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Abstract: Detector-based spectral CT offers the possibility of obtaining spectral information from
which discrete acquisitions at different energy levels can be derived, yielding so-called virtual
monoenergetic images (VMI). In this study, we aimed to develop a jointly optimized deep-learning
framework based on dual-energy CT pulmonary angiography (DE-CTPA) data to generate synthetic
monoenergetic images (SMI) for improving automatic pulmonary embolism (PE) detection in single-
energy CTPA scans. For this purpose, we used two datasets: our institutional DE-CTPA dataset D1,
comprising polyenergetic arterial series and the corresponding VMI at low-energy levels (40 keV)
with 7892 image pairs, and a 10% subset of the 2020 RSNA Pulmonary Embolism CT Dataset D2,
which consisted of 161,253 polyenergetic images with dichotomous slice-wise annotations (PE/no
PE). We trained a fully convolutional encoder-decoder on D1 to generate SMI from single-energy
CTPA scans of D2, which were then fed into a ResNet50 network for training of the downstream PE
classification task. The quantitative results on the reconstruction ability of our framework revealed
high-quality visual SMI predictions with reconstruction results of 0.984 ± 0.002 (structural similarity)
and 41.706 ± 0.547 dB (peak signal-to-noise ratio). PE classification resulted in an AUC of 0.84
for our model, which achieved improved performance compared to other naïve approaches with
AUCs up to 0.81. Our study stresses the role of using joint optimization strategies for deep-learning
algorithms to improve automatic PE detection. The proposed pipeline may prove to be beneficial for
computer-aided detection systems and could help rescue CTPA studies with suboptimal opacification
of the pulmonary arteries from single-energy CT scanners.

Keywords: artificial intelligence; deep learning; image-to-image translation; dual-energy computed
tomography; pulmonary embolism; emergency radiology

1. Introduction

Pulmonary embolism (PE) is a potentially life-threatening condition and represents the
third most frequent cardiovascular disease after acute coronary syndrome and stroke [1,2].
Early and accurate diagnosis of PE helps in appropriate risk stratification and could sub-
stantially improve treatment outcomes [3]. Because of fast image acquisition protocols
and high sensitivity in clot detection, computed tomography pulmonary angiography
(CTPA) has become the first-line imaging modality in the diagnostic workup for patients
with suspected PE [4–6]. However, individual patient-related parameters, such as cardiac
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function, circulation time, and an increased pulmonary inflow of unopacified blood, known
as transient interruption of contrast, can compromise image quality of the CTPA study,
sometimes rendering the examination useless for an adequate diagnostic evaluation [7,8].
Detector-based spectral dual-energy CT (DECT) has gained increasing importance in clini-
cal routine because of various post-processing algorithms which allow the reconstruction
of energy- and material-selective images from spectral data. DECT enables the creation of
discrete acquisitions at different energy levels, resulting in virtual monoenergetic images
(VMI) that can mimic low (at high keV) to high (at low keV) iodine-based contrast-enhanced
studies. It was shown that an improved iodine attenuation by VMI at lower keV levels
enables better delineation and diagnostic accuracy in PE detection and may help rescue
CTPA studies with suboptimal opacification of the pulmonary arteries [6]. Since most
existing CT datasets consist of conventional single-energy CT scanners, they do not pro-
vide spectral information to calculate VMI. Recent studies have proposed deep-learning
models to produce high-quality approximations of DECT-derived VMI to overcome these
issues [9–11]. However, while existing image translation methods can generate visually
appealing results, they do not necessarily enforce features that enable the correct identifica-
tion of certain classes.

In this study, we aimed to develop a jointly optimized end-to-end learnable framework
that combines the training of two convolutional neural networks for image translation
and downstream PE classification. For this task, we investigated several state-of-the-art
image translation methods to predict synthetic monoenergetic images (SMI) for subse-
quent training of the classification network. We evaluated the proposed pipeline on an
independent external test set comprising single-energy CT data with slice-wise annota-
tions for PE presence by domain medical experts and compared it against other naïve
classification approaches.

