
Department of Computing Science
Software Engineering Group

Diploma Thesis

Empirical Validation of the
Model-driven Performance Prediction

Approach Palladio

Anne Martens, Mat.-Nr. 8146070

14th November 2007

First examiner Prof. Dr. Wilhelm Hasselbring
Second examiner Prof. Dr. Ralf H. Reussner

To estimate the consequences of design decisions is a crucial element of an engineering dis-
cipline. Model-based performance prediction approaches target the estimation of a system’s
performance at design time. Next to accuracy, the approaches also need to be validated for their
applicability to be usable in practice.

The applicability of the model-based performance prediction approach Palladio was never vali-
dated before. Previous case studies validating Palladio were concerned with the accuracy of the
predictions in comparison to measurements.

In this thesis, I empirically validated the applicability of Palladio and, for comparison, of the
well-known performance prediction approach SPE. While Palladio has the notion of a compo-
nent, which leads to reusable prediction models, SPE makes not use of any componentisation
of the system to be analysed. For the empirical validation, I conducted an empirical study with
19 computer science students. The study was designed as a controlled experiment to achieve a
high validity of the results.

The results showed that both approaches were applicable, although both have specific prob-
lems. Furthermore, it was found that the duration of conducting a prediction using Palladio was
significantly higher than duration using SPE, however, the influence of potential reuse of the
Palladio models was excluded by the experiment design.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 4
1.3 Related Work . 5
1.4 Structure of this Thesis . 5

2 Performance Prediction 7
2.1 Theoretical Foundations . 7
2.2 Performance Prediction for Component-based Systems 11

2.2.1 The Palladio Approach . 12
2.2.2 Other Component-based Prediction Approaches 16

2.3 Monolithic Prediction Approaches . 20
2.3.1 The SPE Approach . 21
2.3.2 Comparability of the Approaches . 24

3 Research Method 29
3.1 Empirical Studies in Software Engineering . 29

3.1.1 Controlled Experiment . 31
3.1.2 Related Empirical Studies . 32

3.2 Goal-Question-Metric Plan . 33
3.2.1 Goal of the Experiment . 34
3.2.2 Questions and Derived Metrics . 35

4 Design and Conduction of the Experiment 53
4.1 Participants . 53

4.1.1 Preparation . 57
4.1.2 Preparatory Exercises . 58
4.1.3 Results of the Preparation . 58

4.2 The Experiment . 59
4.2.1 Experiment Plan . 59
4.2.2 Experimental Tasks . 61
4.2.3 Execution of the Experiment . 72

4.3 Validity of this Experiment . 75
4.3.1 Conclusion Validity . 77
4.3.2 Internal Validity . 77
4.3.3 Construct Validity . 79
4.3.4 External Validity . 79

I

II Contents

5 Results 83
5.1 Results of the Metrics . 83

5.1.1 What is the quality of the created performance prediction models? . . . 83
5.1.2 What are the reasons for the model’s quality? 89
5.1.3 What is the duration of predicting the performance? 101
5.1.4 What are the reasons for the duration? 104

5.2 Discussion of the Results . 108
5.2.1 Differences of the Approaches . 109
5.2.2 Differences of the Systems under Study 115
5.2.3 Further Assessment of the Validity . 117

6 Conclusions and Outlook 121
6.1 Summary . 121
6.2 Knowledge gained . 122
6.3 Future Work . 123

List of Figures 124

List of Tables 126

Bibliography 128

A Tutorial Slides and Preparatory Exercises I
A.1 Introductory Tutorial Slides . I
A.2 SPE-ED Tutorial Slides . XVIII
A.3 Palladio Tutorial Slides . XXXV
A.4 Review Slides . LIV
A.5 Preparatory Exercises . LXVIII
A.6 Durations of Solving Preparatory Exercises CXXXVI

B Experimental Material CXXXVIII
B.1 Experiment Tasks . CXXXVIII

B.1.1 Media Store . CXXXVIII
B.1.2 Web Server . CLXXII

B.2 Rank Estimation . CCX
B.2.1 Media Store . CCX
B.2.2 Web Server . CCXII

B.3 Time Stamps . CCXIV
B.3.1 Media Store . CCXIV
B.3.2 Web Server . CCXX

B.4 Qualitative Questionnaires . CCXXVI
B.4.1 Questionnaire Media Store . CCXXVI
B.4.2 Questionnaire Web Server . CCXXIX
B.4.3 Comparing Questionnaire . CCXXXII

B.5 Acceptance Tests . CCXL
B.5.1 Check Lists . CCXL

Contents III

B.5.2 Acceptance Test Protocols . CCXLVIII
B.6 Question Protocol . CCL

B.6.1 Question Protocol Sheets . CCL

C Resulting Data CCLV
C.1 Predictions of the Participants . CCLV
C.2 Duration and Break Down . CCLVIII
C.3 Problems . CCLXII

C.3.1 Record of Problems . CCLXII
C.3.2 Cumulated Data . CCLXXI

C.4 Answers to Questionnaire . CCLXXI
C.4.1 Question 17 . CCLXXI
C.4.2 Question 21 . CCLXXI
C.4.3 Question 29 . CCLXXVI
C.4.4 Question 31 . CCLXXVI

Acknowledgements CCLXXVIII

1 Introduction

In this introduction, I first motivate why an empirical validation of proposed performance pre-
diction approaches is necessary for an engineering discipline such as software engineering.
After that, I account for performance prediction and its application in modern software engi-
neering and in particular for component-based systems. Thirdly, I describe the contribution of
this thesis. Finally, I present where related work can be found and give an overview on the
structure of this thesis.

1.1 Motivation

Software engineering is commonly understood as being the ”systematic creation, evaluation
and maintenance of systems” [IEE90]. For a systematic approach, it is crucial to make the
properties of software development processes and artefacts predictable. Otherwise, if properties
are not predictable, design is meaningless, as any orientation of the design towards a goal or
requirements would be senseless.

From theorists, many formal methods and tools have been suggested to improve software en-
gineering and prediction of properties, but they are largely are not applied [ER03, p.1]. There
results a gap between theory and practice. This gap can be closed if practice is used more as a
measure of a method’s usefulness [ER03, p.1].

To assess the usefulness of methods for software engineering, they mostly need to be validated
empirically [Pre01, p.30]. In that, not only their theoretical correctness needs to be studied, but
also their usability in practical applications. Only if being usable, new methods can actually be
used. The term ”usable” here comes with two meanings: First, a method and accompanying
tools must be usable in the sense of applicable, i.e. users must be able to use them. Second, the
use of the methods should also bring advantages, e.g. fasten the development process.

Overall, three types of empirical validation can be differentiated [FER08], of which type I and
II have been discussed above:

Type I validations ”demonstrate that predictions made by a prediction method conform to
the observed reality given that the method and its tools are applied without making any
mistakes.” [Bec08]

Type II validations ”show that methods, which depend on human interaction, can be ap-
plied by trained users successfully.” [Bec08] Thus, a type II validation shows the above-
mentioned first meaning of ”usable” in terms of ”applicable”.

1

2 CHAPTER 1. INTRODUCTION

Type III validations ”finally seek to validate that new methods are superior to existing ones.
The last type is extremely hard to show and cost-intensive in larger contexts as it requires
to perform projects at least twice - one time using the method under validation and the
other time without it.” [Bec08] Thus, a type III validation shows the above-mentioned
second meaning of ”usable” in terms of ”advantageous”.

For the special part of the field, the prediction of performance properties of component-based
systems, a number of approaches have been introduced so far, for an overview see [BGMO06].
They contribute to software engineering by predicting a non-functional property of a component-
based system, thus adding to the predictability of the artefact to be designed and created.

However, the approaches have not become accepted in practical applications. One of the reasons
for this might be that, although their accuracy has been tested by their authors in several case
studies (type I validation), their applicability and usability has never been empirically validated
(type II and III validations).

This thesis empirically validates the applicability of the Palladio performance prediction ap-
proach and compares it to the well-known SPE approach (type II validation).

Performance of Software Systems

Although hardware gets faster and more efficient each year, performance is nonetheless a critical
factor when developing software systems. A major part of software projects fails to comply with
performance requirements [Gla98], which leads to high costs or even project failure. Users are
unwilling to accept long response times, and high response and processing time disturb system
operation. The problem here is often not just to guarantee responsiveness for a fixed number of
users, e.g. a group of test users, but to guarantee scalability, i.e. guarantee performance values
also for increasing numbers of users. Even if the future load of a system can be estimated,
systems might be tested with only a number of test users. They may perform well for the test
load, but fail to meet performance criteria when used in production environments with a much
higher number of users.

Two prominent examples for systems failing and causing high losses because of not comply-
ing with performance requirements are presented in [Koz04]: The automated baggage handling
system at Denver airport and IBM’s information system at the Olympic Games 1996 in At-
lanta [SS01]. The initial problems with the baggage handling system caused the airport to open
16 month later than scheduled, almost $2 billion over budget and without an automated bag-
gage system. Here, the system was planned to serve one terminal first, but later should serve all
terminals of the airport [MK00]. The system was not able to cope with this increased demand,
i.e. it was not scalable enough.

IBM’s information system at the Olympics was tested with 150 users, however, 1000 user ac-
cessed it during the Olympic games, causing a system collapse. This failure caused the com-
pany high losses in reputation, not expressible in numbers [GR98]. Again, the system was not
scalable to meet the timeliness requirements of the productive use.

In spite of these experiences, the performance of a software system is often not considered in
the development process. A widespread attitude is to deal with performance problems when

CHAPTER 1. INTRODUCTION 3

they occur, i.e. after testing implemented parts of the system (fix-it-later approach, [SW02]).
Because performance problems are often based in the architecture of the system, their solving
can become very costly at such a late point of time. Design decisions concerning the architecture
have to be modified, which may lead to a new design and new implementation of major parts of
the system.

To cope with this problem, performance prediction approaches have been proposed that predict
the performance of a software system at early design stages and allow to identify performance
problems in the architecture. Thus, their early use reduces the risk of expensive redesign phases
later. This also adds to software engineering becoming an engineering discipline, as the predic-
tion of characteristics of the designed artefact, both functional and non-functional, is crucial for
an engineering discipline [BFG+04].

Component-Based Software Performance Prediction

Since the beginning of the 80’s, the early analysis of non-functional properties, including per-
formance, has been a topic of research. By analysing non-functional properties in an early
stage of development, performance problems should be identified early and costly redesign and
reimplementation should be avoided.

The term Software Performance Engineering (SPE) was coined by Connie U. Smith in 1981.
She later defined it as a ”systematic, quantitative approach to constructing software systems
that meet performance objectives” [SW02, p.16], with being an ”engineering approach to per-
formance, avoiding the extremes of performance-driven development and ’fix-it-later’ ” [SW02,
p.16].

SPE techniques are based on models describing the performance of the system to be developed.
These models are attributed with certain performance values. In early stages of development,
these values are based on estimation, in later phases existing implementation and prototypes
can be used to get more precise values. Thus, Software Performance Engineering accompanies
the whole development process.

As mentioned above, especially performance problems due to architectural flaws are problem-
atic. This field gets more and more attention in recent times, many further approaches for pre-
dicting the performance at an early design level have been proposed [BMDI04]. An overview
for performance prediction techniques at an architectural level is given in [BMIS04].

The prediction of performance is particularly supported by component-based systems, i.e. soft-
ware systems assembled from software components. Software components are defined by
Szyperski as follows:

”A software component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. A software component can be de-
ployed independently and is subject to composition by third parties” [Szy98, p.34].

Components have been initially introduced to support reuse [BKR07b]. However, their com-
positional structure and their contractually defined properties are also advantageous for per-
formance prediction. Firstly, component-based systems may include reused and already im-
plemented components at design time, which also means that their performance properties for

4 CHAPTER 1. INTRODUCTION

certain contexts are known or can be tested and thus do not have to be estimated. For compo-
nents having to be newly developed or being hardly tested, the performance properties can still
be estimated with SPE methods. Secondly, the use of contractually specified interfaces limits
the degree of freedom for the later implementation already at design time. Finally, reusable
component prediction models can be composed isomorphically to the software architecture,
thereby lowering the effort for performance modelling.

However, component-based systems also pose challenges to performance prediction and quality
prediction in general, so that classical techniques for performance analysis are unsuited for the
performance prediction of generic software components [SKK+01].

An important aspect are the different contexts a component is deployed into. A static descrip-
tion of the quality of a component is impossible, because quality heavily depends on the con-
text (platform, hardware, external calls, usage profile, etc.). Thus, the component has to be
parametrised concerning its quality characteristics [BR06]. Additionally, the development pro-
cess may be distributed among several developer roles, that all have incomplete knowledge on
the components and system. This must also be considered by component-based prediction ap-
proaches. As a result, new performance prediction techniques have to be developed, specially
made for the needs of component-based software engineering.

1.2 Contribution

The contribution of this thesis is twofold. Firstly, the applicability of the performance prediction
technique Palladio is empirically evaluated and compared with the SPE approach from a user’s
point of view. Secondly, an experiment design for this evaluation and comparison is presented.

The empirical evaluation focuses (a) on the applicability of the approaches and (b) on the iden-
tification of potential for improvement therein. For the applicability, the comprehensibility and
the usability of both the approaches and the accompanying tools are studied (type II validation).
Thus, in this thesis the human influences play an important role. This thesis does not evaluate
the validity of the predictions themselves in terms of accuracy and precision (which would be
a type I validation), that can be conducted as a case study and is not connected with the users
applying the approaches.

To reach the above-stated goal, four main questions are posed:

• Question 1: What is the quality of the created performance prediction models?

• Question 2: What are the reasons for the model’s quality?1

– Question 2.1: Are the approaches comprehensible?

– Question 2.2: Are the tools usable?

– Question 2.3: What are further reasons?

• Question 3: What is the duration of predicting the performance?

• Question 4: What are the reasons for the duration?

1Note that I understand ”quality” to be ”similarity to a reference model” in this thesis, cf. section 3.2.2

CHAPTER 1. INTRODUCTION 5

Motivation1. Introduction

2. Performance Prediction

3. Research Method

4. Design and Conduction

 of the Experiment

5. Results

6. Conclusions and Outlook

Overview

Foundations Palladio
Search for Approach

to Be Compared

Empirical

Studies
Research Goal

Design Validity

Results of

Metrics
Discussion

Conclusions Future Work

Conduction

Questions Metrics

SPE

Figure 1.1: Structure and line of reasoning of this thesis

In section 3.2.2, the questions are further explained and refined into metrics, using the Goal-
Question-Metric approach [BCR94]. On this basis, an empirical experiment is designed. This
design can also be applied to the empirical investigation of tool-implemented quality attribute
prediction approaches in general. Thus, this research method forms the second contribution.
The empirical analysis to apply the metrics to has the form of a controlled experiment.

The results were validated by studying the internal, construct and external validity of the exper-
iment design, and reassessing them based on the outcome of the experiment.

1.3 Related Work

Related work can be found in the area of performance prediction, in particular for component-
based systems, and in the area of empirical studies, in particular evaluating performance pre-
diction approaches. I present related work where it thematically fits in this thesis.

Thus, related work for component-based performance prediction approaches is presented in
section 2.2.2, for performance prediction approaches in general in section 2.3.

Related empirical studies are presented in section 3.1.2.

1.4 Structure of this Thesis

This thesis is divided into 6 chapters. Figure 1.1 gives an overview on both the structure of the
chapters and the line of reasoning.

After this introduction, chapter 2 introduces foundations of performance predictions and the Pal-
ladio approach. In search of an approach to be compared to Palladio, several other component-
based performance prediction approaches are presented and I argue why they are not suited for
a comparison. After that, I present monolithic performance prediction approaches and describe

6 CHAPTER 1. INTRODUCTION

the chosen approach SPE. Chapter 2 concludes with a discussion of the comparability of the
approaches.

Chapter 3 presents the research method. I first introduce foundations of empirical studies in
software engineering and controlled experiments in particular. Then, I present related studies
from the area of performance prediction approaches. After that, the research goal of this thesis
is presented. Following the goal-driven Goal-Question-Metric approach [BCR94], questions
and metrics are derived from the goal. Formal descriptions of the metrics are given.

Chapter 4 described the experiment design and its conduction. It concludes with a discussion
of the experiment design validity.

Chapter 5 presents the resulting data as collected with the before specified metrics. Additionally,
the results are discussed and differences of both the approaches and the experimental tasks
are pointed out. Finally, new findings on the validity of the experiments from the results are
presented.

Finally, chapter 6 concludes and gives starting points for further research.

2 Performance Prediction

In this chapter, I first define performance and present foundations of performance prediction,
in particular component-based performance predictions. Then, I describe the Palladio approach
to be validated in this thesis. As I plan to compare Palladio to another performance prediction
approach, I present other existing approaches for component-based performance prediction and
argue why they are not suited for the comparison. Thus, I look at other, monolithic performance
prediction approaches in section 2.3. I present some available approaches and argue why I chose
SPE for the comparison. Finally, I discuss consequences for the comparison.

2.1 Theoretical Foundations

Firstly, I introduce my favoured definition of performance as defined by Smith and Williams:

”Performance is the degree to which a software system or component meets its
objectives for timeliness” [SW02, p.4].

As two important dimensions of timeliness they name responsiveness and scalability. To con-
tinue with Smith and Williams,

”Responsiveness is the ability of a system to meets its objectives for response time
or throughput” [SW02, p.4].

Thus, a responsive system responds fast enough to users or events, and can serve a sufficient
number of users at the same time. For users, this means that they do not have to wait too long for
the system during their work, even if other users are working with the system at the same time.
For embedded systems such as airbag systems in vehicles, this means that the systems reacts
within a – potentially very short – time period. In this explanation, the words ”enough” and
”too” suggest that responsiveness is relative and depends on the requirements for the system.

Next, Smith and Williams define scalability as follows:

”Scalability is the ability of a system to continue to meet its response time or
throughput objectives as the demand for the software functions increases” [SW02, p.5].

Thus, a scalable system will also be responsive if the demand to it increases, e.g. because more
users use it or because the single tasks become more complex. With an increasing demand, the
responsiveness should not or only slightly degrade. However, the demand to software systems
always reaches a certain point at which processing resources are over-utilised and cannot cope
with the demand, which results in exponential increase of response time [SW02, p.5]. Thus, a

7

8 CHAPTER 2. PERFORMANCE PREDICTION

scalable software system must either have enough reserves to meet a future higher demand or
allow to be upgraded, e.g. by distributing it to multiple servers.

Note that this definition of performance does not include additional characteristics such as mem-
ory usage. However, this view fits the notion of performance that is used in the validated per-
formance prediction approaches.

Performance prediction approaches aim at predicting performance metrics of software systems,
which is desirable in several scenarios. Firstly, the performance of software systems can be
analysed during design time, before actually implementing the system. Thus, high costs for the
redesign of bad-performing architectures and systems can be avoided. Secondly, performance
prediction can also answer questions that arise later in the software life-cycle. Scalability ques-
tions can be answered by predicting the performance of an existing system for a different –
usually increased – use. The influence of deploying the software in other execution environ-
ments, e.g. to new servers, can also be analysed by using existing software models with new
hardware models. Some performance prediction approaches support all of the scenarios men-
tioned above, others focus on specific areas. For example, the capacity planning approach as
described in [MAD94] focuses on scalability questions for existing systems and do not support
design time questions. Palladio, on the other hand, is designed to support all of the above sce-
narios [BKR07a]. Still, the overall process as well as the theoretical foundations, as explained
below, remain similar.

Performance prediction involves creating performance models of the system and running anal-
yses on them. Performance models describe the dynamics of software systems, i.e. the runtime
behaviour, as performance is a run-time characteristic [BMIS04], as well as the other influ-
encing factors on performance, such as the resource environment. More formal performance
models such as queueing networks or stochastic Petri nets are hard to specify manually. There-
fore, model-based approaches enable developers to specify software models in more abstract
way, e.g. by describing the control flow and annotating performance values, and transform
them into performance models for analyses. The abstraction can make the specification easier,
additionally, developers might be more accustomed to more abstract models, such as sequence
diagrams. Possibly, existing design documents can be reused and annotated.

Figure 2.1 (cf. [RH06]) shows the generic performance prediction process. Software design
models, such as sequence diagrams or other control flow graphs, are annotated with perfor-
mance metrics such as the CPU demand for a single computation. The result is an annotated
software design model. Desirably automated with tool support, the annotated software design
model is translated into a performance model (or analysis model) of the system, such as queue-
ing networks or Petri nets. These models can be analysed using analytical methods or simula-
tion. The analysis results, different performance metrics such as response time, utilisation or
throughput, are fed back into the software design model to allow the user to draw conclusions.

For the performance models (or analysis models), many theoretical formalisms can be used, of
which I present the most often used as presented in [BMIS04] in the following:

Queueing networks model each time-consuming resource of a system as a server with a
prefixed queue. Figure 2.2(a) depicts this model. From single servers, networks can be
built by connecting the servers as depicted in figure 2.2(b): Here, the left server represents
a CPU, the right one a hard disk drive. Each job that arrives in the network is processed by

CHAPTER 2. PERFORMANCE PREDICTION 9

Software

Design Model

Annotated

Software

Design

Model

Analysis

Model

Analysis

Results

UML,

ADL,

…

UML Performance Profile,

QML,

…
Queueing models,

Stochastic Petri-Nets,

Stochastic Process Algebra,

…

Response time,

Throughput,

Utilisation,

…

Estimation

Measurement

Transformation

(MDD)

Analyse /

Simulation

Results

Automated by

Tools

Figure 2.1: Generic process of performance analysis (cf. [RH06, p.312])

the CPU server. After that, the job either leaves the system or is processed by the disk and
starts anew. Probabilities for the two different options are given. The shown network is
an open queueing network, in which jobs arrive and leave the system. In closed queueing
networks, a fixed number of users circulate in the network.

The complexity of a queueing network is determined by the type of queues used and the
characteristics of the incoming jobs. For queues, the service time, the number of servers
and the queueing policy is important. Service times can be constant (D), exponentially
distributed (M), or arbitrary distributed (G). One or multiple servers can be connected to
one queue. The queueing policy, i.e. scheduling policy, can be first-in-first-out (FIFO),
processor sharing or prioritised, for example. The job are characterised by their arrival
rate, which can be constant (D), exponentially distributed (M) or arbitrary distributed (G),
and potentially different job classes with different characteristics, e.g. different service
times at the servers [Bec08]. Classes of queueing networks are often defined by a triple
X/Y/n, where X denotes the arrival distribution (e.g. M for exponential distribution), Y
denotes the service time distribution, and n denotes the maximum number of servers per
queue.

For a certain classes of queueing networks, analytical solutions exist. However, in these
classes, rather restrictive assumptions were made. For many analytical solutions, ex-
ponential distributions for job arrivals and service times are assumed (M/M/n queueing
models). This results in ”memoryless” nets, as already passed time has no influence of
the drawn sample, i.e. the processing time and arrival rates are stateless. For nets with
arbitrary distributed arrival rates and service times (G/G/n), no known analytical solution
exists [Bec08]. Here, simulation approaches are used to obtain performance metrics.

For M/M/n queueing networks, formulas for the relation of performance metrics are

10 CHAPTER 2. PERFORMANCE PREDICTION

Queue Server

Wait time Service time

Residence time

(a) Server and prefixed queue

CPU Diskp1

1- p1

(b) A simple queueing network

Figure 2.2: Queueing networks (from [SW02, p.136 and p.141])

known, i.e. if some performance metrics are given, the others can be calculated. For
example, the mean residence time, throughput, and utilisation can be derived from the
arrival rate (in an open model) and mean service time. However, the results are mean
values for the performance metrics, and no information about their actual distribution or
variance are known. For some requirements, e.g. quality-of-service contracts that specify
that the response time should be lower than 3s for 70% of all requests, a distribution of
the response time is needed to decide whether the requirement can be fulfilled.

For more information on queueing networks, see [BGdMT98].

Stochastic Petri nets (SPN) focus on synchronisation and concurrency within a software
system. It differs from usual Petri nets in that transitions do not fire immediately, but
only after a certain delay, usually specified using a distribution function. Thus, resource
contention, mutual exclusion and priorities of tasks can be modelled.

The stochastic Petri nets combine functional and non-functional properties of software
systems in one model. Additionally, properties of the concurrent behaviour such as dead-
lock freedom can be analysed. Many frameworks for SPN analysis exist, for an overview
see [HM07]. However, for large systems, the number of states increases exponentially, so
that the systems are no longer practically analysable [RH06, p.317]. For more informa-
tion on stochastic Petri nets, see [BK96].

Stochastic process algebras (SPA) also focus on concurrent systems. In process alge-
bras, the system is represented as a collection of processes, which communicate, interact
and synchronise with each other. Processes can either represent atomic actions or be com-
posed to form whole systems. Adding stochastic expressions, performance attributes can
be represented. The behaviour of the processes can be described in detail, in contrast to
queueing networks, that usually only contain probabilistic routes for jobs.

With stochastic process algebras, formal verification of the system specification, e.g. for
deadlock freedom, is possible. As with SPNs, functional and non-functional properties
of the software system are combined. However, the notation is fairly complex and hard
to learn [RH06, p.317]. As for queueing models, no analytical solution is known for
stochastic process algebras with arbitrary distributions [Bec08].

For more information on SPA for performance prediction see the survey in [HHK02].

CHAPTER 2. PERFORMANCE PREDICTION 11

To solve the performance models described in the above formalisms, analytical or simulation
approaches can be used, depending on the class of the models.

Analytical solutions: The above-mentioned formalisms can be solved by converting and
solving them as Markov chains (cf. [BGdMT98]), if sufficient assumptions are made.
For special cases, e.g. the use of arbitrary distributions, the formalisms are no longer
analytically solvable. In that cases, simulation has to be applied.

The advantage of analytical solutions, if applicable, is that they result in accurate perfor-
mance values. At the same time, analytical solutions are faster than simulation, because
the Markov chains can usually be solved efficiently and quickly [RH06, p.318]. However,
the number of states in the Markov chains increases exponentially for growing complexity
(state-space-explosion), so that at some point, no analytical solution is possible.

Simulation: With simulations, all of the above-mentioned formalisms can be analysed with-
out exceptions. However, simulations only result in approximations of the accurate per-
formance metric. The longer a simulation runs, the closer the approximation will be to
the accurate value, but it is never certain how far the value is off. Confidence intervals
using point estimators can be calculated for the results, but uncertainty remains. A further
disadvantage is the computational effort: For significant results, simulations may have to
run a long time [RH06, p.318].

Hybrid approaches: In hybrid approaches, analytical approaches and simulation are com-
bined. Parts of the analysis is realised with analytical solutions, other parts are simulated.
For example, intermediate result could be derived analytically and be fed into a simulation
run.

2.2 Performance Prediction for Component-based
Systems

Component-based software systems are particularly suited for performance prediction, because
their composition may allow to predict the performance of a system based on the performance
characteristics of the single building blocks [BKR07a]. However, component-based systems
also bring in special challenges, because several independent developer roles are involved in the
development process. Component developers have the knowledge on the control flow within
components, system architects on the binding of components, and system deployers on the
hardware and software the system is run on. As each role only has a restricted view on the
system, no role has all the information needed for a performance prediction [BKR07a]. For
example, the internals of the components should only be known to the component developer,
firstly to hide complexity from the other roles, and secondly, if the component is used by third
parties, to hide information.

Component-based performance prediction approaches have to handle these specific properties
of component-based systems. They can use the compositionality of component-based systems
and have to cope with the special development process.

12 CHAPTER 2. PERFORMANCE PREDICTION

Implementation

Usage

Resource

environment

External services

…

If (a > b){

result = external.C();

} else {

...

Figure 2.3: Influences on component performance (derived from [RBK+07, p.23])

Next to the development of new component-based systems, the scenarios introduced in sec-
tion 2.1, such as scalability analyses, also apply to component-based performance prediction.
Moreover, the context (i.e. environment) of the use of a component is even potentially unknown
at design time, because a component is designed to be reused in several contexts, e.g. several
systems. Overall, four factors of the context are identified in [BR06] to influence the perfor-
mance of a component and thus of a component-based system: The actual implementation of
the component, the hardware and software it is deployed on, the external services (e.g., of other
components) it calls, and the usage (e.g., which services are called or which parameters are
passed). Figure 2.3 depicts the four factors.

Performance prediction can be useful if any of the four influence factors changes: If new com-
ponents should be designed and implemented, if the called external services of a component
change because the assembly is changed, if the resource environment (i.e. the hardware the
components are deployed on or the middleware) changes, and if the usage of components
changes.

Again, as with traditional approaches, not all component-based performance prediction ap-
proaches take all scenarios into account (for an overview see [BGMO06]), but specialise in
certain ones. Also, not all influence factors are taken into account explicitly.

2.2.1 The Palladio Approach

The Palladio approach [BKR07a] is a component-based performance prediction approach that
addresses the challenges described in the previous section. It supports the different roles in a
component-based development process as shown on the left hand side in figure 2.4, namely
component developer (who develops the components), system architect (who assembles com-
ponents to form a system), system deployer (who allocates the components to hardware) and
a newly introduced role, the domain expert (who provides information on how the system is

CHAPTER 2. PERFORMANCE PREDICTION 13

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

<<Component
Developer>>

part of

part of

part o
f

pa
rt

of

<<System
Architect>>

<<System
Deployer>>

<<Domain
Expert>>

PCM
Instance

Mod
el-

to-
Mod

el

Tran
sfo

rm
ati

on

Stochastic Regular Expressions

Queueing Network Model

Performance Prototype

Java Code Skeletons

Model-to-Model

Transformation

Model-to-Code
TransformationModel-to-Code

Transformation

Figure 2.4: Palladio process (from [BKR07b])

used). Palladio is developed to allow performance predictions at design time, evaluating perfor-
mance for the normal use of a component-based system (in contrast to worst-case performance
prediction approaches for e.g. embedded systems).

Palladio meets the challenges of component-based systems – that (1) developer roles are sep-
arated and (2) the context of component use is unknown to developers – by introducing the
Palladio component model (PCM). This component meta-model supports parametric depen-
dencies and different views for different developer roles [BKR07b].

Component developers specify interfaces, components, and datatypes. They create para-
metric models called Resource Demanding Service Effect Specification
(RDSEFF) [BKR07a], that model the control and data flow within components, also in-
cluding calls to other services, and that are annotated with parametric resource demands.
With the RDSEFF, the influence of the implementation is made explicit. The created
models are stored in the PCM repository.

Software architects assemble components (respectively the models of the components) from
the PCM repository by specifying connections between components. They do not know
the control flow in a – potentially black box – component. By assembling components,
they create a system and explicitly provide information on the second influence on com-
ponent performance, namely the external services.

System deployers describe the available resource environment and specify on which nodes
already assembled components of a system are deployed. Thus, they provide explicit
information on the third influence, the resource environment of a single component.

Domain experts model the usage of the system by specifying the input parameters for re-
quests to the system and the arrival behaviour of users. In doing so, they make the last
influence, the user’s behaviour, explicit.

14 CHAPTER 2. PERFORMANCE PREDICTION

The performance of a system can be predicted with a complete PCM instance consisting of
a model having all four views, because every view specifies an influence on a component’s
performance.

Next to addressing challenges of component-based systems, the PCM allows to specify most
values, such as input parameters, resource demands, processing rates of the resource environ-
ment, and loop iteration in the control flow, as random variables. There are three reasons for
this:

1. In doing so, it is allowed to not only specify constant parameters. For example, an integer
parameter that can have four different values can be modelled.

2. Additionally, random variables reflect uncertainties during modelling, that can itself have
several reasons: Firstly, the behaviour of the user usually cannot be determined for cer-
tain. The possible behaviours and used input parameters can only be described stochas-
tically. Additionally, the processing rates of the underlying resource environment is
influenced by environmental features such as garbage collection and middleware be-
haviour [RBK+07, p.28], that are too complex to be modelled in details and thus add
further uncertainties.

3. Exponential distribution of time consumption cannot be assumed when black-box com-
ponents are assembled, thus, random variables are needed when feeding the performance
metrics of one bound and analysed component into another one.

In the PCM, random variables can be specified as discretisation of general distributions by
specifying boxed approximations. An example with a discretised probability density function
and the according graphical representation as a probability density is shown in figure 2.5. With
a probability of 0.3, the value of the variable lies between 0.5 and 1, with a probability of 0.2,
the value of the variable lies between 1 and 1.5, and with a probability of 0.5, the value of the
variable lies between 1.5 and 2.

Additionally, it is possible to specify probability mass functions for integer or enumeration
variables. Standard distributions such as the exponential distribution can be used with special
keywords.

The response time predicted with the Palladio approach is again a distribution, which reflects
both the uncertainties in the models (as random variables) as well as contention effects.

DoublePDF[(0.5;0)(1.0;0.3)(1.5;0.2)(2.0;0.5)] 0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0.0 0.5 1.0 1.5 2.0

p
ro

b
a

b
ili

ty

value of the double parameter

Figure 2.5: Specification in the PCM (left) and graphical representation (right) of a random
double variable

CHAPTER 2. PERFORMANCE PREDICTION 15

Analysis of the models

PCM instances can be used for different solutions and further design as shown in figure 2.4
on the right hand side. Firstly, the PCM instances can be solved analytical in special cases or
using simulation. The analytical solution quickly delivers precise solutions, also supporting
distributions of response times. In a first step of the solution, the specified parametric depen-
dencies are solved using the information from usage profiles and resource environment. After
that, the model with the solved dependencies is transformed into the performance model for
the analytical solution, which is a restricted stochastic process algebra (SPA) based on regu-
lar expressions [KBH07]. Finally, the resulting response time distribution can be calculated as
described by [FBH05].

Because the approach supports arbitrary distribution functions, other limitations are required.
The analytical solution only handles single-user scenarios. Contention effects, parallelisms, and
more advanced concepts like collection iterators and composite components are not supported.
For queueing networks, these lead to arbitrary distributed arrivals at the servers, for which no
analytical solution is known (cf. section2.1). The mathematical and further assumptions made
are presented in [KHB06].

For the simulation called SimuCom, a PCM instance is transformed into a simulation model
based on queueing networks, more precisely, into Java code in the Desmo-J framework [DES07].
In this process, information from the usage models is transformed into workload drivers. The
created threads execute according simulation code, drawing random numbers if needed for dis-
tribution functions. Generated probes collect data on performance metrics [Bec08]. The dis-
advantages of simulations are already introduced in section 2.1, and they also apply for the
SimuCom: Results are only approximations and the simulation run may take a long time.

Both analysis methods make further assumptions on the models. The resource model is very
simple, describing only some hardware resources and characterising these with mostly only a
processing rate and a scheduling policy [RBK+07, p.92]. Further aspects such as context-switch
costs for a CPU or dual core CPUs cannot be taken into account. Additionally, memory effects
are neglected and no state of the system is considered. Furthermore, execution threads cannot
be split from the control flow without a later join.

Next to solution models for analytical and simulated solutions, created using model-to-model
transformations, a PCM instance can also be transformed into a Quality-of-Service (QoS) pro-
totype, that contains generated time consumptions as specified in the PCM instance, as model-
to-code transformation. The QoS prototype can be executed to measure the time consumption.
Here, the effects of the real hardware can better be taken into account than with the abstraction
used for the two previous solutions. However, the execution takes much longer than simulation
and also requires the later hardware to be available, which both is expensive.

Finally, a PCM instance can be transformed into code skeletons that can be a basis for later
implementations of the used components. The component developer only needs to add business
logic to the method stubs generated from the RDSEFFs.

The right hand side of figure 2.4 gives an overview of the different uses of the PCM instance.

To include further information in the PCM instance, e.g. on the behaviour of the component
container or the network, there exist further model-to-model transformations called completions

16 CHAPTER 2. PERFORMANCE PREDICTION

to enhance the PCM instance. Firstly, the use of network resource is realised in this way. For
each connection between two components that crosses resource container boundaries, a new
component is introduced in a model-to-model transformation, that contains the needed logic
to properly put demand on the network resource. It is also possible to further enhance this
component and add information on the resource demands of the involved middleware. Secondly,
a completion to represent dynamic lookups between the components using a broker is available.
Here, components are added to the model for each connection between component, adding
resource demand for the CPU to represent the computational effort for the lookup.

With this technique of adding information using model-to-model transformation, the component
developer’s work is supposed to be eased, as he or she does not have to model influences of the
middleware manually. The needed configuration of the system can be chosen in a menu, and is
automatically added to the model using completions. Thus, the component developer can focus
on modelling business logic and the corresponding resource demand of the components and the
software architect does not have to specify additional information.

Tool support

The creation of a PCM instance and its analysis is supported by the Eclipse-based tool PCM
Bench (version x.0.0.200707061844), making use of the Eclipse Modeling Framework (EMF,
version 2.3.0) [Ecla] and the Eclipse Graphical Modeling Framework (GMF, version 1.0.100)
[Eclb]. With the tool, an instance of the PCM can be created using the built-in EMF editor,
that provide a tree view of EMF models, and graphical GMF editors, that provide specialised
views for some parts of PCM. The component repositories with component and interface spec-
ification, the RDSEFF, the assembly of components to a system or to composite components,
the allocation to hardware nodes, and the usage profile can be modelled graphically in specific
GMF editors. The other needed models, i.e. the resource repository with the available resource
types and the resource environment are modelled using the EMF editor.

Results of analysis or simulation are also shown in the PCM Bench. Response time distributions
can be depicted as histograms or cumulated density functions, and utilisation in pie charts,
all using JFreeChart version 1.0.5 [Gil07]. Additionally, simulation results can be fed into R
reports (cf. [Dal03], available was version 2.5.0).

The screenshot in figure 2.6 shows the RDSEFF editor to specify a component’s control flow and
resource demands in a parametrised way (upper main screen), as well as a view of the resulting
distribution function for the specified system in form of a histogram (lower main screen). On
the left hand side, an overview on the current project is given.

2.2.2 Other Component-based Prediction Approaches

To find an approach comparable to Palladio, I evaluated other component-based performance
prediction approaches. Requirements for the comparability were that approaches allow to create
performance models of the system under study at design time. The approaches may include an
option to use measurements next to design documents, but approaches only focussing on the
extrapolation of performance predictions from measurements are excluded from the list.

CHAPTER 2. PERFORMANCE PREDICTION 17

Figure 2.6: RDSEFF editor and response time histogram in the PCM Bench

18 CHAPTER 2. PERFORMANCE PREDICTION

Requirement Rationale
Applicable at
design time

To find an experiment task applicable for both approaches, the approach must
target design-time predictions. In particular, the compared approach must
not depend on measurements alone.

Usable tools In a study of the applicability, both methodology and tool are under study,
thus, there must be usable tools to create the needed models. In particular,
the potential transformation of design models into performance models and
their analysis needs to be automated.

Normal-case
analysis

In contrast to worst-case or best-case analyses, the compared approach must
allow to study the system under normal, average conditions.

Component-
based

As Palladio is a component-based approach, it is desirable to compare it to
another component based approach.

Support of
arbitrary
distributions

As arbitrary distributions are an essential feature of Palladio, they should
be included in the task description and in the required interpretation of the
results.

Table 2.2: Requirements for an approach to be comparable to Palladio

Further requirements are usable tools, as both methodology and tool were under study in this
thesis, as well as support of a normal-case analysis studying the system under normal, average
conditions, and not worst-case scenarios. Additionally, the approach should support arbitrary
distribution functions to allow corresponding experiment tasks that ask for their interpretation.

I summarise the requirements in the order of their importance in table 2.2. After assessing the
approaches in detail, I summarise the findings in table 2.4.

A survey on component-based performance prediction approaches can be found in [BGMO06].
To limit the amount of approaches presented here, I filtered and only present approaches that
are applicable at design time and are fairly matured in the following. There are only a few other
component-based performance prediction approaches fitting these two criteria:

KLAPER: The KLAPER approach [GMS05] is specifically designed for predicting the per-
formance of component-based architectures. It defines an intermediate language into
which design-oriented notations can be transformed. Analysis models can be created
from KLAPER instances using model transformations. Thereby, KLAPER reduces trans-
formation complexity by treating components and resources in a unified way. However,
there is no tool available to semi-automate the process, all model transformations need to
be done manually, which is not feasible in an experiment and not realistic.

LQN-Components: In the LQN-Components approach [WMW03, WW04], performance
sub models for single components are created using layered queueing networks, i.e.
queueing networks that consider both software and hardware contention. The models
are parametrised, and can be assembled to system performance models, as components
are assembled to form a system. Although a tool exists to create the system performance
models from component sub models, there does not seem to be further coherent tool sup-
port to first create such sub models. Thus, the applicability of LQN-Components for this

CHAPTER 2. PERFORMANCE PREDICTION 19

Approach A
pp

lic
ab

le
at

de
si

gn
tim

e

U
sa

bl
e

to
ol

s

N
or

m
al

-c
as

e
an

al
ys

is

C
om

po
ne

nt
-b

as
ed

A
rb

itr
ar

y
di

st
ri

bu
tio

ns

KLAPER X X X X X
LQN-Components X X X X X
PACC X X X X X
ROBOCOP X X X X X
CBSPE X X X X X

Table 2.4: Evaluation of component-based approaches on requirements for comparability

experiment is questionable.

PACC [HMSW02] aims at predicting non-functional properties for embedded, safety- and
time-critical component-based systems. Performance predictions are theoretically sup-
ported as well. However, the available model checking tool Component Formal Rea-
soning Technology (ComFoRT) only supports checking safety, reliability, and security
requirements [IS04].

ROBOCOP provides a component model for embedded systems with real-time
constraints [BdWC04]. It allows performance predictions and even guarantees for tim-
ing behaviour of real-time applications. Important aspects of the approach are synchro-
nization issues in embedded systems. Tool support exists with the Robocop Integration
Environment (RIE) tool and the DeepCompass framework [BCdK07]. However, as the
approach focusses embedded systems and thus conducts worst-case analyses, it is un-
suited to be compared to Palladio in the business information systems domain, looking at
normal cases.

CBSPE [BM04] is based on the SPE process, and adapts it for component-based software
development. The main adaptation is that the roles of component developer and system
assembler are distinguished, so that both can work independently and only exchange spec-
ifications of the components. All in all, the approach resembles Palladio quite well. How-
ever, in a previous experiment ([Mar05]), I experienced that the accompanying tool based
on ArgoUML was not mature enough and caused many inexplicable problems when be-
ing applied. As tool development has been cancelled, I did not use CB-SPE in this thesis.

None of the presented performance prediction approaches features arbitrary distributions, and
most do not have a sufficient automated tool support, so that participants of an experiment are
not able to apply it as they would in practical situations. ROBOCOP targets worst-case analyses
instead of normal system operation. Thus, none of the approaches is applicable. As I expected

20 CHAPTER 2. PERFORMANCE PREDICTION

the least disadvantages from omitting the requirement that approaches should be component-
based, I included monolithic approaches in the selection.

2.3 Monolithic Prediction Approaches

As the presented component-based performance prediction approaches were not applicable for
a comparison, I looked at further approaches for performance prediction, that do not specifically
target component-based systems. As the approaches do not make use of componentisation, I
call them ”monolithic” in this thesis, although ”more general” would be another suitable term.
Note, however, that they are not only to study monolithic single-server software systems, but
may also target distributed, object oriented systems, for example.

To create performance models and conduct predictions, several monolithic approaches have
been introduced, a survey can be found in [BMIS04]. Again, I filtered in advance and only
considered approaches that allow to create a performance model of the system under study at
design time. Of such, I present four fairly advanced approaches that also include tool support in
the following. I applied the same requirements as presented in table 2.2, and present the results
in table 2.6.

SPE with the SPE-ED tool [Smi90, SW02] is the first approach introduced in the field of
software performance engineering, its creators also coined the term itself. It is a mature
approach that is used in industry to predict the performance of systems. Additionally,
former experiments in our research group attested the approach a good applicability in a
replicated case study [Koz04].

PRIMA-UML [CM02] generates performance models from different UML models. Target
models are a Software Model and a Machinery Model, which then again can be trans-
formed into an Extended Queueing Network Model. The XPRIT tool accompanies the
process of the PRIMA-UML approach. It transforms both sequence diagrams and use
case diagrams created with the Poseidon UML tool and deployment diagrams created
with ArgoUML into XPRIT models, and then creates execution graphs and queuing net-
works from them that can be analysed using tools such as SPE-ED. As ArgoUML is
used, I expected similar problems as with CB-SPE (cf. section 2.2.2), and did not use the
approach.

CSM with the PUMA tool set [WPS+05] is closely aligned with the UML-SPT profile ([Obj05]).
The goal of this approach is to provide a common intermediate model (Core Scenario
Model) different UML models can be translated in and different performance models
such as queueing networks or stochastic Petri nets can be generated from. The PUMA
tool set provides the means for the translation as a chain of different translators, e.g. a
CSM2LQN tool. As the tool also depends on the annotation of UML models with profile
information, it is questionable how they can be generated in a usable way [BKR07b].

UML-PSI [BM03a] is a simulation-based approach to performance modelling of software
architectures specified in UML. Simulation model are derived from annotated UML soft-
ware architectures, as specified with some UML diagrams, i.e., Use Case, Activity and

CHAPTER 2. PERFORMANCE PREDICTION 21

Approach A
pp

lic
ab

le
at

de
si

gn
tim

e

U
sa

bl
e

to
ol

s

N
or

m
al

-c
as

e
an

al
ys

is

C
om

po
ne

nt
-b

as
ed

A
rb

itr
ar

y
di

st
ri

bu
tio

ns

SPE X X X X X
PRIMA-UML X X X X X
CSM X ? X X X
UML-PSI X X X X X

Table 2.6: Evaluation of monolithic approaches on requirements for comparability

Deployment diagrams. A process-oriented simulation model automatically extracts in-
formation from the UML diagrams. Simulation provides performance results that are re-
ported back into the UML diagrams. A prototype tool called UML-Ψ (UML Performance
SImulator) implements the approach. Although the approach is fairly advanced, former
experiments in our research group [Koz04] showed many problems when UML-PSI is
applied by students in an experimental setting: The tool was instable and susceptible to
wrong inputs. Thus, I did not use the approach again.

I decided to use the SPE approach with the SPE-ED tool, because it fits all requirements except
that it is not component-based and does not feature arbitrary distributions (what none of the
approaches does). Additionally, it is the only one also used in practical environments. The
usability of SPE has already been shown in former work in our research group ([Koz04]).

In the following section, I present SPE in detail. In section 2.3.2, I argue why and under which
conditions the two approach Palladio and SPE are comparable in a study like this.

2.3.1 The SPE Approach

Software Performance Engineering (SPE) was the first approach introduced to predict the per-
formance of software systems [Smi90], and already has been applied in industrial settings (sev-
eral anonymised case studies are provided in [SW02]). It supports performance analysts, espe-
cially during early design stages, by providing methodologies, practices and a tool to predict
and manage the performance of a system. Thus, in contrast to many of the previously intro-
duced approaches, it does not only have an academic view on performance prediction, but does
also include necessities for its practical application.

SPE was developed for monolithic systems, and later enhanced for distributed systems such as
web applications. An SPE model specifies the performance-relevant control flow through the
system. Additionally, means to analyse object-oriented systems with the help of UML sequence

22 CHAPTER 2. PERFORMANCE PREDICTION

Assess

performance

risk

Identify critical

use cases

Select key

performance

scenarios

Establish

performance

objectives

Construct

performance

model(s)

Add software

resource

requirements

Add computer

resource

requirements

Evaluate

performance

models

Verify and

validate models

Modify / create

scenarios

Modify product

concept

Revise

performance

objectives

[feasible]
[infeasible]

[performance

acceptable]

Figure 2.7: The SPE Workflow (from [SW02, p.409])

diagrams were introduced [SW02]. Components are not directly supported, but their control
flow can be described. The models are also hierarchical and thus offer limited composition
possibilities.

The SPE process is ongoing during the software life cycle, but puts special emphasis on early
phases. Proactive performance management is introduced, in which the performance of a
system is predicted during design time, and not just tested later with implemented versions.
Thereby, not the whole system is modelled. Performance analysts are required to identify key
performance scenarios and model these. Later in the development process, models are refined
using more detailed design and measurement results. Also, other performance modelling tech-
niques might be used later in the development if more detailed models are needed [SW02,
p.419]. Scalability questions can be analysed for existing systems. Overall, the principle is to
keep models as simple as possible for a certain design stage. First, best case estimations are
conducted, and only if these pass performance requirements, further detail is added.

Figure 2.7 shows the SPE workflow, that is ”repeated throughout the SPE-inclusive develop-
ment” [SW02, p.409]. First of all, the performance risk of the project needs to be assessed and
the amount of effort for performance modelling needs to be defined. Then, performance critical
use cases are identified. The motivation is, that only a small amount of functions of the system
(<20%) use the major amount of time (>80%)[SW02, p.171]. These 20% need to be identified
and analysed. The performance critical scenarios of the identified use cases are selected and
performance objectives are set up, which is important to later know how to interpret the results.
The performance models for the scenarios are constructed and annotated with software resource
requirements. Computer resource requirements map the software resource requirements to ac-
tual processing devices of the hardware. Based on the evaluation of the models, the workflow
continues with either finishing if the predicted performance is satisfactory, modifing the product
concept (i.e. the software design) and later the models if possible and then continue, or revising
the performance objectives if they proved infeasible. Next to creating the models and analysing
them, they need to be ongoingly verified and validated. Further details of the workflow can be
found in [SW02, p.407 et sqq.]).

The workflow is repeated at several stages of the SPE process, each time with greater detail.
Thus, the models are refined like the design itself is refined.

CHAPTER 2. PERFORMANCE PREDICTION 23

However, SPE does not only introduce the SPE process and workflow, but also practical consid-
erations how to implement the process in an organisation and guidelines, principles and design
patterns to design and develop high-performance software. This also includes performance
management and information on how to collect data for the resource requirements estimation.

Each identified scenario is modelled using execution graphs (EGs), which describe the control
flow of the applications using constructs such as loops, branches, parallel nodes, and synchro-
nisation nodes. The meta-model for EGs and the underlying resource model is documented
in [SLC+05]. The EG can be derived from UML sequence diagrams, for example, but it is not
supposed to reflect every detail of execution, but to be an abstraction.

The EG is annotated with software resource requirements. The types of requirement can be
chosen, e.g. ’DB’ or simply ’workunit’. Mean values are used, but not distributions. In an
overhead matrix view, the software resource requirements are mapped to the hardware. For ex-
ample, it can be specified that a software resource unit ”DB” to describe the number of database
accesses maps to 1000 CPU cycles, each taking 1ns to execute, and 1 hard disk drive access,
taking 10ms.

For multiuser scenarios, mean values for the arrival rates can be specified, describing an under-
lying exponential distribution. Also, multiple scenarios can be allocated on different hardware
facilities and be analysed together.

The results of analyses are response time (or residence time), time spent at one resource, and
utilisation. For all metrics, only mean values are given as result.

Analysis of the models

The performance model of SPE is based on queueing networks. Different solutions exist, that
are supposed to be used in the order they are presented below. The least-complex solution
is used first, and only if a scenario meets its performance requirements, the next solution is
conducted. In the following, I describe the four solutions as described in [Per03] and [SW98].

No Contention Solution: First, a scenario is analysed for the single-user user case. Here,
the time needed for the single steps is calculated using overhead matrix and software re-
source requirements. After that, the time consumptions are added, potentially multiplied
with loop repetition factors and weighted for branches. Results are mean residence time
and mean time spent at the single resources.

Contention Solution: With the contention solution, single scenarios are analysed for multi-
ple users arriving at the system in an either open or closed workload. Here, the queueing
network is solved analytically using the known formulas (cf. section 2.1). Results are
mean residence time, mean time spent at the single resources, and utilisation of the re-
sources.

System Model Solution: Sets of scenarios running on one or several facilities concurrently
are analysed with the system model solution. Here, a hybrid approach using both analyti-
cal ”no contention” results of the single scenarios and simulation of the whole systems is
applied. Resulting metrics are the mean response time for each scenario, the mean time
spent at each hardware facility and the utilisation of each device.

24 CHAPTER 2. PERFORMANCE PREDICTION

Advanced System Model Solution: To support synchronisation nodes in the execution
graphs correctly, the advanced system model solution was presented in [SW98]. Here,
the simulation of the system model solution does also take the synchronisation behaviour
of the single scenarios into account. The resulting metrics are the same as for the system
model solution.

Like the Palladio approach, the SPE analyses only support limited resource modelling capabil-
ities and neglect memory effects.

Tool support

SPE is supported by the SPE-ED tool (version 4) presented in [SW97]. It allows to create
the models and solve them using the presented solutions. The modelling includes drawing
execution graphs, specifying templates for software and computer resource requirements and
facilities, annotating EGs with software resource requirements, and creating an overhead matrix
to map the requirements. Furthermore, additional information for the solutions, such as arrival
rates and simulation time, can be specified. The models can be solved with the four presented
solutions.

Figure 2.8 shows an analysis view for a system with a single scenario, created using the system
model solution. In the top-most view, the allocation of the scenario to hardware facilities and
the simulated utilisation is shown. The two lower views show the residence times of parts of
the EG. On the right hand side, the hierarchical composition of the system is symbolised: The
more complex EG on the lower left side is actually part of the simpler EG on the lower right
side, and expands the second node of the branch.

For this thesis, only an academic version of the SPE-ED tool with limited functionality was
available. This version did not support correctly solving parallel nodes in the EG. If a step
in the execution graph demanded hard disk drive access and a parallel step demanded CPU
computation, the overall response time was calculated by adding the time consumed for the two
steps, instead of using the larger value. Thus, parallel nodes were approximated by leaving out
the estimated shorter branch in this thesis.

Additionally, the advanced system model solution was unavailable, thus correct synchronisa-
tion behaviour was not supported automatically. Here, a manual workaround approximated the
synchronisation behaviour by (1) modelling all local system behaviour in one scenario, possibly
splitting the behaviour for different use cases in the top-most EG, (2) analysing remote parts of
the system separately and adding the response time as a delay in synchronisation nodes and (3)
only using the contention solution for the resulting scenario. With this approach, the contention
solution with its analytical solution can be used. However, it is not proven whether the results
are the same and the modelling effort is higher.

2.3.2 Comparability of the Approaches

For this thesis, I decided to compare Palladio to SPE. However, as the SPE approach does not
target component-based systems like Palladio does, I needed to find experimental tasks that fit

CHAPTER 2. PERFORMANCE PREDICTION 25

Figure 2.8: Analysis views of the SPE-ED tool

26 CHAPTER 2. PERFORMANCE PREDICTION

both techniques.

There are some aspects that can be realised with SPE, but not with Palladio:

• For servers in SPE, more than one resource of the same type can be modelled (e.g., a
server can have 2 CPUs), and this fact is correctly reflected in the performance model.
In Palladio, only a twice as fast CPU could be used, which of course results in wrong
predictions, especially for the single user case. For a well-utilised system, the mean values
might not deviate much, however, the distributions are wrong. Thus, the experimental task
only used one resource per type and per server.

• With SPE, even asynchronous communication between scenarios is possible with the
advanced system model. However, this type of solution was not available in my version
of SPE, and thus cannot be used anyway.

• In SPE, it is possible to map one Software Resource Requirement, e.g. a database access
unit, to several hardware resources, e.g. CPU and hard disk drive. This is not directly
possible for Palladio, where each resource demand has to be separately defined in the
software model (the RDSEFF), i.e., for one database access, CPU and hard disk drive
demand need to be specified as two resource demands. However, as demands can be
specified separately with Palladio, this does not restrict the experimental task itself, but
only the presentation of software resource requirements.

