
Architectural Attack Propagation Analysis for
Identifying Confidentiality Issues

Maximilian Walter
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
maximilian.walter@kit.edu

Robert Heinrich
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
robert.heinrich@kit.edu

Ralf Reussner
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
ralf.reussner@kit.edu

Abstract—Exchanging data between different systems enables
us to build new smart services and digitise various areas of
our daily life. This digitalisation leads to more efficient usage
of resources, and an increased monetary value. However, the
connection of different systems also increases the number of
potential vulnerabilities. The vulnerabilities on their own might
be harmless, but attackers could build attack paths based
on the combination of different vulnerabilities. Additionally,
attackers might exploit existing access control policies to further
propagate through the system. For analysing this dependency
between vulnerabilities and access control policies, we extended
an architecture description language (ADL) to model access
control policies and specify vulnerabilities. We developed an
attack propagation analysis operating on the extended ADL,
which can help to determine confidentiality violations in a system.
We evaluated our approach by analysing the accuracy and the
effort compared to a manual analysis using different scenarios in
three case studies. The results indicate that our analysis is capable
of identifying attack paths and reducing the effort compared to
manual detection.

I. INTRODUCTION

We are in the progress of digitising various areas in our
daily life. This digitalisation includes, for instance, the energy
sector with smart meters, the health sector with various eHealth
services, or the industrial sector with Industry 4.0. These
systems have in common that they often use or require dynamic
access control systems together with a multitude of different
connected elements, such as components or devices. These
connected elements are often from different vendors and
organisations. However, studies such as [1], [2] suggest that
these connected elements are often vulnerable, even with known
vulnerabilities. Additionally, a study of the UK government
[3] revealed that about 20% of the Windows installation in
companies are outdated. Therefore, they may contain known
security vulnerabilities. Keeping these systems up to date is a
costly process and for some components or devices may not
be possible, especially in embedded systems. On their own,
the vulnerabilities might not be problematic since they often
require certain privileges to exploit or are hidden within internal
networks with no access from the outside. Using techniques,
such as access control or network segregation, vulnerabilities
can be mitigated.

However, with the rise of advanced persistent threat (APT)
attacks [4], uncritical vulnerabilities can be combined into
more critical vulnerabilities. This leads to problems for the

security of the system. Attackers may exploit these uncritical
vulnerabilities to gain more and more credentials of the system
till they find critical elements. Especially since the attackers are
often using phishing attacks to get credentials to the system [3].
These attacks are then combined with other attacks or gained
privileges to breach the system even more [3]. All the combined
attacks build an attack path that can be used to retrace the
attack. Additionally, the specification of dynamic access control
policies, such as attribute-based access control (ABAC) [5], is
complicated [6] because of the range of possible values, and it
is hard to estimate the impact of access control policies on the
confidentiality of the system [7]. This holds especially for more
subtle consequences like enabling a malicious user to propagate
easier through the system. Considering these consequences is
especially relevant since the increase in connected elements
also add new vulnerabilities and allow additional attack vectors.

Therefore, analysing this dependency between access control
policies and vulnerabilities is useful. While there exist already
approaches for the automatic generation of attack paths based
on vulnerabilities and access control, such as Bloodhound [8]
for the Active Directory or approaches from the Darpa Cyber
Grand Challenge (CGC) [9], these approaches require at least
an already deployed system and cannot be used during the
design time or downtime of the system. Therefore, modelling
approaches are useful. Approaches based solely on the network
topology, such as [10], [11], do not consider deployment
or behaviour. Architecture description languages (ADLs) can
provide this information and, therefore, architectural analysis
can provide better results.

Additionally, an ADL still provides useful abstractions to the
implementation. This helps architects and security experts to
identify the relevant parts of the system and develop solutions
to mitigate the confidentiality issues or even avoid them.
On the other hand, there exist design-time approaches to
analyse the access control on an architectural level, e.g. [12],
[13]. However, these approaches do not consider the interplay
between system vulnerabilities and dynamic access control
policies. Our contributions are:
C1) We developed an extension for an architecture description
language (ADL) [14], that allows modelling vulnerabilities
and access control policies. In contrast to existing approaches
(see section IV), we use a fine-grained access control model
together with a vulnerability modelling based on commonly



used attack classifications.
C2) This extension can be used in our attack propagation

analysis. It analyses how a malicious user propagates through
the system by using stolen credentials and exploiting existing
vulnerabilities. Our analysis can consider the additional informa-
tion of the architecture such as deployment, system behaviour
and considers fine-grained access control policies together with
vulnerabilities. These contributions give an understanding of
the dependencies between access control policies and system
vulnerabilities and how attackers might exploit both for attack
propagations.

We evaluate the accuracy, and effort reduction of our
approach in contrast to a manual analysis. We used two case
studies based on real-world descriptions of system breaches
(Target [15], [16], Power Grid [17]) and a case study established
in the confidentiality research community (TravelPlanner [18]).

The paper is structured as follows. We first introduce the
foundations in section II. We describe our running example
in section III. With the example, we motivate the gap in the
state of the art in section IV. We give an overview of our
envisioned process in section V. In section VI and section VII,
we introduce our metamodel and our analysis. Section VIII
describes the evaluation and the limitations of our approach.
Finally, section IX concludes the paper.

II. FOUNDATIONS

We base our approach on an ADL, an access control model
and an existing propagation framework.
Architectural Modelling Language: Our ADL is the Palladio
Component Model (PCM) [14] since there exists already
confidentiality analyses, such as [12], [19]. Additionally, the
modelled system can be reused in other analyses such as
performance or reliability [14], which splits the overall effort
to create the model. PCM supports the component-based
development process with components and provided and re-
quired interfaces. Components and their interfaces are specified
in a repository. Components can provide different services,
called ServiceEffectSpecification (SEFF). Their signatures are
declared in the provided interfaces. A service can call another
service, which is named external call. In the system model
(or assembly), the different components are instantiated and
wired to each other. It also describes the public services a
system provides and that an actor (user) can call. The user
behaviour is modelled in the usage model. The hardware
of the system is modelled in the resource environment. It
contains hardware resource containers, which models servers
or other processing units and linking resources, which are
network nodes. The allocation model stores the deployment
information. We consider the following PCM elements as
architectural elements: 1) LinkingResource representing
network switches, 2) ResourceContainer representing
hardware devices such as servers, 3) AssemblyContext
representing executions environments of components or in-
stantiated components. Additionally, we consider the provided
service of an instantiated component as an architectural element.
This is not yet considered in PCM.

Access Control Model: ABAC [5] is an access control model
that considers the system context for granting access to
resources. Different attributes model the context. The attributes
are grouped into four groups. 1) Attributes of the subject, which
requests the resource 2) Attributes of the environment, such as
the time 3) Attributes of the requested operation, such as read
or write 4) Attributes of the requested resource, such as the
filename. The policies are then specified by a conjunction of
boolean expressions, which must be fulfilled to grant access.
An ABAC system commonly consists out of multiple different
components. For us, only the Policy Decision Point (PDP) is
interesting. The PDP does the actual evaluation of the policy
and sends the decision to the Policy Enforcement Point (PEP),
which then guarantees that the decision is respected. ABAC
is often used in dynamic environments, where access should
be granted dynamically based on the context. An industrial
standard for ABAC is the eXtensible Access Control Markup
Language (XACML) [20]. It provides a framework of how to
structure access control policies in general and especially for
ABAC.
Propagation Concept: Our attacker propagation concept is
based on the Karlsruhe Architectural Maintainability Prediction
(KAMP) approach [21]–[23]. It analyses the propagation of
changes in software systems. The basic idea is to provide a
change metamodel and propagation rules based on an ADL,
which then propagate changes. For our approach, we create an
adapted change metamodel for our extension metamodel and
develop new propagation rules for the attack propagation.

