0, 1, . . . , N , and where

P̃ t =
(
P̃

(0)
t , P̃

(1)
t , . . . , P̃

(N)
t

)
∈ H2nξ ,

ω̃t =
(
ω̃

(0)
t , ω̃

(1)
t , . . . , ω̃

(N)
t

)
∈ H1 .

Proof. We will prove the theorem by induction over “tail subproblems” of increasing length. It follows
from (5.52) that the cost-to-go for the subproblem that starts at stage t = t′ is given by

Vt′ =
N∑

j=0

tr
[
Q̂KX̃

(j)
K

]
+
K−1∑

t=t′

N∑

j=0

tr
[
Q̂

(j)
t X̃

(j)
t

]

=

N∑

j=0

tr
[
Q̂KX̃

(j)
K

]
+

K−1∑

t=t′+1

N∑

j=0

tr
[
Q̂

(j)
t X̃

(j)
t

]
+

N∑

j=0

tr
[
Q̂

(j)
t′ X̃

(j)
t′

]

= Vt′+1 +
N∑

j=0

tr
[
Q̂

(j)
t′ X̃

(j)
t′

]
.

(C.5)

For the first subproblem that starts at the terminal stage t = K, we directly get from (C.5) that

VK =
N∑

i=0

tr
[
Q̂KX̃

(i)
K

]
=

N∑

i=0

tr
[
P̃

(i)
K X̃

(i)
K

]
.

Now let (5.53) hold for the subproblem that starts at stage t′ + 1 for some 0 ≤ t′ < K − 1, i.e., let it
hold

Vt′+1 =

N∑

i=0

tr
[
P̃

(i)
t′+1X̃

(i)
t′+1

]
+ µ

(i)
t′+1ω̃

(i)
t′+1 .

Then, it follows from (C.5) for the subproblem that starts at stage t = t′

Vt′ =
N∑

j=0

(
tr
[
P̃

(j)
t′+1X̃

(j)
t′+1

]
+ µ

(j)
t′+1ω̃

(j)
t′+1

)
+

N∑

j=0

tr
[
Q̂

(j)
t′ X̃

(j)
t′

]

=
N∑

j=0

(
tr
[
P̃

(j)
t′+1X̃

(j)
t′+1 + Q̂

(j)
t′ X̃

(j)
t′

]
+

N∑

i=0

tijµ
(i)
t′ ω̃

(j)
t′+1

)
.

Plugging in the dynamics (5.49) then leads to

Vt′ =
N∑

j=0

(
tr

[
N∑

i=0

tijP̃
(j)
t′+1

(
Γ

(i)
t′ X̃

(i)
t′

(
Γ

(i)
t′

)T
+ µ

(i)
t′ Nt′

)
+ Q̂

(j)
t′ X̃

(j)
t′

]
+

N∑

i=0

tijµ
(i)
t′ ω̃

(j)
t′+1

)

=

N∑

i=0


tr






N∑

j=0

tij

(
Γ

(i)
t′

)T
P̃

(j)
t′+1Γ

(i)
t′


 X̃

(i)
t′ + Q̂

(i)
t′ X̃

(i)
t′


+ µ

(i)
t′

N∑

j=0

tijP̃
(j)
t′+1Nt′ + tijω̃

(j)
t′+1




=

N∑

i=0

tr

[((
Γ

(i)
t′

)T
E(i)
(
P̃ t′+1

)
Γ

(i)
t′ + Q̂

(i)
t′

)
X̃

(i)
t′

]
+ µ

(i)
t′

(
tr
[
E(i)
(
P̃ t′+1

)
Nt′

]
+ E(i)(ω̃t′+1)

)

=

N∑

i=0

tr
[
P̃

(i)
t′ X̃

(i)
t′

]
+ µ

(i)
t′ ω̃

(i)
t′ ,

which concludes the proof.
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C.4 Proof of Lemma 5.3

Lemma 5.3:
Let X̃

(i)
t be parameterized according to (5.65) and let (5.66) hold. Then, the dynamics of X

(i)
t and

X
(i)
t are given by

X
(j)
t+1 =

N∑

i=0

tij

[
µ

(i)
t KtŜtV

(
KtŜt

)T

+
(
Ât + B̂tLt

)
X

(i)
t

(
Ât + B̂tLt

)T
+ KtŜtC X

(i)
t

(
KtŜtC

)T
]
,

X
(j)
t+1 =

N∑

i=0

tij

[
µ

(i)
t

(
W + KtŜtV

(
KtŜt

)T
)

+
(
A

(i)
t − Ât +

(
B

(i)
t − B̂t

)
Lt

)
X

(i)
t

(
A

(i)
t − Ât +

(
B

(i)
t − B̂t

)
Lt

)T

+
(
A

(i)
t −KtŜtC

)
X

(i)
t

(
A

(i)
t −KtŜtC

)T
]
,

(5.67)

for t = 0, 1, . . . ,K and j = 0, 1, . . . , N .

Proof. To obtain the dynamics of X
(i)
t and X

(i)
t , we first evaluate (5.49) by plugging in the defini-

tions (5.45) and (5.48) of Γ
(i)
t and Nt, which yields for dynamics of the blocks of X̃

(i)
t

X̃
(j)
t+1,1 =

N∑

i=0

tij

[
µ

(i)
t W + A

(i)
t X̃

(i)
t,1

(
A

(i)
t

)T
+ B

(i)
t LtX̃

(i)
t,2

(
B

(i)
t Lt

)T

+B
(i)
t Lt

(
X̃

(i)
t,12

)T (
A

(i)
t

)T
+ A

(i)
t X̃

(i)
t,12

(
B

(i)
t Lt

)T
]
,

X̃
(j)
t+1,12 =

N∑

i=0

tij

[(
A

(i)
t X̃

(i)
t,1 + B

(i)
t Lt

(
X̃

(i)
t,12

)T
)(

KtŜtC
)T

+
(
A

(i)
t X̃

(i)
t,12 + B

(i)
t LtX̃

(i)
t,2

)(
Ât + B̂tLt −KtŜtC

)T
]
,

X̃
(j)
t+1,2 =

N∑

i=0

tij

[
µ

(i)
t KtŜtV

(
KtŜt

)T
+ KtŜtCX̃

(i)
t,1

(
KtŜtC

)T

+
(
Ât + B̂tLt −KtŜtC

)
X̃

(i)
t,2

(
Ât + B̂tLt −KtŜtC

)T

+
(
Ât + B̂tLt −KtŜtC

)(
X̃

(i)
t,12

)T (
KtŜtC

)T

+KtŜtCX̃
(i)
t,12

(
Ât + B̂tLt −KtŜtC

)T
]
,

for j = 0, 1, . . . , N . Then, we compute X
(j)
t+1 = X̃

(j)
t+1,1 + X̃

(j)
t+1,2 − X̃

(j)
t+1,12 −

(
X̃

(j)
t+1,12

)T
and

after replacing all occurrences of X̃
(i)
t,1 by X

(i)
t + X

(i)
t , all occurrences of X̃

(i)
t+1,2 by X

(i)
t+1, and all

occurrences of X̃
(i)
t,12 and X̃

(i)
t,2 by X

(i)
t according to (5.66), we arrive at (5.67).
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C.5 Proof of Theorem 5.2

Theorem 5.2:
Fix a sequence of control law parameters (K0,L0), . . . , (KK−1,LK−1) and let X̃

(i)
t and P̃

(i)
t be

parameterized as per (5.65) and (5.70), respectively. Further, let denote

P t =
(
P

(0)
t ,P

(1)
t , . . . ,P

(N)
t

)
∈ Hnξ ,

P t =
(
P

(0)
t ,P

(1)
t , . . . ,P

(N)
t

)
∈ Hnξ ,

ωt =
(
ω

(0)
t , ω

(1)
t , . . . , ω

(N)
t

)
∈ H1 .

Then, the cost-to-go at each stage t = 0, 1, . . . ,K is given by

Vt =

N∑

i=0

tr
[
P

(i)
t X

(i)
t + P

(i)
t

(
X

(i)
t + X

(i)
t

)]
+ µ

(i)
t ω

(i)
t , (5.72)

with X
(i)
t and X

(i)
t given by Lemma 5.3, and where P

(i)
t , P

(i)
t , and ω(i)

t are computed by means of the
backward recursions

P
(i)
t =

(
J(i)Lt

)T
RtJ

(i)Lt +
(
B

(i)
t Lt

)T
E(i)
(
P t+1

)
B

(i)
t Lt

+
(
Ât +

(
B̂t −B

(i)
t

)
Lt −KtŜtC

)T
E(i)
(
P t+1

) (
Ât +

(
B̂t −B

(i)
t

)
Lt −KtŜtC

)
,

P
(i)
t = Q

(i)
t +

(
J(i)Lt

)T
RtJ

(i)Lt +
(
A

(i)
t + B

(i)
t Lt

)T
E(i)
(
P t+1

) (
A

(i)
t + B

(i)
t Lt

)

+
(
A

(i)
t − Ât +

(
B

(i)
t − B̂t

)
Lt

)T
E(i)
(
P t+1

) (
A

(i)
t − Ât +

(
B

(i)
t − B̂t

)
Lt

)
,

ω
(i)
t = E(i)(ωt+1) + tr

[
E(i)
(
P t+1 + P t+1

)
W + E(i)

(
P t+1

)
KtŜtV

(
KtŜt

)T
]
,

(5.73)

that are initialized with P
(i)
K = 0nξ , P

(i)
K = QK , and ω(i)

K = 0 for i = 0, 1, . . . , N .