• Usually, when applying SPE, only performance relevant scenarios of a software archi-
tecture are studied. However, for Palladio, usually the whole system is modelled, as the
important aspects are unknown at design time. Thus, the experiment task also modelled
a complete architecture and did not allow the participants to identify critical use-cases,
which affects the time needed for applying SPE. However, as it is questionable whether
critical scenarios can actually be identified at design time, this limitation is not very re-
strictive.

Other aspects can be realised with with Palladio, but not with SPE:

• SPE does not support a split of different roles to several developers. The views of SPE
are closely related and do not have defined interfaces. Only the software model view (the
execution graph) and the overhead matrix, mapping software resource requirements to
hardware resource requirements, can be specified by two different people, if they agree
on the available types of software resource requirements.

• SPE does not support arbitrary distributions. Thus, the task could not ask for the anal-
ysis of service-level agreements such as ”70% of the requests must be answered within
3s”. Additionally, the given input parameters must not be too skewed left to still have a
meaningful mean value, which is used in SPE.

• With SPE, there is no model construct to model passive resources, such as semaphores.
However, fix delays can be modelled. Thus, the delay at a passive resource because of
multiple jobs arriving needed to be estimated manually.

• Parallel control flow is conceptually supported in SPE, but did not work with the available
version (cf. section 2.3.1).

CHAPTER 2. PERFORMANCE PREDICTION 27

Thus, to be able to compare the approaches, the experimental task must not include several
resource of one type (e.g., two CPUs), because it is unavailable in Palladio. It must not include
asynchronous communication, because it is unavailable with both tool versions at hand. It must
not split the development process on several people, as this is not supported by SPE. Thus, the
modelling with Palladio was expected to be more time-consuming because of the extra effort
for a splittable model, which did not result in benefits in this study.

Still, with these restrictions, reasonable experiment tasks were possible. Not all projects do
have to include several resources of one type or asynchronous communication. Additionally,
if only small example systems are analysed, the roles do not have to be split. Thus, Palladio
can be compared to SPE in this thesis. However, the restrictions had to be considered when
assessing the validity of the experiment (cf. section 4.3)

3 Research Method

As presented in the introduction, the empirical comparison of the two performance prediction
techniques CB-SPE and Palladio was realised with a controlled experiment. Section 3.1 intro-
duces different kinds of empirical research methods and describes why a controlled experiment
was chosen.

Conducted without specific goals in mind, an experiment can lead to a large amount of data. To
extract the relevant information after collecting the data can be hard, and it may be discovered
that important information is missing, because its relevance was not recognised beforehand.

The goals of the experiment should be worked out in advance to be able to reduce the amount of
data, eliminate irrelevant information, and collect all relevant information. A well known and
successful goal-oriented procedure is the Goal-Question-Metric (GQM) approach by Basili et
al. [BCR94]. Section 3.2 describes the GQM approach briefly and introduces the GQM plan for
this thesis, containing questions and metrics to compare the performance prediction techniques.

3.1 Empirical Studies in Software Engineering

Although the discipline software engineering as a computer science branch is rooted in math-
ematics, it is nowadays understood as an engineering discipline [Pre01, p.30], as the name
implies. In engineering, results are assessed based on their usefulness. This can often only be
shown empirically, i.e., by experiencing and observing, and not deductively. Usually, software
engineering processes are too complex for a thorough analysis. Thus, software engineering is
not a deductive science, such as mathematics, in which new findings can be derived by conclu-
sions and proofs.

To assess results, empirical evaluations must be conducted. Prechelt defines empirical evalua-
tion as follows

”Empirical evaluation in the context of software engineering is the practical use
and testing of a tool, method or model to understand and describe the actual char-
acteristics of the artefact. By contrast, the speculative evaluation evaluation con-
cludes the expected characteristics based on more or less plausible and mainly
unexpressed assumptions by more or less stringently logical conclusions without
empiricism” [Pre01, p.30] (translated by the author).

Prechelt names six different kinds of empirical studies: Case studies and benchmarking, field
studies, controlled experiments, natural experiments, surveys, and meta-analyses [Pre01, p.35].
I briefly reproduce the six types in the following.

29

30 CHAPTER 3. RESEARCH METHOD

Case study and benchmarking: In case studies, methods or tools are assessed and de-
scribed with applying it to a single concrete example. The example can be of toy-size or
fairly complex. Case studies can be conducted in real surroundings or in laboratory set-
tings. However, further influences on the outcome, such as the qualification of the users,
are not systematically analysed or even excluded by design. The great advantage of case
studies is their comparatively easy conduction. However, the interpretation of the results
is difficult, as it is unclear to what observed results can be traced back. Benchmarks are a
special form of case studies that are standardised and have a quantitative outcome.

Field study: In field studies, real software projects are observed. This can be useful if the
subject of study cannot be simplified for laboratory settings or if a laboratory setting is
too expensive. With field studies, much more complex situations can be analysed than
with artificial settings. Additionally, the results apply to at least the studied real project.
However, the generalisation to other projects and the investigation of the actual causes is
problematic.

Controlled experiment: In a controlled experiment, only the factors being the subject of the
empirical analysis are varied (treatment, experimental variables or independent variable),
all factors that influence the outcome are controlled. Thus, the changes of the results
(the dependent variables) can be identified as caused by the changes of the experimental
variables. To control the influence of individual traits of a single user, many participants
have to solve the same task, so that differences are balanced. However, this duplication
makes controlled experiments costly. To reduce the effort, usually less complex tasks are
studied.

Further advantages of a controlled experiment are the traceability of results to their causes
and the good reproducibility. Because of this, when conducting an empirical study, the
most reliable and convincing results are gained by conducting a controlled experiment.

Natural experiment: Natural experiments are a special case of controlled experiments and
study often occurring tasks in software development that have to be carried out anyway.
Thus, the participants of natural experiments are observed during their daily work. Only
the way of solving the task, i.e. subject of study, is prescribed by the experimentators.
Thus, the effort for natural experiments is low for the participants, but still very high for
the experimentators.

Survey: With surveys, subjective information is collected from many people answering cer-
tain questions asked by the experimentators. However, only subjective opinions can be
collected and consequently results have to be interpreted with care.

Meta-analysis: Meta-analyses combine the findings of several empirical studies on the same
subject and thus consolidate the gained knowledge. With them, common results, miss-
ing aspects and also conflicts between the single studies can be detected, which leads to
consolidated knowledge or ideas for further research. They are relatively inexpensive,
however, they can only be conducted if enough comparable base studies are available.

For this thesis, I chose a controlled experiment as my research methods. With this form of
empirical study, outcomes of the experiment can be traced back to the treatment, in this case the
use of a specific performance prediction approach. Some other forms of empirical studies, such

CHAPTER 3. RESEARCH METHOD 31

Cause

Construct

Effect

Construct

Treatment Outcome

Theory

Observation

Experiment objective

Cause-effect

construct

Treatment-outcome

construct

Independent variable Dependent variable

Experiment operation

Figure 3.1: Experiment Principles (from Wohlin, [WRH+00, p.32])

as a natural experiment, a field study or a meta-analysis, are infeasible in the context of this
thesis. The case study does not allow the tracing back of the outcome to results, and a survey on
the one hand only results in subjective results, on the other hand requires practitioners applying
the approaches.

In the following section, I describe the chosen empirical research method in more detail.

3.1.1 Controlled Experiment

The process of experimentation as described in [WRH+00, p.32] is shown in figure 3.1. The
goal is to investigate the relationship between a cause and an effect, here the use of a certain per-
formance prediction approach and the applicability. This relationship is depicted in the upper
side in figure 3.1. This relationship is investigated by conducting a particular experiment, as de-
picted in the lower part in figure 3.1. A number of treatments (in this thesis the two performance
prediction approaches) are applied in a certain experiment setting that allows control of other in-
fluencing factors. When conducting the experiment, a certain outcome is observed and thereby
the relationship between treatment and outcome is investigated. If the experiment is properly
set up, conclusions on the relationship between cause and effect are possible [WRH+00, p.32].

In a controlled experiment, it has to be ensured that apart from independent and dependent vari-
ables, all other influencing factors (the disturbance variables) are held constant. For empirically

32 CHAPTER 3. RESEARCH METHOD

comparing two performance prediction techniques, the experimental variable is the used predic-
tion approach, whereas all other factors, such as the individual’s performance, must be constant.
The observed outcome are the performance models created by the participants, judged with the
metrics presented in section 3.2.

However, the effort to conduct a controlled experiment is considerably high [Pre01, p.45]. The
claim to control all disturbance variables is hard to fulfil. Particularly if humans are participating
in the experiment, which is most often the case in the context of software engineering, there are
many influencing factors, such as the individual’s performance.

A large group of participants with preferably equal knowledge is a good way to minimize or
at least identify the influence of uncontrollable variables connected to the individual’s perfor-
mance. If participants are randomly assigned to the experiment groups and if the groups are
large enough, it can be assumed that the individual’s influence is balanced in average [Pre01,
p.53].

To keep the experimentation feasible, the tasks presented to the participants were fairly simple.
The two concrete systems under study were the performance prediction for a Media Store ap-
plication storing mp3 files and for a simple Web Server, both being artificial component-based
systems. Still, except for their size, they were representative examples for business information
systems. As two example systems were used instead of just one, the results here were better
transferable to other architectures.

To achieve the best possible generalizability and to control the influencing factors as much as
possible, I used guidelines and techniques for controlled experiments like presented in [Pre01].
When analysing the results of the experiment, I tried to identify the uncontrolled factors and
interpret the results with this knowledge to assess the generalisability.

3.1.2 Related Empirical Studies

In general, there is little empirical research in software engineering [TLPH95, SDJ07]. Sjøberg
et al. [SDJ07] analysed and meta-analysed scientific articles and found that only between 1.9%
and 3% were controlled experiments, 1.6% were surveys, 2.3% - 12% were case studies (us-
ing varying definitions of what is a case study), and only very few action research. Overall,
Tichy et al. [TLPH95] reported 17% empirical studies and Glass et al. [GVR02] reported 14%
”evaluative” research.

Usually, empirical validation of performance prediction approaches study only a single perfor-
mance prediction approach in the form of a case study and evaluate the accuracy of the ap-
proach by comparing it to measurements. There are exceptions, e.g. [BMDI04] and [BJHN04,
BJH+05] (see below), in which different performance predictions approaches were compared.
Still, in all known cases, the empirical validation was in the form of case studies.

[Koz04] gave an overview on empirical studies related to performance predictions up to the year
2004, that I reproduce in the following.

In [BMDI04], Balsamo et al. compared two performance prediction approaches that they de-
veloped in a case study for a real system. The older approach is based on process algebra
and uses the Æmilia architectural description language. The performance models are derived

CHAPTER 3. RESEARCH METHOD 33

from UML sequence diagrams. As the approach suffered the state-space-explosion problem,
they developed a second approach based on simulation. The simulation model is also derived
from the UML descriptions and results in steady-state performance values. The approaches
are compared using several criteria (performance model derivation, software model annotation,
generality, performance indices, feedback, scalability, and integration). Their findings were
that both approaches have advantages and disadvantages, but that they could be combined at
affordable cost.

Smith et al. presented a case study in [SW93], in which they applied their SPE methodology
to a temperature sensor system with some real-time properties and also showed how to evaluate
performance characteristics of design alternatives. However, they did not compare the results
of the predictions to measurements.

Next to the aforementioned ones, there are plenty of case studies in which researches show the
validity of their own proposed approach, e.g. in [DRSS01] and [DAL04].

In [Koz04] itself, three performance prediction approaches were compared in a replicated case
study with student participants, similar to this thesis. The performance prediction approaches
under study were SPE [SW02], umlPSI [Mar04] and Capacity Planning [MAD94]. The study
attested SPE a good applicability for early design time predictions, found that Capacity Planning
is rather fitting for the analysis of existing systems than for early design time predictions, and
uncovered numerous problems with the umlPSI tool, although the approach itself was very
promising.

After 2004, Bacigalupo et al. have compared their performance prediction technique HY-
DRA [BTJN03] to a performance prediction approach using layered queueing networks in two
case studies [BJHN04, BJH+05]. HYDRA extrapolates from historical performance data for
different classes of workload and is used for Grid-applications. In both cases, benchmarks were
used to generate loads for measurements and to validate the predicted values.

In 2005, I compared an earlier version of the Palladio approach as presented in [FB04, FBH05],
with only a rather immature tool support, to CB-SPE [BM03b, BM04] in a smaller replicated
case study [Mar05]. The results attested the CB-SPE approach conceptually a good applica-
bility, although many problems with the tools occurred. The Palladio approach had less good
results. There were many problems with the specification of the distribution functions in the
immature tool. However, as the Palladio approach and tool evolved since then, a further study
is useful.

After describing foundations of empirical studies and related work in this section, I introduce
the research goal of this study and derive questions and metrics in the next section.

3.2 Goal-Question-Metric Plan

The primary principle of the GQM approach [BCR94] is that the collection of empirical data
should be goal-oriented, i.e focus on and pursue a defined goal. The first advantage of this
principle is that, having the goal in mind, it is easier to choose useful and relevant data. This is
supported by the top-down approach of GQM: On the basis of the goals, questions are defined
which make the goal operational and further lead to metrics. The second advantage of the GQM

34 CHAPTER 3. RESEARCH METHOD

approach comes with the interpretation of results: In a bottom-up approach, the collected data is
interpreted based on the questions and finally based on the goals [DHL96]. The goals, questions
and metrics together form the GQM plan.

There are several prerequisites for a successful use of the GQM approach [DHL96]:

1. The goal must specify in great detail what is to be analysed.

2. Metrics have to be derived in a top-down fashion based on goals and questions.

3. The choice of metrics must be explicitly documented. The GQM questions embody this
rationale of how the metrics are derived from the goals.

4. The collected data must be interpreted in a bottom up approach based on the GQM ques-
tions and goals.

5. The people whose viewpoint is used in the GQM goal have to be deeply involved in the
definition and the interpretation of the goal.

Prerequisite 1 to 4 were be taken into account in this GQM plan, and are explicitly named
where fulfilled. Prerequisite 5, however, relates to application of the GQM approach in practical
surroundings, e.g. in software development. In research, the participants of an experiment are
almost never involved in the design of the GQM plan. Thus, this prerequisite was invalid in this
thesis.

The detailed GQM plan is also interlinked with the actual experiment design. For example, only
an experiment design with multiple tasks can be used to compare two approaches in respect of
the features of the task they are applied to. With only one task, the outcome may be caused by
either the independent variable or by characteristics of the task. Furthermore, to assess a charac-
teristic of the approach on average over several participants and/or tasks, the calculation of the
average cannot be specified without knowing the details of the experiment design. Constraints
on the experiment design such as organisational and financial ones may also affect the ques-
tions and metrics in reality. Still, the goals, questions, and metrics should define the experiment
design, and not the other way around.

Some requirements for the experiment design have already been presented in section 3.1.1. To
keep the separation of GQM plan and experiment design, I present the experiment design in its
own chapter 4. However, there are also implications for the experiment directly from the GQM
plan that are mentioned in this section.

3.2.1 Goal of the Experiment

A GQM goal specifies the purpose of measurement, the object to be measured, the issue to be
measured, and the viewpoint from which the measure is taken [BCR94]. Naming all these parts
of the goal fulfils prerequisite 1. Here, the GQM goal was to

empirically validate the applicability of the performance prediction approach Pal-
ladio from a user’s point of view.

CHAPTER 3. RESEARCH METHOD 35

Purpose Empirically validate
Issue the applicability
Object of the performance prediction approach Palladio
Viewpoint from a user’s point of view

Table 3.1: Research Goal

Note that the term ’user’ stands for the different roles involved in the performance prediction.
For the Palladio approach, these are all roles involved in the process of developing component-
based systems, namely component developer, system assembler, component deployer and QoS
analyst, as presented in section 2.2.1. Of course, it does not mean the end user of the developed
component-based system.

To assess the applicability, a evaluation scheme to judge the outcome is needed. One possibility
is to set up a set of requirements to check against, a second is to compare the applicability
to another performance prediction approach as a reference. As the setting-up of requirements
is highly subjective, I compared Palladio to another performance prediction approach. The
SPE approach was chosen (see section 2.3) as it is a commonly used technique which is also
practically used in industry [SOB01]. Thus, it is a suitable reference for comparison.

Consequently, the mean to achieve the goal is to

empirically compare the applicability of the Palladio approach and the SPE ap-
proach from a user’s point of view.

Note that the applicability was under study and not the ability of the approaches to yield accurate
and precise predictions for real software systems. Thus, the emphasis lies on how participants
are able to create the required models. The resulting predictions are not compared to measure-
ments of implementations.

To assess the applicability of Palladio, I paid attention to its characteristics as introduced in
section 2.2.1. Thus, some metrics relate to Palladio’s parametrisation and the specification of
distribution functions. The target scenario and capabilities of the Palladio approach were also
considered in the experiment design: The experiment tasks (described in section 4.2.2) are about
a component-based system with one design alternative allowing automated model completion
(cf. section 2.2.1). However, development roles and the interpretation of distributions were not
under study, because they cannot be handled with SPE and thus could not be integrated into the
experiment design (cf. section 2.3.2).

3.2.2 Questions and Derived Metrics

Based on the GQM goal, I derived four questions to be answered with this study. For the
applicability of the performance prediction models under study, two important factors are (1)
the quality of the created models and (2) the duration of a prediction. Only if created models
have a sufficient quality and can be created in a certain amount of time, the approaches are
applicable. For both characteristics, I asked for (1) their degree in the experiment and (2) for
the reasons of the observed outcome, to be able to draw conclusions. For all four aspects, both

36 CHAPTER 3. RESEARCH METHOD

the methodology and the tools are under study. As I expected the reasons for the observed
quality to be the comprehensibility of the approaches and the usability of the tools, I asked
sub-questions specifically asking for these reasons and one sub-question also asking for further
reasons, allowing further insight.

The following list presents the resulting four questions.

• Question 1: What is the quality of the created performance prediction models?

• Question 2: What are the reasons for the model’s quality?

– Question 2.1: Are the approaches comprehensible?

– Question 2.2: Are the tools usable?

– Question 2.3: What are further reasons?

• Question 3: What is the duration of predicting the performance?

• Question 4: What are the reasons for the duration?

In the following, the four questions are presented in detail with hypotheses and 21 metrics,
thus fulfilling prerequisite 2. A detailed rationale is given for each question and a hypothesis
is stated, thus fulfilling prerequisite 3. After the rationale, first an overview of the metrics of
the questions is given, followed by a detailed description of each metric, that includes a formal
description in the case of quantitative metrics. Questions are stated independent from the actual
experiment tasks, to enable future experimentators to reuse them with other experimental set-
ups. As argued above, some metrics take the experiment design into account, but they can be
replaced or omitted.

For the following discussion, I introduce the following variables:

• Palladio approach: Pal

• SPE-ED approach: SPE

• Set of approaches to be compared: A = {Pal, SPE}

• Set of systems to be analysed is the Media Store and the Web Server: S = {MS,WS}

• Set of variants to be analysed for each system s ∈ S: V s = {vs
1, v

s
2, v

s
3, v

s
4, v

s
5}

• Set of usage profiles to be analysed for each variant: UP = {UP1, UP2}

• Set of participants applying approach a ∈ A for system s ∈ S: Pa,s

• Arithmetic mean of a set of real values: avg

Table 3.2 on page 37 gives an overview of all derived questions and metrics. Altogether, 4
questions, one of them divided into 4 sub-questions, and 21 metrics will be used to analyse the
experiments results.

CHAPTER 3. RESEARCH METHOD 37

Question 1 What is the quality of the created performance prediction models?
Metric M1.1 Relative deviation of predicted mean response times of the participants and of

the reference model.
Metric M1.2 Passed K-S Test ratio of predicted response time distribution and reference
Metric M1.3 Percentage of correct design decisions.
Metric M1.4 Permutations in design decision rankings, recognising clusters.
Hypothesis 1 With both approaches, the created models are similar to the reference model.
Question 2 What are the reasons for the model’s quality?
Metric M2.1 Problems when creating the models and classification
Hypothesis 2 Some potential problems arise from a lack of understanding and tool diffi-

culty.
Question 2.1 Are the approaches comprehensible?
Metric M2.2 Number of times of rejection before acceptance level is reached.
Metric M2.3 Number of interpretation problems
Metric M2.4 Subjective evaluation of comprehensibility by the participants.
Metric M2.5 Subjective evaluation of distribution functions by participants.
Metric M2.6 Subjective evaluation of parametrisation by participants.
Question 2.2 Are the tools usable?
Metric M2.7 Subjective evaluation of the tool usability by participants.
Question 2.3 What are further reasons?
Metric M2.8 Analysis of explanations in questionnaire to find additional influences.
Question 3 What is the duration of predicting the performance?
Metric M3.1 Average duration of a prediction
Metric M3.2 Time needed to solve preparatory exercises
Metric M3.3 Subjective evaluation by participants on needed time and effort to learn the

approaches
Hypothesis 3 The duration for a Palladio prediction is 1.5 times higher as the duration for

an SPE prediction.
Question 4 What are the reasons for the duration?
Metric M4.1 Duration of the single steps
Metric M4.2 Breakdown of the duration to activities
Metric M4.3 Subjective evaluation by participants on reasons for the needed time
Hypothesis 4 The most time-consuming activity is the modelling.

Table 3.2: Summary GQM Questions and Metrics

38 CHAPTER 3. RESEARCH METHOD

1. What is the quality of the created performance prediction models?

Rationale A performance prediction is only successful if the created model of the system
under study reflects the performance properties of the system well.

As this thesis validated the applicability of the approaches (type II validation) and not the accu-
racy and precision of the predictions (type I validation, cf. section 1.2), it was not the question
whether the predicted response times were realistic, i.e. could be found for real implementa-
tions. To exclude the influence of type I aspects, the results were compared to a reference model
that had been carefully created including all given information, and not to measurements of an
implementation. As this reference model represented what is needed in the approach to yield
good predictions, it was tested whether a similar model can be created by the participants. Thus,
in the following, quality of of the models is defined to be the similarity to the reference model.
In doing so, I measured the applicability in terms of (1) how well the participants understand
the approaches, (2) how well they are able to realise their knowledge, and (3) how usable the
given tools are.

Still, the similarity to the reference model is not straightforward to measure. One option was
to compare the created model to the reference model based on a metric to compare models.
However, such a metric was again difficult to create. Is it structural similarity or rather similarity
of annotations that make models similar? Because this was unclear, I came back to the outcome
of a prediction and assessed a model the better, the closer the predictions are to the predictions
of reference model. Thus, the similarity important for performance predictions was taken into
account. Note that the participants were given all needed information on the system, and did
not have to estimate any performance annotations. If I had included estimations as a further
influence factor, problems with the applicability could not have been distinguished from mere
estimation mistakes, thus the outcome could not be traced back to the independent variable only.

Still, the goals that should be achieved with the prediction determine whether a performance
model is good, or rather whether it is good enough. For critical applications, either safety
critical or business critical, a more accurate prediction of the response time might be needed,
considering every detail that somewhat affects the performance. In other cases, for example
when deciding for a design alternative out of a set of possibilities, it might be important to get
the relation of the response times, but their exact values are of less interest. Thus, for assessing
the similarity of the models, not only the absolute predicted values were taken into account, but
also the ranking of design decisions.

However, changes in the models do not necessarily result from mistakes of the user. Participants
might choose to deliberately model the system differently than suggested in the task description,
e.g. to add annotation that seem realistic to them and that might even make the prediction more
realistic in their opinion. For example, participants might chose to add CPU demand to an
RDSEFF to reflect garbage collection or similar effects. Such changes needed to be identified
and handled individually. They were removed to be able to compare the model to the reference.

My hypothesis 1 was that with both approaches, the created models are similar to the reference
model. Participants should be able to create similar models after a intensive training. However,
no quantitative measure was given, as there are no known bases for it.

CHAPTER 3. RESEARCH METHOD 39

Overview of the metrics First, a performance model should deliver values that are similar
to the reference performance model when analysed. Here, the predicted response time was an
important performance metric. To assess for which approach the predicted response time was
closer to the predicted response time of the reference performance model, the relative deviation
between predicted and reference mean response times was the first metric M1.1.

For Palladio, the predicted response time was also given as a distribution function. To assess the
quality of the predicted distribution of the response time, metric M1.2 compared the predicted
distribution of response time with the corresponding distribution of the reference model.

As mentioned above, the absolute predicted response time is not always important for a perfor-
mance prediction. To assess different options when designing or changing a system, the relation
of the respective response times is of interest. Therefore, it was measured how many partici-
pants identified the best design option in respect of its response time by stating metric M1.3 as
the percentage of correct design decisions.

Next to identifying the best design options, all options were also ranked. To assess how well the
response time of different alternatives could be predicted, the ranking of design decisions done
by the participants was compared to the ranking of the response times of the reference solution
in metric M1.4.

The following enumeration summarises the metrics for question 1:

M1.1. Relative deviation of predicted mean response times of the participants and of the ref-
erence model

M1.2. Passed K-S Test ratio of predicted response time distribution and reference (Palladio
only)

M1.3. Percentage of correct design decisions

M1.4. Permutations in design decision rankings, recognising clusters

Detailed description of the metrics

Metric M1.1: Relative deviation of predicted mean response times of the partici-
pants and of the reference model. For metric M1.1, the absolute deviation was favoured
over the standard deviation, as it is superior for small sample sizes and if extreme values are
expected [Sac97, p.335].

I first measured the deviation from the mean response time predicted for the reference model
separately for each variant v ∈ V s of each system s ∈ S and each approach a ∈ A, calculat-
ing the deviation between the predicted response time for each participants and the reference
response time, and then averaging the deviation over all participants.

Let predMeanRespv,u,p be the mean response time that participant p ∈ Pa,s predicted for
system s ∈ S, variant v ∈ V s, and usage profile u ∈ UP and let refMeanRespv,u,a be the
mean response time that was predicted with the reference performance model for system s ∈ S,
variant v ∈ V s, and usage profile u ∈ UP . The absolute deviation between both values was
averaged:

40 CHAPTER 3. RESEARCH METHOD

absDevMeanRespv,u,a

= avg({|predMeanRespv,u,p − refMeanRespv,u,a| |s ∈ S, v ∈ V s, p ∈ Pa,s})

In order to compare the deviation for the different variants, the proportion of the deviation to
the reference response time was calculated:

propDevMeanRespv,u,a =
absDevMeanRespv,u,a

refMeanRespv,u,a

In doing so, the influence of the specific task on the deviation could be analysed. Additionally,
the metric was measured over all systems, variants, and usage profiles to directly compare the
approaches:

Metric M1.1:
propDevMeanRespa = avg({propDevMeanRespv,u,a |s ∈ S, v ∈ V s, u ∈ UP })

Metric M1.2 Passed K-S Test ratio of predicted response time distribution and
reference (Palladio only) The Palladio approach also takes into account, that the response
time of a system is a distribution function. Not all calls to the system have the same response
time, due to various reasons (e.g. changing parameters, speed of the underlying hardware,
contention effects etc, cf. section 2.2.1). To assess the quality of the predicted distribution of
the response time, metric M1.2 compared the predicted distribution of the response time with
the corresponding distribution of the reference model. This metric could only be measured for
the Palladio results.

The result of a Palladio prediction by simulation is not a continuous distribution function, but
a set of many drawn samples. To compare the predicted distributions, statistical tests to assess
whether they resulted from the same underlying distribution can be used. The hypothesis to
be tested was whether the two predicted distributions (by the participants and the reference)
resulted from the same underlying distribution function. Several methods exist to compare
distributions, each having advantages and limitations. The Kolmogorov-Smirnov (K-S) test
does not depend on testing against a specific underlying distribution function like the normal
distribution, but may be applied to all kinds of distribution functions. The null hypothesis is that
two sample distributions result from the same underlying distribution function. A calculation
can be done with the R tool [Dal03] as described in [MTW03].

Another approach often used is the χ2 goodness of fit test [Pea00]. It tests whether two sample
distributions are independent of each other, i.e. the null hypothesis is the opposite of the null
hypothesis of the K-S test, which must be considered when interpreting the results. However,
its R implementation is computationally complex and in my tests it took several seconds for
the comparison of two samples having 2500 values each. Additionally, out-of-memory errors
occurred for larger samples. As Palladio prediction results contained even more data for the
experimental task, the χ2 test was not used.

CHAPTER 3. RESEARCH METHOD 41

Applying the K-S test results into a test value and a p-value. The p-value is the probability of the
null hypothesis being true. If the p-value is lower than a significance level, the null hypothesis
is rejected. Here, I used a significance level of p = 0.05, i.e. I rejected the null hypothesis if the
probability of the null hypothesis being true is less than 5%.

The K-S test was applied to compare each predicted distribution to the respective sample distri-
bution. Let dfp,v,u be the distribution that participant p ∈ PPal,s predicted for variant v ∈ V s and
usage profile u ∈ UP and let refdfv,u be the distribution that was predicted with the reference
model. The null hypothesis was that dfp,v,u and refdfv,u resulted from the same underlying dis-
tribution function. I rejected this null hypothesis if the p-value of the K-S test was smaller than
0.05. Thus, a distribution passed the test if the p-value was greater than 0.05 or equal. Now, it
could be analysed how many of these distribution functions passed the test:

PassRatiov,u,Pal =
|{dfp,v,u |dfp,v,u passes the test, p ∈ PPal,s}|

|{dfp,v,u |p ∈ PPal,s}|

Additionally, it was analysed how many distribution functions passed the test overall by calcu-
lating the ratio over all variants v ∈ V s, systems s ∈ S and usage profiles u ∈ UP .

Metric M1.2:

PassRatioPal =
|{dfp,v,u |dfp,v,u passes the test, s ∈ S, v ∈ V s, u ∈ UP, p ∈ PPal,s}|

|{dfp,v,u |s ∈ S, v ∈ V s, u ∈ UP, p ∈ PPal,s}|

Metric M1.3 Percentage of correct design decisions Metric M1.3 was the percentage
of correctly identified best design decision, and was defined as follows. Let DDs,u,a be the set
of design decisions of the participants for a system s ∈ S, a usage profile u ∈ UP and the
approach a ∈ A. Then, the percentage of correct design decisions was:

percs,u,a =
|{d |d ∈ DDs,u,a, d is correct}|

|DDs,u,a|

For all systems and usage profiles, I obtained:

Metric M1.3: perca =

∣∣∣{d ∣∣∣d ∈ ⋃s∈S,u∈UP DDs,u,a, d is correct
}∣∣∣∣∣∣⋃s∈S,u∈UP DDs,u,a

∣∣∣
Metric M1.4 Permutations in design decision rankings, recognising clusters For
metric M1.4, which measured the permutation of the rankings, it was taken into account that
there might be options that were very similar in respect to response time, and others that differed
greatly. Thus, the permutations in design decision ranking was looked at, recognising clusters
of similar response times (metric M1.4). This metric was measured separately for each system
under study.

42 CHAPTER 3. RESEARCH METHOD

Counting the number of correct ranks was not enough. There is a difference between the quality
with a permutation of two neighbouring ranks and the permutation of the first and last rank.
Thus, the difference between the right rank and the actual rank must be taken into consideration.

Here, a metric proposed in [FKB+05] was used with slight changes. A ranking of the predicted
response times of the reference performance model for each system s ∈ S, usage profile u ∈
UP and approach a ∈ A was captured in the mapping

PosReferences,u,a : V s → 1, ..., |V s|

with PosReferences,u,a(variantB) < PosReferences,u,a(variantC), if the mean response
time of variant B was smaller than the response time of variant C. The ranking of each partici-
pant p ∈ Pa,s was captured in a similar mapping PosPredu,p. To recognise similar variants in
respect to their response time, the variants were clustered.The mapping

classs,u,a : 1, ..., |V s| → 1, ..., |classes|

is monotonically increasing and maps each position of the ranking of the reference performance
model to the class of the associated variant. Thus, the permutation can be defined as

permu,p(variant) = |class(PosPredu,p(variant))− class(PosReferences,u,a(variant))|

For each participants’ predicted ranking, I obtained a permutation score of

perms,u,p =
∑
v∈V s

permu,p(v)

To make this metric clear, I give two examples, leaving the indices away: Let us assume the
reference ranking of the alternatives A1 to A4 is A1, A2, A3, A4 in that order. A3 and A4
have very similar response times and form a cluster. Assume a ranking r1 to be A4, A2, A1,
A3. Now I have class(rref (A4)) = 3 and class(r1(A4)) = 1, a difference of 2 = perm(A4).
Overall, r1 has an permutation of perm = 2 + 0 + 2 + 0 = 4.

Thus, the permutations of a whole ranking can be given as the sum perms,u,p. However, what
does a permutation of 8 mean? Of course, this depends on the number of possible permutations.
If the ranking has 4 ranks, 8 is the maximum permutation (as defined above) that can be reached.
However, if the ranking has 100 ranks, 8 is a low permutation that might have come out of the
interchange of rank 52 and 60, for example, when all other ranks are correct.

To be able to compare two systems for which a different amount of classes have been defined,
I needed a metric that was independent of the actual numbers of ranks and classes, i.e. nor-
malised. The normalisation could be done by dividing by the maximum permutation for the
given number of classes and ranks. Let i be a fictitious participant who ranked the inverse of the
correct ranking. Then, the maximum permutation can be determined by calculating perms,u,i.
Now, the proportion of permutations was given with:

CHAPTER 3. RESEARCH METHOD 43

propPerms,u,p =
perms,u,p

perms,u,i

This proportion was averaged over all participants using one approach and all usage profiles to
get a metric for the comparison of the approaches:

Metric M1.4: propPerma = avg({propPerms,u,p |s ∈ S, p ∈ Pa,s, u ∈ UP |})

2. What are the reasons for the model’s quality?

Rationale The previous questions asked for the prediction accuracy compared to a reference
model for each of the approaches. To be able to draw conclusions from the measured quality
metrics, I needed to ask for the reasons. This enabled the distinction of certain aspects of the
applicability of the approaches.

Several factors might influence the quality of a prediction. First of all, the participants needed
to understand the approaches and their various concepts. Additionally, the tools must be usable
and support an easy creation and maintenance of the models. Problems in both areas could lead
to modelling errors and therefore to erroneous predictions. Next to modelling problems, errors
in interpretation might lead to false conclusions. This depended on the results the approach
gave as well as on visualisation of results in the tool.

There may as well be factors that were not foreseen in the design of this GQM plan. To nonethe-
less be able to capture such factors, qualitative questions were asked.

Accordingly, my hypothesis 2 was that potential problems arise from a lack of understanding
and tool difficulties.

To further structure this question, sub-questions were introduced for each of the influencing
factors asking for comprehensibility, tool support, and possible other reasons:

Question 2.1. Are the approaches comprehensible?

Question 2.2. Are the tools usable?

Question 2.3. What are further reasons?

Before these sub-questions are elaborated in detail, a base metric is defined.

Overview of the metrics A base for most metrics of this question was the number of prob-
lems and errors in specific aspects when creating the models. Thus, this metric was measured
first to be usable in all following metrics. Not only errors were interesting. Because (1) the
participants had the possibility to ask questions during the experiment and (2) their results were
tested before being accepted, some problems might be caught before resulting in an error in the
final model. Thus, not only actual errors, but also documented problems during the experiment
were considered in this metric.

M2.1. Problems when creating the models and classification

44 CHAPTER 3. RESEARCH METHOD

Problem area

Problem severity

Problem occurence

M
e

th
o

d
-

o
lo

g
y

T
o

o
l

T
a

s
k

Question

Acceptance

test

Final

models

minor
interm.

major

Figure 3.2: Metric M2.1: Problem dimensions

Detailed description of metric M2.1 Problems when creating the models and clas-
sification Problems might have resulted from several aspects: A participant could have a
problem with the approach itself (i.e. comprehension), a problem with the implementation of
the tool or a problem with the task of the experiment. Again, it could not be foreseen whether
there were other problem areas. An additional class of error sources could be tight time con-
straints or lacking motivation. However, this class of errors could not be readily distinguished
from the others. The experimental set-up needed to ensure that the participants were not stressed
and properly motivated. Excluding the error sources motivation and stress, the other kinds of
errors could be distinguished by analysing a specific error.

Not all errors and problems led to a decreasing quality, hence only performance-critical prob-
lems were looked at. Problems could have different severities. Three examples were presented
in the following. A major problem would be not knowing how to use loops, although the task
required it. An intermediate problem would be omitting a value that influences the performance,
but not crucially. A minor problem would be to forget a single small step, that overall did not or
only barely influenced the performance. The classification of the severity of errors was arbitrary
and did not found on fix criteria. Still, with an equal classification, both approaches could be
assessed.

A third dimension of problems was when they occur. Participants were allowed to ask questions
during the conduction of the experiment, for example because they did not know how to model
a specific aspect or because something was unclear. These questions could range from minor
to major problems. Additionally, errors could be detected in the acceptance test and led to
the rejection of a model. Here, minor problems were probably not found. Furthermore, errors
could be found in the resulting model. Again, minor problems were probably not detected, as
the models were not analysed down to the last detail. Finally, errors might have arisen in the
interpretation of the results of the model analysis. Here, errors that led to a permutation of
the ranking across clusters could be considered a major error, whereas permutations within a
cluster could be considered a minor error. Even though all these occurrences were included in
the metric, they should still be differentiated to possibly allow further conclusions.

Using these three dimensions problem area, severity, and occurrence, which are also depicted in
figure 3.2, metric M2.1 collected all problems (and errors) and assigned them to the respective

CHAPTER 3. RESEARCH METHOD 45

classes mentioned above. Relative values were used, not absolute. A larger group of participants
for one approach or a smaller number of finished models are an advantage for the respective
approach, as less errors are likely. Thus, the number of modelling errors needed to be averaged
over the actual models created.

2.1 Are the approaches comprehensible?

Overview of the metrics To assess how well the participants understood the approaches,
several metrics were measured.

First, the number of problems related to comprehension could be derived from metric M2.1.
To complement it, the next two metrics measured the understanding quantitatively for both
approaches, by measuring the number of acceptance tests needed (metric M2.2) and the number
of errors in interpreting the results of the performance predictions (metric M2.3). Metric M2.4
was a qualitative questioning of the participants on the understandability of the approaches.

With the next metrics, details of the Palladio approach should be analysed to directly help
assessing the applicability of the approach by evaluating its specific properties. In particular, the
participants needed to specify the parameters and their distributions. For both aspects, metric
M2.1 provided the quantitative amount of problems. Furthermore, the qualitative evaluation
of comprehensibility by the participants was captured in metric M2.5 for the distributions and
M2.6 for the parametrisation.

The following enumeration summarises the metrics for question 2.1:

M2.2. Number of times of rejection before acceptance level is reached.

M2.3. Number of interpretation problems

M2.4. Subjective evaluation of comprehensibility by the participants

M2.5. Subjective evaluation of distribution functions by participants

M2.6. Subjective evaluation of parametrisation by participants

Detailed description of the metrics Problems during modelling make problems with
the comprehensibility visible. However, not all errors during modelling were related to the
comprehension of the approach. It was distinguished in metric M2.1 whether a problem resulted
from a lack of understanding of the approach or of the task, or from tools flaws or other reasons.
The number of problems related to comprehension were used to answer question 2.1.

Metric M2.2 Number of times of rejection before acceptance level is reached
To complement metric M2.1, the number of acceptance tests before the acceptance level was
reached was also measured with metric M2.2. This could give further insight on how hard it
was for the participants to correct errors and find additional ones. Again, the metric was av-
eraged over the number of created models. Let Acc#p be the number of acceptance tests that

46 CHAPTER 3. RESEARCH METHOD

participant p ∈ Pa,s needed until his solution was accepted. With this definition, the minimum
value for Acc#p was 1. Thus, the average number of rejections could be defined as

Metric M2.2: Rej#a = avg{Acc#p − 1 |s ∈ S, p ∈ Pa,s}

Metric M2.3 Number of interpretation problems The best model was useless if the
participants did not understand how to interpret the results the tool generated from it. Thus,
the number of errors in interpreting results was measured in metric M2.3. An interpretation
error occurred if a participants created the model, got the results that allow a correct ranking
and ranked the alternatives differently. Each permutation in the ranking was counted as an
interpretation error. The metric could be measured like metric M1.4, but only recognising
permutations that were caused by interpretation errors. Thus, I redefined

perm′u,p(variant) =

{
permu,p(variant), if there is an interpretation error
else 0

and built up the rest of the metric equivalently to metric M1.4, except that I replaced
permu,p(variant) with perm′u,p(variant). I got

Metric M2.3: propIntErra = avg(
{
propPerm′s,u,p |s ∈ S, p ∈ Pa,s, u ∈ UP |

}
)

Metric M2.4 Subjective evaluation of comprehensibility by the participants Ad-
ditionally to the quantitative metrics, the participants were directly asked for their assessment
of the comprehensibility of the approaches. This helped interpreting the outcome of the above
metrics. Thus, metric M2.4 was a subjective evaluation of comprehensibility by the partici-
pants. The actual realisation could be found in the questionnaire in appendix B.4.3. I asked
for the comprehensibility of the procedure model (questions 5 and 18) and, for Palladio, the
meta model (question 6). Additionally, I asked to grade the comprehensibility of the different
concepts of the approaches on a scale from ++ (or 2, i.e. very good) to - - (or -2, i.e. very bad),
with the intermediate steps of +, o, - (questions 7 and 19). For Palladio, I also asked whether
the division into several roles helps to understand the approach (question 8). Finally, I asked
the participants which approach was easier to understand (question 30).

Metric M2.5 Subjective evaluation of distribution functions by participants Two
of the main characteristics of the Palladio approach in comparison to other performance pre-
diction approaches are the parametrisation and the usage of distribution functions (see also
section 2.2.1). As they are important characteristics of the approach, their influence on the
comprehensibility was evaluated separately to find out whether the introduction of these con-
cept complicated the approach, did not affect the comprehensibility of the approach or actually
eased the approach.

To assess whether the participants could handle the concept of distribution functions, the num-
ber of errors in their specification of the functions was looked at, which were collected in metric
M2.1. Additionally, qualitative questions were asked on the participants’ opinion on the com-
prehensibility of the specification of distribution functions in metric M2.5. The precise phrasing

CHAPTER 3. RESEARCH METHOD 47

of the questions can also be found in the questionnaire in appendix B.4.3. I asked for the un-
derstandability of the resulting distributions for the interpretation of the results (question 22)
and whether the analysis of the resulting distribution is a better foundation for design decisions
(question 23).

Metric M2.6 Subjective evaluation of parametrisation by participants The other
main concept of Palladio is the parametrisation of the models. Here, the number of errors in
specifying parametrisations can be extracted from metric M2.1. Finally, qualitative questions on
the parametrisation were asked to evaluate the participants’ opinion (metric M2.6), which can
also be found in in the questionnaire in appendix B.4.3. I asked the participants to evaluate the
parametrisation and name advantages and disadvantages (question 9). Additionally, they were
asked to estimate the impact of parametrisation for larger and more complex systems (question
10). They were also asked whether the parametrisation eased or hindered the specification of
complex branch probabilities, as needed for the bit rate conversion design option of the Media
Store system and the initial system of the Web Server (question 12). In these cases, the
branch probabilities depended on several parameters and not just one. Additionally, one way of
modelling the initial Web Server system involved the calculation of the needed probabilities
using the special Bayes’ formula (for details, see [Sac97, p.78]). See section 4.2.2 for more
details on these options. Finally, I asked whether potential problems with the parametrisation
were due to the concept itself or rather due to the specific concrete presentation in the tool
(question 16).

2.2 Are the tools usable? Next to the actual comprehension of the approaches, the usabil-
ity of the tools might influence the quality of prediction. The following metrics measure the
potential problems with the tool.

Overview of the metrics For the usability of the tools, I looked at the number of problems
and the actual types of problems measured with metric M2.1. Additionally, the qualitative
evaluation of the usability of the tools by the participants is captured.

The following enumeration summarises the new metrics for question 2.2:

M2.7. Subjective evaluation of the tool usability by participants

Detailed description of the metrics As mentioned for sub-question 2.1, errors in mod-
elling might result from comprehension problems as well as from problems with the usage of
the tools. The first area was captured in the previous metrics. Here, the latter influence was
measured analogously.

First, the number of questions regarding tool problems as captured during the experiment ses-
sions could be derived from metric M2.1. Typical problems were searched for in the actual
recorded questions.

48 CHAPTER 3. RESEARCH METHOD

Metric M2.7 Subjective evaluation of the tool usability by participants Finally, a
subjective evaluation of the tool usability by participants collected the subjective problems with
the tool in metric M2.7. The precise phrasing of the qualitative questions can be found in in
the questionnaire in appendix B.4.3. I asked whether the tools are suitable for a performance
prediction and what advantages and disadvantages the participants see (questions 14 and 20).
Additionally, I asked for a direct comparison of the tools (question 32). For Palladio, I added
a question asking whether it would be helpful to add a textual concrete syntax, e.g. a kind
of pseudo code for the SEFFs, for some model parts and if yes, which model parts should be
changed (question 15).

2.3 What are further reasons? There might be other reasons not foreseen when designing
this GQM plan but still affecting the quality of the predictions. To find out further issues, the par-
ticipants were asked for an explanation in almost all questions on the questionnaire in appendix
B.4.3. In analysing the answers, more reasons might be detected. Additionally, I asked for
suggestions how to improve both the approaches and the tools (questions 17 and 21), whether
the participants had more trust in the predictions of one approach, if yes, which approach and
why (question 29), and which approach the participants preferred and why (question 31).

The resulting metric M2.8 was a highly vague metric, but it might still lead to valuable results
by revealing reasons that otherwise would remain undetected. Thus, it was incorporated in the
GQM plan.

M2.8. Analysis of explanations in questionnaire to find additional influences.

3. What is the duration of predicting the performance?

Rationale Another factor influencing the applicability of a performance prediction approach
was the time needed for a prediction. This factor is clearly second to the quality of the pre-
diction: A poor prediction that can be done in a very short time still has no value to the user.
However, a good prediction that needs a very long time to be accomplished may prove infeasible
in practice and thus be not applicable.

A higher effort was expected for Palladio, as further effort is put into the models to make them
reusable and parametrisable, whereas SPE models are created for a single project. Additionally,
the specification of more precise distribution functions instead of mean values might lead to
additional effort.

Thus, my hypothesis 3 was that the duration for a Palladio prediction is 1.5 times higher as
the duration for an SPE prediction. I based this hypothesis on experience from the field of
code reuse cost models, where a median relative cost of writing for reuse of 1.5 with a stan-
dard deviation of 0.24 over several studies was detected by [Pou96, p.29] in a meta-study. This
quantitative hypothesis was statistically tested for using Welch’s t-test [Wel47], which is suit-
able to compare two distributions that have different variances, and which is available in the R
tool [Dal03]. As a significance level, I chose 5%, which is a common value [Sac97, p.198].
However, Welch’s t-test assumes that the samples result from a normal distribution, which was
unknown here.

CHAPTER 3. RESEARCH METHOD 49

Overview of the metrics The duration of making a performance prediction included read-
ing the specification (ra), modelling the control flow (cf), adding resource demands (rd), mod-
elling the resource environment (re), modelling the usage profile (up), searching for errors (err)
and analysing (ana) for all variants and usage profiles of the system under study. To answer
the question for the experiment session, metric M3.1 measured the average duration over all
participants.

Additional effort for applying the approaches was the training effort, which was measured in
metric M3.2. Finally, the participants were asked for a qualitative evaluation of the needed time
in metric M3.3.

The following enumeration summarises the metrics for question 3:

M3.1. Average duration of a prediction

M3.2. Time needed to solve preparatory exercises

M3.3. Subjective evaluation by participants on needed time and effort to learn the approaches

Detailed description of the metrics

Metric M3.1 Average duration of a prediction For each participant p ∈ Pa,s, the dura-
tion dp of making a performance prediction was measured. The duration included the activities
mentioned above. The duration was averaged over all participants.

Metric M3.1: da = avg({dp |p ∈ Pa,s})

Metric M3.2 Time needed to solve preparatory exercises Next to the time actually
needed in the experiment sessions, the time needed to solve the preparatory exercises could be
used to compare the time needed for the two techniques (metric M3.2). Whereas time con-
straints were used in the experiment and might distort the results, the time needed to solve the
preparatory exercise was free from this influence. However, the time was measured by the par-
ticipants and thus could not be verified. Additionally, the time might include time to actually
learn the approaches, e.g. by reading documentation.

Let E be the set of preparatory exercises and let pdp,e be the duration of participant p ∈ Pa,s

solving preparatory exercise e ∈ E.

Metric M3.2: pda = avg({pdp,e |p ∈ Pa,s, e ∈ E })

Metric M3.3 Subjective evaluation by participants on needed time and effort to
learn the approaches The duration to solve the preparatory exercises might not contain
the whole effort to learn the approaches. Still, a comparison could be done by asking the
participants for their subjective estimation which approach needed more time to learn it. This
question was added to the the questionnaire in appendix B.4.3 (question 24) and formed metric
M3.3.

50 CHAPTER 3. RESEARCH METHOD

4. What are the reasons for the duration?

Rationale To further analyse the time needed for a prediction, the factors influencing the time
needed were looked at. It was measured how much time was needed for the single activities of
the tasks.

It was expected that the modelling was the most laborious part of both approaches. If other
parts, e.g. the searching for errors, were more time-consuming, then the applicability of the
approaches has to be doubted.

Thus, my hypothesis 4 was that the most time-consuming activity is the modelling.

Overview of the metrics First, the duration of the single chronological steps of the exper-
iment exercise were measured in metric M4.1. Metric M4.2 broke down the overall duration
into the duration of the different activities of a performance prediction as introduced above.

Finally, I asked the participants several subjective questions on the reasons for the needed time
in metric M4.3.

The following enumeration summarises the metrics for question 4:

M4.1. Duration of the single steps

M4.2. Breakdown of the duration to activities

M4.3. Subjective evaluation by participants on reasons for the needed time

Detailed description of the metrics

Metric M4.1 Duration of the single steps To measure the time needed for the single
steps of the tasks, time stamps were introduced. The participants were asked to note when they
started and finished parts of the task. A part of the task was doing an activity act ∈ Act =
{ra, cf, rd, re, up, err, ana} for a variant of a system v ∈ V s, s ∈ S. The duration dactv,u,p,act

measured the time needed by participant p ∈ Pa,s to do activity act ∈ Act for variant v ∈ V s

and usage profile u ∈ UP . The average was calculated over all participants:

Metric M4.1: dactv,u,a,act = avg({dactv,u,p,act |s ∈ S, p ∈ Pa,s|})

The questionnaire this metric was collected with can be found in the appendix B.3.

Metric M4.2 Breakdown of the duration to activities To combine how much time was
needed in average for the single activities a ∈ Act that needed to be done over all variants of the
systems, metric M4.2 averaged the time for each activity over the variants and usage profiles.
With this metric, conclusions could be drawn which aspects needs to be improved to improve
the needed time:

Metric M4.2: dacta,act = avg({dactv,u,a,act |s ∈ S, v ∈ V s|})

CHAPTER 3. RESEARCH METHOD 51

Metric M4.3 Subjective evaluation by participants on reasons for the needed time
Finally, I added questions on the reasons for the needed time to the qualitative questionnaire
(cf. appendix B.4.3). First, I asked which approach was more time-consuming to apply and
why (question 25). To assess the influence of the used tool, I asked which tool was faster to use
(question 27).

For Palladio, I asked whether the parametrisation eased the specification of the SEFFs or
whether it was an additional effort (question 11). Additionally, I asked how the participants
estimated the effort if the Palladio roles were actually assigned to several people (question 26).

Furthermore, I asked the participants to assess the automated transformations available in Pal-
ladio, as used the broker lookup alternative (cf. section 4.2.2). Here, the effect on the needed
time was an issue, however, the participants were asked a more general question to allow further
insight in their opinion.

4 Design and Conduction of the
Experiment

The study was conducted as a controlled experiment, to investigate the applicability of Palladio
and SPE with participants who are not the developers of the approaches. In an experiment, it
is desirable to trace back the observations to changes of one or more independent variables.
Therefore, all other variables influencing the results need to be controlled. Here, the indepen-
dent variable was the approach used to make the predictions. Observed dependent variables
were the created models, assessed using several metrics, and the duration of making a predic-
tion.

This chapter describes the experimental set-up, as well as the required preparations. In sec-
tion 4.1, I describe the participants and their training. In section 4.2, I describe the actual
experiment. Finally, I discuss the validity of the experiment in section 4.3.

4.1 Participants

When designing an experiment, the participants are the first to consider. In this experiment, the
students of the course ”Ingenieurmäßige Software-Entwicklung” (Engineering Software Devel-
opment) at the University of Karlsruhe in summer term 2007 were asked to take part. Thus,
the participants of the experiment were students of 3rd and 4th year. All were male computer
science students, with the result that I can use the male third person pronoun for the participants
in this thesis without discriminating against any women.

To further assess the participant’s abilities for this experiment, a questionnaire was issued. The
questionnaire asked for programming experience as well as software design experience as an
indicator for software engineering skills. Lutz Prechelt even stated that his experiments showed
that experience (except for a certain training with the techniques) has no correlation with the
performance in the experiment, and that the individual mental abilities (for example measured
by SAT scores) have a far better correlation. [Lutz Prechelt, during a review session for this
experiment design, 02/22/07, Schloss Dagstuhl]. As a SAT score or an equivalent measure
were not available, I asked for a self assessment of programming skills, which was an acceptable
alternative according to Prechelt (ibid.).

The results of the questionnaire, characterizing the participants, can be seen in the figures 4.1(a)
to 4.2(a). In figure 4.1(a), the self-assessment of the programming skill is shown. The partici-
pants were asked to classify themselves belonging to the top 5% (95-100), the next 15% (80-95),
the next 30% (50-80) and the lower half (0-50) based on their programming skill. The partic-
ular scale was suggested by Prechelt (ibid.). As shown in the figure, no participants classified

53

54 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

0−50 50−80 80−95

Skill groups

F
re

qu
en

cy

0
2

4
6

8
10

(a) Self-assessed programming skills

Number of semesters
F

re
qu

en
cy

5 10 15 20

0
2

4
6

8

(b) Number of semesters

Figure 4.1: Self-assessed programming skills and number of semesters of the participants

themselves as being in the top group. Most participants assessed themselves as being in the
lower upper half. All participants had completed at least 5 semesters of study, thus they were
advanced students. The number of semesters is also depicted in figure 4.1(b).

Most participants had several years of programming experience (cf. figure 4.2(a)). 4 partici-
pants stated that they had little programming practice, 8 that they had intermediate program-
ming practice and 6 that they had much programming practise. Most participants had already
designed several systems with less than 5000 lines of code, 7 of them named 10 or more, and
half of the participants designed one or more systems with more than 5000 lines of code. Fur-
thermore, less than half of the participants stated that they had some experience in performance
analysis (cf. figure 4.2(b)). For this assessment, the questionnaire suggested that ”little” means
having analysed small systems of less than 1000 lines of code, that ”intermediate” means hav-
ing analysed medium-sized systems of less than 5000 lines of code, and ”much” means having
analysed larger systems with 5000 lines of code or more, or even a job in this field.

Furthermore, all except three participants took the software engineering course, thus being fa-
miliar with UML notations. Only one participant did not visit a software engineering related
lecture before, but he stated to have much programming experience. The others visited other
software engineering related courses and probably were familiar with the notation. Figure 4.3
shows how many participants visited the software engineering related courses at the University
of Karlsruhe.