III. RUNNING EXAMPLE

Our running example is based on the scenario of Al-Ali et
al. [24]. While it is settled in an Industry 4.0 environment,
the approach itself is not restricted to such environments and
can be used for other component-based systems. The example
consists of two companies. The first one is a manufacturer (M),
and the second one is a service contractor (S) to maintain the
machines of M. During normal operations, S should not be able
to read the log data of M’s machines. The access is restricted
because they may contain sensitive information, such as the
names of the employees of M or detailed operation information.
However, in case of a machine failure, a technician from S can
check the log data. Figure 1 illustrates our running example
with its components and their deployment. It contains four
components: a) the Terminal for the technician interface,
b) the Machine for providing the log data and its current
state, c) the ProductionDataStorage for storing machine
data, d) the ProductStorage for storing the blueprints. The
system is deployed on three hardware resources which are
connected via a local network.

IV. STATE OF THE ART

We categorised the state of the art in approaches for policy
analysis, model-based confidentiality analysis, and attacker
modelling. While there exist many approaches in these areas,
we concentrated on the most relevant ones for our approach.



«device»
StorageServer

«device»
TerminalServer

Machine

«device»
MachineController

ProductionDataStorage

ProductStorage

Terminal

«NetworkDevice»
LocalNetwork

Fig. 1. Simplified component and deployment view of the running example

Policy Analysis: Margrave [25], introduced by Fisler et al., is
a tool to analyse XACML [20] policies. Margrave transforms
the policy into binary decision trees. Using the trees, Margrave
can verify whether a specific user can access certain operations
or calculate a change impact on the policies. Alberti et al. [26]
developed a policy analysis for a modified Role-based access
control (RBAC) [27] approach, which additionally supports
some attributes that might be context properties. They analyse,
for instance, whether through the delegation of RBAC policies,
an untrusted role can be reached. Turkmen et al. [28] developed
an XACML analysis based on SMT. They support different
types of analyses, such as a change impact analysis and attribute
hiding [28]. In contrast to the mentioned approaches, our
approach cannot provide these formal properties. However,
none of the mentioned approaches supports attack propagations
or an analysis based on the software architecture. Nevertheless,
the approaches based on XACML could be used in addition
to ours to verify the access policies.
Model-driven Confidentiality Analysis: UMLsec [29] is an ex-
tension to UML for modelling security properties. They provide
different security analyses, such as a secure communication
analysis and a dedicated attacker model. SecureUML [30]
is another UML extension for security. Here also the access
control policies are investigated. They use an RBAC approach
which can be extended with OCL statements for dynamic
access control. They also provide an automatic analysis [13].
SecDFD [31] is a dataflow analysis for information security.
They extended classical data flow diagrams with a security DSL.
Gerking and Schubert [32] presents another information flow
approach. They present rules for decomposing security policies
and keeping the real-time properties. The iFlow approach
[18], [33] also provides an information flow analysis by using
a UML profile. Data-centric Palladio [12], [34] extends the
Palladio approach [14] with dataflow definitions to identify
confidentiality issues. There also exists an extension to support
context-based access control [35]. Kramer et al. [19] provide an
attacker intrusion analysis. However, they do not consider the
propagation of attacks through vulnerabilities. In conclusion,
all mentioned approaches are missing the attack propagation
based on vulnerabilities in combination with credentials.
Attacker Modelling: Many approaches model system attacks
based on directed acyclic graphs [36]. One popular way is the
attack tree introduced by Schneier [37]. It is similar to a fault

tree in failure analysis. These attack graphs or trees can be
used to describe attack paths through the system. Different
approaches automatically calculate these paths. For instance, the
Cyber Security Modeling Language (CySeMoL) [38] analyses
the vulnerability of enterprise architectures by calculating an
attack graph. CySeMoL uses probabilistic values to determine
the likelihood of a successful attack on a system. Afterwards,
it returns a probabilistic value of how secure the system is.
However, determining the initial values for the probability of
an attack is quite cumbersome, and so far, the propagation
does not consider dynamic access policies like ABAC [5].
Approaches such as [39], [40] or Deloglos et al. [41] reuse
existing vulnerability classifications to calculate the attack paths.
However, so far they do not explicitly consider access control
policies. In contrast, Aksu et al. [10] and Yuan et al. [11]
consider, additionally, the privilege of the attacker. However,
the access control model in both cases are simple and they do
not use a fine-grained access control model together with an
architectural model.

Overall so far, to our knowledge, there exists no approach
which considers architectural attack propagation based on
the dynamic access control policies such as ABAC and
vulnerabilities.

V. APPROACH OVERVIEW

Overall, our approach should consider existing vulnerabilities
and access control policies to generate attack paths based on
a starting point in the software architecture. Applying our
approach can be split into six activities: 1) Create Software
Architecture: Here, we reuse the PCM. The architect can
either model the architecture manually, for instance, during the
development phase or use existing reengineering approaches,
such as SOMOX [42] or [43], [44]. 2) Create Attacker Model:
The architect uses our newly developed attacker model to
specify which types of attacks should be investigated. For
specifying the attack types, they could reuse existing resources
about attackers, such as OWASP [45]. 3) Create Access
Control Model: In this step, the architect can specify for each
architectural element the access control policy by using our
access control policy model. 4) Create Vulnerability Model:
Here, the architect can define the concrete vulnerabilities of
architectural elements by using our vulnerability model. The
architect can model these manually or, in case of existing
software, reuse existing automated vulnerability analyses such
as snyk [46] or vulnerability databases such as the National
Vulnerability Database (NVD) [47]. 5) Run Analysis: The
attacker propagation calculates attack paths based on the
access control decisions, the vulnerabilities, and the attacker
model. It then returns a list of compromised architectural
elements. 6) Evaluate Result: In the last step, the architect
can evaluate the results. Based on these results, they can change
the models from steps 1-4 to mitigate certain attack paths. This
could be stricter access control policies, changing vulnerable
architectural elements or introducing mitigation approaches for
certain vulnerabilities. Otherwise, they can decide the results are
sufficient, for instance, if the system can only be compromised



PolicySet Policy

Expression

AllOf

MatchRule

SimpleAttribute
Selector XML-String EntityMatch

MethodMatch

GenericMatch
Attribute

AttributeValue

XMLAttribute

Usage

Specification

XMLMatch

Fig. 2. Excerpt of the access control policy metamodel

by a very rare attacker type. Overall, while resulting attack
paths are specific to the given architecture, the approach is
applicable in general to component-based architectures. Steps
2-4 can also be executed in parallel since they are mostly
independent of each other. Therefore, the task of the architect
could be distributed to multiple experts for vulnerabilities,
access control and the attacker model.

VI. MODELLING ACCESS POLICES & ATTACKERS

During an attack, attackers can exploit the different vul-
nerabilities and access control policies. These vulnerabilities
and access control policies are tied to architectural elements.
Therefore, it is necessary to model these as an extension to
an ADL, so that later the analysis can use this information to
calculate attack paths. However, modelling only vulnerabilities
or only attacker policies is not sufficient for the analysis since
they are interdependent. Access control policies on their own
cannot describe how attackers exploit weakness in components
such as the Heartbleed [48] bug. On the other hand, some
exploits only work for authorized users. Therefore, we extended
the PCM to support access control policy modelling and
vulnerability modelling.