Proof. We first evaluate the dynamics (5.54) of P̃
(i)
t by plugging in the definitions (5.45) and (5.50)

of Γ
(i)
t and Q̂

(i)
t , which yields for its blocks

P̃
(i)
t,1 = Q

(i)
t +

(
A

(i)
t

)T
E(i)
(
P̃ t+1,1

)
A

(i)
t +

(
KtŜtC

)T
E(i)
(
P̃ t+1,2

)
KtŜtC

+
(
KtŜtC

)T(
E(i)
(
P̃ t+1,12

))T
A

(i)
t +

(
A

(i)
t

)T
E(i)
(
P̃ t+1,12

)
KtŜtC ,

P̃
(i)
t,12 =

(
A

(i)
t

)T
E(i)
(
P̃ t+1,1

)
B

(i)
t Lt +

(
KtŜtC

)T
E(i)
(
P̃ t+1,2

)(
Ât + B̂tLt −KtŜtC

)

+
(
KtŜtC

)T(
E(i)
(
P̃ t+1,12

))T
B

(i)
t Lt

+
(
A

(i)
t

)T
E(i)
(
P̃ t+1,12

)(
Ât + B̂tLt −KtŜtC

)
,

P̃
(i)
t,2 =

(
J(i)Lt

)T
RtJ

(i)Lt +
(
B

(i)
t Lt

)T
E(i)
(
P̃ t+1,1

)
B

(i)
t Lt

+
(
Ât + B̂tLt −KtŜtC

)T
E(i)
(
P̃ t+1,2

)(
Ât + B̂tLt −KtŜtC

)

+
(
Ât + B̂tLt −KtŜtC

)T(
E(i)
(
P̃ t+1,12

))T
B

(i)
t Lt

+
(
B

(i)
t Lt

)T
E(i)
(
P̃ t+1,12

)(
Ât + B̂tLt −KtŜtC

)
,
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for i = 0, 1, . . . , N , with

P̃ t,1 =
(
P̃

(0)
t,1 , P̃

(1)
t,1 , . . . , P̃

(N)
t,1

)
∈ Hnξ ,

P̃ t,12 =
(
P̃

(0)
t,12, P̃

(1)
t,12, . . . , P̃

(N)
t,12

)
∈ Hnξ ,

P̃ t,2 =
(
P̃

(0)
t,2 , P̃

(1)
t,2 , . . . , P̃

(N)
t,2

)
∈ Hnξ .

Similarly, the evaluation of (5.55) using the definition of Nt (5.48) results in

ω̃
(i)
t = E(i)(ω̃t+1) + tr

[
E(i)
(
P̃ t+1,1

)
W + E(i)

(
P̃ t+1,2

)
KtŜtV

(
KtŜt

)T
]
,

for i = 0, 1, . . . , N . Then, we compute P
(i)
t = P̃

(i)
t,1 + P̃

(i)
t,2 + P̃

(i)
t,12 +

(
P̃

(i)
t,12

)T
and after setting

P̃
(i)
t,2 = P

(i)
t , P̃

(i)
t+1,1 = P

(i)
t+1 + P

(i)
t+1, P̃

(i)
t+1,2 = P

(i)
t+1, and P̃

(i)
t+1,12 = −P

(i)
t+1 according to (5.71),

we arrive at (5.73). Finally, we obtain the expression (5.72) for the cost-to-go by direct evaluation
of (5.53) using the parametrizations (5.65) and (5.70) of X̃

(i)
t and P̃

(i)
t .

C.6 Proof of Lemma 5.4

Lemma 5.4:
Vt is convex with regards to (Kt,Lt).

Proof. Note that E(i)
(
P t+1

)
, D

(i)
t,1, D

(i)
t,2, and X

(i)
t are positive semidefinite for i = 0, 1, . . . , N .

Since any positive semidefinite matrix Z can be written as Z = Z̃TZ̃ for some Z̃ (cf. Theorem A.6
in Appendix A.4), we can write

E(i)
(
P t+1

)
=
(
E

(i)
t,1

)T
E

(i)
t,1 , D

(i)
t,1 =

(
E

(i)
t,2

)T
E

(i)
t,2 ,

D
(i)
t,2 =

(
E

(i)
t,3

)T
E

(i)
t,3 , X

(i)
t =

(
E

(i)
t,4

)T
E

(i)
t,4 .

Then, (5.74) becomes

Vt =

N∑

i=0

tr
[
KT
t E(i)

(
P t+1

)
KtD

(i)
t,1

]
+ tr

[
LT
t D

(i)
t,2LtX

(i)
t

]

+ 2 tr

[(
D

(i)
t,3

)T
Kt

]
+ 2 tr

[(
D

(i)
t,4

)T
Lt

]
+ c

(i)
t

=
N∑

i=0

tr

[
KT
t

(
E

(i)
t,1

)T
E

(i)
t,1Kt

(
E

(i)
t,2

)T
E

(i)
t,2

]
+ tr

[
LT
t

(
E

(i)
t,3

)T
E

(i)
t,3Lt

(
E

(i)
t,4

)T
E

(i)
t,4

]

+ 2 tr

[(
D

(i)
t,3

)T
Kt

]
+ 2 tr

[(
D

(i)
t,4

)T
L

(i)
t

]
+ c

(i)
t

=
N∑

i=0

tr

[
E

(i)
t,2K

T
t

(
E

(i)
t,1

)T
E

(i)
t,1Kt

(
E

(i)
t,2

)T
]

+ tr

[
E

(i)
t,4L

T
t

(
E

(i)
t,3

)T
E

(i)
t,3Lt

(
E

(i)
t,4

)T
]

+ 2 tr

[(
D

(i)
t,3

)T
Kt

]
+ 2 tr

[(
D

(i)
t,4

)T
L

(i)
t

]
+ c

(i)
t

=
N∑

i=0

∥∥∥Ẽ(i)
t,1

∥∥∥
2

F
+
∥∥∥Ẽ(i)

t,2

∥∥∥
2

F
+ 2 tr

[(
D

(i)
t,3

)T
Kt

]
+ 2 tr

[(
D

(i)
t,4

)T
L

(i)
t

]
+ c

(i)
t ,
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with ‖·‖F the Frobenius norm (A.2) and

Ẽ
(i)
t,1 = E

(i)
t,1Kt

(
E

(i)
t,2

)T
, Ẽ

(i)
t,2 = E

(i)
t,3Lt

(
E

(i)
t,4

)T
.

Since Ẽ
(i)
t,1 and Ẽ

(i)
t,2 are linear functions of Kt and Lt, the result follows from the convexity of ‖·‖F.

C.7 Proof of Theorem 5.3

Theorem 5.3:
Let (K

[c]
0 ,L

[c]
0 ), . . . , (K

[c]
K−1,L

[c]
K−1) be the control law parameters at the end of iteration c in Algo-

rithm 5.4, i.e., after the completion of the backward pass of the algorithm. Then, it holds V [c]
0 ≤ V

[c−1]
0

and, moreover, (K0,L0), . . . , (KK−1,LK−1) = limc→∞(K
[c]
0 ,L

[c]
0 ), . . . , (K

[c]
K−1,L

[c]
K−1) exists.

Proof. The proof works similar to the proofs of related results presented in [148, 177, 178, 198, 200].
We calculate the cost-to-go V [c]

t at stage t of iteration c after the computation of (K
[c]
t ,L

[c]
t ) in line 20

of Algorithm 5.4 and the cost-to-go V ′t
[c]

that would have resulted if (K
[c−1]
t ,L

[c−1]
t ) had been reused.

We show that the difference V ′t
[c] − V [c]

t is always nonnegative for all stages t, implying a decrease of
the cost. Since the cost are always nonnegative, the limit limc→∞ V [c]

0 exists and the convergence of
the proposed method follows.

For a formal proof, let us first assume that iteration c− 1 of the algorithm has already completed. Let
the corresponding control law parameters be (K

[c−1]
0 ,L

[c−1]
0 ), . . . , (K

[c−1]
K−1 ,L

[c−1]
K−1). Now consider the

backward pass of iteration c at some stage t, prior to the computation of the control law parameters
(K

[c]
t ,L

[c]
t ) in line 20. From the current iteration, we already have X

(i,[c])
0:K and X

(i,[c])
0:K available from

the forward pass. Similarly, during the backward pass, P
(i,[c])
t+1:K , P

(i,[c])
t+1:K , ω(i,[c])

t+1:K , and the control law

parameters (K
[c]
t+1,L

[c]
t+1), . . . , (K

[c]
K−1,L

[c]
K−1) have already been already computed. From (5.74), we

get for the cost-to-go V ′t
[c]

before we compute the control law parameters (K
[c]
t ,L

[c]
t )

V ′t
[c]

=
N∑

i=0

tr

[(
K

[c−1]
t

)T
E(i)
(
P [c]
t+1

)
K

[c−1]
t D

(i,[c])
t,1

]
+ tr

[(
L

[c−1]
t

)T
D

(i,[c])
t,2 L

[c−1]
t X

(i,[c])
t

]

+2 tr

[(
D

(i,[c])
t,3

)T
K

[c−1]
t

]
+ 2 tr

[(
D

(i,[c])
t,4

)T
L

[c−1]
t

]
+ c

(i,[c])
t ,

with

D
(i,[c])
t,1 = Ŝt

(
µ

(i)
t V + C X

(i,[c])
t C

T
)

ŜT
t ,

D
(i,[c])
t,2 =

(
J(i)
)T

RtJ
(i) +

(
B

(i)
t

)T
E(i)
(
P [c]
t+1

)
B

(i)
t +

(
B

(i)
t − B̂t

)T
E(i)
(
P [c]
t+1

)(
B

(i)
t − B̂t

)
,

D
(i,[c])
t,3 = −E(i)

(
P [c]
t+1

)
A

(i)
t X

(i,[c])
t

(
ŜtC

)T
,

D
(i,[c])
t,4 =

((
B

(i)
t − B̂t

)T
E(i)
(
P [c]
t+1

)(
A

(i)
t − Ât

)
+
(
B

(i)
t

)T
E(i)
(
P [c]
t+1

)
A

(i)
t

)
X

(i,[c])
t ,

c
(i,[c])
t ≥ 0 a constant that contains only terms independent of the control law parameters, and where

