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Abstract

Software has become an integral part of today’s society. As software is increasingly
applied in safety-critical areas, we must be able to rely on its correct and safe execution.
Especially embedded software, for example in medical devices, cars or airplanes, must
be thoroughly and formally verified. The software of such embedded systems can be
divided into two kind of components. Traditionally engineered control software and
machine learning methods as applied for image recognition or collision avoidance.

This dissertations aims to improve the state-of-the-art for the verification of two main
components of modern embedded systems: software written in C/C++ and neural net-
works. Verification for both components is formally defined and novel verification ap-
proaches are presented.

Software Verification. The first goal of this dissertation is to develop a method
to automatically check (embedded) industrial software written in C/C++ for runtime
errors. Embedded software is different compared to firmware because of programming
standards such as MISRA-C and AUTOSAR that have to be respected by developers.
These standards reduce the complexity of software to minimize potential errors. For
example, they restrict the possible number of loop iterations or the use of dynamic
memory allocation. Another difference of industrial software is its size. A modern car
comprises about 100 million lines of code and in the near future this number is expected
to triple [112].

In this dissertation, we present a modular bounded model checking approach for auto-
matic verification of industrial software. In a first step, the software to be examined
is built and critical program locations, which could potentially lead to runtime errors,
are automatically detected and marked. Furthermore, the proposed verification method
can be configured and allows for preprocessing, making it particularly fast and user-
friendly. In a next step, our approach performs a fully automatic modularization of a
program through novel structural abstractions. The modularization is able to abstract
the environment of functions as well as function calls in programs and thus leads to
independently verifiable modules. However, the abstractions can lead to a large number
of false positives, i.e. error messages where there is no error.
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Therefore, a third and last step refines the introduced abstractions. This happens
on the one hand by including parent functions and thus by an enlargement and divi-
sion (in case of several parents) of modules. On the other hand two procedures are
presented, which can create preconditions for functions, based on a found error. Calls
to the erroneous function can be substituted in higher level functions with the gener-
ated precondition, leading to a refined but still scalable analysis. An evaluation of our
approach shows an improvement of the state-of-the-art in bounded model checking and
advantages compared to commercially available tools.

Verification of Neural Networks. The second goal of this dissertation is the verifica-
tion of neural networks (NNs). The success of machine learning and especially of neural
networks in many areas such as image recognition and decision management systems
has resulted in an increased application of neural networks in safety-critical domains.
This development explains the increasing interest in the formal verification of neural
networks. Among the properties to be verified are robustness [138], functional proper-
ties [85] and equivalence [126] of neural networks. The equivalence of neural networks
is especially important in the context of embedded systems. Control elements of cars or
airplanes, for example, have limited resources for the execution of neural networks. In or-
der to deploy the neural network under such energy and memory constraints, compressed
representations of these networks are being used. However, there are still few methods
that can verify that a compressed network is similar or equivalent to the original network.

Therefore, the second goal of this dissertation is to develop approaches proving that
two networks are equivalent. Due to the stochastic nature of neural network training,
two networks are rarely exactly equivalent. Therefore, in a first step, we introduce novel
and relaxed notions of equivalence and argue about the general complexity of equiva-
lence verification. We then present two verification methods for neural networks. Our
first method is based on the exact encoding of networks and properties as mixed-integer
linear programming problems (MILP). By encoding networks and properties as the opti-
mization problem maximizing the difference between two NNs, we can show equivalence
of two networks over clustered input or find corresponding counterexamples. Our second
approach aims to improve scalability through abstractions. Therefore, we first adjust the
existing geometric path enumeration (GPE) approach from one to multiple networks.
The GPE approach propagates sets through neural networks and applies predefined
transformation steps. Abstractions and other optimization methods improve the scal-
ability of the GPE approach for equivalence verification. Our two approaches, as well
as the novel definitions, improve the state-of-the-art. Our evaluation shows that the
approaches produce strong results compared to other tools, in particular for equivalence
verification of structurally different networks.

iv



Zusammenfassung

Software ist ein wichtiger Bestandteil unsere heutige Gesellschaft. Da Software vermehrt
in sicherheitskritischen Bereichen angewandt wird, müssen wir uns auf eine korrekte und
sichere Ausführung verlassen können. Besonders eingebettete Software, zum Beispiel in
medizinischen Geräten, Autos oder Flugzeugen, muss gründlich und formal geprüft wer-
den. Die Software solcher eingebetteten Systeme kann man in zwei Komponenten aufge-
teilt. In klassische (deterministische) Steuerungssoftware und maschinelle Lernverfahren
zum Beispiel für die Bilderkennung oder Kollisionsvermeidung angewandt werden.

Das Ziel dieser Dissertation ist es den Stand der Technik bei der Verifikation von
zwei Hauptkomponenten moderner eingebetteter Systeme zu verbessern: in C/C++
geschriebene Software und neuronalen Netze. Für beide Komponenten wird das Veri-
fikationsproblem formal definiert und neue Verifikationsansätze werden vorgestellt.

Software Verifikation. Das erste Ziel dieser Dissertation ist es ein Verfahren zu ent-
wickeln um (eingebettete) industrielle Software geschrieben in C/C++ automatisch auf
Laufzeitfehler zu überprüfen. In sicherheitskritischen Systemen eingebettete Software
unterscheidet sich zu anderer Software durch bestehende Programmierstandards wie
MISRA-C und AUTOSAR in der Automobilbranche. Solche Standards schränken die
Komplexität von Software ein, um mögliche Fehler zu minimieren. So werden zum Bei-
spiel die mögliche Anzahl von Schleifendurchläufen oder der Einsatz von dynamischen
Speicher begrenzt. Ein weiterer Unterschied ist die Größe von industrieller Software.
Die Software in einem heutigen Auto umfasst ungefähr 100 Millionen Zeilen von Code
und in naher Zukunft soll sich diese Zahl verdreifachen [112].

In dieser Dissertation stellen wir einen modularen Bounded Model Checking Ansatz
für die automatische Verifikation von industrieller Software vor. In einer ersten Phase
wird die zu untersuchende Software gebaut und es werden automatisch kritische Pro-
gramstellen, die zu Laufzeitfehlern führen können, erkannt und markiert. Weiterhin
werden Konfigurationsmöglichkeiten und Vorverarbeitung für eine schnelle und einfache
Verifikation vorgestellt. Daraufhin präsentiert diese Dissertation eine vollautomatische
Modularisierung eines Programmes durch hier eingeführte strukturelle Abstraktionen.
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Die Modularisierung ist in der Lage die Umgebung von Funktionen sowie Funktions-
aufrufe in Programmen zu abstrahieren und führt somit zu unabhängig verifizierbaren
Modulen. Die Abstraktionen können jedoch zu einer großen Anzahl an Falschmeldungen
führen. Daher verfeinert ein dritter und letzter Schritt die eingeführten Abstraktionen.
Dies passiert zum einen durch einbinden von Elternfunktionen und somit durch eine
Vergrößerung und Aufteilung (bei mehreren Eltern) von Modulen.

Zum anderen werden zwei Verfahren vorgestellt, welche Vorbedingungen für Funktio-
nen, basierend auf einem gefundenen Fehler, erstellen können. Aufrufe der fehlerhaften
Funktion können in höher stellten Funktionen mit der erzeugten Vorbedingung sub-
stituiert werden und führen somit zu einer verfeinerten aber immer noch skalierbaren
Analyse. Eine Evaluation unseres Ansatzes zeigt eine Verbesserung der Stand der Tech-
nik; auch im Vergleich zu kommerziell eingesetzten Werkzeugen.

Verifikation Neuronaler Netze. Das zweite Ziel dieser Dissertation ist die Verifi-
kation von Neuronalen Netzwerken. Der Erfolg von maschinellen Lernverfahren und
insbesondere von Neuronalen Netzen in vielen Bereichen wie der Sprach- und Bilderken-
nung sorgt dafür, dass Neuronale Netze vermehrt in sicherheitskritischen Bereichen zur
Anwendung kommen. Diese Entwicklung begründet die zuletzt verstärkte Forschung im
Bereich der formalen Verifikation von neuronalen Netzen.

Der Einsatz in eingebetteten Systemen wie Steuerelementen von Autos oder Flugzeu-
gen, schränkt jedoch die für die Netzte zur Verfügung stehenden Ressourcen ein. Solche
Energie- und Speichereinschränkungen haben daher Kompressionsverfahren für Neuro-
nale Netze hervorgebracht. Es gibt bisher jedoch noch wenige Verfahren, welche zeigen
können, dass die originalen und kompensierten Netze gleiche Eigenschaften besitzen.
Zu den zu überprüfenden Eigenschaften gehören Robustheit [138], funktionale Eigen-
schaften [85] und die Äquivalenz [126] von neuronalen Netzen. Die Äquivalenz neuro-
naler Netze ist vor allem im Zusammenhang mit eingebetteten Systemen wichtig. Steu-
erelemente von Autos oder Flugzeugen zum Beispiel haben begrenzte Ressourcen für
die Ausführung neuronaler Netze. Solche Energie- und Speicherbeschränkungen haben
daher zu Komprimierungsmethoden geführt. Es gibt jedoch noch wenige Verfahren, wel-
che zeigen können, dass ein originalen und komprimierten Netze gleiche Eigenschaften
besitzen.

Daher ist das zweite Ziel dieser Dissertation Ansätze zu entwickeln, mit dessen Hilfe
die Äquivalenz zweier Netze bewiesen werden können. Durch die stochastische Natur
des Trainings Neuronaler Netze, sind zwei Netze selten exakt äquivalent. Daher führen
wir in einem ersten Schritt neue relaxierte Äquivalenzbegriffe ein und argumentieren
über die allgemeine Komplexität von Äquivalenzverifikation. Daraufhin präsentieren
wir zwei Verifikationsverfahren für Neuronale Netze. Unser erstes Verfahren basiert
auf der exakten Kodierung von Netzen und Eigenschaften als mixed-integer linear pro-
gramming Probleme (MILP). Durch die Kodierung von Netzen und Eigenschaften als
Optimierungsproblem, welches die Unterschiede zweiter Netze maximiert, können wir
über geclustertem Input die Äquivalenz von zwei Netzen zeigen oder Gegenbeispiele fin-
den. Unser zweiter Ansatz strebt eine verbesserte Skalierbarkeit durch Abstraktionen an.
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Daher erweitern wir zuerst den bestehenden geometric path enumeration (GPE) An-
satz von einem auf mehrere Netze. Der GPE Ansatz propagiert Mengen durch Neuronale
Netze und wendet definierte Transformationsschritte an. Im letzten Abschnitt der Dis-
sertationen werden Abstraktionen und andere Optimierungen vorgestellt, mit denen der
Ansatz für die Äquivalenzverifikation skaliert wird. Unsere beiden Ansätze sowie die
neuartigen Definitionen verbessern dabei den Stand der Technik und unsere Evalua-
tion zeigt, dass die Ansätze im Vergleich zu anderen Werkzeugen im Besonderen für die
Äquivalenzverifikation strukturell unterschiedlicher Netze starke Ergebnisse liefern.
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Chapter 1
Introduction

In our modern society, software has become ubiquitous. We rely on its correct and safe
execution, especially in safety-critical applications. Embedded software is for example
deployed in automotive, aerospace and medical devices, which have to meet the high-
est quality standards, as errors can have catastrophic consequences. Dynamic testing
of software covers only a limited number of program executions and thus provides no
safety guarantees. Studies about the consequences of software errors like [153] show the
necessity of precise and thorough verification and are backed up by catastrophic expe-
riences from the past and present, such as the rocket crash of Ariane flight 501 [108] or
the car crash of the Toyota Camry in 2005 [98].

Embedded industrial software, which can, for instance, be found in self-driving cars
or modern airplanes, can be divided into two kind of components. In traditionally en-
gineered software and in machine learning software, which includes neural networks.
Neural Networks are increasingly applied to image recognition [100] or in advisory sys-
tems in airplanes [81]. This dissertation aims to improve the state-of-the-art for the
verification of software written in C/C++ as well as neural networks. Verification for
both components is formally defined and novel verification approaches are presented.

For traditional software, this dissertation concentrates on the existence of runtime er-
rors leading to undefined behavior and software crashes. Such runtime errors encompass,
among others, arithmetic overflows or divisions by zero. There exist several techniques
of proving the absence of runtime errors in software written in C/C++. Approaches
based on abstract interpretation [39] or bounded model checking [19] are often applied
in science and industry for the verification of software projects. However, they often lack
the scalability to automatically verify modern software projects consisting up to millions
of lines of code.

Neural networks are currently among the most popular machine learning methods
and are being applied in many safety-critical applications, such as image processing of
stop signs for cars [84] or collision avoidance systems for airplanes [81]. The verification
of neural networks is a relatively young research field that has mostly concentrated on
the verification of adversarial robustness [138]: proving that a small deviation of inputs
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does not lead to unintended change in output. Among other properties to be verified are
functional properties [85] and the equivalence [126] of two neural networks. The equiv-
alence of neural networks is especially important in the context of embedded systems.
Control elements of cars or airplanes, for example, have limited resources for the execu-
tion of neural networks. Such energy and memory constraints have therefore given rise
to compression methods. The safe application of such compressed networks necessitates
the formal verification of equivalence between original and compressed networks.

In this thesis, we tackle both the scalability issue of traditional software verifica-
tion and the novel challenge of equivalence verification for neural network. We advance
the state-of-the art by proposing a modular bounded model checking approach that is
able to verify large software projects through automatic modularization and refinement
techniques. Moreover, we introduce novel notions of equivalence between two neural net-
works and derive a complexity bound for the equivalence verification of neural networks.
Finally, we present two novel verification methods for neural network equivalence.

1.1 Objective of Thesis
The goal of this thesis is to improve the state-of-the-art for the verification of two main
components of modern embedded systems: software written in C/C++ and neural net-
works.

Scalable Bounded Model Checking for Industrial Software Bounded Model
Checking (BMC) inlines function calls and unrolls loops a finite number of times. Unroll-
ing reduces the complexity of the problem to a feasible level making it decidable. The
program can be encoded into a logical formulae and then solved by state-of-the-art
SMT/SAT solvers. Due to an exact encoding of the program, BMC is very precise and
therefore often applied for software verification. Due to continuous research both encod-
ings and the underlying SMT solvers steadily improve. However, the size and complexity
of industrial embedded software increases even faster. Modern cars are estimated to have
around 300 millions lines of code (LoC) in the next few years with components of several
million LoC. Even with a loop-bound of 1, BMC is not able to solve or even generate
formulae for programs of that size with reasonable memory resources.

In this thesis, we aim towards a more scalable bounded model checking approach that
can be applied to industrial software. Our goal is to find runtime errors or prove their
absence. To be applicable in safety critical areas, the approach has to be complete,
meaning that all critical program locations regarding a check category (like division by
zero) have to be checked. Furthermore, our approach should be sound, in the sense that
we never classify a property as safe when it is not. To be scalable for industrial software,
we aim to develop a fully automatic approach with minimal user interaction. This thesis
presents a modular bounded model checking approach optimized towards usability and
scalability.
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Establishing and Verifying Equivalence of Neural Networks. Verification of
equivalence can be regarded as relational verification of neural networks and checks
whether two NNs are equivalent to each other. The main application of equivalence
verification, is in the context of NN compression. Compression of networks through
retraining, pruning and other techniques [144, 6, 75] leads to smaller neural networks
with "equivalent" behavior. However, most current research does not provide any sound
proofs for equivalence but only statistical indications.

In this thesis, our seconds goal is to develop approaches capable of sound proofs for the
equivalence of neural networks. Due to the novelty of equivalence verification of neural
networks, we first have to define new notions of equivalence, which should represent a
human understanding for neural networks. Furthermore, equivalence for regression and
classification tasks have to differ due to different applications and thereby user demands.
The second goal of this thesis are techniques that are able to verify the equivalence for
neural networks and provide human-understandable counterexamples in case of network
differences.

Overall, we regard two different kinds of programs under verification. Analysis of
software written in C/C++ can rely on decades of research and there are several est-
ablished techniques like Bounded Model Checking or Abstract Interpretation, which are
steadily improving. A main challenge for software verification of industrial software lies
in the usability of tools and the scalability of underlying verification techniques. Neural
network verification is a much younger research field. Therefore, main challenges like
problem definition and complexity proofs still remain. By considering both components
to be verified, we also aim to transfer verification knowledge from the traditional software
domain to neural network verification.

1.2 Contribution and Publications
This thesis presents two main contributions C1 and C2 in alignment with the two
presented goals. An overview of the contributions is depicted in Figure 1.1. Publications
of the author relevant for this dissertation are marked with "[KB]" to clearly distinguish
them from other references.

The first contribution of this thesis, C1, is a modular bounded model checking ap-
proach consisting of three phases. First, all critical program locations are found and
the program under verification is efficiently build, preprocessed and configured for ver-
ification. We call this phase Set-up, representing the contribution C1.1. To meet our
scalability requirements, we then present a fully automatic modularization approach,
such that smaller portions of the program can be verified individually. The modulariza-
tion, represented by contribution C1.2, is based on structural abstractions of the pro-
gram. Such abstractions lead to false positives and therefore, the third phase, presents
refinements of these abstractions, representing contribution C1.3. Thus, we reach a
user-friendly and configurable modular bounded model checking approach that balances
scalability through abstraction and precision through refinement.
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C1: Modular Bounded Model
Checking

C2: Equivalence Verification  
of Neural Networks

C1.1: Set-Up          

C1.2: Modularization

C1.3: Refinement

C2.1: Definition and
Complexity

C2.2: MILP Encoding

C2.3: Adjusted GPE

Figure 1.1: Overview of contributions of this thesis.

All approaches are evaluated on industrial software projects ranging from 2000 to 400k
LoC plus external libraries and show the improvement of the modular bounded model
checking approach for the state-of-the-art.

The second main contribution, C2, is a framework for the equivalence verification of
neural networks. Due to the statistical training process of NNs, two networks are hardly
ever exactly equivalent. The contribution C2.1 presents different notions of equivalence
and a complexity proof. These notions serve as foundations for two different approaches
for equivalence verification. Contribution C2.2 presents an approach based on exact
MILP encodings of networks and properties. Contribution C2.3 adjusts the existing
geometric path enumeration (GPE) approach to equivalence verification. Through ab-
straction and refinement strategies we optimize the scalability of our adjusted GPE
approach. The evaluation of both approaches shows the advancement of the state-of-
the-art, especially for structurally different networks.

In the following, we will briefly describe each contribution and give insights into their
publication.

1.2.1 C1 Modular Bounded Model Checking
C1.1 Set-Up. Verifying static analysis tools currently employed in industrial practice
can generally be divided into two categories: tools based on Abstract Interpretation
(AI) and tools based on Bounded Model Checking (BMC). Bounded Model Checking
approaches using bitvector and array theories are generally more precise but lack scala-
bility and usability, which are the main reasons why they are still not frequently applied
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in industry. Therefore, this thesis presents the tool QPR Verify as an extension of
the bounded model checker LLBMC with the aim to keep high precision while increas-
ing scalability and usability for industry projects. The contribution C1.1 consists of
techniques implemented in QPR Verify. A user-friendly set-up of projects is realized
through automatic generation of runtime checks and broad configuration possibilities.
A lightweight preprocessing analysis and a slicing algorithm are introduced to minimize
the number of checks and the source code to be analyzed, thus increasing scalability.
Furthermore, verification results of a whole-program analysis can be shown as a detailed
verification report including error traces.

The contribution C1.1 is described in Chapter 4 and parts of this contribution were
previously published in [KB5]. The initial design and implementation of main parts of
QPR Verify has been done in the research group "Verification meets Algorithm Engi-
neering" at KIT and in the startup QPR Technologies, with the author as a co-founder.
Next to the author, main parts of QPR Verify were implemented by David Farago, Felix
Kutzner, Robin Freyler, Florian Merz and Carsten Sinz.

C1.2 Modularization. This thesis presents an automatic modularization approach to
improve the scalability of bounded model checking. Contribution C1.2 first introduces
definitions of program semantics and modules based on the LLVM framework. Then,
a general model for program modularization is presented and mandatory and desirable
properties are introduced improving the understanding of general possibilities and limita-
tions of modularizations in the context of software verification. We present two concrete
modularization techniques in the context of bounded model checking using two different
types of abstraction. Given a module consisting of a set of functions, the first approach
abstracts away calls to functions outside of the chosen module by over-approximating
the function behavior. The second approach abstracts the call environment of the entry-
point function of our module by setting input parameters, global variables and relevant
memory locations to arbitrary values. The modularization is implemented into QPR
Verify and allows a scalable verification approach for large software projects.

The contribution C1.2 is described in Chapter 5 and main parts of this contribution
were published in [KB4].

C1.3 Refinement. The abstractions introduced by our modularization result in in-
creased scalability but can also produce false positives. To minimize such inaccuracies,
contribution C1.3 presents refinements of structural abstractions through three steps.
By incrementally adding relevant parent functions to the modules, the call environment
is refined and thereby the approach can incrementally increase the module size to the
limits of the underlying bounded model checker. Furthermore, we refine abstractions
through automatically generated preconditions. Based on an enhanced output of the
bounded model checking approach, we generate enumerative preconditions that repre-
sent erroneous input for the entry-point function of a module. These possibly under-
approximated preconditions are then generalized by a tree-based learning approach.
Through feature extraction and an ID3-based [133] synthesizer, we are able to generate
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complete preconditions. Function calls are then substituted with the according pre-
conditions. Thus, the approach refines the introduced abstractions and minimizes false
positives. The generated preconditions are human-readable and can be examined and
adjusted by a user. The caller inclusion and enumerative precondition generation is
implemented into QPR Verify and minimizes the number of false positives.

The contribution C1.3 is described in Chapter 6 and is currently prepared for sub-
mission1. The tree-based learning approach was implemented during the "research lab-
oratory" (Praxis der Forschung) by Johannes Meuer under the supervision of the author.

This thesis also presents an evaluation of all three verification phases individually
and combined. The evaluation of implemented approaches on three industrial software
projects ranging from 2000 to 400k LoC plus external libraries demonstrates the increase
in usability, scalability and precision introduced by the three verification steps. A com-
parison to commercially available tools shows that the, in this thesis presented, modular
bounded model checking approach significantly advances the state-of-the-art of software
verification.

1.2.2 C2 Equivalence Verification for Neural Networks

C2.1 Definition and Proofs. We aim to verify the equivalence of neural networks,
which is an important application with regards to compression techniques that minimize
the size of networks. The training procedure of NNs is non-deterministic and can be
performed on different training datasets. It is therefore unlikely for two NNs to be ex-
actly equivalent. Therefore, contribution C2.1 presents relaxed equivalence definitions
to obtain more practical notions of equivalence. The three properties ε- , top-1 and
top-k-equivalence are defined and their merit over exact equivalence are described. Fur-
thermore, a complexity proof showing that verifying ε-equivalence is coNP-complete is
presented.

This contribution is described in Chapter 10 and main parts of it were previously
published in [KB2] and [KB6].

C2.2 MILP Encoding. To verify this newly introduced equivalence properties, contri-
bution C2.2 presents an approach that encodes feed-forward neural networks with ReLU
activation functions together with a given equivalence property as a mixed-integer linear
program (MILP). The resulting optimization problem minimizes the distance between
network outputs and is thereby able to verify the relaxed notions of equivalence. We
employ the encoding in conjunction with restricting the input space for which the net-
works have to be equivalent by hierarchical clustering. The approach is able to verify
the equivalence and, in case of a negative result, produces counterexamples. The eval-
uation of our approach using two existing reduction methods on a neural network for
handwritten digit recognition shows the applicability and precision of our encoding.

1This will be changed at time of publication
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This contribution is described in Chapter 11 and main parts of it were previously
published in [KB2].

C2.3 Adjusted GPE. The presented MILP-encoding allows for precise verification
but often lacks scalability to larger networks. Contribution C2.3 therefore presents a
modified version of the geometric path enumeration (GPE) algorithm and its application
to the equivalence verification problem. GPE propagates a set of input values through a
neural network and then evaluates whether the output set overlaps with a specified error
region. When propagating sets through activation functions, the data structures have
to be split by introduction of additional hyperplanes or new linear constraint predicates.
We discuss several optimizations to increase the efficiency on practical problems by
approximating data structures and introduction of heuristics minimizing the number of
splits. Our evaluation shows an advance in scalability compared to our MILP approach
and also the state-of-the-art.

This contribution is described in Chapter 12 and main parts of it were previously
published in [KB6].

The first definitions of equivalence and the verification approach based on mixed-
integer linear programs were pursued during the Master’s Thesis of Philipp Kern [89]
supervised by the author and lead to the publication [KB2]. The expanding work of
proving coNP-completeness for equivalence verification and the modification and opti-
mization of the geometric path enumeration approach were conducted in a "research
laboratory" (Praxis der Forschung) project in which the student Samuel Teuber was also
supervised by the author and lead to the publication [KB6].

1.3 Structure of Thesis

We now provide a brief outline for the rest of this thesis.

1.3.1 Part I - Introduction and Foundation

Next to this introduction Part I presents foundations in Chapter 2, which describes basic
concepts and notions relevant for the understanding of this thesis.

Section 2.1 introduces concepts relevant to our modular bounded model checking
approach. It therefore presents the LLVM-Framework (Subsection 2.1.1, Bounded Model
Checking (Subsection 2.1.2) and the implementation of the bounded model checking
approach LLBMC (Subsection 2.1.3).

Section 2.2 introduces neural networks with the ReLU activation function. It then
presents two basic concepts later applied for NN verification. Mixed-integer problems
are introduces in Subsection 2.2.1 and the geometric path enumeration approach in
Subsection 2.2.2.
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1.3.2 Part II - Modular Bounded Model Checking
Part II presents the modular bounded model checking approach and thereby contribution
C1. The first chapter of the second part, Chapter 3, gives a more detailed overview of
our approach and its contributions.

Then Chapter 4 presents the set-up phase and thereby contribution C1.1. Next to
challenges and requirements of software verification presented in Section 4.2, we present
features and implementation decisions of the tool QPR Verify. Chapter 5 presents the
fully automatic modularization approach and thereby the contribution C1.2. In Section
5.2, we define program semantics and modularization concepts before describing specific
modularization techniques in Section 5.3. The refinement of abstractions are described
in Chapter 6. We present contribution C1.3. After a bird’s eye view of our method-
ology in Section 6.2, we present refinement through caller inclusion in Section 6.4 and
the generation and substitution of preconditions in Section 6.5. Chapter 7 presents a
tool demonstration and shows evaluation results. In Section 7.1, we present step-wise
instructions on how to configure and apply QPR Verify to industrial projects.

Afterwards, Section 7.2 presents evaluation results for the three industrial projects
BMI160-Driver, SQLite and MNAV1.5. Related work is described in Chapter 8. A
conclusion of Part II is then presented in Chapter 9 consisting of a summary in Section
9.1 and an outlook on future work in Section 9.2.

1.3.3 Part III - Equivalence Verification for Neural Networks
Part III presents the equivalence verification framework and thereby contribution C2.

We motivate and introduce the equivalence property for neural networks in Chapter
10, describing contribution C2.1. Chapter 11 then presents our first verification ap-
proach for neural networks and therefore contribution C2.2. Section 11.2 presents the
encoding of NNs and introduced properties. In Section 11.3, we discuss input restrictions
through hierarchical clustering and the application field of compression in Section 11.4.
In Chapter 12, we present the adjusted geometric path enumeration and the contribution
C2.3. The extension of the GPE algorithm is described in Section 12.2 and optimized
in Section 12.3. An experimental evaluation of our approach and a comparison to our
previous work as well as the state-of-the-art is described in Section 12.5. Related work
is presented in Chapter 13 and the last chapter of this thesis, Chapter 14, concludes the
third part of this thesis, giving a summary (Section 14.1) and an outlook into promising
research directions for neural network verification (Section 14.2).
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Chapter 2
Foundation

In this chapter, we describe and specify foundations regarding verification of software
written in C/C++ and machine learning algorithms in the form of neural networks.
For classical software, we introduce the LLVM-framework with its intermediate rep-
resentation (LLVM IR). As our chosen technique to verify software is based on that
representation, we present the bounded model checking (BMC) approach and introduce
the tool LLBMC as an implementation of it. Furthermore, we briefly introduce neural
networks and the ReLU activation function together with two basic techniques currently
utilized in neural network verification: mixed-integer linear programming (MILP) and
geometric path enumeration (GPE).

2.1 Software Verification
Verification and Validation (V&V) is an essential part of software engineering, which
ensures the correct and safe performance of software. While validation of a product
makes sure that the correct product is built, verification tackles the tasks of ensuring
that the product is built right [151]. Thus verification of a software project can be
understood as proving the absence of errors and undefined behavior of source code. In
this thesis, we concentrate on runtime errors like division by zero or undefined overflows
that occur during program execution. These are also referred to as safety-properties in
contrast to liveliness-properties defining e.g. the termination of a program [2].

Compared to dynamic software testing, a formal verification of software does not only
find such errors but aims to give a definite proof for the absence of such. Furthermore,
we concentrate on automatic approaches that can be applied for larger scale projects.
Interactive theorem proves like [12, 123] are based on powerful techniques and allow
modular verification but they require manual labor. The number of lines of specification
that has to be written for one line of source code varies depending on approach and
application. Typical factors range between 2 for specialized [124], 5 for SMT-based [71]
or up to 20 for interactive theorem prover approaches [83] and are thus not feasible for
larger industrial projects.
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Verifying static analysis approaches currently employed in industrial practice and
scientific research can generally be divided into two categories: approaches based on Ab-
stract Interpretation (AI) [39, 154, 43] and techniques based on Bounded Model Checking
(BMC) [103, 115, 44, 67, 30]. Abstract interpretation tools are already established in
application areas, because with a suitable AI domain (often the interval domain) they
scale quite well. Bounded model checking approaches using bitvector and array theories
are generally more precise but lack scalability, which is the main reason why they are
still not frequently applied for larger projects. The aim of this thesis is to further de-
velop the BMC approach to make it applicable and scalable for real-world applications.
Therefore, we first introduce the LLVM framework which is often used to simplify and
translate code and then describe BMC and one implementation of it in more detail.

2.1.1 LLVM-Framework (LLVM)
Main parts of this subsection including Table 2.1 were previously published as prelimi-
naries in [KB4].

LLVM is an open source compiler framework that consists of a “collection of modular
and reusable compiler and tool-chain technologies” [107]. It supports compilation for a
wide range of languages and is known for its research friendliness and good documenta-
tion. It is very complex for verification approaches to work directly on C-code and it is
extremely difficult to support all language features.

LLVM provides an intermediate representation for a number of high-level languages,
including C. LLVM’s intermediate representation is an abstract, RISC-like assembler
language for a register machine with an unbounded number of registers. IR programs
are always kept in static single assignment (SSA) form, meaning that each register is
assigned exactly once, and every variable is defined before it is used. This helps to close
the gap between C-code written by developers and logical formulas solved by SAT-solvers
during the BMC approach.

A program in LLVM-IR consists of a set of global variable declarations G, and a set
of functions F . In LLVM terms such a program P = (F,G) is often denoted as a mod-
ule. To prevent confusion with terms introduced in later modularization approaches, we
denote such programs P simply as programs and not modules. Each function is repre-
sented by a graph of basic blocks, while each basic block in turn is a linear sequence
of instructions having one entry and one exit point. Instructions are the smallest exe-
cutable unit in LLVM IR and the last instruction of every basic block is called terminator.

The instruction set, as of interest in this thesis, can broadly be split into four types
(see also Table 2.1):

• Memory-related instructions such as load, store, stack allocation (alloca) and
address calculation via base pointer and offsets (getelptr)1;

1For brevity, we use getelptr instead of LLVM’s name getelementptr.
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• Three-address-code (TAC) instructions working on registers or constants, mainly
for arithmetical and logical operations.

• Bit-level conversion instructions like extensions, truncations, and type casts.

• Control-flow related instructions for conditional and unconditional branching, the
phi instruction (which is typical for SSA form) to conditionally select a value, as
well as function-call and return (ret) instructions.

For the exposition of our approach, we have extended the IR language by two verification-
related instructions (in the implementation these are modeled as intrinsic functions in-
stead of instructions), one for checking assertions and another one to set a variable to a
non-deterministic value.

All (conditional and unconditional) branch instructions are only allowed as a termi-
nator instruction of a basic block. The branch instructions between basic blocks induce
a basic block graph (a.k.a. control-flow graph), in which edges are annotated with the
condition under which the transition between the two basic blocks is taken.

Memory operations:
p = alloca t allocate stack memory for type t
q = getelptr p, o1, . . . , on address calc. (base pointer, offsets)
x = load p load from memory address p
store x, p store x at address p

Arithmetical / logical operations:
z = x <op> y where <op> ∈ {+,−,∗, . . . , ∣∣,&&, . . .}
c = x <op> y where <op> ∈ {<,=,>,≤, . . .}

Conversion operations:
y = sext/zext x to t sign/zero extend x to width of type t
y = trunc x to t truncate x to width of type t
y = ptrtoint p to ti convert a ptr. value p to integer type ti
p = inttoptr x to tp convert an int. value x to pointer type tp

Control flow:
br bb unconditional branch to basic block bb
br c, bb1, bb2 conditionally branch to bb1 or bb2
call f(x1, . . . , xn) call (void) func. f with par. x1, . . .
y = call f(x1, . . . , xn) call func. f returning y
ret y / ret void return value y / nothing
y = phi [x1, bb1], . . . , [xn, bbn] conditional selection of value xi

Verification Extensions:
assert c assert that condition c is true
x = nondet t set x to a non-determ. value of type t

Table 2.1: LLVM IR insructions

17



2.1.2 Bounded Model Checking (BMC)
In this thesis, we focus on the application and extension of the bounded model checking
approach. We therefore do not introduce underlying concepts as the Boolean satisfiabil-
ity problem (SAT) or Satisfiability Modulo Theories (SMT). We assume the reader to
be familiar with propositional logic and first-order-logic.

The desire to mathematically prove the correctness of hardware and later on software
produced a number of formal verification approaches over the years. Model checking
as one of the first automatic techniques, proves that a system or model meets a given
specification. Explicit state model checking, introduced in [35], applies Kripke structures
as models and checks properties utilizing temporal logic formulae. There exist several
decision procedures to verify properties given in temporal logic [51, 48]. The tool SPIN
[13] is an implementation of such an approach and is able to successfully verify embed-
ded C-code. Yet, the main challenge of explicit state model checking is the exponential
growth of the checked state space, and is called state space explosion. Symbolic model
checking relies on binary decision diagrams (BDDs) and allows for a larger number of
states to be checked. Yet BDDs are not always efficient because for specific types there
exists no efficient ordering and encoding. For software verification such as for example
for the multiplication of integers.