Most participants had no or little experience with performance analysis (cf. figure 4.2(a)). One
participant stated to have medium experience with performance analysis, one stated to have
much experience with performance analysis, but profiling and tuning only. Thus, a prepara-
tion of all participants was required. This also led to a similar standard of knowledge of all
participants, which is advantageous for the significance of the results [Pre01, p.112].

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 55

Programming experience (in years)

F
re

qu
en

cy

0 5 10 15

0
1

2
3

4

(a) Programming experience

none little intermediate much

Performance analysis experience

F
re

qu
en

cy

0
2

4
6

8
10

(b) Experience with performance analysis

Figure 4.2: Programming experience and experience with performance analysis of the partici-
pants

Software.Engineering

Software.Architecture

Multicore.Computers.and.Computer.Clusters

Software.Engineering.Lab

Multicore.Lab

Empirical.Software.Engineering

Software.Quality.Assurance

Component.based.Software.Development

Modern.Development.Environments.Example.NET

eXtreme.Programming.Lab

Number of participants

0 5 10 15

Figure 4.3: Visited courses

56 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

All things considered, the participants all had a base competence. In most cases, their com-
petence could be compared to a competence of a professional whose main interest is not in
performance analysis.

A common objection to experiments in software engineering involving student participants is
that the results cannot be transferred to ”real” software development. According to [Pre01],
this objection may be true, but in most cases is exaggerated. He argues that (1) the difference
between advanced students and professionals is not very great and that (2) this difference is not
relevant, because not the absolute achievements of the participants is measured in an experi-
ment, but the change of the achievement when changing the experimental variables. However,
this is only applicable if the working method of less competent participant is not different to
that of a competent participant. To ensure the working methods do not differ, the task must not
be to complex and the participants must not be too inexperienced with software engineering in
general or the specific kind of exercise, as the task would otherwise ask too much of them.

In addition, experience in software development is often over-estimated: In this study, the ex-
perience within a specific application domain was irrelevant. Besides, students have a similar
individual background. Hence, outliers due to individual performance are less likely.

Considering all afore-mentioned aspects, the results of this experiment are transferable to the
same situation involving professional software engineers, if not professional performance ana-
lysts.

However, in [Pre01], Prechelt states that the competence is not the most important factor for
the qualification of participants for an experiment. The more important aspect is that the way
of solving of the experimental task is realistic and the same for all participants and in reality.
Therefore, participants must be trained with the techniques under study and have basic software
engineering skills. Very inexperienced students who have no software engineering knowledge
will likely have a different way of solving tasks than more experienced students, this is why
beginners are not suited for an experiment. Several experiments, in which well-trained students
performed better than both professionals and less qualified students, show that this aspect is
even more important than competence [Pre01, p.95]. The way of solving the task can also
change if the task is to complex, too particular, or too time-consuming [Pre01, p.111].

The motivation or missing motivation of the participants can be a further problem for an ex-
periment. Here, the strongest threat is differences in the motivation of different groups [Pre01,
p.115]. It is dangerous if the participants know what is tested, because they might be more moti-
vated if they apply the new technology or a technology the experimentators are biased towards.
Here, the experimentators have to ensure that they do not present the technologies in a biased
way.

To ensure that the participants took their tasks seriously, the participation in the preparation
was compulsory. For each preparatory exercise, the participants needed to achieve 60% of the
potential points, and were only allowed to fail a single exercise.

For the experiment, the award was similar. However, the participants should not be under too
much pressure in the experiment. Thus, only a base quality of the models was graded and not
the final results, with interpretation and conclusions. If the final models were of a sufficient
quality, full marks were awarded. Additionally, models that were not finished were not graded.
In doing so, the time needed and potential tool flaws did not affect the grading. Overall, the

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 57

achieved points in both preparatory exercises and experiment made up 2/3 of the course grade,
if a grading was requested by the student.

Additionally, the results in the preparatory exercises can be used to assess the competence of
the participants [Lutz Prechelt, during a review session for this experiment design, 02/22/07,
Schloss Dagstuhl], if the motivation to solve the preparatory exercises is similar to the motiva-
tion in the experiment.

4.1.1 Preparation

The participants had to train the approach beforehand, as untrained participants would have to
use a main part of the time in the experiment session to learn the approaches, thus leaving no
time to actually work on the task. Additionally, problems with understanding the approaches
can be discussed beforehand. To ensure that the participants are familiar with the approaches,
training session were established.

The participants in the experiment were trained in applying SPE and Palladio during the course
covering both theory and practical labs. For the theory part, there was a total of ten lectures,
each of them took 1.5h. The first lecture introduced the course and its organisation. The second
lecture was dedicated to foundations of performance prediction and CBSE, the third introduced
the two tools. Then, two lectures introduced SPE followed by five lectures on Palladio. The
three additional lectures on Palladio in comparison to SPE were due to its more complex meta-
model which allows reusable prediction models. Note, that this also shows that reusable models
require more training effort. In parallel to the lectures, eight practical labs took place, again,
each taking 1.5h. During these sessions, solutions to the accompanying ten exercises were pre-
sented and discussed. Five of these exercises practised the SPE approach and five the Palladio
approach. The exercises can be found in appendix A.5.

The exercises had to be solved by the participants between the practical labs. I assigned pairs of
students to each exercise and shuffled the pairs frequently in order to get different combinations
of students working together and exchanging their knowledge. Each exercise took the students
4.75h in average to complete.

Competence tests during the preparation phase ensured a certain level of familiarity with the
tools and concepts. Firstly, the results of preparatory exercises were examined. Additionally,
four short test were conducted in the lectures. Participants who failed two preparatory exercises
or a short test could not take part in the experiment.

The teaching process ended with a questions and answers session where the students could ask
final questions.

The preparation did not only train the participants, but tested their abilities as well as the for-
mulation of the task and thus fulfilled the role of a pretest [Pre01]. With a pretest, the learning
effects during the experiment is minimized, as the participants learn during the pretest. Learning
effects during the experiment itself may invalidate the results of the experiment. Additionally,
the pretest could be used to assess the participant’s abilities and balance the two groups (each

58 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

applying one approach) so that the ability of the groups were about the same. In this experi-
ment, the two experiment groups were set up based on the participant’s results in the pretest, so
that each group had stronger and weaker participants.

4.1.2 Preparatory Exercises

The preparatory exercises can be found in the appendix. The first exercise trained basic concepts
of component-based software engineering. Exercise 2 trained the fundamental usage of the tools
for both approaches (2a SPE, 2b Palladio). The participants had to install the tools and create
a simple project following detailed instructions. After that, the exercises 3, 4, 5, and 8 trained
SPE and the exercises 5, 6, 7, and 8 trained Palladio.

Exercise 3 trained a simple performance analysis for SPE. Use cases and sequence diagrams
were given and the execution graph had to be extracted from this information. The overhead
matrix was given in the task description, as well as performance annotations for the single steps
of the control flow. The participants were asked to analyse the system for a single user scenario.
Exercise 4 trained a more complex example. Here, the participants needed to calculate some
performance annotations from given information and create the overhead matrix themselves
based on given information. Additionally, the system was a distributed system. A multiuser
analysis, using both the analytical approach and simulation, was required from the participants.
Exercise 5b included the correction of exercise 4 and an analysis how much more users can use
the system without increasing the response time by more than 10% and how much users the
system can handle overall.

Additionally, exercise 5a trained the creation of a Palladio component repository with the same
example system as given in exercise 3 and some additional information on interfaces and signa-
tures. In exercise 6, the participants were asked to add RDSEFFs to the components of exercise
5. The control flow was given as a sequence diagram, additionally performance annotations and
information on the resource environment were given. Finally, the participants were asked to
simulate the system and interpret the resulting histogram.

Exercise 7 trained the specification of parameters, stochastic expressions, and distributions in
Palladio. Participants again used their solution for exercise 6. Again, the participants were
asked to simulate the system and describe the differences towards the analysis of exercise 6.

Exercise 8 included again both an SPE (8a) and a Palladio (8b) task. A component-based
groupware system was to be analysed with both approaches, thus revising the concepts of both
approaches. Two design options were analysed by the participants, who then had to choose
the best option in terms of lowest response time for the given usage profile. For SPE, global
parameters were introduced in this exercise, as were local parameters for Palladio.

4.1.3 Results of the Preparation

Two students were excluded from the experiment because they failed a short test or two prepara-
tory exercises. The other 19 participants achieved between 133 and 161 out of 171 points in the
preparatory exercises. The distribution is shown in figure 4.4.

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 59

Achieved points in preparatory exercises

F
re

qu
en

cy

130 135 140 145 150 155 160 165

0
2

4
6

8

Figure 4.4: Achieved points in preparatory exercises

I balanced the grouping of the participants based on the results in the preparatory exercises:
I divided the better half randomly into the two groups, as well as the less successful half, to
ensure that the groups were equally well skilled for the tasks. I chose not to use a counter-
balanced experiment design, because in that case, I would need to further divide the groups,
which would hinder the balancing between the groups. I expected a higher threat to validity
from the individual participant’s performance than from sequencing effects.

4.2 The Experiment

This section describes the experiment set up. First, I describe the experiment plan. After that,
the experiment tasks are described in section 4.2.2. The actual execution of the experiment as
well as occurred problems are described in section 4.2.3.

4.2.1 Experiment Plan

The experiment was designed as a changeover trial as depicted in figure 4.5. The participants
were divided into two groups, each applying an approach to a given task. In a second session,
the groups applied the other approach to a new task. Thus, each participant worked on two tasks
in the course of the experiment (inter-subject design) and used both approaches. This allowed
to collect more data points and further balanced potential differences in individual factors like
skill and motivation between the two experiment groups. Additionally, using two tasks lowered
the influence of the concrete task and increased both the internal validity [Pre01, p.124] as
well as the generalisability, which is most threatened by specific characteristics of the single
experimental tasks [Pre01, p.154].

60 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

SPE

Media Store

9 students

Palladio

Media Store

10 students

SPE

Web Server

10 students

Palladio

Web Server

8 students

Session 1:

30.06.2007

Session 2:

07.07.2007

P
re

p
a

ra
ti
o

n
E

x
p

e
ri
m

e
n

t

Lectures

10 sessions

Practical lab

8 sessions

10 Preparatory

exercises

Figure 4.5: Experiment design

Before handing in, the participants’ solutions were checked for minimum quality by comparing
the created models to the respective reference model. This acceptance test included the compar-
ison of the predicted response time with the predicted response time of the reference model as
well as a check for the well-formedness of the models. An acceptance test has two advantages.
Firstly, it ensures that all handed-in solutions have a minimum quality and in doing so, allows
to draw conclusions on the time needed to make a prediction [Pre01, p.138]. Without accep-
tance test, potentially resulting incomplete solutions cannot be used for the interpretation of the
results. Secondly, if the participants know that they solutions will be checked before accepted,
they might put more effort in the solution [Pre01, p.138], as they cannot hand in any solution.

The participants only had a limited time for completing the tasks. I conducted two sessions,
each with a maximum time constraint of 4.5 hours. There were several reasons for this deci-
sion. Firstly, it is an organisational constraint. The participants should be under surveillance
during the whole task, to avoid the exchange of knowledge between the participants. Thus, the
participants cannot stay in the chosen room as long as they want. Still, a longer time limit was
organisationally possible. However, I wanted to avoid effects of tiredness and resulting “slips
of the pen”. Finally, time constraints are overall useful because they represent the time pressure
always existent in industrial settings [Pre01, p.139].

However, the combination of acceptance tests and time restrictions can be problematic [Pre01,
p.139]. There might be participants who are not able to produce an acceptable solution in
time. This results in less data points and hinders the interpretation of the remaining ones.

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 61

Additionally, if all participants use the entire time, the duration cannot readily be used for
interpretations.

Because of these problems, the time limitations are not fixed, but can (and were) relaxed during
the experimental task if the need arises and the majority of participants cannot finish in time.

To also collect qualitative and subjective data on experiment, qualitative questionnaires were
issued after each session and a week after the last session. The questionnaires after each session
targeted the experiment task and asked for problems in it, e.g. whether the time limit was
too small. See appendices B.4.1 and B.4.2 for the two questionnaires. The last questionnaire
asked questions on the comprehensibility of the concepts, on the tools and especially questions
comparing the two approaches (cf. appendix B.4.3). Next to qualitative data, these post-mortem
questionnaires also help to assess the influence of problems in the experimental task on the
results [Pre01, p.140].

4.2.2 Experimental Tasks

To be applicable for both SPE and Palladio, the experiment tasks could only contain aspects that
can be realised with both approaches (cf. section 2.3.2). For example, the tasks could not make
use of the separate roles of Palladio and performance goals related to the actual distribution of
the response time (“90% of the time, the system should answer within 2 seconds”), which is
available in Palladio only, were not evaluated.

Both experiment tasks had similar set-ups. The task descriptions contained UML-like compo-
nent and sequence diagrams documenting the static and dynamic architecture of a component-
based system. The sequence diagrams additionally contained performance annotations. The
resource environment with servers and their performance properties was documented textually.
The systems in both tasks were prototypical systems that had been specifically designed for
this experiment. For each system, two usage profiles were given, to reflect both a single-user
scenario (UP1) and a multiuser scenario leading to contention effects (UP2). Additionally,
they differed in other performance relevant parameters. With the two usage profiles, different
requirements are reflected, that may already be known during the design phase. Different usage
within a time period (day, week, ...) can be reflected or anticipated change of usage, e.g. an
increase of the number of users.

In addition to the initial system, five design alternatives were evaluated. This reflects a common
task in software engineering. Four of them were designed to improve the performance of the
system, and the participants were asked to evaluate which alternative is the most useful one.
Three of these alternatives implied the creation of a new component, one only changed the allo-
cation of the components and the resource environment by introducing a second machine. With
the fifth alternative, the impact of a change of the component container, namely the introduction
of a broker for component lookups, on the performance should be evaluated.

The participants were asked to first read the task description and then rank the design options
without any further analysis. In doing so, I wanted to find out whether the design options could
be correctly assessed without any approach being applied, which can be seen as a very limited
control group. If the participants had been able to manually estimate the correct design decision,

62 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

MediaStoreWebGUI

Digital

Watermarking

AudioDB

<<ResourceContainer>>

Application Server

IHTTP

IMediaStore
IAudioDB

ISound

(a) Assembly of the Media Store components

UC1: Download

WebGUI
Media

Store

Water-

marking
AudioDB

download(String[] ids)

queryDB(String[] ids)

ListOfFiles fileList

Loop watermark(File file)

File watermarkedFile

ListOfFiles watermarkedFileList

[for each File

file in fileList]

 HTTPDownload(Request request)

HTTPResponse response

Parse Request:

10 WU

Load filenames:

3 WU per id

Load from hard

drive: Depending

on file size

Watermarking:

25 WU base load

+ 15 WU per

megabyte of file

Create response:

5 WU

(b) Sequence diagram for downloading use case

Figure 4.6: Initial Media Store system

the task might have been too simple and easy to see through. The results of the initial ranking
are discussed in section 5.2.3 with the construct validity.

After the initial ranking, the participants needed to model the initial system and analyse its re-
sponse time for the two given usage profiles. Before proceeding to the design options, they
were asked to check with the experimentators whether the solution is acceptable. After mod-
elling and analysing each design option, they had to again pass the acceptance test. Finally, the
participants were asked to draw conclusions. First, they assessed which design options were
advantageous for the response time or, in the case of the fifth design option, i.e. the broker
alternative, whether it only increased the response time by 10%. Next, they created a ranking
for the design options based on their usefulness. Note that participants might have chosen a
ranking that not only based on the smallest response time. However, they were asked to give
the reasons for their decision, so this was visible from the reasons.

The feasibility of the tasks was checked by presenting it to four graduate students who also took
part in the preparation but were not further connected to the experiment itself.

Media Store

In the first task, the participants were asked to analyse a web-based system called Media Store.
With this system, users bought and stored their mp3 files over the Internet. The system sup-
ported two use cases: To upload single mp3 files to one’s storage and to download up to 12
files.

Figure 4.6 shows the components initially used in this system, their assembly and the sequence
diagram of the download use case. More details and figures on the task can be seen in appendix
B.1.1.

The Media Store was chosen because it was a typical, even if simple, multimedia web ap-
plication, which is often found nowadays. It consisted of a user interface (here, the WebGUI

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 63

components responsibility), business logic (encapsulated in the MediaStore and Digital-
Watermarking components) and a database (the AudioDB component).

Two usage profiles were given, one for a single user scenario, and one for the multiple access of
several users, resulting in contention effects. The usage profiles contained information on the
frequency how much the two use cases were used, the number of mp3 files to be downloaded at
once, the size of the mp3 files used, and the encoding of the mp3 files (which is important for
a later design option). For Palladio, all information except the frequency of the use cases were
given as distributions, for SPE a mean value was given. In the second usage profile (multiuser),
the number of files and the frequency of the use cases was changed.

All components were allocated on a single server. The performance relevant data for CPU and
hard disk drive were given in the task description.

The systems performed calculations such as the parsing of the HTTP request and, for down-
loaded files, a digital watermarking of the files. Additionally, the hard disk drive was used
when reading and writing files from and to the AudioDB component. For both usage profiles,
the performance critical part of this system was the hard disk drive access. Thus, the number of
mp3 files downloaded and the their file size heavily influenced the performance.

The Media Store task came with 5 design alternatives presented below, all of them potentially
improving the system, however, also coming with drawbacks. The detailed description of the
design options with UML diagrams showing the static and dynamic changes, can be found in the
experiment task in appendix B.1.1. Here, I present each alternative by first describing it, then
giving its influence on the performance (derived from the reference models as presented later in
this section, and of course unknown to the participants) and finally arguing why the alternative
is suitable in this task. The assessment of the influences on the performance is always based on
the two usage profiles and the resource environment presented above.

Introduction of a cache component (vMS
1): For this option, a new Cache component

was introduced and chained between the MediaStore and the AudioDB component.
The cache kept a certain amount of mp3 files in memory and thus reduced the number
of hard disk drive accesses. However, the check of the availability of a file in the cache
needed some calculation done by the CPU. The cache hit ratio was given in the task
description.

As the hard disk drive access was the bottleneck of the system, this option greatly im-
proved the performance of the system, as it replaced the long hard disk drive access with
a rather short calculation for checking the availability in the cache.

As the introduction of a cache was a very common action to improve the performance
of a system, this alternative reflects real decisions very well. A slight drawback was that
the use of a cache component in this setting was only connected to a very small trade-off,
which made the outcome not very surprising.

Use of a database connection pool (vMS
2): For this option, the AudioDB component was

replaced with the PoolingAudioDB component, that used a database connection pool
to access the internal database. Thus, the accesses to the database needed less computa-
tions and the number of concurrent accesses to the hard disk drive was reduced, thereby

64 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

reducing contention effects. However, only a certain amount of transactions could be
executed concurrently, other users had to wait.

The impact on the performance, however, was only slight. The hard disk drive as the
bottleneck of the system was not relieved of files to read and write. The reduction of
contention effects and the lower computational effort only led to a slight improvement of
the response time.

Still, this alternative was a realistic and useful one, because the use of database connection
pools is widespread to improve performance. However, this alternative showed that the
characteristics of the system and its usage can lead to a widespread technique not being
very useful in a special case. Additionally, passive resources could be analysed with this
design option.

Use of a second server (vMS
3): For this option, a second server was added and the Audio-

DB component was allocated on it. The second server provided both computing power
and a second hard disk drive. Additionally, a network link between the two servers was
introduced, which was a drawback having an additional latency.

The use of a second server worsened the performance for the single user case, as one could
expect. The network caused an additional delay, and one server was always idle while the
other one was computing. For the multiuser case, the improvement was only very slight.
As all accesses to the hard disk drive were now executed on the second server, the first
hard disk drive became obsolete. Only the needed computations were shared between the
servers.

The introduction of more hardware is also a very common technique to improve perfor-
mance. This alternative showed on a admittedly very simple way that the pure adding of
computational power does not always help. Additionally, this options allowed to analyse
distributed systems and network communication.

Re-encoding and reduction of bit rate (vMS
4): For this option, a new Encoding com-

ponent was introduced and the MediaStore component was replaced by a Encoding-
MediaStore component calling the Encoding component before sending files to the
AudioDB. The Encoding component reduced the bit rate of mp3 files with high bit
rates (e.g. CD quality) by re-encoding them and thus reduced the file size of files in the
database. The drawback was a computational effort for the encoding.

Of course, the usefulness of this option strongly depended on how much the files could
be compressed and how many large files were uploaded. For the values assumed here,
i.e., reducing the file size by averaged 17%, the reduction of the bit rate was very useful,
because it traded in this setting expensive hard disk drive accesses against in this setting
relatively cheap computations.

Again, the so-achieved compression is a common technique to improve performance. It
was interesting to analyse because the effects relied heavily on the assumed parameters
and the actual bottleneck resource of the system. Additionally, this option added more
complexity to the control flow than the other alternatives did, and thus might lead to
different results for the use of parametrisation of Palladio.

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 65

Broker lookup (vMS
5): This last design option was not introduced to improve the perfor-

mance, but to add more maintainability and dynamism to the system. The alternative
was to add a middleware broker each component gets its communication partner from to
the system. Assuming that the initial system had used dependency injection, this added
more flexibility to the wiring of the components and allows dynamic changes of the as-
sembly. However, the broker look up was more costly than a dependency injection call of
a component.

The requirement here was that the response time of the system was not increased by
more than 10% by the introduction of a broker lookup. This requirement was slightly not
fulfilled for the single user case, but easily fulfilled for the multiuser case, because the
contention effects on the hard disk drive increased the response time greatly.

The use of this alternative was to analyse Palladio’s built-in model transformations. Such
an aspect of the configuration of the middleware is a typical example where such trans-
formations are used.

Reference Model I modelled the Media Store using SPE and Palladio, to be used as a
reference for the acceptance test and for the comparison with the models created by the partici-
pants.

After modelling, I analysed the different combinations of design options and usage profiles,
resulting in 12 results. For Palladio, I set a simulation time of 5000 simulated seconds in the
PCM Bench, as this delivered fairly stable results. For SPE, I used the analytic solution of
the models, as the results of simulations were very scattered and varied a lot. The highest
measurement was easily twice the lowest measurement. Additionally, the simulation did not
support distributed systems either (cf. section 2.3.1).

In the following, results of the analyses are presented. At the same time, I identify the design
option ranking using the predicted response times of the reference model. For SPE, I used
refMeanRespv,u,SPE . For Palladio, I looked at the cumulated response time distribution and
chose the one with the largest integral as the best one. If the two graphs are very similar, this
decision could not be made, because the graphical representation did not include values for the
intervals. In that cases, I further used refMeanRespv,u,Pal to assess the better design option.

For the Media Store system and usage profile 1, the best two design options had very similar
predicted response times for both approaches, the mean values only differing in some millisec-
onds. The better design option was the change of the bit rate (vMS

4). In the SPE-ED predic-
tions, this option was deemed 12 ms faster that the second-best option, the cache (vMS

1 , see
figure 4.7(a)). In the Palladio prediction, the difference was smaller. Looking at the cumulated
density function (CDF), the best alternative cannot readily be distinguished (see figure 4.8). The
mean of the distribution for the bit rate option (vMS

4) was only 1.4 ms lower than the mean for
the cache option (vMS

1).

For usage profile 2, the best two design options were likewise very similar in respect to predicted
response times. Here, the cache option (vMS

1) had a little faster response time: In the SPE-ED
predictions, the difference to the bit rate conversion variant (vMS

4) was 11 ms (see figure 4.7(b)).
In the Palladio prediction, the difference was again smaller. Again, looking at the CDF, the best

66 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

(a) UP1 (b) UP2

Figure 4.7: Predicted mean response time of the reference for the Media Store system using
SPE-ED

Figure 4.8: Predicted cumulated response time distribution of the reference for the Media
Store system and usage profile 1 using Palladio

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 67

Figure 4.9: Predicted cumulated response time distribution of the reference for the Media
Store system and usage profile 2 using Palladio

alternative cannot be read off (see figure 4.9). The mean of the distributions was lower for the
cache option (vMS

1) by 2.7 ms.

Web Server

In the second session, the participants were asked to analyse a Web Server system with limited
functionality. A single use case was supported: Users request an HTML page, possibly con-
taining one or more multimedia objects. To retrieve multimedia objects, separate subsequent
requests were issued to the Web Server (cf. figure 4.10(b)). The participants had to determine
the response time for the whole use case, not just a single request.

Figure 4.10(a) shows the components initially used in this system and their assembly. More
details and figures on the task, e.g. the detailed sequence diagrams of handling of the request,
can be seen in appendix B.1.2.

The Web Server was chosen because it represents the general application in the web in a
simplified form. It comprised business logic (in the generation of dynamic content) and database
accesses. Additionally, it featured a slightly more challenging control flow, as the Web Server
components needed to analyse the request and find the responsible component to answer it,
depending on whether static or dynamic content was requested.

Again, two usage profiles were given, one being a single user scenario and one a multiuser sce-
nario, resulting in contention effects. The usage profiles contained information on the frequency
of static and dynamic HTML pages, on the number of multimedia objects requested per page,
and on the frequency of static and dynamic multimedia objects. Additionally, the resulting file

68 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

Dispatcher

Monitor
Request

Analyser

IParseRequest

Static File

Provider

Dynamic

FileProvider

IServeRequest

Content

Generator

IDynamicContent

IServeRequest

IHTTP
IMonitor

<<Resource Container>>

Webserver

(a) Assembly of the Web Server components

loop

HTTPRequest(request r)

Return HTML page

HTTPRequest(request r)

Return multimedia content

[number of

multimedia objects]

ref Request Handling

ref Request Handling

Webserver

System

R
e

s
p

o
n

s
e

 T
im

e
?

Request HTML page

Request multimedia content

(b) User server interaction

Figure 4.10: Inital Web Server system

sizes were given for dynamic content (HTML and multimedia). For the multiuser usage pro-
file, the frequencies of static of dynamic content and the number of multimedia objects were
changed.

All components were allocated on a single server and again the performance relevant data for
CPU and hard disk drive were given in the task description.

The system performed computations such as parsing the request, finding the responsible han-
dling component and possibly generating dynamic content. Additionally, the hard disk drive
was accessed to retrieve static content. For both usage profiles, the CPU was the bottleneck re-
source. In the single user case, the hard disk drive was idle in average 96% of the time, whereas
the CPU was used in average 96% of the time. In the multiuser case, up to 16 users used the
CPU concurrently, whereas only up to 3 users used the hard disk drive concurrently. Thus, the
amount of dynamic, computational intensive content is a critical performance parameter for this
Web Server.

As the Media Store, the Web Server came with 5 design alternatives, all again having trade-
off characteristics. The detailed description of the design options with UML diagrams showing
the static and dynamic changes, can be found in the experiment task in appendix B.1.2. Here, I
present each alternative by first describing it, then giving its influence on the performance (de-
rived from the reference models as presented later in this section, and of course unknown to the
participants) and finally arguing why the alternative was suited for this task. The assessment of
the influences on the performance was always based on the two usage profiles and the resource
environment presented above.

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 69

Cache for dynamic content (vWS
1): For this design option, the ContentGenerator

component was replaced by a AcceleratedContentGenerator component, that
included an internal cache for the created dynamic content. The cache kept a certain
amount of dynamically created content in memory. If the same request came in twice,
it was answered by the cache and no new content needed to be generated. As dynamic
content was susceptible to changes, the hit rate of the cache was rather low. The check of
the cache needed CPU computations, on the other hand CPU computation for generating
dynamic content was saved if there was a cache hit.

As the effort for checking the cache for all requests was still lower than the otherwise
needed computational effort for the cached dynamic content, the introduction of cache
greatly improved the performance.

The design option was useful, for the same reasons as the Media Store cache option: It
is very common, even if here, it did not have a surprising outcome.

Broker lookup (vWS
2): The broker lookup alternative was the same for the Web Server as

for the Media Store (see page 65).

Here, the use of the broker increased the response time clearly by more than 10 % for
both usage profiles, and thus should not be used with the given requirements.

Paralleled logging (vWS
3): In the initial system, the logging was sequentially included in the

control flow. However, the handling of the requests did not have to wait for the hard
disk drive writing the log information (it was assumed that there is no caching by the
operating system or the like). In this alternative, the logging was done in parallel to the
rest of the control flow. The drawback was an additional computational effort to create a
new execution thread for logging.

This alternative led only to slight decrease in response time for the single user case. The
cost for logging were not very high and only hardly suffered from contention effects.

This alternative was useful because it used at the parallelism capabilities of the approaches
and allowed to analyse them. Here, parallelism between two different resources were
looked at, one does not have to wait for the other. The idea of paralleling the control flow
might become even more important in the future computing, especially when it comes to
multi core machines [ABC+06], i.e. parallelism within a single resource. However, such
analyses are neither possible with SPE nor with Palladio at this point of time.

Use of a second server (vWS
4): For this option, a second server was added and the Dyna-

micFileProvider and the ContentGenerator component were allocated on it.
In contrast to the Media Store system, here the second server provided a twice as fast
CPU and a second hard disk drive. As with the Media Store, a network link between the
two servers was introduced, which was a drawback having an additional latency.

Because of the more powerful CPU, this alternative greatly improves the performance,
even for the single user scenario. For the multiuser scenario, additionally, the utilisation
of the CPU and therefore the contention effects decreased.

70 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

Again, as for the Media Store, the change of the resource environment only is a common
technique and thus useful to look at here. Additionally, it represents a distributed system
and uses the network.

Use of a thread pool (vWS
5): In this design alternative, the Dispatcher component was

replaced by a PoolingDispatcher that used a thread pool to assign threads to incom-
ing requests. The initial system was assumed not to have any thread pool capabilities, but
to create new threads for every incoming request. Generally, the use of a thread pool
decreases the contention within the system, however, the users requests have to wait if all
threads are already occupied. Additionally, the overhead to create new threads is saved.

For this Web Server, the use of a thread pool was not very advantageous. For the single
user scenario, the response time improved slightly, because the overhead for creating
a new thread was saved. For the multiuser scenario, the effect was a little larger, as
the contention was reduced, especially the predicted maximum response time was lower.
However, overall the effect is small.

The use of this design option is again reflecting a common measure to improve perfor-
mance, even if in a very simplified way. Usually, the question for such systems is not
whether to use a thread pool, but rather to choose the optimal pool size [CGLL02]. Ad-
ditionally, this option included the use of passive resources in the Web Server task.

Reference Model As with the Media Store, I modelled the Web Server using SPE and
Palladio, to be used as a reference for the acceptance test and for the comparison with the
models created by the participants.

Before describing the results of simulations and analyses, I first explain two ways how to model
the system with SPE, as they came with different problems. As the usage scenario can include
more than one call to the system, there are several possibilities how to model this in SPE.

The first option was to only model the internal behaviour of the web server (as shown in fig-
ure 4.11(a)) and consider the multiple requests per user by increasing the arrival rate of users.
To give an example: If one user per second accesses the system and requests an HTML page
with two multimedia objects, one can model the request handling only and multiply the arrival
rate by 3 (1 HTML + 2 multimedia). However, there were consequences to this approach: In
the control flow, it was first the distinction between dynamic and static requests to determine
the responsible component. After that, the responsible component delivered either an HTML
page or a multimedia object. As there were separate probabilities in the usage profiles for an
HTML page being dynamic and a multimedia page being dynamic, the probabilities for an ar-
bitrary content to be dynamic had first to be calculated before being used in the model. As the
probabilities were dependent on each other, Bayes’ Rule for conditional probabilities had to be
applied (for details on Bayes’ rule, see [Sac97, p.78]). As the application of the rule might not
be apparent, I include the needed calculations in appendix B.1.2, page CCIX.

However, there was an alternative way of modelling. The usage profile could be unreeled to
form a longer execution graph (as shown in figure 4.11(b)). Here, first the actions when an
HTML page was requested were modelled, and then, in a loop, the same actions were repeated,
only with different performance values. If one knew how to copy and paste execution graphs,

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 71

(a) Only model the internal HTTP handling (Bayes’
Rule)

(b) Rolled out the usage profile

Figure 4.11: Two ways of modelling the Web Server usage profile

72 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

(a) UP1 (b) UP2

Figure 4.12: Predicted mean response time of the reference for the Web Server system using
SPE-ED

this way allowed easier modelling. However, the drawback was that the execution graph did not
only represent a model of the software (as intended) but included the behaviour of the user. It
is apparent that any change in the usage scenario would be hard to implement in the models.

After modelling, I analysed the different combinations of design options and usage profiles,
resulting in 12 results. For Palladio, I set a simulation time of 5000 in the PCM Bench. For
SPE, I used the analytic solution of the models.

In the following, results of the analyses are presented and the design option ranking is identified.
For the Web Server system, the difference of best and second-best design option was more
pronounced for both approaches and usage models. Figure 4.12(a) shows the predicted response
times for the reference model for usage profile 1 using SPE-ED. The alternative featuring a
second server (vWS

4) was clearly the one with the lowest response time. The same result can
be seen in figure 4.13 for the Palladio approach. The graph of the cumulative density function
(CDF) of the response time for the second server variant (vWS

4) mostly is above the CDF of the
cache variant (vWS

1).

For usage profile 2, the differences between best and second-best alternative was even more
pronounced for both approaches. Again, the variant introducing a second server (vWS

4) had the
best predicted response time, the cache option (vWS

1) was second-best. For the SPE approach,
the predicted response time for the second server option (vWS

4) was 16.6 ms lower (see fig-
ure 4.12(b)). For the Palladio option, the CDF of the response time for the second server variant
(vWS

4) always was above the CDF of the cache variant (vWS
1 , see figure 4.14).

4.2.3 Execution of the Experiment

First, I introduced the participants to the experiment and explained the regulations. The par-
ticipants each received four sheets: One contained the experiment task (see appendix B.1.1 for
the Media Store and appendix B.1.2 for the Web Server). The participants were first asked
to read the task description and give a first estimation on the ranking of the design options (cf.
appendix B.2.1 (Media Store) and B.2.2 (Web Server)). To document the duration of the
activities given in metrics M4.1 and M4.2, they additionally received a sheet to note the times

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 73

Figure 4.13: Predicted cumulated response time distribution of the reference for the Web
Server system and usage profile 1 using Palladio

Figure 4.14: Predicted cumulated response time distribution of the reference for the Web
Server system and usage profile 2 using Palladio

74 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

in a predefined way (cf. appendix B.3). After the experiment, they received the respective
qualitative questionnaire (cf. appendix B.4.1 (Media Store) and B.4.2 (Web Server)).

Drinks and food were provided for free. The sessions took place in a university computer lab.
Four members of our chair were present to help with problems with the tools, the exercise,
and the methods, as well as to check the solutions in the acceptance tests. This might have
distorted the results, because they might have influenced the duration. The more problems were
solved by the experimentators, the less time the participants might have spent on solving them
themselves. To avoid this effect, the participants were asked to first try to solve problems on
their own before consulting the experimentators. To be able to assess a possible influence of
this help, I documented all questions and answers as well as all rejections in the acceptance tests
(see appendix C.3 for the corresponding sheets).

Problems

Because many participants did not finish the task of the first session within 4.5 hours, the time
restriction was loosened afterwards and they were allowed to work another 2.5 hours. Dur-
ing the first session, it became clear that three participants using Palladio were not properly
prepared, as they needed a lot of basic help or were not able to finish even the initial system
prediction. Thus, the results of these three participants cannot be used. All other participants
modelled the initial system and at least one design alternative. Overall, three of the remain-
ing seven participants using the Palladio approach were able to finish all design alternatives,
whereas seven of the nine participants using SPE did so.

In the second session, the time restriction was loosened, too, and the participants were allowed
to work another 2 hours. One participant did not attend the second session due to personal
reasons, thus, only 18 students took part. Again, two of the three participants mentioned above,
now using SPE, were not well prepared enough to properly solve the tasks. Their results are
not included in the analysis of the metrics. Because these two participants failed using both
approaches, omitting their results does not advantage one of the approaches. The other eight
participants using SPE finished within the extended time, as well as six of the eight participants
using Palladio.

SPE-ED Problems One participant deliberately reduced the network speed. He argued that
a certain amount of the network traffic is caused by protocol data and is not available for usage
data. However, as the predictions were not compared to a measurement of real implementation,
but to the reference model, this improvement led to an error, as it was not contained in the
reference model. Thus, the network speed was set back to normal before using the results.

Palladio Problems The participants used different simulation times, which affects the re-
sults, especially for the usage profile 2 with contention. Thus, the maximal values vary.

As the resulting data of a Palladio simulation was stored in very large database files, the par-
ticipants were not asked to hand them in. Thus, the simulations needed to be rerun for the

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 75

participants models. This allowed to use a fixed simulation time for all predictions and elimi-
nated errors due to different simulation times.

One participant included the cache component for design option 1 in the Media Store system
using the composite diagram, but because of a bug in the synchronisation between diagram
and model, the inclusion was not correctly updated in the model. The resulting high response
time was detected in an acceptance test, but the reason could not be found at that time. As the
participant had actually intended to include the cache, and as it was detected in the acceptance
test, the problem was afterwards handled and the corrected predictions are used.

Another participant mixed up DoublePMF and DoublePDF in his models. An experimentator
pointed this mistake out in the acceptance test, which is documented. The next acceptance test
was passed. However, the final models still contain a DoublePMF instead of a DoublePDF
for the Web Server file sizes. Either the participant did not correct the model, which was
not detected in the second acceptance test, or a wrong version of the model was finally saved.
Again, as it was detected in the acceptance test, the models were afterwards corrected and the
corrected predictions are used.

4.3 Validity of this Experiment

The results of an experiment are only useful, if they are valid. Thus, the experiments valid-
ity should already be included in the planning of an experiment [WRH+00]. The validity of
an experiment is usually classified into four types, namely conclusion, internal, construct and
external validity, which was firstly introduced by [CC79]. These concepts can be mapped to
the different steps involved when conducting an experiment, as taken from [WRH+00] and the
numbers used in the following definition are annotated in figure 4.15, which is a revision of
figure 3.1 already presented in section 3.1.1.

Conclusion validity ”This validity is concerned with the relationship between the treatment
and the outcome. We want to make sure that there is a statistical relationship, i.e., with a
given significance” [WRH+00, p.64].

Internal validity ”If a relationship is observed between the treatment and the outcome, we
must make sure that it is a causal relationship, and that it is not a result of a factor of
which we have no control or have not measured. In other words that the treatment causes
the outcome (the effect)” [WRH+00, p.64].

Construct validity ”This validity is concerned with the relation between theory and obser-
vation. If the relationship between cause and effect is causal, we must ensure two things:
1) that the treatment reflects the construct of the cause well (see left part of Figure 4.15)
and 2) that the outcome reflects the construct of the effect well (see right part of Fig-
ure 4.15)” [WRH+00, p.64] (the number of the figure has been adjusted to this thesis).

External validity ”The external validity is concerned with generalization. If there is a causal
relationship between the construct of the cause, and the effect, can the result of the study
be generalized outside of the scope of our study? Is there a relation between the treatment
and the outcome?” [WRH+00, p.64].

76 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

Cause

Construct

Effect

Construct

Treatment Outcome

Theory

Observation

Experiment objective

Cause-effect

construct

Treatment-outcome

construct

Independent variable Dependent variable

Experiment operation

1 2

4

3 3

Figure 4.15: Experiment Principles (from Wohlin, [WRH+00, p.64])

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 77

Threats to validity endanger the possibilities to draw the above-described conclusions. In the
following sections, I analyse the threats to validity for the conclusion, internal, construct and
external validity.

4.3.1 Conclusion Validity

Threats to conclusion validity hinder the drawing of correct conclusions on the treatment-
outcome-effect. Threats include low statistical power, violated assumptions of statistical tests,
and choosing a statistical test and a significance rate just because it fits the results. Other
factors such as unreliable measurements, biased treatment of the experiment groups, random
disturbances during the experiment, and random heterogeneity of the experiment groups also
threaten the conclusion validity [WRH+00].

The conclusion validity was problematic in this thesis, as a relatively small number number
of participants took part. Only with a strong effect, a high statistical power of results can be
achieved. For information of the statistical power, cf. [Sac97, p.196].

Only hypothesis 3 was stated sufficiently quantitative in advance to conduct statistical tests.
Here, the used test was chosen first and then applied, no ”fishing” for the right test was done.
Hypothesis 3 was tested using Welch’s t-test, which assumes that the samples result from a nor-
mal distribution. This is unknown here, thus, the results need to be interpreted carefully [Sac97,
p.200].

Other threats were controlled as much as possible, especially the homogeneity of the groups
was improved by balancing. However, certain influences of the above-mentioned factors could
probably not be fully prevented.

Overall, the observed treatment-outcome relation had to be carefully evaluated. Only strong
effects allowed to draw the conclusion of having significant differences.

4.3.2 Internal Validity

The internal validity is the degree to which changes in the dependent variables of an experiment
are indeed results of changing the independent variables. An experiment has a high internal
validity if the experimenters controlled all relevant interfering variables well.

Threats to internal validity are circumstances that hinder this tracing back. Several classes
of threats are named by Prechelt in [Pre01]. I present the threats applying to this study and
the measures taken against them in the following. Table 4.2 summarises the threats and the
measures taken.

For this experiment, I controlled the different capabilities of the students by evaluating their pre-
experiment exercises and then randomly assigning the same amount of students from the better
and worse half to each experiment group, as discussed in section 4.1.3. However, the fact that
the groups are not randomised is a further threat to validity: Prechelt speaks of selection effects
if the non-random assignment to experiment groups influences the outcome of the experiment.
To avoid selection effects, the participants were only divided into two partitions, and were

78 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

Threat Measures
Different capabilities of
the experiment groups

• Assign participants to groups based on results of preparatory
exercises
• Both groups apply both approaches (Cross-over design)

Maturation effects • Cross-over design
• Time restriction

Bias • Aim for neutrality of experimentators
Help of experimentators • Protocol questions and assess influence

Table 4.2: Threats to internal validity

randomly assigned within the groups. Next to selection effects, the non-random assignment can
be subject to regression effects. If a participant had for his or her particularly good results in the
preparatory exercise, it was likely that his or her performance will decrease in the experiment
(regression towards the mean, [Pre01]). However, the effect could equally be observed for
the less successful group (showing better results in the experiment). As both experiment had
successful and less successful participants, the effect overall neutralises itself.

A further threat identified by Prechelt is maturation effects of the participants. Firstly, partici-
pants may learn how to deal with the kind of task in the first session, and apply their knowledge
in the second session, thus distorting the results. A cross-over design weakens this effect, as
the participants use a different approach in the second session. However, there may be learning
effects independent of the approaches and related to the general nature of both tasks. To iden-
tify such influences after the experiment, participants are asked in the qualitative questionnaires
(question 4, appendix B.4.3) whether they were able to apply experiences from the first session
in the second.

Tiredness is another maturation effect. Tired participants might change their way of solving
a task, thus threatening the internal validity, as only the results for later design options were
influenced. This effect was met by applying time restrictions. Finally, sequencing effects are
present if participants can use findings of the results of the first session in the second, e.g.
that they do not have to perform certain calculations again because they still know the values
from the first session. With the given tasks and the cross-over design, however, such effects
cannot apply, because the participants were not allowed to just guess the performance (based
on findings in the first session, they might think to already know that a cache is useful) and they
used a different approach in the second session (and thus were not able to apply findings like
the manual calculation of delay at a passive resource for SPE).

Another issue threatening the internal validity of the experiment is the fact, that the students
knew that the experimentators developed Palladio. Therefore, they might have been biased
towards or against Palladio and shown a different motivation to complete the tasks for each
approach. Here, the experimentators needed to show neutrality towards the approaches and try
not to favour one approach.

Because the experimentators helped the participants with problems during the experiment ses-
sion, they may have influenced the duration. If more help is given to the participants applying
one approach, this additionally distorts the comparison of the duration. It was difficult to avoid

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 79

such effects, as some experimentators were experts for Palladio and others for SPE, so that dif-
ferent people answered questions for the different approaches. I could only assess the influence
of this threat after the experiment. To do so, the record of questions can be used.

4.3.3 Construct Validity

An experiment with a high construct validity ensures that the persons and settings used in it rep-
resent the analysed constructs well. SPE and Palladio represent the construct of performance
prediction methods. It might be argued that the two methods are not directly comparable, for ex-
ample, because Palladio is specifically designed for component-based systems, less mature, but
has more up-to-date tool support. However, both methods use design models similar to anno-
tated UML diagrams, which are considered the de-facto standard in model-based performance
prediction [BMIS04].

In order to represent performance predictions adequately, I chose to include the evaluation of
different design alternatives in this experiment. The design alternatives represent well-known
performance patterns [SW02] and were created after typical performance-enhancing architec-
tural changes (e.g., caches, replication, etc.) for the domain of business information systems.
To assess whether the evaluation of the design alternatives was too easy and could with the same
accuracy also be estimated manually, I asked the students to rank the design alternatives after
initial reading before conducting the modelling and analysis.

However, the tasks were restricted by the differences of the two approaches to ensure their
comparability (cf. section 2.3.2). Thus, the chosen setting was a compromise between the
target settings of the SPE and the Palladio approach and thus did not precisely reflect each
approach’s target setting.

I chose students as the performance analysts in this study. Their competence is not as high
as long-term experienced performance analysts in the software industry. However, all of the
students had completed their undergraduate studies (and were therefore no beginners), and were
given extensive training on both methods. In fact, the results might be even more meaningful
as if I had used experienced performance analysts, because the students had the same initial
knowledge about both methods. Whether the capability of students is comparable to software
developers in industry is subject to discussion [Pre01].

Predictions of individual students might not be comparable to predictions of performance engi-
neering teams, who analyse systems in industry. However, I argue that most smaller software
companies are not able to employ full performance engineering teams, and merely use individ-
uals, if they do performance prediction at all.

4.3.4 External Validity

The external validity is the degree to which the results of an experiment can be generalised to
other, in particular practical, situations. In [Pre01, p.154], Prechelt states that the most important
influence on the external validity is the experiment task. Even if the internal validity of an
experiment is very high, it may only give findings for the particular task under study. For tasks

80 CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT

Threat Appraisal / Measures
Only small systems • Inherent problem of experiments
Influence of the system under study • Two different experimental tasks
Realistic way to solve tasks • Achieve motivation, certain stress and feasible task
Problems with the task description • Test task description beforehand

Table 4.4: Threats to external validity

that differ a lot from the experiment task, no statements are possible. To achieve a high external
validity, the task has to represent a large number of real problems and be not to specific. In the
following, I present threats to the external validity that have been identified and discuss them.

Due to organisational and time constraints, I only analysed very small systems in this experi-
ment. It is unknown whether the results are generalisable to larger software architectures with
a substantially higher complexity. However, the time needed for the experiments was several
hours, so that participants probably were not be able to keep all aspects of the task in mind and
had to look up details again, a feature of working on more complex systems.

It is furthermore unknown, whether the measured duration of the performance prediction in the
experiment scenario scales up linearly for more complex systems. This can only be answered
with further experiments. Overall, it is an inherent problem of controlled experiments that only
smaller-than-real systems can be analysed, as the effort is hardly feasible for larger systems.

Additionally, not the whole process of designing a component-based system was analysed, but
only a single excerpt in which certain design documents were available. The findings might
not be generalisable to performance predictions that are conducted throughout the software life
cycle in deeper and deeper detail. The experiment task was not split into several developer
roles, which hinders the generalisation to such cases, in which Palladio might be much more
advantageous.

I tried to control influences by the system under study, that are not generalisable to other tasks, by
analysing two systems, namely Media Store and Web Server, so that different results can be
traced back to the systems and not the methods. For effects observed for both approaches, it was
more likely that they resulted from the differences of the approaches. Effects that were different
for the two systems have to be more carefully looked at. However, it is mostly unknown what
caused the differences.

A further threat to external validity is the way the participants work. If the participants solve the
problems in a different way than experts would, the results are not generalisable. As discussed
in the previous section 4.3.3 and section 4.1, I did not see the fact that the participants were
students as a threat to external validity, however, this is subject to discussion. To achieve a
realistic way of solving the tasks, the participants were trained beforehand. However, they also
needed to be comparably motivated and stressed as in a industry setting, and they needed to
understand the tasks and be able to apply their knowledge. These aspects are discussed in the
following.

To achieve a sufficient motivation of the participants, a minimum performance in the experiment
was required to get credit for the course. Additionally, the acceptance test might have motivated

CHAPTER 4. DESIGN AND CONDUCTION OF THE EXPERIMENT 81

the participants to produce good results, because only after passing the test, they were allowed
to leave (see also section 4.2.1).

The participants only had limited time to complete the tasks. This made the experiment more
realistic, as there is always some time pressure in industry scenarios that causes a certain stress.
To be able to evaluate the needed effort, it was important that the participants could not spend
as much time as wanted on the tasks, but had to complete the task within the time constraints.
The acceptance tests ensured that an acceptable quality was delivered.

If participants had problems with the task description, they cannot apply their trained way to
solve the tasks and the external validity is endangered. Note that this does not affect the internal
validity, because the task description was almost identical for both approaches. If participants
had difficulty with the tasks, the difference in the results could still be traced back to difference
of the approaches, but only for this setting, i.e. that participants apply them that are not able to
cope with the task at hand. The results would probably not be generalisable to other settings in
which participants understand the tasks. To avoid problems with the task descriptions, I asked
several graduate students who also took part in the preparation, but not in the experiment, to
solve the tasks and improved the tasks based on their feedback.

5 Results

In this chapter, the results of the experiments are presented. The experimental set-up leading
to these results is described in chapter 4. The resulting data of the experiment can be found in
appendix C. With this data, the conclusions drawn in this chapter can be reassessed.

In section 5.1, the data is analysed with the Goal Question Metric approach (GQM), for which
the metrics and question have been presented in section 3.2.2. It is essential for using GQM that
the resulting data is interpreted on the basis of the beforehand stated metrics and questions.

Section 5.2 discusses the results, looking at both differences between the approaches and dif-
ferences between the tasks, and draws conclusions.

5.1 Results of the Metrics

In this section, the measured data is interpreted based on the GQM plan. The structure of this
section follows the four questions, each being partitioned into the presentation of the metrics.
The metrics are evaluated for both approaches and for both tasks. Finally, each question is
answered based on the measured metrics.

5.1.1 What is the quality of the created performance prediction
models?

Metric M1.1: Relative deviation of predicted mean response times between the
participants and the reference model.

The tables 5.1 and 5.1 shows the average of the predicted response time deviation as measured
with metric M1.1 for Palladio and SPE, respectively.

vs
0 vs

1 vs
2 vs

3 vs
4 vs

5 Avg
Media Store UP1 1.93% 0.90% 0.49% 20.08% 3.02% 1.69% 4.69%

UP2 13.21% 2.20% 4.15% 13.23% 4.42% 3.51% 6.79%
Web Server UP1 1.00% 11.07% 1.94% 4.23% 4.55% 9.40% 5.47%

UP2 15.92% 20.35% 10.87% 10.67% 2.57% 3.64% 10.67%
Overall propDevMeanRespPal 6.90%

Table 5.1: Metric M1.1: Relative deviation of the predicted response times for Palladio

83

84 CHAPTER 5. RESULTS

vs
0 vs

1 vs
2 vs

3 vs
4 vs

5 Avg
Media Store UP1 8.31% 9.58% 13.18% 11.59% 15.49% 9.95% 11.35%

UP2 4.10% 9.49% 5.74% 21.22% 12.54% 8.17% 10.21%
Web Server UP1 0.34% 1.28% 2.83% 2.15% 6.33% 1.56% 2.42%

UP2 1.01% 1.22% 8.29% 4.47% 37.92% 2.33% 9.21%
Overall propDevMeanRespSPE 8.3%

Table 5.2: Metric M1.1: Relative deviation of the predicted response times for SPE

I first look at the averages for the approaches. For the Media Store, the results of the partici-
pants using SPE had an approximately twice as high deviation from the reference model than
the participants using Palladio. For the Web Server, the results of the participants using Palladio
on UP1 had a twice as high deviation from the reference model than the participants using SPE,
and a similar one for UP2. In average, the deviation was lower for Palladio.

To find the reasons for the deviation, I further look at the average deviation for each usage
profile. Interestingly, the deviation varied a lot between the different design alternatives. For
the Media Store and Palladio, the variant vs

3 (second server), had a very high deviation, and
vs

0 for the UP2, too. For the Web Server and Palladio, the deviations for the vs
2, the broker

alternative, was very high, and for UP2, additionally the deviations for vs
0, vs

1 (Cache) and vs
3

(Logging) were also fairly high. This led to the high average deviation of 24.52%.

For the Media Store and SPE, the deviation was high for vs
4 (Reduction of the bit rate) and

UP1, and exceptionally high compared to the other variants for vs
3 (second server) and UP2.

For the Web Server and SPE, no variant was particularly noticeable for UP1, but for UP2 the
deviation of vs

4 (Reduction of the bit rate) was more than 4 times the next highest deviation.

With these strong variations, the average was only limitedly meaningful. The difference be-
tween Palladio and SPE became less statistically significant, as the discriminatory power de-
creased [Pre01, p.232]

Metric M1.2: Passed K-S Test ratio of predicted response time distribution and
reference

Table 5.3 shows the ratio for passed K-S tests with a significance level of 0.05, as defined in
metric M1.2 as PassRatiov,u,Pal, for the different variants, usage profiles and systems. The
overall average PassRatioPal is 0.24. For about three-quarters of the predicted distributions,
the null hypothesis that predicted distribution and reference distribution result from the same
distribution function is rejected, because it is significantly improbable.

The p-values of the test vary greatly from (rounded) 0 to 0.97, with a median of 0, an average
of 0.09 and a standard deviation of 0.21.

For this metric, it had to be taken into account that the sample sizes of the simulated data was
very large, containing thousands of data points. A large sample size leads to a high power of the
KS-test, but also leads to small differences causing a rejection of the null hypothesis [Sac97,
p.197]. Thus, the high rejection rate here might be due to rather small differences in the actual

CHAPTER 5. RESULTS 85

vs
0 vs

1 vs
2 vs

3 vs
4 vs

5 Avg
Media Store UP1 0.71 0.29 1.00 0.00 0.33 0.71 0.55

UP2 0.00 0.29 0.60 0.25 0.00 0.86 0.36
Web Server UP1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

UP2 0.00 0.00 0.13 0.29 0.00 0.67 0.16
Overall average PassRatioPal 0.24

Table 5.3: Metric M1.2: Passed K-S Test ratio of predicted response time distribution and ref-
erence : PassRatiov,u,Pal

underlying distributions, which had a large influence on the results because of the large sample
size (cf. section 5.2.1).

Metric M1.3: Percentage of correct design decisions

In the following, I firstly present the results for metric M1.3 for each system. I compared the
results of the reference model (cf. section 4.2.2 for the Media Store and 4.2.2 for the Web
Server) with the participants rankings and assessed percs,u,a.

Media Store The exact evaluation of the metric for usage profile 1, only considering the
best alternative, resulted in the following values:

• For SPE, only 2 out of 7 participants who ranked all variants identified the bit rate con-
version as the best option.

• For Palladio, the one participant who ranked all variants did so.

All other participants did not model all options and their results cannot be used.

For usage model 2, the following values resulted from the participants’ rankings:

• For SPE, 7 out of 7 participants who ranked all variants identified the cache as the best
option.

• For Palladio, the one participants who ranked all variants did not so, but placed both
options on rank 1.