P [c]
t+1 =

(
P

(0,[c])
t+1 ,P

(1,[c])
t+1 , . . . ,P

(N,[c])
t+1

)
∈ Hnξ ,

P [c]
t+1 =

(
P

(0,[c])
t+1 ,P

(1,[c])
t+1 , . . . ,P

(N,[c])
t+1

)
∈ Hnξ ,
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and ω
[c]
t+1 =

(
ω

(0,[c])
t+1 , ω

(1,[c])
t+1 , . . . , ω

(N,[c])
t+1

)
∈ H1. V ′t

[c]
expresses the cost-to-go at stage t if we would

skip line 20 of Algorithm 5.4 and reuse the control law parameters (K
[c−1]
t ,L

[c−1]
t ) from the previous

iteration. In contrast, after the execution of line 20 the cost-to-go is given by

V [c]
t =

N∑

i=0

tr

[(
K

[c]
t

)T
E(i)
(
P [c]
t+1

)
K

[c]
t D

(i,[c])
t,1

]
+ tr

[(
L

[c]
t

)T
D

(i,[c])
t,2 L

[c]
t X

(i,[c])
t

]

+2 tr

[(
D

(i,[c])
t,3

)T
K

[c]
t

]
+ 2 tr

[(
D

(i,[c])
t,4

)T
L

[c]
t

]
+ c

(i,[c])
t ,

which is the expression for V ′t
[c]

with (K
[c]
t ,L

[c]
t ) used in place of (K

[c−1]
t ,L

[c−1]
t ). Their difference

∆
[c]
t = V ′t

[c] − V [c]
t is given by

∆
[c]
t =

N∑

i=0

tr

[(
K

[c−1]
t

)T
E(i)
(
P [c]
t+1

)
K

[c−1]
t D

(i,[c])
t,1

]
− tr

[(
K

[c]
t

)T
E(i)
(
P [c]
t+1

)
K

[c]
t D

(i,[c])
t,1

]

+ tr

[(
L

[c−1]
t

)T
D

(i,[c])
t,2 L

[c−1]
t X

(i,[c])
t

]
− tr

[(
L

[c]
t

)T
D

(i,[c])
t,2 L

[c]
t X

(i,[c])
t

]

+2 tr

[(
D

(i,[c])
t,3

)T
K

[c−1]
t

]
− 2 tr

[(
D

(i,[c])
t,3

)T
K

[c]
t

]

+2 tr

[(
D

(i,[c])
t,4

)T
L

[c−1]
t

]
− 2 tr

[(
D

(i,[c])
t,4

)T
L

[c]
t

]
.

The updated control law parameters (K
[c]
t ,L

[c]
t ) fulfill the optimality conditions (5.75) and (5.76) , i.e.,

it holds

N∑

i=0

E(i)
(
P [c]
t+1

)
K

[c]
t D

(i,[c])
t,1 = −

N∑

i=0

D
(i,[c])
t,3 ,

N∑

i=0

D
(i,[c])
t,2 L

[c]
t X

(i,[c])
t = −

N∑

i=0

D
(i,[c])
t,4 .

With these identities, we can rewrite the last four terms in ∆
[c]
t to obtain

∆
[c]
t =

N∑

i=0

tr

[(
K

[c−1]
t

)T
E(i)
(
P [c]
t+1

)
K

[c−1]
t D

(i,[c])
t,1

]
− tr

[(
K

[c]
t

)T
E(i)
(
P [c]
t+1

)
K

[c]
t D

(i)
t,1

]

+ tr

[(
L

[c−1]
t

)T
D

(i,[c])
t,2 L

[c−1]
t X

(i,[c])
t

]
− tr

[(
L

[c]
t

)T
D

(i,[c])
t,2 L

[c]
t X

(i,[c])
t

]

−2 tr

[(
E(i)
(
P [c]
t+1

)
K

[c]
t D

(i,[c])
t,1

)T
K

[c−1]
t

]
+ 2 tr

[(
E(i)
(
P [c]
t+1

)
K

[c]
t D

(i,[c])
t,1

)T
K

[c]
t

]

−2 tr

[(
D

(i,[c])
t,2 L

[c]
t X

(i,[c])
t

)T
L

[c−1]
t

]
+ 2 tr

[(
D

(i,[c])
t,2 L

[c]
t X

(i,[c])
t

)T
L

[c]
t

]
.
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Rearranging using the symmetry of E(i)
(
P [c]
t+1

)
, D

(i,[c])
t,1 , D

(i,[c])
t,2 , and X

(i,[c])
t results in

∆
[c]
t =

N∑

i=0

tr

[
E(i)
(
P [c]
t+1

)
K

[c−1]
t D

(i,[c])
t,1

(
K

[c−1]
t

)T
]
−
[
E(i)
(
P [c]
t+1

)
K

[c]
t D

(i,[c])
t,1

(
K

[c]
t

)T
]

−2 tr

[
E(i)
(
P [c]
t+1

)
K

[c−1]
t D

(i,[c])
t,1

(
K

[c]
t

)T
]

+ 2 tr

[
E(i)
(
P [c]
t+1

)
K

[c]
t D

(i,[c])
t,1

(
K

[c]
t

)T
]

+ tr

[
X

(i,[c])
t

(
L

[c−1]
t

)T
D

(i,[c])
t,2 L

[c−1]
t

]
− tr

[
X

(i,[c])
t

(
L

[c]
t

)T
D

(i,[c])
t,2 L

[c]
t

]

−2 tr

[
X

(i,[c])
t

(
L

[c]
t

)T
D

(i,[c])
t,2 L

[c−1]
t

]
+ 2 tr

[
X

(i,[c])
t

(
L

[c]
t

)T
D

(i,[c])
t,2 L

[c]
t

]
,

which gives

∆
[c]
t =

N∑

i=0

tr

[
E(i)
(
P [c]
t+1

)
K

[c−1]
t D

(i,[c])
t,1

(
K

[c−1]
t

)T
]

+

[
E(i)
(
P [c]
t+1

)
K

[c]
t D

(i,[c])
t,1

(
K

[c]
t

)T
]

−2 tr

[
E(i)
(
P [c]
t+1

)
K

[c−1]
t D

(i,[c])
t,1

(
K

[c]
t

)T
]

+ tr

[
X

(i,[c])
t

(
L

[c−1]
t

)T
D

(i,[c])
t,2 L

[c−1]
t

]
+ tr

[
X

(i,[c])
t

(
L

[c]
t

)T
D

(i,[c])
t,2 L

[c]
t

]

−2 tr

[
X

(i,[c])
t

(
L

[c]
t

)T
D

(i,[c])
t,2 L

[c−1]
t

]
.

This in turn yields the quadratic expression

∆
[c]
t =

N∑

i=0

tr

[
E(i)
(
P [c]
t+1

)(
K

[c]
t −K

[c−1]
t

)
D

(i,[c])
t,1

(
K

[c]
t −K

[c−1]
t

)T
]

+ tr

[
X

(i,[c])
t

(
L

[c]
t − L

[c−1]
t

)T
D

(i,[c])
t,2

(
L

[c]
t − L

[c−1]
t

)]
.

We have E(i)
(
P [c]
t+1

)
, X

(i,[c])
t < 0 and also D

(i,[c])
t,1 ,D

(i,[c])
t,2 < 0. Consequently, we get that

(
K

[c]
t −K

[c−1]
t

)
D

(i,[c])
t,1

(
K

[c]
t −K

[c−1]
t

)T
< 0 ,

(
L

[c]
t − L

[c−1]
t

)T
D

(i,[c])
t,2

(
L

[c]
t − L

[c−1]
t

)
< 0 .

Since the trace of the product of two positive semidefinite matrices is always nonnegative (cf.
Theorem A.4 in Appendix A.4), we can conclude that ∆

[c]
t ≥ 0.

Hence, in each iteration, the update of the control law parameters (K
[c]
t ,L

[c]
t ) during the backward

pass leads to an improvement of the cost-to-go at every stage t = 0, 1, . . . ,K − 1. Consequently, for
the cost we have V [c]

0 ≤ V
[c−1]
0 . The cost function is nonnegative by construction and thus bounded,

implying convergence of the sequence V [1]
0 ,V

[2]
0 , . . . and, consequently, of the control law parameters

(K
[c]
0 ,L

[c]
0 ), . . . , (K

[c]
K−1,L

[c]
K−1).



APPENDIX
D

Proofs of the Results in Chapter 6

In the following sections, we give the proofs of Lemmas 6.1 and 6.2 and of Theorems 6.5, 6.6, 6.7,
and 6.8, each of which is restated here for convenience. The proofs are presented in the order of
appearance of the results.

D.1 Proof of Lemma 6.1

Lemma 6.1:
LetM be a finite set of n-by-n matrices and suppose ρ̂ (M) < 1. Then the following propositions are
true:

(i) There exist ξ ≥ 1 and β ∈ (0, 1) such that for all Pk ∈ Πk(conv(M)) it holds ‖Pk‖ ≤ ξβk

for all k ∈ N.

(ii) For any Pk ∈ Πk(conv(M)), ‖Pk‖ → 0 as k →∞.

(iii) The series
∑∞

k=0 ‖Pk‖ is convergent for all possible Pk ∈ Πk(conv(M)).

Proof. In [244] it was proved that ρ̂ (M) < 1 implies proposition (i). It is trivially verified that (i)
⇒ (ii). To verify that (i) implies (iii), it is enough show that the sequence of partial sums {sm} with
sm =

∑m
k=0 ‖Pk‖ is a Cauchy sequence according to Definition A.6. To show this, we note that for

m ≥ l we have sm − sl =
∑m

k=l+1 ‖Pk‖, and thus

‖sm − sl‖ =

m∑

k=l+1

‖Pk‖ ≤ ξ
m∑

k=l+1

βk = ξ
βm+1 − βl+1

β − 1
.