Therefore, bounded model checking verifies bounded traces through a program by
SAT-solvers. Biere et al. [19] introduced the first BMC approach applied to hardware
systems and notably Clarke et al. [34] with their tool CBMC further developed the
technique to be applied to software systems. For a program, loops and function calls
are unrolled and inlined to a given bound b. The resulting program is then encoded into
a SMT and then SAT formula together with a negated property to be checked. The
verification problem V with bound b, can be represented by Equation 2.1:

V = I(s0) ∧
b

⋀
i=0
T (si, si+1) ∧ ¬P , (2.1)

where I(s0) represents the initial states of the program, T (si, si+1) the bounded tran-
sition system and P the set of properties to be checked. This notion for bounded model
checking is typical formulation introduced for hardware verification.

Such a formula can then be verified by any state-of-the-art SAT-solver. If a satisfiable
model is found, it can be regarded as a counterexample for the verified property. If there
is no model within bound b, the approach increases b until a counterexample is found or
the bound is sufficiently high. Biere et al. [19] developed several approaches that give
upper bounds for b that are necessary for a sound verification.
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2.1.3 Low Level Bounded Model Checker (LLBMC)

The tool LLBMC was originally developed at the Karlsruhe Institute of Technology by
Merz et al. [115]. It is an implementation of the BMC approach utilizing the LLVM IR
as an input language for its verification procedure. The high-level model checking algo-
rithm, described in [113], is presented in Algorithm 1. As input the tool takes a program
p, an entry-point function e, a bound for loop-unrolling bl and a bound for function in-
lining bc. The function OPTIMIZE runs transformation passes implemented in LLVM
and LLBMC to increase performance and extend the language support by simplifying
structures e.g. switch structures and memory allocations. Afterwards, the function
UNROLL unrolls loops of program p to the given bound bl. To inline function calls
until bound bc and handle function pointers through a type-based over-approximation
[113], CALLGRAPH creates a call-site sensitive call-graph starting at the entry-point
function. The function ENCODE(p, g) takes the unrolled program in LLVM IR and the
bounded call-graph and creates a formulae that is the function SIMPLIFY simplifies
utilizing an existing term rewriting system. The resulting formulae is given to an SMT
solver. The SOLV E function returns a Boolean result r together with a model m. If the
return value is true an error has been found and the function COUNTEREXAMPLE
can utilize the module m to transfer variable assignments from the SMT level to LLVM
IR and the user. If the result is false or unknown LLBMC returns null, implying that
no errors have been found.

Algorithm 1 ModelCheck(p,e,bl,bc)
p← OPTIMIZE(p)
p← UNROLL(p, bl)
g ← CALLGRAPH(p, e, bc)
σ ← ENCODE(p, g)
σ ← SIMPLIFY (σ)
r,m← SOLV E(σ)
if r then
c← COUNTEREXAMPLE(p, σ,m)
return r

else
return null

end if

In this thesis, we utilize and extend LLBMC as our bounded model checking approach
of choice. Our presented techniques do not rely on a specific BMC architecture, but the
transformation into LLVM IR allows for modifications of the encoding procedure without
interaction with C-code. Regarding performance LLBMC is comparable to state-of-the-
art solvers like CBMC [34], as can be seen by software verification competition results
from 2014-2017 [18, 17].
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2.2 Neural Network Verification
Neural networks (NNs) have become popular methods for tackling various machine learn-
ing tasks and are increasingly applied in safety-critical systems. We introduce feed-
forward neural networks with ReLU activation functions, which are widely applied for
smaller and larger scale projects. We aim to verify such networks with two different
approaches in later Chapters 11 and 12. Therefore, we present basic notions of mixed
integer linear programming (MILP) and geometric path enumeration (GPE). Parts of
this section are part of preliminaries published in [KB2] and [KB6].

Feed-Forward NNs. NNs consist of interconnected units called neurons. A neu-
ron j computes a non-linear function of its input values x1, . . . , xn according to yj =
σ(∑ni=1wijxi + bj) where σ is called the activation function and wij are the weights, bj
is commonly referred to as bias of neuron j. Sometimes the formula is simplified by
defining the bias bj not separately but as the first weight w0j . The output of a neuron
j is then defined as σ(∑ni=0wijxi).

In this thesis, we focus on the rectified linear unit (ReLU) activation function, ReLU(x) =
max(0, x), which is one of the most commonly used activation function in modern NNs
[63].
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Figure 2.1: ReLU activation function.

Outputs of neurons are connected as input to other neurons, resulting in a directed
graph. We focus on feed-forward NNs, where the underlying graph is acyclic. Neurons
are organized in layers, where neurons in layer l take inputs only from the directly
preceding layer l − 1. The first layer, called input layer, is just a place holder for the
inputs to be fed into the NN, the subsequent layers are called hidden layers, while the
last layer, the output layer, holds the function value computed by the NN. We refer to
the input space dimension as I ∈ N and to the output dimension as O ∈ N.

For a classification task, the output yi of neuron i represents the probability of the
NN’s input belonging to class i. To ensure that the resulting distribution over the
outputs is normalized, each output neuron i uses the softmax activation function

softmax(x⃗)i =
exi

∑j exj
.
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Figure 2.2: Exemplary neural network with one input layer consisting of two input
neurons, two hidden layers, each with two neurons and one output layer consisting of a
single neuron.

2.2.1 Mixed-Integer Linear Programming (MILP)
A MILP problem is an optimization problem for a linear objective function under ad-
ditional linear constraints. Some variables are constrained to be integers, while others
range over R.

Definition 1. A mixed-integer linear programming problem consists of

1. a linear objective function f(x1, ..., xk) = ∑ki=1 cixi over decision variables xi that is
to be minimized or maximized,

2. a set of linear constraints ∑ki=1 aijxi & bj , & ∈ {≤,=,≥}, where aij and bj are con-
stants,

3. and an integrality constraint xi ∈ Z for some variables.

The set S of feasible solutions to a mixed-integer linear program is often called a
mixed-integer linear set. Solving MILP problems is in general NP-hard. Algorithms
for solving them include branch and bound [106], cutting planes [61], or methods based
on relaxations [110]. We later employ the tool Gurobi [69] to solve MILP problems
representing equivalence verification tasks for neural networks. Gurobi implements a
wide range of different algorithmic techniques and a short evaluation showed that, for
our problem class, it marginally outperforms more general SMT solvers like Z3 [119].

2.2.2 Geometric Path Enumeration (GPE)
GPE is a methodology originally proposed by Tran et al. [150] for verifying safety prop-
erties in NNs. Given a NN N , the input space I and the output space O, we denote
the corresponding mathematical function of N as gN ∶ RI → RO. For a set of input
instances I ⊆ RI and a specification of unsafe or unwanted output U ⊆ RO defined as a
set of linear constraints, verification then is concerned with the question whether there
exist any instances i ∈ I such that gN (i) ∈ U .
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Instead of pushing single data points through the NN and checking whether they
satisfy the required safety property, GPE feeds an entire set into the NN. Through
propagation and splitting of sets the approach is able to evaluate whether any parts of
the output sets lie inside unwanted output U .

Algorithm 2 High-level path enumeration algorithm for neural networks as described
in [10]
Input: Input Set I, Unsafe Set U
Output: Verification result (safe or unsafe)
s← ⟨layer ∶ 0,neuron ∶ None,Θ ∶ convert (I)⟩
W← List() {List of set datastructures to process}
W.put (s)
result← safe
while result=safe && ¬W.empty() do
s← W.pop()
result← step (s,W,U) {This call may modify W, see Algorithm 3}

end while
return result

The general idea is depicted in Algorithm 2. The algorithm’s input consists of an input
set to evaluate and an unsafe set of states that should not be reached from the input
set under consideration. We then convert the input set into an internal data structure
storing both a representation of the set and how far the set has been pushed through
the network so far. We add this data structure to a list W of sets to consider. We then
continuously push the data structures inside W through the neural network using the
step function, given in Algorithm 3, until there are either no further sets to consider
or an unsafe state has been observed in the network’s final layer. Each call of the step
function either computes an affine transformation or the result of one ReLU node.

The Algorithm 2 is still very general and there remain questions both on what set
representation to use and how to push this set representation through the neural network,
i.e. how to calculate the affine transformations and the results of ReLU nodes. It is
important to choose a set data structure which admits the affine-transformations and
non-linear functions introduced by the neural network’s hidden layers.

The sets can be represented through generalized star sets, which we define below:

Definition 2 (Generalized Star Set [150]). A generalized star set Θ is a tuple ⟨c,G,P ⟩
where c ∈ Rn is the center, G ∈ Rn×m is the generator matrix, and P ⊆ Rm is a set defined
through a conjunction of linear constraints (i.e. a polytope). The set represented by Θ
is then defined as:

JΘK = {x ∈ Rn ∣ ∃α ∈ P ∶ x = c +Gα}
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Algorithm 3 Step algorithm as described in [10], with abbreviated safety check
Input: s = ⟨layer,neuron,Θ⟩, Waiting List W, Unsafe Set U
Output: Safe so far? (safe or unsafe)
if s.neuron = None then
if s.layer = L then
return check_safety (s,U ,W)

else
s.layer← s.layer + 1
s.Θ.affine_transformation (W (s.layer), b(s.layer))
s.neuron← 1

end if
end if
n← s.neuron
s.neuron← n + 1
if s.neuron > n(s.layer) then
s.neuron← None

end if
if get_sign (s, n) = neg then
s.Θ.project_to_zero (n)

end if
if get_sign (s, n) = posneg then
t← deep_copy (s)
s.Θ.add_constraint (n,≥,0) {positive case}
t.Θ.add_constraint (n,≤,0) {negative case}
t.Θ.project_to_zero (n)
W.put (t)

end if
W.put (s)
return safe

Bak et al. [10] showed that the functions get_sign and check_safety can be effi-
ciently calculated through linear programming. Furthermore, they presented efficient im-
plementations for the affine_transformation, add_constraint and project_to_zero
functions for star sets. For non-fixed ReLU nodes, i.e. ReLU nodes that can have neg-
ative and positive inputs, the star set has to be split by introduction of an additional
hyperplane to the linear constraint predicate. This splitting leads to a growth in the
number of star sets during execution, which can be exponential in the number of ReLU
nodes in the worst case. We denote the GPE approach based on star set exact GPE.

Alternatively to star sets, it is possible to use zonotopes as a set data structure:

Definition 3 (Zonotopes [10]). A zonotope Ψ is a generalized star set ⟨c,G,P ⟩ with the
further restriction that P may only be defined through interval constraints (i.e. P only
enforces a lower and upper bound for each dimension).
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Utilizing zonotopes as data structures leads to faster runtimes because the ReLU func-
tion can be over-approximated, as shown for example in [9, 138]. We denote the GPE
approach based on zonotype abstractions as approximate GPE.

Approaches and optimizations for the GPE approach that balance the precision of star
sets and the runtime advantages of zonotopes are discussed in the context of equivalence
verification of neural networks in Chapter 12 of this thesis.
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Part II

Modular Software Verification
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Chapter 3
Modular Software Bounded Model

Checking

The second part of this thesis presents the contributions C1 with its subsequent con-
tributions C1.1, C1.2 and C1.3, which are all directed towards a modular bounded
model checking approach. Based on state-of-the-art bounded model checking, we in-
troduce challenges that are hindering the real-world application of BMC, especially for
embedded programs written in C/C++. We present solutions for those challenges and
describe the implementation of our tool QPR Verify. Afterwards, we present a solution
approach to the scalability issue of model checking industrial applications by introducing
program partitioning or, as we call it, a modularization approach based on structural
abstractions. Balancing out precision and scalability, we then refine the abstractions by
generating enumerative and learned preconditions. Finally, we give some implementa-
tion details of our modularization and evaluate all approaches on a number of real-world
applications ranging from two thousand to around half a million lines of code.

An overview of our modular bounded model checking approach is depicted in Figure
3.1.

Set-Up: Applicable Bounded Model Checking. The first challenge verifying real-
world applications, is a user-friendly and automatic set-up of the program under ver-
ification and the associated verification task. This contains, among other things, the
compilation, automatic check insertion, configuration and preprocessing of the given
program P to be verified.

In Chapter 4, we present the tool QPR Verify, which was first published in [KB5]. QPR
Verify is built as an extension of the bounded model checker LLBMC with the aim to
keep high precision while increasing scalability and performance to be usable for industry
sized projects. The main contributions are: (1) User-friendly setup for larger projects
and encompassing automatic generation of runtime checks on the source code level. (2)
Comprehensive configuration framework allowing, among others, different perspectives
(grouped, bounded, conditional) on checks to be verified and configurable precision levels
(3) Preprocessing to increase scalability and fast feedback through a lightweight analysis.
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Figure 3.1: Modular software verification approach. Given a program, we set up the
project and perform preprocessing, modularization by abstractions, followed by refine-
ment steps through preconditions.

(4) a whole program (global) analysis of the program and (5) detailed verification reports,
including exact error traces in C.

The first verification step (set-up) of our framework, can produce safe and unsafe
results for easy checks resolved by preprocessing steps or, if the program is small enough,
solved by the global analysis. For larger, thus for this thesis relevant, programs, it cre-
ates a program P ′ in an intermediate and optimized language representation together
with a set of checks.

Modularization: Automatic Modularization through Abstractions. In this
thesis, one of the main topics is an automatic modularization to improve the scalability
of bounded model checking. The sheer size of modern software projects necessitates
some form of abstraction. While the partitioning of problems to increase scalability is
a well-known approach, we present a novel fully automatic modularization of programs
for software verification.

Our modularization based on structural abstractions is described in Chapter 5 and
was published in [KB4]. Given the compiled program P ′ together with a set of checks to
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be verified, the modularization generates a set of modules. To soundly generate such a
modularization, we first introduce definitions of program semantics and modules based
on the LLVM framework. Then, we define a general model for program modularization
and establish mandatory and desirable properties to help understand the possibilities
and limitations of general modularization in the context of software verification. We
present two concrete modularization techniques Function Call Abstraction and Envi-
ronment Abstraction, in the context of bounded model checking and present refinement
ideas. Verification of these modules produces safe or unsafe results for a large portion
of generated checks. Yet over-approximation of program traces can lead to false posi-
tives, and thus error messages where there are no errors. In such cases a refinement of
the abstraction is necessary.

Refinement: Refined Modularization through Preconditions. In Chapter 6, we
present a refinement for our modularization based on automatically generated precon-
ditions. The results are published in [KB3] and present three refinement steps that can
be run successively to combine advantages. Based on modules, which consist of subsets
of a program’s functions, the first refinement strategy, called Caller Inclusion, extends
the module size by including increasingly larger calling contexts of the module. The
second refinement step, called Enumerative Preconditions, refines the abstraction of call
environments by generating potentially under-approximated preconditions. Through the
enumeration of relevant information generated by the bounded model checker about in-
put assignments leading to errors, the refinement step is able to produce preconditions
representing inputs leading to errors. Yet those preconditions do not always encom-
pass all such inputs. Therefore, preconditions are then extended through a tree-based
learning approach that generalizes from safe and unsafe program traces, in the third
refinement approach called Learned Preconditions. The refinement and elimination of
false positives is archived through the substitution of function calls by preconditions
that are iteratively pushed through the program until the checks are safe, unsafe or
unknown for checks that can not be verified.

Implementation and Evaluation. In Chapter 7, we present implementation details
and demonstrate the application of QPR Verify. Furthermore, we show an overall evalu-
ation of all presented approaches based on three real-world software projects ranging from
2000 to 500k lines of code. The evaluation illustrates the applicability of our approach to
industrial software projects through increased scalability. The abstractions introduced
by the fully automatic modularization can be refined through precondition substitution
leading to precise verification results for programs with hundreds of thousands lines of
code. A comparison with commercially available tools demonstrates advantages of our
modular bounded model checking approach compared to the state-of-the-art.
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Chapter 4
Applicable Bounded Model Checking

4.1 Introduction
This chapter develops requirements and necessary development steps for the bounded
model checking approach to be applicable for the verification of industrial software
projects. We present an implementation meeting the formulated requirements in QPR
Verify, which is an extension of the bounded model checker LLBMC. The content
of this chapter presents the set-up phase, depicted in Figure 4.1, of our software ver-
ification process. Furthermore, it presents contribution C1.1 and our publication [KB5].

Program
P

Compilation Check-
Insertion Configuration Preproessing (Global

Analysis)

[KB5]

Program
P' Checks

Set-Up

Figure 4.1: Set-up of our modular software verification approach.

Bounded model checking as introduced in Section 2.1.2, is a powerful technique to
verify smaller to medium sized software projects. Yet, most current tools like CBMC
[103] or LLBMC [115] lack support for user-friendly and large scale analysis. There-
fore, our aim was to extend LLBMC to be user-friendly and applicable to real-world
embedded C-code. As opposed to open-source projects, industrial software often needs
a more elaborate approach, with partly code generation and environment specifications,
following the AUTOSAR (AUTomotive Open System ARchitecture) [3] architecture and
standards like ISO 26262 [142] and MISRA ((Motor Industry Software Reliability As-
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sociation) [4]. Furthermore, the process of setting up the verification process as well as
presenting and understanding the verification result needs more attention for industrial
projects then most scientific approaches provide.

Tools based on abstract interpretation techniques are most dominant for the industrial
verification of safety-critical embedded software [38]. Abstract interpretation approaches
gain their scalability mostly through the abstraction of value domains but therefore lose
the information about specific values that lead to errors. This can potentially produce a
large amount of false positives. Bounded Model Checking approaches are more precise
and the underlying SAT/SMT solver produces exact variable values for error traces and
a lower amount of false positives. As trade-off, they often lack the scalability to verify
large programs. Current tools based on the BMC approach like CBMC and ESBMC [56]
are very precise but often not tuned towards the application of large industry projects.
For example, it is hard to control and see which checks are actually performed at each
program location, and sometimes code modifications are needed on the input to make it
parsable by the tool.

To be compatible with industrial requirements, we implemented the tool QPR Verify.
The initial design and implementation of QPR Verify has been done in the research
group "Verification meets Algorithm Engineering" at KIT and in the startup QPR Tech-
nologies, with the author as a co-founder. Next to the author, parts of QPR Verify were
implemented by David Farago, Felix Kutz, Robin Freyler, Florian Merz and Carsten
Sinz.

Contribution C1.1. The main contributions presented in this chapter are: The inves-
tigation and formulation of challenges and requirements for the verification of industrial
embedded software, which guided the development and implementation of QPR Verify.
Design and implementation of a user-friendly setup for larger projects encompassing an
automatic generation of runtime checks on the source code level, as opposed to the LLVM
intermediate representation (LLVM-IR) level, as is done in many tools. A preprocessing
analysis to increase scalability and fast feedback through a lightweight preprocessing
analysis and a slicing algorithm to minimize the source code to be checked, increasing
scalability. In this chapter, we present a configurable whole-program analysis imple-
mented in QPR Verify. We are able to generate detailed verification reports, including
exact error traces in C (and partially C++) to be shown to a user.

Structure. Section 4.2 presents the challenges and requirements of industrial software
verification. Based on these challenges, Section 4.3 gives an overview of our chosen
architecture of the verification process, while Section 4.4 gives deeper insights of features
pushing QPR Verify to meet the established requirements. Section 4.5 concludes the
chapter and transitions to the scalability challenge addressed in the next chapters.
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4.2 Challenges and Requirements for the Verification of
Industrial Embedded Software

Generally, every verification tool has to balance the competing criteria of scalability ver-
sus precision and completeness. This challenge grew further over the last years because
the size of safety-critical embedded software increased dramatically. For example, the
software running on board a Boeing 787 encompasses roughly 8 millions lines of code,
in a Chevrolet Volt in 2017 the size is around 40 millions [143] and modern cars hava
around 100 million lines of code, with more and more safety-critical features. Software
verification can hardly keep up with this trend. Yet there are more challenges than just
pure scalability that arise for industrial embedded code. Through a market research
with 30 companies [8] and several proof-of-concepts on industrial projects, we derived
the following criteria to rate the industrial applicability of an analysis tool [KB5]. Bessey
et al. [15] came to similar conclusions in 2010.

REQ-SetUp How laborious is the setup of the verification tool for the software project
to be analyzed?

REQ-Precision Which language features are covered, with how much precision?

REQ-Assertion Are user assertions supported?

REQ-Enviroment Can the (hardware and software) environment of the program be
simulated?

REQ-Specificity How many incorrect analysis results (false positives and false nega-
tives) occur?

REQ-Information How much information is supplied about detected faults?

REQ-Scalability Does the tool scale in the size and complexity of the checked code,
i.e. does it have sufficiently low runtime and space requirements?

REQ-Incrementally Can analysis be performed incrementally, i.e. in iterations of
increased precision or successive code changes?

REQ-Languages Are multiple programming languages supported?

We will refer to those requirements when describing the tool’s architecture and its
features in more detail. Furthermore, we compare QPR Verify to other state-of-the-art
tools based on these requirements while discussing related work in Chapter 8.

Embedded software follows additional rules that distinguish industrial code developed
for safety critical applications from e.g. web-services or other desktop programs. As
mentioned earlier, developers working on safety critical software have to follow guidelines
like MISRA [4] and in the automotive sector AUTOSAR [3]. Therefore, such embedded
software often contains loops with a fixed number of iterations to guarantee termination
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and restrict complexity of programs. We make use of this by computing a suitable unroll
bound for each such loop. Furthermore, often no dynamic memory allocation is allowed
(e.g., enforced by the MISRA-C standard) to ensure deterministic runtimes of programs.
This influenced the selection of checks implemented in QPR Verify.

4.3 Architecture of QPR Verify

The architecture of QPR Verify is intended to support the criteria from Section 4.2
and to offer an automatic approach ranging over multiple stages: from source code
compilation over preprocessing by lightweight static analysis, encoding and solving, to
the user friendly display of verification results. In the following, we sometimes abbreviate
QPR Verify as QPR.

Figure 4.2: Architectural layers of QPR Verify.

Verification Process. QPR Verify analyses the given source code in the following
stages, depicted on the left part of Fig. 4.2, along the downward arrows:

1. QPR Verify automatically detects properties to be checked by traversing the
abstract syntax tree (AST) of a given C (or C++) program. Currently, this stage
(called Murphy) marks program locations where the program’s behavior might be
undefined and thus run-time errors can occur, as well as all user-defined assertions
(see REQ-Assertion). The tuples of location and properties results in a list of
checks. The term check and its categories currently supported by QPR Verify are
presented in Sec. 4.4.1 in more detail.

2. The program under analysis is then compiled to LLVM-IR. For this, our exten-
sion of Clang additionally emits an IR-level assertion for each check established in
the first step. Operating on LLVM-IR, other languages besides C and C++ that
can be translated to LLVM-IR (e.g. Rust) could easily be covered by LLBMC, too
(see REQ-Languages).1

1We also extended LLBMC to handle rarely-supported constructs such as variadic functions.
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3. To reduce the verification workload, lightweight preprocessing analysis is ap-
plied to the inserted checks (see REQ-Scalability). It performs less precise, but
more scalable checks during compile time to supersede the subsequent BMC checks
(e.g., based on bit-width arguments).

4. In the preparation step, the problem is abstracted and partitioned according to
user-provided settings. A slicing algorithm also incorporating memory abstraction
removes unnecessary instructions. To handle the trade-off between REQ-Precision
and REQ-Scalability, QPR Verify offers different modes of verification, where some
partition the program using structural abstractions presented in Chapter 5. The
user chooses the set of checks to be analyzed, and may opt to enable IR-level
optimizations to increase scalability, see Sec 4.4.2.

5. The code produced in step 3 is analyzed using the bounded model checking
technique implemented in LLBMC. This step may be performed an arbitrary num-
ber of times with different configurations and abstractions, enabling incremental
analysis to increase precision (see REQ-Incremental).

On the right part of Fig. 4.2, the results produced in the previous steps are translated
back to the C (or C++) level and compiled into a verification report consisting of a
list of check results and an interactive graphical presentation of the error traces produced
by LLBMC (see REQ-Information). The error traces are presented as traces within the
source code of the analyzed program, thus hiding all aspects from lower layers of Fig. 4.2
(esp. LLVM-IR) from the user.

4.4 Application of QPR Verify

Besides a GUI-based report, QPR Verify is implemented as a suite of command-line
utilities, facilitating the integration of static code analysis in automated development
workflows. Furthermore, we reduced the effort required to set up the analysis by aiming
to provide a "push button" solution requiring minimal user intervention while still pro-
viding advanced options for experienced users. We will demonstrate the workflow of QPR
Verify step-wise from a user perspective and give insights into development decisions
and features tuned towards industrial application.

4.4.1 Setup and Preprocessing
We describe steps the first three steps from Section 4.3 in more detail. The first, and
often underestimated, step for verification is the set-up of the tool and software project
to be verified.

To meet REQ-SetUp, we implemented an out-of-source configuration framework,
where the compiled program, the configuration and results are saved in machine readable
format into one directory. Thereby, all relevant information is saved at one location and
the user can interact (incrementally) with the solving process, such matching (REQ-
Information) and (REQ-Incrementally). A number of verification approaches, especially
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bounded model checkers like CBMC, regard the whole verification process in-scope and
restrict results to terminal output. File handling is time consuming but provides a more
flexible and incremental form of analysis.

Therefore, the first step of QPR Verify is to create an empty folder and given the
root directory of the software project under verification, initialize the folder for the ver-
ification with QPR Verify. Given this directory or a list of files, QPR Verify then finds
all necessary source and header files to compile the program. We additionally included
a set of standard libraries in QPR that can be referenced when the software under test is
written for a system that substantially deviates from the system QPR Verify is running
on. QPR will use its own implementation of the standard library headers, if the minimal
implementation of such libraries in QPRis better suited.

In QPR Verify, external functions can be either treated as uninterpreted functions,
replaced by a no-op instruction removing the function call or are reported as an er-
ror when called. For uninterpreted functions, we assume that the function has no side
effects and returns a non-deterministic value. Assuming no side effects leads to an po-
tential under-approximation of program traces. Thus, for checks that lie after such an
approximation, a warning is appended to the check result. The user can then verify,
if an implementation for the uninterpreted function has to be provided for a precise
verification. If another behavior is intended, data range specifications (DRS) [111] or
stubs can be added manually. Data range specification are an implemented mechanism
to specify bounds on memory changes and return values produced by functions. These
turned out to be sufficient for many environment and library modeling. Such data range
specifications can be inserted into the software code and are read-in during encoding.

Afterwards, the step we denoted as murphy automatically detects locations and prop-
erties which can lead to undefined behavior and thus run-time errors. In the context
of QPR Verify, we denote the tuple of program location together with the property
that needs to be verified a check. Checks are implemented as an assert intrinsic on the
LLVM level. For a division instruction an intrinsic function call with three parameters
is inserted into the llvm bitcode. The first parameter is an incremented identifier of the
check and the second and third parameter represent the nominator and denominator of
the division. For a division of the constant 5 by a calculated 32 bit integer, here denoted
by ”%6”, the following intrinsic would be inserted before the division instruction.

call void @qpr.divbyzero.i32(i32 2, i32 5, i32 %6) .

Detecting possible vulnerabilities is done by building and traversing the abstract syn-
tax tree (AST) of the given program. We implemented the AST traversal as an ex-
tension of the corresponding functionality of the Clang compiler encompassed with the
LLVM framework. Clang’s AST is well suited to detect program locations that should
be annotated with checks, because very few instructions and arithmetic operations are
summarized or optimized. Thus, Clang’s AST closely resembles the original source code,
while being better suited for traversal.
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Currently, murphy marks program locations where the program’s behavior might be
undefined as specified in the C language standard [78], as well as all user-defined asser-
tions. The check categories currently supported by QPR Verify are:

• Arithmetic overflows: Overflow of signed arithmetic operations such as addition,
multiplication, division, or pre- and post-decrement and -increment.

• Illegal shift operations: Left and right shifts of negative values, shifts by an
amount that is larger than the bit-width of the first operand, and shift overflows
(cf. C99 standard, Sec. 6.5.7).

• Division by zero for the division and modulo operations.

• Type casts: A type cast of a signed integer to a smaller bit-width is implementation-
defined behavior.

• Non-initialized local variables: Reading uninitialized memory locations is un-
defined behavior. (Limited support)

• Array index out of bounds: For arrays, where the bound can be determined
from the declared type, we check for out-of-bound indices.

These check categories match those of the underlying bounded model checker LLBMC
and a more detailed description including an encoding of the check categories can be
found in [113]. The selection of checks is based on feedback from embedded systems
practitioners and the market research mentioned in Section 4.2. For example, the index
for dynamic arrays (an information not provided by C) are not tracked because most
arrays in embedded software are fixed size. Memory is modeled according to the model
of the used bounded model checker, in our case LLBMC [140].

Fundamentally, a check result can be safe, unsafe or indeterminate and may be
further qualified depending on the mode of analysis. Check results that have a potential
to be a false positive (due to abstractions) resp. false negative (due to the unroll limit)
are marked with a conditional flag, i.e. cond.safe and resp. cond.unsafe.

In many cases, such as analyzing undefined behavior in integer-arithmetic expressions
involving only constants, checks can be analyzed efficiently in a small portion of the
syntax tree. This gives rise to our preprocessing analysis. In our implementation of
preprocessing analysis, a check C pertaining to an operation O is said to be safe rsp.
unsafe if a check result for C can be established by obtaining the operands of O via
compile-time evaluation and directly showing the safety of C rsp. a violation of C’s
condition.

Preprocessing analysis, besides performing a compile-time evaluation of constant ex-
pressions, also computes so-called effective bit-widths of expressions and decides checks
based on this information. The effective bit-width is an upper bound on the number
of bits that are relevant in an expression, and is especially helpful in connection with
the C standard’s arithmetic conversion and integer promotion rules. So, e.g., in the two
statements

char a, b; short z = a+b;
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a signed extension to 32 bit is performed on a and b (on a 32/64 bit Intel architecture)
before the addition is executed and the result is cast back to 16 bit. In LLVM, the
following code sequence is generated:

%tmp = sext i8 %a to i32
%tmp2 = sext i8 %b to i32
%tmp3 = add nsw i32 %tmp, %tmp2
%z = trunc i32 %tmp3 to i16

The truncation on the last line would induce a check to be added in our verifier, whether
an overflow can occur on the downcast or not. Obviously, there is no overflow in this
case, which can be proven by pure bit-width arguments.

We thus define the effective bit-width, ebw, for integer expressions e as follows:

ebw(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bw(c) if e is a constant c
bw(x) if e is a variable x
1 if e is a comparison
max(ebw(e1), ebw(e2)) + 1 if e = e1 ± e2

ebw(e1) + ebw(e2) if e = e1 ∗ e2

ebw(e1) + 1 if e = e1/e2

min(ebw(e1), ebw(e2)) if e = e1%e2

ebw(e1) + 1 if e = −e1

max(ebw(e1), ebw(e2)) if e = t ? e1 ∶ e2

min(bw(T ), ebw(e1)) if e = (T )e1

Here, bw(c), bw(x), and bw(T ) are the LLVM-provided bit-widths for constant c, vari-
able x or type T , respectively. Note, that the ebw-computation is performed on the
AST-level, thus the scope of the analysis is restricted to source code expressions with no
information about global variables or memory allocations and assignments.

While our implementation of prepossessing analysis does not improve scalability for
hard verification problems, it does significantly reduce the workload put on the model
checker and yields results much faster. In our experience, more than two thirds of the
checks in industrial code can be analyzed conclusively using our light-weight analysis.
Evaluation results can be found in Chapter 7.

The check insertion, compilation, and preprocessing analysis are all performed by
issuing the two commands qpr murphy and qpr compile on the command line. The
result is a list of checks, where a portion of checks is already verified, leaving checks in the
categories safe, unsafe and indeterminate. These indeterminate checks, representing
harder verification tasks, can then be solved sequentially or in parallel with different
solving strategies.2

2We have implemented an experimental parallel version of QPR Verify based on MPI; first experi-
ments show promising results of increased scalability.
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4.4.2 Solving Strategies and Abstractions

We now describe step 4. and 5. of QPR’s architecture in more detail, presenting different
configuration and solving strategies to verify the checks remaining after preprocessing.
All strategies use LLBMC but they differ in entry points, memory assumptions, encod-
ing optimizations and check activation. In the following, we present the configuration
options with the largest impact on the verification approach.

Loop-Unroll-Bound. The unroll bound k is passed through to the bounded model
checker as the maximal limit for how often loops are unrolled. If the compiler Clang
can infer the maximum amount of iterations a loop is executed, e.g. if the loop bound
is given by a constant or trivial arithmetic calculation resulting in a constant, the loop
is unrolled sufficiently often disregarding the loop bound. For all other cases, especially
if the loop bound is given as a function parameter, read from memory or for infinite
while-loops, the loop is unrolled to the given bound k. As for all approaches based on
bounded model checking, this parameter strongly influences the precision and scalability
of the verification approach. For industrial projects, loops are often either bounded by
a small sized constant or are infinite while-loops for programs that should run endlessly.
While small loop iterations fit the bounded model checking approach perfectly, infinite
loops are difficult to model. In practice, verification of infinite loops is done by tools
checking for liveliness properties [90], while run-time-analysis is performed on a single
or sometimes two loop iterations. For checks that are called inside or after a loop, we
track whether the loop bound is sufficiently large or introduces an under-approximation
of program traces. Thus, if checks are resolved as safe wrt. the loop bound, we mark
them as cond.safe or more precise loop-bound safe, such that the user can incremen-
tally increase the loop bound or judge manually, if the loop bound was sufficient to prove
the safety of the property.

AnalyzeChecksIndividually. This Boolean option classifies whether checks are ver-
ified in groups or individually. Proving that a program P does not contain undefined
behavior at runtime necessitates that all critical program locations, (e.g. additions, di-
vision, etc.) are safe. Therefore, a program aiming at disproving program correctness
can simply search for one unsafe location and report on it. Yet in practice this does not
match the developers workflow, because the developer or verification expert does not
want to rerun the verification tool after every bug fix. To circumvent the termination of
QPR Verify at every unsafe check location, we inserted two alternatives. First, our tool
can still regard all checks in P but continue the analysis upon finding errors. A user can
activate such behavior by setting AnalyzeChecksIndividually=false.

