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Abstract
We report on the development of an analytical model describing the readout power and
superconducting quantum interference device (SQUID) hysteresis parameter dependence of the
resonator characteristics used for frequency encoding in microwave SQUID multiplexers.
Within the context of this model, we derived the different dependencies by analyzing the
Fourier components of the non-linear response of the non-hysteretic rf-SQUID. We show that
our model contains the existing model as a limiting case, leading to identical analytical
expressions for small readout powers. Considering the approximations we made, our model is
valid for rf-SQUID hysteresis parameters βL < 0.6 which fully covers the parameter range of
existing multiplexer devices. We conclude our work with an experimental verification of the
model. In particular, we demonstrate a very good agreement between measured multiplexer
characteristics and predictions based on our model.

Keywords: microwave SQUID multiplexer, non-linear Josephson inductance,
Josephson junction, non-hysteretic rf-SQUID, cryogenic detector array readout,
superconducting microwave resonators
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1. Introduction

Superconducting quantum interference devices (SQUIDs) are
the devices of choice for measuring any physical quantity that
can be naturally converted into a magnetic flux change. They
provide noise levels close to the quantum limit as well as ultra-
low power dissipation down to a few pW for single devices
[1, 2]. SQUIDs are hence intrinsically compatible with sub-
Kelvin operation temperatures and are thus particularly suited
for reading out cryogenic particle detectors, such as trans-
ition edge sensors (TESs) [3] or magnetic microcalorimeters
(MMCs) [4]. Both, TESs and MMCs, are calorimetric single-
particle detectors converting an energy input upon the absorp-
tion of an energetic particle into a temperature rise that is con-
tinuously monitored via an ultra-sensitive thermometer that is
based either on the steep temperature dependence of the res-
istance within the S/N transition of a superconducting mater-
ial (TESs) or the temperature dependence of a paramagnetic
material that is situated in a weak external bias magnetic field.
The unique combination of such ultra-sensitive thermometers
and a SQUID-based readout chain ultimately yields energy-
dispersive single-particle detectors with outstanding energy
resolution, fast signal rise time, a quantum efficiency close to
100% and a large dynamic range.

The maturity of fabrication technologies allows building
large-scale detector systems employing thousands or evenmil-
lions of virtually identical detectors paving the way for realiz-
ing next-generation instruments such as the Simons observat-
ory [5] or experiments investigating the electron neutrino mass
[6, 7] with sub-eV/c2 mass sensitivity. However, for this kind
of instruments, system complexity, cooling power at the cryo-
genic platform as well as overall costs have to be taken into
account. For these reasons, SQUID based multiplexing tech-
niques turn out to be key technologies for these applications.

Existing SQUID-based cryogenic multiplexers rely on
time-division multiplexing [8], frequency-division multiplex-
ing using MHz [9] and GHz [10] carriers, code-division
multiplexing [11] using orthogonal Walsh codes or hybrid
techniques [12]. Among these techniques, microwave SQUID
multiplexing (µMUXing) [13] is thought to be best suited
for realizing ultra-large scale detector arrays since this tech-
nique offers a large multiplexing factor, the required band-
width per readout channel for fast calorimetric detectors, a
very good noise performance as well as an extremely low on-
chip power dissipation. However, realizing and in particular
optimizing such complex readout systems requires detailed
models describing the device physics to reliably predict the
performance of the readout system on the basis of design and
operation parameters.

The existing model leads to an accurate description of
the µMUX characteristics for small readout powers, i.e.
Prf → 0 [14, 15]. For experimentally more realistic values,
i.e., when using a µMUX for cryogenic detector readout,
large discrepancies between measurements and model predic-
tions are observed [15]. For this reason, the existing µMUX
model cannot reliably be used for optimizing the device

performance. However, operating the cryogenic multiplexer
with optimal parameters is of utmost importance as its per-
formance influences the overall system noise level and poten-
tially might limit the achievable energy resolution [4].

Against this background, we present a µMUX model that
precisely allows predicting the characteristics of a µMUX for
a wide parameter range of the readout signal amplitude and the
SQUID hysteresis parameter. We compare our model with the
existing model reliably predicting the µMUX performance for
small readout powers to determine parameter constraints and
show that our model includes existing models as a limiting
case. We conclude our work with an experimental verification
of our model. Here, we demonstrate an excellent agreement
between predictions based on our model andmeasured µMUX
characteristic curves.

2. Basics of microwave SQUID multiplexing

To allow for a direct comparison between the existing model
and the model described in this publication and to introduce
the nomenclature that we use in the following, we summarize
the basic theoretical concepts ofmicrowave SQUIDmultiplex-
ing in this section. A more detailed description of the model
can be found, for example, in [14, 15].