The fraction on the right approaches zero as m and l increase. Hence, for any ε > 0, we can always
find an integer N such that ‖sm − sl‖ ≤ ξ β

m+1−βl+1

β−1 < ε for any m, l ≥ N and the claim (iii)
follows.
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D.2 Proof of Lemma 6.2

Lemma 6.2:
Let zk = ϕ̂ (Zk) with Zk and ϕ̂ (·) according to (6.18) and (6.20). Then, the dynamics of zk is linear
and given by

zk+1 = A′kzk + G′kw
′
k , z0 = ϕ̂ (Z0) , (6.23)

with w′k as per (6.21), A′k,G
′
k ∈ R(N+1)n2

ψ×(N+1)n2
ψ according to

A′k =
R∑

r=1

α
(r)
k

((
Λ(r)

)T
⊗ In2

ψ

)
A , (6.24)

G′k =
R∑

r=1

α
(r)
k

((
Λ(r)

)T
⊗ In2

ψ

)
, (6.25)

and where
R∑

r=1

α
(r)
k = 1 , α

(1)
k , α

(2)
k , . . . , α

(R)
k ≥ 0 .

Proof. With arguments similar those used in the proof of Lemma 5.2 (cf. Appendix C.2), the evaluation
of the expectation in (6.16) reveals that the dynamics of Ψ

(i)
k is given by

Ψ
(j)
k+1 =

N∑

i=0

tk,ij

(
Ã(i)Ψ

(i)
k

(
Ã(i)

)T
+ W̃

(i)
k

)
,

for j = 0, 1, . . . , N , and hence by (6.15)

Ψ
(j)
k+1 =

N∑

i=0

R∑

r=1

α
(r)
k λ

(r)
ij

(
Ã(i)Ψ

(i)
k

(
Ã(i)

)T
+ W̃

(i)
k

)
. (D.1)

With the aid of (A.11), the corresponding vectorized dynamics is

vec
(
Ψ

(j)
k+1

)
=

N∑

i=0

R∑

r=1

α
(r)
k λ

(r)
ij

[
vec

(
Ã(i)Ψ

(i)
k

(
Ã(i)

)T
)

+ vec
(
W̃

(i)
k

)]

=

N∑

i=0

R∑

r=1

α
(r)
k λ

(r)
ij

[(
Ã(i) ⊗ Ã(i)

)
vec
(
Ψ

(i)
k

)
+ vec

(
W̃

(i)
k

)]
,

resulting in a set of N + 1 similar equations

vec
(
Ψ

(0)
k+1

)
=

N∑

i=0

R∑

r=1

α
(r)
k λ

(r)
i0

[(
Ã(i) ⊗ Ã(i)

)
vec
(
Ψ

(i)
k

)
+ vec

(
W̃

(i)
k

)]
,

vec
(
Ψ

(1)
k+1

)
=

N∑

i=0

R∑

r=1

α
(r)
k λ

(r)
i1

[(
Ã(i) ⊗ Ã(i)

)
vec
(
Ψ

(i)
k

)
+ vec

(
W̃

(i)
k

)]
,

...

vec
(
Ψ

(N)
k+1

)
=

N∑

i=0

R∑

r=1

α
(r)
k λ

(r)
iN

[(
Ã(i) ⊗ Ã(i)

)
vec
(
Ψ

(i)
k

)
+ vec

(
W̃

(i)
k

)]
,

that are of the form (A.6). Rewriting these equations as indicated by (A.7) then yields (6.23) using the
definitions of zk, w′k, A′k, G′k, and A.
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D.3 Proof of Theorem 6.5

Theorem 6.5:
Consider the dynamics (6.23) with zk = ϕ̂ (Zk) and Zk and ϕ̂ (·) according to (6.18) and (6.20), and

let AR be given by (6.26). Then limk→∞ zk = z for some z ∈ R(N+1)n2
ψ that is independent of z0 if

and only if ρ̂ (AR) < 1.

Proof. The dynamics (6.23) of zk is linear. Thus, repeated application gives

zk = A′k−1A
′
k−2 · . . . ·A′0z0 +

k−1∑

j=0

A′k−1A
′
k−2 · . . . ·A′j+1G

′
jw
′
j , (D.2)

for any initial condition z0.

To show necessity, suppose that for some z ∈ R(N+1)n2
ψ

lim
k→∞

zk = z , (D.3)

holds for any initial condition z0. For the particular initial condition z0 = 0, the first term on the
right side of (D.2) vanishes for any k, implying that the sum on the right must converge to the limit
given in (D.3). This term is, however, independent of z0, we thus conclude that the first term on the
right side of (D.2) must vanish for any initial condition. Hence, the product A′k−1A

′
k−2 · . . . ·A′0 ∈

Πk (conv(AR)), with Πk(·) given by (6.5), must converge to 0. The application of Theorems 6.1 and
6.2 then yields that ρ̂ (AR) < 1 must hold.

For sufficiency, suppose now that ρ̂ (AR) < 1. Then, Theorems 6.1 and 6.2 allow us to conclude that
the first term on the right of (D.2) must vanish as k →∞. Hence, we must show that the sum on the
right converges as k →∞. To that end, we first note that the definition (6.25) of G′k implies

∥∥G′k
∥∥

F
=

∥∥∥∥∥
R∑

r=1

α
(r)
k

((
Λ(r)

)T
⊗ In2

ψ

)∥∥∥∥∥
F

≤
R∑

r=1

α
(r)
k

∥∥∥∥
((

Λ(r)
)T
⊗ In2

ψ

)∥∥∥∥
F

≤
R∑

r=1

∥∥∥∥
((

Λ(r)
)T
⊗ In2

ψ

)∥∥∥∥
F

= c ,

for some c > 0 since α(r)
k ≤ 1. Similarly, we get from (6.21)

∥∥w′k
∥∥

2
= ϕ̂

(
W̃k

)
=

∥∥∥∥∥∥∥∥∥∥∥∥




vec
(
W̃

(0)
k

)

vec
(
W̃

(1)
k

)

...

vec
(
W̃

(N)
k

)




∥∥∥∥∥∥∥∥∥∥∥∥
2

=

√√√√
N∑

i=0

∥∥∥vec
(
W̃

(i)
k

)∥∥∥
2

2
=

√√√√
N∑

i=0

∥∥∥W̃(i)
k

∥∥∥
2

F

=

√√√√
N∑

i=0

∥∥∥∥ E
w̃k,θk

{
w̃kw̃

T
k 1{θk=i}

}∥∥∥∥
2

F

=

√√√√
N∑

i=0

E
θk

{
1{θk=i}

}2
∥∥∥W̃

∥∥∥
2

F

≤

√√√√
N∑

i=0

∥∥∥W̃
∥∥∥

2

F
=
√
N + 1

∥∥∥W̃
∥∥∥

F
,
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since E
{
1{θk=i}

}
= P[θk = i] ≤ 1. Using that the Frobenius norm is submultiplicative and

compatible with the Euclidean norm (cf. (A.1) and (A.3)), we then obtain

k−1∑

j=0

∥∥A′k−1A
′
k−2 · . . . ·A′j+1G

′
jw
′
j

∥∥
2
≤

k−1∑

j=0

∥∥A′k−1A
′
k−2 · . . . ·A′j+1G

′
j

∥∥
F

∥∥w′j
∥∥

2

≤
k−1∑

j=0

∥∥A′k−1A
′
k−2 · . . . ·A′j+1

∥∥
F

∥∥G′j
∥∥

F

∥∥w′j
∥∥

2

≤ c
√
N + 1

∥∥∥W̃
∥∥∥

F

k−1∑

j=0

∥∥A′k−1A
′
k−2 · . . . ·A′j+1

∥∥
F
.

The convergence of the sum on the right side is ensured by item (iii) of Lemma 6.1, which in turn
establishes the convergence of the sum in (D.2).

D.4 Proof of Theorem 6.6

Theorem 6.6:
Consider the polytopic MJLS (6.14) with first moment ψ̂

k
= E

{
ψ
k

}
and let AR be given by (6.26).

Then (6.12) holds with ψ = 0 whenever ρ̂ (AR) < 1 holds, i.e., the first moment ψ̂
k

converges to 0 if
the JSR of AR is less than one.

Proof. We need to show that
ρ̂ (AR) < 1⇒ lim

k→∞
ψ̂
k

= 0 , (D.4)

holds for any ψ
0

and θ0. To prove that this is indeed the case, we begin with the decompostion of the

first moment ψ̂
k

into N + 1 vectors ψ̂
(i)

k
according to

ψ̂
(i)

k
= E

ψ
k
,θk

{
ψ
k
1{θk=i}

}
,

for i = 0, 1, . . . , N , so that it holds [127, p. 31]

ψ̂
k

=

N∑

i=0

ψ̂
(i)

k
. (D.5)

Computations similar to those used in the proof of Lemma 5.2 (cf. Appendix C.2) reveal that the

dynamics of ψ̂
(i)

k
is given by

ψ̂
(j)

k+1
=

N∑

i=0

tk,ijÃ
(i)ψ̂

(i)

k
,

for j = 0, 1, . . . , N , yielding

ψ̂
(j)

k+1
=

N∑

i=0

R∑

r=1

α
(r)
k λ

(r)
ij Ã(i)ψ̂

(i)

k
,
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when we use (6.15). The resulting N + 1 equations

ψ̂
(0)

k+1
=

R∑

r=1

α
(r)
k

(
λ

(r)
00 Ã(0)ψ̂

(0)

k
+ λ

(r)
10 Ã(1)ψ̂

(1)

k
+ · · ·+ λ

(r)
N0Ã

(N)ψ̂
(N)

k

)
,

ψ̂
(1)

k+1
=

R∑

r=1

α
(r)
k

(
λ

(r)
01 Ã(0)ψ̂

(0)

k
+ λ

(r)
11 Ã(1)ψ̂

(1)

k
+ · · ·+ λ

(r)
N1Ã

(N)ψ̂
(N)

k

)
,

...