The analysis will continue after an unsafe operation and the assertion for the spe-
cific program location, or multiple program locations if multiple checks fail in a single
verification run, is deactivated. After deactivation of each check QPR Verify saves the
check result for the deactivated check and continues verification. If the configuration
FixPoint is set to false, the analysis of program traces is terminated at a program error,
and subsequent errors on that trace are not reported.
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Figure 4.3: All checks of our program are grouped together and solved incrementally.

While this improves performance, it typically requires another analysis run, as soon as
a program error has been fixed. If FixPoint is set to true, the program trace leading to
the error is truncated. For arithmetic overflows, illegal shift operations and type casts, we
assume wraparounds for otherwise illegal inputs leading to an error. For division by zero
checks, we assume that the result of the division by zero can produce an arbitrary result.
We also assume arbitrary values for non-initialized local variables and for array accesses
exceeding the array bound. Therefore, for all check categories supported by QPR Verify
over-approximations are defined that simulate a safe execution of prior operations.

The verification terminates if the bounded model checker does not find any violations
and returns UNSAT. The final verification result for P is then comprised by the union of
prior unsafe checks and the remaining checks which are resolved as safe. The described
process is shown in Figure 4.3.

Alternatively, the user can set AnalyzeChecksIndividually=true, leading to an individ-
ual verification task for every check. QPR will create an independent verification task for
every property to be checked. For large functions or hard verification tasks, the model
checker may time out, if all checks in a function are encoded into a single formulae.
In such cases, processing checks individually will typically result in a larger number of
successful proofs. However, the run-time may be increased due to repetitive work. Yet
independent verification task can be solved in parallel without any communication thus
counterbalancing additional runtimes when enough computing resources are available.

During the encoding of individual verification tasks, we assume that all operations
prior to the regarded check are safe and apply the truncation of program traces described
above. Therefore, every check can be analyzed individually without being influenced by
prior checks. However, these approximations can potentially lead to false positives. The
described process is depicted in Figure 4.3 for four checks.

In the following, we present a number of configurations and strategies improving scal-
ability, that rely on this individual check handling.
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Figure 4.4: We create an individual BMC instance for every check. Such instances solved
independently while only the results are merged.

EnableSlicing. Given an individual check, QPR Verify can compute a static back-
wards slice with the target being the single assertion representing the check. In theory,
this can also be done for multiple checks, yet the benefits would strongly decrease for
multiple checks, because this would often result in a slice encompassing the full pro-
gram. Our slicing inlines function calls and is thus interprocedural. Yet, our approach
shown below often abstracts function call and thus the property needs to be softened.
We name our level of slicing that is in between intraprocedural and interprocedural as
intermediateprocedural slicing. The computation of this splice is accomplished via a rule
system which recursively marks dependencies (instructions, basic blocks, and functions)
of a slicing target.

In the following, we present the rules listed in Fig. 4.5. Note that in LLVM-IR,
instructions are identified with their result values (this is possible due to the single static
assignment form of LLVM-IR code). We also assume this behavior here, such that, e.g.
in rule (Op), the instructions computing y1, . . . , yn are marked as dependencies, when
x = op(y1, . . . , yn) is dependent on the target.

• The (Target) rule marks the instruction computing the Boolean argument of the
assertion as a dependency.

• The (Op) rule marks all instructions computing an argument of op as a dependency.

• Consistent with memory abstraction, the (Ld) rule marks no dependencies for load
instructions.

• The (Ca) rule, for calls of non-void functions, marks the called function as a de-
pendency, as well as the return instruction of the called function.

• The (Cp) rule handles passing dependencies from a called function’s arguments back
to the caller. If in the called function f one of f ’s (formal) parameters pi is marked
as dependent, then so is the corresponding argument ai in the associated function
call. Parameters of pointer type are ignored and do not result in a dependency of
the respective ai.
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• Rule (Vc) is responsible for handling calls of functions without return values. As
memory accesses are ignored due to abstraction and thus no relevant state change
can occur in a function, a call to such a function can be ignored and results in no
further dependencies.

• The (Phi) rule handles phi instructions and marks the non-basic-block arguments.

• In rule (Rt), return instructions are handled. If a return instruction is a dependency,
so is the returned value (resp. the instruction computing this value).

• Rule (Bx) marks basic blocks as dependency whenever an instruction within the
basic block is a dependency.

• Rule (Fb) similarly marks functions as dependencies, if any of its basic blocks are
dependencies.

• Rule (Bp) handles control dependencies and makes use of the control dependence
graph: if a basic block is a dependency, so are all its predecessors in the Control
Dependence Graph (CDG).

• The last two rules, (CBr) and (UBr), take care of conditional and unconditional
branches. For conditional branches, the condition (resp. the instruction comput-
ing the condition’s Boolean value) is marked as a dependency. For unconditional
branches no further dependencies are needed. In both cases, the control dependency
is handled by rule (Bp), thus no additional dependencies on the branch targets are
needed.

Applying the rules of the system can be handled in a bottom-up fashion following
control and data dependencies backwards. A little care has to be taken for function calls,
but, e.g., giving priority to dependencies of called functions (to compute dependent ai’s)
is a sound strategy.

The dependencies and use-defs chains are extracted from the LLVM IR but are not
complete for memory dependencies. Modeling main memory and accesses to it comes
with a considerable overhead in solving verification problems. A simple way to over-
approximate memory accesses is to assume that each load instruction returns an ar-
bitrary, non-deterministic value. Thus stores as well as address calculations become
irrelevant and can be ignored. While this is a rather coarse over-approximation, it turns
out that it is still sufficient for proving many program properties that do not depend on
memory.

StopEncodingAfterCheck. Another merit of regarding only a single check inside
a program is that we can stop the encoding after reaching the regarded check. This,
seemingly simple, optimization is not implemented in most solvers but can offer notable
scalability improvements, if the check is located in the earlier part of the program under
verification. Stopping the encoding after a regarded check is not always trivial, if the
check is located inside a loop or inside repeatedly called functions.
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T (assert x)
D(x)

(Target)

D(x = op(y1, . . . , yn))
D(y1) ⋯ D(yn)

(Op)

D(x = load p)
(Ld)

D(x = call f(a1, . . . , an))
D(f) D(ret r)

(Ca)

D(pi) D(x = call f(a1, . . . , an))
D(ai)

(Cp)

D(call f(a1, . . . , an)) (V c)

D(ret r)
D(r)

(Rt)

D(x)
D(BB(x))

(Bx)

D(bb)
D(F(bb))

(Fb)

D(bb)
D(predCDG(bb))

(Bp)

D(br c, bb1, bb2)
D(c)

(CBr)

D(br bb)
(UBr)

D(y = phi [x1, bb1], . . . , [xn, bbn])
D(x1) ⋯ D(xn)

(Phi)

Figure 4.5: Rules for computing dependencies for slicing. T (x) means that the object x
is a slicing target, while D(x) means that the object x is a dependency.

For such cases, QPR Verify tracks the start and end of function calls and loop iter-
ations even after inlining and unrolling, similar to what a compiler does e.g. for valid
bracket pairs in a program. The encoding is terminated after the last occurrence of the
assertion and we assume again that the earlier checks do not fail. Stopping the encoding
after the last occurrence of the check is sound, because no later instructions can influence
the verification result due to the SSA form of the LLVM IR on which we encode the
given program.

Optimize-Bitcode. Finally, the user can choose to run a number of optimizations on
the analyzed bitcode. Such optimizations can simplify the bitcode and thus produce an
easier formulae during encoding. We support several LLVM and LLBMC transformation
phases that are targeted specifically at bitcode simplifications listed at [113]. The most
notable of those is called mem2reg, which converts memory references to register. By
rewriting allocas, loads and stores referencing local memory, it creates a ”pruned” SSA
form that is less memory depended. Additionally, in our evaluation, we often run the
instNamer optimization, assigning names to LLVM variables for easier to read precon-
ditions or intermediate results not leveled to C-code.

In later chapters, we present more novel abstraction and refinement configurations
and strategies specific to the aim of according contributions (C1.2) and (C1.3). In our
evaluation in Chapter 7, we demonstrate the relation and experimental advantages of
configuration possibilities.
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4.4.3 Global Analysis.

Figure 4.6:
Global Analysis

The basic mode of analysis with QPR Verify is called global analysis.
It performs the standard bounded model checking approach, where
the program is encoded as a whole.

Let P be the program under analysis and C be a check or group
of checks in P . With global analysis, QPR Verify checks whether C
holds for all execution paths starting at the start of the main func-
tion. If there is an execution path violating C, the check result is
set to unsafe. If C is shown to hold for all execution paths start-
ing at main, the check result is set to (globally) safe. However,
if some execution path was truncated during analysis, e.g. due to
a loop bound having been reached, the check result for C is fur-
ther qualified corresponding to the reason for the path truncation.
The analysis can be performed by setting the entry point (default value is the function
“main”) and then starting the analysis.

4.4.4 Error Traces and Result Display
Simplified verification results are presented to the user as a tuple that assigns every
check an unambiguous check result introduced in Section 4.4.1. Checks that are verified
as unsafe or in case of abstractions as cond.unsafe have to be analyzed and in general
fixed by the developer. Therefore, it is important to provide the user with enough
information to identify and understand the reported error. One advantage of bounded
model checking compared to other approaches like abstract interpretation is that they
provide exact variable assignments through their underlying SAT model. LLBMC is
capable of lifting such SAT model to the LLVM IR. While the LLVM IR can be read
and understood by experienced user, it does not provide a direct translation back to the
original C-code. Thus, QPR Verify transforms error traces on the IR level to C-code,
such that a developer can analyze the error on the code-basis he or she is working on.

An error trace produced by LLBMC can be described as a list of LLVM instructions
Lt. To transform a list of LLVM instructions into a program trace in the original C-
code, information about relations between LLVM instructions and C-code fragments is
needed. Branching decisions and function calls, can be derived through variable as-
signments. Therefore, the core information for every instruction is (1) the location
of included variables in the original software code and (2) values assigned of those
variables. To extract such information, we utilized LLVM debug information. If de-
bug information are activated, information about the original program is maintained
in LLVM metadata. Next to top-level information, various debug information is in-
serted into the LLVM IR as intrinsic function calls [55]. For a local variable, the in-
trinsic void @llvm.dbg.declare(metadata, metadata, metadata) provides the ad-
dress containing the original column and row of declaration of the variable. void
@llvm.dbg.value(metadata, metadata, metadata) then provides information about
changes like new value assignments to that variable.
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Computing such debug values is sufficient to calculate a mapping from LLVM variables
to C-variables and thereby calculate an error trace containing variable assignments and
branching decisions representing a single program trace leading to a failed check. Given
such information the developer can marginally faster understand (and hopefully fix)
the error. With the support of the student assistent Calvin Urankar, we developed
an interactive graphical report consisting of general source code information, chosen
configuration options during verification, check results and an interactive representation
of error traces on the C-code level. The user interface allows to step forwards and
backwards through the trace, similar to a source level debugger. This client can be found
at https://github.com/MarkoKleineBuening/DissertationTools and is depicted in
Figure 4.7.

Figure 4.7: QPR client providing a project overview (center), check information (left)
and detailed error traces (right).

4.5 Conclusion
In this chapter we presented QPR Verify, a static analysis tool based on software
bounded model checking with a focus on industrial application. We devised require-
ments for the verification of industrial embedded software and implemented QPR Verify
accordingly. Based on the bounded model checking approach, the tool produces precise
verification results, while providing a range of configurations, abstractions and solving
strategies for a scalable analysis. New features like a fast preprocessing analysis, solving
strategies and the support of a wide range of C features have been implemented to fulfill
industrial requirements. Providing additional information for checks, like error traces,
in an interactive GUI should make the tool applicable for a wide user base.

To be applicable to industrial projects, the greatest remaining challenge is the size of
software and thus the scalability of our approach. Therefore, the next chapter introduces
a modularization to further scale our here presented approach.
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Chapter 5
Automatic Modularization

Techniques

5.1 Introduction
After introducing QPR Verify and its user-friendly and configurable design to set-up
and verify larger projects, this chapter specifically addresses the scalability issue of soft-
ware verification by bounded model checking. We present a modularization approach
partitioning a program into smaller modules that can be verified individually. Our fully
automatic modularization is based on newly developed structural abstractions and scales
the approach to large software projects. The content of this chapter presents contribu-
tion C1.2 and is based on research published in [KB4].

Program
P' Checks

[KB4]

Modularization

 Environment
Abstraction

Function Call
Abstraction

Modules
{Mc}

Figure 5.1: Modularization for our modular software verification approach.

Software verification with techniques like bounded model checking are making con-
tinuous progress, but at the same time the size of systems embedded in aircrafts, cars,
or mobile phones grow even faster. Modern cars are currently at around 100 MLoC and
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are estimated to go up to a total of 300 MLoC in the next years. Even current audio
control software in a car can have several millions LoC and is thereby hardly verifiable
by most if not all approaches. For bounded model checking, a program under verifica-
tion has to be encoded into a logical formula. Even when ignoring time constraints, the
memory requirements to encode millions of lines of code is not attainable by state-of-
the-art systems. A well-known approach to increase scalability of software verification
is to partition the program into smaller modules that can then be solved individually.
Such modularization typically requires formalization of interfaces and dependencies be-
tween modules. Under the headline of compositional verification or assume-guarantee
reasoning several approaches for modular verification have been proposed in the past
[36, 66, 73]. Such work, however, generally does not cover the aspect of how to generate
modules; instead it relies on manual approaches for partitioning. There exist frameworks
that automate part of the modularization task, e.g., by creating necessary preconditions
automatically through an incremental learning algorithm [37], or by deducting modules
from program design [60]. However, these approaches do not provide a framework for
fully automatic verification of large systems. The same applies to modular interactive
approaches like [12, 123], where the user has to manually write interface specifications.
The number of lines of specification that has to be written for one line of source code
varies depending on approach and application. Typical factors range between 2 for spe-
cialized [124], 5 for SMT-based [71] or up to 20 for interactive theorem prover approaches
[83]. It is apparent that this is not feasible for projects with millions of lines of code.

Contribution C1.2. To automatically verify large projects, an automatic modulariza-
tion is needed. Therefore, this chapter presents a formal definition of program semantics
for LLVM and general modularization. We develop two main modularization approaches
in the context of bounded model checking using two different types of abstraction. First
optimizations and refinements of these abstraction are also introduced. To argue over
the quality of a modularization, we define mandatory and desirable properties for an
automatic modularization in the context of software verification. The modularization
approaches are implemented into QPR Verify and the evaluation in Chapter 7 shows a
significant increase in scalability through the presented abstractions.

Structure. We first introduce definitions of program semantics and modules in Sec-
tion 5.2 to then describe automatic modularization approaches based on abstractions in
Section 5.3. In Subsection 5.3.1, we define a general model for program modularization,
followed by four concrete modularization techniques in the context of bounded model
checking using two different types of abstractions and two refinement possibilities that
are discussed in Chapter 6 in more detail. We then define mandatory and desirable
properties of an automatic modularization procedure for software verification in Section
5.3.2. Finally, we give a short conclusion in Section 5.4.
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5.2 Theoretical Foundations
We base our modularization on the in Section 2.1.1 introduced LLVM IR. In the follow-
ing, we define a program trace semantics for LLVM IR and thereupon a modularization
of programs in LLVM IR for software verification. This allows a sound definition of mod-
ules and a clear overview of state space over-approximations. The introduced definitions
and their description in this section correspond to our definitions published in [KB4].

5.2.1 Program Semantics of LLVM

We define the semantics of an LLVM IR program as a set of program traces. A trace T
is a (possibly infinite) sequence of program states T = (s0, s1, . . . , sn, . . . ), and the trace
semantics of a program encompasses all traces the program can take. We denote the set
of all such traces by TP . The set S of states is defined as

S = (V ar → V al) × (Adr → V al) ×Loc∗ .

A state s = (v,m, l) is thus a triple consisting of a variable-value-map v, a representation
m of the memory content (including stack variables generated by LLVM’s alloca), and a
representation l for a program location, which is a sequence of triples t = (f, b, i) encoding
the call stack. Each triple consists of a function f , a basic block b and an instruction
number i, consecutively numbering the instructions within basic block b, starting at 0.
The first element in sequence l is the stack top, which we also denote by ltop, or ltop(s),
if we want to denote the topmost frame in the location stack of state s.

We assume that V ar = GV ar ∪ LV ar is the set of program variables, split into local
and global variables; LV ar = Loc∗ ×Name characterizes a local variable consisting of
a call stack and a name; GV ar = Name denotes a global variable (which, in LLVM,
is always a pointer variable); V al = Int ∪ Adr is the set of variable values, consisting
of integer variables and pointer variables1. To simplify access to both local and global
variables by name n in a given call stack l, we define a variable’s stack-related name nl
by

nl =
⎧⎪⎪⎨⎪⎪⎩

n if n ∈ GV ar
(l, n) if n ∈ LV ar

Each trace has to start in an initial state s0 ∈ I, and the effects of LLVM operations
is defined via transition relations τ ∶ S → P(S). We define transition relations for
instructions and functions. As the transition relation may be non-deterministic, each
state can have multiple successors (next-states).

1For simplicity, we assume that integer and pointer variables have the same bit-width, and that
all program variables are of type integer. We also identify pointer values with integers, such that
V al = Adr. A more refined model would differentiate between different data types stored in memory
(including floating-point). In practice, a byte-oriented memory model is often used [114].
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For an instruction I and a state si = (v,m, l) we have, e.g.,

τx=load p(v,m, l) = {(v[xl ←m(v(pl))],m,next(l))}
τstorex,p(v,m, l) = {(v,m[v(pl)← v(xl)], next(l))}
τz=x <op> y(v,m, l) = {v[zl ← v(xl) <op> v(yl)],m,next(l))}

τbr c,bb1,bb2(v,m, (f, b, i) ∶ l) =
⎧⎪⎪⎨⎪⎪⎩

{(v,m, (f, bb1,0) ∶ l)} if v(cl) ≠ 0
{(v,m, (f, bb2,0) ∶ l)} if v(cl) = 0

τy=call g(x1,...,xn)(v,m, l) = {(v′,m, l∗) ∣ v′ ∈ V }
where l∗ = ((g, bbEntry,0) ∶ l),

v∗ = v[pl
∗

1 ← v(xl1)]⋯[pl
∗

n ← v(xln)],
V = {v∗ updated with local variables set to

arbitrary values in the topmost stack frame},
and pi are the actual parameters of the called function g

τrety(v,m, t ∶ l) = {(v[ret(y)← v(y(t∶l)],m,next(l))}
where ret(y) = the return var. in the call instr. at loc. t

τx=nondet t(v,m, l) = {(v[x← i],m,next(l)) ∣ i ∈ V al}

Here, f[x ← y] stands for updating the function f at location x to a new value y;
next ∶ Loc∗ → Loc∗ ∶ ((f, b, i) ∶ l) ↦ ((f, b, i + 1) ∶ l) computes the next location within
the top-most basic block of the call stack (“:” shall denote the list constructor) for a
non-terminator instruction.

We define the set of initial states I by

I ={(v,m, l) ∣
v(g) = address of global variable g for all globals
v(xl) = arbitrary value for local variable x
m ∶ any function Adr → V al, respecting initializers for globals
l = (main, bbEntry,0) }

A trace T for an LLVM program P is then defined as a sequence s0, s1, . . . of states
with s0 ∈ I and si+1 ∈ τInst(si), where Inst is the instruction at ltop(si), i.e. the program
location of the top-most stack frame. The semantics of program P is the set of all such
traces.

In our modularization approach, we also want to define traces that start at the entry
of a particular function up to the execution of the last instruction in this function.
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We thus define trace sets Tf for functions f in a program P :

Tf = {(si, . . . , sj) ∣ (s0, . . . , sn, . . . ) ∈ TP and
si = (v,m, (f, bbEntry,0) ∶ l) and
sj = (v′,m′, (f, bbret, kret) ∶ l)
j > i is the smallest index such that (f, bbret, kret)
is the location of a ret instruction
for some v, v′,m,m′, l, bbret and kret }

5.2.2 Modularization
There are several possible views on what a module in a program is. We thus want to give,
in a first step, a very general definition of a module. Later, we will identify properties that
are mandatory in the context of software verification and present desirable properties of a
modularization suiting verification techniques leading to accordingly refined definitions.

The uniform definition will serve as the foundation of properties, statements and
approaches for modularization. The static analysis of software and the definition of pro-
gramming errors are always closely related to the compiler framework the program is
based on. In the context of bounded model checking, we relate closely to the described
compiler framework LLVM and developed the definitions in close relation with the ad-
ditional advantage that we do not have to discuss the diversity of language features of
programming languages like C and C++.

We define a module as a fragment of code and thus create a definition of a program
parallel to the trace semantic on source code level. Let a function and global variables
be defined as by standard notions in LLVM.

Definition 4 (Program). A (LLVM) program P = (F ,G) is a tupel of a non-empty set
of functions F = {f1, ..., fn} (n ≥ 1) and a set G = {g1, ..., gm} (m ≥ 0) of global variables
that may be referenced in the functions fi.

We do not demand that there is a unique entry point in the program (a main function)
nor that the program is “closed” in the sense that all functions called in F are contained
in F .

A module is then just a subset of the functions and global variables in a program.

Definition 5 (Module). Given a program P = (F ,G) and sets F ′,G′ with ∅ ⊂ F ′ ⊆ F
and G′ ⊆ G, MP = (F ′,G′) is a module for program P .

Note that a module is itself a program according to our definition. Such a broad defi-
nition allows for a number of different modularization approaches and is thus beneficial
for the exploration of diverse strategies. After introducing decomposition approaches,
we will restrict modularizations by introducing properties in Section 5.3.2. We assume
that program properties that are supposed to be verified are included in the program in
the form of assert instructions as described in chapter 4. Thus, a module “inherits”
the checks from the program that it is a part of via assertions present in F ′.
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In some decompositions that we present in the following, we do not require that all
checks are inherited from the original program. Instead we sometimes will allow that
only a subset of the inherited assertions are present in a module, i.e. we only inherit
checks for a subset of the functions F ′.

5.3 Decomposition of Programs
We will introduce two modularization approaches which partition a program P into a
set of modules M1

P , . . . ,M
n
P such that a bounded model checker can derive verification

results about program P by verifying each MP individually. Dropping parts of the
program in a module of course loses information. In our modularization approaches we
do not require to add specifications about missing parts of the program. Instead, we
want to make sure that a module represents an over-approximation (i.e. abstraction)
of the original program in the sense that the set of program traces that we check for a
module are a superset of the traces present in the original, complete program.

In this case, it is to note that the modularization also has to decide where to insert
checks. The approach can only activate checks in certain modules or part of modules
as long as all program checks are verified by the sum of verifying all modules. We base
our modularization on abstractions that are necessary to decompose the program into
verifiable subsets.

5.3.1 Structural Abstractions
Abstractions are an important technique to simplify verification tasks. Most often ab-
stractions are over-approximations of variable values (such as in abstract interpretation
[40]). The abstractions that we are interested in are different and of a “structural” kind.
We abstract function calls and replace them by over-approximations of the function be-
havior, or we ignore the calling context of a function in a larger program. In applying
these structural abstractions, we distinguish between abstracting the program “bottom
up”, where we abstract away called functions, and “top down”, where we abstract away
the calling context.
We will now describe our two abstraction approaches in detail and present first refine-
ment ideas.

5.3.1.1 Function Call Abstraction

The first approach abstracts away calls to functions outside of the chosen module MP .
This process is also called havocing function calls. At first, assume thatMP only contains
one function f and all global variables that are either read or written in f : MP =
({f},G′). We will later explain how to meaningful extend the initial module size of MP

to more then one function f . To verify MP , we only keep checks (assertions) in function
f , and abstract away all functions calls in f . When abstracting a function call without
any further knowledge, an over-approximation of its behavior has to be assumed. Next
to the return value (if existent), memory content (including global variables) can be
altered by the called function, and thus have to be assumed to be arbitrary.
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Therefore, to abstract away a function call in the context of LLVM means to set the
return value and the memory content to nondeterministic values (nondet). Referenc-
ing the trace semantics of a program, the abstraction updates all transition relations
τy=call f∗(... ) where f∗ is not part of the function set of MP . The transition relation for
such a call to f∗ is replaced by the following:

τy=call f∗(x1,...,xn)(v,m, l) = {(v[yl ← i],m′, next(l)) ∣ i ∈ V al,m′ ∈ (Adr → V al)} .

I.e., the variable that takes the value returned by f∗ can be an arbitrary value and
the memory in the follow-up state can be an arbitrary function Adr → V al.

The updated transition relation τ allows a higher number of possible program traces
and is thus a clear over-approximation of the program semantics. Therefore, updating
τ guarantees soundness of the approach. The cost of such an over approximation is the
possibility of false positives – error reports where there actually is no error. The amount
of possible false positives positively correlates to the number of additionally allowed
program traces through undefined values. Calculating the exact number of additional
traces when abstracting function calls is not efficiently computable. Therefore, when
refining such abstractions, we assume that all abstracted function calls are similar in
reference to additional program traces.

Given the module containing only function f , we thus abstract all function calls from
f . Yet, to verify our moduleMP , we have to model the calling context of f . To precisely
include the calling context of f , the approach includes any function with a (transitive)
call to function f into the module MP , together with accessed global variables. Given
the call graph of P , F → G indicates that there is a call from function F to function G (in
program P ). Therefore, our module has to include all calling functions of the module’s
function, i.e., if G ∈ M and F → G, then F ∈ M . We call such a module caller-closed.
Modules generated by function call abstraction are caller-closed and thus contain the
main function or a top-level API function, which is used as an entry point for analysis.

Our slicing algorithm presented in Section 4.4.1, can be utilized to improve the cre-
ation ofMP by removing function calls that do not contribute to a precise calling context
of f and are thereby not needed to verify the checks in f . Such the slicing algorithm
has the potential to minimize the module size.

Figure 5.2 shows the modularization of a simple program with four functions apply-
ing the described abstraction. The green arrows are representing the entry point for
verification. The triangles are representing the checks that are verified and the boxes
represent the modules MP . The dotted boxes are parts of the program that are likely
to be removed by our slicing algorithm dependent on the implementation.

Summarizing the first abstraction, we see that verifying a module created in this
way encompasses fewer functions and thus increases scalability compared to a global
analysis. Yet, for functions deep in the call graph the module size can still be too large
and the abstraction can lead to false positives. In particular when checking for memory
properties, the complete havoc of the heap at each call to a function outside of the
module can lead to false error reports.
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Figure 5.2: Modularization into four independent modules based on abstraction of called
functions. The entry point for every module is the main function and the abstraction of
called functions starts depending on the location of the assertions.

The memory content does not need to be fully abstracted at every function call.
Larger projects often contain logging functions or output functions that print the status
of the modeled state machine. Such functions do not have a relevant return value or
affect the memory state of the program. Utilizing the LLVM framework, we can check
whether a function is clearly side-effect free. If a function does not write in memory, we
do not need to abstract the full memory assignments but can just remove this function
call from our program model.

To further refine the abstraction, we do not have to abstract function calls in f but
can abstract function calls deeper in the call graph of f . Given our function f , our
initial approach abstracts away every function call in f . Given the call graph of P every
function g ∈ G with f → G is abstracted. We write F →i G, with i ∈ N+, iff there is a path
from F to G in the call graph of length i. Our initial function call abstraction havocs
all function with depth i = 1. We can increase this havoc-limit to meaningfully increase
our module size. Setting the havoc-limit to 2, our approach does not abstract function
calls in f but only function calls in the callees of f . We are thereby able to increase the
module size and refine the abstraction of our modularization. Setting the havoc-limit to
the call-depth of the program leads to a whole-program analysis. The havoc-limit can be
seen as a trade-off parameter between precision and scalability. Our evaluation showed
that increasing the havoc-limit increased precision but produced too large modules fast,
because of the often exponential growth of the module for each added function depth.

5.3.1.2 Use Postconditions of Abstracted Functions

As a refinement that does not increase the size of modules but refines the formulae rep-
resenting the possible program traces, we propose to insert postconditions for abstracted
functions. One can create postconditions of called functions and replace the call of a
function outside a module with the function’s postcondition instead of fully abstracting
the function. While general postconditions about function behavior might be used, they
are computationally costly to calculate and often need manual input to fully represent
the analyzed function. Therefore, we focus here on memory-related postconditions that
result from an automatic analysis of memory locations that are written in functions ab-
stracted away. The modularization itself stays the same as in the earlier approach, only
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the abstraction is refined and thus the transition relation update of τ to minimize the
number of possible false positives.

As a first refinement step, we analyze memory accesses in the called function f∗ with
the aim of reducing memory locations we have to set to nondet. A rather simple analysis
over the LLVM IR gives us all accesses of pointer and global variables in f∗ and further
called functions. After gaining all relevant memory changes, we have to obtain points-to
information so that we can havoc only those memory locations written to by possible
executions of f∗. This points-to information can be gained through a scalable and flow-
sensitive alias analysis like e.g. described in [70]. The alias analysis has to be scalable
to be run on large programs without negating the scalability benefit. Furthermore, a
flow-sensitive approach takes the program flow into account and ignores the later-on
called functions providing the necessary level of precision for our postconditions.

We denote the set of memory locations that have to be abstracted by AbsM . We
then update the transition relation for a call instruction to a function f∗ outside of the
module τy=call f∗(... ) to

τy=call f∗(x1,...,xn)(v,m, l) = {(v[yl ← i],m′, next(l))
∣ i ∈ V al,m′(a) = j with j ∈ V al, if a ∈ AbsM ,

and m′(a) =m(a) for all a /∈ AbsM}
Again, it is clear that the update of τ leads to more traces of P and is thus an over-

approximation guaranteeing soundness.

Alias-based postconditions were generated and inserted into QPR Verify during a
student research project with Moritz Laupichler under the authors supervision in the
context of the research seminar "Praxis der Forschung" at the KIT.

Choosing a fitting alias analysis approach meeting scalability and precision require-
ments was the first challenge. The aim of our modularization was to scale the bounded
model checking approach to millions of lines of code, thus the alias analysis needs to be
scalable. Furthermore, the algorithm needs to be struct- and array-sensitive to prevent
falling back to over-approximation when faced with arrays and structs that often appear
in embedded C-code.

Through a survey of state-of-the-art alias analysis approach, we utilized and adjusted
SeaDsa [68], which presents a scalable, context-sensitive approach computing detailed,
struct- and array-sensitive points-to graphs for functions. The alias analysis of SeaDsa
was integrated into QPR Verify and experiments were conducted to evaluate the pre-
cision gain and access scalability. The experiments showed that the integrated alias
analysis was not scalable beyond around 200 KLoC and did not bring any precision
mertis for smaller projects. Because of the scalability issues of tested alias analysis ap-
proaches and no clear advantages for smaller projects, postconditions as a refinement
step will not be further regarded in this thesis and our evaluation in Chapter 7. Yet
together with a scalable alias-analysis postconditions are a promising refinement step
and will be discussed in future work in Chapter 9.
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5.3.1.3 Call Environment Abstraction.

The first approach abstracted the program bottom up by regarding function calls. The
next approach address the problem by abstracting the caller of module MP . We again
start with the assumption that the function set of MP consists of one function f and
the global variable set G′ is created accordingly. We again insert checks only into f .
In contrast to the earlier approach, we do not abstract the transition relation τ of
instructions, but the initial states I of the analysis. Thus we abstract the call context
and the input parameters of f . We thereby do not have to include all functions of the
call graph prior to f and can thus modularize the problem. The abstraction of the initial
states I ′ for f is done by setting

I ′ = {(v,m, l) ∣
v(g) = address of global variable g for all globals
v(xl) = arbitrary value for local variable x for all local vars.
v(plk) = arbitrary value for parameter k of function f
m ∶ any function Adr → V al

l = (f, bbEntry,0) }

and considering function f as the start of the program. Note that we do not initialize
global variables here, as their values may have changed before entering function f .

The new set of initial states is a superset of possible states that would be calcu-
lated during a normal program execution. Thus, the abstraction is again an over-
approximation guaranteeing the soundness of the approach. For MP to be verifiable,
the approach has to include all called functions in MP because no abstraction is defined
and the transition relation τ needs the exact function semantics. The approach itera-
tively adds called functions while also adding all global variables that are needed. We
call such a module M callee-closed if all call instructions in M invoke functions that
are already part of M , i.e. if F ∈ M and F → G, then G ∈ M . The modularization is
demonstrated on the same abstract program in Figure 5.3. The notations are equal to
the figure above.

Compared to the over-approximation of function calls, which can happen any number
of times inside a module, the abstraction of the initial function call over-approximates the
state only once. Furthermore, such an analysis can match user concepts. If a function
is proven correct using this abstraction, the function is safe from error in every call
environment. Such statements are recommended for library functions or functions that
are accessible throughout the system. We later refer to the verification of such modules
as call-environment analysis or local analysis.

In reality developers can argue against such an abstraction by stating that the input
necessary for the error can never occur in the current program setting. Thus, we present
an refinement idea collecting more information and restrictions on the abstracted input.
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Figure 5.3: Modularization into four independent modules based on abstraction of call
environment. The entry point for every module is the function containing the assertion.
Through the abstraction of the call environment no prior functions have to be included.

5.3.1.4 Generate Preconditions for Entry Function.

Similar to the previous refinement, we refine the abstraction using additional conditions
that hold when the entry function is called. We create preconditions to restrict possible
inputs to minimize the amount of false positives. The overall concept and idea is pre-
sented here before two formulated and implemented precondition approaches are shown
in more detail in Chapter 6.

Generating exhaustive preconditions for a given function is a research field of its own.
The automatic generation of precise preconditions for large programs is currently not
feasible in reasonable time. Preconditions that represent all possible call environments
would have to encapsulate the complete prior program execution and are thus very
costly. Nevertheless an automatic generation of such preconditions is possible using
coarse approaches like abstract interpretation with an interval domain to generate value
ranges for possible inputs.

Nevertheless, the idea we chose is to create preconditions not based on the prior
program execution but based on the erroneous checks of our function f . First, we
perform an analysis without preconditions possibly resulting in failed assertions of two
kinds: unsafe and cond. unsafe. Globally unsafe checks are such checks that will fail
independent of the input, a simplified example would be the statement (x = y/0). The
unsafe status is given to checks for which an error is found that dependents on input
values of f (parameters and memory state). The precondition generation only regards
cond. unsafe checks. For every check, we create a precondition representing the input
for which the error arises.