2. Materials and Methods
2.1. Datasets and Study Design

Two datasets were used for this study. Institutional anonymized DE-CTPA data D1
were retrospectively included from 27 consecutive adult patients suspected of having PE,
referred from 15 July to 15 August 2020, during routine clinical workup in our radiology
department at Heidelberg University Hospital. No exclusion criteria were defined. Insti-
tutional DE-CTPA scans were performed on a dual-layer detector CT (IQon Spectral CT,
Philips Healthcare, Hamburg, Germany), from which standard arterial series and the corre-
sponding VMI at low-energy levels (40 keV) were reconstructed, yielding a final dataset
of 7892 image pairs without information on PE occurrence. The second dataset D2 was a
subset of the 2020 RSNA Pulmonary Embolism CT Dataset, the largest publicly available,
expert-annotated dataset of CTPA studies to date [12]. Of the 7279 annotated CTPAs from
D2, we sampled 10% of the training data. The final dataset D2 consisted of a total of 161,253
PE-annotated slices with roughly the same label distribution as present in the open training
set. A general overview of the proposed image translation and classification framework is
shown in Figure 1.

SE-CTPA

Input

PE yes/no

Output

SMI 40 keV

Generator

Network

PE Classification

Network

Figure 1. Proposed joint optimization framework. Single-energy CT pulmonary angiography (SE-
CTPA) arterial series are translated into synthetic monoenergetic images (SMI) using a L1 loss-based
ResNet encoder-decoder convolutional network. The SMI are then processed for pulmonary embolism
(PE) classification using a ResNet50 convolutional neural network.
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For our experiments, we considered the scenario where we are given these two distinct
datasets D1 and D2. D1 comprised unannotated images with DECT polyenergetic and
corresponding 40 keV monoenergetic depictions but no information on the occurrence of PE.
D2 contained a set of conventional single-energy CTPA (SE-CTPA) images with slice-wise
binary PE annotations (PE/no PE) without corresponding monoenergetic representations.
To take advantage of the DECT technology, we aimed to design a unified model that
would jointly optimize disease identification and domain adaption most fitting for the
task. We have formulated these two tasks in the same framework, so that (a) it trains
these tasks end-to-end, and (b) the two tasks can be mutually beneficial. We compared our
optimized framework against the same two but separately trained networks and further
straightforward approaches using other state-of-the-art image translation methods, all of
which were finally evaluated in the same downstream PE classification task. Figure 2
summarizes the study design.

Study inclusion

Patients with suspected PE 

and indicated CTPA 

(n = 7306)

Dataset D2

External SE-CTPA scans

(n = 7279)

Dataset D1

Institutional DE-CTPA scans

(n = 27)

10% Subset

7892 image pairs

DE-CTPA

arterial phase

VMI

40 keV

161,253 expert-annotated images

SE-CTPA

arterial phase
PE yes/no

Cross/Val Set

Cross-validation of image translation networks

L1*, SPL, Pix2Pix(HD), CRN

Joint Optimization Framework

Classification

Network
Update

Image Translation

Network

ResNet9 Enc-Dec (L1*) ResNet50†

Image Translation

Networks

Classification

Network

ResNet50†

Separately Trained Networks

Evaluation PE Classification

Joint Optimization Framework Separately Trained Networks

Test Set

80/20%

25%

50/25%Train/Val Set

Figure 2. Flowchart of study sample. ∗L1 loss-based image translation and †ResNet50 classifica-
tion networks with identical architecture. CTPA = CT pulmonary angiography, DE = dual-energy,
PE = pulmonary embolism, SE = single-energy, VMI = virtual monoenergetic images.

2.2. Model Development

We developed our jointly optimized framework using a two-stage approach: first,
an image translation model (Generator Network) was trained using the images of D1,
afterwards a classification network (PE Classification Network) was trained on D2 using
the image translation model’s outputs as the classification networks inputs. We trained
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our networks jointly in an end-to-end manner by sequentially passing data through the
Generator and PE Classification Network (Figure 3).

Generator

Network
DE-CTPA

Unannotated art. phase

with VMI target

SE-CTPA

PE-annotated art. phase

without VMI target

Unannotated SMI with

VMI target

SMI

Reconstruction Loss

VMISMI

PE-annotated SMI 

without VMI target

SMI

Classification Loss

PE yes/no

PE Classification

Network

Prediction TargetPrediction

Prediction SMI

Update

Update

D1

D2

Figure 3. End-to-end learnable image translation and classification pipeline. The ResNet9 encoder-
decoder network (Generator Network) was trained on D1 to predict synthetic monoenergetic images
(SMI). Using the trained generator network, the annotated SE-CTPA images from D2 were translated
into SMI, which were then fed into a ResNet50 convolutional network (PE Classification Network) for
training PE classification. The generator and classification networks were updated by a reconstruction
and classification loss, respectively.