ψ̂
(N)

k+1
=

R∑

r=1

α
(r)
k

(
λ

(r)
0NÃ(0)ψ̂

(0)

k
+ λ

(r)
1NÃ(1)ψ̂

(1)

k
+ · · ·+ λ

(r)
NNÃ(N)ψ̂

(N)

k

)
,

are of the form (A.6) and can thus be written compactly as

sk+1 = M′
ksk , (D.6)

with

sk =




ψ̂
(0)

k

ψ̂
(1)

k
...

ψ̂
(N)

k



∈ R(N+1)nψ , M′

k =
R∑

r=1

α
(r)
k

((
Λ(r)

)T
⊗ Inψ

)
Ã ∈ R(N+1)nψ×(N+1)nψ ,

and where

Ã =




Ã(0) 0 . . . 0

0 Ã(1) . . .
...

...
. . . . . . 0

0 . . . 0 Ã(N)



∈ R(N+1)nψ×(N+1)nψ .

In view of (D.6), denote by BR the set

BR =

{((
Λ(1)

)T
⊗ Inψ

)
Ã,

((
Λ(2)

)T
⊗ Inψ

)
Ã, . . . ,

((
Λ(R)

)T
⊗ Inψ

)
Ã

}
.

Hence, we can write M′
k ∈ conv(BR) for all k.

Now suppose that ρ̂ (BR) < 1 holds. For any initial condition s0, the repeated application of (D.6)
gives

sk = M′
k−1M

′
k−2 · . . . ·M′

0s0 . (D.7)

Then, Theorems 6.1 and 6.2 allow us to conclude that the matrix product on the right of (D.7) must

vanish as k → ∞. Consequently, it holds limk→∞ sk = 0, and, in particular, limk→∞ ψ̂
(i)

k
= 0 for

i = 0, 1, . . . , N . Convergence of the first moment ψ̂
k

then follows from (D.5), that is, the implication

ρ̂ (BR) < 1⇒ lim
k→∞

ψ̂
k

= 0 ,

is true for any ψ
0

and θ0.

To verify (D.4), it remains to show that ρ̂ (AR) < 1 ⇒ ρ̂ (BR) < 1. To that end, assume that
ρ̂ (AR) < 1 and consider the dynamics (6.14) with w̃k ≡ 0

ψ
k+1

= Ã(θk)ψ
k
,

Tk ∈ conv(L) .
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Accordingly, the dynamics of zk = ϕ̂ (Zk) becomes

zk+1 = A′kzk ,

as per to Lemma 6.2 with A′k given by (6.24), so that for any initial condition z0 we can write

zk = A′k−1A
′
k−2 · . . . ·A′0z0 .

Theorems 6.1 and 6.2 imply that limk→∞A′k−1A
′
k−2 · . . . ·A0 = 0. Thus, limk→∞ zk = 0 for any

z0, and, consequently

lim
k→∞

Zk = (0,0, . . . ,0) ,

lim
k→∞

‖Zk‖H = 0 ,

by Theorem A.1, where ‖·‖H denotes the norm on Hnψ as defined by (6.19).

On the other hand, Jensen’s inequality states that for any random variable a we have that ‖E{a}‖2 ≤
E
{
‖a‖2

}
[256, p. 77]. Hence, using (D.7) and the definitions of sk and ψ̂

(i)

k
, we get

∥∥M′
k−1M

′
k−2 · . . . ·M′

0s0

∥∥2

2
= ‖sk‖22 =

N∑

i=0

∥∥∥ψ̂(i)

k

∥∥∥
2

2
=

N∑

i=0

∥∥∥E
{
ψ
k
1{θk=i}

}∥∥∥
2

2

≤
N∑

i=0

E

{∥∥∥ψ
k
1{θk=i}

∥∥∥
2

2

}
=

N∑

i=0

E
{
ψT
k
ψ
k
1{θk=i}

}

=
N∑

i=0

tr
[
E
{
ψ
k
ψT
k
1{θk=i}

}]
=

N∑

i=0

tr
[
Ψ

(i)
k

]

≤ nψ
N∑

i=0

∥∥∥Ψ(i)
k

∥∥∥ = nψ ‖Zk‖H
k→∞−−−→ 0 ,

where the second inequality is due to Lemma A.1. Thus, limk→∞
∥∥M′

k−1M
′
k−2 · . . . ·M′

0s0

∥∥2

2
= 0

for any s0, implying that limk→∞M′
k−1M

′
k−2 · . . . ·M0 = 0. Theorems 6.1 and 6.2 then confirm

that ρ̂ (BR) < 1 holds.

D.5 Proof of Theorem 6.7

Theorem 6.7:
If there exist positive definite matrices D̃(0), D̃(1), . . . , D̃(N) ∈ Rnψ×nψ such that it holds

D̃(i) −
N∑

j=0

R∑

r=1

α
(r)
k λ

(r)
ij

(
Ã(i)

)T
D̃(j)Ã(i) � 0 , (6.27)

for i = 0, 1, . . . , N and any set of coefficients α(1)
k , α

(2)
k , . . . , α

(R)
k ≥ 0 satisfying

∑R
r=1 α

(r)
k = 1,

then the polytopic MJLS (6.14) is MSS.

Proof. For notational convenience, let us first denote by Hnψ
+ the restriction of Hnψ to tuples of positive

semidefinite matrices, i.e.,

Hnψ
+ ,

{(
X(0),X(1), . . . ,X(N)

) ∣∣ X(i) ∈ Rnψ×nψ ,X(i) < 0
}
.
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We proceed similar to the proof of Proposition 7 in [258] and consider the dynamics (6.14) with
w̃k ≡ 0

ψ
k+1

= Ã(θk)ψ
k
,

Tk ∈ conv(L) .

According to (D.1), it then holds for the evolution of the second moment

Ψ
(j)
k+1 =

N∑

i=0

R∑

r=1

α
(r)
k λ

(r)
ij

(
Ã(i)Ψ

(i)
k

(
Ã(i)

)T
)
, (D.8)

for j = 0, 1, . . . , N , where λ(r)
ij are the entries of Λ(r). For any initial condition ψ

0
, θ0, we have

Ψ
(i)
0 = E

{
ψ

0
ψT

0
1{θ0=i}

}
< 0 ,

for i = 0, 1, . . . , N . Hence, we have

Zk =
(
Ψ

(0)
k ,Ψ

(1)
k , . . . ,Ψ

(N)
k

)
∈ Hnψ

+ ,

for all k and the only equilibrium of (D.8) is

Ze = (0,0, . . . ,0) ∈ Hnψ
+ .

For any Y =
(
Y(0),Y(1), . . . ,Y(N)

)
∈ Hnψ

+ consider the function V : Hnψ
+ 7→ R defined as

V (Y) =

N∑

i=0

tr[D̃(i)Y(i)] , (D.9)

We claim that (D.9) is a radially unbounded Lyapunov function for the dynamics (D.8), rendering its
equilibrium Ze globally asymptotically stable. Consequently, the dynamics of zk = ϕ̂ (Zk) given by

zk+1 = A′kzk , z0 = ϕ̂ (Z0) ,

according to Lemma 6.2, with A′k as per (6.24), must possess a globally asymptotically stable
equilibrium at the origin ze = 0. Hence, the product A′k−1A

′
k−2 · . . . ·A′0 ∈ Πk (conv(AR)), with

Πk(·) given by (6.5), must converge to 0 for any initial condition z0. The application of Theorems 6.1
and 6.2 then yields that ρ̂ (AR) < 1 must hold, from which we can conclude that (6.14) is MSS.

To establish that (D.9) is indeed a Lyapunov function and, moreover, radially unbounded, we need to
show that [127, Theorem 2.13]

(i) V is continuous,

(ii) V (Ze) = 0,

(iii) V (Y) > 0 for all Y 6= Ze,

(iv) V (Y)
‖Y‖H→∞−−−−−−→∞,

(v) ∆V = V (Zk+1)− V (Zk) < 0 for all Zk 6= Ze.
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Continuity (i) is ensured by Theorem A.2 in Appendix A.2, since V is linear and Hnψ
+ is finite-

dimensional. Application of Lemma A.2 shows that

V (Y) =

N∑

i=0

tr[D̃(i)Y(i)]

≥
N∑

i=0

λmin(D̃(i)) tr[Y(i)]

≥ 0 ,

(D.10)

with λmin(D̃(i)) > 0 the minimal eigenvalue of D̃(i). Since tr[Y(i)] = 0 subject to Y(i) < 0
implies that Y(i) = 0, it follows that V (Y) = 0 ⇔ Y = Ze, verifying properties (ii) and (iii).
Similarly, (D.10) implies (iv) because for Y(i) < 0 we have tr[Y(i)]→∞ as

∥∥Y(i)
∥∥→∞. Finally,

to establish (v) we evaluate the difference V (Zk+1)−V (Zk), which yields using the dynamics (D.8)

∆V =

N∑

j=0

tr
[
D̃(j)Ψ

(j)
k+1

]
−

N∑

j=0

tr
[
D̃(j)Ψ

(j)
k

]

=
N∑

j=0

tr

[
D̃(j)

(
N∑

i=0

R∑

r=1

α
(r)
k λ

(r)
ij

(
Ã(i)Ψ

(i)
k

(
Ã(i)

)T
))]

−
N∑

j=0

tr
[
D̃(j)Ψ

(j)
k

]

=

N∑

i=0

tr




N∑

j=0

R∑

r=1

α
(r)
k λ

(r)
ij

(
Ã(i)

)T
D̃(j)Ã(i)Ψ

(i)
k


−

N∑

i=0

tr
[
D̃(i)Ψ

(i)
k

]

=
N∑

i=0

tr






N∑

j=0

R∑

r=1

α
(r)
k λ

(r)
ij

(
Ã(i)

)T
D̃(j)Ã(i) − D̃(i)


Ψ

(i)
k




=
N∑

i=0

tr
[
−S(i)Ψ

(i)
k

]
,

with S(i) � 0 given by

S(i) = D̃(i) −
N∑

j=0

R∑

r=1

α
(r)
k λ

(r)
ij

(
Ã(i)

)T
D̃(j)Ã(i) .