Bounded model checking can create an exact error trace for a failed assertion in the
abstracted program. Using a symbolic execution approach can generate preconditions
by following constraints backwards from the location of the failed assertion up to the
start of function f . The transition relation τ is therefore inverted and symbolically
executed. The symbolic execution is built upon the earlier executed bounded model
checking attempt. The program is already inlined and the loops are unrolled up to a given
bound. Furthermore, the exact error trace gives restrictions on branching possibilities.
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After the creation of such a (partial) precondition for a trace, the function has to be
re-verified and the procedure to be repeated until all traces that lead to a failed assertion
are covered. The amount of traces are assumed to be small because simple errors that
occur on all traces are found earlier and marked globally unsafe while only cond. un-
safe locations, which only appear for a subset of traces, are checked for false positives.
The conjunction of the resulting constraints is negated to form the precondition for f
and thereby represents all input values for which there is no error in the moduleMP . Af-
ter generating such an over-approximating precondition for a check, the precondition is
inserted into the initial state formula for module MP . The approach iteratively chooses
all modules containing the precondition and verifies the module while deactivating all
internal checks. If the precondition holds, we have proven that the check is safe. If the
precondition does not hold, the process is repeated iteratively until we reached the main
function or abord due to time or memory constraints.

Such a refinement of the call environment abstraction is discussed in Chapter 6 in
detail. There, we develop two kind of preconditions representing module inputs leading
to failed checks.

5.3.1.5 Extension and combination of abstractions.

The two modularization approaches and their refinement ideas were described by starting
with a single function in which checks are inserted. As mentioned earlier, the approach
works the same way when starting with modules of bigger size. These enlargements of
modules reduce the amount of abstractions and thereby the amount of false positives
generated. The cost of such larger modules is the scalability of the approach. For the
function call abstraction modules can be meaningfully extended through a deeper ab-
straction of function calls. An extension method for the call environment abstraction
will be presented in Chapter 6.

Furthermore, a combination of the above abstractions is possible to improve scalability
or to refine the verification. For programs with a deep call graph the inclusion of either
the functions calling the module or all the called functions can still lead to formulas which
are too large to be handled by an SMT solver. Thus, we can separate the program into
three parts based on the call graph to further improve scalability: Top level modules
are verified using the postcondition abstractions and bottom level modules are solved
using the precondition abstraction. For modules found in the middle part of the call
graph both pre- and post-conditions are necessary. Another possibility is to run the
different approaches one after each other to refine the analysis result step wise. For
every analysis only the checks which are marked as cond. unsafe or undetermined are
rechecked using a different abstraction.

5.3.2 Properties of Modularization
We want to define properties that every module and the total modularization should
strive towards. We divide them into mandatory properties that are necessary to guaran-
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tee the soundness of the verification approach and success properties that every module
should strive towards for a high probability of optimal modularization for verification.
These success properties can often be represented by optimization problems that are
again NP-hard and thus for efficient applications approximations will be necessary. A
shorter description of these properties can also be found at [KB4].

5.3.2.1 Mandatory Properties:

Given a program P and a modularization MP . Following properties have to hold for
every valid modularization.

Total-Coverage: The union of all modules has to cover the whole program, and
each check has to be included at least once in every function. Every function has to
appear in at least one module and thus the union of all functions included in modules
represent the complete function set of P . The same is not required for the set of global
variable symbols, because of, e.g., unused symbols that do not influence the program.
These are not advisable, because, if included, they are encoded and they optimized out
of the program leading to unnecessary overhead. Yet they do not influence the sound-
ness of verification tasks. When verifying a program it is easy to see that all functions
and all checks must be at least once verified and that not only from the perspective of
one module (one entry point) but from every possible input call. Later on it is shown
that this is given by the total coverage property together with the third property, the
information principle.

Single-Entry: Every module Mi ∈ MP should have one single entry point from
which the verification starts. For verification methods like bounded model checking the
encoding of the program has to start at one entry point. When verifying a program with
multiple entry functions, for example a library with a number of API functions, several
verification jobs have to be run. These jobs can be run independently and also in paral-
lel. In our case, we regard them as disjoint verification jobs and thus choose to enforce
the single-entry property. Otherwise every smart verification approach would solve the
module in two separate and independent runs which would present an inner modular-
ization which we want to make explicit. To make the modules larger and to simplify
the human understanding of the modularization, one could summarize modules with
more then one entry point. Consider, e.g., a SAT solver that has been integrated into a
larger program. The API has three interface methods of addClause(), removeClause()
and solveFormula() and one can argue that a manually created module would be the
complete SAT solver. However, the verification approach would analyze every interface
call, including deeper function calls, according to the call site in the larger program as
single modules. Thus, such a summary would benefit the human understanding, but not
the performance of verification tasks.

We assume that each module possesses a unique function Fe, the entry point function,
which has no callers in the module.
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Information-Principle: All information that is needed for the sound verification of
the module is included in the module itself. Meaning that all functions and global vari-
ables that are written to or read from are included in the verification task. Furthermore,
the input of the entry point function or an abstraction of it has to be included.

A module that is callee-closed and caller-closed would result in the whole program
P . Therefore, over-approximations of the program behavior is needed to generate a
meaningful modularization. Over-approximation in contrast to under-approximations
are needed to guarantee soundness.

Computable: The modularization should be computable in polynomial time with
respect to the size of the input program. The separation of graphs into a fixed num-
ber of partitions that have minimal amount of edges between them is closely related
to our partitioning. Edges in this case can be regarded as call or data dependencies.
The so-called k-partitioning problem itself is NP-hard and thus one can assume that
also precise algorithms for the efficient modularization of a program will have a similar
complexity. Most likely, as in the case of the k-partitioning problem, we have to use
abstractions and approximations of an ideal modularization that are computable in rea-
sonable time. Otherwise the modularization negates the scalability advantage for the
aspired verification.

5.3.2.2 Success Properties:

Given a program P and a modularization MP . The following properties should be
striven towards by every efficient modularization.

Solvable: The size and complexity of a module should be manageable by the chosen
verification approach, in our case bounded model checking. The module size that is
manageable by a given approach depends on the programming style and the design of
single functions. The scalability of bounded model checking approaches limits at pro-
gram sizes of about 10-100 KLoC of C code represented by at maximum several hundred
functions. On the other hand there are examples where a single function containing only
a few lines of code is not manageable in reasonable time [11].

Minimal Dependencies: The second success property addresses the amount of
dependencies between modules and thus the quantity of pre-/post-conditions or nondet-
abstractions generated. We distinguish between call and data dependencies based on a
graph structure. Let there be a node for every function in P , and let edges describe
either call or data dependencies, then a directed edge in graph GP from function f1 to
function f2 represents one of the following: (1) function call from f1 to f2, (2) memory
read in f2 after a memory write in f1 at the same location. The modularization of a
program summarizes nodes and thereby also incoming and outgoing edges into modules.
The minimal dependencies property states that the overall number of edges between
modules should be as low as possible.
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It should not be the aim of any modularization to minimize the dependencies for large
programs. For a modularizationMP = {P}, there would be no dependencies, butMP

would not be solvable in reasonable time. With equal intention one should be careful
optimizing only scalability by analyzing every function by itself, which would lead to
the maximal number of dependencies between the modules. One has to find a balance
between these two properties. Current practical implementations for modularization
have a tendency towards regarding every function by itself. Furthermore, while the
sizes of modules can vary considerably, so can the complexity of the included functions.
Finding heuristics for optimal module sizes considering both properties is part of future
work.

5.4 Conclusion and Future Work
In this chapter, we defined a denotational program semantics for LLVM as well as notions
for modularization of LLVM programs. Based on these notions, we developed four
fully automatic modularization approaches. The discussion of mandatory and success
properties for a modularization in the context of software verification is a foundation
for further future modularization approaches. The implementation and evaluation of
our presented modularization will be presented in Chapter 7 and shows the scalability
improvements of our introduced abstraction approaches.

Through call environment and function call abstraction, our modularization can in
theory scale to programs of arbitrary size. Yet introducing to many abstraction with
modules including only precise information about a single function leads to a high num-
ber of false positives. To reduce the number of possible false positives, the next chapter
will present a refinement of the call environment abstraction introduced in Section 5.3
through three refinements steps with a focus on automatically generated preconditions.
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Chapter 6
Refinement through Enumerative

and Learned Preconditions

6.1 Introduction
This chapter extends on Chapter 5 by refining the abstractions introduced by the auto-
matic modularization. We present contribution C1.3, which is based on work currently
in preparation for publication [KB3].

Modules
{Mc}

[KB3]

Refinement

Caller
Inclusion

Enumerative
Preconditions

Learned
Preconditions

Unknown

Safe Unsafe

verify

Figure 6.1: Modularization for our modular software verification approach.

Fully automatic modularization as presented before utilizes structural abstractions of
program behavior and through over-approximations can divide the program with quite
general module specifications. This leads to a fast and modular analysis but is prone
to false positives (error messages where there are no errors). We concentrate on the
call environment abstraction, which fully abstracts the input parameter and memory as-
signments before the call of our entry function. Structural abstractions are novel in the
context of whole-program verification, thus there are currently no refinement strategies.
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Yet, preconditions are often utilized to model program or function inputs. E.g. Design
by contract [116] systematically requires users to provide preconditions, postconditions,
and (loop) invariants. In Section 5.1, we established that manual specifications are not
practical when verifying large projects and thus need an automatic approach. In con-
trast to current approaches, where preconditions are aiming at specifying the complete
function behavior, our goal is to automatically generate preconditions that given a check
to be verified specify the input leading to undefined behavior and thus an error. Trough
this description of erroneous inputs, we can refine our modularization and reduce the
amount of false positives introduced by our modularization without counterbalancing
scalability.

Contribution C1.3. In this chapter, we present an approach that refines structural
abstractions for C-programs. We incrementally increase the size of modules to exhaust
the limits of bounded model checkers. Furthermore, we refine abstractions through
automatically generated preconditions. Based on an enhanced output of the bounded
model checking approach, we generate enumerative preconditions that represent erro-
neous input (including memory) for the entry function of a module. These possibly
under-approximated preconditions are then generalized by a tree-based learning ap-
proach. By substitution of function calls with preconditions, the approach can refine the
verification task and thus minimize false positives. The approaches are implemented and
evaluated on real-world software projects, including SQLite with nearly half a million
lines of code. The generated preconditions are human-readable and can thus be exam-
ined and adjusted.

Structure. In Section 6.2, we give an overview of our approach showing three refinement
steps and their application on a small example. The first refinement step, which extends
modules through the inclusion of callers is described in Section 6.4. Afterwards, Section
6.5 present two refinement steps based on preconditions. Summarizing enumerative
counterexamples from the bounded model checker, leads to enumeratrive preconditions
in Section 6.5.1.2. While 6.5.2, generalizes the bounded model checking output leading to
learning based precondition. Finally, we give a conclusion of our refinement approaches
in Section 6.6.

6.2 Bird’s Eye View of the Method
We present an overview of the method on a simple example given in Fig. 6.2. Func-
tion top calls functions mid1 and mid2, which in turn call function bot. Modulariza-
tion through call environment abstraction, as presented in Section 5.3, will produce
four modules M1 = {bot}, with checks C(bot), M2 = {mid1,bot}, with C(mid1),
M3 = {mid2,bot}, with C(mid2) and M4 = {top,mid1,mid2,bot}, with C(top). Our
goal is to verify that the addition x = x + 2 in function bot does not overflow (assuming
32-bit integers). In our modular approach, we start by verifying M1. The bounded
model checker returns unsafe, because both x and y are unrestricted inputs assumed to
take arbitrary values.
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void bot ( i n t x , i n t y ) {
i f ( y >= 0 && y < 100) {

// a s s e r t (x<2147483646)
x = x + 2 ;

}
}

void mid1 ( i n t x , i n t y ) {
i f ( x > 0) {

x = x − 1 ;
bot (x , y ) ;
}

}

void mid2 ( i n t x , i n t y ) {
i f ( y > 100) {

bot (x , y ) ;
}

}

void top ( i n t x , i n t y ) {
i f ( x > 0) {

x = x − 1 ;
mid1 (x , y ) ;
mid2 (x , y ) ;

}
}

Figure 6.2: Example for bird’s eye view of the method.

By inclusion of callers, we can refine these arbitrary values by taking the calling
functions of bot into account. Our approach creates new modules Mmid1

1 = {mid1,bot}
and Mmid2

1 = {mid2,bot}, checking C(bot) with entry point functions mid1 and mid2,
respectively. The bounded model checker recognizes that Mmid2

1 is safe, because of
the restriction on y, but Mmid1

1 is still unsafe. Thus, a third new module is created
M top

1 = {top,mid1,mid2,bot}, checking C(bot) with entry function top. Note that mid1
has to be included, for M top

1 to be verifiable. The bounded model checker can prove the
safety of the arithmetic operation in bot but had to include all functions of P in module
M top

1 . It is more efficient and more scalable to not include functions but preconditions
representing the input space for which the check is unsafe to the module.

Enumerative preconditions are based on the counterexamples generated by the
bounded model checker. For function bot, the approach would generate negative data
points like (x = 2147483647 ∧ y = 1). In a refinement step, this input assignment is
negated and added as an assumption to the SMT formulae that is rechecked through
incremental SMT-solving. Such, the algorithm can enumerate all input assignments lead-
ing to an error. In our example, 200 (2 values for x times 100 values for y) data points
would be generated, which combined represent the enumerative precondition. While
enumerating 200 input assignments takes under a second for such a small example, it
is often not feasible for larger modules with more parameters. Therefore, we enumerate
a smaller amount of assignments producing a possibly under-approximated precondition.
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Learned preconditions generalize the under-approximated precondition. In addi-
tion to the enumerated error data points, we generate inputs that are guaranteed to
be safe by negating all assumptions and assertions in the program to be checked by
the bounded model checker. Then, through a featurizer and synthesizer based on the
ID3-algorithm [134], we iteratively generalize the data points leading to a complete (or
over-approximated) precondition. For our example, the learning process produces the
complete precondition ((x ≠ 2147483647 ∧ x ≠ 2147483646) ∨ y > 99 ∨ y < 0).

Through substitution of function calls of bot with the generated precondition, we
can refine the verification without enlarging the module size. The algorithm includ-
ing callers is reused, but this time with function bodies substituted by preconditions.
Therefore, Mmid1

1 = {mid1, pre(bot)} and Mmid2
1 = {mid2, pre(bot)}, checking C(bot)

are not containing the function bot but the much smaller representation of erroneous
inputs. WhileMmid2

1 would again be verified as safe, the approach would generate a new
precondition for Mmid1

1 because of the new restriction on x. This precondition is then
substituted in function top leading toM top

1 = {top, pre(mid1)}. For the final verification
of C(bot), the function call of mid2 can be ignored, because it was already classified as
safe and has no relevant return value or memory writes influencing the function call of
mid1.

6.3 Recapitulation of Modularization
This section briefly summarizes the introduced notations and statements about modules,
functions, and checks to facilitate understanding of the refinements presented in the next
sections.

We consider programs in a procedural programming language, i.e. the program con-
sists (mainly) of a set of functions, and functions may call each other. To automatically
check for errors, program statements (instructions) may be annotated with correctness
conditions, which are called checks. More formally, we can write P = {F1, . . . , Fn} for a
program P consisting of functions Fi. The set of checks C in a program P can be parti-
tioned according to the functions Fi due to the unambiguous assignment of instructions
to functions. We write C(F ) to denote the checks annotated to instructions in function
F . Thus C = ⋃̇F ∈PC(F ).

In order to check the properties of a program modularly, we will, on one hand, parti-
tion the set of checks C. On the other hand, we try to prove checks not on the complete
program P , but only on a fraction M ⊆ P of it. By ensuring that the fractions cor-
respond to over-approximations of the program behavior, we can guarantee that a “no
error” answer on a fraction also holds wrt. the complete program. The converse does not
hold, however, such that in case of an “error” answer a refinement step is needed. We
will also say modules instead of program fractions and denote the functions and checks
of a module M by F (M) and C(M), respectively. Typically, we use as checks C in a
module M either (a) all checks occurring in M , i.e., C = ⋃̇F ∈MC(F ); (b) exactly those
checks of one particular function F ∗ ∈ M , i.e. C = C(F ∗), or (c) exactly one check c,
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i.e. C = {c}. The functions of a module should not be arbitrarily selected, as that would
make it hard to guarantee the over-approximation property. We, therefore, make use
of the call graph to specify closure-properties of a module. Consider the function call
relation →P of a program P . (We might drop the index P if it is clear from the context.)
F → G indicates that there is a call from function F to function G (in program P ). By
→+, →∗ and ↔ we denote the transitive, reflexive-transitive and symmetric closure of
→, respectively. For a module M , we now demand that (a) if F1, F2 ∈ M,G ∈ P and
F1 →∗ G →∗ F2 then G ∈M ; and (b) that the vertex-induced subgraph of a module M
is weakly connected, i.e. F1 ↔∗ F2 for all F1, F2 ∈ M . Moreover, we call a module M
callee-closed if all call instructions inM invoke functions that are already part ofM , i.e.
if F ∈M and F → G, then G ∈M . We call a module caller-closed if all calling functions
of a module’s function are already included in the module, i.e., if G ∈ M and F → G,
then F ∈ M . We assume that each module possesses a unique function Fe, the entry
point function, which has no callers in the module.

In this chapter, we will mainly deal with callee-closed modules. These form over-
approximations of the program behavior, as they are contiguous fractions of programs,
where simply the calling context of the entry point function Fe is dropped - denoted by
us as call-environment abstraction.

6.4 Module Extension by Caller Inclusion
We define a verification task as a triple vt = (fe,m, r), fe being the unique entry point
function, m being the module containing the properties to be checked and r represent-
ing the verification result, with r ∈ {safe, cond.safe, cond.unsafe, unsafe, unknown}.
Potential false positives are summarized as cond.unsafe, they are mostly generated
by over-approximations of program behavior, e.g., by abstracting the call environment.
Results that so far have been shown to be safe, but are potentially false negatives, are
considered cond.safe; they are often produced by under-approximations like the loop-
bound restriction of BMC.

For simplicity of exposition, we from now on assume that every module contains ex-
actly one check to be analyzed. Conceptually, if there are several checks in one function,
we can create copies of the module with separate checks.

As the starting point of our verification, we assume a set of callee-closed modules and
a modularization as shown in the example in Fig. 5.3. We generate a set of verification
tasks, V T = {vt1, ..., vtm}, one for each module, where the result is set to unknown. We
then run our BMC on each verification task, updating the results. Those tasks resulting
in safe or unsafe are completed and need not be considered further. For the remaining
tasks V T ′ (with results unknown, cond.safe and cond.unsafe) a refinement step is
needed. In both cases we refine the abstraction introduced by modularization and add
callers of the respective module’s entry point function. Note that for cond.safe results
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we could also choose to increase the loop bound, but extending the call environment is
also a viable alternative, as it often introduces additional constraints to derive smaller
loop bounds. Thus, for such vti = (fe,m,cond.unsafe), we include functions that are
calling fe, denoting the set by Callers(fe) = {f1, ..., fn}. In order to maintain the single-
entry-point property of a module, we then define a set of n new refined verification tasks,
taking each caller of fe in turn into account. To ensure that the module is callee−closed,
all called functions of the caller fi are added to the module. For these new verification
tasks we have mi = {m ∪ {fi} ∪ callees(fi)}, the entry point function is unchanged.

After verification of the n extended modules (for each vti) by the bounded model
checker, these n results, say rj for 1 ≤ j ≤ n, have to be summarized. If there is one
rj = unsafe, the property is violated and the overall check is unsafe. Otherwise, as long
as there is a sub-result marked as abstracted (cond.*), we again search for all callers
and reiterate the process until (1) there is a unsafe result, (2) all results are safe or (3)
the limitations of the underlying BMC is reached and the verification runs into a time-
or memory-out and returns unknown.

The presented approach exhausts the limitations of the given encoding and solving
process implemented in the bounded model checking approach. For programs with
a relatively small call depth like APIs or libraries, the approach can reach top-level
functions and thus prove the overall safety of checks. Furthermore, the extension can
remove false positives and false negatives by refining the call environment of functions
containing the check. While this approach incrementally increases modules to the solver’s
limitations, it does not optimize the maximal problem size the underlying bounded model
checking approach is able to verify. Therefore, we have to minimize the module to be
encoded.

6.5 Refined Modularization through Preconditions
Through preconditions, we are able to include callers of entry-point functions in our anal-
ysis without steadily increasing the size of the module. After creation of a precondition
that represents the input space at fe leading to an error, we can substitute function calls
of fe with the generated precondition. Generally, encoding the precondition simplifies
the problem, because it represents only constraints over input parameters in reference
to a specific check, instead of the whole function. We present a novel approach that
first creates enumerative (sometimes under-approximated) preconditions based on failed
proof attempts (counterexamples) Afterward, we employ a tree-based learning approach
to generalize the precondition to a complete (or over-approximated) precondition based
on the enumerated data points.

6.5.1 Generation of Enumerative Preconditions based on BMC

We introduce our approach of generating enumerative preconditions by example:
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Example 1. The module contains a single function example1. The input space is defined
as I = {x, y,∗c,∗g}.

char ∗g = nondet_ptr ( ) ;
void example1 ( i n t x , char y , char ∗c ) {

i f ( c [ 1 ] == ’ z ’ && ∗g == ’ a ’ ) {
x = x + 2 ; // p o s s i b l e a r i thmet i c over f l ow

}
}

If the if-statement is true, the addition x = x + 2 leads to an undefined overflow
for INT_MAX and INT_MAX − 1. Verifying example1 results in a task vt with vt.r =
cond.unsafe, so, for refinement, we generate counterexamples, in turn on the SMT,
LLVM IR, and, finally, the C-code level. Both during encoding and solving of the
formulae the underlying BMC-approaches optimize and eliminate variables. We have
to track these optimizations but can also benefit from them. If an input parameter is
not part of the formula or the SAT-model, it is not relevant to the erroneous execution
and can thus be removed from the input space. In our example, variable y would be
eliminated. We obtain a counterexample consisting of two functions A ∶ (V ar → V al)
returning a value (either constant or pointer) for each program variable and Mem ∶
(Loc → V al) returning the value saved at a given address location in memory.1 Special
handling is needed for pointer values during refinement, as we want to exclude values
stored in memory rather than particular addresses used for storing them. We thus refine
only pointer goals (for primitive, non-pointer values), but not memory addresses.

6.5.1.1 Excluding Values

For refining the counterexample we gather relevant elements of the input space Im of
module m and its entry-point function fe, which are: parameters of fe, global variables
and memory locations accessed inm. Excluding the complete counterexample would lead
to a massive under-approximation. Finding a minimal conjunction of values to exclude
could be computed by following def-use chains backwards from the check’s variables,
including memory-based dependencies (via LLVM IR’s loads and stores), but this
would be extremely expensive. We therefore over-approximate the use-def chain leading
to under-approximated preconditions. Our approach distinguishes between non-pointer
and pointer parameters. For non-pointer parameters, the approach excludes the value
assigned by the counterexample, for all parameter but those which have been optimized
out by the solver. For pointer parameters, we first list all loaded addresses in m. We
minimize this set of loaded locations by including only locations that are loaded prior
to the validation check, by excluding reoccurring load instructions and concentrating on
the first occurrence of a memory location. For direct loads, like char or integer pointers,
we are able to enquire first the address and then the value stored at that address from
the module created by the SMT solver.

1We assume memory accesses occur only to allocated memory.
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For indirect loads to struct or array members, we check additional parameters like
index and type of the pointer, such that we are able to exclude values for struct and
array members instead of the address of the overall struct. Given the set of relevant
elements, we divide them into non-pointer (denoted by en ∈ Inm) and pointer (denoted
by ep ∈ Ipm). Due to single error points given by the counterexample, we only use the
= or ≠ relations in our preconditions. Given functions A and Mem, as introduced in the
previous subsection, we generate the following precondition:

pre(Im) = ¬
⎛
⎝ ⋀
en∈In

m

en = A(en)∧ ⋀
ep∈Ip

m

ep = A(Mem(ep))
⎞
⎠
.

For our Example 1, the relevant input space is Im = {x, c[1],∗g} removing y and handling
the array access for ∗c. A preliminary precondition would then be:

pre(Im) = {¬ (x = 2147483647 ∧ *g = ’a’ ∧ c[1] = ’z’)} .

6.5.1.2 Enumerative Preconditions

A single bounded model checking run creates a partial precondition (also called single
error data point). By adding the partial precondition to the SMT-formula of the module,
we can exclude this particular assignment and generate more counterexamples. The
effort for re-checking can be minimized by utilizing incremental SAT/SMT-solving. As
long as the BMC approach is able to generate more counterexamples, the precondition is
not complete, thus we refine the under-approximation of the precondition iteratively until
the precondition is complete or a given bound is met. In every iteration, we exclude single
values that are guaranteed to generate an error and can thus never over-approximate
the precondition.

Definition 6 (Enumerative Precondition). Given a bound k for the number of iterations,
the enumerative precondition is created by:

pre(Im) =
k

⋀
i=1
prei(Im) .

For our Example 1, the approach generates the following complete precondition after
two iterations:

pre(Im) = {¬ (x = 2147483647 ∧ *g = ’a’ ∧ c[1] = ’z’)∧
¬ (x = 2147483646 ∧ *g = ’a’ ∧ c[1] = ’z’)} .

Disregarding time and memory limitations, enumerative preconditions guarantee com-
plete preconditions as long as the bound k is chosen big enough. In practice, choosing
a large enough k might be prohibitive, especially if the number of variables in Im is
large. Thus the enumerative approach might not be sufficient to generate a complete
precondition. Nevertheless, enumerative preconditions can be deployed to find bugs and
can give a human user an idea of which inputs lead to an error.
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Refinement of loop bounds for bounded model checking. Bounded model check-
ing is safe wrt. to a given loop bound. Most model checker calculate loop bounds and
unroll the loop accordingly. For cases where the bound can not be calculated they un-
roll the program to a user-given bound b. Model checker can recognize cases where the
loop bound was not sufficient and thus a check is not marked as safe but as cond.safe.
These conditions can be refined by preconditions over loop constrains and bounds. If
the loop bound could not be calculated it is often given by function parameter or read
from memory. Stating that the parameter or value in memory has be less then the given
loop bound of the program creates a precondition that can be checked and refine the
potential false positive.

6.5.2 Learning General Preconditions from Data Points
For some examples, the enumerative approach would need billions of iterations for a
complete precondition. Therefore, we implemented a learning approach that can gener-
alize from data points to the relevant input space that has to be excluded. The approach
generalizes preconditions by learning from data points generated by both erroneous and
error-free verification runs for the module. In our implementation, the preconditions are
human-readable and are parsed directly into C-code.

Our technique is based on a white-box teacher black-box learner approach, as for
example presented in [58], the main difference being that the teacher will be handled by
our static-analysis tool LLBMC. Compared to dynamic testing approaches this brings
three advantages: (1) Modules can be verified without needing to be executable. (2) A
static-analysis technique like LLBMC typically finds more error points than testing. (3)
LLBMC can serve as a data-set generator, reliably providing inputs for both successful
and erroneous executions.

From this data set, a featurizer extracts features, classifying sets of data-points with
characteristics. The synthesizer refines these features to a Boolean function, resulting
in the minimal number of features that suffice to represent the data set. The result
is the precondition that applies to the enumerated data points. This cycle continues,
until the bounded model checker is not able to find any erroneous data points, imply-
ing completeness, as well as data points resulting in a successful execution, implying
maximality.

6.5.2.1 Enumerating Data Points with BMC

Additionally to the presented approach to generate enumerative preconditions (called
negative data points here), the learning approach needs positive data points represent-
ing the input space for error-free executions of the module. Otherwise it would over-
approximate the precondition such that assume(false) would always be a valid option.
To generate positive executions, we negate the disjunction of checks and the conjunction
of assumptions and cover special cases, where the assertions are in branches. If there
exists an assertion in one side of a branch, we have to generate a failed assertion in the
other side of that branch and thereby offering the solver to find a program execution
where the assertion holds.

71



Figure 6.3: Architecture of the static precondition learner

This assertion is then added to the conjunction of negated assertions. Through this
extension, LLBMC is able to generate both positive and negative data points for the
learning approach.

6.5.2.2 Featurizer

The task of the featurizer is the extraction of characteristics from the data-set provided
by LLBMC. All features combined should be able to represent the relevant properties
for preconditions. Figure 6.4 presents this technique.

The approach of feature extraction is based on the algorithm implemented in the tool
PIE by Padhi et al. [127]. Initially the algorithm considers a set of random sample values
that are classified as program failures or successes. Then a conflict group is defined as a
set of differently classified data-points which can not be distinguished because they are
represented by the same valuation of current features. As long as such a conflict group
exists, the current features do not sufficiently describe the data-set and a new feature
has to be determined and added. Such a feature is determined by iterating over existing
features from a predefined feature pool.

We enhance [127] by dynamically expanding the feature pool on demand. The feature
pool is defined as a set containing Boolean combinations of relational formulae. Ev-
ery atomic formula consists of variables, constants, comparison operands {<,>,≤,≥,=,≠}
and arithmetic operations {+,−,∗,÷}. The feature pool is initially considered empty. If
no conflict resolving feature exists in the current feature pool, it is extended by more
complex features, continuing until a conflict resolving feature has been found. We de-
fine the complexity of a feature by two different parameters: The term-depth and the
function-depth. Term-depth defines the number of arithmetic operations in a feature.
The feature x > 0, for example, has a term-depth of zero, x > 2 ∗ y a depth of one and
x > 2∗y + z a depth of two. Function-depth is defined as the number of atomic formulae
in a feature.
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The feature x > 0 for example is composed of only one atomic formula, thus its
function-depth is one. The feature x > 0 ∧ x < 10, consists of two atomic formula,
concluding a function-depth of two.

Example 2. We consider function divide from stdlib.h. Division by zero and division
of INT_MIN by −1 lead to undefined behavior and are treated as errors.

#in c l u d e <s t d l i b . h>
div_t d i v i d e ( i n t numer , i n t denom) {

div_t r e s u l t ;
r e s u l t . quot = numer / denom ;
r e s u l t . rem = numer % denom ;
re tu rn r e s u l t ;

}

The approach generates the feature denom = 0 in the first iteration. After running the
synthesizer and realizing that the feature is not strong enough to generate a fitting pre-
condition, it adds the feature denom = -1 and then in the third iteration the feature
numer = -2147483648.

Figure 6.4: Architecture of the featurizer

In principle, such featurizers are able to generate preconditions when provided with a
complete data set. However, the featurizer alone is much less scalable than an approach
in which the precondition generation is extended by a Boolean learning processes, the
synthesizer. The featurizer is restricted by a given parameter limiting the size of regarded
conflict groups.

6.5.2.3 Synthesizer

After resolving all conflicts from the data-set, the selected features suffice to separate
the data-set into correct classes. But the feature set is not necessarily minimal. Imagine
the featurizer learned the two features x < 5 and x < 6. Here, x < 5 implies x < 6, making
the second feature redundant.

We use the synthesizer to create a decision tree on the features in order to represent
their structure and relations. As many previous precondition learning techniques [5, 135]
did, we apply the ID3-classification algorithm [134] to learn decision trees.
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The ID3-algorithm is an entropy-based classifier. First, the entropy H of the complete
data-set S is calculated. Then, the information gain of each feature regarding the data
set is computed in order to determine the feature with the highest information gain.

This feature is selected as the root node of the decision tree, and the algorithm is
applied recursively, considering only the leftover features and dividing the data-set into
two subsets: Subset 1 contains all data-points for which the feature with the highest
information gain is true, and Subset 2 all data-points for which this feature is false. The
recursion terminates, when the decision tree is able to classify every data-point from the
data-set correctly. We can transform this decision tree into a precondition by traversing
every path from the root to a leaf. For each path, we build a conjunction of the nodes’
features where a feature is negated if its node is left by a No edge. The disjunction of all
paths leading to a success leaf then represents the precondition guaranteeing a successful
program execution.

For Example 2, our approach generates the decision tree and the precondition in three
iterations as shown in Figure 6.5.

A: First iteration B: Second iteration C: Third iteration

Figure 6.5: Decision trees created by the ID3-classification algorithm

(denom ≠ 0 ∧ numer ≠ −2147483648)∨
(denom ≠ 0 ∧ numer = −2147483648 ∧ denom ≠ −1)

The precondition excludes all divisions by zero as well as integer overflows resulting from
dividing INT_MIN with −1.

Such preconditions are inserted directly into C-code via assume statements that are
placed at the beginning of the regarded function. The precondition can still be incom-
plete, if the sampling does not represent all relevant inputs. Thus, the precondition is
strengthened by another run of the bounded model checker LLBMC generating more
data points. Generally, the approach as shown in Figure 6.3 is able to iteratively re-
fine the precondition with new data points until it’s complete. If time-limitations are
reached without concluding a complete precondition, the algorithm returns the latest
over-approximated precondition.
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The performance of the approach depends on the quality of data points generated by
LLBMC as well as the order and relevance in which features are chosen to represent
the data. Given a formula containing the program containing the current precondition,
the underlying SAT-solver can produce data points with varying entropy. For an error
space of 0 < x < 100, the solver can return x = 1, x = 2, x = 3 or x = 1, x = 99, x = 15,
as data points for three consecutive runs. In our experience, the solver samples values
quite randomly from the error space. The influence of activated heuristics and specific
decisions of the SAT-solver on the sampling quality is part of future work.

6.5.3 Subsumption of Preconditions

The enumerative and the generalized preconditions can be applied to refine the modu-
larization without massively increasing the size of verified modules. Similar to the caller
inclusion, we extend the module. However, instead of including the original entry-point
function fe, we substitute the function call of fe with a generated precondition, thereby
omitting the encoding of fe and all successively called functions. The precondition is
inserted as an intrinisc function call (similar to inserted checks). The parameters of
the function call are equivalently kept as input parameters for the new intrinsic call. If
there are multiple function calls of fe, each call is substituted. If fe has a return value
it is generally ignored and assumed to be an undefined value. This leads to an over-
approximation in case the return value influences input parameters of later function calls
of fe and thereby the preconditions. This case only occurs if there are multiple calls of
fe or the function is called inside a loop. In the current implementation such cases are
excluded and no precondition substitution takes place. While merging results of different
callers, the algorithm tracks if the precondition is under-approximated (enumerative),
thus regarding only result transitions to unsafe, over-approximated (over-generalized),
regarding only safe checks or complete.