A. Modelling Access Control Policies

For considering access control in the attack propagation,
we need to model access control policies. These policies can
be used to determine whether an attacker could access an
architectural element. Our access control model follows the
ABAC [5] model. This allows us to model access control
policies for dynamic environments. ABAC uses the attributes
of the subject, environment, operation, and resource (see
section II) to determine the authorisation. We reused this
idea by developing a metamodel, which closely resembles
the OASIS standard XACML 3.0 [49] for ABAC. This allows
architects to easily learn our modelling approach since they
might be already familiar with it. Additionally, our modelled
policies cannot only be used for our analysis but also be
reused during the runtime in any XACML compatible PDP,
which saves effort and avoids failures by specifying new
runtime access control policies. While we adapted and extended
some parts for easier modelling of access control policies in
PCM, the attack propagation analysis transforms the adapted
model into a valid XACML model. Figure 2 provides an
excerpt of the access control policy metamodel. The grey
elements are similar to the original XACML metamodel, while
the white elements are new elements, which are not in the
XACML metamodel. The AllOf element is a combination

since we changed here the target definition of XACML for
easier modelling. The complete metamodel can be found in our
dataset [50]. An access control model then consists of one root
PolicySet. A PolicySet can contain multiple Policy
elements, PolicySet elements and has an optional target for
which it applies. The target is here directly the AllOff element
in contrast to the XACML metamodel. A Policy contains
multiple Rule elements and also an optional target. The Rule
element stores the actual access decision such as permit or
deny. These decisions are then propagated upwards to the
root PolicySet. Therefore, each element (Policy, PolicySet)
also contains combination algorithms. These describe how the
different access control decisions are combined. Additionally,
the Rules contains again an optional target and the condition
for the access decision, which is stored in the Expression.
The Expression is a function with arbitrary parameters,
which returns a boolean value. The parameters can also be
functions. For an elaborate list of the available functions, see the
XACML standard [49]. Besides the functions of the XACML
standard, we also added the SimpleAttributeSelector,
which is a wrapper for multiple XACML functions to provide
a simple comparison of attributes. Additionally, we allow the
architects to specify with the XML-String element valid
XACML statements. These are later embedded in the XACML
file for the analysis. The target definition describes on which
elements the PolicySet, Policy, or Rule should be
applied. We define for this the AllOf element. The AllOf
consist of multiple Match elements.

Each Match element returns a boolean value and they form
a conjunction. If this conjunction is true, it can be applied.
Each of the elements (PolicySet, Policy, Rule) can have
multiple AllOf elements. The semantics of these elements are
later in the analysis a logical disjunction. This means that only
one AllOf element needs to be true, so that it can be applied.
We provide custom match operations specific to the PCM. The
EntityMatch is for selecting an architectural element of the
PCM. The MethodMatch is for selecting a system service.
Here, we also introduced a new architectural element that
links a PCM AssemblyContext or Connector to a PCM
Signature to identify called services. This was necessary
because there are currently no elements on the system level in
Palladio to identify called services. The GenericMatch is
used to describe the regular XACML match operation. Addition-
ally, we provide with XMLMatch again an element that enables
the security experts to directly write an XACML statement.
Each UsageSpecification contains a reference to an
Attribute and its concrete value as AttributeValue.
For instance, the role of a user is the attribute role and the
concrete role such as technician from our running example is
the attribute value. The UsageSpecification is always
used, when we want to reference a concrete attribute in our
policy model. The reason for this is the XML extension with
custom attributes provided by the XMLAttribute. Security
experts can here define custom XACML attributes and custom
datatypes, which are not included in our metamodel. They are
then later embedded in the XACML file. However, architects



are not required to use our adapted access control model. They
also can provide their own XACML policy file. Using their
own file, architects have to make sure that the policy definitions
match the system architecture. In case architects use our model,
this is only required for the custom XML extensions.

The access control policy of the technician from our running
example looks like in Listing 1. The actual Rule is contained
by Policy and PolicySet elements. Each contains the
same combining algorithm, which denies all access unless
there is a permit. The Rule then contains the actual decision
(permit) and the expression that is the access condition. In
our example, we check for two attributes: the role technician
and the failed state of the machine. Additionally, the Rule
contains a target, represented by AllOf. There we select the
machineController.
P o l i c y S e t {

combin ing : Deny Unless Permi t
P o l i c y{

combin ing : Deny Unless Permi t
Rule{

name : ” T e c h n i c i a n wi th Machine f a i l u r e ”
d e c i s i o n : p e r m i t
E x p r e s s i o n{

and{
S i m p l e A t t r i b u t e S e l e c t o r {

U s a g e S p e c i f i c a t i o n{
a t t r i b u t e : r o l e
v a l u e : t e c h n i c i a n }

}
S i m p l e A t t r i b u t e S e l e c t o r {

U s a g e S p e c i f i c a t i o n{
a t t r i b u t e : m a c h i n e S t a t e
v a l u e : f a i l u r e }

}
}

}
AllOf{

e n t i t y M a t c h{
e n t i t y : m a c h i n e C o n t r o l l e r

}
}

}
}

}

Listing 1. Textual representation of technican policy

This modelling approach allows us to see
UsageSpecifications as credentials in the system.
For instance, the attribute describing a role can also symbolise
being able to be authenticated as a user with such a role.
Therefore, we can also annotate for each architectural element
which set of attributes they provide. These attribute providers
can be used to model central authorisation components or data
storage where credentials are stored, such as [51]. However,
this could also apply to attributes, which are considered for the
access control decision, for instance, in our running example,
the AssemblyContext of the machine could be annotated
with an attribute provider containing the context attribute for a
broken machine.

B. Modelling Attacker Capabilities

To analyse attack paths, we model the attacker’s capabilities
and the vulnerabilities of the system. This can then be used to
determine the potential weak spots after a new vulnerability
is identified or to find attack paths to old vulnerable legacy

elements such as essential components without security support.
Our modelling approach is based on the commonly known
vulnerability classifications Common Weakness Enumeration
(CWE) [52], Common Vulnerabilities and Exposures (CVE)
[53], and Common Vulnerability Scoring System (CVSS) [54].
These classifications are commonly used to describe and rate
vulnerabilities and are for many systems publicly and freely
available in databases, such as the NVD [47]. Additionally,
there exists automatic security analysis, that can provide these
properties. This enables architects to determine the necessary
properties and reuse existing knowledge.

CWEs provide an abstract description of a weakness. For
instance, CWE-312 [55] describes that sensitive information
is stored in cleartext. Additionally, each CWE can have
children or parents CWEs. In contrast, CVEs describe concrete
vulnerabilities, for instance, CVE-2021-28374 [56] for the
authlib package in Debian. However, CVEs can be grouped by
CWEs, such as in our case, the CVE-2021-28374 belongs to
the CWE-312 group [56]. We use this mechanism, on the one
hand, to describe different vulnerabilities types. Here, architects
can specify either a more general vulnerability with CWEs or
very precise vulnerabilities with CVEs. On the other hand, this
also describes the capabilities of the attacker. Attackers can
have the ability to exploit concrete vulnerabilities such as CVE-
2021-28374 or they could have the ability to exploit a group
of vulnerabilities such as with CWE-312. For instance, the
capability CWE-312 can also exploit CVE-2021-28374. Our
metamodel in Figure 3 also illustrates this with the different
attack types (CWEAttack, CVEAttack) and vulnerability
types (CVEVulnerability, CWEVulnerability). Each
of these stores an id of its type and in the case of the CVEs,
also for the corresponding CWE type. These are used in the
analysis to match attacks with vulnerabilities. Additional to
the capabilities, the attackers can also have credentials (here
UsageSpecification), which they can use for gaining
access to protected assets (see Figure 2). With these properties,
Attackers can compromise different architectural elements
(see Figure 3 dashed lines). Furthermore, an attacker can
gather data during the propagation, which is stored as a list
of CompromisedData. In Figure 3, the grey elements are
preexisting Palladio elements, and the white elements are the
newly added elements.