The number of participants who ranked all design options was low, especially for Palladio.
Thus, I omit the relative values for percMS,u,a here, as they do not have a significant meaning
and may even be misleading.

Especially for the Palladio approach, there should not be a distinction between best and second-
best alternative, as the graphs in the CDF laid very close to each other. If, due to their small
differences, both options were ranked on first place together in a cluster, all of the above par-
ticipants chose right, because all of them identified either the bit rate or the cache option as the
best design option and ranked the respective other one second-best. I defined an adapted metric
perccl,s,u,a that measured the correct design decisions recognising the clusters. This evaluated
to:

86 CHAPTER 5. RESULTS

perccl,MS,u,a = 1, u ∈ UP, a ∈ A

Web Server The evaluation of the metric for usage profile 1 results in the following values:

• For SPE, 8 out of 8 participants who ranked all variants identified the second server vWS
4

as the best option: percWS,UP1,SPE = 1.

• For Palladio, 4 out of 6 participants who ranked all variants did so. Of the two others,
one really predicted a lower response time for the cache (vWS

1), the other seemed to have
other reasons or could not correctly interpret the CDF, as the second server vWS

4 is faster
for his model, too. I get percWS,UP1,Pal = 0.67.

All other participants did not model all options and their results cannot be used.

For usage model 2, the following percentages result from the participants’ rankings.

• For SPE, 7 out of 8 participants who ranked all variants identified the second server vWS
4

as the best option. The other participant predicted a lower response time for the cache
alternative vWS

1 . I get percWS,UP2,SPE = 0.88.

• For Palladio, 5 out of 5 participants who ranked all variants did so: percWS,UP2,Pal = 1.

Combined I evaluated perca, a ∈ A for the original definition of the metric M1.3 and as
perccl,a, a ∈ A with the recognition of equivalent clusters for the Media Store system. Note
that the percentages for the two systems do not equally influence the results, but are weighted
by the number of decisions by definition of the metric.

percSPE = 0.8

percPal = 0.77

perccl,SPE = 0.97

perccl,Pal = 0.85

In both cases, the percentage is higher for SPE.

For the estimated initial rankings, the percentage of correct design decisions can be calculated
analogously. I use percInitials and percInitialcl,s, s ∈ S, that are defined analogously to
perca and perccl,a. The results are presented in table 5.4.

Metric M1.4: Permutations in design decision rankings, recognising clusters

Not all participants ranked all alternatives, because they did not complete all predictions or
missed the time to complete the ranking, even if they completed the predictions. There were
several options to cope with this problem:

CHAPTER 5. RESULTS 87

(a) Without recognising clusters percInitials

percInitials Media Store Web Server
UP1 0.33 0.35
UP2 0.28 0.35
Average 0.31 0.35

(b) With recognising clusters percInitialcl,s

percInitialcl,s Media Store Web Server
UP1 0.78 0.35
UP2 0.61 0.35
Average 0.69 0.35

Table 5.4: Metric M1.3: Average percentage of the correct design decisions of the initially esti-
mated design options rankings

• First, the incomplete rankings as given by the participants could be used, just omitting the
ranks that were not used. However, this distorted the results because a participant who
did not assess the best design option, but ranked the rest of them relatively correctly, has a
number of ranked alternatives permutations, because he ranked the second best alternative
best, and so on and so forth.

• The second alternative was to adjust the participants ranking to the actual positions. For
the example above, one could assume that the participants ranked the options on rank
2, 3 and 4. The actual ranking of the participant would not be changed, just the used
numerical ranks. However, this alternative would be advantageous for an approach that
has less complete rankings. A participant that just ranked three out of four options would
have a higher probability of just guessing right.

• The third alternative was to discard all incomplete rankings. However, this would result
in less data points.

The distortion caused by the second option could be reduced by weighting the relative permu-
tation score propPerms,u,p by the number of ranks assessed in the average calculation. Thus,
complete rankings had a higher influence on the overall metric propPerma, based on the num-
ber of ranks assessed. In so doing, I expected to balance the incompleteness of the ranking.
Thus, as option 2 provided more data points than option 3 and was expected to result in lower
distortions than option 1, I used option 2 to cope with the missing ranks.

Let V s
p ⊆ V s be the set of variants participant p ∈ P defined a ranking for. I redefined metric

M1.4 as given below. This redefinition did not change the outcome if all participants assigned
all ranks in their ranking.

Metric M1.4: propPerma =

∑
s∈S,p∈Pa,s,u∈UP

propPerms,u,p ·
∣∣V s

p

∣∣
∑

s∈S,p∈Pa,s,u∈UP

∣∣V s
p

∣∣

88 CHAPTER 5. RESULTS

u = UP1,
a = SPE

u = UP2,
a = SPE

u = UP1,
a = Pal

u = UP2,
a = Pal

classMS,u,a(vMS
1), i.e. Cache 1 1 1 1

classMS,u,a(vMS
2), i.e. Pool 2 2 2 2

classMS,u,a(vMS
3), i.e. 2nd server 3 2 3 2

classMS,u,a(vMS
4), i.e. Bit rate 1 1 1 1

Table 5.5: Clustering of Media Store results

u = UP1,
a = SPE

u = UP2,
a = SPE

u = UP1,
a = Pal

u = UP2,
a = Pal

classWS,u,a(vWS
1), i.e. Cache 2 2 2 2

classWS,u,a(vWS
3), i.e. Logging 3 4 3 4

classWS,u,a(vWS
4), i.e. 2nd server 1 1 1 1

classWS,u,a(vWS
5), i.e. Pool 3 3 3 3

Table 5.6: Clustering of Web Server results

This metric furthermore needed a clustering of the predicted response time for the reference.
The predicted response times of the reference solutions for the Media Store system are depicted
in the figures 4.7(a), 4.8, 4.7(b) and 4.9. The participants were asked to rank the variants vMS

1

to vMS
4 . The respective response times for the Web Server system are depicted in the figures

4.12(a), 4.13, 4.12(b) and 4.14. Here, only the alternatives vWS
1 and vWS

3 to vWS
5 should be

ranked. The respective missing variant was the broker alternative, which was not designed to
improve the performance and thus was not ranked.

These results were clustered as given in table 5.5 for the Media Store system and in table 5.6
for the Web Server system.

As mentioned above, the best and second best option, i.e. the bit rate conversion vMS
4 and the

cache component vMS
1 , were almost indistinguishable for the Media Store system and both

usage profiles with the Palladio approach. Thus, they belonged to one class in the clustering.
For usage profile 1, the pool vMS

2 and second server vMS
3 options had sufficiently different

response times and were assigned to two separate classes for both approaches. For usage profile
2, these two options had very similar response times for both approaches and were clustered
in one class. For the SPE approach, the best and second best option for usage profile 1 can
be distinguished. However, having more classes for the SPE approach than for the Palladio
approach distorts the results. Thus, the best and second best option were also clustered for SPE.

For the Web Server system and usage profile 1, the pool vMS
5 and the logging vMS

3 option
were similar in respect to the predicted response time for both approaches, thus they formed
a class. The two best options were different, each forming its own class. For usage profile 2
all options could be readily distinguished from each other for both approaches, thus, they all
formed a class.

Having defined the clusters, I determined the values for metric M1.4. Table 5.7 shows the results
as well as intermediate step of the calculation for the different systems and usage profiles. For
Palladio, the ranks were wrong by 6.5% of the maximum possible permutation. For SPE, the

CHAPTER 5. RESULTS 89

propPerm Media Store Web Server Weighted average
UP1 UP2 UP1 UP2 propPerma

Palladio 0 0 0.11 0.09 0.065
SPE 0.04 0.1 0.08 0.06 0.073

Table 5.7: Metric M1.4 (redefined): Weighted average of the permutation score of the design
options rankings

For estimated ranking Media Store Web Server Average
UP1 0.32 0.33 0.33
UP2 0.25 0.34 0.30
Average 0.29 0.34 0.31

Table 5.8: Metric M1.4: Average of the permutation score of the initially estimated design op-
tions rankings

ranks were wrong by 7.3% of the maximum possible permutation. Thus, SPE rankings were
wronger by factor 0.12 compared to Palladio rankings.

For the estimated initial rankings, the permutations score could be calculated as originally de-
fined, as all participants ranked all alternatives. As mentioned above, for this case, the original
and the redefined metric led to the same results. Table 5.8 shows the averaged permutation score
for the initial estimation of the rankings.

Evaluation of hypothesis 1: With both approaches, the created models are
similar to the reference model

With both approaches, the predictions of the participants only deviate in average 6.9% and 8.3%
from the predictions of the reference model for Palladio and SPE, respectively. I considered this
to be similar to the reference model and to indicate that the hypothesis 1 is true. However, for
single variants, the deviation was much higher (see tables 5.1 and 5.2). These are unacceptable
high and pose a threat to hypothesis 1. Still, overall, hypothesis 1 is not invalidated.

5.1.2 What are the reasons for the model’s quality?

Metric M2.1: Number of problems and classification Problems were documented via
the question protocol, the protocol of the acceptance test and a check of the final models.

The class of problems with the approaches themselves were further refined to group the different
aspects of the approaches that led to problems. Tool problems were classified as either being
a problem with usage of the tool, being a problem with interpreting error messages or being a
tool bug.

A problem on the question protocol was classified as being major, if the participant did not
know an essential concept of the approach or the tool or how to handle something not directly
supported by the tool, if a major error was detected due to help with an error message of the

90 CHAPTER 5. RESULTS

system, or if there was a major bug in a tool that could not have been found without deep knowl-
edge of the tool or that could not be explained. In short, all major problems would have resulted
in major errors greatly distorting the predictions or preventing the modelling at all. A problem
was classified as being minor if it was an error that did not or barely influence the performance,
or if it was a question of a participant asking for the right out of some alternatives, all of them
leading to minor errors only. All other problems were classified as being intermediate.

In the acceptance test, an error was usually detected because it caused a prediction to be out
of the expected bounds. As there was a certain tolerance on when a prediction lies without
these bounds, the detected error could usually be classified as being major or intermediate,
because it distorted the performance prediction (and was detected). However, while checking
the models for the cause of a distortion, several other errors may be found, which could be both
classified as intermediate and minor. It was classified as minor if it did not or barely influence
the performance, otherwise, it was classified as intermediate.

In the resulting models, all major problems should already have been corrected because of the
acceptance test. However, in three cases, the reason for the distorted prediction could not be
found in the acceptance test, but was discovered when checking the model afterwards. Thus,
three major errors remained in the models. The model for the original system was checked in
detail, for all other models the changed parts were checked.

The absolute number of problems for the three dimension occurrence, gravity and problem area
can be found in the appendix C.3. Here, I present relative, cumulated values.

First, the problem areas are presented, cumulating the values on the occurrence dimension to
identify problematic areas of methodology and tools. I kept the severity dimension to not mix
up grave and minor problems and draw wrong conclusions as a result. Tables 5.9 to 5.11 show
the relative number of problems for the different areas, for the Media Store, the Web Server,
and for both. After that, I analysed at what point problems actually occurred (i.e. looked at the
occurrence dimension).

Table 5.9 shows the problem areas with the task itself, for both approaches. Participants had
problems related to the control flow, e.g. they asked how the control flow was for the bit rate
conversion (vMS

4) or were corrected in the acceptance test because the their cache (vMS
1) was

queried once and not per file. A second problem field was the performance annotation. A
common error here was to forget to annotate the demand to create a second thread for the
paralleled logging option (vWS

3), which was often detected when checking the models. Finally,
participants had problems with the description of the usage profile, e.g. they asked how to
interpret the distribution of the file sizes. Most problems were related to annotations, but they
were mostly minor or intermediate. The most major problems were related to the control flow.
In average, every participant had more than one problem with the task description, which is
visible in the last column of table 5.9, in the respective overall sum. The least problematic areas
of the three presented was the usage profile area. Interestingly, these observations are made for
both system, Media Store and Web Server.

Table 5.10 shows the problems in the different areas for Palladio, and table 5.11 for SPE. For
both used tools, I identified the problem areas of tool usage, of interpreting the error messages
and of bugs of the tool. Here, much more problems occurred with Palladio (in average 2.27 per

CHAPTER 5. RESULTS 91

Severity Control flow Annotation Usage Profile Sum
Media Store

minor 0.06 0.31 0 0.38
intermediate 0.44 0.06 0.25 0.75
major 0.19 0 0 0.19
Sum 0.69 0.38 0.25 1.31
Web Server

minor 0 0.19 0 0.19
intermediate 0.19 0.88 0.06 1.13
major 0.13 0.06 0 0.19
Sum 0.31 1.13 0.06 1.50
Both systems

minor 0.03 0.25 0 0.28
intermediate 0.31 0.47 0.16 0.94
major 0.16 0.03 0 0.19
Sum 0.50 0.75 0.16 1.41

Table 5.9: Metric M2.1: Relative number of task related problems

participant) than with SPE (in average 0.24 per participant). Although the number of partici-
pants was relatively small, and outliers might strongly have influenced this result, I still give
the average values here. No clear outliers were detected, every participant was included in both
groups (because of the cross-over plan) and the effect was fairly large, thus, the average val-
ues were still meaningful. With Palladio, most problems were with the usage of the tool, e.g.
participants asked how to create component parameters or a usage model. Interestingly, there
were much more usage problems with the Web Server task than with the Media Store task.
For SPE, there were some problems with the usage of the system, e.g. where to specify global
parameters, and some very few with bugs.

For each methodology, different areas were identified. For Palladio, these areas were the usage
of parameters, especially the usage of component parameters, the handling of data types and
annotation units, the assembly and the usage model. Here, in average most problems concerned
the specification of parameters, followed by the specification of component parameters and of
types and units. Interestingly, this relation is very pronounced for the Media Store, but different
for the Web Server, where there were equally many problems with parameters and types and
units, followed by component parameters. Overall, the participants using Palladio for the Web
Server task had more problem with the tool that with the methodology, the opposite applies to
the participants using Palladio for the Media Store task. Overall, participants using Palladio
had 2.58 methodology problems per participant in average.

For SPE, these areas were the specification of the overhead matrix, the handling of the dis-
tributed system, the modelling of passive resources (thread and connection pool), the handling
of scenarios and projects, miscalculations, the handling of probabilities and the solution of the
model. Most problems concerned the overhead matrix, e.g. creating a wrong mapping be-
tween software and hardware resource requirements. The next most often problem areas are the
handling of distributed systems and the handling of passive resources. The handling of prob-

92 CHAPTER 5. RESULTS

Tool Methodology

U
sa

ge

E
rr

or

B
ug

Su
m

Pa
ra

m
et

er
s

C
om

po
ne

nt
pa

ra
m

et
er

s

Ty
pe

s
an

d
un

its

A
ss

em
bl

y

U
sa

ge
m

od
el

Su
m

Su
m

Media Store
minor 0.00 0.00 0.00 0.00 0.00 0.43 0.14 0.00 0.00 0.57 0.57
intermediate 0.43 0.43 0.14 1.00 1.00 0.29 0.57 0.00 0.00 1.86 2.86
major 0.14 0.00 0.14 0.29 0.57 0.29 0.00 0.00 0.00 0.86 1.14
Sum 0.57 0.43 0.29 1.29 1.57 1.00 0.71 0.00 0.00 3.29 4.57
Web Server
minor 0.25 0.00 0.25 0.50 0.00 0.25 0.00 0.00 0.00 0.25 0.75
intermediate 0.88 0.38 0.13 1.38 0.63 0.13 0.38 0.00 0.00 1.13 2.50
major 1.13 0.00 0.25 1.38 0.00 0.00 0.25 0.13 0.13 0.50 1.88
Sum 2.25 0.38 0.63 3.25 0.63 0.38 0.63 0.13 0.13 1.88 5.13
Both systems
minor 0.13 0.00 0.13 0.25 0.00 0.34 0.07 0.00 0.00 0.41 0.66
intermediate 0.65 0.40 0.13 1.19 0.81 0.21 0.47 0.00 0.00 1.49 2.68
major 0.63 0.00 0.20 0.83 0.29 0.14 0.13 0.06 0.06 0.68 1.51
Sum 1.41 0.40 0.46 2.27 1.10 0.69 0.67 0.06 0.06 2.58 4.85

Table 5.10: Metric M2.1: Relative number of Palladio related problems

CHAPTER 5. RESULTS 93

Tool Methodology

U
sa

ge

E
rr

or

B
ug

Su
m

O
ve

rh
ea

d

D
is

tr
ib

ut
ed

sy
st

em

Pr
oj

ec
ts

Pa
ss

iv
e

R
es

ou
rc

e

M
is

ca
lc

ul
at

io
n

Pr
ob

ab
ili

tie
s

So
lu

tio
n

Su
m

Su
m

Media Store
minor 0.00 0.00 0.11 0.11 0.44 0.00 0.11 0.56 0.11 0.00 0.00 1.22 1.33
intermediate 0.11 0.00 0.00 0.11 0.78 0.44 0.00 0.00 0.11 0.00 0.00 1.33 1.44
major 0.00 0.00 0.00 0.00 0.78 0.33 0.00 0.00 0.00 0.00 0.00 1.11 1.11
Sum 0.11 0.00 0.11 0.22 2.00 0.78 0.11 0.56 0.22 0.00 0.00 3.67 3.89
Web Server
minor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.13 0.13 0.00 0.88 0.88
intermediate 0.13 0.00 0.00 0.13 1.88 0.75 0.00 0.00 0.00 0.38 0.13 3.13 3.25
major 0.13 0.00 0.00 0.13 0.13 0.00 0.13 0.00 0.00 0.50 0.00 0.75 0.88
Sum 0.25 0.00 0.00 0.25 2.00 0.75 0.13 0.63 0.13 1.00 0.13 4.75 5.00
Both systems
minor 0.00 0.00 0.06 0.06 0.22 0.00 0.06 0.59 0.12 0.06 0.00 1.05 1.10
intermediate 0.12 0.00 0.00 0.12 1.33 0.60 0.00 0.00 0.06 0.19 0.06 2.23 2.35
major 0.06 0.00 0.00 0.06 0.45 0.17 0.06 0.00 0.00 0.25 0.00 0.93 0.99
Sum 0.18 0.00 0.06 0.24 2.00 0.76 0.12 0.59 0.17 0.50 0.06 4.21 4.44

Table 5.11: Metric M2.1: Relative number of SPE related problems

94 CHAPTER 5. RESULTS

abilities was irrelevant for the Media Store task, but created the more problems for the Web
Server task. The proportion of the problems stays approximately the same for both systems
(except for the probabilities, see above). Overall, participants using SPE had 4.21 methodology
problems per participant in average.

Next, I look at the occurrence dimension, the results are shown in table 5.12. For Palladio, 77%
of the problems occurred during the experiment and were captured in the question protocol,
12% in the acceptance test, and 11% were still present in the final models. For SPE, 30% were
captured in the question protocol, 26% in the acceptance test, and 44% of the problems were
still present in the final model.

Palladio SPE
Task Tool Methodology Tool Methodology

Question protocol 0.38 2.13 1.61 0.06 1.29
Acceptance test 0.31 0.06 0.50 0.06 1.08
Error in models 0.75 0.07 0.47 0.11 1.84

Table 5.12: Metric M2.1: Relative number of problems separated by occurrence

Subquestion 2.1: Are the approaches comprehensible?

From metric M2.1: Problems related to comprehension To assess the comprehen-
sion, metric M2.1 is used as well. The methodology area contains problems based on missing
understanding of the approaches. Only the miscalculation area of SPE is questionable here,
because miscalculations may also result from an oversight. I still count these problems for the
comprehensibility, because a very well understood approach likely results in less oversights. In
so doing, table 5.10 and 5.11 already contain the results for comprehensibility in the sum of the
methodology column.

Metric M2.2: Average number of times of rejection before acceptance level is
reached Table 5.13 shows the average number of rejections for a participant in the accep-
tance test. For Palladio, a solution was rejected 0.07 times in average. For SPE, a solution was
rejected 0.15 times, i.e. about twice as often. Absolutely, 11 Palladio models were rejected
and 28 SPE models. Note however the limited value of the absolute numbers, as the number of
checked models differed.

SPE-ED Palladio
Media Store 0.13 0.04
Web Server 0.17 0.10
Average 0.15 0.07

Table 5.13: M2.2 Average number of rejection before acceptance level is reached

CHAPTER 5. RESULTS 95

Metric M2.3: Average number of errors in interpreting results This metric could
only be measured for solutions by the participants that included rankings of the design alterna-
tives. Thus, like metric M1.4, this metric is adapted because not all participants had complete
rankings. The adaptation was equivalent to the adaptation of metric M1.4.

With the adapted metric, I got the results shown in table 5.14. For the Media Store, no inter-
pretation errors were made, i.e. the permutation score was 0. For the Web Server, the score
was 0.06 for the SPE rankings and 0.07 for the Palladio rankings. The overall score was 0.03
for SPE and 0.05 for Palladio. Note, that less participants finished the Media Store task using
Palladio, this is why the low score for the Media Store had a smaller impact on the overall
score.

SPE-ED Palladio
Media Store 0 0
Web Server 0.06 0.07
Average 0.03 0.05

Table 5.14: M2.3 Average score for errors in interpreting results

Metric M2.4: Subjective evaluation of comprehensibility by the participants 19
participants answered the questionnaire. Some, however, omitted questions, so that for some of
the questions, less than 19 answers had been analysed.

First, I asked for the comprehensibility of the process of each approach (questions 5 and 18).
For Palladio, 17 of 18 participants stated that the process was comprehensible. One felt over-
whelmed by the complexity of the PCM in Eclipse and stated that he needed more information
on the role model. For SPE, 16 of 18 participants stated that the process was comprehensible.
The other two participants stated that the comprehensibility was limited.

All 19 participants attributed good comprehensibility to the Palladio meta model (question 6).

The results of the evaluation of the comprehensibility of the different concepts are shown on
table 5.15 for Palladio (question 7) and table 5.16 for SPE (question 19). The average grade is
given as well as the standard deviation to the latter to assess the variability of the results. Recall
that the scale for the grading ranged from ++ (i.e 2) to - - (i.e. -2).

Most Palladio concepts received an average grade higher than 1, with a comparably low standard
deviation of less than 1. There were two exceptions: The resource environment had an average
grade higher than 1, too, but here the standard deviation was higher than 1. This was because
two participants graded the comprehensibility of the resource environment as lower than 0. The
parametrisation had the lowest grade, thus was assessed to be hardest to understand. Here,
participants mostly graded a 1 or 0, with some participants giving a 2 or -1.

The SPE concepts received lower grades. Only the software model had an averagely good grade,
with a low variability. Most concepts were graded between 1 and 0, with a rather high variability
of more than 1. Here, the evaluations of the participants were very different, mostly ranging
from 2 to -2 and covering all grades. The concepts with the lowest subjective comprehensibility

96 CHAPTER 5. RESULTS

Concept Average grade Standard deviation
Repository model 1.84 0.37
SEFF specification 1.74 0.45
System 1.61 0.50
Allocation 1.53 0.61
Resource environment 1.21 1.13
Usage Model 1.58 0.51
Parametrisation 0.58 1.02
Visualisation of the results 1.32 0.58
Distributions 1.32 0.48

Table 5.15: M2.4 Subjective evaluation of the comprehensibility of the Palladio concepts

Concept Average grade Standard deviation
Division in scenarios 0.63 1.30
Software model 1.11 0.76
Overhead matrix 0.42 1.26
System model 0.63 1.16
Distributed systems -0.53 1.26
Different solutions 0.00 1.14
Visualisation of the results 0.16 1.34

Table 5.16: M2.4 Subjective evaluation of the comprehensibility of the SPE concepts

CHAPTER 5. RESULTS 97

were the different solutions of SPE and the way to handle distributed systems. The latter was
the only concept with an average grade of less than 0.

The help of the Palladio role model for the comprehensibility was assessed in question 8. Here,
16 participants stated that the role model helped to understand the procedure model, 2 stated
that it did not. Thus, 0.89 % say that it helped.

Finally, I asked the participants in question 30 which approach was easier to understand. Here,
12 participants named Palladio and only 4 SPE. Although more problems were overall present
for Palladio, this fitted the result that the SPE methodology itself (in contrast to the tool) resulted
in more problems than the Palladio methodology.

From metric M2.1: Problems with the specifications of distribution functions
For the Media Store system, no errors in the specification of distribution functions were vis-
ible in acceptance tests, question protocol and final models. For the Web server system, two
rejections in the acceptance test were (among other things) due to wrong specifications of dis-
tribution functions. In both cases, the students specified a probability mass function instead
of a probability density function. No questions were asked concerning the specification of the
distribution function and no such problems were found.

Metric M2.5: Subjective evaluation of distribution functions by participants I
asked the participant whether the interpretation of the resulting distributions was harder than the
interpretation of the mean value of SPE (question 22) and whether the resulting distributions
were a better foundation for design decisions (question 23).

Only 4 participants stated that the interpretation of the resulting distributions was harder than
the interpretation of the mean value of SPE, whereas 15 denied this. All 18 participants who
answered the second questions stated that the resulting distributions were a better foundation
for design decisions.

From metric M2.1: Problems with specifying parametrisations The amount of
problems with specifying parametrisations can be directly taken from table 5.10. It became
visible that the specification and handling of parameters was the main problem source for the
Palladio methodology.

Metric M2.6: Subjective evaluation of parametrisation by participants First, I
asked the participants to evaluate the parametrisation and name advantages and disadvantages
(question 9). Here, 16 advantages and 17 disadvantages were named, partially being the same.
Note that the participants did not only evaluate the comprehensibility of the parametrisation,
but all aspects.

Named advantages were the explicit modelling of the usage profile and the dependencies, the
flexibility, variability and reusability, as well as the more intuitive modelling.

Named disadvantages were that it was time-consuming, that the specification seemed partially
redundant because everything needed to be specified (no automatisms), that the spreading of

98 CHAPTER 5. RESULTS

information hindered an overview, that component parameters were too hidden and their dis-
tinction to parametrisation was unclear, that one needed much effort to hand over parameters,
and that the resulting models were less maintainable.

Note that these advantages were partly named by multiple participants, and partly by one single
participants. There was a contradiction between the advantage of reusability, variability and
flexibility and the disadvantage of the models being less maintainable. Here, the participants had
differing opinions. However, this aspect is less a subjective issue than a objectively assessable
one. It could be answered with further experiments, in which the reuse of parametrised models
could be tested.

Next, I asked the participants to estimate further advantages and disadvantages of the parametri-
sation for larger and more complex systems (question 10). Here, only one participant named an
advantage, whereas 10 named a disadvantage. The named advantage was the easier change of
existing models. Named disadvantages were the higher effort for the manual parameter passing
(6 participants) and the resulting lack of clarity (4 participants), partly caused by the lack of
naming conventions for parameters (3 of the 4 participants).

Additionally, I asked whether the parametrisation eased or hindered the specification of com-
plex branch probabilities, as needed for the bit rate conversion design option of the Media
Store system and the initial system of the Web Server (question 12). Here, 11 participants
stated that the parametrisation eased the specification of complex branch probabilities, and 5
participants stated that it hindered this specification.

Finally, I asked whether potential problems with the parametrisation were due to the concept
itself or rather due to the specific concrete presentation in the tool (question 16). Here, 3 par-
ticipants stated that it was a problem of the concept, and 7 that it was a problem of the concrete
presentation in the tools. 1 additional participant named both. 5 other participants stated that
the parametrisation was not problematic.

Subquestion 2.2: Are the tools usable?

From metric M2.1: Problems related to the usability Again, the amount of problems
with the usability of the tools can be directly taken from the tables 5.10 and 5.11. In average,
Palladio participants had 1.41 problems with the usability of the tools, thereof 0.57 during the
Media Store task and 2.25 during the Web Server task. The main problem source here was
the trouble of finding certain elements in the tool, and most problems resulted in questions and
were documented in the question protocol. 5 participants, for example, did not know where to
specify component parameters, other problematic areas were the usage profile and the compos-
ite diagram for the system. The participants using SPE had only 0.18 problems per participant
in average, thereof 0.11 during the Media Store task and 0.25 during the Web Server task.
Here, three problems occurred: First, a participant did not know where global parameters are
specified and asked. Second, a participant wrongly copied an execution graph which was de-
tected in the acceptance test. Third, a participant entered the demand for the encoding with a
comma instead of a dot for a floating point number, which increased the demand by factor 10.

CHAPTER 5. RESULTS 99

Advantages Disadvantages
The system can be modelled fairly accurately Complex
The system can be better imagined High initial modelling effort
Design alternatives only need to be modelled once High overall modelling effort
High flexibility Obscure
Eclipse plugin Many bugs
Good graphical modelling Complicated passing of variables
User friendly Confusing auto completion
Intuitive modelling using SEFFs Poor usability
Powerful because of reuse possibilities
Depicts clearly
Good for larger models
Clean modelling

Table 5.17: Metric M2.7: Subjective advantages and disadvantages of the PCM Bench

Advantages Disadvantages
Easy to use Inflexible
Fast initial modelling Less systematic

Imprecise
Simulation leads to strange results
GUI is old-fashioned
Bugs
Only for small designs
Hard to understand modelling of design alternatives

Table 5.18: Metric M2.7: Subjective advantages and disadvantages of the SPE-ED tool

Metric M2.7: Subjective evaluation of usability by participants In the evaluation of
the suitability of the tools, some participants only named advantages and disadvantages without
giving an overall opinion. In the following, the amount missing to a sum of 19 are the amount
of participants not giving an opinion.

14 participants stated that the PCM Bench was suited for predicting performance, none stated
the opposite. 20 advantages and 18 disadvantages were named. Table 5.17 presents some,
combining similar ones and omitting ones clearly related to the methodology, e.g. that the
approach is component-based.

For SPE-ED, 7 stated that the tool was suited, 3 stated that it was suited with limitations, and 2
stated it was unsuited. 9 advantages and 14 disadvantages were named. 7 of the named advan-
tages referred to the possibility to fast model the system. Table 5.18 presents some, combining
similar ones and omitting ones clearly related to the methodology, e.g. that the approach only
supports mean value analyses.

When asked to compare the tools (question 32 in qualitative questionnaire, see appendix B.4.3),
10 participant stated that they preferred to work with the PCM Bench, whereas 4 stated that
they preferred to work with the SPE-ED tool. The reasons for the participants favouring SPE

100 CHAPTER 5. RESULTS

were the faster predictions (3 participants) and easier use (1 participant). For Palladio, the
participants named the higher accuracy of the models (3 participants), higher user-friendliness
(4 participants), that it was more intuitive (1 participant), and more trust (1 participant).

Finally, I asked whether it would be helpful to add a textual concrete syntax for the PCM, e.g. a
kind of pseudo code for the SEFFs, for some model parts and if yes, which model parts should
be changed (question 15). Here only 5 participants agreed that a textual concrete syntax would
be helpful, and named the SEFF (2 participants), the parametrisation (1), types and signature
(1), and the allocation diagram (1).

Subquestion 2.3: What are further reasons?

To answer this question, I looked at the questions specifically asked to detect further reasons
and analysed the answers given for other questions.

I asked for suggestions how to improve both the approaches and the tools. For Palladio (question
17), the answers are given in appendix C.4.1, for SPE (question 21) in appendix C.4.2, both in
their original German phrasing.

For Palladio, all suggestions for improvement concern the tool, like a better support for the
specification of parameters, better auto completion, a textual concrete syntax, better copy &
paste possibilities, bug fixing, and more documentation. These issues were already covered in
other metrics.

For SPE, most suggestions for improvement concern the tool, too, like usability in general, a
more modern GUI and a better support for distributed systems. However, there were suggestions
not related to the tool, namely less abstraction from the software and not only conducting mean
value analyses.

Furthermore, I asked whether the participants have more trust in the predictions of one ap-
proach, if yes, which approach and why in question 29. Here, 16 participants stated that they
had more trust in Palladio, 1 stated that he had the same trust in both and 2 stated that they
trusted neither of the approaches. The answers in German to the why question are given in the
appendix C.4.3. Here, the greater detail of Palladio, the use of distributions, and the accessible
source code and generated code were named.

Additionally, I asked which approach the participants preferred and why in question 31. 15
participants named Palladio and 2 SPE. The results for the why question are shown in appendix
C.4.4 (German). Participants preferring Palladio did so because it was closer to reality, more
modern, more powerful, more intuitive, and less frustrating, and because it was using the role
concept. Participants preferring SPE did so because it was easier and less complicated than
Palladio.

By analysing the answers and justifications in the qualitative questionnaire, no more reasons
were be detected.

CHAPTER 5. RESULTS 101

Whole task Avg Initial system Avg Avg
MS WS MS WS

dPal 374 285 329.5 203 191 197 263
dSPE 284 243 263.5 99 119 109 186
dPal

dSPE
1.32 1.17 1.25 2.05 1.61 1.81 1.41

Table 5.19: Metric M3.1: Duration of making a prediction

Evaluation of hypothesis 2: Some potential problems arise from a lack of
understanding and tool difficulty

The number of problems detected, being in average more than 4 per participant for both ap-
proaches, show that there certainly was a significant number of problems. Still, as also minor
problems were included, and as the quality of the created models was overall satisfactory, they
do not invalidate the applicability of the approaches.

As expected, problems arose from a lack of understanding of the methodology and tool diffi-
culties. Additionally, problems with the task description were detected.

5.1.3 What is the duration of predicting the performance?

Metric M3.1: Average duration of a prediction First, I evaluated metric M3.1 for the
whole experiment task, thus the duration dp includes the duration of analysing the initial system
and all design alternatives. In neither session, all participants were able to finish the respective
task within the extended time constraints, especially participants using Palladio. To still be able
to assess the duration of the whole task, I evaluated metric 1.1 for the results of k participants
who finished the task only. To not favour one approach, only the results of the k fastest partic-
ipants from the SPE group were evaluated, too, so that for both groups, the slower participants
were left out [Pre01].

Figure 5.1 shows the results of metric M3.1 for the four combinations of approaches and sys-
tems. The number of evaluated results is k = 3 for the Media Store (MS) and k = 6 for the
Web Server (WS).

To be able to get more data points, metric M3.1 was also evaluated for the analysis of the initial
system only without design alternatives. All participants (except the aforementioned excluded
ones) had completed the prediction for the initial systems. Figure 5.2 shows the resulting box-
and-whisker diagrams, including the time to read the exercise. Note the different x-axis scale
that is used in figure 5.2, as is intended to be compared to figure 5.1.

Table 5.19 shows the average metric M3.1 for all aforementioned combinations and lists the fac-
tors dPal/dSPE by which the duration of making the respective Palladio prediction was slower
than making the respective SPE prediction. The average factor of 1.41 was considerably close
to the expected value of 1.5. However, the variance over the different systems and scopes (initial
system only, whole task) was considerably high. The standard deviations of the factors given in
table 5.19 is 0.39.

102 CHAPTER 5. RESULTS
M

S
 P

al
M

S
 S

P
E

W
S

 P
al

W
S

 S
P

E

250 300 350 400

Time in minutes

Figure 5.1: Metric M3.1: Duration of whole task for both approaches and both systems

M
S

 P
al

M
S

 S
P

E
W

S
 P

al
W

S
 S

P
E

100 150 200 250 300

Time in minutes

Figure 5.2: Metric M3.1: Duration of the initial system only, for both approaches and both
systems

CHAPTER 5. RESULTS 103

Metric M3.2: Time needed to solve preparatory exercises Of the preparatory exer-
cises, 5 were concerned with practising the SPE approach and 5 were concerned practising the
Palladio approach. The participants were asked to document how much time they spent on the
preparatory exercises. In average, they spent 20h 49min for the 5 Palladio exercises and 17h
25min for the 5 SPE exercises. Because the last of the Palladio exercises took the participants
8h 52min in average, I asked those participants who needed eight hours and more for the rea-
sons for that. They mostly mentioned problems with the tool, like error messages the reasons
could not be found for and bugs.

Metric M3.3: Subjective evaluation by participants on needed time and effort to
learn the approaches I asked the participant which approach needed more effort to learn
it in question 24 of the qualitative questionnaire. Here, 12 participants stated that Palladio needs
more effort to be learned, 5 named SPE and 2 stated that both are equally laborious to learn.

Evaluation of hypothesis 3: The duration for a Palladio prediction is 1.5 times
higher as the duration for an SPE prediction

For the initial system only, the duration for a Palladio prediction was in average even 1.81 times
higher. For the whole task, however, the duration for a Palladio prediction was in average only
1.25 times higher. In average, the duration for a Palladio prediction was only 1.41 times higher
in average as the duration for an SPE prediction.

I conducted Welch’s t-test [Wel47], which is suitable to compare two distributions that have
different variances, and which is available in the R tool [Dal03]. As a significance level, I chose
0.05. Thus, the p-value must be smaller than 0.05 to invalidate the null hypothesis of the test.
However, Welch’s t-test assumes that the samples result from a normal distribution, which is
unknown.

To assess the power of the results, I conducted a power analysis using power.t.test as
available in the stats package version 2.5.0 [Dal07] for the R tool version 2.5.0. Usually, a
power of 0.7 minimum or better 0.8 is wanted for statistical tests (cf. [Sac97, p.198]).

For the initial system only, the null hypothesis was that duration for a Palladio prediction is
1.5 times higher as the duration for an SPE prediction, i.e. that the expected value µ for the
durations differs as follows: µPal = 1.5µSPE . The p-value for a two-sided test was 0.154. As
this value was larger than 0.05, the null hypothesis could not be invalidated with a significance
level of 0.05. Still, the small p-value suggested that the null hypothesis might be wrong. The
power of the test as calculated with power.t.test was 0.927 for the Palladio samples and 1
for the SPE samples.

I also tested for the inequality itself, with the null hypothesis that a Palladio prediction takes
more than 1.5 times longer than an SPE prediction: µPal > 1.5µSPE . Here, the resulting p-value
was 0.923. For the alternative hypothesis that µPal < 1.5µSPE , the p-value was only 0.077.
Thus, it is unlikely that the duration of a Palladio prediction is less than 1.5 times higher as the
duration for an SPE prediction, with a significance level of more than 0.1. The corresponding
one-sided power analysis yielded a power of 0.965 for the Palladio samples and 1 for the SPE
samples.

104 CHAPTER 5. RESULTS

For the whole system, the hypothesis µPal = 1.5µSPE results in a p-value of 0.009 and can be
rejected. The power calculated here is 0.654 for Palladio and again 1 for SPE. Here, the power
is very low for Palladio, less than 70% should usually not be accepted [Sac97, p.198].

Testing for the inequality µPal < 1.5µSPE , the p-value is 0.996, thus the inequality is very
likely. Having this result, I tested the hypothesis that the duration of a Palladio prediction is
even less than the duration for an SPE prediction: µPal < µSPE prediction. This hypothesis
can be rejected with a p-value of 0.012 at a 0.05 significance level, thus, the duration of a
Palladio prediction is very likely to be higher than the duration for an SPE prediction, if not
as high as 1.5 times. The corresponding one-sided power analysis yields a power of 0.775 for
Palladio and 1 for SPE. Thus, the power is rather low for the small Palladio sample size, but
still acceptable [Sac97, p.198].

5.1.4 What are the reasons for the duration?

Metric M4.1: Duration of the single steps Because not all participants finished the
whole tasks, the average of the duration could not be calculated straightforward. Especially for
the Media Store and Palladio, only two participants provided data for all activities for all parts
of the task. Just averaging the existing data would result in longer average durations for those
variants that have been worked on by all participants. As a result, I present the original raw data
in appendix C.2. Here, I summarise several characteristic numbers, with changing underlying
sample sizes.

First, I look at the duration of the predictions for the different variants of the system. Generally,
I only look at participants who completed the predictions of all variants, because of the afore-
mentioned reasons. I include all participants that provided the duration for the variants, even if
they did not give detailed time steps for each activity.

For the Media Store and Palladio, however, participant p6 only omitted the prediction of variant
vMS

4 , because he had to leave after the originally scheduled time. Thus, the aforementioned
reasons did not apply. The inclusion of participants not giving detailed information on the
activities duration applied to participant p3. The resulting box plot is shown in figure 5.3(a).

For the Media Store and SPE, participant p9 did not provide durations for the later variants
and his results were omitted. Participant p13 did not complete the prediction for variant vMS

4

and was not included. Here, the aforementioned reasons apply because he did not finish within
the extended time constraints. All other participants results were included in this analysis. The
resulting box plot is shown in figure 5.3(b).

For the Web Server and Palladio, the two participants p11 and p15 did not finish within the
extended time constraints and their results were not included. For the Web Server and SPE,
all results were included. The two resulting box plots are shown in figure 5.4, with Palladio on
the left-hand side and SPE on the right-hand side.

Note that in this comparison, I used a different number of data point for the different combina-
tions of system and approach. Because of this, the absolute results, i.e. the absolute durations,
could not be readily compared. However, assuming that the proportion of the duration for

CHAPTER 5. RESULTS 105

V0 V1 V2 V3 V4 V5

0
50

10
0

15
0

20
0

25
0

Variant

T
im

e
in

 m
in

ut
es

(a) Palladio

V0 V1 V2 V3 V4 V5
0

50
10

0
15

0
20

0
25

0

Variant

T
im

e
in

 m
in

ut
es

(b) SPE

Figure 5.3: Metric M4.1: Duration of the prediction for the different variants of Media Store

V0 V1 V2 V3 V4 V5

0
50

10
0

15
0

20
0

25
0

Variant

T
im

e
in

 m
in

ut
es

(a) Palladio

V0 V1 V2 V3 V4 V5

0
50

10
0

15
0

20
0

25
0

Variant

T
im

e
in

 m
in

ut
es

(b) SPE

Figure 5.4: Metric M4.1: Duration of the prediction for the different variants of Web Server

106 CHAPTER 5. RESULTS

initial system and the variants did not change, I could compare the factors (duration variant
x):(duration initial system) over the different approaches and systems.

For Palladio, the median duration of the predictions of the Media Store variants v1 and v4 is
about a third of the median duration for the initial system, and even less for the other variants.
For the Web Server, this factor was about a fifth for variant v1 and variant v3 and even less for
the other variants.

For SPE and the Media Store, this factor was about 0.85 for variants v3 and v4 and less for the
other variants. For the Web Server, the factor was 0.45 for variant v4 and less for the other
variants.

Metric M4.2: Breakdown of the duration to activities I first looked at the break down
of the duration as measured in metric M3.1 into the different activities for the initial system
only (scope is), because it represented a creation of the models from scratch and I had more
data points for it.

Reading (ra) was only an initial reading of the task description, all participants had to read
excerpts of the task again while modelling, which was included in the modelling time. For
SPE, the participants did not give a separate time for the annotation of resource demands (rd) ,
but included this time into modelling of the control flow (cf) or into modelling of the resource
environment (re). Each experiment task contained two usage profiles, so the duration of their
modelling, searching for errors and analysing was measured separately for each usage profile
and then was averaged.

Figure 5.5 shows the break down of the duration of making a prediction for the initial system,
without considering the duration of the evaluation of the design alternatives (scope is). It is
visible that the entire modelling, including cf , rd, re, and up, was the major activity for both
approaches, as expected.

However, participants using Palladio spent much more time on searching for errors, i.e. fixing
wrong or missing parameters: dactPal,err,is,MS = 28% (Media Store) and dactPal,err,is,WS =
20% (Web Server). The participants using SPE only spent dactSPE,err,is,MS = 2% (Media
Store) and dactSPE,err,is,WS = 6% (Web Server), respectively, of their time on searching
for errors. The proportion of the analyses was constant for the approaches and differed only
in the system under study: For the Media Store system, participants using Palladio spent
dactPal,ana,is,MS = 11% of their time in average for the analyses, participants using SPE
dactSPE,ana,is,MS = 9%. For the Web Server, participants of both groups used in average
dacta,ana,is,WS = 4%, a ∈ A of their time for the analyses.

The duration of the whole task, i.e. modelling all design alternatives (scope wt) was also com-
posed down to these aspects. The duration of reading dacta,ra,wt was relatively smaller, because
it had just been queried once at the beginning of the task. The other ratios of modelling, search-
ing for errors and analysis stayed approximately the same. As the corresponding chart for all
alternatives is fairly obscure due to many measured durations, it does not depict the results very
well and I omit it here.

Moreover, I identified the main time consuming activity of the different variants for the different
systems and approaches by looking at the durations documented by the single participants. I list

CHAPTER 5. RESULTS 107

150

200

250
UP2 analysis

UP1 analysis

UP2 searching for errors

UP1 searching for errors

Time in minutes

0

50

100

Media Store Palladio Web Server Palladio Media Store SPE Web Server SPE

UP2 modelling

UP1 modelling

Resource environment modelling

Resource demand modelling

Control flow modelling

Reading

Figure 5.5: Metric M4.2: Break down of the duration for the initial system

Palladio SPE
v0 Modelling, Searching for errors Modelling
v1 Modelling, Analysis Modelling
v2 Modelling Modelling
v3 Modelling, Analysis Modelling, Searching for errors
v4 Modelling Modelling
v5 Analysis Modelling

Table 5.20: Metric M4.2: Main time consuming activities for the Media Store

the activities that participants used the most time on for each variant, and order them according
to how many participants spent the most time on the activity. Table 5.20 summarises the findings
for the Media Store and table 5.20 for the Web Server. Most participants spent the most time
on modelling the systems. However, there are participants that spent more time on searching
for errors for both approaches. For Palladio, there are also participants who spent the most time
on the analysis of a system, especially for the broker alternative (v5) of the Media Store, where
all participants using Palladio spent the most time for the analysis.

Metric M4.3: Subjective evaluation by participants on reasons for the needed
time First, I asked which approach was more time-consuming to apply and why (question 25).
16 participants named Palladio as being more time-consuming to apply, and only 3 named SPE.
The given reasons were the more detailed modelling (6 participants), the initial modelling effort
(2), the effort to first define the components (i.e. the RDSEFFs) (1), the higher complexity (2),
the SEFF modelling (1), the more difficult use of the tool (1), and the ”clicking-intensive” tool
(1). Two participants naming SPE mentioned the worse reuse capabilities of the SPE models.

To assess the influence of the used tool, I asked which tool was faster to use (question 27). 3
participants named the PCM Bench and 13 the SPE-ED tool.

108 CHAPTER 5. RESULTS

Palladio SPE
v0 Modelling, Searching for errors Modelling
v1 Modelling Modelling
v2 Modelling Modelling
v3 Modelling Modelling, Searching for errors
v4 Modelling Modelling
v5 Modelling Modelling UP2

Table 5.21: Metric M4.2: Main time consuming activities for the Web Server

Advantages (No of participants) Disadvantages (No of participants)
Easy to model (5) Not so precise (1)
Fast (5) Loss of control (1)
Transparency during modelling (2) Less flexible (3)
Elegant (1) Not applicable for complex cases (1)
Not manually (1) Unclear what happens (1)

Less practical relevance (1)

Table 5.22: Metric M4.3: Subjective advantages and disadvantages of the automated transfor-
mation named by the participants

For Palladio, I asked whether the parametrisation eased the specification of the SEFFs or
whether it was an additional effort (question 11). 5 participants stated that it actually eased
the modelling, and 10 participants stated that it was an additional effort.

Furthermore, I asked the participants to assess the automated transformations available in Pal-
ladio, as used the broker lookup alternative. Again, the participants were asked to name advan-
tages and disadvantages. Table 5.22 shows both and the number of participants stating them.

Evaluation of hypothesis 4: The most time-consuming activity is the modelling

The results indicate that hypothesis 4 can be held: The participants spent the largest part of
their time on modelling the systems, for both the modelling of the initial system and the whole
system.

5.2 Discussion of the Results

In the following, I discuss the results of the GQM metrics. Firstly, I look at the differences
of the approaches that became visible in the results. After that, I consider the quality metrics
that have been specifically asked for the Palladio approach because they had no counterpart for
SPE. Finally, I discuss the differences of the two systems in the two experimental tasks, Media
Store and Web Server. For the comparison of the approaches and the systems, I first look at
the differences of the quality of the created models and then at the differences of the duration.

CHAPTER 5. RESULTS 109

5.2.1 Differences of the Approaches

Quality of the created models

With the given measures, the quality (in terms of similarity to the reference model) of the
prediction models created with SPE and Palladio was similar. With SPE, more participants were
able to identify the best design options (metric M1.3). On the other hand, for Palladio, there
was slightly less deviation from the response time of the prototype model (metric M1.1) and
participants created better total rankings (metric M1.4). The quality of the Palladio distributions
as measured with the K-S test in metric M1.2 is discussed at the end of this section, although it
could not be compared to SPE results.

As an acceptance test was used in the experiment design, the numbers above did not reflect the
quality of the models as the participants would have created them without help. Thus, the similar
quality can be partly explained with the acceptance test. To find differences of the approaches,
I had to look at the problems documented during the experiment, i.e. metric M2.1. From these,
I could conclude how well the models would have been created without any possibility to ask
or without an acceptance test. Overall, a little more problems were encountered using Palladio
with 4.85 problems per participant as opposed to 4.44 problems per participant with SPE (c.f.
table 5.10 and 5.11). Most problems were rated intermediate, followed by major for Palladio
and minor for SPE. Overall, I conclude that Palladio, including both method and tool, was
harder to use for the participants than SPE, because it led to more problems.

Still, both approaches led to a good quality of the created models in terms of similarity to the
reference models. For Palladio, the complexity of the meta-model was well hidden in the tools
and did not strongly influence the comprehensibility.

Problems with the methodology only If I exclude the influence of the tool itself, i.e.
the problems related to the use of the tool, error messages and bugs, and only look at problems
with the methodology itself, the picture changes. The participants using Palladio only had 2.58
problems related to the method as opposed to 4.21 for SPE. This suggests that an improvement
of the Palladio tool might change the results in further experiments and that the methodology
itself was even better applicable than the SPE methodology.

The qualitative evaluation also supported these findings, because it suggests the Palladio method-
ology having a better comprehensibility. The process of both approaches was equally well un-
derstood, as was the Palladio meta model. However, for Palladio most concepts were graded
better than 1, only the comprehensibility of the parametrisation was problematic, although still
better than 0. Even the use of distributions was not considered a problem, but even an advan-
tage. For SPE, most concepts were graded between 0 and 1, with the comprehensibility of
distributed systems being even worse than 0. Thus, the participants subjectively understood the
Palladio concepts better than the SPE concepts. This fits the fact that most participants stated
that the Palladio approach was easier to comprehend.

A new aspect found by looking for further reasons is Palladio being more ”modern”. This might
cause the participants to be biased towards it and be more inclined to put effort in learning it.

110 CHAPTER 5. RESULTS

This might explain why there were more problems with Palladio (especially with the tool) but
the participants nonetheless prefer it.

However, the qualitative evaluation by the participants must be considered warily. Especially if
the participants were biased because of influence of the experimentators, the subjective evalua-
tion could be misleading. However, the results complied with the results of the objective metric
M2.1, and might thus represent a fairly unbiased opinion.

Occurrence of the problems Interestingly, for Palladio, most of the problems occurred
during the experiment and led to questions. For SPE, most problems stayed in the final models.
Note, however, that these problems were mostly minor or intermediate, because they did not
affect the response time very much. Additionally, participants using SPE had twice as many re-
jections in the acceptance test (c.f. metric M2.2). Thus, assuming internal validity, the Palladio
method and tool helped the participant to avoid errors better than the SPE tool did, where errors
were only detected in an acceptance test. In a real application of the approaches, the users can
find support for their problems if they notice them themselves. Thus, the Palladio problems
would be noticed, but SPE problems would remain unnoticed and decrease the quality of the
created models. However, it is unclear whether the internal validity was strong enough to draw
this conclusion, see section 5.2.3.

Moreover, the interpretation of the results from the tools influences the quality of the prediction
in terms of decisions made based on them. Here, there have been only some errors for both
approaches. Thus, the interpretation was not particularly problematic. However, participants
using Palladio had 66% more interpretation errors than participants using SPE. As 4 participants
stated in the qualitative questionnaire that the interpretation of the resulting distribution was
harder than just evaluating a mean value, this might be an influencing factor. However, the
interpretation was considered unproblematic by most participants. Overall, the interpretation
was harder using Palladio, but not problematic for both approaches.

Duration for a prediction

Using SPE, the predictions could be done faster. Using Palladio took 1.17 to 2.05 times longer,
depending on the system under study and the nature of the task. The proportion was higher if
only the prediction of the initial system is looked at. However, this was not a realistic setting,
because a usual task in performance engineering is the comparison of several alternatives. For
the evaluation of several alternatives, using Palladio only takes 1.17 or 1.32 times longer. To a
certain extent, this could be explained by the reuse character of this scenario: For the prediction
of design alternatives, the EGs of SPE were copied and adapted, which was faster than creating
new models from scratch, but still a considerable effort. However, for Palladio, the RDSEFFs
of the most components could be reused as is due to their parametrisation, and only single
components, their assembly and allocation needed to be changed. Thus, the evaluation of design
alternatives needed a relatively lower effort with Palladio than with SPE, if compared to the
effort for modelling the initial system.

These findings also fit the results of the subjective questionnaire. Most participants stated that
Palladio was more time-consuming. Partly this was said to be caused by the higher initial

CHAPTER 5. RESULTS 111

modelling effort, which fits the numbers above. Partly, it was also said to be based on the
higher complexity of the Palladio models, suggesting that the modelling will always be more
time-consuming.

The extra time needed for making Palladio predictions could be traced back to the duration of
searching for errors to a certain extent. This might be partly caused by the immaturity of the tool
and the limited understandability of the error messages. Using Palladio more problems occurred
during creation of the model and searching for errors before the simulation, but the number of
acceptance tests after simulation was lower than with SPE. The PCM-Bench performs more
inconsistency checks on the models than the SPE-ED tool, therefore predictions with the PCM-
Bench seem more reliable. However, both tools still allow wrong parameter settings or wrong
modelling.

Additionally, participants using Palladio spent more time for the analysis of the results. A
part of this higher effort could be traced back to the used analysis method for the models: For
Palladio, the simulation in the tool itself took several minutes per design alternatives, whereas
the SPE analytical solution was available within seconds.

Still, the participants using SPE also needed less time to model and analyse the systems. How-
ever, in this experimental setting, not considering potential reuse, SPE was favoured, because
it allowed to create the models on a higher abstraction level and thus faster. The resulting SPE
models were not meant for reuse, whereas this is the case for Palladio models. Furthermore,
existing components were not reused in the systems under study and no code was generated
from the resulting Palladio models, which might have affected the combined effort of design
and implementation.

Duration of predicting variants Interestingly, the relative time needed to make predic-
tions for the different variants of the systems differed for the both approaches. Next to the
initial system, which took the longest for both approaches, the variants were differently time-
consuming, as visible in the figures 5.3 and 5.4.

For the Media Store and Palladio, the most time-consuming prediction were the introduction of
a cache component (vMS

1) and the change of the bit rate (vMS
4). Here, vMS

1 had a lower average
duration but also a higher maximum. For SPE, the introduction of a second server (vMS

3) and the
change of the bit rate (vMS

4) were the most time consuming, with vMS
3 having a higher median

and a higher maximum. Thus, the variant with the most complex control flow, i.e. the change
of the bit rate vMS

4 was complex for both alternatives. For Palladio, the participants needed to
handle several parameters. For SPE, the probabilities and the demand for the different control
flow alternatives had to be assessed.