6.6 Conclusion
We presented a refined modularization approach based on bounded model checking and
precondition learning. Given a modularization that divides a program into smaller mod-
ules by fully abstracting the call environment of functions containing checks, we refined
this abstraction by first extending the module size through caller inclusion before gen-
erating preconditions representing input space that leads to erroneous execution of the
module. Based on counterexamples from the BMC approach, we generated (under-
approximated) enumerative preconditions and then generalized these preconditions uti-
lizing an ID3-based learning approach. The preconditions can be successively pushed
through the program leading to a more precise verification. The preconditions are user-
readable and can be examined and extended by the user. The evaluation shows the
potential to verify large projects and to reduce both false positives and false negatives
significantly through caller inclusion and preconditions.
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Currently, the refinement leads to significant overhead in verification time. Including
callers, splitting modules, gathering enumerative preconditions and the ID3 algorithm
for learning preconditions take additional time. Writing and reading preconditions to
and from memory as well as module splitting has the largest influence on runtime. This
can be minimized through a parallel verification of modules and a database supporting
effective handling of thousands of checks. Furthermore, we aim to investigate the impact
of precondition simplifications and better integrate the precondition-learner, function-
pointer handling and function call abstraction into QPR Verify.
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Chapter 7
Tool Demonstration and Evaluation

This chapter illustrates the application of our modular bounded model checking approach
with QPR Verify for the verification of real-world applications. Furthermore, we present
an extensive evaluation based on three industrial software projects. We will demonstrate
the usability and scalability of our approach on programs between 2000 to 400k lines of
code not including external libraries.

7.1 Tool Demonstration
The application of QPR Verify was first described in [KB5]. As mentioned in Section
1.2, the implementation of QPR Verify has not been done by the author alone. Specif-
ically, procedures described in the set-up phase have been previously implemented but
were not published. The tool including documentation are installed on a virtual ma-
chine 1 additional instructions and information can be found at https://github.com/
MarkoKleineBuening/DissertationTools.

We will follow Figure 3.1 (Chapter 4) of our verification approach and distinguished
between Set-Up, Modularization and Refinement. Additionally, we shorty describe the
global analysis and the possibility of incremental analysis with QPR Verify. Design and
development of features and functionality of QPR Verify were described throughout
chapters 3, 4, 5 and 6. Here, we will give the reader an idea how to practically apply
modular bounded model checking with QPR Verify to real-world applications. This the-
sis does not aim to present implementation details, especially those in regard to C++
and LLVM features.

QPR Verify is implemented in C++ and has to be applied as a command line tool. It
supports operating systems based on UNIX like Linux and mac-OS as well as Microsoft
Windows.

1Link to VM: https://baldur.iti.kit.edu/qpr/QPR-Artefact-2021.ova
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7.1.1 Set-Up
The first step of every verification process is to initialize an empty folder for the ver-
ification with QPR Verify. In this initial folder all further information, configuration
decisions and results will be placed in machine and user readable format. Given the root
directory of the project to be verified, a verification task is set up with the command

qpr init <root-directory> .

After initialization, we have to add those program files to the verification project that
should be verified. We can add all program files that can be found in the root-directory
of our project with the command

qpr find-source-files .

Alternatively, the user can list all program files that he wants to include and add them
by

qpr add-source-files <files> .

For larger projects compile commands and options need to be specified. Most common
options are include directories or values for constants describing the machine environ-
ment. These options can either directly be given in a compilecommands.xml file or added
via the command

qpr add-compiler-option <option> .

Given the files under verification, together with potential compile options, QPR Verify
can perform check insertion, compilation and the preprocessing analysis by issuing the
two commands

qpr murphy

qpr compile .

At this point, QPR Verify created the bitcode file bitcode.bc, of the code under verifica-
tion and inserted checks. Furthermore, it created a list of all checks in the file checks.xml.
Some of which are already verified by the preprocessing analysis and marked with a check
result.

To further verify the program, there are a number of different configuration and solving
strategies available. Next to the configurations discussed in Section 4.4.2, options like
TimeOut:<seconds> and the output format of program traces (XMLTraces<bool>) can
be set. Configuration options apply for the whole project and are set by

qpr configure-project <name>:<value> .

As a final step before applying solving strategies, the bitcode can be optimized by a
number of transformation passes with the command

qpr optimize-bitcode <list of transformation pass names> .
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At this point of the analysis, the software project under verification is set-up. The
configurations can be later adjusted according to the solving strategies.
Global Analysis As mentioned in Section 4.4.3, the whole-program analysis of QPR
Verify is called global-analysis. Verification of the whole program necessitates a single
entry-point function for encoding. The global-analysis can be executed by setting the
entry-point and then starting the analysis by executing the following commands:

qpr configure-project EntryPoint:<functionName>

qpr analyze-globally .

The global-analysis assign a verification result to every check created by the murphy
command. In an optimal setting every check would be either safe or unsafe. In case of
under-approximations produced by truncating program traces through the given loop-
bound, the check result loop-bound safe is chosen. If the program is too large to
be encoded or the underlying SMT solver does not comes to a conclusion the check is
marked as unknown.

The check results are stored into the file checks.xml. This file can be read-in to create
a GUI representation or accessed by a subsequent analysis run.

7.1.2 Modularization
As presented in Chapter 5, our approach partitions the program to increase scalabil-
ity. All checks that are nor definite (safe, unsafe) can be rechecked utilizing different
abstraction techniques.

7.1.2.1 Call-Environment Abstraction.

The abstraction of the call environment presented in Section 5.3 allows QPR Verify to
partition the program into smaller modules. In QPR this analysis is called local-analysis,
because every check is verified in it’s local environment.

Using local analysis greatly reduces the verification’s computational effort. However,
since the semantics of function calls are taken into account (but not their correctness
properties, i.e. their checks), local analysis is still an interprocedural analysis and may
require considerable resources for large programs. The analysis is simply started by a
single command and no entry points have to be specified:

qpr check-all-functions-locally .

The approach iterates through all functions in P and starts the analysis with a function
F as the entry point. The call-environment (input parameter and memory) of F are
over-approximated by setting them to undetermined values. The analysis only verifies
checks that are located within F , but still takes called functions within F into account.

The check results are assigned analogously to the global analysis. However, for checks
that are verified as unsafe, we have to regard the over-approximation of the environment
and thereby the possibility of false positives. Therefore unsafe checks are classified as
cond. unsafe.
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7.1.2.2 Function-Call Abstraction.

If the calling context should remain precise and the abstraction of function calls is pre-
ferred one can choose the call abstraction analysis of QPR Verify. The call abstraction
analysis abstracts away calls to functions outside of the chosen entry point function f .
As described in Section 5.3, the analysis only keeps checks (assertions) in function f , and
abstract away all function calls that exceed a user defined call depth (called havoc-limit).
When abstracting a function call without any further knowledge, an over-approximation
of its behavior has to be assumed. Next to the return value (if existent), memory content
(including global variables) can be altered by the called function, and thus are assumed
to be arbitrary. The function call abstraction analysis can be started by configuring the
havoc-limit and then starting an analysis.

qpr configure-project HavocLimit:<positive number> ,

qpr check-all-functions-with-call-abstraction .

Due to the over-approximation of function calls, the check results are assigned similar
to the local analysis; unsafe checks are classified as cond. unsafe.

7.1.2.3 Combined Abstraction.

As described in Section 5.3, both abstraction techniques can be activated at the same
time. Applying both, function call and function environment abstraction, leads to a
partition of the program into modules consisting of a single function. Given the program
P = (F,G), the approach generates an individual module for every function f ∈ F and
over-approximated both the environment the function is called in and every function call
in f . This combined analysis is the most scalable approach but leads to a high number
of false positives. It can be seen as a first analysis that successfully verifies checks that
can be proven as safe in a small function context.

The combined abstraction analysis can be started by performing a local-analysis with
an active havoc-limit set to 1.

qpr configure-project HavocLimit:1

qpr check-all-functions-locally .

The verification of modules containing a single function is currently the most scalable
approach implemented into QPR Verify. Still there are checks that can not be verified.
For large or complex functions the SMT solver can time-out. In practice these functions
have to be manually partitioned or rewritten for verification.

At this point, checks are classified into the five categories unsafe, safe, cond. un-
safe, loop-bound safe and unknown.

7.1.3 Refinement
While the modularization verifies most checks, there is a high chance that additional
program traces introduced by the abstraction are not reachable in the original source
code. Potential false positives are represented by the check category cond. unsafe.
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In Chapter 6, we introduced three main refinement steps to minimize false positives.
The refinements assume a prior local analysis. The introduced call environment abstrac-
tion by the local analysis is incrementally refined.

The first refinement incrementally increases the module size by adding callers of the
entry-point function to the module. As it is typical for any verification tool, our un-
derlying bounded model checker LLBMC builds a call graph to traverse function calls
during encoding. To efficiently find callers, we added backwards edges creating a bidi-
rectional graph. Therefore, callers can be automatically and efficiently found. If there is
a single caller, the caller function is added to the module and if there are multiple caller
functions, the approach splits the module for each additional caller. The first refinement
step can be started by the following command:

qpr check-all-jobs-by-callers .

The command can be called multiple times to incrementally include additional callers
higher up the reversed call graph. If only a single verification task, containing for example
only a single check, should be refined, the user can issue the following command:

qpr check-job-by-callers job:<id> .

The second refinement step creates enumerative preconditions based on failed checks
in a module. The approach can be run with grouped or individual check handling. Yet
preconditions generated for multiple checks are often more difficult to generate. The
number of enumerated data points representing an input leading to an error can be
given by the parameter precondition-number:<uint>. If this number is greater zero,
QPR Verify creates enumerative preconditions during every local analysis. To refine a
prior analysis, one has to rerun the analysis with a given precondition number. During
precondition generation the enumerative preconditions are classified as either complete or
under-approximated. QPR Verify is able to distinguish between these precision levels by
checking if an additional bounded model checker run would still produce an cond. un-
safe result or if the generated preconditions completely encompass the erroneous inputs.
As long as preconditions are under-approximated no cond. unsafe can be classified as
safe due to potentially missing inputs leading to an error that are not included in the
generated precondition.

Setting the entry-point function to the callers of our initial function and substituting
the function call can be done by the command qpr check-all-jobs-by-preconditions.
So to refine existing checks, the user can issue the following commands:

qpr configure-project precondition-number:<uint>

qpr check-all-functions-locally

or qpr check-all-jobs-by-callers

qpr check-all-jobs-by-preconditions, .
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Again single jobs can be refined through preconditions by manually choosing a job id
for a given check and running the command:

qpr check-job-by-precondition job:<id>.

The generalization of preconditions through a tree-based learner that is described
in Section 6.5.2 is not directly implemented into QPR Verify. During the Praxis der
Forschung project with Johannes Meuer, the student wrote a separated tool that has
not yet been integrated into QPR Verify. Currently, only single verification jobs can
be refined through a precondition learner. The user has to navigate into the targeted
job folder. There he can start the precondition learner that takes the compiled pro-
gram bitcode.bc as an input. To run the precondition-learner the number of positive
(pos=<uint>) and negative (neg=<uint> data-points have to be specified as well as
the size of the conflict group (conflict=<uint>. The following command creates the
generalized precondition that can again be read in by QPR Verify.

precgen bitcode.bc function-name=<name>

neg=<uint> pos=<uint> conflict=<uint>

QPR Verify automatically detects generated preconditions and does not distinguish
between enumerative and learned preconditions. The substitution is again performed
by:

qpr check-all-jobs-by-preconditions, .

Again preconditions can incrementally be parsed through the reversed call graph by
issuing the command multiple times. A step-wise refinement was implemented because
the parsing of preconditions directly to the highest function (often main), is often not
achievable in acceptable time and thus intermediate results are favorable.

An additional refinement step that should be regarded when performing bounded
model checking is an increased loop-bound. The user can set the loop-bound by

qpr configure-project LoopBound:<value> .

Afterwards, any analysis can be rerun and results that are not already verified as safe
or unsafe will be rechecked with the increased loop-bound.

Check results at this point have been checked through modularization and refinement
and represent the best of both abstraction and refinement techniques implemented into
QPR Verify.

7.1.4 Incremental Strategies
We presented a number of different configuration and analysis modes. Given a fixed
loop-bound and time-out, there are three main configuration options with Boolean val-
ues: optimize-bitcode, analyzeChecksIndividually and enableSlicing. Slicing
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can only be enabled with individual check handling. Additionally, there are four modu-
larization options, (1) no abstraction, (2) call-environment abstraction, (3) function-call
abstraction and (4) both abstractions. Finally, there are three refinement strategies
caller-inclusion, enumerative preconditions and learned preconditions that can be run
multiple times with the call depth of the program as an upper bound. They can also
be run in arbitrary order. Therefore, given a fixed time-out and loop-bound and a call
depth of the program under verification d, there are (23−3)×4×d3 possible configuration
and verification runs. If the refinement steps are only performed once (d = 1), there are
60 different configuration and solving approaches the user can choose.

Additionally, the verification approaches of QPR Verify can be run subsequently to
increase precision and scalability. Every new run of QPR Verify rechecks checks with re-
sults cond. unsafe, loop-bound safe and unknown with a new configuration or solving
approach. Therefore, every verification run increases precision.

The optimal order in which to run different configuration and solving approaches
depends on the program to be verified. In general faster verification runs with different
modularization techniques should be run first. Afterwards, refinement strategies can be
utilizes to minimize potential false positives. The evaluation in Section 7.2 shows how
to run different strategies for real-world applications.

7.2 Evaluation
The techniques and approaches presented in the second part of this thesis aim towards
a scalable and modular verification framework for industrial software projects written
in C/C++. As described above, all approaches were implemented into the tool QPR
Verify. Previous evaluation results of QPR Verify on different benchmarks can be
found at [KB5, KB4, KB3]. For this dissertation, the evaluation was extended and
uniformly rerun. All approaches were evaluated as sequential programs on a single CPU
on a Gigabyte R282-Z93 machine with 3200MHz and 1024GB RAM.

We evaluate QPR Verify on three industrial projects and compare our approach to
three state-of-the-art tools. The presented benchmarks represent different industrial
software applications and highlight varying challenges and features of our approach.
For every benchmark, we first show the results of the set-up phase applying only the
preprocessing analysis. Afterwards, we show QPR Verify verification runs with different
optimizations and abstractions. We then compare our modular bounded model checking
approach with three different techniques and tools. First, the standard bounded model
checking approach represented by the global analysis with LLBMC. Second, we apply
the commercial tools Coverity [1], which focuses on bug finding. Finally, we compare our
approach with the abstract interpretation tool Polyspace [45], which is, together with
Astree [14], the most applied static analysis tools for software written in C/C++ for
German industry companies like Bosch and Daimler.

All evaluation results of QPR Verify and Polyspace as well as links to results of Cover-
ity can be found at https://github.com/MarkoKleineBuening/DissertationTools.

83

https://github.com/MarkoKleineBuening/DissertationTools


A verification run V of QPR Verify, as well as other tools, can be evaluated by the
following four evaluation criteria:

(E1) V should aim to minimize the number of checks for which no verification result can
be produces - meaning minimizing unknown checks.

(E2) V should aim to maximize the number of definite verification results - meaning
maximizing safe and unsafe checks.

(E3) V should aim to minimize the number of potential false positives of false nega-
tives, where a developer has to manually check the verification results - meaning
minimizing loop-bound safe and cond. unsafe checks.

(E4) V should aim to minimize verification runtime.

7.2.1 BMI160-Driver
The open-source library BMI160-Driver [21] is a low power control unit driver designed
for mobile applications. It is implemented by the Robert Bosch GmbH with around
2000 lines of code plus libraries.2 BMI160 represents a small scale embedded software
project, implemented under program paradigms as stated in MISRA. The driver pro-
vides an API for sensor controls. It does not contain any main function, which is a
problem of many approaches and tools. The bug-finder Coverity needs the program
under verification to be build utilizing their build tool cov-build and can therefore not
verify the BMI160-Driver. Other approaches, like the bounded model checker LLBMC
or CBMC also require a distinct entry-point function and can therefore also not be ap-
plied. The modularization techniques implemented in QPR Verify on the contrary allow
for a modular verification of the program.

During set-up of the project, QPR Verify automatically collects all source and header
files. During the compilation of the project, 2593 checks are detected. The preprocessing
analysis described in Section 4.4.1 is then able to verify 2019 (78%) of these checks as
safe. Thus, there are 574 hard verification tasks left. The project was configured with
a loop-bound of 12, a timeout of 300 seconds and with the option optimize-bitcode as
set to true.

Table 7.1: Results set-up and preprocessing analysis of QPR Verify for BMI160

safe unsafe unknown Total Time
BMI160 2019 0 574 2593 1 sec

We now only focus on the hard verification tasks left after preprocessing. Table
7.2 shows the results of different verification runs of QPR Verify. The whole-program
analysis is denoted as Global. The different check handling options are then appended:
I represents individual checks and C represents combined check handling.

2We slightly adapted the source code to overcome current technical limits of our tool, e.g. by removing
irrelevant function pointers in structs.
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A verification run with an active slicing algorithm is marked with S. The modular-
ization approaches have the prefix Mod. The call environment abstraction is denoted
as EA and the function call abstraction as FA. If refinement strategies were applied
runs are marked with the prefix Ref and the addition of CI(x) for caller inclusion of
depth x, EP(x) for enumerative preconditions with x enumerations of errors. Learned
preconditions were not evaluated on larger projects due to the missing integration into
QPR Verify. The percentages are always in reference to hard verification checks and not
the overall number of checks before preanalysis. We sorted the approaches according to
the evaluation criterion solving time (E4) (right most column).

Table 7.2: Results of individual solving approaches for BMI160

BMI160-Driver safe loop-bound safe cond. unsafe unsafe unknown Time(sec)
Global not applicable due to missing main function
I-S-Mod-EA 445 (78%) 9(2%) 120 (21%) 0(0%) 0 (0%) 112
C-Mod-EA-FA 431 (75%) 22(4%) 100 (17%) 0(0%) 21(4%) 268
C-Mod-EA 349 (61%) 141(25%) 84 (15%) 0(0%) 0 (0%) 360
I-Mod-EA-FA 441 (77%) 22(4%) 109 (19%) 0(0%) 2 (0%) 702
I-Mod-EA 349 (61%) 140(24%) 84 (15%) 0(0%) 1 (0%) 798
I-Mod-EA-Ref-EP(5) 386 (67%) 134(23%) 49 (9%) 5(1%) 0 (0%) 899
I-Mod-EA-Ref-CI(1) 378 (66%) 136(24%) 55 (10%) 5(1%) 0 (0%) 8791
I-Mod-EA-Ref-CI(5) 497 (87%) 32(6%) 5 (1%) 40(7%) 0 (0%) 16485
I-Mod-EA-Ref-CI(5)-EP(5) 501 (87%) 20(3%) 13 (2%) 40(7%) 0 (0%) 24114

The fastest analysis (E4) verifies every check individually (I) with active slicing (S)
with the environment abstraction (Mod-EA) in 112 seconds. 445 checks (78%) can be
verified as safe and only 9 checks (2%) are loop-bound safe. The slicing algorithm
abstracts large parts of memory and therefore introduces the highest number of possible
false positives – 120 checks (21%) are therefore classified as cond. unsafe.

The analysis with no unknown results (E1), the highest amount of safe and unsafe
checks (E2), as well as the least amount of potential false positives or false negatives (E3)
is the analysis I-Mod-EA-Ref-CI(5)-EP(5) applying call environment analysis on indi-
vidual checks with caller inclusion to depth 5 and successively enumerative and learned
preconditions. This analysis leaves only 20 checks (3%) that are loop-bound safe and
13 checks (2%) that are cond. unsafe. The analysis needs 24114 seconds, meaning
roughly 214 times longer than the fastest verification run.

In general, we can see that a high level of abstraction correlates with short run-
times and a higher number of cond. unsafe results. Therefore, the solving strategy
balances scalability with precision and should be customized to meet user needs. A
typical application could for example be a first verification run leading to initial results
that can then be refined with longer verification runs overnight. It is to note that
applying only environment abstraction with enumerative preconditions on individual
checks (row 7) leads to only 9% of cond. unsafe checks in 899 seconds and can be seen
as a good compromise between fast runtime and precise results. While it produces a
relatively high amount of loop-bound safe checks, it is the only approach that is able
to find definite errors (5 unsafe checks) in relatively short time. Including callers (CA)
leads has a large impact on the runtime. Verification time roughly increases tenfold,
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due to the increasing size and splitting of modules in case of multiple callers of an entry
point function. It therefore is the most precise refinement and at some point leads to
modules too large to be efficiently verified.

Table 7.3: Results of verifying BMI160 with Polyspace

Polyspace green orange red grey Total Time
BMI160 45 (19%) 142 (61%) 0 (0%) 46 (20%) 233 988 sec

We ran Polyspace version 2017b3 with default configurations on BMI160. We chose
a generic compile with an i368 processor style and left the precision and verification
level at default value 2. Polyspace first verifies the program by propagating sets repre-
sented as static integer domains and afterwards applies a polyhedron model to refine the
verification. A description of Polyspace and related work can be found in Chapter 8.

It is difficult to compare different static analysis tools on industrial software, because
there is no distinct definition of properties that are verified. Every tool has it’s own
definition of errors and critical program locations. While we regard every operation
(assignment, addition, division, shift, etc.) as potentially critical and verify it’s be-
havior, tools like Polyspace have their own understanding of critical program locations.
Furthermore, the C standard [79] sometimes leaves room for interpretation of operation
behavior in edge cases and thus operations are sometimes modeled differently in different
tools. There are initiatives working towards exchangeable and comparable static analy-
sis results. The Static Analysis Results Interchange Format (SARIF) [65] developed by
Microsoft or the Tool Common Configuration Format (ASC3F) [88] developed by the
ASSUME CONSORTIUM (http://assume-project.eu) are two recent attempts and
unifying tool output but are currently not established in research or most commercial
static analysis tools. For our verification, we thus concentrate on percentages of solved
properties and manually compare individual checks.

Polyspace took 988 seconds on 4 cores to verify the BMI160-Driver. It generated and
verified 233 checks. The number of inserted checks by Polyspace is much lower than the
2593 checks of QPR Verify. Even only regarding the 574 hard verification tasks left after
preprocessing, Polyspace inserts only half as many checks as QPR Verify. We assume
that Polyspace disregards most of the critical program locations containing constant
operations. We therefore compare the 233 checks only with the 574 hard verification
tasks not the 2593 overall checks.

Of those 233 properties, 45 checks are classified as green, which is equivalent to the
check result safe of QPR Verify. 142 checks have the status orange representing po-
tential false positives, which is equivalent to the cond. unsafe check result. Whether to
classify loop-bound safe checks as green or as orange is an open discussion. Applying
the small-scope hypothesis, such checks could be regarded as safe. However, there is
no complete proof for the safety of such checks and in comparison, we therefore equate
loop-bound safe checks in QPR Verify with orange warnings in Polyspace.

3Due to licensing, 2017b was the latest available version of Polyspace for evaluation.
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For BMI160, there are no checks marked as red, which is equivalent to unsafe checks
in QPR. The 46 checks marked as grey represent checks that are not reachable from any
entry-point function. Our approach looks for a program trace from a given entry-point
function to those checks. For dead code, our approach does not find any such critical
program trace and thus verifies those checks as safe.

Summarizing the results, Polyspace classifies 31% (19% green +20% grey) of checks
as safe and 61% of checks as cond. unsafe in 988 seconds. Looking only at hard
verification tasks, QPR Verify in comparison verifies 78% checks as safe 2% as loop-
bound safe and 21% as cond. unsafe) in just 112 seconds. Given longer verification
time, QPR Verify is also able to verify 94% (87% (safe) +7% (unsafe))of checks as safe
or unsafe and only 2% as loop-bound safe and 3% as cond. unsafe. We therefore,
outperform Polyspace both in time of analysis and precision producing between 38% to
56% less orange warnings.

A comparison with Coverity or the standard bounded model checking approach im-
plemented in LLBMC or CBMC was not possible because of the missing main function.
Coverity needs the user to build the program using their build tool. This is not possible
for API programs without main function. Applying standard bounded model checking
with LLBMC or CBMC is equivalent to the global analysis with QPR Verify and was
thus also not possible due to no unique entry-point function.

7.2.2 SQLite
SQLite is a C-language library that implements one of the most used SQL database
engines in the world [141]. It contains around 400K LOC without included libraries. It
represents the main target for our modular verification approach. Programs of such size
were prior to our work not verifiable by the bounded model checking approach. Even
tools utilizing abstract interpretation are not able to verify such large programs as a
whole but rely on manual partitioning and specification of modules.

The build process of SQLite produces two source files sqlite3.c and shell.c containing
all functionality. During set-up of the project, QPR Verify added those two files and
searched for needed libraries and include files. SQLite relies on a number of included
libraries that aggravate internal building processes. To simply the building process,
we therefore set the QPR configuration Hosted to true, choosing libraries implemented
by us over libraries provided by the actual system SQLite is built upon. During the
compilation of the project, 27,236 checks were detected. The preprocessing analysis was
able to verify 18,685 (69%) of these checks as safe and 93 (0%) as unsafe. Thus, there
are 8,371 (31%) hard verification tasks left. The project was configured with a loop-
bound of 1, a timeout of 600 seconds and with the option optimize-bitcode set to
true.

The names of approaches are equivalent to the notions described for the BMI160-
Driver. We again show the results of different verification runs, first the global analysis
and then modularization approaches sorted by time.
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Table 7.4: Results set-up and preprocessing analysis of QPR Verify for SQLite.

Set-Up safe unsafe unknown Total Time
SQLite 18,685 (69%) 93 (0%) 8,371 (31%) 27,149 15 sec

Table 7.5: Results of individual solving approaches for SQLite.

Approach/Results safe loop-bound safe cond. unsafe unsafe unknown Time(sec)
Global 0 (0%) 0(0%) 0 (0%) 0(0%) 8371 (100%) TO
I-S-Mod-EA 698 (8%) 2095 (25%) 3138 (37%) 0 (0%) 2426 (29%) 38’893
I-S-Mod-EA-FC 684 (8%) 2091 (25%) 3157 (37%) 0 (0%) 2439 (29%) 43’865
C-Mod-EA 42 (1%) 92 (1%) 42 (1%) 0 (0%) 8195 (98%) 529’222
I-S-Mod-EA-Ref-EP(1) 1965 (23%) 791(9%) 3135 (37%) 54 (1%) 2426 (29%) 445’147 (6d)
I-S-Mod-EA-Ref-CI(1) 698 (8%) 2096 (25%) 2769 (33%) 369 (4%) 2439 (29%) 639’563 (8d)

Verification of such a large code basis with the standard bounded model checking
approach is not feasible. For the sake of thoroughness, we have started a global analysis
with QPR Verify. The underlying bounded model checker was not able to transform
the program into a valid SMT formulae. Therefore, none of the hard verification tasks
could be verified.

We therefore ran different modularization and refinement approaches on SQLite. The
fastest analysis (E4), that also produced the least amount of unknown checks (E1),
verifies every check individually (I) with slicing (S) and the environment abstraction
activated. The analysis needs 38893 seconds (nearly 11 hours) for 8371 checks, meaning
on average under 5 seconds per check. The analysis is that fast because due to the slicing
algorithm abstracting memory and function calls and the local analysis abstracting the
call environment, we gain modules consisting of only a single function. The abstrac-
tions lead to 698 (8%) safe checks, 2095 (25%) loop-bound safe checks, 3138 (37%)
cond. unsafe checks and 2426 (29%) checks that our solver was not able to verify. 2426
checks could not be verified even with modules containing only a single function. Such
cases arise, when the function relies strongly on memory states and has a large number
of function calls. Abstracting such calls, can lead to large search spaces where the un-
derlying SMT solver is not able to generate a proof in the given time of 600 seconds. For
such a large projects, we see 30% of hard verification checks or 10% of the 27149 overall
checks as a huge improvement to the state-of-the-art, where often no checks could be
verified at all.

The best result (E2, E3) with QPR Verify was archived through the refinement of the
fastest analysis with enumerative preconditions (I-S-Mod-EA-Ref-EP). Our approach is
able to refine the analysis and classifies 23% of checks as safe, 9% as loop-bound safe,
37% as cond. unsafe, 1% as unsafe. The verification tasks that could not be verified
through the fast analysis are not refined through the precondition analysis, thus 29%
of checks remain unsolved. The 37% of cond. unsafe checks contain potential false
positives that could further be refined through additional callers or learned preconditions.
Refining the analysis with enumerative preconditions took about 8 days. The long
verification time arises from the splitting of modules because of multiple callers.
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However, the modules are independent from each other and could in future work be
parallelized.

Note, that splitting of modules through preconditions lead to better verification results
than the splitting through caller inclusion. This arises due to complex and large modules
that are harder to verify if the complete caller is included into the module instead of
a substitution of a given function call with the generated precondition. Time saved by
substituting preconditions more then compensates for the time spend on precondition
generation.

SQLite with around 400k lines of code is to large to be verified by any standard
bounded model checking tool. Similar to the BMI160 project, we wanted to compare
QPR Verify with Polyspace, implementing the scalable abstract interpretation approach.
We set precision levels to minimal values and started an analysis on the whole program
without any verification timeout. After 24h Polyspace terminated the analysis because
it was not able to translate the program into its internal intermediate representation. If
the translation of the given program into their IR, Polyspace assumes that no verification
will be possible. The failed transformation into an IR is similar to the failed translation
of LLBMC and QPR Verify into our IR, because of the sheer size of the program.

Polyspace 2017b has the option to create a modularization of the program. For SQLite
this modularization produced a single module containing the whole program. We assume
that for a more meaningful partition an expert user would have to specify module limits
including specifications. Therefore, Polyspace is not able to produce any verification
results for SQLite.

Approaches that do not verify the whole program but concentrate on bug finding are
in general more scalable then throurough verificiation approaches. The tool Coverity is
thus able to verify SQLite. Coverity offers an online verification. We submitted a build
of SQLite with their build tool Cov-Build and verification results were made available
24 hours later on their website 4. Coverity analyzes 19,3254 lines of code and finds 115
defects. Of those 115 checks it categorizes 21 with an high impact, 88 with a medium
impact and 3 with low impact. The checks are similar to QPR Verify and Polyspace but
additionally include extensive memory checks and resource leaks. With QPR Verify we
are able to find 369 unsafe checks in about 8 days with our analysis I-S-Mod-EA-Ref-CI
and 54 unsafe checks in about 6 days. Therefore, regarding bug finding, Coverity is
more efficient but with more time, we are able to find more defects. Note, that the check
categories and their definitions do not perfectly align and therefore the comparison of to-
tal numbers should be seen as general estimations of verification prowess of QPR Verify
and Coverity. Additionally to the bug detection implemented in Coverity, our approach
is able to verify all critical program locations wrt. our check categories and proves safety
for 23% of hard verification tasks and 67% (18,685+1,965 of 27,149) of overall generated
verification tasks.

4Results can be found at: https://scan.coverity.com/projects/sqlite-verification-details?
tab=overview
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The verification of SQLite marks, to the authors knowledge, the first fully automatic
whole-program verification of a software project of that size. Through our modular
software bounded model checking approach, we are able to verify around 69% of the
8371 hard verification tasks. Our abstractions still introduce a possibly large number
of false positives that can be further refined given more time or in future work more
efficient (potentially parallel) module splitting and refinement.

7.2.3 MNAV1.5
MNAV [117] is an open-source control software for fixed-wing aircrafts provided by [80]
and first verified by Gurfinkel et. al in [67], who concentrated on the verification of
buffer overflows and managed a 4% warning rate for 815 buffer overflow checks. MNAV
contains 2190 lines of original source code, including external header files totaling in
160K LOC [67]. After presenting two benchmarks representing the strength of our
approach for a driver function BMI160 and a large scale program of about 400K LoC
excluding libraries, we present limitations and analyze the the number of false positives
introduced by our abstractions. MNAV has a main function and is of medium size and
thus verifiable through a global analysis.

We again set the QPR configuration Hosted to true, leading to a error free building
process of the software. During compilation of the project, 1253 checks were detected.
The preprocessing analysis was able to verify 929 (74%) of these checks as safe and 0
(0%) as unsafe. Thus, there are 324 (26%) hard verification tasks left. The project
was configured with a loop-bound of 1 a timeout of 300 seconds and with the option
optimize-bitcode as set to true.

Table 7.6: Results set-up and preprocessing analysis of QPR Verify for MNAV1.5.

Set-Up safe unsafe todo Total Time
MNAV 929 (74%) 0 324 (36%) 1253 6 sec

The names of approaches are equivalent to the notions described for the BMI160-
Driver and SQLite. We first show two results applying global analysis representing
optimal results. Afterwards, we again display results of different modularized verification
runs sorted by time.

MNAV is an control software that is nested in an infinite loop. It therefore shows
the limitation of Bounded Model Checking, with which we can only prove safety for a
fixed loop-bound. We show verification results of analyzing MNAV with a loop-bound
of 1. Verification of MNAV with a loop-bound of 3 showed that while runtime increases
the results do not differ greatly. For the global analysis the runtime is increased by
around 54% from 130 to 200 seconds and produces the same results. For the slowest
refinement analysis with 5 iterations, the analysis takes 115% times longer, while results
are still equivalent. We therefore assume the small scope hypothesis and argue that
if the program contains errors they are detected during the first few iterations of the
infinite while loop.
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Table 7.7: Results for QPR Verify solving approaches for MNAV1.5 with a loop-bound
of 3.

Approach/Results safe loop-bound safe cond. unsafe unsafe unknown Time(sec)
Global Analysis 0 (0%) 324(100%) 0 (0%) 0(0%) 0 (0%) 375
I-S-Mod-EA 70 (22%) 13(4%) 79 (24%) 0(0%) 162(50%) 49
C-Mod-EA 0 (0%) 228(70%) 77 (24%) 0(0%) 19 (6%) 5921
I-Mod-EA-Ref-EP 0 (0%) 301(93%) 19 (6%) 0(0%) 4 (1%) 8973
I-Mod-EA-FA 0 (0%) 234(72%) 79 (24%) 0(0%) 11 (3%) 10851
I-Mod-EA 0 (0%) 230(71%) 76 (23%) 0(0%) 28 (9%) 15484
I-Mod-EA-Ref-CI(1) 0 (0%) 298(92%) 26 (8%) 0(0%) 0 (0%) 39491
I-Mod-EA-Ref-CI(5) 0 (0%) 310(96%) 14 (4%) 0(0%) 0 (0%) 56882

However, errors that arise from thousands or even millions of iterations over a long
period of time can not be detected. Such errors can occur, if a counter is infinity in-
creased or information is written to memory until an overflow happens.