Additional to the type of vulnerability, we also modelled
properties that describe in more detail when a vulnerability
can be exploited and its impact. This is used later in the
analysis for a more fine-grained decision about the propagation.
However, identifying properties and estimating the impact of
vulnerabilities can be challenging. Therefore, we partially reuse
properties (marked with *) from the Base Metric Group of the
CVSS calculation [57]. These values from the CVSS are also
publicly available in attack databases and, therefore, easy to
gather. Also, this type of information can be extracted from
other scoring systems that use similar values, such as the CWSS
[58]. Additionally, these values are commonly used to rate and
describe vulnerabilities. Therefore, it is beneficial to reuse them
for our vulnerability modelling since an architect can use them



Vulnerability

attackVector:AttackVector

privileges:Privileges

cImpact:ConfidentialityImpact

requiredRoles:Compr.PalladioElements

takeOver:Boolean

gainedAttributes:UsageSpecification

CWEID

cweID:String

CVEID

cveID:String

AttackCategory

Attack Attacker

credentials:UsageSpecification [0..*]

CWEAttack

id:CWEID

CVEAttack

id:CVEID

«Enum»
AttackVector

Network

Local

«Enum»
Privileges

None

Authenticated

«Enum»
ConfidentialityImpact

None

High

CWEVulnerability

id:CWEID

CVEVulnerability

id:CWEID

id:CVEID

AssemblyContext

LinkingResource

ResourceContainer

MethodSpecification

vulnerablecompromised

CompromisedData

Fig. 3. Simplified metamodel for attackers and system vulnerabilities

without needing detailed knowledge about the vulnerability.
a) AttackVector*: This describes whether the attacks needs
to be local or not. For instance, if there is a local vulnerability
on the storage server in our running example, an attacker would
need to be already in the deployed components on this server.
However, in case of a network vulnerability, the attacker could
attack the hardware resource from any element in the system.
b) Privileges*: This describes whether certain credentials
are necessary to exploit the attack: None would require no
credentials, Authenticated would require the ones neces-
sary to access the element c) ConfidentialityImpact*:
This describes the impact on confidentiality for exploiting
this element: None would leak no additional data, and High
would indicate that data is leaked. In the CVSS scoring, there
is also an intermediary value available, which we combined
with high, since we cannot differentiate it with Palladio.
d) RequiredRoles: A list of required architectural elements,
which need to be compromised for the attack. This is useful,
for instance, if a client application can only be compromised
by a specific server instance. e) TakeOver: A boolean flag,
which indicates that the vulnerability enables an attacker to
compromise the attacked element. For instance, applied to a
component, this would give the attacker full control over the
component. Information about this can be found usually in the
description of an exploit. f) GainedAttributes: Provides
information about whether exploiting this vulnerability can
give new credentials. This can be used similar to the attribute
providers. However, it provides an additional means to model
gained credentials based on certain attacks.

Besides the credential part (part of b, f), these elements are
also independent of the modelled system and can be reused
for other systems.

VII. ATTACK PROPAGATION ANALYSIS

The attack propagation analysis uses the access control
modelling and the vulnerability modelling to calculate the
propagation of an attacker. It will return a list of compromised
architectural elements and a list of potentially compromised
data. We first describe the propagation in general and afterwards
describe important parts of the analysis process in more detail.

A. Attack Propagation

The first step of the attack propagation is to transform the
access control policy model to a valid XACML file. This file is
loaded into a PDP, which is later queried for access decisions.
In our analysis, we used the ATT PDP implementation [59]
since it is publicly available. However, any other PDP with
support for XACML 3.0 should be possible.

After initialising the PDP and declaring a start point, the
analysis checks iteratively every connected vulnerable architec-
tural element, whether it is attackable or not. In every step, we
first check for new credentials from the last step by using the
attribute providers. Then, we calculate for each compromised
architectural element the connected architectural elements. We
then analyse whether we have already the necessary credentials
to access them. Here, we create a request with the available
attributes to the PDP. The PDP then determines, based on the
loaded policies, the access decision. If access is permitted, we
add them and their data to the list of compromised elements.
We then analyse whether the rest of the connected elements
have vulnerabilities that our attacker model can exploit.

If the attacker can exploit the vulnerability, depending on
the impact description and whether the vulnerability allows
a hostile takeover, we add the data of the element to the
compromised data and the architectural element to the com-
promised architectural elements. It can be that an attacker
can exploit multiple vulnerabilities for one element, but they
might have different effects. In our analysis, we chose to let
the attacker always exploit the vulnerabilities with the highest
confidentiality impact. This process is then repeated until no
further credentials are added or no new architectural element
is compromised.

B. Data Extraction

For the analysis, we assume that we get complete control
over the data handled by a compromised architectural element
because the underlying architectural data model does not allow
us to differentiate. This assumption might not always hold in
reality where the data is, for instance, encrypted.

In future, we might extend the analysis here with a more fine-
grained data model. As the data model, we chose the typical



Palladio data model, which is parameters and return values
of services. However, this also restricts data only to services
and indirectly to components and hardware resources since
components provide services and components are deployed
on hardware resources. Therefore, components have only the
data provided by their services, and hardware resources have
only the data of their deployed components. Linking resources
haves no data at all. While in reality, network devices or
hardware devices might store additional data, in general, most
of the critical data should at least be stored within dedicated
components or managed by a service. The data of a service is
calculated by the parameters with which it is called and the
return values of external calls the service calls. In case only a
service is compromised, this is calculated only for the service.
In case of a component, it is calculated for all services of the
component and in case of a compromised hardware resource,
it is calculated for each deployed component on the hardware
resource.

C. Analysing the Vulnerability

Attackers can only propagate through the system if they
have the correct abilities to exploit the system’s vulnerabilities
or authorization. For the vulnerability part, we check this by
comparing the CWEID/CVEID of the Vulnerability to the
ids of the Attack. Here the analysis considers also the hierar-
chical dependencies of CWEs with parent and child elements.
Also, a CVEVulnerability can be either exploited by a
matching CVEAttack or a matching CWEAttack. This type
of modelling enables to analyse groups of attacks or reproduce
a specific attack, where the attacker’s concrete capabilities are
known. Additionally, if the vulnerability needs authorisation,
the analysis checks whether the attacker has already gained
the necessary authorisation by querying the PDP. Besides the
authorisation and the id (CWE or CVE), the analysis also
compares the AttackVector. Here the analysis considers
the start point of the propagation step and whether the element
is connected locally, such as a component deployed on a
hardware resource or by a network such as different hardware
resources or components. Additionally, we assume that by
taking control over a hardware resource, the attacker can control
the components, which are allocated on it and also access the
managed data.