For SPE, the allocation of some components to a second server (vMS
3) was particularly time-

consuming, because it involved creating new scenarios, several solutions and the inserting of the
resulting values in the model of the first server. For Palladio, the cache introduction (vMS

1) was
also time-consuming. Here, participants needed to create a second system diagram. However,
this was also the case with the introduction of a database connection pool (vMS

2), which was
less time-consuming to analyse. Maybe vMS

1 took more time because it was the first variant
to analyse, and the participants learned to handle the situation for later variants. This might
indicate a threat to internal validity.

112 CHAPTER 5. RESULTS

In average, the duration was smallest for variant vMS
5 , i.e. the usage of a broker for component-

lookups, for the Palladio approach, followed by variant vMS
3 , which is the allocation of some

components to a second server. The reason probably was that both variants only needed slight
changes: For vMS

5 , only the simulation settings needed to be changed, which all participants
realised. For vMS

3 , only the allocation diagram needed to be done anew. For SPE, the duration
was smallest for variant vMS

5 , too, followed by variant vMS
1 , i.e. the introduction of a cache. For

vMS
5 , only performance annotations were needed, and the structure of the control flow remained

the same. For vMS
1 , a single branch node needed to be added to the control flow with the

respective performance annotations.

For the Web Server and Palladio, the introduction of a cache for dynamic content (vWS
1) and

the paralleled logging (vWS
3) were together most time-consuming to analyse. For both, new RD-

SEFFs had to be created. For the cache, the use of parameters might have been time-consuming,
whereas the paralleled logging required some effort to change the control flow in the main com-
ponent, the MediaStore component. For SPE, the allocation of some components to a second
server (vWS

4) was most time-consuming, followed by the introduction of a thread pool (vWS
5)

in considerable distance. Here, again the creation of several scenarios and the insertion of the
values into the main scenario was time-consuming. For the thread pool, the participants had to
estimate the waiting time for a thread manually, which took a considerable amount of time.

The variant with the fastest prediction for the Web Server using both approaches was the
use of a broker component (vWS

2). Again, for Palladio only the simulation settings had to
be changed. For SPE, the participants needed to change some performance annotations. The
absolute duration was similar, which might be caused by the longer duration of simulation for
Palladio. For Palladio, the next fastest variants were the introduction of a thread pool (vWS

5) and
the allocation of some components to a second server (vMS

4). Here, the built-in mechanisms
of passive resources and allocation diagrams, respectively, could be used. For SPE, the next
fastest variant were the paralleled logging (vWS

3) and the introduction of a cache for dynamic
content (vWS

1), in that order. For the first, only performance annotations were changed, because
the parallelism could not be expressed otherwise. For the second, the control flow needed to be
changed.

Interestingly, the Web Server variants that had a long duration for SPE were the variants
quickly analysed using Palladio and the other way around. Thus, Palladio required more effort
to analyse a variant including the change of control flow, i.e. the creation of new RDSEFFs.
Nevertheless, SPE requires more effort for the constructs not directly supported, as passive
resources and distribution of components.

Overall, variants could be analysed relatively faster compared to the duration of the initial sys-
tem with Palladio. Looking at the absolute values, the average duration for predicting per-
formance of a variant was also smaller for Palladio. However, as different sample sizes were
compared, the observed result only indicate that variants could be analysed faster with Palladio.
I do not present absolute quantitative values here, as they might be misleading because of the
different sample size.

Additionally, it was observed that variants with slight changes to control flow and performance
annotations were analysed faster with SPE, whereas, unsurprisingly, Palladio enabled fast pre-
dictions for variant using built-in concepts like broker lookup and passive resources. Complex

CHAPTER 5. RESULTS 113

control flow changes like in the bit rate variant of the Media Store (vMS
4) were relatively time-

consuming for both approaches, compared to the other variants.

Preparation effort Next to the duration of an actual performance prediction, I also looked
at the time needed to learn the approaches. Here, the participants spent 20% more time on the
preparatory exercises for Palladio, which suggests that learning the Palladio approach needs
more effort. Additionally, 12 participants named Palladio as being the approach requiring more
effort to be learned, whereas only 5 named SPE.

Palladio specific results

Specific to the Palladio approach are the use of distribution functions, both as input and output,
and the parametrisation of the models. All three do not have a counterpart in SPE. Here, I
first look at another aspect of the quality of the created model, namely the K-S test as defined in
metric M1.2. Then, I consider the results of the metrics for the reasons of the quality specifically
targeting Palladio specifics.

The analysis of the predicted distribution function of Palladio shows that only few distributions
passed the K-S test (metric M1.2), and therefore that most distribution probably result from a
different distribution function than the one underlying the prototypical distribution. However,
the applicability of the K-S test could be doubted for the assessment of the quality of the models.
Looking at the graphical representation of the distributions, most are very similar. Additionally,
they often have a similar mean value (see metric M1.1).

As mentioned before, it had to be taken into account that the sample sizes of the simulated data
was very large, containing thousands of data points. A large sample size leads to a high power of
the KS-test, but also leads to small differences causing a rejection of the null hypothesis [Sac97,
p.197]. Thus, the high rejection rate here might be due to rather small differences in the actual
underlying distributions, which had a large influence on the results because of the large sample
size. To not threaten the conclusion validity by ”fishing” for a fitting test, I did not look for
another test to be applied.

Thus, a failed K-S test means that the distributions were unlikely to result from exactly the
same underlying distribution, but it does not mean that the distributions were not similar to
each other. The left-hand side of figure 5.6 shows two distributions with a p-value of 4 · 10−5,
thus not passing the test. Undoubtedly, the distributions are nonetheless very similar.

Additionally, the resolution of the K-S test for low p-values is too low, assigning a p-value of 0
to distributions that look similar as well as to completely different distributions. For example,
the two distributions depicted on the right in figure 5.6 have a p-value of 0 for being from the
same underlying distribution, as well two very different distributions would have. However,
there is a certain similarity between the two distributions on the right in figure 5.6, although less
than for the distributions on the left-hand side of the figure.

Overall, the K-S test was only passed if the distributions were likely to result from exactly the
same distribution. For the distributions predicted in this experiment, this was seldom the case,

114 CHAPTER 5. RESULTS

(a) p-value of 4 · 10−5 (b) p-value of 0

Figure 5.6: Example distributions with K-S test p-value of 4 · 10−5 and 0

24% pass the test at a 5% significance level. Thus, 24% of the models create were probably
identical to the reference model (exept for naming differences and the like).

Next, I investigate the influence of the Palladio characteristics, namely distribution functions
and parametrisation, on the quality of the created models. Here, the specification of the distri-
bution functions was mostly unproblematic. Only two rejections in the acceptance test for the
Web Server were partly due to a wrong specification of the distribution. Additionally, only
some participants gave bad grades to the distribution concept in the qualitative questionnaire.
Thus, I conclude that the participants could handle the specification of distribution functions
well.

The specification of the parametrisation, however, was much more problematic. As shown in ta-
ble 5.10, the parametrisation of the performance models was the main problem the participants
had. Especially the specification of component parameters were problematic. As component pa-
rameters were only covered in the lecture and not in the preparatory exercises, a lack of practice
might add to this result. Although the parametrisation in general was listed as being a problem
of the approach, the presentation of the parametrisation in the tool also might have influenced
this result. Many problems were related to the concrete realisation of the parametrisation con-
cept rather than the concept itself. For example, participants had problems to understand how
to return parameters or they had problems with specifying the parameters characterisations (cf.
appendix C.3.1).

The qualitative findings support this. The parametrisation concept was by far the lowest graded
concept. Also, slightly more disadvantages than advantages of this concept were named. The
use of parameters was said to be time-consuming and obscured the models. It was even stated
that the parametrisation made the models less maintainable, which contradicted the reuse goal
of the concept. For more complex systems, the use of parameters was even estimated more

CHAPTER 5. RESULTS 115

problematic. However, it is unclear whether the participants were able to distinguish the concept
and the realisation in the tool. Additionally, the fact that they assessed the parametrisation as
being less maintainable might result from a lack of understanding.

However, there where also many advantages of the parametrisation named, which showed that
the concept was partly understood and used in its intended way. Named advantages were the
greater flexibility of the models, the explicit modelling of dependencies and the more intuitive
modelling. Interestingly, about 2/3 of the participants stated that the use of parametrisation
helped handling complex branch probabilities, like for the bit rate reduction alternative of the
Media Store and the type of content for the Web Server. This partially contradicted the
opinion that parametrisation was worse for more complex systems, as these could be supposed
to have more complex dependencies on each other.

As most participants stated that the problems were a problem of the presentation in the tool (i.e.
the concrete syntax) and not of the concept itself, results might change if the concrete syntax
for parametrisation is changed in the future and further investigations take place.

5.2.2 Differences of the Systems under Study

Next to the different results of the approaches, I observed different results for the single variants
and thus for the systems under study.

Quality of the prediction models

I observed some significantly different results for the two systems for some quality metrics.
Firstly, the ratio of passed K-S tests is higher for the Media Store. Especially for UP1, 55%
of the distributions passed the K-S test for the Media Store, whereas 0% passed the test for the
Web Server. There were not particularly more errors in the final models for the Web Server,
so I assume that the reason was the task itself. However, which of the differences of the task
caused the deviation is unclear.

Additionally, the ranking for UP1 and the Web Server was more error prone and let to a higher
permutation score than UP1 and the Media Store. As the score was normalised, the lower
number of classes for the Media Store could not be the reason. The metric was defined to cope
with different numbers of classes and therefore different number of clusters. The underlying
reason might be connected to the reason for the aforementioned K-S test differences, which
might be a reason that generally influences the quality of the models.

A further difference was the deviation of the predicted response times, which differed a lot for
the single variants of the systems and was overall higher for the Web Server. It showed that
the quality of the models also depended on the particular variant under study.

Relations of tasks and approaches

The deviation of the predicted response times also differed differently for the single variants
and approaches. For Palladio, partly other variants featured a high deviation than for SPE. For

116 CHAPTER 5. RESULTS

example, for the Media Store, the vMS
3 (Second server) featured the highest deviation with

Palladio, and vMS
4 (Re-encoding) the highest for SPE. For the Web Server, the vWS

2 (Broker)
featured the highest deviation with Palladio, and vWS

4 (Second server) the highest for SPE.

Another difference became visible in the problem analysis of Palladio. Here, more method-
ology problems occurred for the Media Store, whereas more tool problems occurred for the
Web Server. However, the number of problems was overall similar. A different, i.e. wrong,
classification of the problems for the different would be an explanation. However, the reader
can check the problems in the appendix C.3. Learning effects from the first experiment were
possible. Participants of the second group might have put more emphasis on the methodology
when preparing for the experiment because of some experiences with SPE. Other maturation
effects were possible, as well as inherent differences of the tasks.

For the Web Server, there were also more problem with the SPE methodology. Here, the
reason probably was the calculation of probabilities, as this was relatively time-consuming for
SPE and was not present at all in the Media Store. Interestingly, only some participants from
the first experiment group (using Palladio for the Media Store and SPE for the Web Server)
stated that the tasks have been too hard for their level of knowledge (Media Store: 3 of 10,
Web Server: 2 of 10). Participants of the other group said that both tasks were adequate.
This might be an indication that the Media Store task was harder when using Palladio, causing
more methodology problems, whereas the Web Server task with its probability calculation was
harder when using SPE.

As the probability calculations were a result of no parametrisation in SPE, it is sensible to
compare the parametrisation findings of Palladio at this point of the discussion. Interestingly,
for the Web Server the parametrisation of Palladio was less difficult than for the Media Store.
Less than half the number of problems occurred, and no major ones. Thus, the nature of the
Web Server task seems to be supported better by the Palladio parametrisation concept than the
nature of the Media Store task.

Duration for a prediction

Two major differences could be identified: For the Web Server, both the duration of mod-
elling the control flow and the variance of the overall duration was considerably higher for both
approaches.

The higher duration of modelling the control flow can be seen in fig. 5.5 and in comparing
figure 5.3(b) with figure 5.4(b). I could exclude that this results from the different number
of participants looked at, because the proportions remained the same if only the four fastest
participants’ results were considered. The duration of reading was lower for the Web Server,
possibly explaining a part of the increased modelling time: The participants might have read
the task description faster in the second session, and subsequently spent more time looking
up details during the modelling. However, as the modelling increases more than the reading
decreases, there was probably another influence. I suppose that the nature of the task lead to this
increase in modelling demand: The initial system of the Web Server included the modelling
of requests for HTML and multimedia as well as static and dynamic content. The control flow
was more complex: For Palladio, the parameters had to be correctly set. For SPE, one way to

CHAPTER 5. RESULTS 117

implement the probabilities for the different kinds of content given in the task description was
to convert them using Bayes’ Rule, which was considerably complex.

By contrast, the initial system of the Media Store was simpler. However, the variant v4, i.e. the
conversion of the bit rate of uploaded files, was more complex in the Media Store, requiring
the considerable use of parameters and the calculation of probabilities, respectively. This might
explain why the participants needed more time for the whole Media Store task (see fig. 5.1).

Additionally, the duration for the Web Server had a higher variance. For the whole task
(fig. 5.1), the higher variance could be explained with the larger number of data points: 6
participants were considered for the Web Server, for the Media Store only 3. However, for
the initial system, the number of results compared was similar. Here, the higher complexity of
the control flow might have led to a higher variance. Participants who quickly understood the
exercise were able to complete it fast, whereas other participants might have spent more time on
understanding the relations of the parameters. However, I can only speculate about the reasons.
Here, a more detailed observance of the participants monitoring thinking time and modelling
time could give further insights. However, such a study might be infeasible without a good tool
support.

Further differences

The average number of rejections before the acceptance level was reached was higher for the
Web Server. Here, again learning effects are a possible explanation. Possibly, the participants
had the experience that they can try earlier to get through an acceptance test to faster finish the
overall task. However, this is only a guess and could not extracted from the data.

A potentially significant difference was that for the Media Store, no interpretation errors oc-
curred, whereas several occurred for the Web Server. As the score was not normalised by
the number of clusters and only interpretation errors across cluster boundaries were counted,
however, the Media Store system was expected to have a lower number of errors. Still, some
errors are not a multiple of no errors, and other reasons might be present. As the observed effect
was not very large, the differences might also just be a result of chance.

5.2.3 Further Assessment of the Validity

Although precautions had been taken to ensure conclusion, internal, construct, and external
validity, the results were analysed for possible validity threats. For the construct validity, the
initially estimated rankings of the participants were assessed. The findings for conclusion,
internal and external validity are discussed in this section, too.

Conclusion Validity

The only statistically investigated hypothesis was hypothesis 3, as it was quantifiable. Here, the
effects were strong, and a large power could be achieved in most cases. However, the power

118 CHAPTER 5. RESULTS

analysis assumed that the samples result from a normal distribution, which was unknown. The
possible violation of the assumption poses a further threat to conclusion validity.

Internal validity

One identified threat to internal validity was the different capability of the participants. Based
on the number of problems that occurred, I assume that the groups were equally capable. For
both groups, more problems occurred for the Web Server system, and in both cases, slightly
more problems occurred using Palladio. The same is true for the number of rejected acceptance
tests itself: Here, both groups needed less tries when using Palladio or analysing the Media
Store than the other group. For the needed time, again no effects were visible. Here, partic-
ipants needed less time for the Web Server with alternatives or less time with SPE. For the
modelling of the initial system, however, there was no such simple relation. For Palladio, the
Web Server system was modelled faster than the Media Store, for SPE the Media Store sys-
tem was modelled faster. This might result from 1) the Web Server tended to be easier to
model with Palladio and the Media Store tended to be easier to model with SPE, or 2) the
group applying SPE to the Media Store and Palladio to the Web Server was faster with their
predictions. As the time to model the system with its alternatives as well as the number of
problems did not suggest a higher capability of this group, I assume that 1) is the reason for this
result, as already mentioned in the previous section.

Maturation effects were also identified as a potential threat. Although a cross-over design was
planned to avoid learning effects, there were hints for a certain learning effect in the experi-
ment, as the students were able to complete the second session faster than the first one. The
students were more familiar with the experiment setting in the second session. Indeed, 10 of 18
participants answered the respective question in the questionnaires positively.

There were no signs of tiredness towards the end of the tasks. Not more acceptance tries were
needed towards the end of the session for later design decisions.

Concerning a potential bias caused by the experimentators, no effects were observed. On the
contrary, I noticed that students complained about the tools of both approaches and my ques-
tionnaires showed no visible bias towards one method.

Finally, the help of experimentators is a threat to internal validity. Excluding questions related
to the experiment task, the participants using Palladio asked 4 questions on average, whereas
the participants using SPE only asked 1.6 questions. However, questions on the tool can prob-
ably not be affected by the help of the experimentators: If a participants was unable to solve
a certain problem with the tool, he could not continue without asking and being helped until
the problem is solved. Excluding the questions related to the tools, participants using Palladio
asked 1.61 questions on average and participants using SPE only asked 1.29 questions. Again,
this number can result from 1) the participants having more problems with Palladio or 2) the
experimentators giving answers for Palladio being more willing to help participants and com-
municating this. Also, participants using SPE needed 1.15 acceptance test in average (including
passed acceptances), whereas participants using Palladio only needed 1.07 acceptance tests.
This could result from 1b) either problems being more obvious with Palladio (as the tool does
more checking) or again 2).

CHAPTER 5. RESULTS 119

There were no further indicators to decide between 1) and 2). Only by assuming that the help
of the experimentators did not influence the outcome, some of the conclusions concerning the
occurrence of problems in the previous sections can be drawn. However, when working with
the conclusions, the here described threat needs to be kept in mind.

Construct validity

I asked the students to rank the design alternatives after initial reading before conducting the
modelling and analysis. Most students were not able to guess the best design alternative cor-
rectly. Therefore it can be argued that the decision for a specific design alternative was unclear
beforehand. However, for the Media Store, the majority of participants identified either one of
the two alternatives in the best cluster as being best. Still, the results were much better for the
predictions (cf. results of metric M1.3 in section 5.1.1).

For the rankings, the permutation score as defined in metric M1.4 was also measured for the
initially estimated rankings. Here, the score was again significantly higher than for the predic-
tions. Still, the average score was better than expected for random rankings. Some participants
estimated the correct ranking, less others the complete opposite. Thus, the participants were
able to partly identify the correct ranking, but there were still misestimations.

Thus, for the used design alternatives, an educated guess partly allowed to draw right con-
clusions, but the systematic approach resulted in a much better evaluation of the alternatives.
This result fit the requirements for the construct validity in terms of complexity of the design
decisions.

External validity

As there were differences as well as similarities between the system (e.g., as visible in figure 5.5,
overall duration vs. time to model the control flow), that were observed for both approaches and
both experiment groups, the conclusions drawn here can probably be generalised to the class of
similar systems. However, as a main similarity between the systems was their low complexity
compared to real applications, it is still unknown whether the findings can be generalised to
larger and more complex systems.

Another identified threat to validity was that participants had problems with the task description
that changed their way of solving the tasks. Although questions were asked concerning the task,
there is no evidence that the participants had particular difficulties. Most questions were asked
to clarify e.g. the control flow.

However, as the participants had certain problems with the methodology, the results are not
generalisable to experts with the tools, e.g. the inventors, who know every little detail of the
methodology and how to solve or work around problems. However, as actual users of the
methodologies are probably better represented by the participants than by experts, the results
may still be generalisable to these persons. Results may even be better generalisable to these
persons than findings in case studies found in publications (cf. section 3.1.2), because they were
often conducted by the authors and inventors of the particular approach.

6 Conclusions and Outlook

In this chapter, I first summarise this thesis in section 6.1. Then, in section 6.2, I present the
benefits and the lessons learned of this thesis. Finally, in section 6.3, I highlight open issues and
starting points for future work.

6.1 Summary

This thesis empirically validates the applicability of the performance prediction approach Pal-
ladio. As a reference for the applicability, I compared it to the well-known SPE approach,
which already has been applied in industry settings. I conducted the empirical study in form
of a controlled experiment, in which 19 computer science students took part. They predicted
the performance of two artificial component-based software systems each with five design al-
ternatives, and ranked the design alternatives based on the predicted response time. The metrics
measured the similarity of the created models to a reference model, assessed by comparing the
predicted response times, and the duration of making a prediction and of the preparation.

The results showed that with both approaches, performance predictions can be conducted by
the participants.

For the quality in terms of similarity to the reference model, it was found that the deviation of the
predicted response time to the response time predicted with the reference model was in average
about 8%, with slightly less deviation for Palladio. However, higher average deviations of up
to 38% and 20% were measured for single variants for SPE and Palladio, respectively. Overall,
the deviation differed significantly for different variants. Altogether, both approaches allowed
the identification of the best design option and the ranking of design options, in particular much
better than by estimating the ranking with an educated guess.

Different reasons were detected for the deviations from an optimal model. Problems related
to the task, the tools and the methodology were differentiated. For Palladio, more problems
occurred with the tool, whereas for SPE, more problems concerned the methodology. Addition-
ally, for Palladio, problems occurred during creating the models and resulted in asked questions,
whereas for SPE, problems were detected later in the acceptance test or in the final models.

The interpretation of the results was largely unproblematic for both approaches. Instead, the
most problematic factor was the parametrisation for Palladio, as shown by more problems mea-
sured by the metrics and the lowest grade for comprehensibility as assessed by the participants.
The most occurred problems for SPE was the overhead matrix. The modelling of distributed
systems, however, received the lowest grade for SPE.

121

122 CHAPTER 6. CONCLUSIONS AND OUTLOOK

Both tools were largely unproblematic, although for both, a number of disadvantages were
named that their developers may want to address in the future. The Palladio tool was preferred
by the participants, although the participants had more problems with it than with SPE-ED.

Looking at the duration for making a prediction, participants using SPE were overall faster, and
with Palladio, more participants were not able to finish the tasks. Interestingly, the durations
for single variants differed across the approaches: Variants that were very time-consuming for
Palladio were quickly solved in SPE and vice versa. The main effort for both approaches was
the modelling, but for Palladio also a lot of time was needed for analysis (as simulation was
used) and searching for errors.

Quality deviation and required effort were strongly influences by the variant under study, and
differently for the two approaches. Both approaches had advantages and disadvantages for
different variants. As the systems contained different variants each, this also lead to differences
in quality deviation and required effort of the averaged results for the systems. Furthermore, the
results for analysing the systems were different in the types of problems that occurred, which I
traced back to the different nature, e.g. the different complexity of the control flow.

6.2 Knowledge gained

With this thesis, the applicability of Palladio was successfully empirically validated. Further
insights into the factors that influence a successful application of the approaches have been
gained: In this study, the nature of the systems under study and even the different design alter-
natives greatly influenced the outcome. Developers of the two approaches can draw valuable
conclusions from this thesis and improve their approaches.

Additionally, the results help to understand the relation between the system under study and the
applicability in general. SPE is advantageous to model straightforward control flows without
too many parametric dependencies, and allows very fast predictions here. However, predictions
become more laborious if complex parametrisation and distribution of components are added.
Palladio, on the other hand, has a high initial effort to create even simpler models, as models
contain more information. However, the specialised constructs such as parameters, passive
resources and completions are advantageous if needed.

Beyond that, this thesis presented a design for an empirical study that compares two perfor-
mance prediction approaches on their applicability. This design can be also used to assess and
compare other performance prediction approaches. If conducted with the same experimental
setting, the results may even be comparable to the results of this thesis. Thus, with the experi-
ment design, a more general contribution to software engineering, more specific to the empirical
validation of performance prediction approaches, has been achieved.

CHAPTER 6. CONCLUSIONS AND OUTLOOK 123

6.3 Future Work

”Good scientific work poses more questions than it provides answers.”
(Prof. Dr. Roland Vollmar)

Several points of contact for future work and open issues are posed by this thesis.

Firstly, in this thesis, the predictions by the participants were compared to a predictions con-
ducted for a reference model to isolatedly assess the applicability of the approaches. An inter-
esting enhancement would be to further implement the studied systems and conduct a type I
validation for both Palladio and SPE. This allows (1) to assess which of the two approaches
was actually right with its predictions for Web Server and Media Store, and (2) to assess
how strong the deviations within the experiment groups were by assessing the deviation to the
real measurements. The deviations measured in this thesis are more serious if the reference
model very accurately reflects the measurements than if the reference model is deviating from
the measurements anyway.

Secondly, the relation between the actual system and the actual design alternative under study,
i.e. the actual scenario for a performance prediction, and the quality, duration and problems of
a prediction can be further investigated. Here, it would be interesting to identify the character-
istics of scenarios in which the two approaches are advantageous, and thus be able to generate
guidelines telling software architects when to apply which approach.

Finally, the reusability of the models could be further assessed, especially if reused by other
people. In this thesis, the maintainability of the models was evaluated subjectively by the par-
ticipants, which lead to contradictory results. Some participants stated Palladio is better main-
tainable, others stated the opposite (cf. section 5.1.2). Here, further experimentation (possibly
using the models created in this study) could lead to a better understanding of the reusability
of the models for both approaches. Additionally, consideration between effort and reuse can be
made.

List of Figures

1.1 Structure and line of reasoning of this thesis 5

2.1 Generic process of performance analysis (cf. [RH06, p.312]) 9
2.2 Queueing networks (from [SW02, p.136 and p.141]) 10
2.3 Influences on component performance (derived from [RBK+07, p.23]) 12
2.4 Palladio process (from [BKR07b]) . 13
2.5 Specification in the PCM (left) and graphical representation (right) of a random

double variable . 14
2.6 RDSEFF editor and response time histogram in the PCM Bench 17
2.7 The SPE Workflow (from [SW02, p.409]) . 22
2.8 Analysis views of the SPE-ED tool . 25

3.1 Experiment Principles (from Wohlin, [WRH+00, p.32]) 31
3.2 Metric M2.1: Problem dimensions . 44

4.1 Self-assessed programming skills and number of semesters of the participants . 54
4.2 Programming experience and experience with performance analysis of the par-

ticipants . 55
4.3 Visited courses . 55
4.4 Achieved points in preparatory exercises . 59
4.5 Experiment design . 60
4.6 Initial Media Store system . 62
4.7 Predicted mean response time of the reference for the Media Store system

using SPE-ED . 66
4.8 Predicted cumulated response time distribution of the reference for the Media

Store system and usage profile 1 using Palladio 66
4.9 Predicted cumulated response time distribution of the reference for the Media

Store system and usage profile 2 using Palladio 67
4.10 Inital Web Server system . 68
4.11 Two ways of modelling the Web Server usage profile 71
4.12 Predicted mean response time of the reference for the Web Server system us-

ing SPE-ED . 72
4.13 Predicted cumulated response time distribution of the reference for the Web

Server system and usage profile 1 using Palladio 73
4.14 Predicted cumulated response time distribution of the reference for the Web

Server system and usage profile 2 using Palladio 73
4.15 Experiment Principles (from Wohlin, [WRH+00, p.64]) 76

124

List of Figures 125

5.1 Metric M3.1: Duration of whole task for both approaches and both systems . . 102
5.2 Metric M3.1: Duration of the initial system only, for both approaches and both

systems . 102
5.3 Metric M4.1: Duration of the prediction for the different variants of Media Store 105
5.4 Metric M4.1: Duration of the prediction for the different variants of Web Server 105
5.5 Metric M4.2: Break down of the duration for the initial system 107
5.6 Example distributions with K-S test p-value of 4 · 10−5 and 0 114

List of Tables

2.2 Requirements for an approach to be comparable to Palladio 18
2.4 Evaluation of component-based approaches on requirements for comparability . 19
2.6 Evaluation of monolithic approaches on requirements for comparability 21

3.1 Research Goal . 35
3.2 Summary GQM Questions and Metrics . 37

4.2 Threats to internal validity . 78
4.4 Threats to external validity . 80

5.1 Metric M1.1: Relative deviation of the predicted response times for Palladio . . 83
5.2 Metric M1.1: Relative deviation of the predicted response times for SPE 84
5.3 Metric M1.2: Passed K-S Test ratio of predicted response time distribution and

reference : PassRatiov,u,Pal . 85
5.4 Metric M1.3: Average percentage of the correct design decisions of the initially

estimated design options rankings . 87
5.5 Clustering of Media Store results . 88
5.6 Clustering of Web Server results . 88
5.7 Metric M1.4 (redefined): Weighted average of the permutation score of the

design options rankings . 89
5.8 Metric M1.4: Average of the permutation score of the initially estimated design

options rankings . 89
5.9 Metric M2.1: Relative number of task related problems 91
5.10 Metric M2.1: Relative number of Palladio related problems 92
5.11 Metric M2.1: Relative number of SPE related problems 93
5.12 Metric M2.1: Relative number of problems separated by occurrence 94
5.13 M2.2 Average number of rejection before acceptance level is reached 94
5.14 M2.3 Average score for errors in interpreting results 95
5.15 M2.4 Subjective evaluation of the comprehensibility of the Palladio concepts . 96
5.16 M2.4 Subjective evaluation of the comprehensibility of the SPE concepts . . . 96
5.17 Metric M2.7: Subjective advantages and disadvantages of the PCM Bench . . . 99
5.18 Metric M2.7: Subjective advantages and disadvantages of the SPE-ED tool . . 99
5.19 Metric M3.1: Duration of making a prediction 101
5.20 Metric M4.2: Main time consuming activities for the Media Store 107
5.21 Metric M4.2: Main time consuming activities for the Web Server 108
5.22 Metric M4.3: Subjective advantages and disadvantages of the automated trans-

formation named by the participants . 108

126

List of Tables 127

A.1 Durations of solving preparatory exercises . CXXXVII

C.13 M2.1 Number of questions concerning the experiment task CCLXXI
C.15 M2.1 Number of questions concerning Palladio CCLXXII
C.17 M2.1 Number of questions concerning SPE CCLXXII
C.18 M2.1 Number of problems in the acceptance test concerning the experiment task CCLXXIII
C.20 M2.1 Number of problems in the acceptance test concerning Palladio CCLXXIII
C.22 M2.1 Number of problems in the acceptance test concerning SPE CCLXXIV
C.23 M2.1 Number of errors in the model concerning the experiment task CCLXXIV
C.25 M2.1 Number of errors in the model concerning Palladio CCLXXV
C.27 M2.1 Number of errors in the model concerning SPE CCLXXV

Bibliography

[ABC+06] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, December 2006.

[BCdK07] Egor Bondarev, Michel R. V. Chaudron, and Erwin A. de Kock. Exploring perfor-
mance trade-offs of a jpeg decoder using the deepcompass framework. In WOSP
’07: Proceedings of the 6th international workshop on Software and performance,
pages 153–163, New York, NY, USA, 2007. ACM Press.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal Ques-
tion Metric Approach. In John J. Marciniak, editor, Encyclopedia of Software
Engineering - 2 Volume Set, pages 528–532. John Wiley & Sons, 1994.

[BdWC04] Egor Bondarev, Peter H. N. de With, and Michel Chaudron. Predicting Real-Time
Properties of Component-Based Applications. In Proc. of RTCSA, 2004.

[Bec08] Steffen Becker. Simultaneous Model Transformations for QoS Enabled Compo-
nent Based Software Design. PhD thesis, University of Oldenburg, Germany,
2008. to appear.

[BFG+04] Steffen Becker, Viktoria Firus, Simon Giesecke, Wilhelm Hasselbring, Sven
Overhage, and Ralf Reussner. Towards a Generic Framework for Evaluat-
ing Component-Based Software Architectures. In Klaus Turowski, editor, Ar-
chitekturen, Komponenten, Anwendungen - Proceedings zur 1. Verbundtagung
Architekturen, Komponenten, Anwendungen (AKA 2004), Universität Augsburg,
volume 57 of GI-Edition of Lecture Notes in Informatics, pages 163–180. Bonner
Köllen Verlag, December 2004.

[BGdMT98] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and
Markov Chains. John Wiley & Sons Inc., 1998.

[BGMO06] Steffen Becker, Lars Grunske, Raffaela Mirandola, and Sven Overhage. Perfor-
mance Prediction of Component-Based Systems: A Survey from an Engineering
Perspective. In Ralf Reussner, Judith Stafford, and Clemens Szyperski, editors,
Architecting Systems with Trustworthy Components, volume 3938 of LNCS, pages
169–192. Springer, 2006.

[BJH+05] David A. Bacigalupo, Stephen A. Jarvis, Ligang He, Daniel P. Spooner, Donna N.
Dillenberger, and Graham R. Nudd. An investigation into the application of dif-

128

Bibliography 129

ferent performance prediction methods to distributed enterprise applications. J.
Supercomput., 34(2):93–111, 2005.

[BJHN04] D. A. Bacigalupo, S. A. Jarvis, L. He, and G. R. Nudd. An investigation into
the application of different performance techniques to e-commerce applications.
In 18th IEEE International Parallel and Distributed Processing Symposium 2004
(IPDPS’04), Santa Fe, New Mexico. IEEE Computer Society Press, April 2004.

[BK96] Falko Bause and Pieter S. Kritzinger. Stochastic Petri Nets: An Introduction to
the Theory. Vieweg-Verlag, 1996.

[BKR07a] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based Performance
Prediction with the Palladio Component Model. In Proceedings of the 6th In-
ternational Workshop on Software and Performance (WOSP2007). ACM Sigsoft,
February5–8 2007.

[BKR07b] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio Component
Model for Model-Driven Performance Prediction. Journal of Systems and Soft-
ware, 2007. to appear.

[BM03a] Simonetta Balsamo and Moreno Marzolla. A Simulation-Based Approach to Soft-
ware Performance Modeling. In Proceedings of the 9th European software engi-
neering conference held jointly with 11th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, pages 363–366. ACM Press, 2003.

[BM03b] A. Bertolino and R. Mirandola. Towards component based software performance
engineering. In Ivica Crnkovic, Heinz Schmidt, Judith Stafford, and Kurt Wall-
nau, editors, Proc. 6th Workshop on Component-Based Software Engineering:
Automated Reasoning and Prediction, ACM/IEEE 25th International Conference
on Software Engineering ICSE 2003, pages 1–6, 2003.

[BM04] Antonia Bertolino and Raffaela Mirandola. CB-SPE Tool: Putting Component-
Based Performance Engineering into Practice. In Ivica Crnkovic, Judith A.
Stafford, Heinz W. Schmidt, and Kurt C. Wallnau, editors, Proc. 7th Interna-
tional Symposium on Component-Based Software Engineering (CBSE 2004), Ed-
inburgh, UK, volume 3054 of Lecture Notes in Computer Science, pages 233–248.
Springer, 2004.

[BMDI04] Simonetta Balsamo, Moreno Marzolla, Antinisca Di Marco, and Paola Inverardi.
Experimenting different software architectures performance techniques: a case
study. In Proceedings of the fourth international workshop on Software and per-
formance, pages 115–119. ACM Press, 2004.

[BMIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
Model-Based Performance Prediction in Software Development: A Survey. IEEE
Transactions on Software Engineering, 30(5):295–310, May 2004.

[BR06] Steffen Becker and Ralf Reussner. The Impact of Software Component Adapta-
tion on Quality of Service Properties. Lóbjet, 12(1):105–125, 2006.

130 Bibliography

[BTJN03] D. A. Bacigalupo, J. D. Turner, S. A. Jarvis, and G. R. Nudd. A dynamic predic-
tive framework for e-business workload management. In 7th World Multiconfer-
ence on Systemics,Cybernetics and Informatics (SCI2003) Performance of Web
Services Invited Session, Orlando, Florida, USA, July 2003.

[CC79] Thomas D. Cook and Donald Thomas Campbell. Quasi-experimentation design
& analysis issues for field settings. Houghton Mifflin, Boston, 1979.

[CGLL02] Shiping Chen, Ian Gorton, Anna Liu, and Yan Liu. Performance Prediction
of COTS Component-based Enterprise Applications. In Ivica Crnkovic, Heinz
Schmidt, Judith Stafford, and Kurt Wallnau, editors, Proceeding of the 5th ICSE
Workshop on Component-Based Software Engineering: Benchmarks for Pre-
dictable Assembly, Orlando, Florida, May 2002.

[CM02] Vittorio Cortellessa and Raffaela Mirandola. PRIMA-UML: a performance vali-
dation incremental methodology on early UML diagrams. Sci. Comput. Program,
44(1):101–129, 2002.

[Dal03] Peter Dalgaard. Introductory statistics with R. Springer-Verlag, New York, USA,
corr. print. edition, 2003.

[DAL04] Jozo Dujmović, Virgilio Almeida, and Doug Lea, editors. WOSP ’04: Proceed-
ings of the 4th international workshop on Software and performance, New York,
NY, USA, 2004. ACM Press. General Chair Jozo Dujmović and Program Chair
Virgilio Almeida and Program Chair-Doug Lea.

[Dal07] Peter Dalgaard. Power calculations for one and two sample t tests.
http://stat.ethz.ch/R-manual/R-patched/library/stats/
html/power.t.test.html, 2007. last retrieved 2007-11-12.

[DES07] The DESMO-J Homepage, 2007.

[DHL96] Christiane Differding, Barbara Hoisl, and Christopher M. Lott. Technoloy pack-
age for the Goal Question Metric Paradigm. Technical report, University of
Kaiserslautern, AG Software Engineering, 1996.

[DRSS01] Reiner R. Dumke, Claus Rautenstrauch, Andreas Schmietendorf, and André
Scholz, editors. Performance Engineering, State of the Art and Current Trends,
volume 2047 of Lecture Notes in Computer Science. Springer, 2001.

[Ecla] Eclipse Foundation. Eclipse modeling framework homepage. http://www.
eclipse.org/modeling/emf/. last retrieved 2007-10-24.

[Eclb] Eclipse Foundation. Graphical modeling framework homepage. http://www.
eclipse.org/gmf/. last retrieved 2007-11-11.

[ER03] Albert Endres and Dieter Rombach. A Handbook of Software and Systems Engi-
neering: Empirical Observations, Laws, and Theories. Addison-Wesley, Read-
ing, MA, USA, 2003.

[FB04] Viktoria Firus and Steffen Becker. Towards performance evaluation of
component-based software architectures. In Formal Foundations of Embedded

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/power.t.test.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/power.t.test.html
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gmf/
http://www.eclipse.org/gmf/

Bibliography 131

Software and Component-based Software Architectures (FESCA), pages 118–121.
ETAPS 2004, 2004.

[FBH05] Viktoria Firus, Steffen Becker, and Jens Happe. Parametric Performance Con-
tracts for QML-specified Software Components. In Formal Foundations of Em-
bedded Software and Component-based Software Architectures (FESCA), volume
141 of Electronic Notes in Theoretical Computer Science, pages 73–90. ETAPS
2005, 2005.

[FER08] Felix Freiling, Irene Eusgeld, and Ralf Reussner, editors. Dependability Metrics.
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 2008. to
appear.

[FKB+05] Viktoria Firus, Heiko Koziolek, Steffen Becker, Ralf Reussner, and Wilhelm
Hasselbring. Empirische Bewertung von Performanz-Vorhersageverfahren fr
Software-Architekturen. In Peter Liggesmeyer, Klaus Pohl, and Michael
Goedicke, editors, Software Engineering 2005 Proceedings - Fachtagung des GI-
Fachbereichs Softwaretechnik, volume 64 of GI-Edition of Lecture Notes in In-
formatics, pages 55–66. Bonner Köllen Verlag, March 2005.

[Gil07] D Gilbert. Jfreechart, 2007.

[Gla98] Robert L. Glass. Software Runaways: Monumental Software Disasters. Prentice
Hall, Englewood Cliffs, NJ, USA, 1998.

[GMS05] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. From Design to
Analysis Models: a Kernel Language for Performance and Reliability Analy-
sis of Component-based Systems. In WOSP ’05: Proceedings of the 5th inter-
national workshop on Software and performance, pages 25–36, New York, NY,
USA, 2005. ACM Press.

[GR98] Rob Guth and Lynda Radosevich. IBM crosses the
Olympic finish line. http://www.infoworld.com/cgi-
bin/displayStory.pl?/features/980209olympics.htm, February 1998. accessed
August 1st, 2007.

[GVR02] Robert L. Glass, Iris Vessey, and Venkataraman Ramesh. Research in software
engineering: an analysis of the literature. Information & Software Technology,
44(8):491–506, 2002.

[HHK02] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process Algebra for
Performance Evaluation. Theoretical Computer Science, 274(1–2):43–87, 2002.

[HM07] Frank Heitmann and Daniel Moldt. Petri nets tool database, 2007.

[HMSW02] Scott A. Hissam, Gabriel A. Moreno, Judith A. Stafford, and Kurt C. Wallnau.
Packaging Predictable Assembly. In Judy M. Bishop, editor, Component Deploy-
ment, IFIP/ACM Working Conference, CD 2002, Berlin, Germany, June 20-21,
2002, Proceedings, volume 2370 of Lecture Notes in Computer Science, pages
108–124. Springer, 2002.

[IEE90] IEEE Standards Board. IEEE standard glossary of software engineering
terminology—IEEE std 610.12-1990, 1990.

132 Bibliography

[IS04] James Ivers and Natasha Sharygina. Overview of comfort: A model checking
reasoning framework. Technical report, Software Engineering Institute, Carnegie
Mellon University, April 2004.

[KBH07] Heiko Koziolek, Steffen Becker, and Jens Happe. Predicting the performance of
component-based software architectures with different usage profiles. In Proceed-
ings of the 3rd International Conference on the Quality of Software Architectures
(QoSA), volume To appear of LNCS, Boston, USA, Juli 2007.

[KHB06] Heiko Koziolek, Jens Happe, and Steffen Becker. Parameter dependent perfor-
mance specification of software components. In Proceedings of the Second Inter-
national Conference on Quality of Software Architectures (QoSA2006), volume
4214 of Lecture Notes in Computer Science, pages 163–179. Springer-Verlag,
Berlin, Germany, July 2006.

[Koz04] Heiko Koziolek. Empirische Bewertung von Performance-Analyseverfahren für
Software-Architekturen. Master’s thesis, Universität Oldenburg, 2004.

[MAD94] Daniel Menasce, Virgilio Almeida, and Larry Dowdy. Capacity Planning and
Performance Modeling: From Mainframes to Client-Server Systems. Prentice-
Hall, New Jersey, March 1994. $44.

[Mar04] Moreno Marzolla. Simulation-Based Performance Modeling of UML Software
Architectures. PhD Thesis TD-2004-1, Dipartimento di Informatica, Università
Ca’ Foscari di Venezia, Mestre, Italy, February 2004.

[Mar05] Anne Martens. Empirical Validation and Comparison of the Model-Driven Per-
formance Prediction Techniques of CB-SPE and Palladio. study thesis, University
of Oldenburg, 2005.

[MK00] Ramiro Montealegre and Mark Keil. De-escalating Information Technology
Projects: Lessons from the Denver International Airport. MIS Quarterly, 3:417–
447, 2000.

[MTW03] George Marsaglia, Wai Wan Tsang, and Jingbo Wang. Evaluating Kolmogorov’s
distribution. Journal of Statistical Software, 8/18, 2003.

[Obj05] Object Management Group (OMG). UML Profile for Schedulability, Performance
and Time. http://www.omg.org/cgi-bin/doc?formal/2005-01-02, January 2005.

[Pea00] Karl Pearson. On a criterion that a given system of deviations from the prob-
able in the case of a correlated system of variables is such that it can reason-
ably be supposed to have arisen from random sampling. Philosophical Magazine,
50:157–175, 1900.

[Per03] Performance Engineering Services, Austin, TX. SPE-ED User Guide, 2003.
http://www.perfeng.com.

[Pou96] Jeffrey S. Poulin. Measuring software reuse: principles, practices, and eco-
nomic models. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1996.

Bibliography 133

[Pre01] Lutz Prechelt. Kontrollierte Experimente in der Softwaretechnik. Springer-Verlag,
Berlin, Germany, 2001.

[RBK+07] Ralf H. Reussner, Steffen Becker, Heiko Koziolek, Jens Happe, Michael Kuper-
berg, and Klaus Krogmann. The Palladio Component Model. Interner Bericht
2007-21, Universität Karlsruhe (TH), Faculty for Informatics, Karlsruhe, Ger-
many, October 2007.

[RH06] Ralf H. Reussner and Wilhelm Hasselbring. Handbuch der Software-Architektur.
dPunkt.verlag, Heidelberg, 2006.

[Sac97] Lothar Sachs. Angewandte Statistik: Anwendung statistischer Methoden.
Springer-Verlag, Berlin, Germany, 8., völlig neu bearb. und erw edition, 1997.

[SDJ07] Dag I. K. Sjøberg, Tore Dybå, and Magne Jørgensen. The future of empirical
methods in software engineering research. fose, pages 358–378, 2007.

[SKK+01] Murali Sitaraman, Greg Kuczycki, Joan Krone, William F. Ogden, and A.L.N.
Reddy. Performance Specification of Software Components. In Proceedings of
the 2001 symposium on Software reusability: putting software reuse in context,
pages 3–10. ACM Press, 2001.

[SLC+05] Connie U. Smith, Catalina M. Llado, Vittorio Cortellessa, Antinisca Di Marco,
and Lloyd G. Williams. From UML Models to Software Performance Results: an
SPE Process based on XML Interchange Formats. In WOSP ’05: Proceedings of
the 5th international workshop on Software and performance, pages 87–98, New
York, NY, USA, 2005. ACM Press.

[Smi90] Connie U. Smith. Performance Engineering of Software Systems. Addison-Wes-
ley, Reading, MA, USA, 1990.

[SOB01] Dennis Smith, Liam O’Brien, and John Bergey. Mining components for a soft-
ware architecture and a product line: the options analysis for reengineering (OAR)
method. In Proceedings of the 23rd international conference on Software engi-
neering, page 728. IEEE Computer Society, 2001.

[SS01] A. Schmietendorf and A. Scholz. Aspects of Performance Engineering - an
Overview. In R. et. al. Dumke, editor, Performance Engineering: State of the art
and current trends, volume 2047 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, 2001.

[SW93] C. U. Smith and L. G. Williams. Software performance engineering: A case study
including performance comparison with design alternatives. IEEE Trans. Softw.
Eng., 19(7):720–741, 1993.

[SW97] Connie Smith and Lloyd Williams. Performance engineering evaluation of object-
oriented systems with SPEED. 1245, 1997.

[SW98] Connie U. Smith and Lloyd G. Williams. Performance engineering evaluation
of CORBA-based distributed systems with SPE•ED. Lecture Notes in Computer
Science, 1469:321–??, 1998.

134 Bibliography

[SW02] C. U. Smith and L. G. Williams. Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Addison-Wesley, 2002.

[Szy98] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. ACM Press, Addison-Wesley, Reading, MA, USA, 1998.

[TLPH95] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz. Experimental
evaluation in computer science: A quantitative study. Journal of Systems and
Software, 28(1):9–18, January 1995.

[Wel47] B. L. Welch. The generalization of student’s problem when several different pop-
ulation variances are involved. Biometrika, 34:28–35, 1947.

[WMW03] Xiuping Wu, David McMullan, and Murray Woodside. Component Based Per-
formance Prediction. In 6th ICSE Workshop on Component-Based Software En-
gineering: Automated Reasoning and Prediction, pages 13–18, Portland, Oregon,
May 2003.

[WPS+05] Murray Woodside, Dorina C. Petriu, Hui Shen, Toqeer Israr, and Jose Merseguer.
Performance by unified model analysis (PUMA). In WOSP ’05: Proceedings of
the 5th International Workshop on Software and Performance, pages 1–12, New
York, NY, USA, 2005. ACM Press.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell,
and Anders Wesslén. Experimentation in Software Engineering: an Introduction.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[WW04] Xiuping Wu and Murray Woodside. Performance Modeling from Software Com-
ponents. SIGSOFT Softw. Eng. Notes, 29(1):290–301, 2004.

A Tutorial Slides and Preparatory
Exercises

A.1 Introductory Tutorial Slides

The organisational and basics slides were created by Klaus Krogmann, the tool session slides
by the author.

I

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)

Lehrstuhl Software-Entwurf und –Qualität
Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum
Ingenieurmäßiger
Software-Entwurf

Organisatorisches & Einführung

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 2

Überblick

▪ Motivation

▪ Themen

▪ Organisation

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 3

Motivation

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 4

Goals

▪ Why do I sit here?

▪ Learning to critically evaluate:
– middleware platforms

– development tools

– component-based designs

– Therefore: One need to know the principles and
what is possible, not just what currently exists.

▪ Scientific Background of component-based
software engineering

▪ Evaluation of design decisions at an
architectural level

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 5

Design Alternatives (1)

▪ Given
– A three-tier architecture

– Each layers runs on an own
machine with fixed hardware

– Fixed, but limited network bandwidth

▪ Question: Is it worth compressing data
between
– GUI and Business

– Business and Database?

▪ Pro: Less data to transfer

▪ Contra: Increased CPU load

GUI

Business

Database

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 6

Design Alternatives (2)

▪ Further information is needed to decide

– Load of each layer by simultaneous user access

– Design and timing behavior of each layer

– Kind and amount of data to transfer

– …

▪ Still, the question remains:
Is it worth compressing data?

▪ No intuitive answer available

▪ Solution: Systematic approach to support
design decisions

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 7

Themenüberblick

Themen des Praktikums

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 8

Themen des Praktikums

▪ Systematischer Entwurf von Software-
Systemen

▪ Einsatz komponentenbasierter Technologien

▪ Blick auf nicht-funktionale Eigenschaften

– Im Besonderen: Performanz

– Verwendung modellgetriebener
Vorhersageverfahren

▪ Verfahren

– Software Performance Engineering (SPE)

– Palladio

II APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 9

Werkzeuge

▪ Vorhersage- und Bewertungsverfahren
werden durch Werkzeuge unterstützt

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 10

Werkzeug: SPE·ED

▪ Autor: Connie U. Smith

▪ Erstellen und lösen von visuell
repräsentierten Performanz-Modellen

▪ Unterstützung von u. a. Entwurfs-
Entscheidungen

Quelle: http://perfeng.com/

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 11

Werkzeug: Palladio

▪ Unterstützung eines gesamten
komponentenbasierten Entwurfsprozesses

▪ Analyseverfahren liefern Hinweise auf
Performanz-Probleme

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 12

Organisation

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 13

Aktuelle Informationen

▪ Aktuelle Informationen und Ankündigungen
in unserem Wiki:

http://sdqweb.ipd.uka.de/wiki/

Praktikum Ingenieurmäßiger Software-
Entwurf SS07

▪ Zugang zu Materialien

– Benutzer: stud

– Passwort: ise07

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 14

Die Veranstaltung

▪ Mix aus

– Theoretischer Vorbereitung in Vorlesungen

– Bewerteten Übungsblättern als Hausübung

– Kleineren Tests zur Kontrolle des Lernfortschritts

– Praktische Übungen im Poolraum

• Selbstständige Übungen

• Betreute Übungen

– Praktischer Einsatz moderner
Entwurfswerkzeuge

– Große Experimentsitzung am Ende des
Semesters

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 15

Rahmen

▪ 13 Wochen

▪ 2 SWS Theorie

▪ 2 SWS

– Übungsblatt-Besprechung

– Praxis-Stunden im Poolraum

• Lösung von Übungsblättern

• Tutoren stehen als Ansprechpartner zur Verfügung

▪ Nicht in jeder Woche finden alle
Veranstaltungsformen statt
(Terminübersicht)

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 16

Regelmäßige Termine

▪ Mittwochs: Theorie (SR 301)

– 17:30 bis 19:00 Uhr

▪ Freitags: Praxis (Raum 356)

– 9:45 bis 11:30 Uhr

– Weitere Poolraum-Nutzung („exklusiv“)

• Mittwochs von 14:00 bis 17:30 Uhr

• Freitags von 9:45 - 11:30 Uhr

• Zugang später

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES III

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 17

Experiment Termine

▪ Das große Experiment findet an zwei Samstagen
statt:

– 30. Juni 2007

– 07. Juli 2007

– Ganztägig

▪ Größere Beispiel-Systeme werden mit zwei
Entwurfs-Verfahren behandelt

 Praktische Anwendung des Gelernten

Freies Essen & Getränke

Bildquelle: pixelio.de

+

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 18

Termine

1. Informationsveranstaltung, Orga, Einführung

2. KBSE: Grundlagen: Was sind Komponenten,
Überblick PCM-Rollen

3. Einführung in die Werkzeuge (Eclipse, SVN, …)

4. SPE

5. Schätzen nicht-funktionaler Eigenschaften

6. Komponentenentwickler-Session / SEFF-1-Session

7. SEFF-2-Session

8. System-Architekt-Session

9. Deployer-Session / QoS-Analyst

10. Domain-Expert / Usage Model

11. 1. Experimentsitzung

12. 2. Experimentsitzung

13. Wrap-Up

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 19

Übungen

▪ Übungsblätter und Tutorien werden zu
wechselnden 2er-Gruppen durchgeführt

▪ Einteilung erfolgt durch uns

▪ Übungsblätter werden in Tutorien
besprochen

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 20

Bewertung

▪ Für die Praktikumsleistung wird eine Note
vergeben

▪ Grundlage

– Bearbeitung von Übungsblättern

– Individual-Prüfungen (für alle Teilnehmer) in
Form von schriftlichen Kurztests zu Beginn von
Praktikumssitzungen: Abfrage des
Lernfortschritts

– Regelmäßige Teilnahme

– Güte der erstellten Vorhersagemodelle

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 21

Regeln

▪ Um erfolgreich das Praktikum bestehen zu
können, dürfen Sie maximal an zwei
Terminen (Vorlesungen, Übungen,
Kurztests) fehlen. Verpasste Kurztests
werden nachgeholt.

▪ Für die beiden Experimentsitzungen besteht
Anwesenheitspflicht (Ausnahme: rechtzeitig
eingereichtes ärztliches Attest)

▪ Es darf maximal ein Übungsblatt als „nicht
bearbeitet“ gewertet worden sein. Details

auf dem ersten Übungsblatt

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 22

Aufnahmetest

▪ Am Freitag, 27. April findet ein
Aufnahmetest statt

▪ Themen:
– Prüfung der Kenntnisse aus der

Softwaretechnik-Vorlesung
• UML

• Modellierung im Allgemeinen

– Grundlagen der komponentenbasierten
Software-Entwicklung

– Komponentenbasierter Entwicklungsprozess

▪ Bestehen für weitere Teilnahme am
Praktikum notwendig

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 23

Poolraum

▪ SWT-Poolraum 356,
Geb. 50.34, Informatik-
Hauptgebäude, 3. OG

▪ Eigene Notebooks
dürfen genutzt würden

▪ Rechner in Raum 353
als Ausweichmöglichkeit

▪ Zugangsdaten werden
ausgegeben

IPD
3. OG

Pool 356

jetzt

demnächst

N

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 24

Empfehlung

▪ Vorlesung “Komponentenbasierte
Software-Entwicklung” eignet sich
hervorragend als Ergänzung zum
Praktikum.

▪ Montags von 14:00 - 15:30 Uhr
Raum: HS -101 (50.34 UG)

IV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 25

Vorlesung KBSE

▪ Theoretische Inhalte werden vertieft

▪ Blick auf

– Prozesse

– (Komponenten-) Architektur-Muster

– Komponenten-Entwurf

– Komponententechnologien u. a. EJB

uvm.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES V

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Chair Software Design and Quality
Institute for Program Structures and Data Organization (IPD)

Faculty of Informatics, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Research University • founded 1825

Laboratory:
Software Design as an
Engineering Discipline

Basics:
Components & Roles in

Component Based Development Process

Ralf Reussner (reussner@ipd.uka.de)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 2

Overview

▪ Component definitions
▪ Engineering approach
▪ Component basics

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 3

Introduction into
Component Based

Software Development

Compare for Lecture:
“Komponentenbasierte
Software-Entwicklung”

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 4

Components (1)

▪ Not a new idea! (McIlroy 1968,
NATO-Conference Garmisch-Patenkirchen)

▪ Anything but reusable [HC91]
▪ undefinable (natural concept) [CE00]

– opposed to artificial concept, like objects

▪ Building blocks for software
▪ Software: Code or all artefacts?