We will now describe the results of the different analysis runs on the basis of Table
7.7 with a loop-bound of 3. The global analysis verifies all 321 hard verification tasks
as loop-bound safe and will serve as an optimal solution with which we compare the
number of false positives introduced by our structural abstractions.

The fastest analysis (E4) is again our environment abstraction (EA) with active Slicing
(S) for individual checks (I). Due to call environment abstraction and specially due
to memory and function behavior abstractions of our slicing algorithm, 70 (22%) of
checks can be classified as safe. Therefore, through abstractions, the bounded model
checking approach can prove safety even regarding checks lying inside an infinite loop.
Contrary to this positive effect are 162 (50%) of checks not verifiable with an active
slicing algorithm, because the verified function has on a LLVM bitcode level multiple
return blocks. Currently, our slicing algorithm depends on a single return instruction and
therefore single return block in LLVM. It is part of future work to either implement an
bitcode transformation path generating a single return block or extending our algorithm
to handle multiple return blocks.

The call environment analysis (Mod-EA) with grouped checks (C) produces 228 (70%)
loop-bound safe checks, 77 (24%) cond. unsafe and 19 (6%) unknown checks in 5921
seconds. The environment abstraction therefore leads to 30% false positives. Further-
more, the overhead produced by our modularization increases the runtime by a factor
of 15 compared to the global analysis. However, the later verification runs of QPR Ver-
ify show the effectiveness of our refinement strategies. Through preconditions alone
(I-Mod-EA-Ref-EP), we can reduce the number of false positives to 7%. If we accept
longer runtimes activating caller inclusion (I-Mod-EA-Ref-CI(5)), we can even reduce
the number of false positives to 4%.

Overall, we demonstrate a program that is verifiable by our global analysis. We show
that the whole program analysis is able to effectively very such smaller programs. Our
modularization is aimed towards larger software projects or API programs without a
main function.
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The verification of MNAV showed that structual abstractions introduced by our mod-
ularization produce about 30% false positives but also that the number of false positives
can be reduced to 6% through preconditions and 4% by caller inclusion.

We again compare our evaluation results with the two commercial tools Polyspace and
Coverity. For Polyspace, we adopted the same configurations as for the BMI160-Driver.
The results can are presented in Table 7.8. Polyspace finds an illegally dereferenced
pointer (red check) in the main function. For overflows one can activate wraparounds
in Polyspace, such that the tool is able to verify checks located after an unsafe location.
For illegally dereferenced pointer, Polyspace did not implement any such abstraction
semantics and therefore does not verify any source code after the illegally deferenced
pointer. It therefore additionally gives the warning that MNAV contains 90 unused
variables. Concentrating only on the verified properties, we can see that Polyspace is
able to prove safety for 87% of checks lying inside an infinite loop. Abstract interpretation
approaches calculate fix-points and are thereby able to argue over infinite loop iterations.
They therefore produce 9% orange warnings representing potential false positives. If we
assume the small-scope hypothesis and see loop-bound safe checks as safe or green,
this is higher then the 0% false positives of our global analysis or the 4-6% of our refined
modularization approaches.

Table 7.8: Results of verifying MNAV1.5 with Polyspace

Polyspace green orange red grey Total Time
MNAV1.5 110 (87%) 12 (9%) 1 (1%) 4 (3%) 123 154 sec

Coverity analyzes 14206 lines of code and finds 19 defects. It finds 7 resource leaks
and 12 additional errors regarding API, pointer and error handling. Such properties are
not supported by QPR Verify and therefore a comparison is not possible. However, it
should be noted, that Coverity does not find arithmetical, type cast or any other by us
supported errors thus implicating that the 324 loop-bound safe checks by QPR Verify
are indeed safe.

7.2.4 Summary
We verified three different real-world applications with sizes between 2000 and 400k lines
of code plus external libraries. The BMI160-Driver showed the applicability of our ap-
proach for API programs without a main function. The database SQLite demonstrated
that through our modularization, we are able to meaningfully verify modern sized pro-
grams. Through the autopilot software MNAV1.5, we got a sense of the number of false
positives introduced by our structural abstractions and quantized the precision increase
of our refinement strategies through a reduced number of false positives.

We summarize the main insights and improvements of our modular bounded model
checking approach. The results are differentiated by the three verification phases set-up,
modularization and refinement. The main improvements of our approach are compared
to the state-of-the-art are:
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Set-up 1 Detection of a higher number of checks compared to current verification ap-
proaches like Polyspace and Coverity.

Set-up 2 Fast preprocessing analysis that is able to verify between 61% and 74% of
checks in seconds.

Set-up 3 Slicing algorithm that leads to very fast results but produces a relatively high
number of false positives.

Modularization 1 Verification of API programs without a main function, which was
previously not possible through bounded model checking.

Modularization 2 Increase in scalability to verify 400k lines of code software project
for which state-of-the-art bounded model checker (CBMC) and an abstract inter-
pretation implementation (Polyspace) timeout.

Refinement 1 Reduction of false positives through caller inclusion and automatically
generated preconditions and therefore fewer "orange" warnings compared to Polyspace.

Refinement 2 Precondition generation and substitution produces precise results in rel-
atively short time compared to no refinements with call environment abstraction or
increased module sizes through caller inclusion.

Overall, we presented different approaches that balance between precision and scal-
ability (represented by runtime). In particular, our refined modularization advances
the state-of-the-art of static analysis for large scale software projects compared both to
standard bounded model checking as implemented in LLBMC or CBMC and abstract
interpretation approaches like Polyspace.
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Chapter 8
Related Work

We developed a modular software bounded model checking approach to verify run-time
errors in industrial (embedded) software. In this chapter, we present related work in the
context of static analysis of software written in C or C++. There are many different
techniques and tools performing static analysis.

Tools based on Abstract Interpretation techniques are most dominant for the
industrial application of safety-critical software. Polyspace [154], Astrée [43], IKOS [22],
C Global Surveyor [23] and CRAB [57] are widely used implementations. In general,
the theory of Abstract Interpretation by Cousot and Cousot [39], envelops approaches
approximating system semantics. The mentioned implementations of this theory gain
scalability mostly through the abstraction of value domains.

Polyspace is one of the first static analyzer based on Abstract Interpretation. As
value domains, it implements static intervals, polyhedron models and a mixed approach
consisting of integer lattices and complex polyhedrons. Which domain is used can be
specified through a precision level. Domains that are scalable often lose information
about specific values that lead to errors. For Abstract Interpretation tools, this can
potentially produce a large amount of false positives.

Our evaluation showed that even with the most scalable interval domain, abstract
interpretation approaches are not able to verify modern projects as a whole. Tools ap-
plied in industry therefore offer a modular verification. However, the modularization,
meaning program partitioning and specification of the program has to be done manually.
Additionally to the manual labor needed, this requires expert knowledge of the program.

Bounded Model Checking approaches are very precise and the underlying SAT
and SMT solvers produce exact error values and a lower amount of false positives. As
trade-off, they often lack the scalability to verify large programs. Current tools based
on the BMC approach like CBMC [103] and ESBMC [56] are very precise but often
not tuned towards the application of large industry projects. For example, it is hard
to control and see which checks are actually performed at each program location, and
sometimes code modifications are needed on the input to make it parsable by the tool.
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Thus, the support for complete C-features, easy set-up and abstraction methodologies
are limited for those approaches. There are frameworks trying to combine different tech-
niques: The tool Sea-Horn [67] scales up its analysis using a combination of Abstract
Interpretation and property directed reachability (PDR) to generate loop invariants.
Frama-C [44] and VeriAbs [30] also combine different solving techniques as portfolio
solvers. They provide a range of functionalities, but do not explicitly tackle the scalabil-
ity of BMC. Approaches taking this direction typically try to minimize the formulas for
BMC, e.g. lifting the assertions closer to the entry point of analysis [105] or abstracting
loops [31].

Manual modularization typically requires formalization of interfaces and dependen-
cies between modules. Under the headline of compositional verification or assume-
guarantee reasoning several approaches for modular verification have been proposed
in the past [36, 66, 73]. This work, however, generally does not cover the aspect of how
to generate modules; instead it relies on manual approaches for partitioning. There exist
frameworks that automate part of the modularization task, e.g., by creating necessary
preconditions automatically through an incremental learning algorithm [37], or by de-
ducting modules from program design [60]. In this thesis, we have taken an another
approach. We abstract the problem on a structural level and our implementation QPR
Verify offers a fully automatic modularization. Dependencies do not have to be spec-
ified manually but are abstracted and then refined through preconditions. Tools using
separation logic for modularization are among others ETH’s Viper [123] and Facebook’s
INFER [26], which are loosely related to our approach but concentrate either on manual
specification or limited memory properties.

The two approaches most closely related to verification through precondition gen-
eration are the automatic precondition interference by Cousot et al. [42, 41] and the
compositional verification implemented in the tool BLITZ [32].

The tool BLITZ implements a composition verification approach for a bounded model
checking based verification. They create under-approximated preconditions through the
extension of information gained by SAT-proofs leading to a property violation. While the
bounded model checker can extract and exploit this information, they are not human-
readable. Furthermore, they are only applied in the context of bug finding and not
whole program verification. The general techniques of function and loop summaries
[102] serve a similar purpose. Cousot et al. introduced a framework for automatic
inference of under-approximated (they call it necessary) preconditions based on Abstract
Interpretation techniques. They argue that developers will object to over-approximated
preconditions due to the occurrence of false positives.

We contrary argue that the context of the verification tasks can necessitate stronger
preconditions. When verifying safety critical software, it is the aim to guarantee and
prove an error free execution. While finding errors is an important step, software is only
accepted in safety critical environments when error-free execution is guaranteed. We
first create enumerative/under-approximated preconditions on a user-readable level and
then generalize them through a learning approach.
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Over-approximated (or sufficient) preconditions can be generated by different tech-
niques. In [25], Hoare triples are established to produce preconditions for shape analysis.
[120] presents modular assertion checking through a mixture of Abstract Interpretation
and weakest precondition calculus and [130] produces over-approximated preconditions
for heaps. Generally, such approaches do not substitute functions at their call-sites with
generated preconditions and do not consider whole program verification of larger pro-
grams. This also applies to learning algorithms presented in tools like PIE [127] and
others [5, 127, 52]. Furthermore, such approaches rely on data generated by test-runs,
which can never guarantee the completeness of preconditions.

Snugglebug [27] and others [54, 131] use symbolic backwards execution together with
dynamic analysis to find bugs. Again these approaches are not able to prove the safety of
programs. Yet Snugglebug as well as Cousot et al. showed the strength of precondition
simplifications and are a strong motivation to include presented simplifications schemes
into our approach.

We presented approaches aiming to verify the safety of a given program, thus implying
that all bugs and errors will be found. There exist tools that do not claim to find all
errors but a relevant subset of them. In our evaluation, we compared our implementation
QPR Verify to Coverity [1] as a bug-finding tool. Tools like Coverity or Klocwork [77]
sacrifice finding all bugs for the benefit of fewer false positives. They do not model all
possible program traces but rely on local information and pruned execution paths.
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Chapter 9
Conclusion

9.1 Summary
We introduced novel approaches aimed at advancing software verification based on
bounded model checking for large software projects written in C. Our overall approach
presented in Chapter 2.1 verifies a program in three phases set-up, modularization and
refinement.

In the first phase, we established challenges for industrial software verification and im-
proved the set-up phase of the verification process (Chapter 4). Checks are automatically
inserted at critical program locations and the source code together will all configuration
information is automatically compiled into a single bitcode file. Through an extensive
configuration framework, the user can choose different options, e.g. for bitcode opti-
mization, check handling, and a novel slicing algorithm based in memory abstraction. A
fast preprocessing analysis utilizing only local information available through the LLVM
framework, classifies a majority of checks as safe or unsafe. Hard verification tasks are
left and, at this point, can be verified through a whole program analysis performed with
the state-of-the-art bounded model checker LLBMC.

The second phase, presented in Chapter 5, focused on the scalability issue of bounded
model checking. Encoding the complete program into a single formulae is not feasible re-
garding the size of modern software projects. Contrary to manual program partitioning
or abstraction of value ranges, we introduced structural abstractions based on the call
graph of the program under verification. First, we defined program semantics for LLVM
and thereupon introduced notions and properties of modularization in the context of soft-
ware verification. We presented and implemented two structural abstractions. Given an
entry-point function containing checks, we can abstract the environment in which the
function is called and can thus create smaller modules. Furthermore, we implemented a
function call abstraction that over-approximates the return value and memory changes
of function calls. Through these abstractions, a given program can be partitioned into
smaller modules. The approach is able to prove statements over programs marginally
larger then the current capabilities of standard bounded model checking tools.
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In the third phase, we tackled the drawback of over-approximations, namely false
positives. Through over-approximation of program traces, the modularization produces
error messages where there are no errors. In Chapter 5, the refinement of function calls
through postconditions were discussed and due to limitations of current alias analysis
methods not prioritized. Therefore, the third phase presented refined abstractions for
a given modularization abstracting the call environment of functions containing checks.
Next to a call graph method that iteratively included callers into the module, the gener-
ation of enumerative and learned precondition was presented. Such preconditions were
pushed bottom-up through the program by substituting function calls with precondi-
tions.

Our final evaluation on three different real-world applications with sizes between 2,000
and 400k lines of code plus external libraries showed the advantages of our modular
bounded model checking approach compared to the state-of-the-art. The analysis of
the BMI160-Drived presented a small-sized use-case of our call environment abstraction
and showed that global approaches implemented in standard bounded model checker
like LLBMC or tools like Coverity can not be applied to API programs. Furthermore,
QPR Verify outperformed the commercial abstract interpretation tool Polyspace both
in runtime and solved checks.

The increased scalability of the modular bounded model checking approach was demon-
strated on the SQLite database. QPR Verify was able to classify 71% of all hard ver-
ification tasks while tools like LLBMC and Polyspace are not able to even encode the
program. For both benchmarks, potential false positives were refined through caller in-
clusions and preconditions. The comparison of the global analysis with modularization
and refinement showed that the modularization alone introduces around 30% false pos-
itives but also that the false positive rate can be reduced to 4% through our refinement
steps. The best results for all benchmarks balancing time consumption and precision was
a call environment abstraction with refinement through precondition generation and sub-
stitution. Our evaluation presented different approaches that balance between precision
and scalability showing an improved state-of-the-art for the static analysis of large scale
software projects compared both to standard bounded model checking as implemented
in LLBMC and abstract interpretation approaches like Polyspace.

Overall, our approach advanced the state-of-the-art of bounded model checking both
in usability and most important scalability. Through the introduced modularization
techniques, we are able to verify projects modern projects with millions of lines of code.
The number of potential false positives is the main challenge given such a modularization.
Introduced refinement strategies minimize such unnecessary error reports.
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9.2 Future Work
We present some ideas how to further advance our modular verification approach to-
wards a scalable and precise analysis of modern sized software projects.

The modularization approach generates modules, where only a single function con-
taining a check is encoded into a SMT formulae. While this is the most scalable approach
regarding functions as the smallest verifiable unit, it can be more efficient to initialize the
verification on larger modules. As described in Section 5.3.2, an optimal modularization
should have minimal dependencies to other modules. A modularization aimed towards
such modules could adjust existing k-partitioning algorithms for call graphs and create
modules of size k. It would be interesting to explore, how the increase in precision and
scalability would justify the overhead for such an partitioning.

Gaining scalability through abstractions potentially leads to unnecessary error mes-
sages. This is true for structural abstractions as introduced in this thesis, as well as for
value abstractions as utilized in various Abstract Interpretation approaches. In Section
5.3, we briefly discussed postconditions to refine our function call abstractions. As fu-
ture work, an evaluation with a more scalable alias analysis may produce better results.
Otherwise, there is potential for customized, maybe partial alias analysis refining data
dependencies.

The automatic generation of module dependencies, namely pre- and postconditions,
based on erroneous checks is, in the authors view, the most promising approach tack-
ling the scalability issue of large scale verification. Preconditions should be generated
based on information already available during the solving process. For bounded model
checking, error traces can be utilized through symbolic backwards execution of checks
to generate better preconditions. Furthermore, the impact of precondition simplifica-
tions and a better integration of the precondition-learner and function-pointer handling
into QPR Verify worthy to further investigate. Currently, the refinement steps through
caller inclusion and precondition lead to significant overhead in verification time. This
can be minimized through a parallel verification of independent modules and a database
supporting effective handling of thousands of checks.

Evaluation of software verification approaches on larger software projects is still a
difficult venture. The Competition on Software Verification (SV-COMP) [16] provides
source code of problems containing a handful of functions. To improve the comparability
of software verification approaches larger projects would have to be uniformly annotated
with (thousands of) different checks and added to the benchmark set of the SV-COMP.
Alternatively, projects like SAFIR and ASSUME aiming towards a unified verification
format have to be adapted and more intensively applied in research and industry.

Overall, the automatic verification of industry-sized applications is still a huge chal-
lenge in research and industry. We see our modular software bounded model checking
approach as a promising technique to verify large-sized programs and further improve
the state-of-the-art of software verification.
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Part III

Verification of Neural Networks
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Chapter 10
Equivalence Verification of Neural

Networks

The third part of this thesis presents the contribution C2 and therefore a framework for
the verification of equivalence for neural networks. In this chapter, we will present con-
tribution C2.1. First, we introduce and motivate the relatively young research field of
neural network verification. Afterwards, we present exact and relaxed notions of equiva-
lence for regression and classification tasks. We prove that the ε-equivalence problem for
neural networks is coNP-complete. In the following chapters, we then present the contri-
butions C2.2 presenting a verification through mixed-integer linear programming based
on our publication [KB2] and C2.3 presenting an adjusted geometric path enumeration
approach based on our publication [KB6].

Parts of the work on defining and verifying equivalence verification of neural networks
were conducted in student projects. The first definition of equivalence and the veri-
fication approach based on mixed-integer linear programming was pursued during the
Master’s Thesis of Philipp Kern [89] closely supervised by the author. The expanding
work of proving coNP-completeness for equivalence verification and the modification and
optimization of the geometric path enumeration approach were conducted in a ”research
laboratory” (Praxis der Forschung) project in which the student Samuel Teuber was also
supervised by the author.

10.1 Introduction
The popularity of neural networks (NNs) for solving machine learning tasks has strongly
increased over the last years. Nowadays, NNs are considered state of the art solutions
for many machine learning tasks, including machine translation [7], image processing
[101] or playing games like Go and Chess [136]. However, for non-trivial networks, the
complex structure of neurons, layers and weights, often renders them incomprehensible
to humans. While this does not have serious consequences when it comes to playing
games, it can have a severe impact when neural networks are applied to safety-critical
systems such as airborne collision avoidance [81] or self-driving cars [20]. Validation and
verification procedures are thus needed to provide safety guarantees.
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The verification of NNs is a relatively young research field. Among the first papers
published is the work by Pulina and Tacchella [132], where the authors checked bounds
on the output of multilayer perceptrons. Since then, an increasing size of work in the
field of neural network verification has been published.

The literature can broadly be classified into adversarial robustness verification (e.g.
the work by Singh et al. [138]), functional property verification (e.g. the work by Katz
et al. [85] on the verification of ACAS Xu) and equivalence verification (e.g. Narodytska
et al. [126] and Paulsen et al. [129]).

The first category of verifying adversarial robustness is concerned with a problem
specific to NNs, i.e. the question whether there are seemingly "normal" inputs which
produce unexpected outputs. Or more specifically, checking whether a network assigns
the label of a known reference input-point to all points in a small region around it. The
second category checks whether a given NN fulfills a functional property. Functional
verification is particularly relevant to ensure that a NN is capable of handling a certain
safety critical task.

The third category of equivalence verification can be regarded as relational verification
of neural networks and checks whether two NNs are equivalent to each other. The main
application of equivalence verification, is in the context of NN compression. As NNs grow
ever larger and computing becomes ever more ubiquitous, resource restrictions require
to compress large NNs into smaller models. Cheng et al. [29] give an extensive survey of
such compression techniques. Furthermore, equivalence verification can be deployed to
examine the influence of certain NN-based pre-processing steps [126] or in cases where
performing multiple verification tasks on a large NN would be too expensive [KB2].

The work of Narodytska et al. [126] marked the first time that equivalence was defined
and a verification approach for binarized neural networks was presented. Binarized
Neural Networks are (deep) feed-forward neural networks, where network parameters
like weights and biases have only binary values, thus allowing a SAT encoding. The next
publications verifying equivalence of neural networks were published around the same
time by Kleine Büning et al. in [KB2, KB6] and Paulsen et al. in [128, 129].

In this chapter, we present novel notions of equivalence first presented in [KB2] and
prove the equivalence verification to be coNP-complete. The next two chapters, present
two approaches verifying equivalence based on an exact MILP encoding (Chapter 11)
and an abstract interpretation approach (Chapter 12).

10.2 Equivalence of Neural Networks
There has recently been a line of work which proposes various compression techniques for
NNs (for a full review see Cheng et al. [29]). While such techniques have been shown to
be useful in practice, most lack a formal proof of correctness and only rely on empirical
evidence. The usage of such techniques thus raises the question of how to prove that
two NNs R (reference) and T (test) and their corresponding mathematical functions
gR ∶ RI → RO, gT ∶ RI → RO are equivalent, i.e. that they produce the same results.
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Narodytska et al. [125] consider two feed-forward NNs equivalent if, for all valid1
inputs of the input domain, the NNs produce the same output labels. They present an
technique verifying, among other properties, equivalence for the specialized class of bi-
narized NNs, which allows them to produce a SAT formula representing the equivalence
of two NNs. However, they do not experimentally evaluate their encoding of the equiva-
lence property. Kumar et al. [104] denote this equivalence property by local equivalence
over a domain, and use the term equivalence for NNs that give the same output for all
inputs of that domain. Based on these notions they collapse layers of a given NN while
guaranteeing the equivalence to the original NN.

Given a reference network R and a test network T , with their corresponding mathe-
matical functions gR ∶ RI → RO, gT ∶ RI → RO. We assume that the inputs and outputs
of the neural networks have the same cardinality and ordering. All networks with vary-
ing input or output cardinality are classified as not equivalent. In practice, one can
append additional neurons or an intermediate layer representing a mapping from the
cardinality of the input and output neurons of R to the cardinality of T for input and
output neurons.

To simplify notation, we now denote the input space of the two neural networks under
verification as X. Proving exact equivalence of the test NN T and the reference NN R
would then mean to ascertain that

∀x⃗ ∈X ∶ fR(x⃗) = fT (x⃗) . (10.1)

However, the training procedure of NNs is highly non-deterministic and training could
be on different datasets, thus leading to differences in the learned weights, even if the
NNs share the same number of layers and neurons. It is therefore unlikely for two NNs to
fulfill the exact equivalence property stated above. Hence, we need to relax it to obtain
a more practical notion of equivalence. In general, this can either be achieved by (1)
relaxing the exact equality of the function values in Equation 10.1 through a less strict
relation ≃, or (2) restricting the domain of the inputs to the NNs to smaller subsets, for
which equality is more likely. The first approach is described below, while we discuss
the input restriction in Chapter 11.

Relaxed Equivalence Properties. The definition of exact equivalence in Equation
10.1 can be written as a difference: ∀x⃗ ∈ X ∶ gR(x⃗) − gT (x⃗) = 0. An relaxation would
be to consider two functions equivalent, if their difference is at least close to zero within
some threshold ε.

Definition 7 (ε-Equivalence). Two NNs R and T are ε-equivalent with respect to a
norm ∥⋅∥, if ∥gR (x⃗) − gT (x⃗)∥ < ε for all x⃗ ∈X

This notion of equivalence for neural networks was first established in [KB5] and
denoted at about the same time by Paulsen et al. [128] as Differential Equivalence.

1Validity just ascertains that inputs are suitably bounded, e.g. to a range of [0, 255] for greyscale
pixels.
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While this is a valid relaxation in the context of regression NNs, the functions gR
and gT compute class probability distributions when it comes to classification problems.
In most of these cases, one is not interested in the full class probability distribution,
but only in the classification result, the class assigned the highest probability by the
NN. In that case, we can obtain a relaxed equivalence property by comparing only the
classification results.

Definition 8 (Top-1 Equivalence). We call R and T top-1 equivalent, if gR(x⃗) = r⃗ and
gT (x⃗) = t⃗ satisfy arg maxi ri = arg maxi ti for all x⃗ ∈X.

There exist different definitions of the arg max function in literature. Here, we deter-
mine that the function returns a single index. In case of multiple elements with the same
maximal value, arg max returns the first index regarding the ordering of the input vec-
tor. In our Definition 8, the vectors r⃗ and t⃗ are equivalently ordered and therefore, top-1
equivalence holds for the case that two networks produce the exact same probabilities
for two or more classes.

This notion of equivalence for classification can also be denoted as one-hot equivalence
in reference to the one-hot vector for classification NNs. We note that this definition is
closely related to the property of adversarial robustness [147], however we compare the
classification results of two NNs instead of comparing the classification result of one NN
with the ground-truth.

The notion of top-1 equivalence can be relaxed even further when we consider not
only the most likely class, which is the classification result, but instead take the k most
likely classes into account (the definition is motivated by a similar idea in [28]).

Definition 9 (Top-k Equivalence). A test NN T is top-k-equivalent to a reference NN
R, if gR(x⃗) = r⃗ and gT (x⃗) = t⃗ satisfy

arg max
i

ri = j Ô⇒ pos(tj , t⃗) ≤ k ,

where pos(wj , w⃗) returns i, if wj is the i-th largest value in vector w⃗, and rj is the unique
maximum component of vector r⃗.

Here, we require rj to be the unique maximum component to prevent verification
results that are conditional to the ordering of two equivalent probabilities. This is also
discussed during the encoding of properties into MILP in Section 11.2.2.

Informally, a testing NN T is top-k equivalent to a reference NN R, if the classification
result of R is amongst the top k largest results of T . This can be interpreted in a way,
such that the NN, even if it differs from the classification result of the original NN, at
least only makes sensible errors. The top-1 equivalence can also be seen as a special case
of top-k-equivalence for k = 1.
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Note that, while exact equality and top-1 equality are equivalence relations in the
mathematical sense, neither ε-equivalence, nor top-k equivalence for k > 1 meet that
criterion, as both are not transitive and the latter additionally is not symmetric. Nev-
ertheless they are useful relations as they still express guarantees about the similarity of
the outputs of two NNs.

10.3 NN Equivalence and NP
After establishing notions for equivalence verification for neural networks, we analyze
the complexity of proving ε-equivalence. We assume that the complexity of proving top-1
equivalence and top-k equivalence are similarly complex.

Katz et al. [85] have previously shown that the satisfiability problem for linear input
and output constraints of a single NN with ReLU nodes is NP-complete. We refer to this
decision problem as Net-Verify. An instance of Net-Verify is given by a conjunction
of linear constraints ψ1 (x) on the input, a conjunction of linear constraints ψ2 (y) on
the output and a NN N . ψ (x, y) = ψ1 (x) ∧ ψ2 (y) is said to be satisfiable if there is an
x such that the network N outputs y for input x and ψ (x, y) is satisfied.

In this section, we show that the ε-equivalence problem for NNs is coNP-complete.
Since disproving ε-equivalence is NP-complete, the task of proving ε-equivalence is coNP-
complete.

Theorem 1 (ε-Net-Equiv is NP-complete). Let R,T be two arbitrary NNs with ReLU
activation functions and let I be some common input space of the two NNs. Determining
whether ∃x ∈ I ∶ ∥gR (x) − gT (x)∥p ≥ ε is NP-complete for any p-norm ∥⋅∥p.

Proof idea. In essence, the proof consists of a reduction from Net-Verify to ε-Net-
Equiv. In order to reduce a Net-Verify instance consisting of a NN N and a linear
constraint specification ψ, we encode it as follows: The first NN R only consists of N .
The second NN T consists of N and a suitable encoding of the linear constraints ψ. We
show that we only can disprove ε-equivalence iff N satisfies the given specification ψ.

Proof. We begin by showing that the problem is in NP. Assuming a witness x returned
by some algorithm for a given instance of ε-Net-Equiv, we can easily check whether
the witness is indeed violating the ε equivalence property by computing ∥gR (x)−gT (x)∥.

We now need to establish that ε-Net-Equiv is NP-hard. To this end we demonstrate
a reduction from Net-Verify to ε-Net-Equiv. Note that we can represent ψ1 and ψ2
as vectors of linear constraints of the form

C1x ≤ b1 C2y ≤ b2 (10.2)
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Reusing N and denoting N (x) as the output of N for input x we can then construct a
network with the following outputs:

max (0,C1x − b1 + ε) (10.3)
max (0,C2N (x) − b2 + ε) (10.4)

N (x) (10.5)

The vectors in Equation 10.3 has as many dimensions as ψ1 has constraints and the
vectors in Equation 10.4 has as many dimensions as ψ2 has constraints. Note that
outputs of both (10.3) and (10.4) are only larger than 0 if a constraint is violated or an
assignment is closer than ε to the bound imposed by the constraint.

We now make use of an additional ReLU gadget which computes the non-negative
maximum of two values:

relu max (a, b) = max (0, a +max (0, b − a))

We can now calculate the maximum deviation between Equation 10.3 and 10.4 by taking
values in pairs of two and giving them as input into relu max. We therefore construct a
kind of pyramid of relu max gadgets on top of (10.3) and (10.4) which finally outputs the
maximum deviation dmax. Note, that this pyramid of maxima is of course polynomially
bounded in the problem size. dmax > ε iff there exists a constraint on in- or output which
is violated. This follows from the observation that dmax > ε iff the maximum value of
(10.3) and (10.4) is larger than ε. (10.3) and (10.4) contain a value larger than ε iff there
is some constraint (c, b) and some input i ∈ {x, y} such that:

ci − b + ε > ε ⇐⇒ ci > b

Conversely, dmax < ε iff all constraints in Equations 10.2 are satisfied. We now define
d∗ = max (0,2ε − dmax) and define our network’s final output as

N (x) + d∗ (10.6)

with N (x) being the output vector of our designed neural network.
By checking ε-equivalence on N and the output defined in Equation 10.6 we can then

solve our original Net-Verify instance:

∥(N(x) + d∗) −N(x)∥ > ε
⇐⇒ ∥d∗∥ > ε
⇐⇒ 2ε − dmax > ε
⇐⇒ ε > dmax
⇐⇒ all constraints are satisfied

I.e. any input which violates ε-equivalence, is a solution to the Net-Verify instance.
It follows that ε-Net-Equiv is NP-complete and therefore that proving ε-equivalence is
coNP-complete.
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Chapter 11
Verification on Clustered Input

through MILP Encoding

11.1 Introduction
In the previous chapter, we established the importance, notions and the complexity of
equivalence verification for neural networks. To prove properties of neural networks
different solving approaches have been proposed. On the one hand there are techniques
based on the encoding of neural networks into formulas, such as SAT, SMT or MILP.
On the other hand, there are approaches that are related to abstract interpretation.
Domains such as zonotopes or star sets are pushed through networks and properties can
be deducted by analyzing the relation of input and output sets.

This chapter presents contribution C2.2, which is based on our publication [KB2].
We choose an exact approach and aim at an MILP encoding of networks and proper-
ties. We concentrate on feed-forward neural networks with ReLU activation functions,
as they are currently the most common and utilized form of networks [62]. Encoding
the reference and test network together with one of the three equivalence properties into
a mixed-integer linear programming problem, allows us to argue over neural network
equivalence. We discuss over which regions of the input space, the networks should be
equivalent and developed an method that maximizes the radii around a chosen input
point, for which two networks are equivalent.

Contribution C2.2. We present an encoding for the developed equivalence proper-
ties in MILP. Additionally, we show an encoding for the verification of equivalence, as
well as maximizing the size of equivalent regions, when the input domain is restricted
to radii around a point in input space. We evaluate our approach using the constraint
solver Gurobi [69] and a NN trained on the Optical Recognition of Handwritten Digits
dataset [46]. The paper [KB2], was as far as we know, the first paper that evaluated
NN compression methods by verification methods with respect to generating equivalent
NNs. We name our approach MilpEquiv.
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Structure. In Section 11.2, we present the encoding of two neural networks into a MILP
formula as well as the encoding of our three presented equivalence properties into MILP.
The next section 11.3 argues over the relevant input under which the networks should
be equivalent. Compression of neural networks is shortly introduced in Section 11.4 as
an application of our equivalence verification. Section 11.5 then marks the evaluation
of our MILP encodings on the optical recognition of handwritten digits dataset. This
chapter is finalized by a conclusion in Section 11.6.

11.2 Encoding as MILP
We present the encoding of neural networks and the properties ε-equivalence, top − 1-
equivalence and top−k-equivalence into MILP. Next to the encoding, we shortly discuss
distance norms and interval arithmetic optimizations.

11.2.1 Encoding of Neural Networks as MILP
To argue over properties of NNs, we encode them in MILP utilizing the big-M encoding
presented in [28]. By means of transformation one can see that our encoding is similar
to the ReLU-encoding of [50].

For a NN to be encoded, we first have to encode a single neuron. A neuron j applies
a non-linear activation function σ to a linear combination sj = ∑ni=0wijxi of its inputs
x0, ..., xn. Given fixed weights wij , this equation can be directly encoded in a mixed
integer linear program. The non-linear ReLU activation function yj =max(0, sj) can be
encoded using given bounds m ≤ sj ≤ M , which can be calculated knowing the bounds
for the inputs xi and weights wij of the NN. The ReLU function can be encoded using
a new zero-one variable δ ∈ {0,1}, with δ = 0 representing the case (sj ≤ 0 ∧ yj = 0) and
δ = 1 representing (sj ≥ 0∧yj = sj). The ReLU function is then encoded by the following
set of linear inequalities:

yj ≥ 0 sj ≥m(1 − δ)
yj ≥ sj yj − sj ≤ −m(1 − δ)
sj ≤Mδ yj ≤Mδ .