Figure 1 shows the schematic circuit diagram of a single
µMUX readout channel. It consists of a coplanar, quarter-
wave resonator with characteristic impedance Z0 and phys-
ical length lr. The resonance frequency of the unloaded
resonator is

f0 =
1

4lr
√
(L ′

m +L ′
kin)C

′
, (1)

where L ′
m, L

′
kin and C′ denote the geometrical (magnetic)

inductance, the kinetic inductance of the Cooper pairs and
the geometrical (electric) capacitance per unit length, respect-
ively. The open end of the resonator is coupled to a microwave
transmission line with characteristic impedance Z0 via a coup-
ling capacitor with capacitance Cc. The other end of the
resonator is shorted to ground via a load inductor with induct-
ance LT that is simultaneously used to weakly couple a non-
hysteretic rf-SQUID to the resonator. The rf-SQUID consists
of a superconducting loop with inductance LS which is inter-
rupted by a single Josephson tunnel junction with critical cur-
rent Ic. To guarantee for a non-hysteretic behavior, the SQUID
hysteresis parameter βL = 2πLSIc/Φ0 is set to βL ⩽ 1. Here,
Φ0 = 2.07× 10−15 Vs denotes the magnetic flux quantum.
The coupling strength between resonator and rf-SQUID is
quantified by the mutual inductance MT.

For a vanishing coupling strength between resonator and rf-
SQUID, i.e. MT → 0, the input impedance of the loaded res-
onator is given by the series connection of the coupling capa-
citance and the terminated resonator:

Zin =
1

iωCc
+Z0

iωLT +Z0 tanh(γlr)
Z0 + iωLT tanh(γlr)

. (2)
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Figure 1. Schematic circuit diagram of a single µMUX readout
channel. The two main components are (i) a non-hysteretic
rf-SQUID consisting of a closed superconducting loop with loop
inductance LS and a Josephson tunnel junction with critical current
Ic and (ii) a coplanar, quarter-wave resonator with geometrical
length lr that is coupled to a microwave transmission line via a
coupling capacitor Cc and shorted to ground via a load inductor LT.
The effective load inductance LT,eff takes into account the magnetic
field dependence of the load inductor LT due to the mutual
interaction with the rf-SQUID.

Here, γ describes the complex propagation constant of the
electromagnetic wave with angular frequency ω inside the
resonator. Using the condition Im(Zin) = 0, we yield the
expression

fr ≈
f0

1+ 4f0 (CcZ0 +LT/Z0)
(3)

for the resonance frequency of the loaded resonator, which is
shifted toward smaller frequencies as compared to the reson-
ance frequency f 0 of the unloaded resonator.

We describe the mutual interaction between the rf-SQUID
and the resonator by introducing an effective impedance of
the resonator termination. Here, for simplicity, we model the
Josephson junction as a pure non-linear inductor with induct-
ance LJJ(φtot) = Φ0/ [2πIc cos(φtot)], which depends on the
normalized total magnetic flux φtot = 2πΦtot/Φ0 threading the
SQUID loop, and hence neglects the subgap resistance Rsg and
the intrinsic capacitance CJJ, as their contribution is about an
order of magnitude smaller for most devices. In this case, the
inductance LT,eff of the effective load inductor is given by the
expression

LT,eff(φtot)=LT−
M 2

T

LS +LJJ(φtot)
=LT−

M 2
T

LS

βL cos(φtot)

1+βL cos(φtot)
.

(4)

Figure 2. Frequency dependence of the transmission amplitude
|S21( f)|2 of a single multiplexer channel for different values of the
magnetic flux Φtot threading the SQUID loop. The colored curves
indicate the curves with highest (green line) and lowest (red line)
resonance frequency. The parameters used for calculating the curves
are fr = 5 GHz, ∆fBW = 1 MHz, Z0 = 50Ω, M2

T/LS = 25.4 pH and
βL = 0.01, leading to a maximum resonance frequency shift of
∆f max

r = 1 MHz. Here, ∆fBW describes the resonator bandwidth.
The total magnetic flux Φtot is varied between nΦ0 and (n+ 1/2)Φ0

in steps of 0.1Φ0.

Using equation (3) and replacing LT by LT,eff(φtot) allows
deriving an approximation for the magnetic flux dependence
of the resonance frequency of the loaded resonator:

fr(φtot)≈ f0 − 4f 20

[
CcZ0 +

LT
Z0

− M 2
T

Z0LS

βL cos(φtot)

1+βL cos(φtot)

]
.