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 5

Components (2)

▪ Properties of components
[Szyperski, 1997, p. 30]:
– unit of independent deployment
– unit of third party composition
– has no persistent state

▪ Consequences:
– software components (for C. Szyperski): executable code
– independent deployment: well-documented requires-

interfaces
– no persistent state: component cannot be distinguished

from a copy.

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 6

Components (3)

▪ A components is an artefact of the software
development process with a description of
its application.
[Goos 00]
– all artefacts
– deployment may require additional effort

(generation, compilation, binding, ...)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 7

This is a component…

▪ A component is a contractually specified building
block for software which can be readily composed
by third parties without understanding its internal
structure.
(Reussner)
– Not necessarily black-box: information on component’s

internals may be provided for tools
– Readily composed: effort for deployment, assembly,

composition or adaptation should be as transparent as
possible.

▪ “Components are for composition, much beyond is
unclear…” (Clemens Szyperski)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 8

UML2: Components and
Interfaces

Component

Required
Interface

Provided
Interface

▪ A short introduction into the UML2 notation
of components

VI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 9

Roots of Component
Systems

▪ Distributed Object Systems (CORBA, etc.)
▪ Embedded Document Standards (OLE)
▪ Graphical User Interface Libraries

(JavaBeans)
▪ Programming-in-the-Large [DeRemer &

Kron76]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 10

Components in Context

▪ Objects / Classes
▪ ADTs
▪ Modules

– Module as a manager
– Module as a type

▪ Components just a new buzzword?

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 11

Objects

▪ Three defining properties of an Object
[Booch 1994]
– Identity
– State
– Behaviour (encapsulated with state)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 12

Components and
Classes / Objects

▪ Life-cycle of object is controlled by method
invocations at run-time which are
programmed at design-time.

▪ Component deployment context changes
after compilation.

▪ One component may consist out of several
classes

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 13

Differences between
Component and Classes

▪ Component
▪ Executable run-time entity
▪ May contain several classes
▪ No code available
▪ Description by Interfaces
▪ Only usable by delegation
▪ Developed separately
▪ Deployment context changes

after compilation

▪ Class
▪ Design-time entity
▪ Code often required
▪ Use by inheritance and

delegation
▪ Often designed for one

system
▪ Deployment context does

not change after compilation

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 14

Components and
Abstract Data Types

▪ Abstract data type (ADT) [LZ74]
– set of types
– set of signatures (i.e., functions with their

return- and parameter type)
– set of axioms (constraints describing the

composition of functions)

▪ Basically an abstract class plus some
semantics by the axioms

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 15

Modules / Component

▪ Similar:
– Elements for hierarchical system decomposition
– Used through interface
– Often only one instance available

▪ Different:
– Modules are not contractually specified entities themselves

(as objects / classes are not, too)
– Import-clause of modules is insufficient for a requires

interface

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 16

Black Box /Grey Box /
White Box for Components

▪ Black Box
– No internal information

▪ Grey Box
– An abstract view of

internals
– E. g. specification (not

realization) of internal
behaviour

▪ White Box
– All information about a

component is given
– E. g. source code

public class A
implements B

{
public void doIt()
..

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES VII

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 17

Component-Specific
Benefits (1)

▪ Ease of (run-time) reconfiguration:
– software families (evolution)
– software product lines (variation)

▪ Efficiency:
– saving memory by hot-swapping required

components into memory while removing
unused ones. (embedded consumer electronics,
etc.)

– (note lower speed by more explicit interfaces,
not removed by compilers)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 18

Component-Specific
Benefits (2)

▪ Engineering with Components
▪ What is an engineering discipline?

Craft
Industrial
Production

Engineering

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 19

Craft and
Industrialised Production

▪ Craft
– customer and developer often same person
– talent and experience instead of understanding

▪ Industrial Production
– specialised personal
– communication, documentation

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 20

Engineering (1)

▪ Consideration of efficiency, costs and time
▪ Scientific understanding and standards of

– products
– processes

▪ Selection of appropriate tools and processes
▪ Systematic development of product

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 21

Engineering (2)

▪ Systematic Treatment of Quality Attributes

Decomposition of global
System-Requirements

“reaction time
below 2ms.” “?”

Prediction of global
System-Properties

? ?

? ? ??
? 0.02 sec.

0.3 sec. 0.08 sec. 0.1 sec.
1.8 sec.

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 22

Engineering (3)

▪ Systematic construction
– selecting appropriate components according to

requirements
– reasoning on system properties in terms of

component properties and designs /
architectures

▪ “correctness-by-construction”

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 23

Engineering for Software
(1)

▪ Danger of Analogies:
▪ Software-IC (McIlroy, Cox)

– different use of shared resources
– using less functionality often no problem for

hardware
▪ Software and Cars

– Software production is a non-issue, while
software development is
(Car development is to be compared with
software development)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 24

Engineering for Software
(2)

▪ Probably best analogy:
Software and Architecture / Building

▪ each project is an individual development
project using existing components.

VIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 25

State of Software
Engineering

▪ “No progress”: same problems as for
decades
– Requirements
– Correctness
– Performance (quality in general)
– “Software crisis”: “x% of all larger software

projects run over time, budget or fail”.

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 26

No Progress Made?

▪ The same problems as stated 1968
(first Software Engineering Conference)

▪ “the problem of achieving sufficient reliability in
the data systems...”

▪ “the difficulties of meeting schedules and
specifications on large software projects”

▪ “the highly controversial question of whether
software should be priced separately from
hardware”

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 27

The Title says it all...

▪ U.S. Government Accounting Office:
“Contracting for Computer Software
Development – Serious Problems Require
Management Attention to Avoid Wasting of
Additional Millions.”
Technical Report FFGMSD-80-4, Nov. 1979

▪ Failed projects under investigation!

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 28

State of
Software Engineering

▪ Progress: same problems as for decades but for
substantially more complex and larger systems.

▪ „Planning crisis“ instead of „Software crisis“ [Glass
00]:
– Project budget and timing is done by customers or

managers
– Only two of the following three should be made by

customers / managers [XP]:
• Functionality, time, budget

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 29

Bottom-up / Top down

▪ Original view in CBSE:
bottom-up development:
1. Components are developed independently of each other

and independently of an application
2. Applications are created by assembling components
– Never became reality!

▪ ~2000: top-down development:
1. frameworks and software applications with explicit plug-

in extension mechanisms are developed
2. Plug-ins are developed to fill these applications

Example: web browser, Photoshop, Eclipse, etc.
▪ Since ~2004:

– New applications are developed and explicitly are
designed to make use of existing plug-ins of other
applications (e.g., Photoshop plug-ins form a de-facto
standard for image processing tools)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 30

Lessons Learned

▪ Understand
– Why components are used
– Distinguish the terms components, modules,

classes, objects, abstract data type
– Black-box, grey-box, white-box
– Benefits of

• Component use
• Engineering

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 31

Component

Basics

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 32

Overview

▪ UML2 – Short introduction
▪ Components – Basics
▪ CBSE process and roles

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES IX

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 33

Goals

▪ Learn the basics of UML2: views supporting
component development

▪ Basics of components
– Overview on component types
– Component instance levels
– Differences between component types and

instances
– Interfaces
– Behavioral descriptions

▪ Understand the way the CBSE development
process is designed and which tasks have
to be done

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 34

UML2

Short introduction

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 35

UML2: Abbreviated
Notations

Provided
Interface

Component

Provided
Role

Required
Role

Required
Interface

«provides» «requires»
«component»«interface» «interface»

«provided role» «required role»

≙

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 36

UML2: Assembly
Connectors

Component B

Component A

Component C

Assembly
Connector

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 37

UML2: Composite Components
and Delegation Connectors

Basic
Component A

Delegation
Connector

Composite
Component A

Composite
Component B

Basic
Component B

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 38

UML2: Deployment

▪ Creating a deployment instance == putting
a implementation instance into a context

Component B

«deployed-on»

Server

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 39

Assembly / Composition

▪ Bundling of components (with the inner
component structure of the bundle
invisible/visible)

Assembly

Composite Component A

IA
Component A Component B

IB

IA IB

Transformation

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 40

Notation for static
component architecture

CC1

C1

S1

S2

S1 S1 S1 S1

C2

S2 S2

C1

S1 S3

C3

R1 R2
RL1

«deployed-on»

«deployed-on»

«deployed-on»

S2 S2

X APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 41

Components

Basics (continued)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 42

Components in Detail:
Overview

▪ Components: Types and Instances
▪ Interfaces
▪ Static Structures
▪ Behavioral Description

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 43

Component

▪ Characterised by
– Its roles (provided and required)
– The component type (next slides)

▪ Important Difference:
– Component Type
– Component Instances

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 44

Component Type vs.
Component Implementation

▪ Multiple layers
– Types occur in multiple forms

• Provided Component Type
• Complete Component Type
• Implementation Component Type
• Hierarchy: Next slide

– Component Instances appear at different levels
• Instances of implementation types

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 45

Component Type Hierarchy

Ty
p
e

Pr
ov

id
ed

C
o
m

p
le

te
Im

p
le

m
en

ta
ti
o
n

<<conforms>>

m

n

<<impl-conforms>>

m

n

IRequestProcessor

IRequestProcessor

IRequestProcessor

IMonitor

IWebTools

HttpRequestProcessor

IRequestProcessor

IRequestProcessor

IMonitor

IWebTools

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 46

Component Types

Pr
ov

id
ed

 T
yp

e
C
o
m

p
le

te
 T

yp
e

IRequestProcessor

IRequestProcessor

IRequestProcessor

IMonitor

IWebTools

IRequestProcessor

IMonitor

IWebTools

IMyService

1

n

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 47

Component Types

«Provides Type»

«Complete Type»

«Implementation Type»

«Basic
Component»

«Composite
Component»

«Provides Type»

«Complete Type»

«conforms»

«impl-conforms»

Meta-Model Model

«Basic
Component»

«Composite
Component»

«inheritance»

«conforms»:
Constraints

«impl-conforms»:
Constraints

{partitioned}

«impl-conforms»

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 48

Implementation
Component Types

▪ Do not mix up Implementation Component
Types with the implementation itself

▪ Implementation Component Type is an
abstraction of a number of possible
implementations

▪ In the Palladio world two kinds exist
– Basic Component: “atoms”
– Composite Component: “molecules”
– More Details follow in later lectures

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XI

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 50

Term: Component

«references»

«references»

CT
Type

II
Implementation

Instance

IID
Implementation

Instance
Description

DI
Deployment

Instance

DID
Deployment

Instance
Description

RI
Runtime Instance

RID
Runtime Instance

Description

Instance Scheme

1

*

1

*

0..1 0..1

0..1 0..1

Not considered within the Palladio ComponentModel

1

*

QoS (i, es, up, d)
FP (es)

QoS (es, up, d)
FP (es)

QoS (up)
FP ()

i: implementation
es: external services
up: usage profile
d: deployment

«implements»

«deploys»

Implementation

Type

Deployment

Runtime

«deploys»

Complete / Provided

Instance Model

Component
Type

Implemen-
tation Type

Deployment
Type

Runtime
Type

Runtime
Instance

Deployment
Instance

Implemen-
tation

Instance

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 52

Interface

▪ Define Services (by signature lists):
public void doIt()

▪ Can exist by their own (“first class entity”)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 53

Hierarchy of
Interface Models

public interface c1 {
void doA(int a, String b);
int doB(String s);
MyType doC(YourType t);
}

responsetime < 10ms;
throughput > 100 / s;
meantimeBetweenFailure >

1.3*10^12 s;

[Workshop on Object Interoperability]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 54

Signatures

▪ Signature:
1. access modifier
2. return-type
3. name
4. ordered list of

parameter-types and
names

5. unordered list of
exceptions, possibly
thrown

Example:
1.public
2.Customer[]
3.getCustomers
4.Customer query
5.InvalidDB

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 55

Signature-List-Based
Interfaces

▪ Unordered list of signatures
▪ Importance of naming conventions /

standards
– no behavioural information given by signature

▪ Realised in: Java interfaces, EJB, CORBA-
IDL, .NET

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 56

Example Interface...

providesInterface MemoryMgr {
int init (int);
void release();
int read(int);
void write(int);
void layout1();
void layout2();
void free();

}

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 57

ReaderWriter
Component

IReaderWriter
Handle open()

throws SecurityException;
void write(string s, Handle h);
string read(Handle h);
void close(Handle h);

IReaderWriter

ILogging

ICache

ILogging
void writeLog(string log)

throws WriteException;

ICache
string readFromCache(Handle h)

throws CacheMissException;

open()close()

write(),
read()

readFromCache()

writeLog()

Protocols

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 58

Static Structure

▪ Wiring of Components
▪ What in fact in connected / wired
▪ What contexts are

XII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 59

▪ What is connected:
– Visually (in UML2): interfaces
– In fact: Roles + Contexts next slides

Wiring

Basic
Component A

Delegation
Connector

Composite
Component A

Composite
Component B

Basic
Component B

Assembly
Connector

Delegation
Connector

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 60

Context (1)

▪ The same component type can be used
multiple times – here: “Component A”

Context A

Component A Component A

Context B

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 61

Context (2)

▪ Structural context (inclusion into a
composite component or connection via
interfaces to other components)

CC

C1

C1

C2

C3

C0

Master

Context 2

Context 1

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 62

Context (3) - Revealed

CC

C1

C1

C2

C3

C0

Master

Context 2

Context 1

C1
Component-Type /
Repository: C2

«usage-of»«usage-of»

Context /
Component Usage:

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 63

Context (4)

▪ Contexts are often assumed implicitly
▪ If a component type from a repository is

used, usually a context exists by definition

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 64

Behavioral Description

▪ Describes what happens if a provided
service is called

▪ UML provides Sequence diagrams
▪ SEFF: Service Effect Specification includes

component-external effect only

?

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 65

Sequence Diagram

▪ Can be used to model the effects of a
provided service: The entrance call is the
provided service

:Manager :TradingSystem::Inventory::GUI::Reporting :TradingSystem::Inventory::Application::Reporting :TradingSystem::Inventory::Data::Enterprise :TradingSystem::Inventory::Data::Persistence

Press button „Create Report“

Enter enterpriseId

getMeanTimeToDeliveryReport(ep)

ReportTO result

EnterpriseTO ep = new EnterpriseTO()

ep.setId(epId)

getTransactionContext()

tx:TransactionContext

tx.beginTransaction()

ReportTO result = new ReportTO()

queryEnterpriseById(ep).getId()

TradingEnterprise enterprise

tx.commit()

[foreach ProductSupplier supplier in enterprise.getSuppliers()]

loop

getMeanTimeToDelivery(supplier, enterprise)

long mtdelivery

append supplier.getId, supplier.getName()
and mtdelivery to reportText

result.setReportText(reportText)

sd UC 6:ShowDeliveryReports

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 66

SEFF

ReaderWriter Component

ILogging logger;
ICache cache;
[..]
public string read(Handle h) {

logger.writeLog("start cache read");
while(h.hasNext()) {

cache.readFromCache(h.current());
logger.writeLog("cache access");

}
logger.writeLog("end cache read");

}

read():

logger.writeLog()

logger.writeLog()

cache.readFromCache()

logger.writeLog()

▪ SEFF as Finite State Machine

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XIII

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 67

«Component»

«Component Type»«Component Realisation»

Component
Usage

Component
Repository

External
View

Internal
View

«Context Component»

«Basic Component»

«Composite Component»

«Complete Component Type»

«Provided Component Type»

«Implementation Comp Type»

Extended view of
components

≠ “Instances” usage in
architecture

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 68

Provided Type
Complete Type
Implementation Type
Assembly
Allocation
Runtime

ContextR
e
if

ic
a
ti

o
n

A
b

st
ra

ct
io

n

Component
Development:
Types

System
Development

Component Hierarchy

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 69

Roles in CBSE

Palladio Process Model and Roles

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 70

Roles in the process of
component architecture

development
▪ Overview*:
▪ Define component types

(Component designer)
▪ Implement components

(Component developer)
▪ Assemble components

(Component assembler)
▪ Allocate components

(Component deployer)
▪ Deploy whole systems

(System deployer)
▪ * Palladio process view

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 71

Component Designer

A

Interface 2

B

Interface 1

Interface 3

Component Repository

Component without
interfaces

Component with
provided and required

interfaces

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 72

Component based software
development (1)

▪ Define component types
– No implementation
– Might include protocol definitions
– QoS-Attributes of types can be specified
– Extended component type definitions like

“Service Effect Specifications” can be defines
– (Parameterized) contracts might be used
– Component types can be defined at different

levels (e. g. provided type, complete type,
implementation type)

– Component types are put into a type-
repository

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 73

Component Assembler

B

System

C
A

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 74

Component based software
development (2)

▪ Assemble components
– Component types from the repository are inter-

connected
– Assembly and delegation connectors are used
– If composite components are defined they are

put into the component type repository
– Component architectures are defined
– Results in a component architecture “system”

(bundle of assembled component) with
dedicated system interfaces

– Still type level

XIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 75

Component based software
development (3)

▪ Implement components
– Basic components are implemented
– (Composite components are realized by other

components only, therefore at most factory like
structures have to be implement research)

– Requirements from the type definition (including
prescriptions from extended descriptions like
SEFFs) have to be met what about QoS
prescriptions?

– Results in implementation instances

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 76

Component Deployer

B C
A

«deployed-on»

Server 1 Server 2

LAN

«deployed-on» «deployed-on»

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 77

Component based software
development (4)

▪ Allocate components
– Do the mapping hardware components
– Define how the hardware environment

(especially the distribution) has to look like
– Results deployment instances

▪ Deploy whole systems
– Make the allocated “system” run on a machine
– Results in runtime instances

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 78

Lessons Learned

▪ Component hierarchy
▪ Differences between types and

implementations
▪ Differences at type and implementation

levels
▪ Interface levels
▪ Understand the idea how to derive SEFFs

from source code
▪ Steps, tasks, and roles of the CBSE

development process

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XV

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Chair Software Design and Quality
Institute for Program Structures and Data Organization (IPD)

Faculty of Informatics, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Research University • founded 1825

Laboratory:
Software Design as an
Engineering Discipline

Performance Prediction Tools:
Short Introduction and Demo

Ralf Reussner (reussner@ipd.uka.de)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 2

Overview

▪ Performance Prediction
– Einordnung ins Praktikum
– Werkzeuge

▪ Vorbereitung für die nächsten Übungen
– Eclipse
– PCM Bench
– SPE-ED

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 3

Revised: Performance
Prediction

▪ Systematischer Entwurf von Software-
Systemen

▪ Einsatz komponentenbasierter Technologien
▪ Blick auf nicht-funktionale Eigenschaften

– Im Besonderen: Performanz
– Verwendung modellgetriebener

Vorhersageverfahren

▪ Verfahren
– Software Performance Engineering (SPE)
– Palladio

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 4

Revised: Werkzeuge

▪ Vorhersage- und Bewertungsverfahren
werden durch Werkzeuge unterstützt

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 5

Werkzeug: SPE·ED

▪ Autor: Connie U. Smith
▪ Erstellen und lösen von visuell

repräsentierten Performanz-Modellen
▪ Unterstützung von u. a. Entwurfs-

Entscheidungen

Quelle: http://perfeng.com/

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Praktikum: Ingenieurmäßiger Software-Entwurf 27.10.2007 6

Werkzeug: Palladio

▪ Unterstützung eines gesamten
komponentenbasierten Entwurfsprozesses

▪ Analyseverfahren liefern Hinweise auf
Performanz-Probleme

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Eclipse

▪ Für PCM Bench Eclipse mit bestimmter
Menge von Plugins benötigt.

▪ Bereits vorgefertigte Version unter
▪ http://sdqweb.ipd.uka.de/lehre/SS07-ISE/eclipse.zip

▪ Aktuelle Versionen der Plugins über Update
Site

▪ http://sdqweb.ipd.uka.de/eclipse/PCM_stud

Laboratory: Software Design as an Engineering Discipline 27/10/2007 7

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Palladio Demo

Laboratory: Software Design as an Engineering Discipline 27/10/2007 8

XVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Verwendung SPE-ED

▪ Herunterladen des Tools von
▪ http://sdqweb.ipd.uka.de/lehre/SS07-ISE/speed3b.zip

▪ Im Moment nur eine ältere Version des
Tools verfügbar
– Nach neuer Version wurde angefragt
– Bis dahin: Systemzeit vor dem Start

zurückstellen (Jahr 2003)
– Kann nach dem Start während der Arbeit bereits

wieder korrigiert werden.

▪ Gesamtes SPE-ED Verzeichnis ins SVN
einchecken

Laboratory: Software Design as an Engineering Discipline 27/10/2007 9

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

SPE-ED Demo

Laboratory: Software Design as an Engineering Discipline 27/10/2007 10

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Practical sessions

▪ Freitags: Praxis (Raum 356)
– 9:45 bis 11:30 Uhr
– Weitere Poolraum-Nutzung („exklusiv“)

• Mittwochs von 14:00 bis 17:30 Uhr
• Freitags von 9:45 - 11:30 Uhr
• Zugang später

▪ Bringen Sie bitte pro Übungsgruppe ein
Notebook mit Microsoft Windows mit!
– Bei den nächsten drei Terminen
– Übungsgruppen, die diese Möglichkeit nicht

haben?

Laboratory: Software Design as an Engineering Discipline 27/10/2007 11

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

SVN

▪ Gab es Probleme bei der Verwendung von
SVN?
– Im Anschluss Fragen klären.

Laboratory: Software Design as an Engineering Discipline 27/10/2007 12

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Laboratory: Software Design as an Engineering Discipline 27/10/2007 13

Lessons Learned

▪ How to install and use the PCM Bench
– Obtain needed Eclipse version
– Update plugins
– Create a simple project

▪ How to use the SPE-ED tool
– Start the SPE-ED tool (time settings!)
– Create a software model
– Solve a model

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XVII

XVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

A.2 SPE-ED Tutorial Slides

The tutorial slides were originally created by Heiko Koziolek for the experiment described
in [Koz04] and extended for this experiment.

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)

Lehrstuhl Software-Entwurf und –Qualität

Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum Ingenieurmäßige
Software-Entwicklung

Software Performance Engineering (SPE)

Inhalt heute

▪ Motivation

▪ Vorgehensmodell

▪ SPE und UML
– Erweiterte Sequenzdiagramme

▪ Software Execution Models
– Execution Graphs

▪ Beispiel

▪ Performance-orientiertes Design

▪ SPE-ED Hinweise

Software Performance Engineering 09.05.2007 2

Inhalt nächste Woche

▪ System Execution Models
– Queueing Network

▪ Analyse der Ergebnisse

▪ Konkurrenzsituationen

▪ Verteilte Systeme

▪ Schätzungen

▪ Komplexeres Beispiel

Software Performance Engineering 09.05.2007 3

Motivation

▪ Performanz
– wichtige nicht-funktionale Eigenschaft von

Software-Systemen
– umfasst z.B. Antwortzeiten, Durchsatz,

Auslastung…

▪ Häufiger Grund für Performanzprobleme:
Architekturmängel

▪ Nachträgliche Änderungen der Architektur
nach erfolgter Implementierung teuer

 Performanzanalysen bereits beim Design
der Architektur

4/14Software Performance Engineering

Beispiel für mangelnde
Performanz

▪ Satellitenstart der NASA

– Ökosystem der Erde untersuchen

– Projektvolumen EOSDIS: Mehrere Milliarden
Dollar

– Flight Operation Segment Software von
Lockheed Martin Corp. hatte inakzeptable
Antwortzeiten

– 8 Monate Verzögerung

– Kosten unbekannt

Heather Harreld. NASA delays satellite launch after finding bugs in
software program. In Federal Computer Week, 20. April 1998.

Software Performance Engineering 09.05.2007 5

Beispiel für mangelnde
Performanz

▪ Online Brokerage Web Sites

– Nachgeben der Aktienkurse am 27.10.1997

– Führte zu erhöhter Anfragezahl

– Web Server waren überlastet

– Verluste bei Anlegern

– Klage gegen Betreiber

Connie U. Smith. Performance Solutions: A Practical Guide To
Creating Responsive, Scalable Software. Addison-Wesley, 2002.

Software Performance Engineering 09.05.2007 6

Performanzanalyse von
Software-Architekturen

7/14

Software-Modell

Software-Modell

mit Performance-

Attributen

Performance-

Modell

Performance-

Ergebnisse

UML,

Petri-Netze,

Prozessalgebren,

…

z.B. UML

Performance

Profile

Queueing Networks,

Petri-Netze,

Prozessalgebren,

…

Antwortzeiten,

Durchsatz,

Auslastung,

…

Schätzung /

Messung

Transformation

Analyse /

Simulation

Feedback

Werkzeug-

Unterstützung

Software Performance Engineering

▪ 1981: Prägung des Begriffs
„Software Performance Engineering“
durch Connie U. Smith

▪ 1990: Buch „Performance
Engineering of Software Systems“
– erste vollständige Methode zur

Performance-Analyse von Software-
Systemen während des Entwurfs

▪ 2002: Buch „Performance Solutions“
– Integration der UML
– Anpassungen für verteilte bzw.

eingebettete Systeme
– Tool SPE-ED
– Performance-Patterns/Antipatterns

Software Performance Engineering 09.05.2007 8

Software Performance
Engineering

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XIX

SPE Ansatz

▪ Performanz nur Rechtzeitigkeit

▪ Ziel: Gutes Antwortverhalten und
Skalierbarkeit erreichen

– Wirkliches und gefühltes Antwortverhalten

▪ Dazu proaktives Vorgehensmodell

– Mix aus Modellieren, Messen und anderem

– Prinzipien, Patterns, Antipatterns

▪ Hauptsächlich in früher Entwurfsphase

– Nicht erst warten bis gemessen werden kann

– Aber auch für bereits bestehende Probleme

Software Performance Engineering 09.05.2007 9

Inhalt heute

▪ Motivation

Vorgehensmodell

▪ SPE und UML
– Erweiterte Sequenzdiagramme

▪ Software Execution Models
– Execution Graphs

▪ Beispiel

▪ Performance-orientiertes Design

▪ SPE-ED Hinweise

Software Performance Engineering 09.05.2007 10

Vorgehensmodell

▪ Beispiel: Entwurf eines
Geldautomaten

Software Performance Engineering 09.05.2007 11

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Vorgehensmodell

▪ Festlegung des Umfangs des SPE-
Projekts je nach Signifikanz der
Performance

▪ Erstellung eines detaillierteren
Modells bei Performance-
kritischeren Anwendungen

▪ Beispiel Geldautomat: geringes
Performance-Risiko, einfaches
Modell ausreichend

Software Performance Engineering 09.05.2007 12

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Vorgehensmodell

Software Performance Engineering 09.05.2007 13

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Vorgehensmodell

Software Performance Engineering 09.05.2007 14

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Vorgehensmodell

▪ Konkrete Vorgaben für z.B.
Antwortszeiten, Durchsatz,
Ressourcennutzung usw.

▪ Beispiel Geldautomat: „Die
Bedienung darf nicht länger als 30
Sekunden dauern.“

Software Performance Engineering 09.05.2007 15

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Vorgehensmodell

▪ Transformation der Sequenzdiagramme
in Ausführungsgraphen

Software Performance Engineering 09.05.2007 16

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

XX APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Vorgehensmodell

▪ Transformation der Sequenzdiagramme
in Ausführungsgraphen

Software Performance Engineering 09.05.2007 17

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Vorgehensmodell

▪ Bestimmung der Anforderungen
von Software-Elementen

Software Performance Engineering 09.05.2007 18

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Vorgehensmodell

▪ Bestimmung der Anforderungen
von Hardware-Elementen

Software Performance Engineering 09.05.2007 19

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Vorgehensmodell

▪ Berechnung der Performance-
Werte

▪ Beispiel Geldautomat: „Die
Bedienung dauert 29 Sekunden
und ist somit knapp innerhalb der
Vorgaben“

▪ bei Nichteinhaltung der Vorgaben:

– Modifikation der Software

– Modifikation der Szenarien

– Überarbeitung der Performance-Ziele

Software Performance Engineering 09.05.2007 20

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Vorgehensmodell

▪ Parallele Aufgaben

– Verifikation der Modelle

• Wird das Modell richtig erstellt?

• Entsprechen die Vorhersagen der Modelle
der Performanz des Systems?

– Validierung der Modelle

• Wird das richtige Modell erstellt?

• Stellt das Modell die Ausführungs-
charakteristika der Software dar?

Software Performance Engineering 09.05.2007 21

1. Eingrenzung des

Performance-Risikos

2. Identifikation kritischer

Use-Cases

3. Modellierung von

Performance-Szenarien

4. Festlegung von

Performance-Zielen

5. Konstruktion des

Performance-Modells

6. Software Resource

Requirements

8. Auswertung des

Performance-Modells

7. Computer Resource

Requirements

Inhalt heute

▪ Motivation

▪ Vorgehensmodell

SPE und UML
– Erweiterte Sequenzdiagramme

▪ Software Execution Models
– Execution Graphs

▪ Beispiel

▪ Performance-orientiertes Design

▪ SPE-ED Hinweise

Software Performance Engineering 09.05.2007 22

SPE und UML

▪ UML: Standard-Notation für die
Modellierung objektorientierter Systeme

▪ Basis für die Erstellung des Performance-
Modells

▪ Erweiterungen der UML für Performance-
spezifische Informationen (angelehnt an
Message Sequence Charts)
– hierarchische Strukturierung von

Sequenzdiagrammen
– graphische Repräsentation von Schleifen und

Auswahlknoten in Sequenzdiagrammen
– Nebenläufigkeit in Sequenzdiagrammen

▪ Mit UML 2 ausdrückbar

Software Performance Engineering 09.05.2007 23

Beispiel:
Sequenzdiagramme

Software Performance Engineering 09.05.2007 24

Schleife:

gebunden an Schleifenklausel

Auswahl:

gebunden an Bedingungsklausel

Referenz:

verzweigt in ein weiteres

Sequenzdiagramm

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXI

Sequenzdiagramme:
Kontrollfluss

Software Performance Engineering 09.05.2007 25

▪ Prozeduraufrufe: Fortsetzung der
Ausführung erst nach Beendigung
aller verschachtelten Aufrufe

▪ Nichtprozeduraler Aufruf: nächster
Schritt in der Sequenz

▪ Asynchrone Kommunikationen
zwischen zwei Objekten

▪ return-Anweisung eines
Prozeduraufrufs

Erweiterte Features für
Sequenzdiagramme:

▪ Referenz
– Details in einem weiteren

Sequenzdiagramm

▪ Iteration
– n-malige Wiederholung des

eingeschlossenen Abschnitts

▪ Alternative
– Ausführung genau eines Abschnittes

gemäß der Bedingungsklausel

▪ Optionale Abschnitte
– Ausführung des eingeschlossenen

Abschnitts optional gemäß der
Bedingungsklausel

▪ Parallele Abschnitte
– gleichzeitige Ausführung der

eingeschlossenen Abschnitte

Software Performance Engineering 09.05.2007 26

loop

alt

opt

par

ref

Inhalt heute

▪ Motivation

▪ Vorgehensmodell

▪ SPE und UML
– Erweiterte Sequenzdiagramme

Software Execution Models
– Execution Graphs

▪ Beispiel

▪ Performance-orientiertes Design

▪ SPE-ED Hinweise

Software Performance Engineering 09.05.2007 27

Vom Sequenzdiagramm zum
Ausführungsgraph

▪ Execution Graph
– Modell zur vereinfachten Aufnahme von

Performance-Informationen
– Ähnlichkeit mit UML-Aktivitätsdiagrammen

▪ Umwandlung jedes Aufrufes im
Sequenzdiagramm in einen Knoten

▪ Zusammenfassung verwandter bzw.
Performance-unkritischer Aufrufe in einen
einzigen Knoten

▪ Ergänzung von Ausführungshäufigkeiten / -
wahrscheinlichkeiten

Software Performance Engineering 09.05.2007 28

Beispiel: Sequenzdiagramm ->
Ausführungsgraph

Software Performance Engineering 09.05.2007 29

Beispiel: Sequenzdiagramm ->
Ausführungsgraph

Software Performance Engineering 09.05.2007 30

Ausführungsgraphen

Software Performance Engineering 09.05.2007 31

▪ Basisknoten
– Funktionale Komponente

▪ Erweiterter Knoten
– Verfeinerte Funktion in einem Subgraphen

▪ Wiederholungsknoten
– Schleife: n-malige Wiederholung einer Reihe von Knoten

▪ Entscheidungsknoten
– Ausführung geknüpft an Bedingung
– versehen mit Wahrscheinlichkeit

▪ Parallelknoten
– parallele Ausführung von Knoten
– Fortsetzung des Kontrollflusses erst nach Berechnung aller

Knoten

▪ Spaltungsknoten
– parallele Ausführung von Knoten
– Fortsetzung des Kontrollflusses auch wenn nicht alle

Knoten berechnet wurden

▪ Knoten zur Synchronisation später

n

Ausführungsgraphen:
Nicht erlaubte Konstrukte

▪ mehrere Anfangsknoten für einen Graphen

Software Performance Engineering 09.05.2007 32

 Schleifen ohne Wiederholungsknoten

XXII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Eingabedaten für SPE

1. Performance-kritische Szenarios
– modelliert als Sequenzdiagramme, Ausführungsgraphen

2. Performance-Ziele
– konkrete Vorgaben, die zu erfüllen sind

3. Systemumgebung
– Hardware-Konfiguration, Betriebssystem, Middleware

4. Software Resource Requirements
– Berechnungsanforderung für jeden Rechenschritt

5. Computer Resource Requirements
– Abbildung der Software Resource Requirements auf die

Ausführungsumgebung

Software Performance Engineering 09.05.2007 33

in der Übung
vorgegeben

Software Resource
Requirements

▪ Angabe der CPU-Belastung
– Beispiel: WorkUnits über einer

Skala von 1 (niedrig) bis 5 (hoch)

▪ Beispiel: Autorisierung einer
Transaktion mittels einer
Datenbank
– hier: Spezifikation der best-case

Werte

Software Performance Engineering 09.05.2007 34

• Identifikation der Software Ressourcen

– Beispiel: Berechnungseinheiten, Datenbankzugriffe,
Netzwerknachrichten

• Schätzung der Werte für die Software-Ressourcen

– best- und worst-case, später detaillierter

– Beispiel: Operation x braucht im best-case drei
Datenbankzugriffe

Software Resource
Requirements

Software Performance Engineering 09.05.2007 35

Software Resource Type Einheit

CPU usage Work Units, Anzahl der
Instruktionen oder Zeit

SQL Anzahl und Typ (read, write,
update, …)

File I/O Anzahl der logischen oder
physischen I/Os

Messages Größe (z.B. in KByte) und Typ (LAN,
Internet)

Log-Files Anzahl der Log-Events

Middleware-calls Anzahl und Typ (connectionOpen,
queueGet, requestSend, …)

Calls to different processes, threads
or processors

Anzahl, Typ und Ziel des Aufrufs

Delay for remote processing Zeit eines Requests

Computer Resource
Requirements

▪ Abbildung der Software Anforderungen auf
Hardware-Elemente

▪ Typ, Anzahl und Einheit der relevanten Hardware-
Elemente im System

Software Performance Engineering 09.05.2007 36

• Spezifikation, wie hoch
die Software
Requirements auf den
Computer Ressource
Requirements sind

• Dauer einer Einheit für
jede Ressource (z.B.
durch Messungen)

Computer Resource
Requirements

Software Performance Engineering 09.05.2007 37

Computer Resource
Type

Einheit

CPU Zeit, Anzahl der Instruktionen

Disks, I/O Anzahl der Operationen

Benutzer Zeit

Netzwerk Anzahl der Nachrichten

Verzögerung (ohne Queue, z.B.
Bildschirm, Tastatur…)

Zeit

Box (mit Queue, z.B. Drucker) Zeit

Computer Resource Requirements:
Berechnung der Antwortzeit

Software Performance Engineering 09.05.2007 38

Schritt 1:
Berechnung der
Computer Resource
Requirements für
einen Knoten
(sendResult)

Computer Resource Requirements:
Berechnung der Antwortzeit

Software Performance Engineering 09.05.2007 39

Schritt 2: Berechnung
der Computer
Resource
Requirements für alle
Knoten eines Graphen

Schritt 3: Berechnung
der best-case
Antwortzeit (ggf.
Einbeziehung von
Iterationen und
Wahrscheinlichkeiten
bei Auswahlknoten)

(3110 * 0,00001) + (14 * 0,02) + (1 * 0,01)
=

0,3211 Sekunden

Inhalt heute

▪ Motivation

▪ Vorgehensmodell

▪ SPE und UML
– Erweiterte Sequenzdiagramme

▪ Software Execution Models
– Execution Graphs

Beispiel

▪ Performance-orientiertes Design

▪ SPE-ED Hinweise

Software Performance Engineering 09.05.2007 40

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXIII

Beispiel

▪ Web-Auftritt einer Fluggesellschaft

▪ Planung von Flugreisen im Web

▪ Bestellen von Tickets

▪ Schalten von Werbung

▪ Vielflieger-Konten und –Angebote

▪ Verwendet Altsysteme der Fluggesellschaft

Software Performance Engineering 09.05.2007 41

1. Eingrenzen des
Performance-Risikos

▪ mittleres Performance-Risiko

▪ bei schlechter Performance: keine
Benutzung der Website -> Umsatzeinbußen

Software Performance Engineering 09.05.2007 42

2. Performance-kritische
Use-Cases

Software Performance Engineering 09.05.2007 43 Software Performance Engineering 09.05.2007 44

planItinerary

3. Modellierung von
Szenarien

3. Modellierung von
Szenarien

Software Performance Engineering 09.05.2007 45

login

3. Modellierung von
Szenarien

Software Performance Engineering 09.05.2007 46

getFlightPlanningPage

▪ Maximale Login-Zeit: 8 Sekunden

▪ Ansonsten zunächst keine Vorgaben

Software Performance Engineering 09.05.2007 47

4. Festlegung von
Performance-Zielen

5. Konstruktion eines
Performance-Modells

Software Performance Engineering 09.05.2007 48

XXIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

▪ Input: Größe der
Eingabenachricht (KByte)

▪ DBAccess: Anzahl der
Zugriffe auf die
Mainframe-Datenbank

▪ LocalDB: Anzahl der
Zugriffe auf das
DotComDBMS

▪ Pagesz: Größe der Seite,
die dem Benutzer gezeigt
wird (KByte)

▪ Datasz: Größe der Daten,
die aus dem Mainframe
empfangen werden
(KByte)

Software Performance Engineering 09.05.2007 49

6. Software Resource
Requirements

7. System Resource
Requirements

Software Performance Engineering 09.05.2007 50

8. Auswertung des
Performance-Modells

Software Performance Engineering 09.05.2007 51

Änderung des Entwurfs

▪ Beispiele:

– kleinere Webseiten verschicken

– Verwendung von Tabellen anstatt von Frames
um mehrfache Requests zu umgehen

– Möglichkeit zur Festlegung einer Startseite durch
den User zur schnelleren Navigation

– Verwendung von weniger aufwendigen Grafiken

– …

Software Performance Engineering 09.05.2007 52

Änderung des Entwurfs

Software Performance Engineering 09.05.2007 53

Inhalt heute

▪ Motivation

▪ Vorgehensmodell

▪ SPE und UML
– Erweiterte Sequenzdiagramme

▪ Software Execution Models
– Execution Graphs

▪ Beispiel

Performance-orientiertes Design

▪ SPE-ED Hinweise

Software Performance Engineering 09.05.2007 54

Performanzprinzipien

Software Performance Engineering 09.05.2007 55

Performanz-Patterns

Software Performance Engineering 09.05.2007 56

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXV

Performanz-Antipatterns

Software Performance Engineering 09.05.2007 57

Inhalt heute

▪ Motivation

▪ Vorgehensmodell

▪ SPE und UML
– Erweiterte Sequenzdiagramme

▪ Software Execution Models
– Execution Graphs

▪ Beispiel

▪ Performance-orientiertes Design

SPE-ED Hinweise

Software Performance Engineering 09.05.2007 58

SPE-ED

59/14

Software-Modell

Software-Modell

mit Performance-

Attributen

Performance-

Modell

Performance-

Ergebnisse

Software Execution

Model

Software and Computer

Resource Requirements

Queueing Networks

Antwortzeiten,

Durchsatz,

Auslastung

Schätzung /

Messung

Transformation

Analyse /

Simulation

Feedback

Automatisiert

in SPE-ED

Software Performance Engineering

SPE-ED

▪ Werkzeug zur Unterstützung des SPE
Prozesses

▪ Modellierung von

– Software Execution Models

– System Execution Models

▪ Analyse der Modelle

▪ Anzeige der Analyseergebnisse in Modellen

Software Performance Engineering 09.05.2007 60

Struktur

▪ Verschiedene Sichten

– Software Model

– System Model

– Overhead

– Results

▪ Projekte

– Begleiten einen Entwurf

– Szenarien für verschiedene Anwendungsfälle /
Prozesse

– Entwurfsalternativen über verschiedene Projekte

Software Performance Engineering 09.05.2007 61

Templates

▪ Um verfügbare Ressourcen zu modellieren

▪ Für jedes Szenario

▪ Facility Template

– Enthält Geräte eines Rechners

– Performanzwerte

▪ Software Resource
Template

▪ Kombination:
Overhead Matrix

Software Performance Engineering 09.05.2007 62

Tipps zu SPE-ED

▪ In der System Model Ansicht nicht Values
klicken (Absturz)

Software Performance Engineering 09.05.2007 63

Inhalt heute

▪ Motivation

▪ Vorgehensmodell

▪ SPE und UML
– Erweiterte Sequenzdiagramme

▪ Software Execution Models
– Execution Graphs

▪ Beispiel

▪ Performance-orientiertes Design

▪ SPE-ED Hinweise

Software Performance Engineering 09.05.2007 64

XXVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)

Lehrstuhl Software-Entwurf und –Qualität

Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum Ingenieurmäßige
Software-Entwicklung

Software Performance Engineering (SPE)

Zweite Sitzung

Organisatorisches

▪ Übungszettel heute Nacht

▪ Einteilung Übungsgruppen neu

▪ Freitag Übung 9:45 Uhr

Software Performance Engineering 16.05.2007 2

Inhalt letzte Woche

▪ Motivation

▪ Vorgehensmodell

▪ SPE und UML
– Erweiterte Sequenzdiagramme

▪ Software Execution Models
– Execution Graphs

▪ Beispiel

▪ Performance-orientiertes Design

▪ SPE-ED Hinweise

Software Performance Engineering 16.05.2007 3

Inhalt heute

▪ Konkurrenzsituationen
– System Execution Models

• Warteschlangennetze

– System Models
• Simulationen

▪ Analyse der Ergebnisse

▪ Weitere Konstrukte in SPE-ED

▪ Daten und Schätzen

▪ Beispiel ICAD

Software Performance Engineering 16.05.2007 4

Konkurrenzsituationen

▪ Software Execution Model:
– zum schnellen Feedback von Performance-Problemen in

frühen Entwurfsphasen
– keine Berücksichtigung von anderen Arbeitslasten oder

mehreren Benutzern
– Vernachlässigung der Verzögerungen, die bei

konkurrierender Ressourcennutzung auftreten

▪ Aber: Nicht nur ein Prozess verwendet die
Ressourcen

▪ Verschiedene Konkurrenzsituationen
– Mehrere Benutzer des Systems

– Andere Systeme, die die Ressourcen mitbenutzen

– Ein Szenario enthält parallel auszuführende Teile

Software Performance Engineering 16.05.2007 5

Umsetzungen SPE-ED

▪ No Contention

– Einzelner Benutzer in einem einzelnen Szenario

– Analytisch

▪ Contention

– Mehrere Benutzer in einem einzelnen Szenario

– Analytisch mit Warteschlangennetzen

▪ Simulation

– Mehrere Benutzer in mehreren Szenarien

– Nicht analytisch

Software Performance Engineering 16.05.2007 6

Inhalt heute

▪ Konkurrenzsituationen
System Execution Models

• Warteschlangennetze

– System Models
• Simulationen

▪ Analyse der Ergebnisse

▪ Weitere Konstrukte in SPE-ED

▪ Daten und Schätzen

▪ Beispiel ICAD

Software Performance Engineering 16.05.2007 7

System Execution Models

▪ Software Execution Model:
– zum schnellen Feedback von Performance-Problemen in

frühen Entwurfsphasen
– keine Berücksichtigung von anderen Arbeitslasten oder

mehreren Benutzern
– Vernachlässigung der Verzögerungen, die bei

konkurrierender Ressourcennutzung auftreten

▪ System Execution Model:
– Konstruktion erst nach Lösung aller Performance-

Probleme im Software Execution Model
– Modellierung von konkurrierenden Ressourcenzugriffen

mittels Warteschlangennetzen (engl.: Queueing
Networks)

– zur Identifikation von Flaschenhälsen in der System-
Architektur

– automatisierte Berechnung durch Tools

Software Performance Engineering 16.05.2007 8

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXVII

Warteschlangen

▪ Performance Metriken:
– Verweilzeit
– Auslastung
– Durchsatz
– Queue-Länge

Software Performance Engineering 16.05.2007 9

Queue Server

Wartezeit Bearbeitungszeit

Verweilzeit

Jeweils im Durchschnitt
für einen Server

Warteschlangen

▪ Annahme: Job Flow Balance
– Rate der fertiggestellten Jobs (Durchsatz) = Ankunftsrate

▪ Beispiel:
– Vorgabe:

• Ankunftsrate λ = 0,4 jobs/sec

• Mittlere Bearbeitungszeit S = 2 sec

– Berechnung:
• Durchsatz, X = λ 0,4 jobs/sec (job flow

balance)

• Auslastung, U = X * S 0,4/sec * 2 sec = 0,8

• Verweilzeit, RT = S / (1-U) 2 sec / (1-0,8)
= 10 sec

• Queue-Länge, N = X * RT 0,4/sec * 10 sec = 4 jobs
(Little‘s Formel)

Software Performance Engineering 16.05.2007 10

Warteschlangennetze

▪ offenes QN:

– Eingang/Ausgang in
das Netzwerk

– Anzahl der Jobs
variiert mit der Zeit

▪ geschlossenes QN:

– keine externen
Ankünfte im Netzwerk

– Zirkulation fester
Anzahl von Jobs

Software Performance Engineering 16.05.2007 11

Offene Warteschlangen-
netze: Berechnungen

▪ Vorgabe:
– λ Ankunftsrate

– Vi Anzahl der Besuche (Visits) eines Gerätes

– Si Mittlere Bearbeitungszeit (Service Time) eines
Gerätes

▪ Berechnung:
– Systemdurchsatz X0: X0 = λ

– Durchsatz von Gerät i: Xi = X0 * Vi

– Auslastung von Gerät i: Ui = Xi * Si

– Verweilzeit von Gerät i: RTi = Si / (1-Ui)

– Länge der Queue Gerät i: Ni = Xi * RTi

– Länge der Systemqueue: N = Σ Ni

– Systemantwortzeit: RT = N / X0

Software Performance Engineering 16.05.2007 12

Offene Warteschlangen-
netze: Beispiel

Software Performance Engineering 16.05.2007 13

▪ Systemankunftsrate:
– λ = 5 jobs / sec = X0

▪ Anzahl der Besuche V:
– CPU 5
– Disk1 3
– Disk2 1

▪ Mittlere Bearbeitungszeit S:
– CPU 0,01
– Disk1 0,03
– Disk2 0,02

Metrik CPU Disk1 Disk2

1. Durchsatz

Xi = X0 * Vi

25 15 5

2. Bearbeitungszeit

Si (Vorgabe)
0,01 0,03 0,02

3. Auslastung

Ui = Xi * Si

0,25 0,45 0,10

4. Verweilzeit

RTi = Si / (1-Ui)
0,013 0,055 0,022

5. Queue Länge

Ni = Xi * RTi

0,325 0,825 0,111

Gesamte Jobs im System = 0,325 + 0,825 + 0,111 = 1,261

Systemantwortzeit: RT = N / X0 1,261 / 5 = 0,252 sec

Beispiel

▪ Beispiel Geldautomat

▪ Diesmal Bankrechner betrachtet

▪ Soll Transaktion prüfen und ausführen

▪ Informationen aus Software Execution
Graph:

Software Performance Engineering 16.05.2007 14

System Execution Model

▪ Eingaben für das Warteschlangennetz
– Systemankunftsrate (ermittelt in einem Performance

Walkthrough)
– Anzahl der Besuche an einem Gerät (berechnet mit dem

Software Execution Model)

– Mittlere Bearbeitungszeiten (ebenfalls im Software
Execution Model festgelegt)

▪ Berechnung der Ausgaben (Systemantwortzeit,
Queue-Längen usw.) mit Tool

Software Performance Engineering 16.05.2007 15

Inhalt heute

▪ Konkurrenzsituationen
– System Execution Models

• Warteschlangennetze

System Models
• Simulationen

▪ Analyse der Ergebnisse

▪ Weitere Konstrukte in SPE-ED

▪ Daten und Schätzen

▪ Beispiel ICAD

Software Performance Engineering 16.05.2007 16

XXVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Simulation

▪ Mehrere Szenarien gleichzeitig betrachten

▪ Auch: System Model Solution

▪ Simulation mit CSIM http://www.csim.com/

▪ Warteschlangennetz für jede Facility

– Mit Anforderungen aus No Contention Lösung

– Prioritäten für Szenarien

– Ankunftszeiten bzw. Denkzeit exponentialverteilt

Software Performance Engineering 16.05.2007 17

Simulation

▪ Durchlauf der Szenarien

▪ Abbruchbedingungen

– Zeitbegrenzung

– Bestimmtes
Konfidenzintervall erreicht

• Je größer Wert, desto
ungenauer

Software Performance Engineering 16.05.2007 18

Inhalt heute

▪ Konkurrenzsituationen
– System Execution Models

• Warteschlangennetze

– System Models
• Simulationen

Analyse der Ergebnisse

▪ Weitere Konstrukte in SPE-ED

▪ Daten und Schätzen

▪ Beispiel ICAD

Software Performance Engineering 16.05.2007 19

Analyse der Ergebnisse

▪ Ergebnisse interpretieren je nach
Konkurrenzsituation

– No Contention

– Contention

– Simulation

▪ Darauf basierend für Entwurfsalternative
entscheiden

– Oftmals nach bester Antwortzeit

– Aber auch andere Kriterien

Software Performance Engineering 16.05.2007 20

Ergebnisse: Verweilzeit

▪ Residence Time
– Gesamtverweilzeit des Szenarios

– Verweilzeit pro Knoten

– Gesamtverweilzeit pro Gerät

▪ Hier: No Contention und Contention, 1 User/Sek

Software Performance Engineering 16.05.2007 21

Ergebnisse: Last

▪ Resource Demand

– Verweilzeit pro Knoten pro Gerät

– Gesamtverweilzeit pro Gerät

▪ Hier: Contention und Simulation, je 1 User/Sek

Software Performance Engineering 16.05.2007 22

Ergebnisse: Auslastung

▪ Utilization
– Auslastung der Geräte pro Knoten

– Gesamtauslastung der Geräte

– Bei Auslastung >1 kann Gerät Anfragen nicht
bedienen

– Hier: Contention und Simulation, jeweils 1 User/Sek

Software Performance Engineering 16.05.2007 23

Interpretation

▪ Vergleich mit Performanzziel

▪ Bewertung der besten Alternative
hinsichtlich der Antwortzeit ist klar

▪ Aber Bewertung der besten Alternative?

▪ Auch andere Faktoren, ggf. Vorteile
langsamerer Alternativen

– Erweiterbarkeit

– Skalierungsfragen

– …

Software Performance Engineering 16.05.2007 24

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXIX

Tipps SPE-ED

▪ Tipp: Verschiedene Ergebnisansichten über
das Menü auswählen

▪ Zwischenergebnisse
als andere Projekte
speichern

– Kopie der entsprechenden
Dateien

Software Performance Engineering 16.05.2007 25

Inhalt heute

▪ Konkurrenzsituationen
– System Execution Models

• Warteschlangennetze

– System Models
• Simulationen

▪ Analyse der Ergebnisse

Weitere Konstrukte in SPE-ED

▪ Daten und Schätzen

▪ Beispiel ICAD

Software Performance Engineering 16.05.2007 26

Ausführungsgraphen

Software Performance Engineering 16.05.2007 27

▪ Basisknoten
– Funktionale Komponente

▪ Erweiterter Knoten
– Verfeinerte Funktion in einem Subgraphen

▪ Wiederholungsknoten
– Schleife: n-malige Wiederholung einer Reihe von Knoten

▪ Entscheidungsknoten
– Ausführung geknüpft an Bedingung
– versehen mit Wahrscheinlichkeit

▪ Parallelknoten
– parallele Ausführung von Knoten
– Fortsetzung des Kontrollflusses erst nach Berechnung aller

Knoten

▪ Spaltungsknoten
– parallele Ausführung von Knoten
– Fortsetzung des Kontrollflusses auch wenn nicht alle

Knoten berechnet wurden

▪ Knoten zur Synchronisation

n

Parallelität im
Ausführungsgraphen

▪ Pardo (Parallel Do)

▪ Warten auf alle

▪ Split

▪ Nur Initiierung

Software Performance Engineering 16.05.2007 28

Jeweils mit Wahrscheinlichkeiten

Lesen: Aufruf bzw. , Antwort bzw.

Ausführungsgraphen:
Synchronisation

Software Performance Engineering 16.05.2007 29

Aufrufender Prozess:

Synchroner Aufruf:

der Aufrufer wartet

auf eine Antwort

Verzögerter synchroner

Aufruf: Weiterrechnen,

danach Warten auf

Antwort

Asynchroner Aufruf:

keine Antwort

Aufgerufener Prozess:

Berechnung,

dann Antwort

keine

Antwort

Ausführungsgraphen:
Synchronisation - Beispiel

Software Performance Engineering 16.05.2007 30

Von außen aufgerufen

Ersten rufen auf und warten

Asynchroner Aufruf

Synchronisation zweites
Beispiel

▪ Aufruf einer Datenbank auf einem zweiten
Server

▪ 12 Benutzer pro Minute

Software Performance Engineering 16.05.2007 31

Szenario Caller ruft DB Prozess auf

Szenario Callee

enthält Subgraphen

DB Process

Szenarien auf unterschiedlichen Facilities

Zuordnung der Knoten

▪ Synchronisationsknoten müssen implizit
einander zugewiesen werden

▪ Werten Sie den aufgerufenen Knoten aus
(mit den benötigten Konkurrenzsituationen)

▪ Geben Sie beim aufrufenden Knoten die
berechnete Verweilzeit als Delay an

▪ Bedenken Sie, die Ankunftsrate bzw. Anzahl
der Benutzer für das aufgerufene Szenario
anzupassen, wenn der Aufruf in einer
Schleife stattfindet.