Given tight bounds m ≤ sj ≤ M , the encoding can be further simplified [28]. If M ≤ 0,
we can directly encode the ReLU function as yj = 0, and if m > 0, we encode the output
of the activation function as yj = sj . These reductions in complexity are particularly
valuable as they do not use any integer variables, on whom we might have to branch
when solving the resultant mixed-integer linear program. Therefore, we employ the ap-
proach of [28] to generate tighter bounds by means of interval arithmetic and also solve
for bounds on intermediate variables by maximizing or minimizing their values using
smaller mixed-integer linear programs only covering a low number of layers of the NN
at a time.
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Based on the encoding of a single neuron, we can encode a whole NN. Each input
of the NN is represented by a variable xi with associated bounds li ≤ xi ≤ ui. These
li and ui can be set according to physical limitations or might be obtained from the
respective training dataset and can be used for the calculation of subsequent bounds in
the encoding. The neurons in the first layer are then encoded according to the previous
description. The same procedure is applied to the neurons of the next layers with the
outputs yi of the neurons of the previous layer taking the role of the inputs above, until
the output layer is reached. In classification NNs, the neurons in the output layer use the
softmax activation function to normalize the classification distribution (see Foundations,
Section 2.2.) Due to its exponential functions, an exact encoding of the softmax function
in MILP is impossible. However, since the softmax function is monotonic, we are able to
reason about the order of the outputs by encoding the linear combination of the input
values for the neurons of the output layer in a classification NN. Even though we lose
the ability to reason about the exact values of the outputs, the encoding is exact in the
context of our introduced equivalence properties.

11.2.2 Encoding of Equivalence Properties in MILP

In the context of adversarial robustness, properties are often encoded as MILP problems
[24, 86], a formalism we also employ for our equivalence properties. Searching for an in-
put that maximizes the violation of these equivalence constraints has the advantage that
we get information about the extent to which the corresponding NNs are not equivalent.
With an encoding as a satisfiability problem, we would only get a single and possibly
very small violation. In general, we encode equivalence of two NNs R and T as the
following mixed-integer linear program

max d (11.1)
s.t. r⃗ = encR(⃗i) (11.2)

t⃗ = encT (⃗i) (11.3)
d = f(r⃗, t⃗) (11.4)

where Equations 11.2 and 11.3 encode a reference NN R and the testing NN T on the
common inputs i⃗ as described in Section 11.2, yielding the respective outputs of the
NNs r⃗ and t⃗. The linear function f represents the encoding of an equivalence property
yielding a scalar violation score d, that is then maximized to yield the maximum possi-
ble violation. The variables xj include i⃗, a⃗, b⃗ and d as well as the intermediate variables
introduced by the encoding of the neural networks and the chosen equivalence property.
As we are dealing with MILP, some of these variables can be real numbers, while others
are restricted to be integers. Below we are going to discuss the encoding of the func-
tion f , which calculates the scalar violation score d for a given equivalence property, for
top − k and then for ε equivalence.
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Top-k Equivalence. We can encode the violation score of the top-k equivalence R ≃ T
(or T is equivalent to R) as a simple difference

d = t̂k − tj , (11.5)

where arg maxi ri = j. The variable t̂k denotes the k-th largest component of t⃗. If
d = t̂k − tj ≤ 0, then we have t̂k ≤ tj , meaning that the output of T corresponding to the
classification result of R is larger or equal to the k-th largest output of T . Therefore, tj
would be amongst the k largest outputs of T and thus satisfy top − k-equivalence. The
main difficulty in encoding top−k-equivalence lies in encoding the sorting of the outputs
of the NNs according to their activation value. We can encode the calculation of the
descendingly sorted vector ˆ⃗x = Πx⃗ of a NN’s output values x⃗ by using a permutation
matrix Π = (πij)ni,j=1 similar to [82] and then adding the necessary ordering constraints
(Constraint 11.9):

x̂i =∑
j

πijxj ∀i ≤ n (11.6)

∑
i

πij = 1 ∀j ≤ n (11.7)

∑
j

πij = 1 ∀i ≤ n (11.8)

x̂i ≥ x̂i+1 ∀i ≤ n − 1 (11.9)
πij ∈ {0,1} ∀i, j ≤ n , (11.10)

where the Constraints 11.7 and 11.8 together with the binary constraint on the πij ,
ensuring that each column and each row only contain one 1 and only 0 elsewhere, are
sufficient to characterize Π as a permutation matrix. The constraints in 11.9 ensure that
ˆ⃗x is sorted in descending order.

While multiplications of two variables are in general non-linear, we can utilize that the
πij are binary variables, to encode the products πijxj in the above formulation. Binary
multiplications δx = y, where δ ∈ {0,1}, can be linearized by encoding the implications
δ = 0→ y = 0 and δ = 1→ y = x as linear inequalities.

Using the above information, we can retrieve sorted vectors ˆ⃗r, ˆ⃗t ∈ Rn of the outputs of
two NNs. To find the component of tj of t⃗ that corresponds to the largest component
of r⃗, one can apply the permutation matrix to calculate ˆ⃗r to t⃗ and extract its first
component. However, we don’t need to generate two full permutation matrices. Realizing
that we are only interested in the largest value of r⃗ and the k largest values of t⃗, it is
sufficient to encode the first row of the permutation matrix for r⃗ and the first k rows
of the permutation matrix for t⃗, thus reducing the number of binary variables. When
multiple outputs ri of NN R share the highest activation value, valid permutations
could be obtained, such that in one of them component rj and in the other rj′ is the
top component in ˆ⃗r. Assume that we compare a reference NN R to a testing NN T ,
that assigns the highest activation only to tj , when given the same input as R. Then,
we would use this input as a counterexample to their equivalence, since we maximize
the violation of the equivalence property and the solver would chose the permutation of
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R’s outputs, that assigned rj′ as the top component. The classification results of R and
T however could still be the same. Therefore, we require R to have a unique highest
output activation. Since we are not allowed to use strict inequalities in MILP, we use an
ε > 0 to ensure a unique greatest output activation. We then arrive at the final encoding
of top − k-equivalence. First, we obtain R’s unique top output r̂1:

r̂1 =∑i
ρiri (11.11)

r̂1 ≥ ri ∀i ≤ n (11.12)
ρi = 0→ r̂1 ≥ ri + ε ∀i ≤ n (11.13)

∑i
ρi = 1 and ρi ∈ {0,1} ∀i ≤ n , (11.14)

where ρ⃗ = (ρ1, ..., ρn)T is used just as the first row of a permutation matrix. Then, we
can solve for T ’s activation tr for the component of R’s largest output, by applying ρ⃗
to the output of T .

tr =∑i
ρiti (11.15)

The k greatest outputs of T are computed as follows:

t̂i =∑j
πijtj ∀i ≤ k t̂i ≥ t̂i+1 ∀i ≤ k − 1

zj =∑i
πij ≤ 1 ∀j ≤ n zj = 0→ tj ≤ t̂k ∀j ≤ n

∑j
πij = 1 ∀i ≤ k πij ∈ {0,1}∀i ≤ k, j ≤ n ,

where the (πij)(k,n)i,j=(1,1) form the first k rows of the permutation matrix for T ’s outputs
and zi indicates, whether ti is amongst T ’s k largest outputs. Finally, we can compute
the violation of the top − k equivalence property as the difference

d = t̂k − tr , (11.16)

which is then maximised to find the counterexample resulting in the largest possible
violation of the equivalence property.

Interval Arithmetic. We assume that lower and upper bounds are given for the
input variables and use existing interval extensions for the sum and multiplication to
generate bounds on the linear combinations of inputs. The ReLU function is then
applied to these bounds to generate bounds on the output of the neuron. This process
is repeated throughout the network. Naively applying this kind of interval arithmetic to
the equations defining r̂1, tr and the t̂i respectively would produce large overestimates.
In Equation 11.11 for example, the upper bound on r̂1 would be the sum instead of the
maximum of the upper bounds of the ri (only one entry is equal to 1 in a row of the
permutation matrix). Therefore, we use context groups to compute tighter bounds for
these variables. Assume, we are choosing a variable x from a set X = {x1, ..., xn}, where
xi ∈ [li, ui]. Let ˆ⃗

l and ˆ⃗u denote the vectors containing the lower, respectively upper
bounds sorted in decreasing order.
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If we choose x to be the k-th largest variable out of X, we can combine x in a top-k-
group and assign tighter lower and upper bounds for x according to: x ∈ [l̂k, ûk].

ε-Equivalence. We encode ε-equivalence and exact equivalence as maximizing

d = ∥r⃗ − t⃗∥ . (11.17)

The equivalence property is satisfied, if max d ≤ ε for ε-equivalence. The value of ε
has to be chosen according to the dataset. The “optimal” value can be determined by
incrementally looking at counterexamples for the equivalence and deciding if, from the
user-perspective, the outputs are equivalent. For exact equivalence ε = 0 is required. In
order to use Equation (11.17) in MILP, we need to encode the non-linear ∥⋅∥ operator.
We restricted ourselves to the Manhattan ∥⋅∥1 and the Chebyshev norm ∥⋅∥∞ defined as

Manhattan: ∥x⃗∥1 =∑i
∣xi∣, Chebyshev: ∥x⃗∥∞ = max

i
∣xi∣ , (11.18)

because they are piecewise linear functions and can thus be encoded in MILP.
Just as we have done earlier, y = ∣x∣ can also be expressed as cases x ≤ 0 ∧ y = −x and

x ≥ 0∧y = x, that can be encoded as linear inequalities by introducing a binary variable.
If the bounds lx ≤ x ≤ ux indicate, that the domain of x contains only positive (lx ≥ 0)
or only negative (ux ≤ 0) values, we can just set y = x or y = −x, respectively.

In case of the Manhattan norm, we just sum over the absolute values of the compo-
nents. The maximum operator used in the Chebyshev norm can be represented in the
same way, as we have done to obtain the output with the highest activation for a NN in
equations (11.11) - (11.14) in the previous section.

However, a unique largest value is not required in this case, so Equation (11.13) is not
needed in this encoding.

11.3 Input Restriction
As mentioned in Section 10.2, exact equivalence can also be relaxed by restricting the
input domain, for which the equivalence property has to hold. In practice, it is especially
useful to restrict the input domain to values that are covered by the training dataset
of the respective NNs. Differences in the output of NNs in the neighborhood of their
training samples are far more meaningful than differences in regions, where they would
not have been applied anyway. Furthermore, restricting the input values allows for the
calculation of tighter bounds.

Below, we give a short overview of the hierarchical clustering approach of [64] we
used for restricting the input space to regions within a radius around cluster-centers of
training data. Subsequently, we show MILP encodings for proving equivalence of two
NNs for the restricted input regions. We also show, how this process can be modified for
maximizing the radius around a point, such that the violation of a chosen equivalence
property is smaller than a specified threshold.
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11.3.1 Hierarchical Clustering
The hierarchical clustering method of [64] starts by clustering a set of labelled data-points
{(xi, yi)}ni=1, with k distinct labels into k clusters. If a cluster contains input points of
different labels, the method is recursively applied to that cluster, until all clusters only
contain inputs of a common label. Every cluster is then characterized by its cluster
center and its radius, which denotes the maximum distance from the cluster center to
its input points. The underlying assumption for this clustering is that all points, not
just the training data-points, in a dense cluster should be assigned the same label. As
points close to a cluster boundary might lie on a real decision boundary between two
classes, [64] set the radius rc of a cluster to the average distance of the input-points
to the cluster center. Note, that the above assumption only holds for clusters of high
density n/rc, where n is the number of training data-points in the respective cluster.

11.3.2 Encoding of Clusters
As each cluster is characterized by its center c⃗ and radius rc, one can place a norm
restriction ∥⃗i − c⃗∥ ≤ rc on the vector of inputs i⃗, to reduce the domain of the verification
procedure to only inputs from that cluster. Thus, we can encode the input restriction
by extending the encoding of NN equivalence given in Section 11.2 through adding the
norm restriction to Equations (11.2)-(11.4).

Again, we restrict ourselves to encoding the Manhattan and Chebyshev norms (Equa-
tion 11.18). The encoding of the Chebyshev norm for input restriction is less complicated
than its encoding needed for ε-equivalence, as we do not need to actually calculate the
value of the norm, but just ensure, that all input values are within a set distance of the
cluster center. Which leads to a box constraint on the input variables i⃗. Therefore the
lower and upper bounds lj and uj of variable ij can be updated to l′j = max(cj − rc, lj)
and u′j = min(cj + rc, uj) respectively. The Manhattan norm ∥⋅∥1 however has to be en-
coded just as in Section 11.2.1. Nonetheless, we can use the fact that ∥x⃗∥1 ≥ ∥x⃗∥∞ ∀x⃗ ,
to achieve faster tightening of the variable bounds by adding the bounds calculated in
the encoding of the Chebyshev norm.

11.3.3 Searching for a Maximal Radius
In order to find the largest radius around a center c⃗ in input-space, where NNs R and
T are equivalent, it is not possible to just use the equivalence encoding adding the
presented norm and set rc to be maximized. Since the solver finds an assignment to
the input variables i⃗, such that the objective, in that case the radius, is maximized, the
NNs are still equivalent and ∥⃗i − c⃗∥ ≤ rc. In that situation the solver could choose i⃗ = c⃗.
Therefore, the equivalence constraint would be met, if the NNs are equivalent on the
center, and the maximum of the radius would be arbitrarily large. Hence, we search for
the smallest radius rv, for which a counterexample to the equivalence of T and R can
be found. This optimization problem is similar to the one proposed in [145] for finding
adversarial examples for a single NN close to training inputs, which they approximately
solve using gradient based methods.
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Our MILP formulation reads:

min rv (11.19)
s.t. r⃗ = encR(⃗i) (11.20)

t⃗ = encT (⃗i) (11.21)
f(r⃗, t⃗) ≥ εv (11.22)
∥⃗i − c⃗∥ ≤ rv . (11.23)

Note that we used a small threshold value of εv > 0 for the violation.
If r∗ is the optimal solution for the above minimization problem, the two NNs are

not equivalent for radii r′ ≥ r∗, as the solver could generate a counterexample for r∗.
But we cannot guarantee that the NNs are equivalent for r′ < r∗ because of the use of
the threshold value. For small values of εv, the NNs are likely to be equivalent for radii
r′ ≤ r∗ − εr for small εr. This can then be verified using the methods for fixed radii
described in Section 11.3.2. If verification tasks for fixed radii have been carried out
beforehand, the largest (smallest) radius, for which the NNs were (not) equivalent can
be used as a lower (upper) bound on rv in the radius-minimization problem.

11.4 Application: Neural Network Compression
The huge number of parameters in modern NNs lead to large amounts of memory –
AlexNet [101], for example, uses 200MB. Hence, it is desirable to reduce the number of
parameters of a NN, without compromising its performance on the task it is designed
to solve. Our approach for verifying equivalence properties of NNs in combination with
the presented input restrictions could be used to verify the equivalence, or at least
quantify the similarity, of the original NN and the smaller NN, which is the result of the
reduction in parameters. This reduction is usually done by pruning unimportant weights
- setting their value to zero - essentially removing insignificant connections between
neurons. In the context of magnitude based pruning, weights of small absolute value
are considered negligible [144]. The NN may be retrained after pruning, to correct for
the missing connections [144]. During this step and the following iterations of pruning
and retraining, the weights of the pruned connections are fixed at zero. Another way to
reduce the number of parameters, applicable only to classification tasks, is to directly
train a smaller NN on the outputs of a well performing large NN, which is called student-
teacher training [6, 75].

11.5 Evaluation
The approach has been implemented into the tool MilpEquiv. The tool is written
in Python 3 and is able to automatically generate MILP encodings together with input
restrictions. Our program is able to read in NNs exported by Keras [33] and uses version
8.1.1 of Gurobi [69] to solve the generated instances.
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As mentioned in the Introduction (Section 1.2), MilpEquiv was mainly implemented
during the master thesis of Philipp Kern [89]. We used this implementation to analyze
the equivalence between compressed and original NNs, as well as between compressed
NNs. The main findings of the following evaluation are:

• Our technique of encoding NNs and properties into MILP is successful in proving or
disproving equivalence for structurally identical and structurally different networks.

• All three equivalence properties can be verified by our approach, where top − 1
equivalence is faster then ε and top − k equivalence for MILP approaches.

• The hierarchical clustering approach leads to meaningful input restrictions on hu-
man understandable counterexamples.

• We were able to calculate maximal equivalent radii around cluster centers for prun-
ing and student-teacher training. The radii are relatively stable up to 50% pruned
weights and highly depend on the structure of student networks.

• The scalability for our approach is currently limited to the Optical Recognition of
Handwritten Digits Dataset with NN consisting of under 100 neurons.

Neural Networks. Our original NN consists of an input layer, hidden layers of 32 and
16 ReLU units and an output layer of size 10 (denoted: 32-16-10). It was trained using
the Optical Recognition of Handwritten Digits Dataset [46].

The dataset consists of 8x8 pixel labeled images of handwritten digits, giving us 64
input variables, whose values are in the closed interval [0,16], which can be used as
naive bounds on the input variables. We implemented bounds tightening and interval
arithmetic to increase scalability.

Reduced size NNs were obtained by pruning and retraining the original NN in 10%
increments. Additionally, NNs with less ReLU units were learned using student-teacher
training. All NNs were trained using the Keras machine learning framework [33]. The
achieved accuracy values on the training and testing datasets are shown in Figure 11.1
for the pruned NNs, as well as for different structures of student NNs. After the training
process, we removed the softmax activation function in the output layer of the NNs to
allow for their encoding in MILP.

Experiments. Verification tasks for top-k-equivalence were conducted with and with-
out input restricted around the cluster centers shown in Figure 11.2. These clusters
were the five most dense clusters obtained by hierarchical clustering, when applied to
the Optical Recognition of Handwritten Digits dataset using Manhattan distance. Each
cluster contains between 66 and 91 training images.

Experiments were conducted for k ∈ {1,2,3} without input restriction and for fixed
radii, while the experiments for searching maximal equivalence radii were conducted for
k ∈ {1,2}. Due to space limitations, we present the experimental results for searching
maximal radii. The tool and instructions how to produce the results can be found under
https://github.com/phK3/NNEquivalence.

119

https://github.com/phK3/NNEquivalence


0 20 40 60 80
Percentage of Weights set to 0

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

training accuracy
test accuracy

fu
ll

12
_1

2_
12

_1
0

18
_1

8_
10

24
_1

2_
10

30
_1

0

36
_1

0

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

training accuracy
test accuracy

Figure 11.1: Accuracy values for original NN, low magnitude weight pruning NNs (left)
NNs trained by student-teacher training (right).
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Figure 11.2: The cluster-centers of the five most dense clusters obtained from hierarchical
clustering of the Optical Recognition of Handwritten Digits dataset.

Before the problem encoding was passed to Gurobi, bounds tightening was performed
using interval arithmetic and optimization of two-layer subproblems for each linear com-
bination of ReLU inputs. Each subproblem solution-process was stopped after a maxi-
mum of 20 seconds. All experiments were conducted on a computer with an Intel Core
i5-3317U 1.70GHz processor, which has 2 physical and 4 logical cores, and 8GB of RAM
running an x64 version of Windows 10.

11.5.1 Equivalent Neural Networks
We want to verify the equivalence of compressed NNs, by calculating the maximal equiva-
lence radii for the chosen input clusters. Figure 11.3 shows the development of maximal
radii for top-1 equivalence for both compression methods. The individual radius de-
pends on training data and is reflected by the total number for the maximal radius for
all reduction methods.

When pruning a larger percentage of parameters, the equivalence radius fluctuates
around a constant level for each cluster up until the 50% reduced NN. If too many
parameters were set to zero, the pruned NNs are no longer equivalent to the original
NN and the equivalence radius deteriorates, as can be seen for the 80% and 90% pruned
NNs.

120



10 20 30 40 50 60 70 80 90
Percentage of Weights set to 0

10

15

20

25

30

ra
di

us

cluster
a
b
c
d
e

a b c d e
cluster

10

15

20

25

30

ra
di

us

test-NN
12_12_12_10
18_18_10
24_12_10
30_10
36_10

Figure 11.3: Maximal equivalence radii for top-1 equivalence to the full NN for weight
pruned NNs (left) and student-teacher trained NNs (right)

For the 60% and 70% pruned NNs however, one notices, that the equivalence radii
for clusters b, d drop as expected. Radii for the clusters a, c and e, on the other hand,
either stay on the same level or even increase. An explanation for the observed behavior
could be, that about 50% of the original NN’s parameters are sufficient to capture the
underlying knowledge in the data for the tested clusters. If more parameters are pruned,
the reduced NNs focus on the obviously classifiable clusters to still achieve a low training
error. When the NNs are pruned even further, their capacity is clearly too low.

Examining the student-teacher trained NNs, we notice, that the equivalence radii not
only depend on the number of ReLU nodes, but also the structure of the NNs. While the
12-12-12-10 student has more ReLU units than the 30-10 student and the same number
as all other student NNs, it exhibits sometimes significantly smaller equivalence radii
on all clusters. Among the student NNs, it also exhibited the lowest accuracy on the
training and testing datasets, indicating that 12 neurons per layer are not best suited
for this classification task. The 18-18-10 student and the 36-10 student show however,
that good accuracy and large equivalence radii can be obtained for this number of ReLU
nodes. Comparing the different compression algorithms for top-1 equivalence, we notice,
that most student NNs achieve similar radii as the up to 50% pruned NNs on clusters
a, b, c and d and radii as large as that of the 70% pruned NN on cluster e. For the
12-12-12-10 student on clusters b and c and additionally the 30-10 student on cluster b,
significantly smaller radii indicate a lack of capacity for the student NNs, although this
effect is less severe than for the the 70%, respectively 80% pruned NNs.

Figure 11.4 represents the same data for the top-2 equivalence. The verification of
top-2 equivalence is harder, thus our approach only returns upper (dotted lines) and
lower (normal lines) bounds for the given timeout. In general, the maximal equivalence
radii are, as expected, larger then for the top-1 equivalence. This indicates that the NNs
still assign large probabilities to the correct classification result for the cluster regions.
It is also possible to observe, that for example the 12-12-12-10 student network does not
lag as far behind the other student NNs as before, indicating, that it at least captured
a rough understanding of the data.
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Figure 11.4: Maximal equivalence radii for top-2 equivalence to the full NN for weight
pruned NNs (left) and student-teacher trained NNs (right)

11.5.2 Remarks

The runtime of the verification procedure depends on the complexity of the MILP en-
coding, where the number of integer variables seemed to have the largest effect. For
our experiments runtime fluctuated between a minute and 30 minutes for top-1 equiv-
alence. For top-2 equivalence, we set a timeout of 3 hours. Verification of equivalence
for student-teacher trained NNs with fewer ReLU nodes was in most cases faster, than
for the pruned NNs, as fewer integer variables had to be introduced. Only considering
pruned NNs, sparser NNs proved to be verified faster than their less sparse counterparts.
Overall, verification of equivalence for small fixed radii is faster, than for larger radii, as
tighter bounds for all variables in the encoding can be obtained via bounds tightening.
For very large radii, however, some NNs seem to be obviously not equivalent and large
counterexamples are quickly found by the solver. In the extreme case without input
restrictions, counterexamples to equivalence were all found within a minute.

The presented approach is able to search for a maximal radius for which NNs are
equivalent and returns an input at the edge of the radius for which the networks are
not. We denote this input as a counterexample, which can be analyzed by a potential
user. He then has to decide, whether the counterexample should be classified as an valid
input. If it is valid, the maximal radius is too small and the NNs are not equivalent,
otherwise the NNs are equivalent w.r.t. the cluster. Three kinds of counterexample
are shown in Figure 11.5. The leftmost picture shows an input picture for unrestricted
input. This kind of counterexample is negligible in practice and should not be seen as
valid input. It demonstrates the necessity for input restrictions when verifying NNs.
The counterexample in the middle shows a picture of a (in our opinion) zero which is
misclassified by the 20% pruned NN. Such a result could indicate that the pruned NN
does not fit the wanted equivalence criterion. The left picture on the other hand, shows
a digit that is misclassified by the original NN, which could indicate that the original
NN should be retrained with the given counterexample.
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Figure 11.5: Counterexamples to top-1 equivalence: Without input restriction (left),
input within a 13.6 (middle) and 27.2 (right) radius in Manhattan norm around the
center of cluster (a).

11.6 Conclusion
We presented encodings of equivalence properties and neural networks with ReLU ac-
tivation functions in MILP. Despite relaxed equivalence properties, NNs rarely meet
equivalence over the whole input space, as their training only encourages them to agree
on areas close to training data. Therefore we used the restriction of inputs to regions
around clusters of training data, as proposed in [64]. We then developed MILP formu-
lations, of equivalence for inputs within a fixed radius around obtained cluster-centers,
as well as maximizing that radius, such that the NNs are still equivalent. Experiments
with a NN trained on the Optical Recognition of Handwritten Digits Dataset [46] and its
downsized counterparts obtained by student-teacher training or weight pruning showed
the validity of our approach. As compression algorithms for NNs are typically only eval-
uated empirically by measuring the performance of the resultant NNs on a test dataset,
this marks the first verification based examination of such methods. The notion of ver-
ified equivalence in a given cluster radius can be used to give guarantees for smaller
networks. Furthermore, it can be utilized for finding meaningful counterexamples for
the pruned and original network which can than be used for further training.

Our approach could also be applied, when numerous verification tasks have to be
carried out for a large NN. In this case, a smaller NN could be obtained by compression
algorithms. We could then prove its equivalence to the large NN within the input space
of interest and subsequently perform the initial verification tasks on the smaller NN,
requiring less computation time. For this scenario further improvements in scalability
are needed. A first step could be using dedicated solvers for piecewise linear NNs like
Reluplex [86] or the assistance of approximate methods [49].
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Chapter 12
Adjusted Geometric Path

Enumeration

12.1 Introduction
This chapter addresses the equivalence verification challenge for neural networks through
a different method. Contrary to our earlier approach, we do not encode the neural net-
work but extend on the geometric path enumeration (GPE) approach. We present
contribution C2.3, which was previously published at [KB6].

GPE [150, 10] has previously been shown to yield good results for adversarial and
functional verification on NNs. However, the algorithm was initially devised as an ap-
proach operating on a single NN. In this work, we extend GPE to a setting with multiple
NNs and implement its extension for the problem of equivalence verification. We explore
which (sometimes previously used) optimizations yield good results when applied to the
equivalence problem. While our work in this chapter is specific to the problem of equiv-
alence verification, the extended GPE algorithm can also be used for other verification
tasks involving more then two NNs. We focus on the problem of equivalence verification
for (potentially) structurally differing NNs.

Contribution C2.3. We extend the GPE algorithm (Tran et al.[150]) to a setting with
multiple NNs and apply it to the equivalence verification problem. Afterwards, we evalu-
ate several optimizations for this setting which increase efficiency on practical problems.
Showing that our novel approach outperforms the state-of-the-art, we perform a com-
parative evaluation of our algorithm (on ACAS Xu and modified MNIST benchmarks).
We name our approach NNEquiv.

Structure. We explain the idea behind our extension of GPE to multiple NNs in
Section 12.2. Starting from a naive algorithm, we then evaluate optimizations to enable
efficient equivalence verification using GPE in Section 12.3. We further explore these
optimizations, in particular the question of good refinement heuristics, in Section 12.4.
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In Section 12.5, we evaluate our algorithm and show advantages and disadvantages to
the current state of the art represented by MilpEquiv presented in previous Chapter
11. We give a final conclusion in Section 12.6.

12.2 Extending GPE to multiple Networks
The existing GPE approach was introduced as a foundation in Section 2.2.2. The general
idea of GPE is to propagate data structures through a neural network. As possible data
structures, we introduced star sets and zonotopes.

The most trivial approach to extend GPE to multiple NNs would be to stitch multiple
NNs into a single composite NN and then execute regular GPE on this composite NN.
However, the composite NN’s weight matrices would be considerably larger which would
increase the computational load. Furthermore, NNs with a different number of layers
would have to be padded for this approach. This would nullify any performance gains
which could otherwise be achieved through the reduced NN size. Instead, we propose
to propagate star sets through both NNs sequentially. The approach and optimization
methods correspond to techniques published in [KB6].

By carefully selecting the constraint sets of the propagated sets, we can ensure that
there remains a point-wise correspondence between the output data structures of GPE
for the two (or more) NNs considered. To make our approach clear, we introduce transfer
functions as a way of reasoning about exact propagation of set data structures.

Definition 10 (Transfer Function). Let N be a NN. A transfer function FN is a func-
tion which, given an input data structure Θ = ⟨c,G,P ⟩, produces a set of output data
structures s.t.

∀⟨c′,G′, P ′⟩ ∈ FN (Θ) . ∀α ∈ P ′ . gN (c +Gα) = c′ +G′α

and that the union of all P ′ within FN (Θ) equals P .

Using these transfer functions, we show that there is a correspondence between the
output sets of two NNs in GPE:

Theorem 2 (NN Output Correspondence). Let R,T be two NNs with their correspond-
ing transfer functions FR, FT and let Θ = ⟨c,G,P ⟩ be some input data structure. For
any ΘR = ⟨cR,GR, PR⟩ ∈ FR (Θ) and ΘT = ⟨cT ,GT , PT ⟩ ∈ FT (⟨c,G,PR⟩):

{(gR (x) , gT (x)) ∣ x ∈ J⟨c,G,PT ⟩K} = {(cR +GRα, cT +GT α) ∣ ∃α ∈ PT } .

An over-approximation would produce additional, spurious points in the output of
T (Θ) and may therefore produce spurious output tuples. In this case the right side of
Theorem 2 becomes a superset. This in turn gives rise to the modified GPE algorithm
outlined in Algorithm 4. We begin by feeding our input data structure ⟨c,G,P ⟩ into the
first NN. The propagation step function for the data structures (step) is the same as in
the single NN GPE algorithm (see Foundations Section 2.2.2 for Algorithm).
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For every output star set ⟨cR,GR, PR⟩, we restrict the input data structure according
to the predicate of the output of the first NN, i.e. ⟨c,G,PR⟩. Then we feed this data
structure into the second NN to obtain ⟨cT ,GT , PT ⟩. In the end, we can compare the
two output tuples ⟨cR,GR⟩ and ⟨cT ,GT ⟩ constrained by the predicate PT .

Note that both considered output sets are therefore constrained by PT (not PR). This
is the essential insight, that allows our approach to produce point-wise correspondences
between the outputs of the two NNs.

Algorithm 4 High-level path enumeration algorithm for equivalence checking. LP in-
dicates the step uses LP solving.
Input: Input Θ = ⟨c,G,P ⟩, NNs ⟨R,T ⟩
Output: Verification result (equiv or nonequiv)
s← ⟨nn ∶R,layer ∶ 0,neuron ∶ None,Θ ∶ Θ,ΘR ∶ �,ΘT ∶ �⟩
i← Θ
W← List() {Working list of set data structures}
W.put (s)
while ¬W.empty() do
s← W.pop()
steps.nn (s,W)

LP {Propagate s.Θ by one neuron}
if s finished network R then
s.ΘR ← s.Θ {Store output from R for comparison}
s.nn← T
s.Θ← ⟨i.c, i.G, s.Θ.P ⟩
s.layer, s.neuron← 0,None

end if
if s finished network T then
s.ΘR.P ← s.Θ.P {Output of R}
s.ΘT ← s.Θ {Output of T }
if ¬is_equiv (s.ΘR, s.ΘT )LP then
return not equivalent

end if
else

W.push (s)
end if

end while
return equivalent

12.2.1 Equivalence on Set Data Structures
For our equivalence verification approach it is necessary to define an equivalence check
is_equiv which verifies whether two set data structures ΘR,ΘT satisfy ε-equivalence or
top-1 equivalence.
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First, we present how ε-equivalence with Chebyshev norm ∥⋅∥∞ can be proven for
zonotopes. Afterwards, we show how Star Sets can be used to prove ε-equivalence and
top-1 equivalence.

ε-Equivalence In order to prove ε-equivalence with the Chebyshev norm, we need to
bound the maximum deviation between the two NN outputs by ε. That is, given the
two output zonotopes ΨR = ⟨cR,GR, PT ⟩ and ΨT = ⟨cT ,GT , PT ⟩ we want to find the
maximal deviation:

max
α∈PT

∥(cR +GT α) − (cT +GT α)∥∞

=max
i

max
α∈PT

∣(cR − cT )i + (GR −GT )i α∣ .

As can be seen by the reformulation above, we can find the maximal deviation over the
output by solving optimization problems for each dimension of the differential zonotope

∂Ψ = ⟨(cR − cT ) , (GR −GT ) , PT ⟩).

Recalling that zonotopes can be optimized with a closed form solution, this enables
a quick check for the adherence of the desired ε-equivalence property. However, since
zonotopes only approximate the output set, one may need to fall back to the use of Star
Sets if equivalence cannot be established using zonotopes. In this case, we can reuse the
same formula from above to obtain a differential star set ∂Θ which is then optimized
using LP solving.

Top-1 Equivalence For top-1 equivalence there are two possible approaches which
both rely on propagated star sets. We can reuse the MilpEquiv encoding, presented in
Chapter 11 and employ a MILP solver. Alternatively, we can use a simplex (LP) solver.
In the latter case we split up the output star set ΘT :

For every output dimension 1 ≤ j ≤ O we generate a polytope Pj . Additional con-
straints rj ≥ ri ∀i ≠ j ensure that output rj is the maximum among the outputs of R in
⟨cR,GR, PT ∩ Pj⟩. Note that the union of P1 to PO covers all of PT . We then examine
the outputs of Θj = ⟨cT ,GT , PT ∩Pj⟩ for every 1 ≤ j ≤ O. Since j is always the maximum
of R for this part of the output space, we want to ensure that j is also always the maxi-
mum of T . Therefore, we compute the maximal difference between output dimension j
and the other dimensions in Θj . If all of these differences are below 0, we can guarantee
top-1 equivalence. This procedure produces O (O) star sets and O (O2) optimization
operations in total.

12.2.2 Challenges and Limitations of the approach
While the techniques outlined above permit a straightforward extension of GPE to mul-
tiple NNs, and thus allow achieving equivalence verification, the approach comes with a
number of pitfalls which should be avoided. The most obvious is probably the possibility
of exponential growth in the number of star sets.
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As previously noted, the exact GPE approach based on star sets splits the star sets on
ReLU nodes. Tran et al. [150] rightly note that the observed growth usually drastically
falls behind the worst case, however the increase in ReLU nodes through the processing
of two NNs at once certainly leads to an increase in necessary splits. This is particularly
the case for ReLU nodes which cut off very similar hyperplanes (such as the two ReLU
nodes in a NN at the same position with truncated weights). This can not only double
the work, but it may also lead to precision problems with LP solvers which tend to
show problematic behavior when encountering a problem which has a very small feasible
set1. To avoid such numerical problems we thus use 64-bit floats by default and always
ensure that feasibility is checked at least once by an exact (i.e. rational) LP solver
before a branch is declared infeasible. While this can mitigate most numerical problems,
the approach is weaker than the approaches by Paulsen et al. ReluDiff [128] and
NeuroDiff [129] for the specific use case of weight truncation for structurally similar
NNs (e.g. truncation from 32-bit to 16-bit floats). Although these initial improvements
help in making GPE for equivalence possible, this approach is not yet scalable. Hence,
we devote the next section to various optimizations.