2.2.1. The Generator and PE Classification Network

Our Generator Network follows the official Pytorch implementation of the fully
convolutional 9-block ResNet encoder-decoder network [13,14]. As such, three strided
convolutions with BatchNorm [15] and ReLU activations encode the image input and feed
these to nine residual blocks [16]. Three transposed convolutions [17] are used to produce
the output image. For our PE Classification Network, we used the common ResNet50
architecture [16].

2.2.2. Joint Optimization of the Generator and Classification Network

The proposed framework jointly optimizes two tasks in an end-to-end manner [11].
As one task, we considered the problem of translating between the domain of polyenergetic
x ∈ X and VMI images y ∈ Y as a paired image translation problem. Here, the generator
aims to learn a mapping G: x → y, which minimizes the difference between the two paired
images. The generator consists of a fully convolutional neural network which allows a
pixel-wise regression towards VMI images. This objective can be expressed as

LL1 = Ex,y[||G(x)− y||1]. (1)

We used the mean absolute error as it has been found to lead to less blurry images [13].
Consecutively, the output of the generator was fed into a classification network C, which
attempts to predict the occurrence of a disease label z, C: G(x)→ z of the annotated dataset.
The classification network consists of a deep convolutional network that takes an image
as input and outputs a scalar value. We used a sigmoid activation σ for making output
predictions while we dealt with the binary classification task (PE/no PE).



Diagnostics 2022, 12, 1224 5 of 11

Lcls =Ex,z[−z log σ(C(G(x)))

− (1− z) log(1− σ(C(G(x)))]
(2)

To optimize both objectives during the training process, we constructed our dataset as
a combination of the two datasets (Figure 2). During the networks’ optimization process,
we sampled the batch in such a way that, on average, it consisted of 50% of either dataset.
Therefore, target disease labels appeared for half of the batch and monoenergetic target
images for the other half. To accommodate this circumstance into the optimization function,
we introduced a marker variable m that switches between [0, 1] depending on whether we
were presented a target image y or a target label z. In this manner, the final loss can be
formulated as

L = m · Lcls + (1−m) · LL1. (3)

This batch constellation led to a balanced optimization scheme allowing neither ob-
jective to dominate the training. For back-propagation of the resulting gradients, we kept
one of the networks frozen while updating the other depending on the respective objective.
This process behaved similarly to adversarial training. During inference, an SE-CTPA is
passed to the generator network, thus, producing an SMI. Using the SMI as input, the
classification network then predicts the likelihood of a PE within a range of 0–1.

2.2.3. Training of the Jointly Optimized Framework

We used Adam [18] for optimization with a learning rate of 0.0002, β1 = 0.9 and
β2 = 0.99 with a weight decay of 0.00001. After training for five epochs on the joint
dataset, we decayed our learning rate to 0 over the following five epochs. For our purposes,
we split each scan slice-wise and used the individual slices for further processing. Each
slice image was used as one channel image normalized using the dataset’s mean and
standard deviation. We used an image size of 512× 512 with a batch size of five for all
our experiments. We split the RSNA subset patient-wise 50%/25%/25% into train-, val-
and test-sets, respectively. For the cross-validation on our institutional dataset, we used a
distinct patient-wise 80%/20% train- and val-set for each split.

2.2.4. Comparison with Other Separately Trained Networks

We compared our end-to-end framework against various image translation algorithms
using the same network architecture unless further specified. The L1 loss-based generator
describes disjoined training of our generator and classification model. Pix2Pix refers to
Isola et al.’s conditional generative adversarial network (GAN), which is optimized using
an adversarial and L1 loss [13]. Cascaded refinement networks (CRN) make use of feature
matching losses using an external pre-trained network [19]. For the feature matching
loss, we applied a visual geometry group (VGG)-network and used the architecture as
described by Chen and Koltun [19]. Wang et al.’s Pix2PixHD consists of a multi-scale
encoder-decoder architecture optimized using multi-scale adversarial and feature matching
losses [20]. The spatial profile loss (SPL) describes an alternative to the L1 loss as its
formulation incorporates the images profile structure [21]. We further added L1 losses to
feature loss-based methods (CRN, Pix2PixHD), denoted by (*), since we have found the
training of these methods to be unstable otherwise.