(5)

Here, we assumed weak capacitive coupling, i.e. ω0CcZ0 ≪ 1
with ω0 = 2πf0, and small frequency shifts caused by the
SQUID, i.e. ω0LT ≪ Z0.

To illustrate the flux dependence of the resonance fre-
quency, figure 2 shows the transmission amplitude |S21( f)|2 =
|2/(2+Z0/Zin( f)) |2 between port 1 and port 2 of an exem-
plary resonator for different values of the magnetic flux Φtot.
As one can see, the resonance frequency oscillates in between
its maximum for Φtot = nΦ0 and its minimum for Φtot =
(n+ 1/2)Φ0. For a magnetic flux of Φtot = (n± 1/4)Φ0, the
Josephson inductance LJJ(φtot) diverges, and therefore the res-
onance frequency fr([n± 1/4]Φ0) = 5 GHz is simply given by
equation (3) since the resonance frequency is not affected by
means of the rf-SQUID.

In figure 3 the impact of the hysteresis parameter βL on
the flux-dependent resonance frequency shift fr(Φtot) is shown.
For very small values of the SQUID hysteresis parameter,
i.e. βL → 0, screening currents and therefore self-induced
magnetic flux contributions Φscr within the SQUID loop are

3
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Figure 3. Flux dependence of the resonance frequency fr(Φtot) for
different values of the SQUID hysteresis parameter βL. The ratio
M2

T/LS is adapted to the corresponding value of βL in such a way
that the maximum resonance frequency shift ∆f max

r = 1 MHz stays
constant. All other parameters of the curves correspond to the values
chosen in figure 2.

negligibly small. These characteristics are therefore highly
symmetric and describe an ideal sinusoidal behavior around
its center frequency. For larger values of βL, screening cur-
rents within the SQUID loop become relevant leading to an
asymmetric response and to a general shift of the resonance
frequency toward smaller frequencies.

3. Revised model for describing the characteristics
of a microwave SQUID multiplexer

The existing µMUX model can be used to accurately determ-
ine the µMUX characteristics in the limit of very low readout
powers, i.e. Prf → 0. However, large deviations between meas-
ured characteristics and model predictions are observed for
increasingly high readout powers [15]. The µMUX model
described in the following is able to describe the effects occur-
ring at high readout powers, thus allowing to describe the
µMUX characteristics over the entire practically used readout
power range.

3.1. Effective load inductance

An electromagnetic wave with power Prf and angular fre-
quency ω being close to the resonance frequency of the res-
onator, i.e. ω ≈ 2πfr, and traversing from port 1 to port 2 of
the microwave transmission line leads to an oscillating cur-
rent iT(t) = IT sin(ωt) within the inductance LT terminating
the microwave resonator. On resonance, i.e. for ω = 2πfr, the
amplitude of the current reaches the maximum value

IT =

√
16
π

Q2
l

Qc

Prf

Z0
. (6)

Here, Ql and Qc denote the loaded quality factor and the
coupling quality factor of the resonator, respectively. Due to
the mutual inductance MT between resonator termination and
SQUID loop, the current iT(t) generates a sinusoidal magnetic
flux signal with amplitude Φrf =MTIT in the rf-SQUID. Con-
sidering an additional, external quasi-static magnetic flux con-
tribution Φext as induced by a signal source to be measured,
e.g. caused by an inductively coupled input coil, the current in
the rf-SQUID can be expressed as

IS(t) =−Ic sin
[
φext +φrf sin(ωt)+βL

IS(t)
Ic

]
. (7)

Here, φext = 2πΦext/Φ0 and φrf = 2πΦrf/Φ0 denote normal-
ized magnetic flux values. The last term in equation (7)
is the normalized magnetic flux φscr(t) = 2πIS(t)LS/Φ0 =
βLIS(t)/Ic that is induced by the supercurrent running in
the SQUID loop. The supercurrent IS(t) inductively couples
to the resonator termination, creating a high frequency flux
signal ΦT(t) =MTIS(t) within the termination. Therefore, in
accordance to Lenz’s law, the voltage uind(t) =−MT dIS(t)/dt
and hence the current

iind(t) =− MT

iωLT

dIS(t)
dt

(8)

are induced in the resonator termination. The total cur-
rent itot(t) = iT(t)+ iind(t) in the resonator termination is
hence a superposition of two contributions originating from
the microwave signal probing the resonator and the super-
current flowing within the SQUID loop. The total voltage
across the resonator termination, utot(t) = LT ditot(t)/dt=
LT,eff diT(t)/dt, can hence be expressed by introducing an
effective inductance

LT,eff = LT
itot(t)
iT(t)

= LT

(
1+

iind(t)
iT(t)

)
(9)

of the resonator termination.