12.3 Optimizing GPE for two NNs
The approach presented above is not yet scalable. In particular, we identify two bot-
tlenecks: The number of splits and the time taken for LP optimization. Therefore, we
consider a number of optimizations, some of which have previously been applied by Bak
[9].

12.3.1 Zonotope Propagation
As an initial optimization we reused the zonotope propagation technique presented by
Bak et al. [10], which reduces the number of LP optimizations necessary through a
zonotope based bounds computation. We refer to this first version of the algorithm as
NNEquiv-E (for exact). As can be seen in Figure 12.3 later on, this approach produces
a total runtime of 54,390s on our 9 benchmark instances.

12.3.2 Zonotope Over-Approximation
To further optimize the algorithm we can either reduce the time spent per zonotope or
we can try to reduce the number of zonotopes which have to be considered. In order
to achieve the second objective, we can over-approximate certain ReLU splits through a
methodology first presented by Singh et al. [138] and later reused by Bak [9]: The idea
is to introduce an additional dimension to the zonotope and use it to over-approximate
the ReLU node by a parallelogram. Over-approximation errors accumulate across layers
(Bak [9] refer to this as error snowball). To make the parallelogram as tight as possible
and minimize the over-approximation error, we use the bounds computed through LP

1In one case the solver would return drastically differing maximum values for the same optimization
problem depending on the previous requests or would suddenly deem the problem infeasible.
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Figure 12.1: Comparison of exact star set propagation (Exact) and propagation of an
over-approximating zonotope (Overapprox) for ε-equivalence over ACAS_1_1: Net1
corresponds to R and Net2 corresponds to T (Overapprox Net2 is hidden behind Over-
approx Net1)

solving (instead of the looser zonotope bounds) if there were any exact splits beforehand.
In an abstraction-refinement setting, we would start by propagating over-approximating
zonotopes through both NNs and then check, whether the equivalence property can be
established. If the property does not hold, we refine one over-approximated ReLU node
by splitting the zonotope and propagating the split zonotopes further through the NNs.

In Figure 12.1 we compare the share of nodes per layer whose bounds contain the
value 0 for an exact approach in comparison to the propagation of an over-approximating
zonotope. Any such node can be considered a split candidate which could be used for
refinement. Each refinement can then help in reducing the over-approximation error
and in establishing the desired property. As can clearly be seen in the plot, the over-
approximation approach produces a lot more split candidates than the exact approach.
Not all of the splits candidates encountered for the over-approximation would actually
have to be refined in the worst case. This is, because many of the split candidates are
only artifacts of previous over-approximations. We refer to these split candidates as
ghost splits. These ghost splits cannot be easily distinguished from actual, necessary
splits. The only guaranteed non-ghost split, is the first split candidate encountered,
while all later split candidates might be artifacts of over-approximation.

Thus, the simplest refinement strategy would be to refine only this node. We refer to
this strategy as NNEquiv-F (First), and it reduces the runtime on our benchmark set
to 2,489s (Figure 12.3). However, this approach still leaves room for improvement.

12.3.3 LP approximation
The zonotope approximation introduced in the last subsection over-approximated the
ReLU node by a parallelogram. The constant offset between the lower and upper bound
of the parallelogram introduced an additional dimension to our problem. Therefore,
splitting hyperplanes is no longer dependent on the input variables only, but also depend
on the dimensions introduced through the over-approximation.
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This raises the question how to handle the additional dimension in the propagated
star set: Since equally increasing the dimensionality of the LP problem leads to increased
solver runtimes, we instead opted to over-approximate the LP problem. Classically, for
an m dimensional zonotope with initial input dimensionality I we observe a hyperplane
cut of the following form:

I

∑
i=1
giαi +

m

∑
i=I+1

giαi ≤ c (12.1)

We can now over-approximate this inequality by computing µ = minα∑mi=I+1 giαi through
zonotope optimization and constraining the LP problem with the following inequality:

I

∑
i=1
giαi ≤ c − µ (12.2)

Since any solution for Equation 12.1 implies a solution for Equation 12.2 the second
inequality is an over-approximation and can be used to reduce the number of dimensions
the LP solver has to handle despite the over-approximation of the zonotope.Note that
we need to take this over-approximation into account for minimization/maximization
tasks. Since the LP solver only optimizes the first I dimensions, we need to add the
optimization result of the over-approximating zonotope for the remaining dimensions.
We refer to this version as NNEquiv-A (for approximate LP). Figure 12.3 shows that
this approach reduces the runtime to 1,631s.

12.4 The Branch Tree Exploration Problem
Given the introduced over-approximations over ReLU splits, it becomes necessary to
define a strategy that decides which over-approximations are refined if it turns out that
the property cannot be established with the current over-approximation. The problem
of refinement heuristics has previously been studied for single NNs by Bak [9] who ex-
perimentally showed that a classic refinement loop approach which over-approximates
everything and step by step refines over-approximations starting at the beginning of
the NN (i.e. NNEquiv-F/A) sometimes performs worse than exact analysis. While
we were able to reproduce this problem for some benchmark instances, we observed an
improvement for others. It seems like a good approach to begin propagation with an
exact strategy which splits on every encountered neuron, which, however, eventually
transitions into over-approximation.

We proceed with a formal analysis on different strategies and their (dis)advantages.
For this we consider binary trees that are implicitly explored by a GPE algorithm: For
given NNs and input space I, the implicit tree explored by GPE consists of vertices
V = N ⊎L where N are the inner nodes of the tree representing ReLU splits and L are
the leafs of the tree representing the output set data structures. The execution of an
exact GPE algorithm implicitly produces a set of paths of the form p ∈ N∗ ×L that are
(for now) explored sequentially. We denote this set of paths as P .
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Figure 12.2: ACAS_1_1-retrain: Descend depth at point of successful equivalence proof
for ε = 0.05 (Running percentile window width: 479)

For the exact case, the number of explored paths is fixed to the number of leafs. Since
GPE produces a partitioning of the input space I, we can associate a part of the input
space to every leaf and to every inner node.

For its execution GPE needs to descend into each leaf and execute a check function
on each leaf to prove equivalence. descend refers to the operations necessary to process
a star set up to its next ReLU split. check refers to the operations necessary to prove
equivalence on an output star set. Since the descend function is executed once for each
of the 2 ∣P ∣ − 2 edges of the tree and the check function is executed once for each of the
∣P ∣ leaves, the execution time of NNEquiv-E is bounded by O (∣P ∣ ∗ (tcheck + 2tdescend)).

Omitting the option of reordering the inner nodes and thus producing a smaller tree,
we must either reduce tcheck and tdescend or ∣P ∣ to reduce solving times. In many cases,
the considered property E cannot only be proven on part of the input space associated to
the leaf, but there also exists some inner node n ∈ N with an associated part of the input
space which is already sufficiently partitioned to show E using over-approximation. For
a given equivalence property E we can define a function minE ∶ N∗×L→ N which returns
the number of necessary steps in the given path p for the property E to be verifiable on
the input space part associated to element minE (p) of path p. The exploration of the
tree induced by the set of paths

P ∗ = {p′ ∈ N∗ ∪N∗ ×L ∣ ∃p ∈ P ∶ p′ = p1∶minE(p)}

would then be sufficient to prove equivalence (p1∶minE(p) denotes the prefix path of p from
step 1 to step minE (p)).

NNEquiv-F/A manages to obtain this minimal number of paths – however at the
cost of a much higher time spent on each path. In particular, check is not only executed
for each leaf, but also for each inner node. Ignoring the over-approximation costs, this
produces the following lower bound for the cost of NNEquiv-F/A:

Ω (∣P ∗∣ ∗ (2tcheck + 2tdescend)) .

Even when assuming the omitted over-approximation steps to be free, NNEquiv-F/A

132



becomes less effective than NNEquiv-E if asymptotically

∣P ∣ < ∣P ∗∣ 2 (tcheck + tdescend)
tcheck + 2tdescend

,

i.e. if the reduction of paths in P ∗ is insignificant in comparison to the check time for
the additional paths. While there are cases where NNEquiv-F/A is effective, this is
not guaranteed to be the case – especially for larger NNs with higher values for minE
(which increases ∣P ∗∣) and expensive check functions.

However, this formal framework allows us to define the (virtual) optimal run which
takes the minimal amount of work for a given tree: An algorithm which has an oracle
for minE and always over-approximates at the right node. This approach has a runtime
of O (∣P ∗∣ ∗ (tcheck + 2tdescend)).

Since ∣P ∗∣ ≤ ∣P ∣ and the omitted over-approximation time tends to be smaller than the
descend time, this approach can provide the optimum achievable through heuristics for
minE . In fact, we simulated such virtual runs using a pre-computed oracle by computing
minE using NNEquiv-A and descending only the minimum necessary number of steps
for each path. In our evaluation we refer to this approach as NNEquiv-O. As expected,
NNEquiv-O produced the best results of all variants considered in our work running
only 635s on our benchmark set. This is not a practical algorithm, but provides a lower
bound for the time taken using minE heuristics.

It is thus important to find a good heuristic which estimates minE . These heuristics
are much more difficult to analyze theoretically because they are particularly dependent
on the distribution of the encountered paths. Therefore, we only explore two heuristics
experimentally which show that heuristics have a significant impact on the runtime.

Figure 12.2 plots the depth at which GPE was successful in proving equivalence for a
path in an ACAS Xu NN (i.e. the values of minE). Besides the data in grey, we plotted
a number of running percentiles over the depth values.

A strategy which we have found to be inefficient is the use of a running maximum
over the number of refinements needed by previous paths. This strategy is referred to
as NNEquiv-M (for maximum) and drastically increases runtime to 19,191s, presum-
ably by over-estimating the number of refinements, thus increasing the number of paths
considered.

Since Figure 12.2 suggest that there are phases in which the NN needs deeper or less
deep refinement depths, we considered a heuristic which predicts a refinement depth
equal to the depth of the previous path minus 1. This accounts for the possible phases
of the depth and also ensures that the algorithm is optimistic in the sense that it always
tries to reduce the number of refinement steps.This can then reduce the number of
considered paths. We refer to this heuristic as NNEquiv-L which reduces runtime on the
benchmark set by another 5% to 1,553s. While the methodology of over-approximation
using Zonotopes is the same for NNEquiv-A and NNEquiv-O/L/M the approaches
differ in the strategy deciding where the over-approximation is refined.
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12.5 Experimental Evaluation
The GPE based equivalence verification technique was implemented using parts of a
pre-existing (single NN) GPE implementation by Bak et al. [10] in Python. We will
refer to our implementation as NNEquiv2. As mentioned in the Introduction (Section
1.2), NNEquiv was mainly implemented during the "research laboratory" (Praxis der
Forschung) project in which the student Samuel Teuber was supervised by the author
of this thesis.

Our evaluation aims at answering the following questions:

(E1) Do the proposed optimizations make the algorithm more efficient?

(E2) How does NNEquiv compare to previous work such as MilpEquiv [93] and Re-
luDiff [128]?3

(E3) How does the tightness of the ε-equivalence constraint influence solving behavior?

12.5.1 Experimental Setup
The benchmark landscape for the task of equivalence verification is still very limited.
Paulsen et al. [128] proposed a number of benchmark NNs consisting of pairs of NNs
differing only in the bit-width of the weights (32 bit vs. 16 bit). As discussed before,
we see this as a restricted use case and are more interested in generic NNs with varying
structures and weights. This is why we omit a comparison on these NNs where the
approach by Paulsen et al. [129] is clearly faster and more precise. Structurally differing
NNs have been previously proposed by Kleine Büning et al. [93] who examined 3 NNs
of differing layer depths for digit classification on an MNIST [109] data set with reduced
resolution [47] (8x8 pixels).

In order to evaluate and compare the approaches we thus proceeded as follows: First,
we decided to look at two types of NNs: Image classification on the 8x8 pixel MNIST
data set and NNs used in control systems in the context of an Airborne Collision Avoid-
ance System (ACAS Xu [81]). Then, based on the original ACAS Xu NNs 1_1 and
1_2, we contructed a total of 4 mirror NNs through retraining (ACAS_1_1-retrain,
ACAS_1_2-retrain) and student teacher training [74] for smaller NNs (ACAS_1_1-
student, ACAS_1_2-student). In additon to the smallest and largest MNIST 8x8
NNs considered in previous work (MNIST_small-top, MNIST_medium-top), we con-
structed two larger MNIST models using student teacher training (MNIST_large-top,
MNIST_larger-top). Moreover, we constructed a second version of MNIST_large-top
for ε-equivalence verification (MNIST_large-epsilon). All NNs were trained using vari-
ants of student teacher training and were trained in such a way that they were likely to
be top-1 or ε-equivalent in some parts of the input space. More details on the properties
of the 9 considered benchmark NNs are available online.4

2The implementation is available on GitHub: https://github.com/samysweb/nnequiv
3Unfortunately, there is no artifact for NeuroDiff [129] which we could have evaluated.
4An overview table of all benchmarks is available at https://github.com/samysweb/experiments/

blob/main/benchmarks.md
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Name Optimization Described in Section
NNEquiv no optimization Section 12.2
NNEquiv-E (for Exact) zonotope propagation Section 12.3.1
NNEquiv-A (for LP Approximation) LA approximation Section 12.3.3
NNEquiv-O (for Oracle) heuristic: optimal depth Section 12.4
NNEquiv-M (for Maximum) heuristic: maximal refinements Section 12.4
NNEquiv-L (for Less) heuristic: less refinements Section 12.4

Table 12.1: List of configurations of our NNEquiv tool based on optimizations and
heuristics.

The input space considered for verification is a sensitive choice, as it can have signifi-
cant and varying impact on the performance of different verification techniques. For the
case of GPE, the algorithm’s performance tends to degrade with increasing input space
size due to the growth in necessary splits. Therefore, for each individual benchmark, we
decided to look at an input size which was hard to handle for NNEquiv-E. This has two
reasons. First, it allows us to evaluate the impact of the optimizations presented above
in their ability to decrease runtimes. Secondly, it permits to compare the performance
of NNEquiv to the performance of MilpEquiv on instances which are difficult for our
approach. The entire experimental setup can be found online.5

We used a machine with 4 AMD EPYC 7281 16-Core processors (i.e. 64 cores in total)
and a total of 64GBs of RAM. All experiments were run with a single thread, a memory
limit of 512MB6, and a timeout of 3 hours. The experiments were run in parallel, up
to 24 processes at once. All times given in the subsequent sections are the median of 3
runs.

12.5.2 Comparison of NNEquiv versions

In a first step, we evaluated the impact of the previously outlined optimizations on
the runtime of our algorithm. Table 12.1 summarizes the optimizations and heuristics
introduced in the previous sections for a better overview. Figure 12.3 shows that the
proposed optimizations help in reducing the runtime of the algorithm (note that the
upper half of the y-axis has a logarithmic scale for improved visibility of the results).
On the one hand, we can observe, that heuristics for minE can, in principle, improve and
worsen the result of the approach (as seen with NNEquiv-L and NNEquiv-M). On
the other hand, we see that there is still significant room for improvement through the
development of better refinement heuristics – this optimization would be supplementary
to further optimizations which could be developed.

5On GitHub: https://github.com/samysweb/nnequiv-experiments
6The memory limit was irrelevant in practice, as no experiment hit this limit.
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Figure 12.3: Time in seconds taken for our equivalent benchmarks per version. Note
that the upper half of the y-axis has a logarithmic scale for improved visibility of the
results.

12.5.3 Comparison to previous work

The comparison to MilpEquiv is shown in Table 12.2 . NNEquiv outperforms MilpE-
quiv on the ACAS instances, where MilpEquiv even runs into a timeout for three of
the four verification tasks. In particular, this seems to be the case for larger NNs
with low-dimensional inputs. The superior performance of MilpEquiv for the case of
MNIST_large-epsilon seems to be caused by the LP solver in NNEquiv which is a mag-
nitude slower for solving optimizations tasks for MNIST in comparison to ACAS Xu.
As this cannot be explained by the number of constraints, we suspect this is a problem
related to the larger input dimensionality for the MNIST case (64 inputs in comparison
to 5 inputs for ACAS Xu). The ACAS-retrain NNs have the same structure as the
original ACAS NN, allowing us to compare NNEquiv to ReluDiff. While ReluDiff
was able to quickly verify equivalence for the truncated NNs, where the mean absolute
weight difference was ≈ 9.37 ⋅ 10−5, it was significantly slower than our approach on the
retrain instances, with a mean weight difference of ≈ 0.48, for ε ≤ 5 and even timed out
for smaller values of ε. This suggests that the applicability of ReluDiff is not only
restricted to structurally similar NNs, but that its performance also heavily depends on
small weight differences.

Regarding question (E2) we note that our approach is applicable to a broader class
of NNs than ReluDiff and solved instances where both other approaches timed out.
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Benchmark Property NNEquiv-L MilpEquiv
ACAS_1_1-retrain ε = 0.05 167.45 TO
ACAS_1_1-student ε = 0.05 84.85 TO
ACAS_1_2-retrain ε = 0.05 326.59 TO
ACAS_1_2-student ε = 0.05 109.46 320.07
MNIST_large-epsilon ε = 15 35.90 19.97
MNIST_small-top top-1 14.39 3.51
MNIST_medium-top top-1 94.51 3.85
MNIST_large-top top-1 13.02 25.85
MNIST_larger-top top-1 706.56 386.04

Table 12.2: Runtime comparison (in seconds) for NNEquiv-L and MilpEquiv

12.5.4 Influence of ε-equivalence tightness

Concerning question (E3) we evaluated the performance of the approaches as we vary
the tightness of ε-equivalence for ε ∈ [0.005,500]. We varied ε between 0.005 and 500 on 4
benchmarks and observed the changes in running time for the two approaches. Note that
we did not prove equivalence for ε = 0.005 for ACAS_1_2-student as we found this NN
not to be 0.005-equivalent to the original NN. Intuitively, a proof for a tighter ε bound
will require more work as the approach either needs to refine more over-approximations
(in the case of NNEquiv-L) or do further branch-and-bound operations (in the case
of MILPEquiv). We can observe this behavior in Figure 12.4 which plots the runtime
of MILPEquiv and NNEquiv-L as we tighten the ε bound. Taking into account the
log scales on both axes, we can observe that NNEquiv-L is at least one magnitude
faster in proving equivalence for ACAS Xu NNs for ε ≤ 0.05. In particular, MILPEquiv
produces time-outs for 3 of the 4 considered NNs once ε ≤ 0.05. We therefore suspect
that our approach is better at handling very tight ε constraints in large NNs with low
dimensional input. This could potentially be due to the fact that GPE can use additional
NN information (layer structure etc.) for its refinement decisions which is not readily
available in the branch-and-bound algorithm in the backend of MILPEquiv.

For comparison, we plotted the performance of ReluDiff on NNs for truncated
weights and retrained NNs. As can be seen in Figure 12.4 the approach by Paulsen
et al. [128] behaves similarly with respect to ε tightness. However, the approach is less
efficient for retrained NNs where the equivalence for ε ≤ 0.05 cannot be established. The
differences between single neurons is relatively small for the networks with truncated
weights ACAS_1_1-trunc and ACAS_1_2-trunc. ReluDiff propagates differences of
corresponding neurons and is therefore optimized for such networks. This can be seen
observing the two dotted lines with lower runtimes then our approaches. For networks
ACAS_1_1-retrain and ACAS_1_2-retrain weights were retrained and even though
the networks are structurally equivalent, the weights of corresponding neurons can have
larger differences. For such networks our NNEquiv approach outperforms ReluDiff
significantly and can prove equivalence for smaller ε.
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Figure 12.4: Solving time in seconds for ε-equivalence with varying ε: Solving times
increase with tighter properties, however NNEquiv-L outperforms MilpEquiv. Re-
luDiff is outperformed by NNEquiv-L for retrained NNs.

12.5.5 Finding Counterexamples
Our technique can also be used to find counterexamples, showing that two NNs are not
equivalent at a certain point. This information can be interesting to further train NNs
after a failed equivalence proof. To this end, we compared the capabilities of NNEquiv-
L in counterexample finding with the capabilities of MilpEquiv. To account for possibly
easy instances, we looked at a large number of non-equivalent input spaces for each of
our benchmark NNs which we know to be equivalent on other parts of the input space.
To generate counterexamples, we randomly sampled input points and selected the points
with differing NN outputs. Using this technique, we produced 100 distinct non-equivalent
input points for each of our 9 benchmarks. These points were used as center for L∞-balls
which represented our input spaces.

We then evaluated NNEquiv-L and MilpEquiv on the same input space radii as in
Subsection 12.5.2 with the objective of finding counterexamples. Since counterexample
extraction is much faster than equivalence proofs, we set a timeout of 2 minutes. We
found that NNEquiv-L was significantly faster and extracted a counterexample for 890
of the 900 considered benchmarks, while even a version without expensive ReLU bounds
computation7 executed in the initialization (named MilpEquiv-B) was only able to
find 315 counterexamples. Also, the time per counterexample was significantly lower
for NNEquiv-L, making this approach an interesting technique for retraining NNs via
counterexamples. Looking at the behavior of MilpEquiv’s solver backend, it seems
that the reason for our superior performance lies in the time needed by MilpEquiv to
find an initial feasible solution.

7While this optimization step improves performance for equivalence proofs, it may degrade perfor-
mance for counterexample finding.
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Table 12.3: Comparison of counterexample finding capabilities of NNEquiv-L, MilpE-
quiv and MilpEquiv-B (no ReLU node bounds)

NNEquiv-L MilpEquiv MilpEquiv-B
#Solved 890 305 315
Time (incl.TO) 3,597s 75,989s 72,515s
Time/Solved (excl.TO) 2.69s 14.91s 7.21s

MilpEquiv first needs to resolve the integer based ReLU node encodings, which are
automatically resolved by NNEquiv-L through the propagation of sets. NNEquiv-L
has the potential to extract polytopes of non-equivalent input space subsets which could
allow for even more efficient sampling.

12.6 Conclusion and Future Work
We proposed an approach extending Geometric Path Enumeration [150] to multiple NNs.
Employing this method, we presented an equivalence verification algorithm which was
optimized by four techniques: Zonotope propagation, zonotope over-approximation, LP
approximation, and refinement heuristics. Our evaluation shows that the optimizations
increase the approach’s efficiency and that it can verify equivalence of NNs which were
not verifiable by our previouse approach MilpEquiv or the tool ReluDiff [128]. Our
approach significantly outperforms the state-of-the-art in counterexample finding by
solving 890 instances in comparison to 315 instances solved by MilpEquiv. In addition,
we presented a formal way of reasoning about refinement heuristics in the context of
GPE.

In terms of efficiency, one could further explore possible refinement heuristics and
consider parallelized (possibly GPU based) implementations. Moreover, while GPE can
increase the confidence in NNs, the role of numerical stability for the verification ap-
proach has to be further investigated. Furthermore, an integration of MILP constraints
into GPE propagation could be explored resulting in an algorithm inbetween NNEquiv
and MilpEquiv. Additionally, we see a need for a larger body of equivalence bench-
marks which allows the conclusive evaluation of equivalence verification algorithms.
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Chapter 13
Related Work

The work of Pulina and Tacchella [132] is seen as the first significant research contribution
in the field of formal verification of neural networks. The authors analyzed feed-forward
neural networks known as Multi-Layer Perceptron (MLP) and verified specific bounds
on the output given every possible input value. Research in the area of neural network
verification has increased greatly since then. A survey paper by Narodytska et al. [126]
in 2018 collected current research and divided it by verified properties. Under the term
invariance they collected works verifying that given constraints on the input specific
constraints hold for the output. The second property invertibility summarizes works
that prove the inverse, given conditions on the output specific conditions hold on the
input. As a third property they present the term equivalence of two neural networks.

We present related work, based on those three properties and different basic tech-
niques. Most research focuses on checking invariance of neural networks and a variety
of automated reasoning techniques have been introduced. Approaches encoding neural
networks and properties into SMT [50, 76] or MILP [85, 87] improved upon the early
work of Pulina and Tacchella [132].

In [86], Katz et al. extended a standard simplex algorithm for solving linear pro-
grams to support ReLU constraints. They introduced the Acas Xu networks and showed
through their implementation Reluplex, that SMT based techniques are able to achieve
sound and complete proofs for networks with multiple layers and hundreds of neurons.

The tool Marabou [87] by Katz et al. improved upon Reluplex by supporting dif-
ferent activation functions and inclusion of additional features like MILP-based bound
tightening [148]. Similar to the software verification community, tools based on the ab-
stract interpretation theory [122, 121, 137, 139, 149, 155] are popular and aim towards a
scalable analysis. The tool ERAN [122], leverages abstract interpretation together with
MILP constraints on input and output. The tool DeepPoly [139] presents a novel abstract
domain consisting of floating-point polyhedral with intervals allowing for efficient affine
transformations and a range of activation functions. Additionally, the Neural Network
Verification Tool (NNV) [149] focuses on cyber-physical systems and utilize geometric
represents such as star sets as a domain.
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Furthermore, there exits approaches based on symbolic interval propagation (SIP)
[152, 139, 53, 59, 72], which can be viewed as a specific form of abstract interpreta-
tion. The state-of-the-art tool VeriNet [72] for example utilizes SIP to create a linear
abstraction of feed-forward neural networks. The abstraction is then embedded in an
LP-encoding and through branch and bound algorithms solved to argue over network
robustness.

The geometric path enumeration approach by Bak et al. [10] is implemented in the
tool nnenum and applies multiple levels of abstractions. They introduce zonotopes as
well as different star sets that are propagated through the network to argue over relations
between input and output again encoded as LP programs.

All these approaches aim at verifying the invariance of neural networks and were able
to push the state-of-the-art of neural network verification. Approaches proving invert-
ibility [50, 99] are less common and are based on similar techniques.

The verification of the third property, namely the equivalence of neural networks,
were scarcely researched. In their survey paper of 2018, Narodytska et al. found a
single verification approach. In [126], binarized neural networks are investigated and,
among other properties, the exact equivalence is defined and analyzed. Binarized Neural
Networks are deep feed-forward neural networks, where integers can be encoded with
binary values. This simplification allows for an efficient SAT encoding and significantly
reduces the complexity.

Since 2018, there has been further work in the area of equivalence verification of neu-
ral networks. In addition to our work [KB2, KB6], Paulsen et. al. [128] published an
approach called differential verification of neuronal networks implemented in their tool
ReluDiff. They define differential verification similar to our epsilon equivalence. Their
verification approach implements symbolic interval propagation and propagates value
differences of corresponding neurons in different networks. Through gradient differences
calculated in a backwards pass, they refine their analysis and are able to verify equiva-
lence. Since they consider the differences between single neurons, they can only analyze
structurally identical neural networks. Structurally different networks, such as those for
example produced through student-teacher training, can only be analyzed if the smaller
network is adapted to the larger one and additional layers and neurons are introduced
so that the structure is the same and the behavior of the network does not change.
However, for networks with such large differences, our evaluation shows that Paulsen’s
differential verification approach does not scale. However, for very similar networks,
where the weight only changes by decimal places, their approach scales very well. In
[129] Paulsen et al. optimize their approach by introducing new convex approximations
and symbolic variables. Their new tool NeuroDiff improves scalability but still relies on
value differences between corresponding neurons and therefore structurally similar net-
works. Additionally, they investigate equivalence for recurrent neural networks (RNN)
in [118]. The recursion and nonlinear functions introduced by RNNs are solved through
bounding nonlinear activation functions with linear constraints and calculation of tight
bounds on non-linear surfaces.
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Overall, there have been significant improvements for neural network verification.
Relational verification and specially equivalence verification as presented in Chapters 10
is still a novel research field. The works of Paulsen et al. [128, 129, 118] come closest to
our approaches but focus on structurally similar networks with minimal differences in
weights. Our two approaches 11 and 12 advance the state-of-the-art and are, to the best
of our knowledge, the only published research tuned towards equivalence verification for
structurally different neural networks.
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Chapter 14
Conclusion

14.1 Summary

In the third part of this thesis, we defined novel equivalence properties for neural network
verification and presented two approach that verify equivalence for feed forward neural
networks with ReLU activation functions.

Given two neural networks, equivalence denotes same behavior of networks represented
by same input-output relations. Due to the stochastic nature of the training process of
neural networks, two networks are seldom exactly equivalent. Therefore, we introduced
the term ε-equivalence that was simultaneously denoted as differential verification by
Paulsen et al. [128]. For classification tasks, such ε differences are often not relevant as
long as classification results are the same. In top-1 and top-k equivalence, we presented
two properties matching human expectations of two equivalent classification networks.
We have further proven that proving ε equivalence is coNP-complete for neural networks.

Encoding of networks was one of the first approaches to argue over network properties.
We adapted this technique and encoded two neural networks and the three equivalence
properties into MILP. Neural networks are only trained on problem related input regions.
To model such input space, we applied hirachical clustering and additionally encoded an
optimization problem finding the maximal equivalent radius around the cluster center
into MILP. We then presented the two compression methods student-teacher training
and weight-pruning demonstrating application areas of equivalence verification. Finally,
our evaluation on the hand-written-digit-recognition dataset showed that our encoding
was able to prove equivalence or produce never seen before counterexamples.

To improve scalability through abstractions, we then investigated the geometric path
enumeration approach (GPE) that was previously applied to single network verification.
GPE could not naively be applied to network equivalence and was therefore adjusted
to sequentially push sets through multiple networks. The sequential effort was balanced
through omitted splitting of sets for similar networks. Yet to be applied to equiva-
lence, we needed further optimizations utilizing zonotopes abstractions and refinement
strategies.
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Concluding equivalence verification, we compared both our approaches on the ACAS
and MNIST datasets showing merits for both approaches and an advantage over ReluDiff
[128] approaches either for structurally different networks or networks with a marginally
difference in weights.

Overall the third part of this thesis, introduces the novel research field of equiva-
lence verification for neural networks. Next to giving new definitions and relaxations
of the problem, we presented two approaches that are capable of successfully verifying
equivalence and outperform the state-of-the-art.

14.2 Future Work
We presented the equivalence verification property and two approaches, which are able
to verify equivalence for neural networks consisting of a few hundred neurons. We have
described approach-based future work in the respective chapters. Here, we will highlight
more general research challenges in the field of neural network verification and specially
equivalence verification.

Currently, there is no distinct definition over which inputs neural networks have to
be verified. This applies regardless of the property to be verified. Many approaches
verify their property for ε areas around chosen training data points. The size of ε hugely
influences the scalability and effusiveness of verification methods. Furthermore, single
training data points may not reflect the distribution or special cases of the network ap-
plication. We conducted first theoretical work applying variational autoencoders [91] to
generate a lower-dimensional input representation making it easier to extract relevant
input. The smaller dimension can also improve scalability but the additional autoen-
coder adds uncertainty and there is much (promising) work to do in this direction.

Connecting multiple networks and proving equivalence leads to interesting challenges
and insights into the safety and functionality of NNs. Next to equivalence there are a
number of other relational properties to be examined. In practice, retraining a neural
network or adding additional layer should not lead to an equivalent but better neural
networks that is at least as good as the previous network. For such and similar ap-
plications, for example, it would be interesting to define and verify functional sub- or
supersets.

Overall neural networks is a promising research field with many theoretical and prac-
tical challenges. Many lessons learned through decades of software verification can be
transferred and adopted for neural networks. Neural networks are more narrowly de-
fined than traditional software, which could benefit verification. However, the stochastic
nature of the learning process will be a major challenge for future work.
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Chapter 15
Relevant Implementations

We give an overview of tools implemented or adjusted in the course of this dissertation.

QPR-Verify: The modular bounded model checking approach presented in Chapters
4 to 9 is implemented into the tool QPR Verify. The initial design and implementation
of main parts of QPR Verify has been done in the research group "Verification meets
Algorithm Engineering" at KIT and in the startup QPR Technologies, with the author
as a co-founder. Next to the author, main parts of QPR Verify were implemented by
David Farago, Felix Kutzner, Robin Freyler, Florian Merz and Carsten Sinz. The author
additionally implemented the modularization and refinement techniques.

QPR Verify is not openly available but a running version as well as instruction to
run the tool are available in a prepared VM. Instruction can be found at: https:
//github.com/MarkoKleineBuening/DissertationTools.

LLBMC: The bounded model checker LLBMC was originally developed at the Karl-
sruhe Institute of Technology by Merz et al. [115]. It is an implementation of the
BMC approach utilizing the LLVM IR as an input language for it’s verification proce-
dure. LLBMC had to be adjusted to meet requirements imposed by QPR Verify and
the modular bounded model checking approach. The author implemented and adjusted
among other things data structures, formula abstractions and precondition generation
into LLBMC.

LLBMC is not openly available but a running version is available in a prepared VM:
https://github.com/MarkoKleineBuening/DissertationTools.git

precondition-learner: The tool precondition-learner can generate generalized
preconditions based on enumerative data points produced by LLBMC. The tree-based
learning approach presented in Chapter 6 was implemented during the "research labo-
ratory" (Praxis der Forschung) by Johannes Meuer under the supervision of the author.

The tool precondition-learner is not openly available but a running version as well
as instructions to start and navigate the https://github.com/MarkoKleineBuening/
DissertationTools.git
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QPR-Report: The tool QPR-Report is an interactive graphical report consisting
of general source code information, chosen configuration options during verification,
check results and an interactive representation of error traces on the C-code level. It is
mentioned in Section 4.4.4. The client was mainly implemented by the student assistent
Calvin Urankar.

QPR-Report is not openly available but a running version as well as instruction to
run the tool are available in a prepared VM: https://github.com/MarkoKleineBuening/
DissertationTools.git

MilpEquiv: The tool MilpEquiv verifies the equivalence between neural networks
through MILP encodings as presented in Chapter 11. It was mainly implemented during
the master thesis of Philipp Kern [89].

The implementation of MilpEquiv is avalable on GitHub at: https://github.com/
phK3/NNEquivalence.

NNEquiv: The tool NNEquiv implements the adjusted GPE approach for equivalence
verification of neural networks presented in Chapter 12. It was mainly implemented dur-
ing a "research laboratory" (Praxis der Forschung) project in which the student Samuel
Teuber was supervised by the author.

The implementation of NNEquiv is available on GitHub at: https://github.com/
samysweb/nnequiv.
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