Now applying these concepts to our running example, we
could model that the Terminal hardware resource is a Ubuntu
server with the vulnerability CVE-2021-28374 [56]. As stated
in the attack description, this attack allows an attacker to gain
in certain circumstances the credentials for this component
by exploiting the vulnerability in the courier-authlib package.
Additionally, we assume that the storage server and the terminal
server share the same credentials for the admin account in our
running example. The other components and resources have
no vulnerability. We could now add to the vulnerability the
option that the gained credentials are the credentials for the
Storage Server. As an example, we choose to give the attacker
the capability to exploit all attacks based on CWE-312 [55]
and as a start point, we choose the Terminal component, which

means that the component is under full control of the attacker.
The attacker has so far no credentials. The analysis then
checks whether it can compromise any connected architectural
element (StorageServer, MachineController, TerminalServer,
Machine, LocalNetwork) based on its credentials. Since we
have not gotten any credentials so far, it cannot compromise any
elements this way. Afterwards, it checks all connected elements.
Only the TerminalServer is vulnerable to our capabilities since
CVE-2021-28374 belongs to CWE-312. However, the attack
returns only the credentials to it, and it cannot comprise
the TerminalServer with this attack. In the next step, the
analysis then uses the credentials gained in the previous
step to access all the connected elements from the already
compromised component. This time it could compromise
the StorageServer and the TerminalServer since it has their
credentials. The next step then automatically compromises
the deployed components of the storage server because of
our assumption based on the resource containers. The result
are then the compromised components (Terminal, Product-
Storage, ProductionDataStorage), the compromised hardware
resources (StorageServer, TerminalServer), the services of the
components, and, additionally, all the data of the compromised
components.

VIII. EVALUATION

The evaluation follows the Goal Question Metric [60]
approach. We first describe the goals, evaluation questions,
and metrics. Afterwards, we describe the study design and
case studies, discuss the results, threats to validity, and the
assumptions and limitations.

A. Evaluation Goals, Questions and Metrics

The first goal is to evaluate the accuracy of the analysis.
Our question is: Q1: Can the attacker access propagation
analysis accurately identify affected architectural elements?
An affected architectural element indicates that an attacker
could compromise this element. The metrics for evaluating are
precision and recall [61] since they are used in different similar
approaches to describe accuracy [22], [23], [34]. We calculate
them by comparing the results of each scenario with a manually
created reference output as described in the following section.
Each wrongly classified output element is a false positive fp,
and each correct classified element is a true positive tp. If an
element should be classified in the output and it is missing,
this is a false negative fn. The accuracy is then calculated by
precision M1.1 =

tp
tp+fp

, and recall M1.2 =
tp

tp+fn
.

The second goal is to evaluate the effort reduction in com-
parison to manually checking the propagation. The evaluation
question is: Q2: What is the effort reduction of using the
automatic attack propagation compared to manually checking
all the architectural elements? We define the effort as the
architectural elements an architect has to analyse to identify
the propagation. Architects need to analyse each element
and identify the next possible propagation step and decide
if it is possible. Each element they do not need to consider,
because of our analysis, saves effort. Additionally, after a breach



the architect must manually check each architectural element
for compromising changes, such as changed credentials or
malware. Each element the architect does not need to analyse
saves effort. We measured these effort types by counting
the architectural elements (Components, LinkingResources,
ResourceContainers) and comparing them. This enables a direct
comparison without the influence of the experience of architects.
The effort reduction is then calculated by the two metrics M2.1
and M2.2.

The first metrics is: M2.1 = ea
ea+ec

, where ea is the number
of affected elements and ec is the number of connected elements
to the affected elements. This ratio describes the effort reduction
if the architects have to investigate an additional propagation
step. For M2.1 higher numbers are better

Additionally, we calculated M2.2 = ea
en

, where en is the
number of all elements. This is the ratio between the affected
elements to the overall elements. This calculates the effort
reduction for our second effort type, where the architect
analyses the compromised elements for changes. Here lower
numbers are better.

B. Study Design

According to van den Berghe et al. [62], security approaches
performed during the design-time often use only illustrative
examples as an evaluation. They argue that using a case
study might be a better approach since case studies might
provide better insights, show the applicability and increase
the comparability between different approaches. Therefore,
we chose 3 case studies to evaluate the accuracy and effort
reduction.
Accuracy: We created for each case study the architectural
model, based on the literature sources [16], [17], [63], [64], if
there was no model available. Afterwards, we determined for
every case study the reference output of affected architectural
elements. These included the affected components, linking
resources, hardware resources and compromised services. We
used for creating the reference output if available the literature
source or online resources such as OWASP [45] or the NVD
[47]. Afterwards, we added the vulnerabilities and access
policies to each case study model and ran our analysis. The
result was then compared to the reference output. Based on
this comparison, we calculated the precision and recall for each
case study or in case of the last case study for each scenario.
Effort Reduction: For the effort reduction, we reused the results
of the accuracy evaluation. For ea we used the size of the list of
affected components, linking resources and hardware resources.
We identified ec by calculating the next potential propagation
step manually for each compromised element. This propagation
step is, of course, not possible in the original analysis, but we
assumed here that the attacker would have all the requirements
for compromising the next element. If the next elements were
not already compromised, we added it to our set of connected
elements. Afterwards, we calculated the size of this set. For
en we calculated for each case study the list of components,
linking resources and hardware resources.

C. Case Studies

Here we describe our three case studies.
Target Breach: Our first case study is based on the data breach
of the retail store Target in 2013. Personal data, including credit
cards or private addresses from about 70 million customers,
were stolen during this incident. We created a simplified case
study based on Shu et al. [63] and Plachkinova et al. [16],
which both summarise the breach. It is publicly believed
that the attackers gained access to the target network by
compromising the network of a supplier. There, they could
steal the credentials to access the Target business backend,
such as services for billing. In our case study, we modelled
this by two connected components, one for the business
backend and one for the supplier. The latter one contains
credentials, which can be used to access the business backend.
However, these credentials could not be used to control the
business component or gain access to the credit card data.
Therefore, some privilege escape action is needed. In our case
study, we modelled this by annotating a CWEVulnerability
for privilege escape to the business component. We used the
CWEVulnerability here since our sources mention only the
vulnerability type and no specific vulnerability. In [63] it is
also described that the attacker compromised the Point of Sale
(POS) devices, which contained the unencrypted credit card
data. Besides the POS devices, the attackers also compromised
ftp storage servers. We modelled these aspects by adding
components representing POS devices and storage devices.
These components are not directly linked with the same network
as the supplier component since the original network used
some network segregation. Additionally, there exist components
representing databases. A cited report in [15] states that often
weak passwords or default passwords were used. Additionally,
the network contained outdated software. In our case study,
we used this by annotating to the POS, storage and database
components CWEvulnerabilities for default passwords or weak
passwords. Each component is allocated at least once and uses
its own hardware resource.
Ukrainian Powergrid Breach: Our second case study is based on
the cyberattack on the Ukrainian Powergrid at the end of 2015.
We have based our case study on the reports of [17], [64]. They
provide a detailed attack walkthrough and information about
the attacked software architecture. Here, an attacker gained
access to an internal network to manage the power grid’s circuit
breakers (here ics). The attack was archived by first gaining
access via phishing to one office computer. Afterwards, they
compromised other office computers till they found credentials
to the ics network. With these credentials, they could then
access the ics network and, in the end, could activate the circuit
breakers. We investigated in our case study the propagation
part, from the moment the attacker got access to the first office
computer till the attackers could activate the circuit breakers.
Our architecture is modelled by two separate networks within
the PCM. The first one is for the office network and the other
one for the ics. As in the original case study, both networks
are connected by a component, which acts as a VPN gateway.