Software Performance Engineering 16.05.2007 32

XXX APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Zuordnung der Knoten

▪ Beispiel für veränderte Ankunftsraten:

Software Performance Engineering 16.05.2007 33

LoopCaller Szenario

Subgraph call callee

Betrachte Ankunftsrate AR(Callee) =

AR(LoopCaller) * 5 + AR(Caller)

Konstrukte

▪ Nicht alle Konstrukte in Übungen

▪ Trotzdem alle Konstrukte kennen

– Knapp wie auf den Folien

▪ Für Hintergrundwissen in Handbuch
schauen

Software Performance Engineering 16.05.2007 34

Inhalt heute

▪ Konkurrenzsituationen
– System Execution Models

• Warteschlangennetze

– System Models
• Simulationen

▪ Analyse der Ergebnisse

▪ Weitere Konstrukte in SPE-ED

Daten und Schätzen

▪ Beispiel ICAD

Software Performance Engineering 16.05.2007 35

Eingabedaten für SPE

1. Performance-kritische Szenarios
– modelliert als Sequenzdiagramme, Ausführungsgraphen

2. Performance-Ziele
– konkrete Vorgaben, die zu erfüllen sind

3. Systemumgebung
– Hardware-Konfiguration, Betriebssystem, Middleware

4. Software Resource Requirements
– Berechnungsanforderung für jeden Rechenschritt

5. Computer Resource Requirements
– Abbildung der Software Resource Requirements auf die

Ausführungsumgebung

Software Performance Engineering 16.05.2007 36

in der Übung
vorgegeben

Woher Daten nehmen?

▪ Typischerweise zu frühem Entwurfszeitpunkt

▪ Entwurf noch nicht vollständig ausgearbeitet

– Alternativen für Architekturen

– Andere mögliche Entwurfsalternativen

▪ Noch keine (vollständige) Implementierung
vorhanden

▪ Ggf. ähnliche Systeme bekannt

▪ Rest: Schätzungen

Software Performance Engineering 16.05.2007 37

Benötigte Daten

▪ Welches sind performanzkritische Szenarien?

– 80-20 Regel

– Modelle und Benutzungsprofil erstellen

– Systemarchitekt, Marketing, Benutzer

▪

▪ Was sind die Performanzziele?

– Feste Vorgaben

– Ggf. bestimmte Einschränkungen

• Ressourcennutzung einschränken weil bekannt

• Auslastung einschränken bei Echtzeitsystemen

– Systemarchitekt, Marketing, Performance Engineer

Software Performance Engineering 16.05.2007 38

Performanzziele

▪ Performanzziele nicht unbedingt nur
einzelne Antwortzeit
– Maximal 20 Millisekunden

– Im Mittel 15 ms, höchstens 20

– Jeweils nur mit gewisser Konfidenz

▪ Benötigt sind Analysen für:
– Best-Case,

– Average-Case,

– Worst-Case

▪ Dementsprechende weitere Daten und
Schätzungen

Software Performance Engineering 16.05.2007 39

Benötigte Daten

▪ Welche Eigenschaften hat die
Systemumgebung?

– Hardware und Netzwerkkonfigurationen

– Betriebssysteme, Middleware, …

– Beteiligte Datenbanken

– Konkurrierende Software

▪ System-Deployer

Software Performance Engineering 16.05.2007 40

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXXI

Benötigte Daten

▪ Software Resource Requirements
– Anforderungen der einzelnen Knoten

▪ Verschiedene Typen von Anforderungen
– Festplatten und Netzwerkzugriffe noch gut zu

schätzen

– Verhalten von Datenbanken

– Berechnungsaufwand muss abgeschätzt werden
• Realistische Skala finden

▪ Später ggf. mehr Typen hinzufügen

▪ Entwickler, Performance Engineer

Software Performance Engineering 16.05.2007 41

Benötigte Daten

▪ Computer Resource Requirements

– Abbildung der Software Resource Requirements
auf Hardware

– Abhängig von Ausführungsumgebung

– Abstraktion ermöglichen

• 1 DB -> 50.000 CPU Instr + 1 File I/O

– Performance Engineer, Kapazitätsplaner

Software Performance Engineering 16.05.2007 42

Beispielwerte

▪ Festplatte:

– 20-30 MB pro Sekunde

– 5-10 ms Latenz

▪ Netzwerkverbindung

– Durchsatz sehr unterschiedlich

• 128 KBit/s; 1GBit/s; DSL 1000

– Latenzzeiten von Standorten abhängig

• Lokal < 1ms, Karlsruhe -> Oldenburg ca. 250 ms,
Karlsruhe -> Neuseeland ca. 400 ms

Software Performance Engineering 16.05.2007 43

Beispiel

▪ Aufteilung Netzwerk in zwei Software
Resource Requirements

– Anzahl Nachrichten

• Damit Latenzzeit berechnen

– Größe der Nachrichten

• Übertragungsdauer vervollständigen

▪ Evtl. eines weglassen wenn keinen Einfluss

Software Performance Engineering 16.05.2007 44

Device: Disk

I/O 0.001

FileSize I/O 25

Service Time 1

Device Network

Messages 0.4

MessageSize 128

Service Time 1

Beispielwerte

▪ CPU schwer abzuschätzen
– Feingranulare Instruktionen
– Instruktionen nicht 1:1 auf Zyklen abzubilden

• Beispielsweise 1 Instruktion in 0,8 Zyklen

– Befehlssatz von CPU abhängig

▪ Abstraktion durch Work Units
▪ Abbildung auf Computer Resource

Requirements finden
– Messungen ähnlicher Systeme
– Grobe Schätzungen
– (Vorgabe)

▪ Berechnungsaufwand in Work Units
einschätzen

Software Performance Engineering 16.05.2007 45

Computer Resource
Requirements

▪ In letzter Übung vorgegeben, wie
anzugeben

▪ Diesmal alle Rollen der Performanzanalyse
ausfüllen

– Selbst angeben wie die Matrix spezifiziert wird.

– In Übung

▪ Beispiel CAD System

Software Performance Engineering 16.05.2007 46

Inhalt heute

▪ Konkurrenzsituationen
– System Execution Models

• Warteschlangennetze

– System Models
• Simulationen

▪ Analyse der Ergebnisse

▪ Weitere Konstrukte in SPE-ED

▪ Daten und Schätzen

Beispiel ICAD

Software Performance Engineering 16.05.2007 47

Beispielsystem

▪ Interaktives CAD System ICAD
▪ Ingenieure zeichnen Modelle
▪ Modelle sind in DB abgelegt
▪ System validiert und analysiert Modelle
▪ Zeichnung besteht aus Knoten und Formen
▪ Koordinaten im dreidimensionalen Raum
▪ Anwendungsfälle Zeichnen und Bewerten
▪ Im Mittel alle 5 Sekunden eine Anfrage
▪ Typisches Modell

– 1000-3000 Balken
– Mittelwert ca. 1500 Balken

▪ Performanzziel: Modell normalerweise in 5 s
anzeigen, nicht länger als 10 s

Software Performance Engineering 16.05.2007 48

XXXII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

ICAD Szenario

▪ Jeweils Kenndaten für

– CPU

– Disk

– Netzwerk

▪ AppServer auch

– Delay (Screen)

Software Performance Engineering 16.05.2007 49

ICAD Szenario

▪ Block je
100
Balken
oder
Knoten

Software Performance Engineering 16.05.2007 50

Software Execution Graph

▪ Software Resource
Requirements angeben

▪ Variable Anzahl Balken

– Mittelwert 1500 Balken

– Schlechtester Fall 3000 Balken

▪ Einfluss auf

– Anzahl Schleifendurchläufe

– Ladezeiten aus DB

– Aufwand Matching

▪ Zwei Modelle

Software Performance Engineering 16.05.2007 51

Computer Resource
Requirements erstellen

▪ Angaben für Abbildungen aus Vorgaben
▪ Hier:
▪ Die CPU ist

5GHz schnell
 Service Time
= 5e-006

▪ Ein Zugriff auf
die EDBMS
benötigt ca.
250 KInstr CPU
und 2
Festplatten-
zugriffe

▪ …

Software Performance Engineering 16.05.2007 52

Computer Resource
Requirements

▪ Weitere Daten eingeben nach Vorgaben

Software Performance Engineering 16.05.2007 53

Schleifendurchläufe

▪ Mittel 1500

▪ Maximal 3000

▪ Zwei Projekte

Software Performance Engineering 16.05.2007 54

Ladezeiten

Software Performance Engineering 16.05.2007 55

Aufwand
Zusammenführung

Software Performance Engineering 16.05.2007 56

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXXIII

Analysen Mittelwert

▪ No Contention links

▪ Ankunftsrate 0,2
links

▪ Beide innerhalb der
Vorgaben

Software Performance Engineering 16.05.2007 57

Analysen schlechter Fall

▪ No Contention links

▪ Ankunftsrate 0,2
links

▪ Beide innerhalb der
Vorgaben

Software Performance Engineering 16.05.2007 58

Warum ist alles so
komplex?

▪ In anderen Ingenieurwissenschaften gibt es
doch auch Vorhersagen?

▪ Aber Software ist anders

– Halteproblem

– Daher Hauptproblem: Richtige
Abstraktionsebene finden

– Lösbar, aber noch aussagekräftig

Software Performance Engineering 16.05.2007 59

Inhalt heute

▪ Konkurrenzsituationen
– System Execution Models

• Warteschlangennetze

– System Models
• Simulationen

▪ Analyse der Ergebnisse

▪ Weitere Konstrukte in SPE-ED

▪ Daten und Schätzen

▪ Beispiel ICAD

Software Performance Engineering 16.05.2007 60

XXXIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXXV

A.3 Palladio Tutorial Slides

The tutorial slides were created by Heiko Koziolek and Steffen Becker for this experiment.

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)

Lehrstuhl Software-Entwurf und –Qualität

Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum Ingenieurmäßige
Software-Entwicklung

Palladio Component Model (PCM)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

1.Introduction

a. Roles, Process Model, Example

b. Solver (Simulation, Analytical Model)

2.Component Developer

a. Repository

b. Component, Interface, Data Types

c. SEFF

3.Stochastical Expressions

a. Constants, PMF, PDF, Parameter
Characterisation

b. Parametric Dependencies

Palladio Component Model 17.08.2007 2

Lecture 1

Lecture 2

Lecture 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

4.Software Architect

a) System (Composed Structure)

b) QoS Annotations on System Interfaces

5.System Deployer

a) Resource Types, Resource Environment

b) Allocation

6.Domain Expert

a. Usage Model

b. Parameter Characterisations

7.Solver, Result Interpretation

8.Comprehensive Case Study

9.Outlook

Palladio Component Model 17.08.2007 3

Lecture 4

Lecture 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

1.Introduction

a. Roles, Process Model, Example

b. Solver (Simulation, Analytical Model)

2.Component Developer

a. Repository

b. Component, Interface, Data Types

c. SEFF

3.Stochastical Expressions

a. Constants, PMF, PDF, Parameter
Characterisation

b. Parametric Dependencies

Palladio Component Model 17.08.2007 4

Lecture 1

Lecture 2

Lecture 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

▪ Developed at Uni Oldenburg,
Uni Karlsruhe since 2003

▪ Domain-specific
Modelling Language

▪ Targeted at

– Performance Prediction
for Component-based Software Architectures

– Business Information Systems

▪ Extensive Metamodel in EMF/Ecore

▪ Named after famous Renaissance Architect

Palladio Component Model

Palladio Component Model 17.08.2007 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

CBSE Development Process

Palladio Component Model 17.08.2007 6

[Cheeseman2000, Koziolek2006a]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Developer Roles

Palladio Component Model 17.08.2007 7 Palladio Component Model 17.08.2007 8

Component
Developers

Software
Architect

System
Deployer

Domain
Expert

Component
Developers

Domain
Expert

System
Deployer

Software
Architect

[Becker2007a]

XXXVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Palladio Component Model 17.08.2007 9

Dom. Exp.
DSL Instance

Sys. Depl.
DSL Instance

Soft. Arch.
DSL Instance

Comp.Dev.
DSL Instance

Stochastic
Regular Expr.

Analysis

SPA with
Scheduling

Analysis +
Simulation

Queueing
Network

Performance
Prototype

Java Code
Skeletons

Simulation

Execution +
Measurement

Completion +
Compilation

Instance

Palladio
Component
Model

[Becker2007a]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Repository

Palladio Component Model 17.08.2007 10

Component
Developer

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Service Effect Specification

Palladio Component Model 17.08.2007 11

Component
Developer

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

System

Palladio Component Model 17.08.2007 12

Software
Architect

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Resource Environment

Palladio Component Model 17.08.2007 13

System
Deployer

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Usage Model

Palladio Component Model 17.08.2007 14

Domain
Expert

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Model Solver

Palladio Component Model 17.08.2007 15

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Model Solver

PCMSolver

▪ Only Single User

▪ Fast (~2-5 seconds)

▪ Analytical Method,
High Precision

▪ Stochastic Process
Algebra based

▪ Traverses the
architecture once

▪ Directly convolutes
specified probability
functions

SimuBench

▪ Single + Multiple User

▪ Slow (~30-600 sec.)

▪ Process-based
Simulation

▪ Queueing Network
based (G/G/n)

▪ Traverses the
architecture repeatedly

▪ Draws samples from
probability functions,
adds them up

Palladio Component Model 17.08.2007 16

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXXVII

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Example

▪ Blog-System

▪ Switch to Eclipse!

Palladio Component Model 17.08.2007 17

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

1.Introduction

a. Roles, Process Model, Example

b. Solver (Simulation, Analytical Model)

2.Component Developer

a. Repository

b. Component, Interface, Data Types

c. SEFF

3.Stochastical Expressions

a. Constants, PMF, PDF, Parameter
Characterisation

b. Parametric Dependencies

Palladio Component Model 17.08.2007 18

Lecture 1

Lecture 2

Lecture 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Tasks

▪ Specifies Component & Interfaces

▪ Specifies Data Types

▪ Builds Composite Components

▪ Creates Service Effect Specifications

▪ Stores Modelling & Implementation
Artefacts in Repositories

▪ Implements Components

▪ Tests Components

▪ Maintains Components

Palladio Component Model 17.08.2007 19

Component
Developer

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Example Repository

Palladio Component Model 17.08.2007 20

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Example Repository

Palladio Component Model 17.08.2007 21

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Interfaces

Palladio Component Model 17.08.2007 22

[Beugnard1999]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

PCM Interfaces

▪ QoS (=Performance, Reliability)

– Service Effect Specification (Lecture 2)

▪ Protocol (=Valid Call Sequences)

– Finite State Machine (Not shown here)

▪ Signature

– Corba IDL:

• Return Type

• Name

• Parameter List

• Exception List

Palladio Component Model 17.08.2007 23

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

PCM Component Types

Palladio Component Model 17.08.2007 24

XXXVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Provided Component Type

▪ Only Provided Interfaces mandatory

▪ May contain required services,
not mandatory

▪ Specified during early development,
refined later

▪ Situation: certain functionality needed,
but additionally required services unknown

▪ QoS Annotations

Palladio Component Model 17.08.2007 25

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Complete Component Type

▪ Provided and Required Interfaces
mandatory

▪ Dependencies between Provided and
Required Interfaces not fixed

▪ Situation: Needed functionallity known,
component environment also fixed

Palladio Component Model 17.08.2007 26

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Basic Component

▪ Provided/Required Interfaces mandatory

▪ One option to implement a Complete Type

▪ Service Effect Specification for
Dependencies between Provided and
Required Interfaces

▪ May be composed to Composed
Components

Palladio Component Model 17.08.2007 27

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Composite Component

▪ During development composed from any
component types

▪ Finally composed from Basic Components
and/or other Composite Components

▪ Likely not used in the experiment, but may
occur in exercises

Palladio Component Model 17.08.2007 28

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Data Types

▪ Primitive Datatype

– INT, CHAR, BOOL, DOUBLE, LONG, …

▪ Collection Datatype

– Contains an inner primitive datatype

– ARRAY, SET, LIST, TREE, HASHMAP, …

▪ Composite Datatype (Struct)

– Contains inner primitive
and/or collection and/or composite datatypes

– ADDRESS, CUSTOMER, PERSON, …

Palladio Component Model 17.08.2007 29

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Hands on Example

▪ Switch to PCMBench

Palladio Component Model 17.08.2007 30

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

1.Introduction

a. Roles, Process Model, Example

b. Solver (Simulation, Analytical Model)

2.Component Developer

a. Repository

b. Component, Interface, Data Types

c. SEFF

3.StoEx

a. Constants, PMF, PDF, Parameter
Characterisation

b. Parametric Dependencies

Palladio Component Model 17.08.2007 31

Lecture 1

Lecture 2

Lecture 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Lessons Learned Today

▪ Person – Role – Task

▪ Component Developer, Software Architect,
System Deployer, Domain Expert

▪ PCMSolver vs. SimuBench

▪ PCM Repository (Component Developer)

– Components
(Provided, Complete, Basic, Composite)

– Interfaces
(Signature, Protocol, SEFF)

– Data Types
(Primitive, Collection, Composite)

Palladio Component Model 17.08.2007 32

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XXXIX

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)

Lehrstuhl Software-Entwurf und –Qualität

Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum Ingenieurmäßige
Software-Entwicklung

Palladio Component Model – Part II (PCM)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

1.Introduction

a. Roles, Process Model, Example

b. Solver (Simulation, Analytical Model)

2.Component Developer

a. Repository

b. Component, Interface, Data Types

c. SEFF

3.Stochastical Expressions

a. Constants, PMF, PDF, Parameter
Characterisation

b. Parametric Dependencies

Palladio Component Model 30.05.2007 2

Lecture 1

Lecture 2

Lecture 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

▪ Description of the external
visible actions of a
component‘s service

▪ Abstraction of internal
behaviour

▪ Describes relationship between
provided component side and required
component side

▪ Can be parameterised by variables (see next
lecture)

Service Effect Specification

Palladio Component Model 30.05.2007 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Conceptual Sources
of the SEFF

▪ CBSE Parametric Contracts

▪ UML2 Activities

– Notation

– Some semantic ideas

▪ Software Execution Graphs of SPE

▪ Core Scenario Model (CSM) used in PUMA
(Performance by unified model analysis)

▪ KLAPER (Kernel Language for Performance
and Reliability Analyses)

Palladio Component Model 30.05.2007 4

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Service Effect Specification
Overview

Palladio Component Model 30.05.2007 5

Component
Developer

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Conceptual Overview

▪ Resource Actions

– Internal Action

– Acquire- & Release Action

▪ Communication

– External Call Action

▪ Control Flow

– Loops

– Branches

– Fork

Palladio Component Model 30.05.2007 6

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Start and Stop Action

▪ Mark beginning and end of
activities

▪ Every sub activity also has to
have one start and one stop
action

Palladio Component Model 30.05.2007 7

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Internal Action

▪ Modells component internal activities like
doing a computation

▪ Specifies the summed up resource demand
for the action

▪ Different resources can be used

Palladio Component Model 30.05.2007 8

XL APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Acquire Action

▪ Acquire Actions model the acquisition of a
limited resource (Passive Resource Type)

▪ Examples are Database Connections,
Pooled Threads, Mutex Locks, …

▪ Serve as synchronisation mechanism for
concurrent executions

Palladio Component Model 30.05.2007 9

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Release Action

▪ Release acquired resources again

▪ Other waiting jobs can use the resource
now

▪ A FIFO strategy controls the order of
acquisition for the waiting jobs

Palladio Component Model 30.05.2007 10

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

ExternalCallAction

▪ Models a call using any of the required roles

▪ A call must use a required role

▪ Parameter passing and returning can be
specified (next lecture)

Palladio Component Model 30.05.2007 11

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Control Flow Specification

▪ Control flow constructs model the course of
actions like in SPE

▪ Concepts available

– Loops

• Loop

• CollectionIterator

– Branches

• Probabilistic

• Guarded

– Forks

Palladio Component Model 30.05.2007 12

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Loops

▪ Models repeated behaviour

▪ Iteration count has to be specified explicitly

Palladio Component Model 30.05.2007 13

for(int i=0; i<10; i++){
…

}

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

CollectionIteratorAction

▪ CollectionIteratorActions iterate over all
elements in an instance of a
CollectionDataType

▪ The behaviour is executed for every
element

Palladio Component Model 30.05.2007 14

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

CollectionIteratorAction

Palladio Component Model 30.05.2007 15

void myMethod(int[] intArray)
{

for (int x:intArray) {
do
…

}

}

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Semantic details

▪ Loop and CollectionIterator semantics
preview

– Inner Actions are evaluated stochastically
independent wrt. to contained parametric
dependencies

– Collection Iterator Actions are evaluated
stochastically dependent wrt. to the
characterisation of the parameter being iterated

▪ Examples and further details in next lecture

Palladio Component Model 30.05.2007 16

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XLI

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Branches

▪ A branch models optional parts of the control
flow

▪ Exactly one branch must be executed, to
model an option an empty alternative branch
has to be specified

▪ Two flavours:
– Probabilistic Branch Transitions: A probability can be

specified for every branch which is the probability of
executing the branch. Probabilities have to sum up
to 1

– Guarded Branch Transitions: Guards „protect“ the
execution of the branch. Execute branch which guard
is true

Palladio Component Model 30.05.2007 17

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Probabilistic Branches

Palladio Component Model 30.05.2007 18

If (someCondition) {
…

}
else{

…
}

someCondition == true in
40% of all cases

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Guarded Branches

Palladio Component Model 30.05.2007 19

a = …
If (a <= 10) {

…
} else {

…
}

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Fork

▪ A fork spawns n threads and waits for them
to finish

▪ After finishing the forked threads the main
thread continues

Palladio Component Model 30.05.2007 20

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Now: Exercises in the Tool

▪ Switch to Eclipse!

Palladio Component Model 30.05.2007 21

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Lessons Learned Today

▪ What is a SEFF?

▪ What is it used for?

▪ Concepts
– Resource Actions

• Internal Action

• Acquire- & Release Action

– Communication
• External Call Action

– Control Flow
• Loops

• Branches

• Forks

Palladio Component Model 30.05.2007 22

XLII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)

Lehrstuhl Software-Entwurf und –Qualität

Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum Ingenieurmäßige
Software-Entwicklung

Palladio Component Model – Part III (PCM)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

1.Introduction

a. Roles, Process Model, Example

b. Solver (Simulation, Analytical Model)

2.Component Developer

a. Repository

b. Component, Interface, Data Types

c. SEFF

3.Stochastic Expressions

a. Constants, PMF, PDF, Parameter
Characterisation

b. Parametric Dependencies

Palladio Component Model 08.06.2007 2

Lecture 1

Lecture 2

Lecture 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Uncertainties

▪ A situation is uncertain
if the outcome is unknown in advance

▪ Probabilistic characterisations possible

▪ Examples

– How will users interact with a system?

– When do they arrive?

– Which parameters do they pass in their calls?

Palladio Component Model 08.06.2007 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Random Variables

▪ Random variables describe uncertain events

▪ They may be described by their probability
distribution

▪ Two kinds of random variables:

– Discrete

• Example: Iteration count of a loop

– Continuous

• Example: Passed time between the arrival of two jobs

Palladio Component Model 08.06.2007 4

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Probability Mass Function

▪ PMF

▪ Distribution Function of a discrete variable

▪ Domain type depends on the model
– Loop Iterations: Integer

– Collection Structure: Enum

– Actual Value: Any

– …

▪ PMF Literals
– IntPMF[(1;0.1)(2;0.3)(5;0.6)]

– EnumPMF[(„Sorted“;0.5)(„Unsorted“;0.5)]

▪ Constraint: Sum of probabilities has to be 1,
be careful, this is still unchecked in the tools!

Palladio Component Model 08.06.2007 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Probability Mass Function

Palladio Component Model 08.06.2007 6

1 2 3

0.1

0.2

0.3

0.4

0.5

VALUE

Probability

IntPMF[(1;0.2)(2;0.3)(3;0.5)]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Probability Density Function

▪ PDF

▪ Dist. Function of a continuous random variable

▪ Domain is always double

▪ Hard to characterise as possibly infinite

 We use a derived discrete function: BoxedPDF

▪ Boxes sum up all events
falling into their bounds

▪ Inner box distribution is uniform

▪ Depicted as histogram or CDF

Palladio Component Model 08.06.2007 7

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

PDF

Palladio Component Model 08.06.2007 8

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XLIII

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Specification

Palladio Component Model 08.06.2007 9

1 320

0.4

0.6 DoublePDF[(1;0)(2;0.4)(3;0.6)]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Specification

Palladio Component Model 08.06.2007 10

1 320

0.4

0.6 DoublePDF[(1;0)(2;0.4)(3;0.6)]

Note:

As first value,
implicitly (0,0)

is always assumed!

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Specification

Palladio Component Model 08.06.2007 11

1 320

0.4

0.6 DoublePDF[(1;0)(2;0.4)(3;0.6)]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Specification

Palladio Component Model 08.06.2007 12

1 320

0.4

0.6 DoublePDF[(1;0)(2;0.4)(3;0.6)]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

PDF

Palladio Component Model 08.06.2007 13

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
u

m
u

la
ti

v
e
 P

r
o

b
a
b

il
it

y

Response Time (Seconds)

Prediction

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Semantics

▪ X ~ DoublePDF[(1;0)(2;0.4)(3;0.6)]

– P(0<=x<1) = 0

– P(1<=x<2) = 0.4

– P(2<=x<3) = 0.6

– P(1<=x<1.5) = 0.2

- …

- Y ~ IntPMF[(1;0.2)(2;0.5)(3;0.3)]

- P(Y = 1) = 0.2

- P(Y = 2) = 0.5

- P(Y = 3) = 0.3

- P(Y = n) = 0 for all n >=4

Palladio Component Model 08.06.2007 14

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Functional dependent
random variables

▪ X ~ IntPMF

▪ Y ~ IntPMF

▪ Z = X * Y

– Z is also a Random Variable

– Z ~ IntPMF

– Z‘s distribution is derived automatically

▪ Operators: +, -, *, /, ^, <, >, …

▪ Resulting grammar is called Stochastic
Expression (StoEx) in PCM

Palladio Component Model 08.06.2007 15

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Using random variables
for modelling

▪ Where can we use random variables?

– Loop iterations

– Branch conditions

– Inter arrival time

– Think time

– For input parameter characterisations

– For output/return parameter characterisations

– For resource demands

Palladio Component Model 08.06.2007 16

XLIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Introducing variables…

▪ We can define our own variables to describe
parameters

▪ They are set at the caller‘s side

▪ They are used at the called side

▪ Model performance relevant dependencies
only!
– Most parameters have no or only little influence

on the performance

– Omit these parameters from the specification!

– Example: int ICalculator.add(int a, int b)
Performance is not depending significantly on
any parameter value!

Palladio Component Model 08.06.2007 17

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Parameter Abstractions

▪ We normally do not model parameter
values but performance abstractions

▪ The following types are available
– BYTESIZE: Memory footprint of a parameter

– VALUE: The actual value of a parameter for
primitive types

– STRUCTURE: Structure of data, like „sorted“ or
„unsorted“

– NUMBER_OF_ELEMENTS: The number of
elements in a collection

– TYPE: The actual type of a parameter (vs. the
declared type)

Palladio Component Model 08.06.2007 18

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Examples

Void aMethod(int a, int[] b, MyFigure c)

Caller Specifies:
a.BYTESIZE = 4

a.VALUE =
IntPMF[(10;0.2)(30;0.4)(100;0.4)]

b.NUMBER_OF_ELEMENTS = 100

c.TYPE =
EnumPMF[(„circle“;0.4)(„rectangle“;0.6)]

Palladio Component Model 08.06.2007 19

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Example cont.

Void aMethod(int a, int[] b, MyFigure c)

Use in the SEFF of aMethod
aLoop.Iterations = a.VALUE

anAction.ResourceDemand =
b.NUMBER_OF_ELEMENTS * 100

aBranch.Condition = c.TYPE == „circle“

Palladio Component Model 08.06.2007 20

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Special Keywords

▪ INNER

– Refers to the elements of a collection

– Describes the contents of the collection

▪ RETURN

– Refers to the return value of the current SEFF

– Characterises the result

▪ Namespace of variables

– Characterise inner elements of composed data
types

Palladio Component Model 08.06.2007 21

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Examples

Void aMethod(int a, int[] b, MyFigure c)

b.INNER.BYTESIZE = 4

b.INNER.VALUE = 42

b.INNER.VALUE = IntPMF[(42;0.5)(43;0.5)]

c.color.VALUE =
EnumPMF[(„red“;0.1)(„green“;0.9)]

Palladio Component Model 08.06.2007 22

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Editor Support

▪ „StoEx-Dialog“

▪ Offers syntax highlighting, code completion,
online help and basic syntax checking

▪ Often available on double click of the
corresponding model element

Palladio Component Model 08.06.2007 23

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Semantic difference
Loop and Collection Iterator

▪ In a Loop all characterisations are
evaluated any time they occur (stochastical
independence)

// a.INNER.BYTESIZE=IntPMF[(1;0.5)(10;0.5)]
Object[] a = ...
for (int i=0; i < 10; i++) {
// a.INNER.BYTESIZE can be 1 in doSth
doSth(a[i]);
// a.INNER.BYTESIZE can be 10 in doSthElse
doSthElse(a[i]);

}

Palladio Component Model 08.06.2007 24

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XLV

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Semantic difference
Loop and Collection Iterator

▪ In a Collection Iterator all characterisations are
evaluated any time they occur (stochastical
independence) execpt the INNER characterisations
of the iterator parameter

// a.INNER.BYTESIZE=IntPMF[(1;0.5)(10;0.5)]
Object[] a = ...
for (Object o:a) {
// a.INNER.BYTESIZE can be 1 in doSth
doSth(o);
// a.INNER.BYTESIZE is also 1 in doSthElse
doSthElse(o);

}

Palladio Component Model 08.06.2007 25

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Semantics:
Dependant Branches

// x.VALUE=IntPMF[(1;0.5)(6;0.3)(12;0.2)]

if (x > 5) {
if (x > 10) {
} else {
}

}
If you would have to model this with
probabilistic branch transitions, what would
be the probabilities? (Tip: Bayes Theorem!!!)

Palladio Component Model 08.06.2007 26

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Semantics:
Dependant Branches

// x.VALUE=IntPMF[(1;0.5)(6;0.3)(12;0.2)]
if (x > 5) { // p = 0.5
// x.VALUE is always 6 or 12 here!
if (x > 10) { // p = 0.4

// x.VALUE is always 12 here!
} else { // p = 0.6

// x.VALUE is always 6 here!
}

} else { // p = 0.5
// x.VALUE is always 1 here!

}
Our tools respect this automatically, you don’t

have to calculate on your own!

Palladio Component Model 08.06.2007 27

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Now: Exercises in the Tool

▪ Switch to Eclipse!

Palladio Component Model 08.06.2007 28

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Lessons Learned Today

▪ What is uncertainty?

▪ How is it modelled in PCM?

▪ Random Variables

▪ Random Variables in the PCM

– Loop Iterations

– Branch Conditions

– Resource Demands

– Parameter characterisations

– Usage model details

Palladio Component Model 08.06.2007 29

XLVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)

Lehrstuhl Software-Entwurf und –Qualität

Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum Ingenieurmäßige
Software-Entwicklung

Palladio Component Model – Part IV (PCM)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

1.Introduction

a. Roles, Process Model, Example

b. Solver (Simulation, Analytical Model)

2.Component Developer

a. Repository

b. Component, Interface, Data Types

c. SEFF

3.Stochastic Expressions

a. Constants, PMF, PDF, Parameter
Characterisation

b. Parametric Dependencies

Palladio Component Model 13.06.2007 2

Lecture 1

Lecture 2

Lecture 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

4.Software Architect

a) System (Composed Structure)

b) QoS Annotations on System Interfaces

5.System Deployer

a) Resource Types, Resource Environment

b) Allocation

6.Domain Expert

a. Usage Model

b. Parameter Characterisations

7.Solver, Result Interpretation

8.Comprehensive Case Study

9.Outlook

Palladio Component Model 13.06.2007 3

Lecture 4

Lecture 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Software Architect

Palladio Component Model 13.06.2007 4

[http://commons.wikimedia.org/wiki/Image:Architect.png]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Software Architect:
Tasks (1/2)

▪ Specifies an architecture (boxes and lines)
from existing components and interfaces

▪ Specifies new components
and interfaces

▪ Uses architectural styles
and architectural patterns

▪ Analyses architectural
specification and makes design decisions

Palladio Component Model 13.06.2007 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Software Architect:
Tasks (2/2)

▪ Conducts performance prediction
based on architectural specification

▪ Delegates implementation tasks
to component developers

▪ Guides the whole
development process

Palladio Component Model 13.06.2007 6

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

CBSE Development Process

Palladio Component Model 13.06.2007 7

[Cheeseman2000, Koziolek2006a]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Specification Process

Palladio Component Model 13.06.2007 8

[Grunske2007]

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XLVII

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Specification Process

9

[Koziolek2006a]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

System

▪ Models the component-based
architecture to be analysed

▪ May include components
from different repositories

▪ Provides an interface for users

▪ Excludes uninteresting services
and connects to them
via system required interfaces

▪ Is a prerequisite for the system deployer
to allocate the components

Palladio Component Model 13.06.2007 10

<<System>>

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

System Specification

Palladio Component Model 13.06.2007 11

Assembly Context Assembly Connector Delegation
Connector

System Provided Interface System Required Interface

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

System Specification
PCM Bench

Palladio Component Model 13.06.2007 12

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

QoS Annotation

▪ System Required Interfaces: connection
to functionality not modelled in the system

▪ Example: web service, unknown component

▪ Execution time specification necessary

Palladio Component Model 13.06.2007 13

<<System>>
Execution Time = 250 +

DoublePDF[(100;0.8)
(200;0.2)]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

QoS Annotation

Palladio Component Model 13.06.2007 14

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Performance Evaluation

Palladio Component Model 13.06.2007 15

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Design alternatives
changing performance

▪ More hardware

▪ Faster hardware

▪ Caching

▪ Resource Pooling

▪ Replication

▪ Load Balancing

▪ Compression

▪ Reducing
communication
overhead

▪ Reimpl. of a
component

▪ Allocation

▪ Introduce parallel
processing

▪ Use Performance
Pattern

▪ …

Palladio Component Model 13.06.2007 16

XLVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

4.Software Architect

a) System (Composed Structure)

b) QoS Annotations on System Interfaces

5.System Deployer

a) Resource Types, Resource Environment

b) Allocation

6.Domain Expert

a. Usage Model

b. Parameter Characterisations

7.Solver, Result Interpretation

8.Comprehensive Case Study

9.Outlook

Palladio Component Model 13.06.2007 17

Lecture 4

Lecture 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

System Deployer

Palladio Component Model 13.06.2007 18

[http://www.dorsetforyou.com/]

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

System Deployer: Tasks

▪ Models the resource environment
(e.g., middleware, OS, hardware)

▪ Models the allocation of components
to resources

▪ Sets up the resource environment
(e.g., installing application servers,
configuring hardware)

▪ Deploys components on resources
(e.g., writing deployment descriptors)

▪ Maintains the running system

Palladio Component Model 13.06.2007 19

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Resource Types

▪ Abstract specification of resources
(e.g. CPU, HD, Net)

▪ Why?

– concrete resources (e.g. 2 GHz CPU, 20 MB/s
HD, 1 Gbit/s Net) unknown during component
specification and implementation

▪ Thus: component developers provide
RDSEFF specifications referring to resource
types

▪ Once the concrete resource environment
is specified, timing values can be derived

Palladio Component Model 13.06.2007 20

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Resource Types in PCM

Palladio Component Model 13.06.2007 21

CPU HD

MemoryNetwork

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Resource Environment

Palladio Component Model 13.06.2007 22

Subsumes resources Connects resource containers

Physical resource Logical resource

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Processing Resources

▪ Model CPUs, Hard Disks,
Networks, etc.

▪ Specify a processing rate
for the resource demands
of the RDSEFFs

▪ Example 1:
– Processing rate (CPU): 3*10^9 cycles/s = 3 Ghz
– RDSEFF: Resource Demand = 1,5 * 10^9 cycles
0,5 seconds execution time

▪ Example 2:
– Processing rate (HD): 20 MB/s
– RDSEFF: Resource Demand = 500 000 Byte
0,025 seconds execution time

Palladio Component Model 13.06.2007 23

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Passive Resources

▪ Model logical resources
– Threads, Semaphores, Database

connections, …

▪ Are aquired or released
in RDSEFFs

▪ Specify a maximum capacity

▪ Example:
– Capacity (ThreadPool): 8

– RDSEFF: AquireAction(ThreadPool)

Afterwards: #available threads decreased by 1

– RDSEFF: ReleaseAction(ThreadPool)

Afterwards: #available threads increased by 1

Palladio Component Model 13.06.2007 24

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XLIX

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Allocation

Palladio Component Model 13.06.2007 25

Assigns
component

to a resource
container

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Allocation

Palladio Component Model 13.06.2007 26

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

4.Software Architect

a) System (Composed Structure)

b) QoS Annotations on System Interfaces

5.System Deployer

a) Resource Types, Resource Environment

b) Allocation

6.Domain Expert

a. Usage Model

b. Parameter Characterisations

7.Solver, Result Interpretation

8.Comprehensive Case Study

9.Outlook

Palladio Component Model 13.06.2007 27

Lecture 4

Lecture 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Lessons Learned Today

▪ Software Architect

– Specification of a system

▪ System Deployer

– Resource Types

– Specification of a
resource environment

– Specification of an allocation

Palladio Component Model 13.06.2007 28

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Switch to Eclipse

Palladio Component Model 13.06.2007 29

L APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)

Lehrstuhl Software-Entwurf und –Qualität

Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum Ingenieurmäßige
Software-Entwicklung

Palladio Component Model – Part V (PCM)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

4.Software Architect

a) System (Composed Structure)

b) QoS Annotations on System Interfaces

5.System Deployer

a) Resource Types, Resource Environment

b) Allocation

6.Domain Expert

a. Usage Model

b. Parameter Characterisations

7.Result Interpretation

Palladio Component Model 29.06.2007 2

Lecture 4

Lecture 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Domain Expert

▪ Familiar with the business domain

▪ Specifies user behaviour

– Number of users

– User Requests to the System

– Input parameters characterisations
as distribution functions

Palladio Component Model 29.06.2007 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Usage Model

▪ Models user behaviour, not component!

▪ Similar to RDSEFFs, but

– Does not refer to resources

– Does not refer to inner components of a system

– Does not model parametric dependencies

– Includes a workload specification

▪ Usage Model

– 1…n usage scenarios (1 per use case)

– 1 workload per usage scenario

Palladio Component Model 29.06.2007 4

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Usage Model

Palladio Component Model 29.06.2007 5

Workload: open or closed
(like in SPE)

Branch

Call to a
system provided service

Loop

Variable Usage

Usage Scenario

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

4.Software Architect

a) System (Composed Structure)

b) QoS Annotations on System Interfaces

5.System Deployer

a) Resource Types, Resource Environment

b) Allocation

6.Domain Expert

a. Usage Model

b. Parameter Characterisations

7.Result Interpretation

Palladio Component Model 29.06.2007 6

Lecture 4

Lecture 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

SetVariableAction

▪ Characterisation of
Return Values

▪ Only if performance
relevant!

▪ Reserved Keyword
RETURN

▪ May occur in different
branches

Palladio Component Model 29.06.2007 7

Return Value

RDSEFF

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Using Return Values
of ExternalCallActions

▪ Assignment
of output parameter
characterisations
to local variables

▪ Use local variables
afterwards in
parametric
dependency
specification

Palladio Component Model 29.06.2007 8

RDSEFF

Local Variable Declaration

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LI

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Component Parameters

Palladio Component Model 29.06.2007 9

▪ Global parameters for
components
– Configuration options

– Static State

– …

▪ Declaration per
assembly context

▪ Default value by
component developer

▪ Cannot be changed
dynamically
(during simulation)

Definition

Assignment of static value

System

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Model Validation

▪ Switch to Eclipse!

Palladio Component Model 29.06.2007 10

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Outline

4.Software Architect

a) System (Composed Structure)

b) QoS Annotations on System Interfaces

5.System Deployer

a) Resource Types, Resource Environment

b) Allocation

6.Domain Expert

a. Usage Model

b. Parameter Characterisations

7.Result Interpretation

Palladio Component Model 29.06.2007 11

Lecture 4

Lecture 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Result Interpretation

▪ Performance Metrics PCM

▪ Statistics

▪ Analysing Histograms

▪ Analysing Cumulative Distribution Functions

Palladio Component Model 29.06.2007 12

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Performance Metrics
supported by SimuCom

▪ Response Time per Time Sensor

– Histogram

– Cumulative Distribution Function

– Point Estimators with R (Statistics Package)

▪ Utilization per Resource

– Percentage: Busy Period / Idle Period

▪ Currenty NOT supported

– Throughput

Palladio Component Model 29.06.2007 13

▪

▪

▪

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Statistics

▪ Point Estimators

– Expected Value (Mean)

– Standard Deviation

– Variance

– Median

▪ Compare Probability Distributions

– Kolmogorov-Smirnov-Test

– Chi-Square-Test

– Anderson-Darling-Test

Palladio Component Model 29.06.2007 14

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Result Interpretation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
r
o
b

a
b

il
it

y

Response Time (Seconds)

Palladio Component Model 29.06.2007 15

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Result Interpretation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
r
o
b

a
b

il
it

y

Response Time (Seconds)

Palladio Component Model 29.06.2007 16

LII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Result Interpretation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
r
o
b

a
b

il
it

y

Response Time (Seconds)

Palladio Component Model 29.06.2007 17

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Result Interpretation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
r
o
b

a
b

il
it

y

Response Time (Seconds)

Palladio Component Model 29.06.2007 18

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Result Interpretation

Palladio Component Model 29.06.2007 19

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
u

m
u

la
ti

v
e
 P

r
o

b
a
b

il
it

y

Response Time (Seconds)

Median

0.75 Quartil

0.25 Quartil

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Result Interpretation

Palladio Component Model 29.06.2007 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
u

m
u

la
ti

v
e
 P

r
o

b
a
b

il
it

y

Response Time (Seconds)

Service Level Agreement:
90% of requests return
in less than 8 seconds

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Result Interpretation

Palladio Component Model 29.06.2007 21

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
u

m
u

la
ti

v
e
 P

r
o

b
a
b

il
it

y

Response Time (Seconds)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Current Developments
(Changelog)

▪ Linking Resources

– work automatically in background

– latency specification for comm.link.resources

▪ Scheduling Policies for ProcessingResources

– FCFS, PROCESSOR_SHARING, DELAY

▪ System

– Output parameters for system external calls

– Broker lookup support for connectors

▪ Usage Model

– User Delays (to model waiting/thinking)

Palladio Component Model 29.06.2007 22

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Current Developments
(Changelog)

▪ Stochastical Expressions

– AND, OR, NOT for Boolean Expressions

– Standard Probability Distributions

• Exp(x), UniForm(x,y), Norm(x), …

▪ OCL constraints for model validation

▪ SimuCom

– Saving simulation results to disk

Palladio Component Model 29.06.2007 23

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Lessons Learned Today

▪ Usage Model

– for user behaviour

▪ Return Values

▪ Component Parameters

▪ Model Validation

▪ Result Interpretation

– Probability distributions

– Point estimators

Palladio Component Model 29.06.2007 24

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LIII

LIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

A.4 Review Slides

The last tutorial session before the experiment reviewed aspects of both methods and was cre-
ated by the author. The last slides were presented after the experiment, presenting first re-
sults.

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)

Lehrstuhl Software-Entwurf und –Qualität

Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum Ingenieurmäßige
Software-Entwicklung

Übung: Experimentvorbereitung

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

ZUR ÜBUNG

Palladio Component Model 04.07.2007 2

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Passive Ressourcen

▪ In SPE-ED kein Acquire-Release

▪ Wartezeit abschätzen.

▪ Für eine passive Ressource:

– Wahrscheinlichkeit zu warten ist Auslastung der
Ressource

– p(belegt) = Verweilzeit * Ankunftsrate

– p(belegt) = 0.01 * 0.3 = 0.003

▪ Wie lange warten?

– Wartezeit ≈ Verweilzeit (geringe Auslastung)

Palladio Component Model 04.07.2007 3

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Abschätzung passiver
Ressourcen

▪ Für mehrere Ressourcen, z.B. Threadpool 8

– Anzahl Ressourcen n

– Erst warten wenn letzte Ressource auch belegt

– wenn n Benutzer gleichzeitig im System

– wenn Ankunftsrate * Verweilzeit > n

– wenn Verweilzeit > n / Ankunftsrate

– und das für n Benutzer hintereinander

Palladio Component Model 04.07.2007 4

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Abschätzung passiver
Ressourcen

▪ Verweilzeit > n / Ankunftsrate für n
Benutzer hintereinander

– Abschätzen: p(Verweilzeit > n / Ankunftsrate)

– Für n Benutzer hintereinander:

• p(Verweilzeit > n / Ankunftsrate)n

▪ Beispiel: Threadpool 8, Ankunftsrate 1
User/s

– Durchschnittliche Verweilzeit: 3 s

– Abschätzen: p(Verweilzeit > 8) ≈ 0.05
– Dann (p(Verweilzeit > 8))8 = 3,9 * 10-9

Palladio Component Model 04.07.2007 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Ungenauigkeit

▪ Nicht betrachtet: Ankunftsrate ist nicht fix

– Es kommt nicht genau jede Sekunde ein
Benutzer am System an

▪ Ankunftsrate
ist exponential-
verteilt

▪ Mit Erwartungs-
wert 1

▪ Auch Möglichkeit,
dass 8 Benutzer in
3 s ankommen.

Palladio Component Model 04.07.2007 6

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

d(
E

xp
(1

))
(x

)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Ungenauigkeit

▪ Möglichkeit, dass 8 Benutzer in 3 s
ankommen

▪ Berechnung der
Wahrscheinlichkeit
durch Faltung der
Funktionen

▪ Dichtefunktion für
die Ankunftszeit
von 8 Benutzern

Palladio Component Model 04.07.2007 7

0 5 10 15

0.
00

0.
05

0.
10

0.
15

x

d(
E

8)
 (x

)

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Ungenauigkeit

▪ Man findet heraus:

▪ Wahrscheinlichkeit
dass 8 Benutzer in
3 s ankommen:
0,012

Palladio Component Model 04.07.2007 8

0 5 10 15

0.
00

0.
05

0.
10

0.
15

x

d(
E

8)
 (x

)

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LV

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Passive Ressourcen in
SPE-ED

▪ Einflüsse:
– Benutzer können länger bleiben als im Mittel

– Benutzer können schneller ankommen als im
Mittel

▪ Beide Einflüsse hier einzeln untersucht.
– Müssten eigentlich zusammen betrachtet

werden!

▪ Einfluss Ankunftsrate deutlich höher.
– Aber nicht von Hand berechenbar

▪ Diese Daten als Grundlage für Schätzungen
verwenden.
– Grundlagen für Schätzungen angeben.

Palladio Component Model 04.07.2007 9

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Ankunftsraten

▪ In SPE-ED als Ankunftsrate angegeben

– Nicht fix, sondern immer exponentialverteilt

▪ In Palladio als Zwischenankunftszeit

– StoEx

– Fixe Werte im StoEx sind feste Ankunftszeiten

– Auch Verteilungen im StoEx möglich

▪ Gleiche Voraussetzungen beider Verfahren

– In Palladio Exp(Ankunftsrate) im StoEx

weiter

Palladio Component Model 04.07.2007 10

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Angaben zu Geräten

▪ SPE-ED Angabe einer Service Time

– Wie lange benötigt Device, um eine Service Unit
abzuarbeiten

– Z.B. Service Unit = Work Unit,
Service Time 0.001 s/WU

▪ In Palladio Angabe einer Processing Rate

– Wie viele Service Units bearbeitet Device pro
Sekunde

– Z.B. Service Unit = Work Unit,
Processing Rate 1000 WU/s

Palladio Component Model 04.07.2007 11

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Service Units in Palladio

▪ In den Übungen wurde teilweise als Einheit
für Resource Demands „ms on“ angegeben

▪ Verletzt Unabhängigkeit zwischen den
Rollen!

▪ Abstraktere Einheiten angeben

▪ Nur eine Service Unit pro Gerät

▪ Dadurch Entscheidung ob Latenz oder
Durchsatz.

Palladio Component Model 04.07.2007 12

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Service Units in Palladio

▪ Für eine Festplatte kann Latenz (Seek
Time) oder Durchsatz spezifiziert werden.

▪ Durchsatz:

– Resource Demands in Service Unit Byte angeben

– Processing Rate in Byte/s

▪ Latenz / Seek Time

– Resource Demands in Number of Accesses

– Processing Rate in NoA/s

 Beispiel im PCM

Palladio Component Model 04.07.2007 13

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Service Units in Palladio

▪ Für Linking Resources kann Durchsatz und
Latenz angegeben werden.

▪ Erinnerung: Die LinkingResource wird
automatisch belastet

– Aufruf einer Komponente über Resource
Container Grenzen und

– Wenn Aufruf oder Rückgabewert eine .BYTESIZE
Charakterisierung haben

Palladio Component Model 04.07.2007 14

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Vorgehen Palladio

▪ An den verschiedenen Rollen des PCM
orientiert

▪ Komponentenentwickler

▪ System Architect

▪ Deployer

▪ Domain Expert

Palladio Component Model 04.07.2007 15

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Komponentenentwickler

▪ Repository und Schnittstellen

▪ SEFFs

▪ Parametrisierungen

▪ Eine Vorgehensweise für ein gesamtes
Repository

– Zunächst Kontrollfluss modellieren

– Interne Aktionen die Parametrisierung benötigen
identifizieren

– Parameter durchleiten oder als
Komponentenparameter erwarten

Palladio Component Model 04.07.2007 16

LVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Repository

▪ Interne Methode werden nicht in die
Schnittstellen aufgenommen

▪ Nur Hinweis auf interne Aktionen

Palladio Component Model 04.07.2007 17

WebAccess Groupware
Coordinator

planDate(Criteria criterias, Group group)

a Date or null

HTTP request

HTTP response

ref Groupware Internals

parseRequest

generateResponse

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

PCM Branch Actions

▪ Vollständige Abdeckung aller Alternativen.

Palladio Component Model 04.07.2007 18

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Rückgabewerte

▪ Werden mit SetVariableAction gesetzt

▪ Haben anderen Kontext (Stackframe) als
lokale Parameter

▪ Sprich: Gesetzte Return
Werte können im SEFF
selbst nicht verwendet
werden!

– Nur das Überschreiben
ist möglich.

Palladio Component Model 04.07.2007 19

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Software Architekt

▪ Spezifiziert, wie Komponenten zum System
zusammengesetzt werden

▪ AssemblyContext

▪ Setzt Komponentenparameter für einzelne
Assemblies

Palladio Component Model 04.07.2007 20

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

System in Palladio

▪ System Model manuell initialisieren

▪ Composite Diagramm darauf initialisieren

Palladio Component Model 04.07.2007 21

Vorteile:
- Assembly Contexts werden benannt
- Weniger Bugs

System Diagram wird nicht länger
gepflegt

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

System in Palladio

▪ System Models können kopiert und für
Entwurfsalternativen angepasst werden

▪ Nach dem Kopieren neues Composite
Diagram auf der Kopie erzeugen

▪ Man muss nicht immer alles neu verbinden

Palladio Component Model 04.07.2007 22

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Deployer

▪ Spezifiziert die Ressourcenumgebung

– Processing Rate

▪ Spezifiziert, welche Komponenten wo
eingesetzt werden

▪ Genauer: Welcher Assembly Context wo
eingesetzt wird

▪ Bildet Assembly Contexte auf Server
(=Resource Container) ab

Palladio Component Model 04.07.2007 23

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Domänenexperte

▪ Modelliert das Benutzungsprofil.

▪ Liefert Werte für die in den SEFFs
benötigten Parametrisierungen

▪ Bestimmt die Ausführungshäufigkeit
– Closed Workload: X Benutzer zirkulieren im

System

– Open Workload: Zeit die zwischer den Ankunft
zweier Benutzer vergeht (nicht Ankunftsrate!)

▪ Bestimmt das Verhalten der Benutzer
– Beispielsweise rufen die Benutzer immer erst

Methode A und dann zu 30% auch Methode B
auf

Palladio Component Model 04.07.2007 24

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LVII

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Usage Model für mehrere
EAs

▪ Systeme müssen gleich heißen

▪ Dann kann ein Usage Model mit beiden
verwendet werden

Palladio Component Model 04.07.2007 25

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Wie in SPE-ED umsetzen

▪ Keine Rollentrennung

▪ Kontrollfluss modellieren

– Komponentenentwickler, Systemarchitekt

▪ Resource Demands angeben

– Komponentenentwickler, Domänenexperte

▪ Umgebung angeben als Overhead Matrix

– Deployer

Palladio Component Model 04.07.2007 26

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Deployment in SPE-ED

▪ Ein Szenario auf eine Facility deployed

▪ Anspruch: Gesamter Kontrollfluss

▪ Verteilte Systeme:

– Teile des Szenarios auslagern, die auf anderer
Facility ablaufen

– Weitere Facility dafür auswählen

– Antwortzeit für ausgelagerte Szenarien
bestimmen

– Synchronisationsknoten mit entsprechendem
Delay versehen

Palladio Component Model 04.07.2007 27

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Beispiel

Palladio Component Model 04.07.2007 28

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

UMGANG MIT DEN TOOLS

Palladio Component Model 04.07.2007 29

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

SPE-ED

▪ Begrenzte Anzahl Navigationsboxen

– Vorher überlegen, wie viele Boxen benötigt
werden

– Inhalte von Schleifen ggf. zusammenfassen.

▪ Simulation sehr unbeständig

– Wenn möglich Contention Solution verwenden

– Mehrere Use Cases in ein Szenario

– Mit Branches auswählen

– Quasi Benutzungsmodell mit ins Szenario

Palladio Component Model 04.07.2007 30

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Palladio

▪ Nur ein Diagramm offen haben!

▪ Composite Diagram, nicht System Diagram

▪ Möglichkeit, Ergebnisse zu persistieren
(DB4O)

▪ Wenn ein Diagramm defekt ist, nur
Diagramm aus Modell neu erzeugen

▪ System Modelle können kopiert werden,
Diagramme nicht

Palladio Component Model 04.07.2007 31

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

WEITERE HINWEISE

Palladio Component Model 04.07.2007 32

LVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Komplexe
Benutzungsprofile

▪ Benutzungsprofile bisher mit unabhängigen
Charakterisierungen

▪ Sind Einflussfaktoren auf die Performanz

▪ Verschiedene Charakterisierungen können
aber auch voneinander abhängen

▪ Beispiel:

– Liste von Bildern soll sortiert und zu einem Bild
zusammengefügt werden

– Zwei Charakterisierungen: Sortierung und
Grafikformat

Palladio Component Model 04.07.2007 33

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Beispiel Benutzungsprofil

▪ Liste von Bildern soll sortiert und zu einem
Bild zusammengefügt werden

▪ Aufwand zum Zusammenfügen
unterschiedlich je nach Grafikformat und ob
sortiert oder nicht

▪ BP: 40 % sortiert, davon 80% GIF
60 % unsortiert, davon 30 % GIF

▪ Verschiedene Handler für GIF und PNG

Palladio Component Model 04.07.2007 34

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Wahrscheinlichkeiten

▪ Resultierender Baum

Palladio Component Model 04.07.2007 35

p(sortiert) = 0.4

p(unsortiert) = 0.6

p(GIF) = 0.8

p(PNG) = 0.2

p(GIF) = 0.3

p(PNG) = 0.7

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Kontrollfluss

▪ Ablauf

Palladio Component Model 04.07.2007 36

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Palladio

▪ Im Benutzungsprofil Wahrscheinlichkeiten
angeben

▪ Später benutzen

Palladio Component Model 04.07.2007 37

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Palladio

▪ In Abhängigkeit der Parameter modellieren

▪ Umkehr der Parameter stört nicht

Palladio Component Model 04.07.2007 38

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

SPE-ED

▪ Kontrollfluss entspricht nicht den
angegebenen Wahrscheinlichkeiten

▪ Verschiedene Möglichkeiten zur Lösung

Palladio Component Model 04.07.2007 39

p(GIF) = ??

p(PNG) = ??

p(sorted) = ??

p(unsorted) = ??

p(sorted) = ??

p(unsorted) = ??