2.3. Statistical Analysis

For model development and training, we used the Pytorch framework (Python, Python
Software Foundation) and an NVIDIA GeForce2080 [22]. Statistical analyses were per-
formed using the scikit-learn metrics API version 0.24.2 (Python, Python Software Foun-
dation). To evaluate PE classification performance by the PE Classification Network for
different image translation methods, we trained all methods on the same split in the cross-
validation setting of our internal dataset. For evaluation of the VMI reconstruction results
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of the Generator Network, we performed a five-fold cross-validation and averaged our
reconstruction results in terms of peak signal-to-noise ratio (PSNR) and a structural simi-
larity index measure (SSIM) [23]. Both metrics compare the projected image to its ground
truth target. PSNR is defined via the mean squared error between the two images while
SSIM highlights their differences in luminance, contrast, and structure.

Evaluation of the classification performance of the PE Classification Network was
performed by a binary classification on slice level for each presented image domain, yielding
the area under the curve (AUC) on the test split of the model which performed best on
the validation set. Since our classification model output continuous values, with higher
values corresponding to higher model reliability regarding the occurrence of PE, we chose
a threshold-independent setting to calculate the AUC by weighting the true-positive rate
against the false-positive rate across all possible thresholds to indicate the probability by
which our classifier preferred a randomly selected PE instance over a negative one. We
validated our model after each epoch.

3. Results

The qualitative results on the reconstruction ability of our proposed method and
the compared baselines are shown in Figure 4. All tested methods managed to translate
the polyenergetic DE-CTPA images into SMI with a higher iodine opacification of the
pulmonary arteries, yielding a similar visual appearance compared to the VMI target
domain. The DE-CTPA arterial phase, the predicted SMI of our proposed framework, and
the VMI target are outlined in Figure 5. Both SMI predictions and VMI reconstructions
present higher attenuated pulmonary arteries compared to the polyenergetic arterial phase,
with a better delineation of clots in the segmental arteries of both lower lobe arteries
(Figure 5, arrows).
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Figure 4. Qualitative comparison of the different image translation methods on our institutional DE-
CTPA dataset. The respective structural similarity index measure (SSIM) and peak signal-to-noise ratio
(PSNR) values are given in each image. Ours denotes the proposed joint optimization framework.
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Input Prediction Target

SSIM:0.934 PSNR:28.16 SSIM:0.988 PSNR:43.46 SSIM:1.000 PSNR:-

DE-CTPA art. phase SMI 40 keV VMI 40 keV

Figure 5. Qualitative samples of our ResNet9 encoder-decoder image translation network. Areas
around pulmonary emboli are highlighted and zoomed in the row below. Arrows indicate clot
locations in the pulmonary arteries.

Table 1 shows the quantitative SSIM and PSNR values for the original SE-CTPA do-
main without SMI preprocessing and for the SMI predictions by the separately trained
networks and our jointly optimized framework, each with the corresponding PE classifica-
tion performance of the downstream ResNet50 network.

Table 1. Quantitative results and pulmonary embolism classification performance of the jointly
optimized framework and separately trained image translation and classification networks.

Domain SSIM PSNR AUC

SE-CTPA 0.945 ± 0.007 30.189 ± 0.690 0.8142

L1 0.984 ± 0.002 42.365 ± 0.642 0.8102
SPL 0.983 ± 0.002 40.888 ± 0.216 0.8061
Pix2Pix 0.978 ± 0.003 40.897 ± 0.697 0.8051
Pix2PixHD 0.971 ± 0.004 38.739 ± 0.624 –
CRN 0.371 ± 0.551 19.482 ± 16.033 –
Pix2PixHD * 0.971 ± 0.004 38.415 ± 1.278 0.8019
CRN * 0.976 ± 0.005 37.582 ± 1.574 0.8038

Joint Optimization Framework 0.984 ± 0.002 41.706 ± 0.547 0.8420
Data are mean ± standard deviation. Best results in bold. * Added L1 losses to feature loss-based methods. AUC
= area under the receiver operating characteristic curve, SE-CTPA = single-energy CT pulmonary angiography,
SSIM = structural similarity index measure, PSNR = peak signal-to-noise ratio.