The office network contains different components. One is the
initial compromised component without the credentials to the
ics network. Another component contains the credentials to
the ics network. We annotated the CVE-2014-1761 [65] for
this component, which the attacker had to exploit to get the
credentials. This CVE is representative since the used worm
(BlackEnergy) used this vulnerability. The ics then contains
components, which provide services, which represented the
activation of the ics breaker.
TravelPlanner: The previous two case studies are based on real-
world scenarios. In these specific cases, nearly the complete
system was compromised. In our third case study, we want
to focus on the aspects that only parts of the systems are
compromised. Therefore, we chose a third confidentiality
research case study. The case study is the TravelPlanner [18]
case. It was originally developed for analysing confidentiality,
and it was already applied to evaluate other confidentiality
analyses such as [12], [19]. It describes a simple mobile
application to book flights. It consists of four entities: customer,
credit card centre, travel agency and airline. We used the model
from Kramer et al. [19], who transformed it into a PCM model.
We created different scenarios based on every vulnerability-
based propagation step. Additionally, we created scenarios for
edge cases in our analysis, such as empty attacker models.
A complete list including the propagation description can be
found in the dataset [50]. We selected the CWE vulnerabilities
based on the OWASP Top Ten [45] and their corresponding
CWE classes. OWASP describes the most common security
issues in real web applications.

D. Results and Discussion

We have investigated 17 scenarios (one scenario for each
real-world case study and 15 TravelPlanner scenarios). For
each scenario regarding the accuracy (Q1), we have a precision
and recall of 1.00. These are perfect results for accuracy. The
reasons for the perfect results are that the system in both
real-world case studies were highly compromised and in the
TravelPlanner case study the scenarios are small. Both reasons
simplify the outcome, whereas, in other scenarios the results
might differ. However, these scenarios allow identifying the
accuracy for functional correctness more easily. Therefore, the
results indicate that the implementation is at least functional
correct.

The results for Q2 are shown in Table I, where T is the
Target case study, P is the Powergrid case study and the TPs are
the scenarios from the TravelPlanner. As expected, the results
for M2.1 in the Target and Power Grid case study are lower
since nearly all the elements were affected. Therefore, the
number of unaffected elements is lower and the security expert
must look at more elements. Additionally, when we looked
at the results in more detail, the unaffected elements were
mostly external elements such as outside network elements. In
the TravelPlanner scenarios, the the effort reduction is higher
since not all elements are affected. This is usually the case
when only a smaller part of the system is affected. The value
of TP1 cannot be calculated since no architectural element is

compromised. Overall for M2.1 the TravelPlanner scenarios
show our analysis reduces the architectural elements architects
needs to check between 44% and 88%. This indicates that
for smaller breaches, our analysis could save the architects
effort. The result for M2.2 shows basically the same tendency
as M2.1. The TravelPlanner scenarios show in all scenarios
lower numbers and in most cases much lower numbers. As
expected, this is based on the different number of affected
elements. This indicates that in certain scenarios, architects
can save significant work. For instance, in TP14, they only
have to analyse 10% of the architectural elements manually.

Overall our results indicate that the analysis produces
accurate result and can save effort.

E. Threats to Validity

We categorize the threats to validity in four categories as
suggested by Runeson and Höst [66].
Internal Validity describes that only the expected factors
influence the results. Our analysis uses different models as
input and is evaluated based on these. Therefore, the results
highly depend on the selected models and scenarios. Especially
since we also created the reference output manually. We
lowered here the risk by deriving the reference output based on
real-world examples and existing literature. While the overall
models are quite small, they contain the important parts of the
attack. Adding more architectural elements might increase the
number of compromised elements but would not change the
outcome regarding the compromised elements. Also, regarding
the analysis, the important aspects of it are already covered:
Gaining of new credentials, exploiting vulnerabilities based on
CWEs/CVEs (authenticated and not authenticated), propagation
from different compromised components, identifying potentially
affected data. Therefore, we assume the risk to be low. We
did not cover in our effort cases the effort for creating the
models. While this might be a significant effort, there also
exist automatic tools that might help here.
External Validity describes how generalizable and useful for
other researchers the results are [66]. While a case study might
increase the insights into the problem, it may also not be a
representative example of the problem. By using external case
studies, we tried to lower the risk. However, the results so far
only indicate the functional accuracy of the analyses and not
the accuracy of the approach in general. Here especially, the
potential overestimation of compromised data and the hardware
resource containers is not investigated. This is partly based on
the fact that in our real-world case studies nearly all relevant
elements are affected and that finding case studies for this is
quite challenging. We plan to address this in the future by
investigating the approach with further case studies and a more
detailed exchange with security experts.
Construct Validity discusses whether the investigated properties
are relevant for the intended goal. Here, the properties are the
different metrics. For accuracy, we chose precision and recall,
which is also used to evaluate the accuracy of the KAMP
approach [22], [23], which we used as a structure for our
propagation algorithm. Using the same metric lowers this risk.



TABLE I
EVALUATION RESULTS FOR EFFORT REDUCTION

Scenarios

Metrics T P TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP 9 TP 10 TP11 TP 12 TP 13 TP14 TP15

M2.1 0.13 0.28 - 0.86 0.63 0.78 0.78 0.78 0.67 0.70 0.71 0.67 0.44 0.60 0.80 0.83 0.88
M2.2 0.87 0.68 0.00 0.10 0.30 0.20 0.20 0.20 0.30 0.30 0.20 0.30 0.50 0.40 0.20 0.10 0.10

M2.1 is simply the ratio between counted model elements. This
also applies to M2.2. Also, in the original KAMP evaluation
[22] M2.2 is used for answering a similar question.
Reliability describes whether other researchers can reproduce
the results later. Using statistical metrics avoids subjective in-
terpretation and therefore increases reproducibility. Additional,
we prepared a dataset [50] containing all the models and a
description of how to apply them and made the source code of
the analysis publicly available. This will allow other researchers
to verify the results.

F. Assumptions & Limitations

Some attacks need the interaction of a third party which is
not the attacker. This is most often a regular user. So far, we
cannot differentiate between these kinds of attacks.

The attack propagation based on the vulnerability only works
if the vulnerability and the attacks or at least their category is
known. Unknown attacks or vulnerabilities are not considered.
Therefore, the analysis cannot be used to identify unknown
vulnerabilities. However, it allows identifying unknown attack
paths. Also, based on the CWE categories, it is possible to
consider some unknown vulnerabilities in a component by
assigning a common CWE vulnerability, such as provided by
OWASP [45].

We do not consider advanced mitigation strategies of
attacks in our approach. While simple mitigation approaches
such as access control or network segregation are partially
supported, more advanced concepts like data encryption or
trusted execution environments [67] are not supported. However,
our approach could be used to identify locations for advanced
mitigation strategies. For instance, an architect can review
the attack paths and install mitigation strategies in critical
paths. Additionally, the mitigated vulnerabilities could be
removed from the model and then the architect could run
the analysis to see how the attack paths change. Nevertheless,
this solution comes with additional drawbacks, such as an
inconsistency between the modelled vulnerabilities and the
vulnerabilities in the system. One solution for this limitation
might be the combination with approaches, such as in [68].
Additionally, while some mitigation approaches can circumvent
confidentiality leaks, they are in general not commonly applied
and there also exist attacks such as [69], which can circumvent
security measures.

The scalability of the approach might be problematic since
for every newly gained credential or compromised element all
connected elements need to be checked. This is because new
credentials provide new authorisation and the compromised

element might be used in a dependable vulnerability (see
requiredRoles). While this is for smaller attack paths under
1000 steps no problems, early experiments show that the
calculation time increases drastically for bigger attack paths.
The calculation time could be potentially decreased by using
more efficient data-structures. Additionally, the execution time
during the design time is not problematic.

Currently, the data extraction is only considered from the
control flow. Aspects like unencrypted data, which flows over
network nodes and could easily be seen by compromised
network nodes, are so far not considered.

IX. CONCLUSION

In this paper, we presented an approach for an architectural at-
tack propagation analysis. We proposed a metamodel extension
for modelling access control policies and system vulnerabilities.
We integrated the metamodel into the PCM, allowing system
architects to specify access policies and vulnerabilities to
different architectural elements, such as services or hardware
elements. This system model then can be analysed by an attack
propagation to identify compromised architectural elements.
The evaluation shows that our approach works accurately in the
used scenarios and indicates that it saves effort by suggesting
relevant architectural elements.