3.2. µMUX characteristics for small readout powers, i.e.
Prf → 0

The characteristics of a µMUX for small readout powers, i.e.
φrf → 0, can be obtained by calculating the time derivative of
equation (7). For this, the function

F(IS, t) = IS + Ic sin

[
φext +φrf sin(ωt)+βL

IS
Ic

]
= 0 (10)

is defined to calculate the implicit derivative

dIS(t)
dt

=− ∂F(IS, t)/∂t
∂F(IS, t)/∂IS

=−
Icφrfω cos

[
φext +φrf sin(ωt)+βL

IS
Ic

]
1+βL cos

[
φext +φrf sin(ωt)+βL

IS
Ic

] cos(ωt)
≈− Icφrfω cos(φtot)

1+βL cos(φtot)
cos(ωt). (11)

4
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In the last transformation, φrf → 0 is assumed, yielding φtot ≈
φext +βLIS/Ic. The induced current in the resonator termin-
ation can hence be calculated straightforwardly by using
equation (8):

iind(t) =− IcφrfMT

LT

cos(φtot)

1+βL cos(φtot)
sin(ωt). (12)

It is phase-shifted by π/2 due to the complex impedance iωLT
of the resonator termination. Combining equations (9) and (12)
allows to calculate the effective resonator termination

LT,eff(φtot) = LT −
M 2

T

LS

βL cos(φtot)

1+βL cos(φtot)
. (13)

This expression is identical to equation (4) derived within the
existing µMUX model.

3.3. µMUX characteristics for small SQUID hysteresis
parameter, i.e. βL → 0

For a vanishing SQUID hysteresis parameter, i.e. βL → 0, the
flux generated by the supercurrent within the SQUID loop
becomes negligible and the third term in equation (7) can
be omitted. The supercurrent can then be decomposed into a
Fourier series:

IS(t)≈−Ic sin(φext +φrf sin(ωt))

=−Ic sin(φext)cos(φrf sin(ωt))

− Ic cos(φext)sin(φrf sin(ωt))

=−Ic sin(φext)

[
J0 (φrf)+ 2

∞∑
i=1

J2i (φrf)cos(2iωt)

]

− Ic cos(φext)

[
2

∞∑
i=0

J2i+1 (φrf)sin([2i+ 1]ωt)

]
,

(14)

where Ji(x) denote the Bessel functions of first kind.
The supercurrent IS(t) and consequently the current iind(t)

in the resonator termination contain Fourier components with
multiples of the angular frequency ω. However, due to the res-
onance condition (see equation (3)), only the fundamental fre-
quency ω populates the resonator. Higher harmonics do not
meet the resonance condition and hence interfere destructively
within the cavity. Using equations (9) and (12), we yield the
induced current

iind(t) =−2IcMT

LT
cos(φext)J1(φrf)sin(ωt) (15)

within the resonator termination and consequently the flux
dependence of the resonance frequency:

fr(φext,φrf)≈ f0 − 4f 20

[
CcZ0 +

LT
Z0

− M 2
T

Z0LS

2βL

φrf
J1(φrf)cos(φext)

]
.

(16)

For small SQUID hysteresis parameters, i.e. βL → 0, and
small readout signals, i.e. φrf → 0, our model and the exist-
ing model (see equation (5)) yield identical results since

Figure 4. Dependence of the resonance frequency fr(Φrf) on the
flux amplitude Φrf of the probe signal for different values of the
external flux Φext for multiplexer with vanishing SQUID hysteresis
parameter, i.e. βL → 0. The curves are based on equation (16) and
their parameters are equal to the parameters chosen in figure 2. The
external magnetic flux Φext is varied between nΦ0 and (n+ 1/2)Φ0

in steps of 0.1Φ0. For comparison, the corresponding curves of the
existing model are plotted as dashed lines.

1+βL cos(φtot)→ 1 and 2J1(φrf)/φrf → 1. However, for
probing signals with finite readout power, i.e. φrf > 0, the
maximum resonance frequency shift ∆f max

r differs from the
prediction of the existing µMUX model as indicated by
figure 4. With increasing readout power φrf, the non-linear
response of the Josephson junction converts more and more
signal power into higher harmonics that do not match the
resonance condition of the resonance circuit. This leads to a
decrease in the maximum resonance frequency shift ∆f max

r
with increasing readout power. For Φrf ≈ 0.61Φ0, we get
J1(φrf) = 0 and consequently the resonance frequency fr(Φext)
gets independent of the external flux Φext. With further
increase in readout power, the curves start to oscillate around
the center frequency at fr(Φext = [n± 1/4]Φ0). The resonance
frequencies for Φext = nΦ0 and Φext = (n+ 1/2)Φ0 might
therefore swap their positions depending on the amplitude
range of the probe signal.