Thus, by Lemma A.2

∆V = −
N∑

i=0

tr
[
S(i)Ψ

(i)
k

]

≤ −
N∑

i=0

λmin(S(i)) tr[Ψ
(i)
k ]

≤ 0 ,

with λmin(S(i)) > 0 the minimal eigenvalue of S(i). Since tr[Ψ
(i)
k ] = 0 subject to Ψ

(i)
k < 0 implies

that Ψ
(i)
k = 0, it follows that ∆V = 0⇔ Zk = Ze, and property (v) is established.
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D.6 Proof of Theorem 6.8

Theorem 6.8:
The following two assertions are equivalent:

(i) There exist positive definite matrices D̃(0), D̃(1), . . . , D̃(N) ∈ Rnψ×nψ such that (6.27) is
satisfied for i = 0, 1, . . . , N .

(ii) There exist positive definite matrices D(0),D(1), . . . ,D(N) ∈ Rnψ×nψ and positive definite
matrices E(0),E(1), . . . ,E(N) ∈ Rnψ×nψ satisfying




2E(i) −D(i) E(i)
(
Ã(i)

)T (
λ(i,r) ⊗ Inψ

)

(
λ(i,r) ⊗ Inψ

)T
Ã(i)E(i) D̄


 � 0 , (6.29)

for i = 0, 1, . . . , N , and r = 1, 2, . . . , R, where

λ(i,r) =
[√

λ
(r)
i0

√
λ

(r)
i1 . . .

√
λ

(r)
iN

]
∈ R1×N+1 , (6.30)

D̄ =




D(0) 0 . . . 0

0 D(1) . . .
...

...
. . . . . . 0

0 . . . 0 D(N)



∈ R(N+1)nψ×(N+1)nψ . (6.31)

Proof. To prove the equivalence of assertions (i) and (ii), we use arguments similar to those employed
in the proof of Proposition 2 in [245]. Assume first that (i) holds, i.e., we have

D̃(i) −
N∑

j=0

R∑

r=1

α
(r)
k λ

(r)
ij

(
Ã(i)

)T
D̃(j)Ã(i) � 0 , (D.11)

for i = 0, 1, . . . , N and any coefficients α(r)
k that satisfy

R∑

r=1

α
(r)
k = 1 , α

(1)
k , α

(2)
k , . . . , α

(R)
k ≥ 0 .

Set

α
(r)
k =

{
1 r = r′

0 r 6= r′
,

for some r′ ∈ {1, 2, . . . , R}, so that (D.11) becomes

(
D(i)

)−1
−
(
Ã(i)

)T




N∑

j=0

λ
(r′)
ij

(
D(j)

)−1


 Ã(i) � 0 , (D.12)

where we let D(i) =
(
D̃(i)

)−1
. The sum in (D.12) is of the form (A.8), namely a weighted sum of

square matrices. Rewriting it as indicated by (A.9) results in

(
D(i)

)−1
−
(
Ã(i)

)T (
λ(i,r′) ⊗ Inψ

)
D̄−1

(
λ(i,r′) ⊗ Inψ

)T
Ã(i) � 0 ,
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with λ(i,r′) and D̄ as per (6.30) and (6.31). We then apply Theorem A.7 to obtain that



(
D(i)

)−1
(
Ã(i)

)T (
λ(i,r′) ⊗ Inψ

)

(
λ(i,r′) ⊗ Inψ

)T
Ã(i) D̄


 � 0 .

Another application of Theorem A.7 reveals that also

D̄−
(
λ(i,r′) ⊗ Inψ

)T
Ã(i)D(i)

(
Ã(i)

)T (
λ(i,r′) ⊗ Inψ

)
� 0 ,

holds. Denote the matrix on the left by Π(i,r′). Since Π(i,r′) � 0, we have
(
Π(i,r′)

)−1
� 0 and hence

(
Ã(i)

)T (
λ(i,r′) ⊗ Inψ

)(
Π(i,r′)

)−1 (
λ(i,r′) ⊗ Inψ

)T
Ã(i) < 0 .

Now fix β(i) > 0 such that

D(i) + 2β(i)Inψ(
β(i)
)2 �

(
Ã(i)

)T (
λ(i,r′) ⊗ Inψ

)(
Π(i,r′)

)−1 (
λ(i,r′) ⊗ Inψ

)T
Ã(i) ,

holds. Note that by Theorem A.5 such β(i) always exists. Thus, it holds

D(i) + 2β(i)Inψ −
(
β(i)
)2 (

Ã(i)
)T (

λ(i,r′) ⊗ Inψ

)(
Π(i,r′)

)−1 (
λ(i,r′) ⊗ Inψ

)T
Ã(i) � 0 ,

which, again by virtue of Theorem A.7, is equivalent to

Ξ(i,r′) =




D(i) + 2β(i)Inψ −β(i)
(
Ã(i)

)T (
λ(i,r′) ⊗ Inψ

)

−β(i)
(
λ(i,r′) ⊗ Inψ

)T
Ã(i) Π(i,r′)


 � 0 .

With the definition E(i) = D(i) + β(i)Inψ � 0, we rewrite Ξ(i,r′) as

Ξ(i,r′) =




2E(i) −D(i)
(
D(i) −E(i)

) (
Ã(i)

)T (
λ(i,r′) ⊗ Inψ

)

(
λ(i,r′) ⊗ Inψ

)T
Ã(i)

(
D(i) −E(i)

)
Π(i,r′)


 ,

which in turn can be written as the product

Ξ(i,r′) = Ω(i,r′)




2E(i) −D(i) E(i)
(
Ã(i)

)T (
λ(i,r′) ⊗ Inψ

)

(
λ(i,r′) ⊗ Inψ

)T
Ã(i)E(i) D̄



(
Ω(i,r′)

)T
,

with

Ω(i,r′) =

[
Inψ 0(

λ(i,r′) ⊗ Inψ

)T
Ã(i) I(N+1)nψ

]
,

and where we used the definition of Π(i,r′). Since Ξ(i,r′) � 0 and Ω(i,r′) invertible, we finally conclude
that 


2E(i) −D(i) E(i)

(
Ã(i)

)T (
λ(i,r′) ⊗ Inψ

)

(
λ(i,r′) ⊗ Inψ

)T
Ã(i)E(i) D̄


 � 0 ,
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by Sylvester’s law of inertia (cf. Theorem A.3). The assertion (ii) then follows because we chose r′

arbitrarily.

For the opposite direction, assume now that (ii) holds. Then, from Theorem A.7, we have that

2E(i) −D(i) � 0 ,

must be true, and hence also (cf. Lemma A.3)

E(i)
(
D(i)

)−1
E(i) < 2E(i) −D(i) � 0 .

Thus, we may write (6.29) as



E(i)
(
D(i)

)−1
E(i) E(i)

(
Ã(i)

)T (
λ(i,r) ⊗ Inψ

)

(
λ(i,r) ⊗ Inψ

)T
Ã(i)E(i) D̄


 � 0 , (D.13)

for i = 0, 1, . . . , N and r = 1, 2, . . . , R. Since (D.13) can be written as

[
E(i) 0
0 D̄

]



(
D(i)

)−1
(
Ã(i)

)T (
λ(i,r) ⊗ Inψ

)
D̄−1

D̄−1
(
λ(i,r) ⊗ Inψ

)T
Ã(i) D̄−1



[
E(i) 0
0 D̄

]
� 0 ,

Sylvester’s law of inertia (cf. Theorem A.3) allows us to state that



(
D(i)

)−1
(
Ã(i)

)T (
λ(i,r) ⊗ Inψ

)
D̄−1

D̄−1
(
λ(i,r) ⊗ Inψ

)T
Ã(i) D̄−1


 � 0 .

By Theorem A.7, the Schur complement of
(
D(i)

)−1
is

(
D(i)

)−1
−
(
Ã(i)

)T (
λ(i,r) ⊗ Inψ

)
D̄−1D̄D̄−1

(
λ(i,r) ⊗ Inψ

)T
Ã(i)

=
(
D(i)

)−1
−
(
Ã(i)

)T (
λ(i,r) ⊗ Inψ

)
D̄−1

(
λ(i,r) ⊗ Inψ

)T
Ã(i)

=
(
D(i)

)−1
−
(
Ã(i)

)T




N∑

j=0

λ
(r)
ij

(
D(j)

)−1


 Ã(i)

� 0 ,

where for the last equality we used that
(
λ(i,r) ⊗ Inψ

)
D̄−1

(
λ(i,r) ⊗ Inψ

)T
is of the form (A.9).

Multiplying by α(r)
k ≥ 0 yields

α
(r)
k

(
D(i)

)−1
− α(r)

k

(
Ã(i)

)T




N∑

j=0

λ
(r)
ij

(
D(j)

)−1


 Ã(i) � 0 . (D.14)

Since (D.14) is valid for all r = 1, 2, . . . , R, we have for the sum

R∑

r=1

α
(r)
k

(
D(i)

)−1
−

N∑

j=0

R∑

r=1

α
(r)
k

(
Ã(i)

)T
λ

(r)
ij

(
D(j)

)−1
Ã(i) � 0 .

The assertion (i) then follows from the constraint
∑R

r=1 α
(r)
k = 1 when we let D̃(i) =

(
D(i)

)−1
.





APPENDIX
E

Equations of Motion of the Double Inverted
Pendulum

The double inverted pendulum is sketched in Fig. E.1. It consists of two pendulums that are mounted
on top of each other on a cart. The two pendulums can swing freely in the plane, and the cart has to
move horizontally to keep them upright. To that end, an input force (in newtons) is applied to drive
the cart. Both pendulums have massless rods, and the masses of the pendulum bobs and the cart are

xc

mc

F

θl

θu

ll

ml

lu

mu

x

y

Figure E.1: Illustration of the double inverted pendulum.

assumed concentrated in single points. Furthermore, we assume that the cart does not move vertically.