Using our approach is beneficial for identifying possible
weak spots in the software architecture. This identification
might prevent attacker propagations. Additionally, the approach
can be used during an active attack to identify compromised
resources and reduce further propagation steps of attackers.
The generated XACML file can be used during runtime as the
access control policy file. This might reduce errors introduced
by manually defining one from the specification. The model
can also serve as documentation of the access control or
vulnerabilities. This eases the communication between different
stakeholders.

In the future, we plan to investigate the automatic creation
of vulnerability models by combining existing vulnerability
analysis with approaches such as [44]. Regarding the evaluation,
we plan to apply our approach to different real-world scenarios
and investigate the scalability.

ACKNOWLEDGEMENT

This work was supported by the German Research Foun-
dation (DFG) under project number 432576552, HE8596/1-1
(FluidTrust), as well as by funding from the topic Engineering
Secure Systems (46.23.03) of the Helmholtz Association (HGF)
and by KASTEL Security Research Labs.



REFERENCES

[1] J. Greig. (Oct. 5, 2021). 96% of third-party container
applications deployed in cloud infrastructure contain
known vulnerabilities: Unit 42, [Online]. Available: https:
//www.zdnet.com/article/96-of-third-party-container-
applications-deployed-in-cloud-infrastructure-contain-
known-vulnerabilities-unit-42/ (visited on 09/29/2021).

[2] HP. (Jul. 29, 2014). Hp study reveals 70 percent of
internet of things devices vulnerable to attack, [Online].
Available: https://www.hp.com/us-en/hp-news/press-
release.html%3Fid=1744676 (visited on 10/05/2021).

[3] I. Mori, “Cyber security breaches survey 2021: Statistical
release,” p. 66,

[4] E. Cole, Advanced persistent threat: understanding the
danger and how to protect your organization. Newnes,
2012.

[5] V. Hu et al., “Attribute-Based Access Control,” Com-
puter, vol. 48, no. 2, pp. 85–88, Feb. 2015.

[6] D. Verma, E. Bertino, G. de Mel, and J. Melrose, “On
the impact of generative policies on security metrics,”
in 2019 IEEE International Conference on Smart Com-
puting (SMARTCOMP), IEEE, Jun. 2019, pp. 104–109.

[7] E. Bertino, A. A. Jabal, S. Calo, D. Verma, and C.
Williams, “The challenge of access control policies
quality,” Journal of Data and Information Quality,
vol. 10, no. 2, pp. 1–6, Sep. 7, 2018.

[8] [Online]. Available: https : / / bloodhoundenterprise . io/
(visited on 10/05/2021).

[9] [Online]. Available: https://www.darpa.mil/program/
cyber-grand-challenge/ (visited on 10/05/2021).

[10] M. U. Aksu, K. Bicakci, M. H. Dilek, A. M. Ozbayoglu,
and E. I. Tatli, “Automated generation of attack graphs
using nvd,” in ODASPY ’18, Tempe, AZ, USA: Associ-
ation for Computing Machinery, 2018, pp. 135–142.

[11] B. Yuan, Z. Pan, F. Shi, and Z. Li, “An attack path
generation methods based on graph database,” in 2020
IEEE 4th ITNEC, vol. 1, 2020, pp. 1905–1910.

[12] S. Seifermann, R. Heinrich, and R. Reussner, “Data-
driven software architecture for analyzing confidentiality,”
in ICSA’19, Hamburg, Germany: IEEE, pp. 1–10.

[13] D. Basin, M. Clavel, J. Doser, and M. Egea, “Automated
analysis of security-design models,” Information and
Software Technology, vol. 51, no. 5, pp. 815–831, May 1,
2009.

[14] R. Reussner, S. Becker, J. Happe, et al., Modeling
and Simulating Software Architectures – The Palladio
Approach. Cambridge, MA: MIT Press, Oct. 2016,
408 pp.

[15] B. Krebs. (Sep. 21, 2015). Inside target corp., days after
2013 breach, [Online]. Available: https://krebsonsecurity.
com / 2015 / 09 / inside - target - corp - days - after - 2013 -
breach/.

[16] M. Plachkinova and C. Maurer, “Security breach at tar-
get,” Journal of Information Systems Education, vol. 29,
no. 1, pp. 11–20, 2018.

[17] B. A. Hamilton, “Industrial cybersecurity threat briefing,”
Tech. Rep., p. 82.

[18] K. Katkalov, “Ein modellgetriebener ansatz zur entwick-
lung informationsflusssicherer systeme,” doctoralthesis,
Universität Augsburg, 2017.

[19] M. Kramer, M. Hecker, S. Greiner, K. Bao, and K.
Yurchenko, “Model-driven specification and analysis
of confidentiality in component-based systems,” KIT-
Department of Informatics, Tech. Rep. 12, 2017.

[20] XACML, [Online]. Available: https://docs.oasis-open.
org/xacml/3.0/xacml-3.0-core-spec-os-en.html (visited
on 10/25/2021).

[21] K. Rostami, J. Stammel, R. Heinrich, and R. Reussner,
“Architecture-based assessment and planning of change
requests,” ser. QoSA ’15, ACM, 2015, pp. 21–30.

[22] K. Rostami, R. Heinrich, A. Busch, and R. Reussner,
“Architecture-based change impact analysis in infor-
mation systems and business processes,” in ICSA’17,
pp. 179–188.

[23] R. Heinrich, S. Koch, S. Cha, K. Busch, R. Reussner,
and B. Vogel-Heuser, “Architecture-based change impact
analysis in cross-disciplinary automated production
systems,” JSS 146, vol. 146, pp. 167–185, 2018.

[24] R. Al-Ali, R. Heinrich, P. Hnetynka, A. Juan-Verdejo,
S. Seifermann, and M. Walter, “Modeling of dynamic
trust contracts for industry 4.0 systems,” in ECSA ’18,
ACM.

[25] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz, “Verification and change-impact analysis of
access-control policies,” 2005, p. 196.

[26] F. Alberti, A. Armando, and S. Ranise, “Efficient
symbolic automated analysis of administrative attribute-
based rbac-policies,” in ASIACCS ’11, 2011, p. 165.

[27] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based
access control (RBAC): Features and motivations,” in
ACSAC’95, 1995, pp. 241–248.

[28] F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone,
“Analysis of xacml policies with smt,” in Principles of
Security and Trust, Springer, 2015, pp. 115–134.

[29] J. Jürjens, “Umlsec: Extending uml for secure systems
development,” in UML 2002. Springer Berlin Heidelberg,
2002, vol. 2460, pp. 412–425.

[30] T. Lodderstedt, D. Basin, and J. Doser, “Secureuml: A
uml-based modeling language for model-driven security,”
vol. 24, Springer, Berlin, Heidelberg, 2002, pp. 426–441.

[31] K. Tuma, R. Scandariato, and M. Balliu, “Flaws in flows:
Unveiling design flaws via information flow analysis,”
in ICSA’19, pp. 191–200.

[32] C. Gerking and D. Schubert, “Component-Based Re-
finement and Verification of Information-Flow Security
Policies for Cyber-Physical Microservice Architectures,”
in ICSA’19, IEEE, Mar. 2019, pp. 61–70.