3.4. µMUX characteristics for finite hysteresis parameter and
probe signal amplitude

Using trigonometric identities, we can rewrite equation (7) as

IS(t) =−Ic sin
[
φext +φrf sin(ωt)+βL

IS(t)
Ic

]
(17)

=−Ic sin(φext +φrf sin(ωt))cos

[
βL
IS(t)
Ic

]
− Ic cos(φext +φrf sin(ωt))sin

[
βL
IS(t)
Ic

]
. (18)

5
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Table 1. Set of parameters used for calculating the resonance frequency fr(φext,φrf) according to equation (20).

ai,j bi,j ci,j ai,j bi,j ci,j

p0,0 +1 0 1 p7,2 +137/512 7 6
p1,0 −1/2 1 2 p7,3 −267/1024 7 8
p2,0 −1/8 2 1 p8,0 +21/1024 8 1
p2,1 +3/8 2 3 p8,1 −35/512 8 3
p3,0 +1/8 3 2 p8,2 +103/512 8 5
p3,1 −5/16 3 4 p8,3 −651/2048 8 7
p4,0 +1/16 4 1 p8,4 +547/2048 8 9
p4,1 −5/32 4 3 p9,0 −63/2048 9 2
p4,2 +9/32 4 5 p9,1 +27/256 9 4
p5,0 −5/64 5 2 p9,2 −1089/4096 9 6
p5,1 +3/16 5 4 p9,3 +193/512 9 8
p5,2 −17/64 5 6 p9,4 −1139/4096 9 10
p6,0 −15/512 6 1 p10,0 −105/8192 10 1
p6,1 +57/512 6 3 p10,1 +435/8192 10 3
p6,2 −115/512 6 5 p10,2 −2595/16384 10 5
p6,3 +133/512 6 7 p10,3 +5705/16384 10 7
p7,0 +21/512 7 2 p10,4 −7317/16384 10 9
p7,1 −77/512 7 4 p10,5 +4807/16384 10 11

Expression (18) can be expanded as a polynomial equation
by using a 2nd order Taylor expansion with respect to
βL, i.e. by using the approximations cos(βLIS(t)/Ic)≈ 1−
(βLIS(t)/Ic)

2
/2 and sin(βLIS(t)/Ic)≈ (βLIS(t)/Ic). Solving

the resulting quadratic equation for the supercurrent IS(t)
yields the solutions

IS(φ)≈−Ic
−1−βL cos(φ)±

√
1+ 2βL cos(φ)+β2

L [1+ sin(φ)2]

β2
L sin(φ)

(19)

with φ= φext +φrf sin(ωt). Here, the solution with positive
sign is relevant as the other solution leads to a divergence for
sin(φ)→ 0.

The derivation of the flux-dependent resonance frequency
shift is carried out similarly as shown in section 3.3 for a
negligibly small hysteresis parameter βL. However, in con-
trast to the previous section, a straightforward analytical
derivation is not possible due to the complex time depend-
ence of the time derivative of equation (19). To solve the
equations, we perform a second Taylor approximation with
respect to the parameter βL. Within the context of this work, a
10th order Taylor expansion was used. However, higher-order
terms can in general be included. Similarly to section 3.3,
we introduce Bessel functions Ji(x) of first kind and neglect
all terms that contain multiples of the angular frequency ω
as they do not match the resonance condition. This finally
leads to

fr(φext,φrf)≈ f0 − 4f 20

CcZ0 +
LT
Z0

− M 2
T

Z0LS

2βL

φrf

∑
i,j

pi,j


(20)

with pi,j = ai,jβ
bi,j
L J1(ci,jφrf)cos(ci,jφext). The parameters ai,j,

bi,j and ci,j are summarized in table 1. Here, i denotes the

Figure 5. Flux dependence of the resonance frequency fr(Φext)
calculated by means of our µMUX model for a negligibly small
amplitude of the readout signal, i.e. φrf → 0, and a SQUID
hysteresis parameter of βL = 0.6. The ratio M2

T/LS is adapted to βL

to achieve∆f max
r = 1 MHz, whereas all other parameters equal the

parameters chosen in figure 2.

Taylor expansion order and j addresses different contributions
of each order.