Using the parameters listed in Table E.1, the configuration of the system is fully described by the
generalized coordinates q ∈ R3

q =



xc

θl

θu


 ,
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Table E.1: Parameters of the double inverted pendulum.

Parameter Unit Symbol

Mass of cart kg mc

Mass of lower pendulum bob kg ml

Mass of upper pendulum bob kg mu

Length of lower pendulum rod m ll
Length of upper pendulum rod m lu
Gravitational acceleration m/s2 g
Input force applied to cart N F
Damping coefficient of cart N s/m bc
Damping coefficient of lower pendulum joint N s m bl
Damping coefficient of upper pendulum joint N s m bu
Disturbance acting on cart N wc

Disturbance acting on tip of lower pendulum Nm wl

Disturbance acting on tip of upper pendulum Nm wu

where xc denotes the horizontal position of the cart (in meters) and where θl and θu denote the
deviations (in radians) of the lower and the upper pendulum rod from the upright position, chosen such
that positive values correspond to the clockwise direction.

The positions of the masses mc, ml, and mu are given by

xc =

[
xc

0

]
, xl =

[
xc + sin (θl) ll

cos (θl) ll

]
, xu =

[
xc + sin (θl) ll + sin (θu) lu

cos (θl) ll + cos (θu) lu

]
. (E.1)

Hence, the potential energy V of the system is

V = mlg cos (θl) ll +mug (cos (θl) ll + cos (θu) lu) . (E.2)

From (E.1), we get that the velocities of the masses are

ẋc =

[
ẋc

0

]
, ẋl =

[
ẋc + cos (θl) θ̇lll
− sin (θl) θ̇lll

]
, ẋu =

[
ẋc + cos (θl) θ̇lll + cos (θu) θ̇ulu
− sin (θl) θ̇lll − sin (θu) θ̇ulu

]
,

so that the kinetic energy T of the system is

T =
1

2
mcẋ

2
c +

1

2
ml

[(
ẋc + cos (θl) θ̇lll

)2
+
(
− sin (θl) θ̇lll

)2
]

+
1

2
mu

[(
ẋc + cos (θl) θ̇lll + cos (θu) θ̇ulu

)2
+
(
− sin (θl) θ̇lll − sin (θu) θ̇ulu

)2
]
.

(E.3)

The equations of motions can generally be derived from the Euler-Lagrange equations given by

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q ,

with L = T − V the Lagrangian, q̇ = dq/dt the generalized velocities, and Q the generalized forces.

The generalized forces are given by

Q =



F − bcẋc + wc

−blθ̇l + wl

−buθ̇u + wu


 ,
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with F the input force applied to the cart, damping terms bcẋc, blθ̇l, and buθ̇u to account for friction, and
where wc, wl, and wu are external disturbances acting in the direction of each generalized coordinate.

Using (E.2) and (E.3), the Lagrangian is

L =
1

2
mcẋ

2
c +

1

2
ml

[(
ẋc + cos (θl) θ̇lll

)2
+
(
− sin (θl) θ̇lll

)2
]

+
1

2
mu

[(
ẋc + cos (θl) θ̇lll + cos (θu) θ̇ulu

)2
+
(
− sin (θl) θ̇lll − sin (θu) θ̇ulu

)2
]

−mlg cos (θl) ll −mug (cos (θl) ll + cos (θu) lu) .

Taking the desired derivatives

∂L

∂xc
= 0 ,

∂L

∂θl
= ll sin(θl) (ml +mu)

(
g − θ̇lẋc

)
−mullluθ̇lθ̇u sin(θl − θu) ,

∂L

∂θu
= θu sin(θu)mu

(
g − θ̇uẋc

)
+mullluθ̇lθ̇u sin(θl − θu) ,

d

dt

(
∂L

∂ẋc

)
= ẍc (mc +ml +mu) + (ml +mu) ll

(
θ̈l cos(θl)− θ̇2

l sin(θl)
)

+muluθ̈u cos(θ̈u)− θ̇2
u sin(θu) ,

d

dt

(
∂L

∂θ̇l

)
= (ml +mu) ll

(
ẍc cos(θl) + llθ̈l − ẋcθ̇l sin(θl)

)

+mulllu

(
θ̈u cos(θl − θu)− θ̇u

(
θ̇l − θ̇u

)
sin(θl − θu)

)
,

d

dt

(
∂L

∂θ̇u

)
= mulu

(
ẍc cos(θu) + luθ̈u − ẋcθ̇u sin(θu)

)

+mulllu

(
θ̈l cos(θl − θu)− θ̇l

(
θ̇l − θ̇u

)
sin(θl − θu)

)
,

then yields the equations of motion

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (E.4)

where

M(q) =




mc +ml +mu ll (ml +mu) cos(θl) mulu cos(θu)
ll (ml +mu) cos(θl) l2l (ml +mu) lllumu cos(θl − lu)

mulu cos(θu) lllumu cos(θl − lu) l2umu


 ,

C(q, q̇) =



bc −ll (ml +mu) sin(θl)θ̇l −mulu sin(θu)θl

0 bl lllumu sin(θl − θu)θ̇u

0 −lllumu sin(θl − θu)θ̇l bu


 ,

g(q) =




0
−gll (ml +mu) sin(θl)
−glumu sin(θu)


 , τ =



F
0
0


+



wc

wl

wu


 .

The mass matrix M(q) is positive definite for all q ∈ R3, so that a state space representation of (E.4)
is [

q̇

q̈

]

︸︷︷︸
=ẋ(t)

=

[
q̇(

M(q)
)−1 (

τ −C(q, q̇)q̇ − g(q)
)
]

︸ ︷︷ ︸
=f(x(t),u(t),w(t))

, (E.5)
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with u(t) = F (t) and w(t) =
[
wc(t) wl(t) wu(t)

]T.

Linearizing (E.5) around the unstable upward equilibrium xe(t) = 0 results in a linear dynamics of
the form (3.2)

ẋ(t) = Acx(t) + Bcu(t) + Gcw(t) ,

with

Ac =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 −g(ml+mu)
mc

0 − bc
mc

bl
mcll

0

0 g(ml+mu)(mc+ml)
mcmlll

−gmu

mlll
bc
mcll

− bl(mc+ml)
mcmll

2
l

bu
mllllu

0 −g(ml+mu)
mllu

g(ml+mu)
mllu

0 bl
mllllu

− bu(ml+mu)
mlmul2u




,

Bc =




0
0
0
1
mc

− 1
mcll
0



, Gc =




0 0 0
0 0 0
0 0 0
1
mc

− 1
mcll

0

− 1
mcll

mc+ml

mcmll
2
l
− 1
mllllu

0 − 1
mllllu

(ml+mu)
mlmulu



.

(E.6)



APPENDIX
F

Parameters used in the Simulations and
Numerical Examples

F.1 Parameters used in the Simulations in Section 5.5

The probability distribution used in the simulation runs with network N1 to draw the packet delays is
given by the stochastic row vector

p =
[
0 0.1 0.2 0.2 0.15 0.1 0.02 0.01 0.01 0.01 0.2

]
. (F.1)

Its last entry indicates the packet loss probability and its first entry, denoting the probability that a
packet is to be delivered without delay, is zero to reflect the behavior of real networks.

The transition matrix of the Markov chain governing the packet delays and losses in network N2 is



0 1 0 0 0 0 0
0 0.0914 0.9086 0 0 0 0
0 0.4540 0.1788 0.3672 0 0 0
0 0 0.3654 0.3759 0.2586 0 0
0 0 0 0.4214 0.3229 0.2557 0
0 0 0 0 0.2918 0.4302 0.2780
0 0 0 0 0 0.1122 0.8878




, (F.2)

with the last state indicating a packet loss. The transition probabilities pca
i0 = P[τ ca

k = 0|τ ca
k−1 = i],

i = 0, 1, . . . , 6, are set to zero to reflect that the instantaneous delivery of packets without delay is
hardly realizable.

F.1.1 Parameters used in Section 5.5.1

With Q and R given by

Q =

[
5 0
0 2

]
, R = 1 ,
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according to (5.85), the unique stabilizing solution X of the associated discrete-time algebraic Riccati
equation

X = ATXA−ATXB
(
BTXB + R

)−1
BTXA + Q ,

is given by

X =

[
21.2361 11.2916
11.2916 17.9248

]
. (F.3)

F.1.2 Parameters used in Section 5.5.2

Matrices Ac, Bc, and Gc are given by

Ac =




0 0 1 0
0 0 0 1
0 19.62 −0.6 0
0 −58.86 1.2 −0.05


 , Bc =




0
0
1
−2


 , Gc =




0
0
0
1


 . (F.4)

With Q and R given by

Q =




5 0 0 0
0 50 0 0
0 0 5 0
0 0 0 50


 , R = 1 ,

according to (5.88), the unique stabilizing solution X of the associated discrete-time algebraic Riccati
equation

X = ATXA−ATXB
(
BTXB + R

)−1
BTXA + Q ,

is given by

X = 1 · 103




0.1099 −0.1259 0.0886 0.0303
−0.1259 2.7603 −0.3022 −0.0590

0.0886 −0.3022 0.1620 0.0529
0.0303 −0.0590 0.0529 0.0872


 . (F.5)

F.2 Parameters used in the Numerical Example in Section 6.5

The matrix S used in the simulation runs of scenario S1 is given below in (F.6). In each row of the
matrix, the last entry subsumes the probability that a packet is delayed by more than three time steps
or gets lost (infinite delay). The first entry of each row, indicating the probability that a packet is to be
delivered without delay, is chosen very small to reflect the behavior of real networks.