With the exception of the feature loss-based CRN model, all methods succeeded in
producing high-quality SMI predictions. Our method achieved SMI predictions with an
SSIM of 0.984 ± 0.002 and a PSNR of 41.706 ± 0.547 dB, revealing a better quantitative
image quality than the original arterial SE-CTPA phase and similar visual predictions to
the best-performing L1-based generator. Our framework optimized on the image-based
comparison and outperformed the feature loss and adversarial methods for the evaluated
PE classification task. Despite similar SSIM and PSNR results, the L1 loss-based model
generated images that slightly compromised the PE classification performance of the
ResNet50 network, while the other compared models degraded the performance. Our
proposed method generated visually fitting SMI and achieved improved classification
results with an AUC of 0.84 compared to the SE-CTPA baseline and other classification
approaches with AUCs up to 0.81.
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4. Discussion

In this study, we have assessed several state-of-the-art image translation methods for
generating synthetic monoenergetic images from single-energy CT scans. We found that,
while these dual-energy mapping networks create visually similar predictions to the mo-
noenergetic reconstruction targets, PE classification on these SMI predictions was inferior
to that on the original SE-CTPA scans. We extended these methods using a multitask opti-
mization approach, wherein both combined networks achieved better image reconstruction
and classification results. External validation of our proposed framework on expert-curated
single-energy CTPA scans resulted in an increase in AUC for PE classification from 0.81 to
0.84 compared with other straight forward classification approaches.

We consider this setting relevant since DECT imaging is still not readily available
in clinical practice due to complex practical implementations, proprietary patents held
by major CT vendors, and the high acquisition costs of the DECT technique compared to
conventional SECT scanners, especially in remote healthcare facilities. As part of our clinical
routine protocol, we use VMI at the lowest spectrum of monoenergetic reconstructions
of 40 keV, as it has been shown to achieve best results in terms of contrast-to-noise and
signal-to-noise ratios [24]. VMI reconstructions at 40 keV have been found to improve the
quantitative image quality of DE-CTPA studies with suboptimal contrast attenuation of
the pulmonary arteries, leading to an increased diagnostic accuracy and confidence in PE
detection by radiologists [24,25]. The beneficial effect of using low-keV VMI reconstructions
also applies to computer-aided detection (CAD) systems. Recent work has shown that the
diagnostic accuracy of a commercially available CAD application had a better performance
in PE detection on VMI than on the corresponding dual-energy polyenergetic images,
resulting in a significantly lower rate of false-positive PE findings, which argues for the
implementation of VMI as the basis for CAD analysis in clinical practice [26,27]. Moreover,
previous studies have demonstrated that radiologists’ diagnostic accuracy in detecting PE
on CTPA can be improved by CAD systems, although a relatively large number of false-
positive results are generated on conventional polyenergetic images [28]. This circumstance
still limits the use of automatic detection models in clinical practice and may also be
improved by using synthetic monoenergetic data.

To the best of our knowledge, there are no studies evaluating single-energy CT-derived
SMI on the performance of CAD systems or its impact on the diagnostic accuracy and con-
fidence of radiologists, especially in SE-CTPA studies with suboptimal contrast attenuation
of the pulmonary arteries. This would have practical implications at institutions without
DECT scanners, as mapping SE-CTPA series to VMI may allow using these capabilities of
DECT technology to rescue diagnostically insufficient, or even non-diagnostic, PE examina-
tions. However, the implementation of CAD algorithms, and the impact of the proposed
framework on diagnostic readings by domain medical experts, deserve further exploration
in future studies and are beyond the scope of this study.

Our study had limitations. For training the image translation networks, we used only
a small number of CTPA studies, each acquired on one type of dual-energy CT scanner with
standardized scanning parameters and a defined iodine administration protocol. Although
the reconstruction results were of high quality, this approach has potential implications
for PE classification performance on external datasets; the use of an inhomogeneous
training set from different dual-energy CT scanners and keV levels could lead to further
improvements in PE classification. However, we assume good generalizability of the
trained model because the CTPA studies in our test set were collected from institutions
in five different countries, providing diversity in patient populations, imaging devices,
and protocols [12]. Furthermore, we implemented a ResNet50 network for automated PE
classification instead of anatomical PE detection on SMI as proof-of-principle to improve
the diagnostic performance of our joint optimization approach. Due to the slice-wise binary
annotations on PE presence and the absence of bounding boxes, regions of interest, or
centroid markers of intraluminal clots in our test set, we were unable to test our model for
PE detection performance.
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5. Conclusions

Our proposed joint optimization strategy allows training of translating polyenergetic
into monoenergetic images without losing features necessary for automatic PE classification.
Our model represents a noticeable improvement over straightforward classification, while
outperforming existing methods. This may prove beneficial in performing high-quality
DECT imaging without the conventional hardware-based DECT solutions and may also
help to rescue single-energy CTPA studies with low contrast attenuation of the pulmonary
arteries for patients with pulmonary embolism.
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