To estimate the accuracy of our approximation, we show in
figure 5 the dependence of the resonance frequency fr(Φext)
on the external flux Φext for (i) the existing µMUX model
and an approximation based on (ii) a 2nd order, (iii) a 4th
order, and (iv) a 10th order Taylor expansion assuming a
SQUID with βL = 0.6 and a probing signal with negligible
readout power, i.e. φrf → 0. The curve obtained by means of
the existing model is exact for the chosen parameter range,
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Figure 6. Flux dependence of the resonance frequency fr(Φext)
calculated by means of our µMUX model based on a 10th order
Taylor expansion and the existing model for a negligibly small
amplitude of the readout signal, i.e. φrf → 0, and a SQUID
hysteresis parameter of βL = 0.8. The ratio M2

T/LS is adapted to βL

to achieve∆f max
r = 1 MHz, whereas all other parameters equal the

parameters chosen in figure 2.

i.e. φrf → 0, and essentially equals the corresponding curve
shown in figure 3. However, in contrast to figure 3, a trans-
formation Φtot → Φext was applied for allowing a direct com-
parison between the different models. The plot demonstrates a
large deviation between the exact model and approximations
based on low-order Taylor expansions and confirms a very
good agreement between the existing model and the approx-
imation based on a 10th order Taylor expansion. Therefore,
lower-order approximations are only valid for small hyster-
esis parameters βL. In the same way, the approximation based
on a 10th order Taylor expansion becomes more and more
imprecise for βL > 0.6. For example, for βL = 0.8 the char-
acteristics based on the 10th order model deviate significantly
from the exact model (see figure 6). To conclude, these res-
ults indicate that our model is valid in the range of βL ⩽ 0.6
and can potentially be fitted to βL > 0.6 when using higher-
order Taylor expansions. However, for existing µMUXs, the
hysteresis parameter is typically βL < 0.6, thus our model
based on the 10th order Taylor expansion covers the relevant
parameter range.

Figure 7 shows the dependence of the resonance frequency
fr(Φrf) on the amplitude Φrf of the probing signal for different
values of the external fluxΦext and the hysteresis parameter βL

as calculated using our model. The characteristics for βL → 0
describe the limit of vanishing self-induced flux (Φscr → 0),
and therefore correspond to the case shown in figure 4. The
curves for βL > 0 follow a similar course, but show asym-
metric shapes due to non-linearities resulting from a finite
flux contribution Φscr > 0 of the screening current. This effect
becomes particularly important for Φrf → 0, while the influ-
ence of βL on the characteristics gets smaller when increasing

Figure 7. Dependence of the resonance frequency fr(Φrf) on the flux
amplitude Φrf of the readout signal calculated by using our model
being based on a 10th order Taylor expansion for different SQUID
hysteresis parameters βL. The values of the magnetic flux are
Φext = nΦ0 (solid lines), Φext = (n± 1/4)Φ0 (dotted lines) and
Φext = (n+ 1/2)Φ0 (dashed lines). The ratio M2

T/LS for all curves
is chosen such that the maximum resonance frequency
shift ∆f max

r (φrf → 0) = 1 MHz is identical for different values
of βL, whereas all other curve parameters correspond to the
parameters chosen in figure 2.

the readout power. It should be noted that the curves do not
intersect exactly at the first zero of the Bessel function J1(φrf),
as it is the case for βL → 0. However, as one can see in the inset
graph, this effect is only very small.

Figure 8 shows another non-linear effect which is predicted
by our model. Here, the resonance curves with minimum and
maximum resonance frequency, i.e. forΦext = nΦ0 andΦext =
(n+ 1/2)Φ0, are plotted forΦrf → 0 andΦrf = 0.8Φ0. As one
can see, themaximum resonance frequency shift is much smal-
ler for high readout powers, and the resonance curves swap
their position, i.e. fr(nΦ0)< fr([n+ 1/2]Φ0). These effects are
expected and in good agreement with the results presented in
figure 7. However, the resonance curves do not get shifted as
a whole, but rather become distorted and asymmetric. This
asymmetry is a result of the frequency-dependent amplitude of
the driving current in the resonator termination. Themaximum
amplitude IT (see equation (6)) is only reached exactly on res-
onance. Hence, for f ̸= fr, the power in the resonator and there-
foreΦrf are always smaller than the maximum value. As a con-
sequence, the power-dependent resonance shift is at maximum
on resonance, whereas for f ̸= fr, the red lines for Φrf = 0.8Φ0

tend to approach the corresponding green lines for Φrf → 0
instead of keeping their shape. Analytical expressions which
describe these typical resonance curve asymmetries could not
be derived within the context of this work, which is why the
characteristics shown in figure 8 are calculated numerically,
using an iterative method in combination with our analytical
approximation model.
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Figure 8. Frequency dependence of the transmission amplitude
|S21( f)|2 in the low power limit and for high readout powers. The
values of the magnetic flux are Φext = nΦ0 (solid lines) and
Φext = (n+ 1/2)Φ0 (dotted lines). All curves are numerically
calculated, using our model and an iterative method. While the
characteristics for very low readout power are identical to the curves
shown in figure 2, the curves for high readout power are strongly
asymmetric.