S =




0.0001 0.4071 0.2097 0.3034 0.0797
0.0001 0.2992 0.1598 0.4666 0.0743
0.0001 0.4310 0.1458 0.3886 0.0345
0.0001 0.1887 0.2486 0.5392 0.0234
0.0001 0.3083 0.4518 0.2018 0.0380
0.0001 0.3428 0.5174 0.0759 0.0637
0.0001 0.1693 0.7089 0.0604 0.0612
0.0001 0.1647 0.3259 0.4158 0.0936
0.0001 0.2824 0.1842 0.4901 0.0431
0.0001 0.1299 0.5976 0.2591 0.0133




. (F.6)
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The ten different transition matrices used in the simulation runs of scenario S2 are listed below
in (F.7), where ε = 10−15. In each matrix, the transition probabilities pca

i0 = P[τ ca
k = 0|τ ca

k−1 = i],
i = 0, 1, . . . , 5, are chosen very small to reflect that the instantaneous delivery of packets without
delay is hardly realizable.




ε 1− ε 0 0 0 0
ε 0.1384 0.3004 0.2759 0.2363 0.0490
ε 0.0027 0.2568 0.3609 0.3378 0.0418
ε 0.3517 0.0355 0.2330 0.2929 0.0870
ε 0.0436 0.2347 0.6819 0.0127 0.0271
ε 0.1478 0.3260 0.3306 0.1258 0.0698



,




ε 1− ε 0 0 0 0
ε 0.2696 0.0185 0.2499 0.1109 0.3510
ε 0.2321 0.1963 0.1122 0.2477 0.2116
ε 0.1704 0.1428 0.2150 0.1603 0.3115
ε 0.3068 0.4381 0.1879 0.0311 0.0361
ε 0.0585 0.0208 0.8813 0.0120 0.0274



,




ε 1− ε 0 0 0 0
ε 0.2030 0.2254 0.2832 0.2860 0.0025
ε 0.0489 0.2818 0.3520 0.0190 0.2983
ε 0.2369 0.1441 0.2917 0.0165 0.3108
ε 0.2795 0.3499 0.2486 0.0521 0.0699
ε 0.1432 0.4386 0.3730 0.0436 0.0017



,




ε 1− ε 0 0 0 0
ε 0.0451 0.3956 0.1521 0.2794 0.1277
ε 0.2723 0.3174 0.0739 0.1177 0.2187
ε 0.1980 0.2057 0.2939 0.2687 0.0338
ε 0.0561 0.5274 0.3773 0.0132 0.0260
ε 0.2913 0.3576 0.2497 0.0040 0.0975



,




ε 1− ε 0 0 0 0
ε 0.1392 0.2889 0.2684 0.1055 0.1980
ε 0.3283 0.2031 0.2826 0.1174 0.0688
ε 0.3061 0.0103 0.2557 0.2925 0.1354
ε 0.0643 0.4702 0.3864 0.0375 0.0415
ε 0.0916 0.5845 0.2172 0.0882 0.0185



,




ε 1− ε 0 0 0 0
ε 0.0230 0.3306 0.2057 0.0119 0.4288
ε 0.0405 0.2541 0.3417 0.2471 0.1166
ε 0.4266 0.0692 0.2884 0.1342 0.0815
ε 0.5732 0.3179 0.0500 0.0282 0.0307
ε 0.3011 0.1323 0.2779 0.2792 0.0096



,




ε 1− ε 0 0 0 0
ε 0.2449 0.3006 0.0626 0.1867 0.2052
ε 0.2824 0.1536 0.2127 0.2345 0.1168
ε 0.2071 0.3403 0.3357 0.0557 0.0612
ε 0.2350 0.3019 0.3001 0.0727 0.0902
ε 0.3760 0.4211 0.1545 0.0003 0.0482



,




ε 1− ε 0 0 0 0
ε 0.1279 0.3392 0.0600 0.2256 0.2474
ε 0.1926 0.3001 0.3826 0.0151 0.1096
ε 0.3053 0.3024 0.0047 0.2333 0.1543
ε 0.3597 0.0949 0.4595 0.0835 0.0023
ε 0.2799 0.3396 0.3048 0.0076 0.0680



,




ε 1− ε 0 0 0 0
ε 0.1484 0.2721 0.0496 0.4048 0.1249
ε 0.1256 0.2787 0.1914 0.0048 0.3996
ε 0.1535 0.2839 0.2814 0.1878 0.0933
ε 0.3569 0.2294 0.3456 0.0487 0.0194
ε 0.0935 0.0454 0.7353 0.0565 0.0693



,




ε 1− ε 0 0 0 0
ε 0.3047 0.4001 0.1581 0.0680 0.0691
ε 0.0832 0.3729 0.1191 0.1122 0.3126
ε 0.5795 0.1526 0.0233 0.1928 0.0518
ε 0.3080 0.0188 0.5874 0.0076 0.0782
ε 0.3114 0.3662 0.2492 0.0531 0.0201



.

(F.7)

F.3 Parameters used in in Chapter 7

F.3.1 Parameters of the Double Inverted Pendulum

The parameters of the double inverted pendulum and their values used in the simulations are given
in Table F.1.

F.3.2 Parameters of the Network

Table F.2 lists the most relevant parameters of the Ethernet-based network configured in OMNeT++/INET
for all simulation runs. Furthermore, unless otherwise noted, all links are perfect, that is, no bit errors
occur and the propagation delay is zero.

Table F.3 lists the TCP configuration used for some of the cross traffic in the simulation runs
in Section 7.3.2. Note that the TCP data flows are not affected by the congestion control CoCC.
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Table F.1: Parameter values of the double inverted pendulum used in the simulations.

Parameter Symbol Value

Mass of cart mc 0.5 kg
Mass of lower pendulum bob ml 0.2 kg
Mass of upper pendulum bob mu 0.2 kg
Length of lower pendulum rod ll 0.3 m
Length of upper pendulum rod lu 0.3 m
Gravitational acceleration g 9.81 m/s2

Damping coefficient of cart bc 0.1 N s/m
Damping coefficient of lower pendulum joint bl 0.002 N s m
Damping coefficient of upper pendulum joint bu 0.002 N s m

Table F.2: Parameters of the communication system configured in OMNeT++/INET for all simulation runs.

Maximum Transmission Unit (MTU) 1500 B
Link Layer Protocol PPP with 7 B headers
Network Layer Protocol IPv6 with 40 B headers
Transport Layer Protocol UDP with 8 B datagram headers
CoCC Round Duration 50 ms

Table F.3: Configuration of TCP used for the cross traffic in Section 7.3.2.

Header Size 20 B
Maximum Segment Size 1440 B
Receive Window Size 210 MTU
Window Scaling Enabled
Limited Transmit Enabled
Selective Acknowledgments Disabled

F.3.3 Parameters of the Controllers

MPC IMM

The length of the optimization horizon in all simulation runs is set toK = 100. The weighting matrices
in the cost function (5.2) are set to

Qt = Q =




100 0 0 0 0 0
0 5000 0 0 0 0
0 0 5000 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, Rt = R = 100 ,

for t = 0, 1, . . . ,K − 1, and QK is chosen as the unique stabilizing solution X of the associated
discrete-time algebraic Riccati equation

X = ATXA−ATXB
(
BTXB + R

)−1
BTXA + Q ,
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which results in the matrix

X = 1 · 106




0.0213 −0.0491 0.1360 0.0226 0.0053 0.0197
−0.0491 3.3608 −4.5282 −0.1097 0.1144 −0.5573

0.1360 −4.5282 7.1588 0.2694 −0.0867 0.9005
0.0226 −0.1097 0.2694 0.0383 0.0084 0.0384
0.0053 0.1144 −0.0867 0.0084 0.0096 −0.0084
0.0197 −0.5573 0.9005 0.0384 −0.0084 0.1147



.

In the first simulation scenario (Section 7.3.1), we set N = 2 and L = 1. In the second simulation
scenario (Section 7.3.2), we set N = 8 and L = 1.

The mapping f is

fa = f(QoC) = 58 exp [1.307 ·QoC] + 6.095 · 10−8 exp [−517.6 ·QoC] , (F.8)

where fa is expressed in Hz. The corresponding data rate in bit/s is obtained by multiplication with
the packet size, which depends on the employed control sequence length N .

The mapping q is

QoC = q (ēavg) =
0.0044332

ēavg
− 0.5297 . (F.9)

MPC Bound

The length of the optimization horizon in all simulation runs is set to K = 20. The weighting matrices
Qt, QK , and Rt are the same as for the MPC IMM. In the first simulation scenario (Section 7.3.1), we
set N = 2 and L = 1. In the second simulation scenario (Section 7.3.2), we set N = 8 and L = 1.

The mapping f is

fa = f(QoC) = −1.4205 · 105 exp [2.3462 ·QoC] + 1.4210 · 105 exp [2.3460 ·QoC] , (F.10)

where fa is expressed in Hz. The corresponding data rate in bit/s is obtained by multiplication with
the packet size, which depends on the employed control sequence length N .

The mapping q is

QoC = q (ēavg) =
0.004264

ēavg
− 0.3775 . (F.11)

Robust Controller

In all simulation runs, the initial controller gain L is computed with δ = 0.05. Each time the network
model τ ca

k changes, we calculate tk,NN by virtue of Theorem 4.1. Then, we set δ = tk,NN and
recompute L. In the simulations, the augmented state ψ

k
is not directly available. Hence, we use the

IMM filter presented in Section 5.3.2 to provide the required state estimate and compute the control
sequences according to1

Uk = Lψ̂
k
.

In both simulation scenarios, we use N = 2 and L = 1.

The mapping f is a cubic spline that minimizes

J
(
f ′
)

= p
31∑

j=1

∣∣faj − f ′(QoCj)
∣∣2 + (1− p)

∫ 1

0

∣∣∣∣
d

d2s
f ′(s)

∣∣∣∣
2

ds , (F.12)

1Replacing ψ
k

by its estimate ψ̂
k

is an application of the so-called certainty equivalence principle [158].



168 F Parameters used in the Simulations and Numerical Examples

with p = 0.997803382803584 and where (QoCj , faj ) is the j-th data pair obtained in Section 7.2.
The corresponding data rate in bit/s is obtained by multiplication with the packet size, which depends
on the employed control sequence length N .

The mapping q is

QoC = q (ēavg) =
0.007763

ēavg
− 0.49 . (F.13)
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