[33] K. Katkalov, K. Stenzel, M. Borek, and W. Reif, “Model-
driven development of information flow-secure systems
with iflow,” in SOCIALCOM’13, pp. 51–56.

https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.hp.com/us-en/hp-news/press-release.html%3Fid=1744676
https://www.hp.com/us-en/hp-news/press-release.html%3Fid=1744676
https://bloodhoundenterprise.io/
https://www.darpa.mil/program/cyber-grand-challenge/
https://www.darpa.mil/program/cyber-grand-challenge/
https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/
https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/
https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html


[34] S. Seifermann, R. Heinrich, D. Werle, and R. Reussner,
“Detecting violations of access control and information
flow policies in data flow diagrams,” JSS, 2021.

[35] N. Boltz, M. Walter, and R. Heinrich, “Context-based
confidentiality analysis for industrial iot,” in SEAA’20,
IEEE.

[36] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer,
“Dag-based attack and defense modeling: Don’t miss the
forest for the attack trees,” Computer Science Review,
vol. 13–14, pp. 1–38, Nov. 2014.

[37] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24,
no. 12, pp. 21–29, 1999.

[38] T. Sommestad, M. Ekstedt, and H. Holm, “The cyber
security modeling language: A tool for assessing the
vulnerability of enterprise system architectures,” IEEE
SYSTEMS JOURNAL, vol. 7, no. 3, p. 11, 2013.

[39] N. Polatidis, E. Pimenidis, M. Pavlidis, S. Papastergiou,
and H. Mouratidis, “From product recommendation to
cyber-attack prediction: Generating attack graphs and
predicting future attacks,” Evolving Systems, vol. 11,
no. 3, pp. 479–490, Sep. 2020.

[40] N. Polatidis, M. Pavlidis, and H. Mouratidis, “Cyber-
attack path discovery in a dynamic supply chain mar-
itime risk management system,” Computer Standards &
Interfaces, vol. 56, pp. 74–82, 2018.

[41] C. Deloglos, C. Elks, and A. Tantawy, “An attacker mod-
eling framework for the assessment of cyber-physical
systems security,” in Computer Safety, Reliability, and
Security, Springer, 2020, pp. 150–163.

[42] S. Becker, M. Hauck, M. Trifu, K. Krogmann, and
J. Kofroň, “Reverse engineering component models for
quality predictions,” in CSMR ’10, pp. 194–197.

[43] D. Monschein, M. Mazkatli, R. Heinrich, and A. Kozi-
olek, “Enabling consistency between software artefacts
for software adaption and evolution,” in ICSA, 2021,
pp. 1–12.

[44] Y. R. Kirschner, “Model-driven reverse engineering of
technology-induced architecture for quality prediction,”
in ECSA Workshop Proceedings, vol. 2978, CEUR-
WS.org, 2021.

[45] [Online]. Available: https://owasp.org/www-project-top-
ten/ (visited on 10/25/2021).

[46] [Online]. Available: https : / / snyk . io/ (visited on
11/02/2021).

[47] NVD, [Online]. Available: https: / /nvd.nist .gov/vuln
(visited on 10/25/2021).

[48] [Online]. Available: https://heartbleed.com/ (visited on
11/06/2021).

[49] [Online]. Available: https : / / www . oasis - open . org /
committees/tc home.php?wg abbrev=xacml (visited
on 10/10/2021).

[50] M. Walter, R. Heinrich, and R. Reussner. Dataset -
architectural attack propagation analysis for identifying
confidentiality issues, [Online]. Available: https://doi.
org/10.5445/IR/1000141655.

[51] C. Osborne. (Oct. 5, 2021). Misconfigured, old airflow
instances leak slack, aws credentials, [Online]. Available:
https://www.zdnet.com/article/misconfigured-airflow-
instances - leak - slack - aws - credentials/ (visited on
10/24/2021).

[52] Cwe, [Online]. Available: https://cwe.mitre.org/ (visited
on 10/25/2021).

[53] Cve, [Online]. Available: https://cve.mitre.org/ (visited
on 10/25/2021).

[54] Cvss sig, [Online]. Available: https://www.first.org/cvss/
(visited on 10/25/2021).

[55] Cwe-312, [Online]. Available: https://cwe.mitre.org/
data/definitions/312.html (visited on 10/25/2021).

[56] Cve-2021-28374, [Online]. Available: https : / / nvd .
nist . gov / vuln / detail / CVE - 2021 - 28374 (visited on
10/25/2021).

[57] Cvss 3.1, [Online]. Available: https://www.first.org/
cvss/v3- 1/cvss- v31- specification r1.pdf (visited on
10/25/2021).

[58] Cwss, [Online]. Available: https://cwe.mitre.org/cwss/
cwss v1.0.1.html (visited on 10/25/2021).

[59] [Online]. Available: https://github.com/att/xacml-3.0
(visited on 10/25/2021).

[60] G. Basili, V. R. Caldiera, and H. D. Rombach, “The
goal question metric approach,” Encyclopedia of software
engineering, pp. 528–532, 1994.

[61] C. Van Rijsbergen and C. Van Rijsbergen, Information
Retrieval. Butterworths, 1979.

[62] A. van Den Berghe, R. Scandariato, K. Yskout, and
W. Joosen, “Design notations for secure software: A
systematic literature review,” Softw. Syst. Model., vol. 16,
no. 3, pp. 809–831, 2017.

[63] X. Shu, K. Tian, A. Ciambrone, and D. Yao, “Breaking
the target: An analysis of target data breach and lessons
learned,” arXiv:1701.04940 [cs], Jan. 17, 2017.

[64] E. I. Sharing and A. C. (E-ISAC), “Analysis of the cyber
attack on the ukrainian power grid, defense use case,”
Tech. Rep., 2016, pp. 1–29.

[65] Cve-2014-1761, [Online]. Available: https://nvd.nist.gov/
vuln/detail/CVE-2014-1761 (visited on 10/25/2021).

[66] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,”
Empirical Software Engineering, vol. 14, no. 2, p. 131,
Dec. 19, 2008.

[67] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted
execution environment: What it is, and what it is not,”
in 2015 IEEE Trustcom/BigDataSE/ISPA, pp. 57–64.

[68] E. Taspolatoglu and R. Heinrich, “Context-based archi-
tectural security analysis,” in 2016 13th WICSA, IEEE,
Apr. 2016, pp. 281–282.

[69] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom,
SGAxe: How SGX fails in practice, https://sgaxeattack.
com/, 2020.

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://snyk.io/
https://nvd.nist.gov/vuln
https://heartbleed.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://doi.org/10.5445/IR/1000141655
https://doi.org/10.5445/IR/1000141655
https://www.zdnet.com/article/misconfigured-airflow-instances-leak-slack-aws-credentials/
https://www.zdnet.com/article/misconfigured-airflow-instances-leak-slack-aws-credentials/
https://cwe.mitre.org/
https://cve.mitre.org/
https://www.first.org/cvss/
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/312.html
https://nvd.nist.gov/vuln/detail/CVE-2021-28374
https://nvd.nist.gov/vuln/detail/CVE-2021-28374
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://github.com/att/xacml-3.0
https://nvd.nist.gov/vuln/detail/CVE-2014-1761
https://nvd.nist.gov/vuln/detail/CVE-2014-1761
https://sgaxeattack.com/
https://sgaxeattack.com/

	Introduction
	Foundations
	Running Example
	State of the Art
	Approach Overview
	Modelling Access Polices & Attackers
	Modelling Access Control Policies
	Modelling Attacker Capabilities

	Attack Propagation Analysis
	Attack Propagation
	Data Extraction
	Analysing the Vulnerability

	Evaluation
	Evaluation Goals, Questions and Metrics
	Study Design
	Case Studies
	Results and Discussion
	Threats to Validity
	Assumptions & Limitations

	Conclusion