4. Comparison between our model and measured
µMUX characteristics

For verification of our µMUX model, data from measure-
ments described in [15] were used. Here, the scattering para-
meter S21( f,Φext,Φrf) of various channels of a µMUX device
for different values of the external flux Φext and the amplitude
Φrf of the driving signal were measured using a vector net-
work analyzer (VNA). While the external flux Φext was varied
by changing the current Imod through themodulation coil of the
µMUXnormally used for flux rampmodulation, the amplitude
Φrf of the probing signal was varied by changing the VNA sig-
nal power PVNA and hence the resonator readout power Prf.
For extracting the relevant resonator parameters from meas-
ured raw data, we applied the algorithm described in [16].

Figure 9 shows the transmission amplitude |S21( f)|2 of
an arbitrary µMUX channel for Φext = nΦ0 and Φext = (n+
1/2)Φ0. The measurement indicated by green color was per-
formed at small readout power, i.e. Prf → 0. As expected by
our model, both resonance curves have a symmetric shape
and the resonance frequency is at maximum for Φext = nΦ0

and at minimum for Φext = (n+ 1/2)Φ0. In contrast, the
resonance curves recorded at PVNA =−15 dBm switched
their position, i.e. fr(Φext = nΦ0)< fr(Φext = [n+ 1/2]Φ0),
and become asymmetric, both in full agreement with our
model. However, in contrast to our model, the curves show
different depths which depend on the actual value Φext of the
external flux. This results from the magnetic flux dependence

Figure 9. Measured transmission amplitude |S21( f)|2 for two
different high frequency flux amplitudes Φrf. The values of the
magnetic flux are Φext = nΦ0 (solid lines) and Φext = (n+ 1/2)Φ0

(dotted lines). While the resonance curves for a negligibly small
amplitude Φrf have a symmetric shape, the curves recorded at high
resonator readout power Prf show large asymmetries. In addition,
the resonance frequencies of both flux states Φext start to switch
their position as expected by the prediction of the power-dependent
µMUX model.

of the internal quality factor Qi(Φext) of the µMUX channel
as discussed in detail in [15]. This effect is not included in the
model presented here as we are focusing solely on the depend-
ence of the resonance frequency on readout power and SQUID
hysteresis parameter.

For analyzing the dependence of the resonance frequency
on the applied external flux Φext, a current Imod was sent
through the common modulation coil of the µMUX, gener-
ating a flux contribution of Φext =MmodImod +Φoff threading
the SQUID loop. Here, Mmod denotes the mutual inductance
between modulation coil and rf-SQUID and Φoff a random,
constant flux offset in the SQUID loop. The injected current
was varied from Imod =−60 µA to Imod = 60 µA in steps of
1 µA for different readout powers Prf, leading to the three
characteristics shown in figure 10. For the curve with lowest
readout power, i.e. Prf → 0, the parameterΦrf → 0 was set to a
fixed value. Afterwards, a numerical fit motivated by equation
(20) and based on the expression

fr(Imod,Φrf) = fr,off +∆fr,mod
2βL

φrf

∑
i

pi(Imod,Φrf) (21)

was performed. Subsequently, after determining and fixing
the values of the parameters fr,off, ∆fr,mod, βL, Mmod and Φoff,
the same fitting procedure was applied to the other curves
where the only free fitting parameter was Φrf. As expected by
our model, the maximum resonance frequency shift ∆f max

r is
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Figure 10. Measured resonance frequency fr(Imod) as a function of
the modulation coil current Imod for different high frequency flux
amplitudes Φrf. In addition, for each curve a numerical fit is shown
which is based on equation (21). While one curve was recorded at
very low readout powers, i.e. Φrf → 0, the determined high
frequency flux amplitude Φrf for the other curves is a result of the
numerical fits.

largest for Φrf → 0 and decreases for higher applied readout
signal amplitudes. Additionally, a sign change of the modula-
tion can be observed solely for the curve with a high frequency
flux amplitude of Φrf = 0.76Φ0, which is also in good agree-
ment with our multiplexer model.

Figure 11 shows the dependence of the measured reson-
ance frequency fr(PVNA) on the signal power PVNA for dif-
ferent values of the external flux Φext. Here, the modulation
current Imod was set to a fixed value to achieve the correspond-
ing external flux Φext, and the VNA readout power was var-
ied from PVNA =−45 dBm to PVNA =−15 dBm in steps of
3 dBm. To convert VNA signal powerPVNA into readout power
Prf, an attenuation factor Arf < 1 of the cryogenic microwave
setup was introduced which is assumed to be independent
of power and frequency, i.e. Prf = ArfPVNA. This attenuation
factor represents the attenuation of coaxial cables and high
frequency components which are placed in between the VNA
sending port and the µMUX chip on the cold stage of the
cryostat. It is the only free parameter of the numerical fits,
which are shown in the graph as well and which are based on
equations (6) and (21). While the quality factors Ql and Qc in
equation (6) are determined and fixed by means of the applied
resonance curve analysis algorithm described in [16], all other
µMUX parameters are set to the values given by the numer-
ical fits shown in figure 10. At this point, the flux depend-
ence of the internal quality factorQi(Φext) observed in figure 9
must be considered. As a result of different quality factors,
the current IT(Φext) in the resonator termination and there-
fore the generated high frequency flux amplitudeΦrf(Φext) are
flux dependent as well. As a consequence, the numerical fit

Figure 11. Measured resonance frequency fr(PVNA) as a function of
the VNA signal power PVNA for different values of the external flux
Φext. The numerical fits are based on equation (21) and contain only
one free parameter which is the attenuation factor Arf, that considers
the total attenuation of the high frequency components between the
VNA sending port and the µMUX chip. All other curve parameters
are set to fixed values.

for Φext = nΦ0 with higher internal quality factor Qi shifts
toward lower VNA signal powers PVNA, whereas the curve
with Φext = (n+ 1/2)Φ0 moves toward higher VNA signal
powers PVNA. As a result, the intersections of the three numer-
ical fits in figure 11 are not as close together as shown in
figure 7. Considering this effect, we yield a very good agree-
ment between our model and experimental data.

5. Impact of our model

In the previous model, theoretical µMUX characteristics are
given as a function of the total flux Φtot, whereas experi-
mental data depend on the external flux Φext. Therefore, a
straightforward data analysis without using iterative numerical
methods has only been possible for a negligibly small hyster-
esis parameter βL → 0 where Φtot ≈ Φext. Since most existing
microwave SQUID multiplexers show hysteresis parameters
in the range 0.2⩽ βL ⩽ 0.6, our model now allows for a dir-
ect comparison between theory and experiment as well as a
prompt parameter extraction of measured µMUX devices for
the first time.

In the context of µMUX optimization for a maximum
signal-to-noise ratio, the previous model describes the HEMT
noise contribution as a

√
SΦ,HEMT ∝ 1/Prf dependence, pro-

posing to choose a readout power Prf as high as possible. How-
ever, when considering the decrease in the maximum reson-
ance frequency shift ∆f max

r as shown in figures 4 and 7, it
becomes clear that a specific value for the optimal readout
power must exist. This has been recognized in the past, and
different values have been suggested, e.g. readout powers
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Prf leading to a high frequency flux amplitude of Φrf ≈
0.16Φ0 [14] or Φrf ≈ 0.3Φ0 [17]. With the help of our new
model, we were able to set the optimum flux amplitude to
Φrf ≈ 0.3Φ0 for a wide µMUX parameter range respecting
only theoretical considerations [18]. In addition to extract-
ing the optimal µMUX readout power, our model also allows
for the determination of the total attenuation of the transmit-
ting cryogenic setup as it has been performed in figure 11,
which replaces a cumbersome cryostat calibration measure-
ment. Furthermore, our model allows for a precise, full numer-
ical µMUX emulation including all known relevant effects
and methods like finite resonator response time and flux ramp
modulation. Due to the very accurate modeling including non-
linear effects as shown in figure 8, our newmodel enabled us to
increase the signal-to-noise ratio of µMUX devices by finding
new, non-standard parameter sets [18].

Ultimately, our new model allows for the invention of
new hybrid readout techniques that include principles of
microwave SQUID multiplexing [19].

6. Conclusion

We presented an analytical model being able to describe the
readout power dependence of the resonance frequency on the
amplitude Prf of the readout signal as well as the SQUID hys-
teresis parameter βL. For this, we analyzed the Fourier com-
ponents of the non-linear response of the non-hysteretic rf-
SQUID. We were able to derive an analytical approximation
describing the multiplexer in the parameter range of βL < 0.6
and showed that our model includes the existing model as
a limiting case. We verified our model by comparing it to
measurements. Here, we demonstrated a very good agreement
between measured multiplexer characteristics and model pre-
dictions. Our model hence allows for a deep understanding of
the complex µMUX behavior, a prerequisite for a full device
optimization as being required for realizing next-generation
detector instruments strongly relying on the use of SQUID-
based multiplexing techniques with high multiplexing factor.
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