Wie ist Wahrscheinlichkeit für
ein GIF?

Wie die Wahrscheinlichkeit
dafür, dass sortiert werden
muss, wenn bekannt ist, dass
ein GIF vorliegt?

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Wahrscheinlichkeiten

▪ Berechnung des ersten Schritts nicht
schwer

Palladio Component Model 04.07.2007 40

p(sorted) = 0.4

p(unsorted) = 0.6

p(GIF) = 0.8

p(PNG) = 0.2

p(GIF) = 0.3

p(PNG) = 0.7

p(GIF) = 0.4 * 0.8 + 0.6 * 0.3 = 0.5

p(PNG) = 0.4 * 0.2 + 0.6 * 0.7 = 0.5

Aber wie ist p(sorted | GIF) ?

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LIX

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Bayes Rule

▪ Zur Berechnung abhängiger
Wahrscheinlichkeiten

Vgl. auch Bayes-Theorem bei Wikipedia

▪ Hier also:

Palladio Component Model 04.07.2007 41

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Bayes Rule

▪ Man erhält

▪ So für alle Äste der zweiten Ebene
Wahrscheinlichkeiten bestimmen

Palladio Component Model 04.07.2007 42

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

So kompliziert?

▪ Andere Optionen: Kontrollfluss nicht exakt
nachbilden.

▪ Branch mit vier Optionen:

Palladio Component Model 04.07.2007 43

p(GIF && sorted) = p(sorted) * p(GIF|sorted)

p(PNG && sorted) = …

p(GIF && unsorted) = …

p(PNG && unsorted) = …

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

So kompliziert?

▪ Andere Optionen: Kontrollfluss nicht exakt
nachbilden.

▪ Branches wie Wahrscheinlichkeiten sie
vorgeben

Palladio Component Model 04.07.2007 44

p(sorted) = 0.4

p(unsorted) = 0.6

p(GIF) = 0.8

p(PNG) = 0.2

p(GIF) = 0.3

p(PNG) = 0.7

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Probleme

▪ Erst einmal leicht zu modellieren

▪ Wartbarkeit des Modells aber schlecht.

– Insbesondere bei Komponenten

▪ Was wenn:

– Eine Komponente vor den GIF Handler
zwischengeschaltet wird?

– Eine Komponente auf einen anderen Server
deployed wird?

▪ Vor der Modellierung prüfen, ob solche
Gefahren bestehen.

Palladio Component Model 04.07.2007 45

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Parallelität in SPE-ED

▪ Kann nicht direkt modelliert werden

▪ Allgemein gilt für die Antwortzeit zweier
parallel ausgeführter Aktionen A und B:

▪ Antwortzeit(A || B) =
max(Antwortzeit(A), Antwortzeit(B))

▪ wenn unterschiedliche Ressourcen belastet
werden.

▪ Für Aktion mit kleinerer Antwortzeit
Resource Demand entfernen

 Utilization ist nicht mehr aussagekräftig

Palladio Component Model 04.07.2007 46

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Parallelität in Palladio

Palladio Component Model 04.07.2007 47

▪ Fork Action

▪ Ähnlich aufgebaut wie Branch

▪ Beide inneren Behaviours gleichzeitig
ausführen

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Nützliche StoEx Ausdrücke

▪ NOT

– Beispielsweise für Branches

– Branch 1: Date.VALUE == „null“
– Branch 2: NOT (Date.VALUE == „null“)

▪ Ternärer ?: Operator

– Beispielsweise für Rechenaufwand

– Group.NUMBER_OF_ELEMENTS > 10
? Group.NUMBER_OF_ELEMENTS
: 10

Palladio Component Model 04.07.2007 48

LX APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Typsystem

▪ Bytesize muss immer ein Int sein

▪ Integer können nicht als PDF modelliert
werden

– Aber wünschenswert um viele mögliche
Ausprägungen zu beschreiben

▪ Funktion Trunc() um aus einer DoublePDF

Integer zu ziehen.

▪ Auch um Bytesize zu verrechnen mit
beispielsweise 0,5

Palladio Component Model 04.07.2007 49

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Trunc() Beispiele

▪ BYTESIZE = Trunc(DoublePDF[…])

▪ BYTESIZE = Trunc(0.5 * sth.BYTESIZE)

▪ NUMBER_OF_ELEMENTS =
Trunc(0.5 *
sth.NUMBER_OF_ELEMENTS

Palladio Component Model 04.07.2007 50

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Validierung Palladio

▪ StoEx nun auch Typechecking

▪ Weitere Erweiterungen der Validierung

Palladio Component Model 04.07.2007 51

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Validierung Palladio

▪ Direkt nach dem Start der Simulation

Palladio Component Model 04.07.2007 52

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Simulation im Hintergrund

Palladio Component Model 04.07.2007 53

Weiterarbeiten ist
möglich, es muss
nicht gewartet
werden

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

EXPERIMENTSITZUNG

Palladio Component Model 04.07.2007 54

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Experimentsitzung

▪ Samstag, 9:00 - 14:00, Pool 356

▪ Notebook mitbringen (wer zugesagt hat)

Palladio Component Model 04.07.2007 55

Butterbrezeln & Getränke,
im Anschluss Pizza

Bildquelle: pixelio.de

+

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Experimentsitzung

▪ Einteilung in zwei Gruppen

– SPE-ED und Palladio

▪ Eine Aufgabenstellung

▪ Modellieren und Analysieren mit dem Tool

▪ Bei SPE-ED Facilities gegeben (wie gehabt)

▪ Bei Palladio Repository und Resource
Environment gegeben

Palladio Component Model 04.07.2007 56

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXI

Lehrstuhl Software-Entwurf und –Qualität
Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik, Universität Karlsruhe (TH)

Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825

Praktikum Ingenieurmäßige
Software-Entwicklung

Fragebögen, Erste Ergebnisse, Rückblick

Anne Martens / Ralf Reussner

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 2

Gliederung

▪ Erste Ergebnisse

– Abschätzungen

– Vorhersagen

– „Musterlösung“

▪ Rückblick

▪ Fragebögen

– Nachbereitung der letzten Experimentsitzung

– Evaluation der Lehrveranstaltung

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 3

Erste Ergebnisse

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and QualityAbschätzung Mediastore

Benutzungsprofil 1
(1 Benutzer)

1. Caching (EA 1)
2. Bitrate senken (EA 4)

3. DBC Pool (EA2) und 2.
Server (EA3)

4. Dynamischer Lookup
(EA 5)

Benutzungsprofil 2
(mehrere Benutzer)

1. Bitrate senken (EA 4)
2. Caching (EA 1)

3. DBC Pool (EA2)
4. 2. Server (EA3)

5. Dynamischer Lookup
(EA 5)

Palladio Component Model 19.07.2007 4

Antwortzeit Mediastore

▪ Benutzungsprofil 1

▪ SPE-ED:
Mittelwert
1.3317 s

▪ Palladio
Mittelwert
1.3456 s

Palladio Component Model 19.07.2007 5

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Ranking Mediastore
Einbenutzerfall

SPE-ED
1. Caching (EA 1)
2. Bitrate senken (EA 4)

3. DBC Pool (EA2)
4. 2. Server (EA3)

Palladio
1. Bitrate senken (EA 4)
2. Caching (EA 1)

3. DBC Pool (EA2)
4. 2. Server (EA3)

Palladio Component Model 19.07.2007 6

Unterschiede zur intuitiven Abschätzung:

• Favorit bei Palladio anders

• Reihenfolge für DBC Pool und 2. Server

Mediastore Vorhersagen
SPE-ED

▪ Vorhersagen mit SPE-ED

▪ Vergleich zur „Musterlösung“

Palladio Component Model 19.07.2007 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 Original 1 Cache 2 Pool 3 2. Server 4 Bitrate 5 Dyn Lookup

Vorhersagen

Muster

Mediastore Vorhersagen
Palladio

▪ Entwurfsalternativen BP1

Palladio Component Model 19.07.2007 8

LXII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Mediastore Vorhersagen
Palladio

▪ Entwurfsalternativen BP1

Palladio Component Model 19.07.2007 9

Antwortzeit Mediastore

▪ Benutzungsprofil 2

▪ SPE-ED:
Mittelwert
8.9139 s

▪ Palladio
Mittelwert
2.9739 s

Palladio Component Model 19.07.2007 10

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Ranking Mediastore
Mehrbenutzerfall

SPE-ED
1. Caching (EA 1)
2. Bitrate senken (EA 4)

3. DBC Pool (EA2)
4. 2. Server (EA3)

Palladio

1. Bitrate senken (EA 4)
und Caching (EA 1)

2. DBC Pool (EA2)
3. 2. Server (EA3)

Palladio Component Model 19.07.2007 11

Unterschied zur intuitiven Abschätzung:

• Bitrate nicht Favorit

Mediastore Vorhersagen
SPE-ED

▪ Benutzungsprofil 2

Palladio Component Model 19.07.2007 12

0

2

4

6

8

10

12

0 Original 1 Cache 2 Pool 3 2. Server 4 Bitrate 5 Dyn Lookup

Vorhersagen

Muster

Mediastore Vorhersagen
Palladio

▪ Benutzungsprofil 2

Palladio Component Model 19.07.2007 13

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Mediastore Vorhersagen
Palladio

Benutzungsprofil 2

Palladio Component Model 19.07.2007 14

Offen: Antwortzeit des
wirklichen System

▪ Für die Bewertung der vorhergesagten
Werte

▪ Prototypische Implementierung des
Systems

▪ Messungen mit gegebenen
Benutzungsprofilen

Palladio Component Model 19.07.2007 15

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and QualityAbschätzung Webserver

Benutzungsprofil 1
(1 Benutzer)

1. Caching (EA 1)
2. 2. Server(EA 4)

3. Logging (EA3)
4. Threadpool (EA5)

5. Dynamischer Lookup
(EA 2)

Benutzungsprofil 2
(mehrere Benutzer)

1. Caching (EA 1)
2. 2. Server(EA 4)
3. Threadpool (EA5)

4. Logging (EA3)

5. Dynamischer Lookup
(EA 2)

Palladio Component Model 19.07.2007 16

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXIII

Antwortzeit Webserver

▪ Benutzungsprofil 1

▪ SPE-ED:
Mittelwert
0.7599 s

▪ Palladio
Mittelwert
0.8086 s

Palladio Component Model 19.07.2007 17

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Ranking Webserver
Einbenutzerfall

SPE-ED
1. 2. Server(EA 4)
2. Caching (EA 1)

3. Threadpool (EA5)
4. Logging (EA3)

Palladio
1. 2. Server(EA 4)
2. Caching (EA 1)

3. Logging (EA3)
4. Threadpool (EA5)

Palladio Component Model 19.07.2007 18

Unterschiede zur intuitiven Abschätzung:

• 2. Server als beste Alternative

• Einordnung Threadpool bei SPE-ED anders

0

0.2

0.4

0.6

0.8

1

1.2

0 Original 1 Cache 2 Dyn Lookup 3 Logging 4 2. Server 5 Pool

Vorhersagen

Muster

Webserver Vorhersagen
SPE-ED

▪ Vorhersagen mit SPE-ED

▪ Vergleich zur „Musterlösung“

Palladio Component Model 19.07.2007 19

Webserver Vorhersagen
Palladio

▪ Entwurfsalternativen BP1

Palladio Component Model 19.07.2007 20

Webserver Vorhersagen
Palladio

▪ Entwurfsalternativen BP1

Palladio Component Model 19.07.2007 21

Antwortzeit Webserver

▪ Benutzungsprofil 2

▪ SPE-ED:
Mittelwert
1.3941 s

▪ Palladio
Mittelwert
4.6195 s

Palladio Component Model 19.07.2007 22

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Ranking Webserver
Mehrbenutzerfall

SPE-ED
1. 2. Server(EA 4)
2. Caching (EA 1)

3. Threadpool (EA5)
4. Logging (EA3)

Palladio
1. 2. Server(EA 4)
2. Caching (EA 1)

3. Threadpool (EA5)
4. Logging (EA3)

Palladio Component Model 19.07.2007 23

Unterschiede zur intuitiven Abschätzung:

• 2. Server als beste Alternative 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 Original 1 Cache 2 Dyn Lookup 3 Logging 4 2. Server 5 Pool

Vorhersagen

Muster

Webserver Vorhersagen
SPE-ED

▪ Benutzungsprofil 2

Palladio Component Model 19.07.2007 24

LXIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Webserver Vorhersagen
Palladio

▪ Entwurfsalternativen BP2

Palladio Component Model 19.07.2007 25

Webserver Vorhersagen
Palladio

▪ Entwurfsalternativen BP2

Palladio Component Model 19.07.2007 26

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 27

Ingenieurmäßiger
Software-Entwurf

„Lessons Learned“ / Rückblick

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 28

Was Sie gelernt haben (1)

▪ Die Abschätzung der Performanz selbst
kleinerer Software-Systeme ist nicht trivial
und fehlerträchtig

▪ Sie haben verschiedene
Entwurfsalternativen kennen gelernt

▪ Sie kennen wichtige Einflussfaktoren auf die
Performanz

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 29

Was Sie gelernt haben (2)

▪ Sie haben zwei Prozesse und Verfahren zur
systematischen Performanz-Bewertung
kennen gelernt

– SPE-ED: „State of the Art“

– Palladio: Unterstützt die Besonderheiten von
Komponenten

▪ Andere Verfahren (bspw. KLAPER) lassen
sich damit leicht von Ihnen anwenden:
Konzepte und Ideen sind bekannt

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 30

Was Sie gelernt haben (3)

▪ Für eine systematische Wahl von
Entwurfsalternativen (unter
Berücksichtigung von QoS-Aspekten)

– Reicht Intuition nicht aus

– Reichen verbreitete Software- /
Komponentenmodelle nicht aus

– Ist eine koordinierte Zusammenarbeit
verschiedener Entwicklerrollen erforderlich

– Sind Spezialisten erforderlich, die weitergehende
Fähigkeiten als ein Programmierer haben

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 31

Was Sie gelernt haben (4)

▪ Genau spezifizierte Komponenten erlauben
die zielgerichtete Wahl von
Entwurfsalternativen

– Fordert von Komponentenentwicklern eine
Modellierung

– Entsprechen der Praxis von Ingenieuren

– Über Aussagen auf Modellebene kann das
bestehende „Trial-and-Error“-Verfahren abgelöst
werden

Bildquelle: pixelio.de

R=2,3 Ω
Vmax=…
…

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 32

Was Sie gelernt haben (5)

▪ Die Implementierung einer Komponente
folgt vertraglich zugesicherten
Eigenschaften

– Bindend für Komponentenimplementierer

– Verlässlich für Komponentenverwender

▪ SEFFs entsprechend einem erweiterten
Vertragsmodell

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXV

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 33

Komponenten Performanz

[Becker2006a]
Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 34

Einflussfaktoren (1)

▪ Parametrisierung über Einflussfaktoren
muss explizit gemacht werden

– Benutzungsprofil

– Externe Dienste

– Ausführungsumgebung

– Implementierung von Komponentendiensten

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 35

Einflussfaktoren (2)

▪ Interne Aktionen von Komponenten können
zu einem einzelnen Modellkonstrukt
zusammengefasst werden

▪ Schleifendurchläufe und Verzweigungen
entscheiden über die Performanz, wenn

– Externen Dienstaufrufe auftreten

– Parametrische Abhängigkeiten existieren

▪ Komponenten-Performanz lässt sich nicht
durch fixe Zeitwerte beschreiben

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 36

Komponenten

▪ Ein Komponentenmodell für
Performanzvorhersage

– Umfasst mehr als nur angebotenen und
benötigte Schnittstellen

– Kann auf einem ausgereiften
Schnittstellenmodell inklusive Protokollen
aufbauen

– Enthält zwingend eine Entsprechung für SEFFs

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 37

System

▪ Entwurfsentscheidungen auf der
Architekturebene erfolgen zumeist auf
Systemniveau

▪ Alternativ stellen auch Composite-
Components „Mini-Systeme“ mit „Mini-
Architektur“ dar, die
Entwurfsentscheidungen bedürfen

▪ Auf der Systemebene ist zwischen
Wiederverwendung und Neuentwicklung
von Komponenten abzuwägen

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 38

Ressourcen

▪ Eine Unterscheidung zwischen
verschiedenen Ressourcen ist notwendig

– CPU / Speicher / Festplatte

– Semaphore / Threads / Datenbankverbindungen

▪ Je nach Situation kann die Einführung
eigener (genauerer) Ressourcen sinnvoll
sein

– Lesende / schreibende Zugriffe

– Art der CPU-Berechnungen (Integer / Float)

– …

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 39

Ausführungsumgebung

▪ Detaillierte Ressourcenmodelle machen
auch detaillierte Modelle der
Ausführungsumgebung notwendig

▪ Änderungen am Modell der
Ausführungsumgebung erlauben es „Sizing“
und „Relocation“ Fragestellungen zu
beantworten

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 40

Modell ≠ Quellcode

▪ Implementierung ist ein Einflussparameter
für die Komponentenperformanz

▪ Zu einem Modell können n
Implementierungen existieren

▪ Modelle abstrahieren üblicherweise
Implementierungsdetails
– SEFF schreibt nur performanzkritische

Eigenschaften einer Implementierung vor

– Es sind beliebige (schlechte) Implementierungen
denkbar, die nicht dem modellierten SEFF
entsprechen
 keine Performanzvorhersagen möglich

LXVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 41

Modellgetriebene
Entwicklung

▪ Produktivitätszuwächse sind möglich, wenn
Performanz-Modelle nicht weggeworfen
werden

– Durch Quellcode-Generierung wird
Entwicklungsaufwand gespart

– Höhere Konformität zwischen Modell und Code

 Bessere Vorhersagbarkeit von Eigenschaften

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 42

Status

▪ Software-Entwicklung steht am
Anfang, eine Ingenieursdisziplin zu werden

▪ Teil einer weiteren Spezialisierung in der
Software-Entwicklung

▪ Bewusstsein der Notwendigkeit
systematischer ingenieurmäßiger Software-
Entwicklung in der Industrie nimmt stark zu

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 43

Weitere Validationen
und Einsatz

▪ Typ 1: Validation des
Vorhersagemodells

▪ Typ 2: Validation der
Einsetzbarkeit
– Fallstudien und kontrollierte

Experimente mit Studierenden
▪ Typ 3: Validation des Nutzens

– im Gegensatz zu anderen Methoden
– Grenzen des Ansatzes
– Notwendige Voraussetzungen
– FZI
– Partner

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 44

Wissenschaftliches Vorgehen:
Typ 1 Validation

Software

Modell der Software
(mit Annotationen)

Gemessene Qualität

Vorhergesagte Qualität

Vergleich
Abstraktion

Vorhersage

Messung

Interpretation

Annahme / Ablehnung
des Modells

Verbesserung / Erweiterung

Falls ausr. gut: Typ 2 und 3 Validierungen und Einsatz

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 45

Zusammenfassung

▪ Abschätzung der Auswirkung von
Entwurfsentscheidungen ist Kennzeichen einer
Ingenieurdisziplin

▪ Systematische Behandlung von Software-
Qualitätseigenschaften erfordert analytische
Vorhersagemodelle
– nahe an Software-Architektur (Erzeugung / Interpretation)

▪ Modellbildungsprozess durch
naturwissenschaftliches Vorgehen
– Kein Beweisbegriff, stattdessen Validierungen erforderlich

Software-Entwicklung wird modell-zentrierter.
Code-Zentrierung ist so sinnvoll wie

“Lötzinn-Zentrierung” eines Elektrotechnikers

SD Xperf=1.00
Xloss=0.01
XpXpX f=perf

X

Software Design
and Quality

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 46

Fragebögen

Reussner / Martens - Ingenieurmäßiger Software-Entwurf 19.07.2007 47

Zeit

▪ Jeweils 15 Minuten pro Fragebogen

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXVII

LXVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

A.5 Preparatory Exercises

The first preparatory exercise reviews basics of component-based software engineering, and
was created by Klaus Krogmann. Exercise 2 trained the fundamental usage of the tools for both
approaches (2a SPE, 2b Palladio). The participants had to install the tools and create a simple
project following detailed instructions. After that, the exercises 3, 4, 5, and 8 trained SPE and
the exercises 5, 6, 7, and 8 trained Palladio (cf. section 4.1.2 for details of the exercises). For the
exercises 3,4,5 and 6, I also created sample solution sheets. All sample solutions were discussed
in the lab session.

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

26.04.2007 17:43:15 - 1 -

SESESESE
Xperf=1.00

Xloss=0.01

SoftwareSoftwareSoftwareSoftware----EntwurfEntwurfEntwurfEntwurf

 und und und und ----QualitätQualitätQualitätQualität

Ausgabe: 25.04.2007

Abgabe der Lösungen: 01.05.2007

Vorstellung der Musterlösung: 04.05.2007

Übungsblatt 1

Ziel der Übung: Grundlegendes Verständnis von Komponenten, komponentenbasierter
Software-Entwicklung, dem Prozess komponentenbasierter Software-Entwicklung sowie den
Rollen innerhalb des Prozesses.

Allgemeines

Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
krogmann@ipd.uka.de.

Abgabe der Lösungen

Alle Übungsblätter werden in Zweier-Gruppen bearbeitet. Die Einteilung der Gruppen erfolgt
im Praktikum und wechselt (die Einteilung geben wir jeweils rechtzeitig bekannt). Bitte
vermerken Sie auf Ihren Abgaben stets ihre Namen und Matrikelnummern. Die abgegebene
Lösung legen Sie jeweils bitte in das SVN beider Gruppenmitglieder – es gibt also zwei
identische elektronische Abgabeversionen.

Legen Sie im SVN-Repository bitte pro Übungsblatt ein Verzeichnis an, in das Sie gesammelt
die zu einer Lösung gehörenden Dateien ablegen. Die Verzeichnisse benennen Sie Uebung01,
Uebung02, usw. – jeweils pro Übungsblatt.

Für Textdokumente akzeptieren wir die folgenden Formate:

� PDF-Dokumente

� Word-Dokumente (doc)

� OpenOffice-Dokumente

� TXT-Datei

Die Lösung muss jeweils bis zum unter „Abgabe der Lösungen“ genannten Datum um 23:59
Uhr im SVN-Repository eingecheckt werden. Unvollständige oder zu spät abgegebene
Lösungen werden als nicht abgegeben gewertet. Als unvollständige Lösung gelten auch
Lösungen, bei denen Teilfragen nicht beantwortet werden.

Während des gesamten Praktikums darf max. ein Übungsblatt als nicht abgegeben gewertet
worden sein, damit das Praktikum noch als erfolgreich bestanden gewertet werden kann. Bitte
bedenken Sie bei Ihren Abgaben, dass die Übungsblätter in die Praktikumsnote einfließen.
Außerdem werden Kenntnisse, die Sie beim Bearbeiten der Übungsblätter erlangen, in
benoteten Kurztests abgefragt. Die genauen Termine für die Kurztests entnehmen Sie bitte der
Terminübersicht.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

26.04.2007 17:43:15 - 2 -

SESESESE
Xperf=1.00

Xloss=0.01

SoftwareSoftwareSoftwareSoftware----EntwurfEntwurfEntwurfEntwurf

 und und und und ----QualitätQualitätQualitätQualität

SVN-Repository

Der Pfad für den Zugriff auf das SVN-Repository lautet:

svn://[name]@141.3.52.13:/ise-[name]/

wobei [name] Ihr Benutzername ist. Der Benutzername und das dazugehörige Passwort
werden Ihnen per E-Mail an die bei der Anmeldung angegeben E-Mail-Adresse mitgeteilt.

SVN-Clients

Es gibt eine große Zahl von Subversion Clients, sowie auch in Eclipse als Plugin integrierte
Clients: http://subclipse.tigris.org/. Wir empfehlen Ihnen den Client von Tigris:
http://tortoisesvn.tigris.org/, der sich bspw. unter Windows in den Explorer einhängt.

Aufgaben

Die Aufgaben dieses ersten Übungsblattes sind als textuelle Lösung abzugeben. Ihre Lösung
sollte pro Teil-Frage (�/○) mindestens 5 Sätze enthalten.

� Begründen Sie, welche (der in der Vorlesung vorgestellten) Definitionen für eine
Software-Komponente Sie bevorzugen. Gibt es eine andere Definition, die Sie
favorisieren?

� Erklären Sie in eigenen Worten die in der Vorlesung vorgestellten
Komponententypen:

o Bedeutung der verschiedenen Komponententypen für den
komponentenbasierten Software-Entwicklungsprozess.

o Erörtern Sie die Vor- und Nachteile der Unterteilung in verschiedene
Komponententypen

� Zeigen Sie den Unterschied zwischen Komponententyp und Komponenteninstanz auf.

� Welche Probleme könnten sich bei der Modellierung von Laufzeit-
Komponenteninstanzen ergeben? Was müsste bei der Modellierung von Laufzeit-
Komponenteninstanzen beachtet werden? (Folie: „Term: Component“, VL 2)

� Auf der Folie „Hierarchy of Interface Models“ (VL 2) werden die ersten drei Ebenen
eines Schnittstellenmodells wiedergegeben. Welche Ebene(n) könnte(n) in dem mit
„…“ markierten Bereich ergänzt werden?

� Erklären Sie mit eigenen Worten die Bedeutung des Komponenten-Kontextes (VL 2).

LXX APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

02.05.2007 19:11:35 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 02.05.2007

Abgabe der Lösungen: 08.05.2007

Vorstellung der Musterlösung: 11.05.2007

Übungsblatt 2
Ziel der Übung: Erste Erfahrungen mit den Performance-Vorhersagewerkzeugen SPE-ED
und PCM Bench.

Allgemeines
Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
krogmann@ipd.uka.de und martens@ipd.uka.de.

Die Abgabe der Lösungen erfolgt ebenso wie auf Übungsblatt 1 angegeben. Bitte geben Sie in
einer separaten Textdatei „Zeitaufwand.txt“ an, wieviel Zeit Sie für die Bearbeitung der
einzelnen Aufgaben benötigt haben.

Werkzeuge
Für die Bearbeitung der Aufgaben benötigen Sie das SPE-ED Werkzeug sowie Eclipse mit
der PCM Bench.

SPE-ED ist aus dem Wiki verlinkt. Das Werkzeug ist nur für Windows Rechner verfügbar.
Laden Sie das Zip-Archiv herunter und packen Sie es aus, am besten direkt in Ihre SVN
Repositories (Sie müssen später die meisten Dateien einchecken). Bevor Sie SPE-ED starten
können, müssen Sie die Systemzeit Ihres Rechners auf das Jahr 2003 zurück stellen. Starten
Sie SPE-ED durch Ausführung von speed3B.exe. Während der Ausführung des Werkzeugs
kann die Systemzeit bereits wieder berichtigt werden.

Eine Version von Eclipse mit allen für die PCM benötigten externen Plugins ist ebenfalls aus
dem Wiki verlinkt. Sie können diese parallel zu einer bereits bestehenden Eclipse Installation
verwenden. Richten Sie dann aber einen neuen Workspace ein. Nach dem ersten Starten von
Eclipse müssen Sie die aktuellsten Versionen der PCM Plugins herunterladen. Wählen Sie
dazu Hilfe->Software updates->Find and Install aus und fügen Sie dort die PCM Stud
Updatesite als Remote Site hinzu: http://sdqweb.ipd.uka.de/eclipse/PCM_stud
Aktualisieren Sie alle verfügbaren Plugins. Laden Sie weiterhin das im Wiki verlinkte
Repository mit vorbereiteten primitiven Datentypen (PrimitiveTypes.repository) herunter.

Aufgaben

1. SPE-ED: Arbeiten Sie die erste Demo aus dem Quickstart Guide des SPE-ED
Handbuchs durch (Seiten 4 bis 25) und erstellen Sie das Projekt wie angegeben. Legen
Sie das gesamte SPE-ED Verzeichnis ohne die .exe Datei in Ihre SVN Repositories
ab.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

02.05.2007 19:11:35 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Informationen zum Hintergrund von SPE-ED können Sie ebenfalls im Handbuch
finden, sie werden aber auch in späteren Vorlesungen noch vorgestellt werden.

2. PCM Bench: Legen Sie ein neues Palladio Projekt an und erstellen Sie einige Inhalte.
Gehen Sie dazu wie unten angegeben vor. Lassen Sie sich vom Umfang der
Erläuterungen nicht abschrecken, sie sind sehr detailliert und daher lang. Der
tatsächliche Aufwand zur Umsetzung ist jedoch nicht so hoch, wie befürchtet werden
könnte.

Im Wiki finden Sie weiterhin ein Tutorial in Form eines Screencasts, der die hier
beschriebenen Aktionen nochmal in ähnlicher Form zeigt. Folgen Sie jedoch nicht nur
dem Screencast, es bestehen einige kleine Unterschiede. Ausschlaggebend für die
Bewertung sind die unten angegebenen Aufgaben. Weitere Informationen zum
Hintergrund des Palladio Werkzeugs werden in späteren Vorlesungen noch vorgestellt
werden.

a) Erstellen Sie ein neues Projekt über File -> new Project, wählen Sie dort General
-> Project aus. Geben Sie im Projektnamen unbedingt Ihre
Übungsgruppennummer an!

b) Legen Sie ein Repository an. Wählen Sie dazu im Kontextmenü des neuen
Projektes (Rechtklick auf das Projekt) New -> Other aus. Wählen Sie in der
folgenden Ansicht Example EMF Model Creation Wizards -> Repository Model
aus. Stellen Sie im folgenden Dialog sicher, dass das Repository in dem neuen
Projekt angelegt wird. Im nächsten Dialog wählen Sie als Model „Repository“ aus.
Klicken Sie „Finish“. Sie erhalten eine Repository Datei, darin befindet sich das
Repository Modell, dass zunächst noch „aName“ heißt.

c) Benennen Sie das Repository Modell in repository1 um. Wählen Sie dazu die neu
angelegte Repository Datei im Explorer (links) aus und öffnen Sie dazu in der
Resource Set Ansicht in der Mitte die Baumstruktur. Verwenden Sie den
„Properties“ Reiter unten, um das Repository umzubenennen.

d) Legen Sie ein neues Diagramm zu diesem Repository an. Sie müssen dazu die
Project Explorer Ansicht links haben. Im Kontextmenü der Repository Datei
wählen Sie „Initialize repository_diagram diagram file“ aus. Stellen Sie im
folgenden Dialog sicher, dass das Repository Diagram in dem richtigen Projekt
angelegt wird. Im nächsten Dialog wählen Sie als Basis für das Diagramm das
bereits angelegte Repository Modell aus. Klicken Sie „Finish“.

e) Um im Projekt primitive Datentypen verwenden zu können, laden Sie das
vorbereitete Repository mit primitiven Datentypen in Ihr Repository. Öffnen Sie
dazu das Repository oder das Repository Diagram in der mittleren Ansicht und
wählen Sie im Kontextmenü „Load Resource“ aus. Wählen Sie „Browse
Filesystem“ und navigieren Sie zu dem heruntergeladenen
PrimitiveTypes.repository. Wählen Sie dieses aus.

f) Legen Sie im Repository zwei Basic Components und drei Interfaces an, dies
können Sie im Repository Diagramm über die Palette oder über den Baumeditor
des Repository Modells. Benennen Sie die Komponenten und Interfaces um, der
Name kann beliebig gewählt werden.

g) Geben Sie den Interfaces jeweils eine Signatur, von denen mindestens eine einen
Parameter und eine einen Rückgabewert haben soll. Sie geben Rückgabewerte und
Parameter für Signaturen an, indem Sie das Interface auswählen, und im Properties

LXXII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

02.05.2007 19:11:35 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Bereich unten die „Operations“ Sicht auswählen. Dort können Sie Rückgabewert
und Parameter angeben.

h) Verbinden Sie jede Komponente mit jeweils zwei Interfaces, eines in der
Provided-Rolle, eines in der Required-Rolle, so dass alle drei Interfaces verwendet
werden und ein Interface von der einen Komponente angeboten und von der
anderen benötigt wird (Sie vermuten es: Sie sollen später zusammengefügt
werden). Wählen Sie hierzu aus der Palette den Required Role bzw. den Provided
Role Verbinder, setzen Sie bei der zu verbindenden Komponente an und ziehen
Sie die Rolle zum gewählten Interface.

i) Erstellen Sie ein System Diagram für Ihr Projekt. Wählen Sie diesmal dazu im
Kontextmenü des Projekts New -> Other aus. Wählen Sie in der folgenden Ansicht
Palladio Modeling -> system diagram aus. Stellen Sie im folgenden Dialog sicher,
dass das Repository in dem neuen Projekt angelegt wird. Klicken Sie „Finish“.
Das zugehörige System Model wird dabei automatisch erzeugt. Sie haben somit
einen zweiten Weg kennengelernt, wie ein Model und ein zugehöriges Diagramm
neu erzeugt werden können.

j) Öffnen Sie das System Model und definieren Sie den Assembly Context für die
beiden eben erstellten Komponenten. Dazu muss zunächst Ihr Repository in das
System geladen werden. Öffnen Sie dazu das Kontextmenü im System Model oder
im System Diagram und wählen Sie „Load Resource“ (Klicken Sie dabei nicht auf
das bereits erzeugte <<system>>). Diesmal können Sie „Browse Workspace“
auswählen. Verwenden Sie Ihr eben angelegtes Repository.

Wählen Sie nun in der Palette des System Diagrams für jede Komponente den
Assembly Context und setzen Sie Ihn in bereits generierte System (<<system>>).
Im erscheinenden Dialog wählen Sie jeweils eine Komponente aus.

k) Verbinden Sie die Komponenten an den passenden Schnittstellen mit einem
Assembly Connector.

l) Erzeugen Sie ein Required und ein Provided Interface für das System, die dieselbe
Schnittstelle wie die entsprechende noch unverbundene Schnittstelle der
Komponenten anbietet.

m) Verbinden Sie die Required und ein Provided Interfaces des Systems mit den
entsprechenden freien Schnittstellen der Komponenten. Verwenden Sie dazu den
RequiredDelegationConnector bzw. den ProvidedDelegationConnector.

Mit dieser Übung haben Sie noch nicht den vollen Umfang des PCM Werkzeugs
kennengelernt, hierzu werden Sie in weiteren Übungen kommen. Legen Sie das
resultierende Projekt in Ihre SVN Repositories ab.

3. Bitte geben Sie in einer separaten Textdatei „Zeitaufwand.txt“ an, wieviel Zeit Sie für
die Bearbeitung der einzelnen Aufgaben benötigt haben:

Aufgabe 1 SPE-ED: Zeitangabe

Aufgabe 2 PCM Bench: Zeitangabe

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

09.05.2007 20:22:30 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 09.05.2007

Abgabe der Lösungen: 15.05.2007

Vorstellung der Musterlösung: 18.05.2007

Übungsblatt 3
Ziel der Übung: Performanzanalyse mit SPE-ED zu einer frühen Phase im
Entwicklungsprozess.

Allgemeines
Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
martens@ipd.uka.de.

Die Abgabe der Lösungen erfolgt ebenso wie auf Übungsblatt 1 angegeben. Bitte geben Sie in
einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für die Bearbeitung der
einzelnen Aufgaben benötigt haben.

Werkzeuge
Für die Bearbeitung der Aufgaben benötigen Sie das SPE-ED Werkzeug, dass Sie in der
zweiten Übung bereits verwendet haben.

Aufgaben

1. Ein neues, leichtgewichtiges Informationssystem für ein Handelsunternehmen soll
komponentenbasiert entwickelt werden. Sie sind der Performanzanalyst im
Entwicklungsteam, und sollen sicherstellen, dass bereits der Entwurf des Systems gute
Antwortzeiten der späteren Implementierung ermöglicht.

Das Entwicklungsteam hat bereits einige erste Anwendungsfälle, die Aufteilung in
zuständige Komponenten und Szenarien für das neue „Component Based Information
System“ identifiziert, die in den folgenden Diagrammen dargestellt sind. Da die
bestehenden Datenbanken des Unternehmens genutzt werden sollen, werden diese als
systemextern modelliert.

LXXIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

09.05.2007 20:22:30 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Anwendungsfälle:

Kunde anlegen

Benutzer

Konto anlegen

Auftrag anlegen

Statistik
generieren

CBIS

<<include>>

Es wurden drei Anwendungsfälle identifiziert: Das Anlegen eines Kunden, dass das
Anlegen eines neuen Kontos im Rechnungswesen mit einschließt, das Anlegen eines
neuen Auftrags mit verschiedenen Auftragspositionen und das Generieren einer
Statistik über bisherige Aufträge.

Entwurf der Architektur:
Die einzelnen Funktionsbereiche werden in Komponenten realisiert:
CustomerManagement, AccountingManagement, Sales und Statistics. Zusätzlich ist
die Komponente DBAccess für den Datenbankzugriff zuständig, sie abstrahiert von
den SQL Anfragen an die Datenbank und stellt dem restlichen System eine
objektorientierte Schnittstelle bereit. Die Komponente UserWebInterface wandelt die
Anfragen, die über HTTP eingehen, in Anfragen an die einzelnen
Funktionskomponenten um.

UserWeb
Interface

Customer
Management

Sales

Statistics

Accounting
Management

ICustMgmt

IAccMgmt

IOrderMgmt

IStatistics

ICustMgmt

IOrderMgmt

IDBAccess

IDBAccess

IDBAccess

IDBAccess

DBAccessIDBAccessICustMgmt

IStatistics

IOrderMgmt

IAccMgmt

IUser IDB

IDB

<<delegate>>
IUser

<<delegate>>

<<system>>

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

09.05.2007 20:22:30 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Szenarien

Für die drei Anwendungsfälle wurden Sequenzdiagramme erstellt. Das Verwalten von
Sessions, um die einzelnen HTTP Anfragen einer Transaktion zuordnen zu können,
wurde noch nicht modelliert.

Szenario Kunde anlegen:
Der Benutzer wählt aus, dass ein Kunde angelegt werden soll, und fordert das
entsprechende Formular vom UserWebInterface an. Das UserWebInterface fragt die
für das Anlegen eines Kunden benötigten Daten beim CustomerManagement ab.
Danach wird die HTML Seite mit den entsprechenden Formularen für die
Kundendaten generiert und zurückgeschickt.

Der Benutzer füllt das Formular aus, was einige Sekunden dauert (durch die Sanduhr
dargestellt). Danach wird die Seite wieder an das UserWebInterface geschickt, dort
werden die Daten aus dem HTTP Request extrahiert und die CustomerManagement
Komponente aufgerufen. Diese prüft zunächst, ob der eingegebene Kunde nicht bereits
vorliegt.

Falls nicht, wird zunächst ein neues Konto im Rechnungswesen für diesen Kunden
angelegt. Danach wird der Kunde selbst in die Datenbank gespeichert. Die Datenbank
erzeugt eine Kundennummer, die zurückgegeben wird.

Falls der Kunde bereits vorliegt, wird dem Benutzer eine entsprechende Meldung
dargestellt. Es wird angenommen, dass nur in 5% der Fälle der Kunde bereits erfasst
wurde.

alt

UserWeb
Interface

Customer
Management DBAccess Accounting

Management

Kunde anlegen

requestForm
getRequiredFields

requiredFields
HTMLCustomerForm

submitForm(formData)
createCustomer

alreadyExists: boolean

createAccount

create(account)

accountNo = create(Account)

accountNo
create(customer)

customerNo = createCustomer()
HTMLShowNo

HTMLAlreadyExists

[!alreadyExists]

customerNo = create(Customer)

alreadyExistsData

[alreadyExists]

LXXVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

09.05.2007 20:22:30 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Szenario Auftrag anlegen:
 Auch hier wählt der Benutzer aus, dass ein Auftrag angelegt werden soll, und fordert
das entsprechende Formular vom UserWebInterface an. Das UserWebInterface fragt
die für das Anlegen eines Kunden benötigten Daten bei der Sales Komponente ab.
Danach wird die HTML Seite mit den entsprechenden Formularen, hier die Eingabe
einer Kundennummer, generiert und zurückgeschickt.

Der Benutzer gibt die Kundennummer an, danach wird die Seite wieder an das
UserWebInterface geschickt, dort werden die Daten aus dem HTTP Request extrahiert
und die Sales Komponente aufgerufen. Diese holt zur angegeben Kundennummer den
entsprechenden Kunden aus der Datenbank, über die DBAccess Komponente.

Der Benutzer wird nun aufgefordert, einige Kopfdaten zum Auftrag wie Lieferdatum
etc. einzugeben, auch hier vergehen einige Sekunden. Nachdem die Daten an das
System geschickt wurden, werden nun die einzelnen Positionen beim Benutzer
abgefragt und gleich in der Datenbank gespeichert. Ein typischer Auftrag umfasst 10
Positionen. Der Benutzer kann bei der Eingabe der Positionen entscheiden, ob er eine
weitere Position hinzufügen möchte (usersChoice enthält diese Information im
Diagramm).

Nachdem alle Positionen erfasst wurden, wird auch der Auftrag selbst in der
Datenbank abgelegt. Dem Benutzer wird eine Seite mit der generierten
Auftragsnummer angezeigt.

loop

UserWeb
Interface Sales Customer

Management

Auftrag anlegen

requestForm
getRequiredFields

requiredFields
HTMLCustomerNoForm

submitOrderData

createOrder
getCustomer

customer

positionFields

[morePositions]

DBAccess

getCustomer

customer

orderDataFields
HTMLOrderDataForm

createOrder

submitCustomerNo

HTMLOrderPositionFields
submitPosition

createPosition

HTMLShowNo

create(position)

create(order)

orderNo
orderNo

[usersChoice]

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

09.05.2007 20:22:30 - 5 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Szenario Statistik generieren
Das System soll Statistiken zu Kunden und deren Aufträgen generieren können. Hier
sind verschiedene Auswertungen denkbar: Es könnte der beste Kunde, d.h. der Kunde
mit dem höchsten Auftragsvolumen, ermittelt werden, oder auch verschiede
Diagramme, die Aufträge und/oder Kunden graphisch aufbereiten. Dabei sollen auch
Daten von Kunden angezeigt werden, die der Auftrag nicht vorhält, die Kunden sollen
daher einzeln geladen werden.

Zunächst wählt der Benutzer aus, dass eine Statistik generiert werden soll, und fordert
das entsprechende Formular vom UserWebInterface an. Das UserWebInterface fragt
die für die Statistikgenerierung benötigten Daten wie Art der Statistik und Zeitraum
bei der Sales Komponente ab. Danach wird die HTML Seite mit den entsprechenden
Formularen generiert und zurückgeschickt.

Um die Statistik zu generieren, lädt die Statistics Komponente nun alle Aufträge, und
für jeden Auftrag den entsprechenden Kunden aus der Datenbank, über diezuständige
Komponente OrderManagement bzw. CustomerManagement. Schließlich wird die
angeforderte Statistik berechnet und die Seite mit den Ergebnissen generiert und
zurückgeliefert.

loop

UserWeb
Interface Statistics Customer

Management

Statistik generieren

requestForm
getRequiredFields

requiredFields
HTMLParametersForm

generateStatistics

getCustomer(customerNo)

customer

DBAccess

get(customerNo)

customer

submitParameters

HTMLShowStatistics

getAllOrders

statisticsPage

[orders.size()]

Order
Management

getAll(Order) : List<Order>

orders = getAll(Order)

LXXVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

09.05.2007 20:22:30 - 6 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Gegebene Daten:
- Das Software Resource Template enthält die Software Resources:

Work Units, DBAccess, UserDelay, Message

- Die Komponenten sind auf folgendem Webserver eingesetzt:

UserWeb
Interface

Customer
Management Sales Statistics

Accounting
Management DBAccess

<<webserver>>

+ CPU: KInstr = 1*106

+ Disk: I/Os = 0.05
+ Delay: Unit = 1
+ GINet: Msgs = 0.1

- Verwenden Sie die mit SPE-ED mitgelieferte Facility Webserver (bei der

Auswahl “Show all” auswählen, dort die Facility Webserver).

- Die folgende Overhead Matrix kann angenommen werden:

Devices CPU Disk Delay GINet

Quantity 1 1 1 1

Service Units KInstr I/Os Units Msgs

WorkUnit 10

DBAccess 50 3

UserDelay 1

Message 30 1

Service time 1e-006 0.05 1 0.1

- Angaben zu den Ressourcenanforderungen:

o Das Parsen der Anfragen dauert etwas länger: 5 WorkUnits

o Das Parsen der vom Benutzer ausgefüllten Formulare benötigt 10 Work
Units.

o Das Generieren der Seiten vor dem Zurückschicken benötigt 10
WorkUnits

o Das Anlegen eines Datensatzes benötigt 5 DBAccess

o Einfache Abfragen der Datenbank (z.B. Exists) benötigen 1 DBAccess

o Die Lieferung von Ergebnissen der Datenbank benötigt 1 DBAccess
pro 100 Ergebnisse, mind. jedoch 1.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

09.05.2007 20:22:30 - 7 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

o Jeder Aufruf einer anderen Komponente benötigt 1 WorkUnit durch
den Overhead des Aufrufs.

o Jede Fallunterscheidung benötigt 1 WorkUnit.

o Benutzer benötigen im Mittel ca. 10 Sekunden um Daten einzugeben.

o Pro Bestellung 5 Work Units

- Es sind 12000 Aufträge im System erfasst bei 5500 Kundendatensätzen.

Performanzziel
Die einzelnen Szenarien sollen nicht länger als 20 Sekunden dauern.

Ihre Aufgaben
a. Legen Sie für diese drei Szenarien Software Execution Models an. Sie können

einige Operationen zusammenfassen, wo dies sinnvoll ist. Fassen Sie aber nur
zusammen, wenn die Operationen auch einen logischen Zusammenhang haben,
damit die Verständlichkeit gegeben ist, und geben Sie der entstehenden Node
einen sprechenden Namen, der die Zusammenfassung verdeutlicht. Machen Sie
weiterhin Gebrauch von der Schachtelung des Ausführungsgraphen (Expand).
Denken Sie aber daran, dass nur drei Subgraphen in dieser Version des SPE-
ED Werkzeugs angelegt werden können. (Nur im SPE-ED Werkzeug)

b. Lösen Sie die einzelnen Modelle und betrachten Sie die Antwortzeiten. Geben
Sie für die einzelnen Szenarien an, ob das Performanzziel erreicht werden kann
sowie die ermittelten Werte. Analysieren Sie, wo ggf. Probleme verursacht
werden. Welche der in der VL zum SPE vorgestellten Performanz-Patterns
oder -prinzipien werden verletzt? Welche Anti-Patterns werden verwendet?

c. Geben Sie mindestens drei Entwurfsalternativen an, die die Performanz der
problematischsten Stellen verbessern können. Begründen Sie.

Geben Sie Ihre Lösungen zu b. und c. in einem separaten Dokument namens uebung03
ab, in einem der erlaubten Dateiformate.

Legen Sie das gesamte SPE-ED Verzeichnis ohne die .exe Datei in Ihren SVN
Repositories ab. Falls Sie die SPE-ED Installation aus dem vorigen Übungsblatt
verwenden wollen, können Sie die Lösung auch in das Verzeichnis zu Übung 2
hochladen. Legen Sie dann aber unbedingt im Verzeichnis „uebung03“ eine Textdatei
mit einem entsprechenden Hinweis an.

Tipp: Sie können Subgraphen in anderen Szenarien wiederverwenden, indem Sie
einen Knoten erweitern (expand) und, bevor Sie Knoten in den neuen Subgraph
einfügen, Edit->Include… und dort den gewünschten Subgraphen auswählen.

2. Bitte geben Sie in einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für
die Bearbeitung der einzelnen Aufgaben benötigt haben:

Aufgabe 1 SPE-ED:

a) Zeitangabe

b) Zeitangabe

c) Zeitangabe

LXXX APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 22:43:14 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 09.05.2007

Abgabe der Lösungen: 15.05.2007

Vorstellung der Musterlösung: 18.05.2007

Übungsblatt 3 Musterlösung

Aufgaben

Szenarien

Für die drei Anwendungsfälle wurden Sequenzdiagramme erstellt. Das Verwalten von
Sessions, um die einzelnen HTTP Anfragen einer Transaktion zuordnen zu können,
wurde noch nicht modelliert.

Szenario Kunde anlegen:
Der Benutzer wählt aus, dass ein Kunde angelegt werden soll, und fordert das
entsprechende Formular vom UserWebInterface an. Das UserWebInterface fragt die
für das Anlegen eines Kunden benötigten Daten beim CustomerManagement ab.
Danach wird die HTML Seite mit den entsprechenden Formularen für die
Kundendaten generiert und zurückgeschickt.

Der Benutzer füllt das Formular aus, was einige Sekunden dauert (durch die Sanduhr
dargestellt). Danach wird die Seite wieder an das UserWebInterface geschickt, dort
werden die Daten aus dem HTTP Request extrahiert und die CustomerManagement
Komponente aufgerufen. Diese prüft zunächst, ob der eingegebene Kunde nicht bereits
vorliegt.

Falls nicht, wird zunächst ein neues Konto im Rechnungswesen für diesen Kunden
angelegt. Danach wird der Kunde selbst in die Datenbank gespeichert. Die Datenbank
erzeugt eine Kundennummer, die zurückgegeben wird.

Falls der Kunde bereits vorliegt, wird dem Benutzer eine entsprechende Meldung
dargestellt. Es wird angenommen, dass nur in 5% der Fälle der Kunde bereits erfasst
wurde.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXXI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 22:43:14 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

In jedem Szenario

alt

UserWeb
Interface

Customer
Management DBAccess Accounting

Management

Kunde anlegen

requestForm
getRequiredFields

requiredFields
HTMLCustomerForm

submitForm(formData)
createCustomer

alreadyExists: boolean

createAccount

create(account)

accountNo = create(Account)

accountNo
create(customer)

customerNo = createCustomer()
HTMLShowNo

HTMLAlreadyExists

[!alreadyExists]

customerNo = create(Customer)

alreadyExistsData

[alreadyExists]

Als Delay

Case node: 0.95
oben, 0.05 unten

Seite
generieren

!
Kann man
zusammen

-fassen

Kann man in einen Knoten fassen

LXXXII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 22:43:14 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Szenario Auftrag anlegen:
 Auch hier wählt der Benutzer aus, dass ein Auftrag angelegt werden soll, und fordert
das entsprechende Formular vom UserWebInterface an. Das UserWebInterface fragt
die für das Anlegen eines Kunden benötigten Daten bei der Sales Komponente ab.
Danach wird die HTML Seite mit den entsprechenden Formularen, hier die Eingabe
einer Kundennummer, generiert und zurückgeschickt.

Der Benutzer gibt die Kundennummer an, danach wird die Seite wieder an das
UserWebInterface geschickt, dort werden die Daten aus dem HTTP Request extrahiert
und die Sales Komponente aufgerufen. Diese holt zur angegeben Kundennummer den
entsprechenden Kunden aus der Datenbank, über die DBAccess Komponente.

Der Benutzer wird nun aufgefordert, einige Kopfdaten zum Auftrag wie Lieferdatum
etc. einzugeben, auch hier vergehen einige Sekunden. Nachdem die Daten an das
System geschickt wurden, werden nun die einzelnen Positionen beim Benutzer
abgefragt und gleich in der Datenbank gespeichert. Ein typischer Auftrag umfasst 10
Positionen. Der Benutzer kann bei der Eingabe der Positionen entscheiden, ob er eine
weitere Position hinzufügen möchte (usersChoice enthält diese Information im
Diagramm).

Nachdem alle Positionen erfasst wurden, wird auch der Auftrag selbst in der
Datenbank abgelegt. Dem Benutzer wird eine Seite mit der generierten
Auftragsnummer angezeigt.

loop

UserWeb
Interface Sales Customer

Management

Auftrag anlegen

requestForm
getRequiredFields

requiredFields
HTMLCustomerNoForm

submitOrderData

createOrder
getCustomer

customer

positionFields

[morePositions]

DBAccess

getCustomer

customer

orderDataFields
HTMLOrderDataForm

createOrder

submitCustomerNo

HTMLOrderPositionFields
submitPosition

createPosition

HTMLShowNo

create(position)

create(order)

orderNo
orderNo

[usersChoice]

Delay

Delay

Delay

Loop 10

Kann zu einem Knoten zusammengefasst werden

Seite
generi
eren

Seite
generi
eren

Seite
generi
eren

Seite
generi
eren

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXXIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 22:43:14 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Szenario Statistik generieren
Das System soll Statistiken zu Kunden und deren Aufträgen generieren können. Hier
sind verschiedene Auswertungen denkbar: Es könnte der beste Kunde, d.h. der Kunde
mit dem höchsten Auftragsvolumen, ermittelt werden, oder auch verschiede
Diagramme, die Aufträge und/oder Kunden graphisch aufbereiten. Dabei sollen auch
Daten von Kunden angezeigt werden, die der Auftrag nicht vorhält, die Kunden sollen
daher einzeln geladen werden.

Zunächst wählt der Benutzer aus, dass eine Statistik generiert werden soll, und fordert
das entsprechende Formular vom UserWebInterface an. Das UserWebInterface fragt
die für die Statistikgenerierung benötigten Daten wie Art der Statistik und Zeitraum
bei der Sales Komponente ab. Danach wird die HTML Seite mit den entsprechenden
Formularen generiert und zurückgeschickt.

Um die Statistik zu generieren, lädt die Statistics Komponente nun alle Aufträge, und
für jeden Auftrag den entsprechenden Kunden aus der Datenbank, über diezuständige
Komponente OrderManagement bzw. CustomerManagement. Schließlich wird die
angeforderte Statistik berechnet und die Seite mit den Ergebnissen generiert und
zurückgeliefert.

loop

UserWeb
Interface Statistics Customer

Management

Statistik generieren

requestForm
getRequiredFields

requiredFields
HTMLParametersForm

generateStatistics

getCustomer(customerNo)

customer

DBAccess

get(customerNo)

customer

submitParameters

HTMLShowStatistics

getAllOrders

statisticsPage

[orders.size()]

Order
Management

getAll(Order) : List<Order>

orders = getAll(Order)

Seite
generi
eren

Seite
generi
eren

Delay

Zu einem Knoten

Zu einem Knoten

Loop 12000

Performanzziel
Die einzelnen Szenarien sollen nicht länger als 20 Sekunden dauern.

Ihre Aufgaben
a. Legen Sie für diese drei Szenarien Software Execution Models an. Sie können einige

Operationen zusammenfassen, wo dies sinnvoll ist. Fassen Sie aber nur zusammen,
wenn die Operationen auch einen logischen Zusammenhang haben, damit die
Verständlichkeit gegeben ist, und geben Sie der entstehenden Node einen
sprechenden Namen, der die Zusammenfassung verdeutlicht. Machen Sie weiterhin
Gebrauch von der Schachtelung des Ausführungsgraphen (Expand). Denken Sie aber
daran, dass nur drei Subgraphen in dieser Version des SPE-ED Werkzeugs angelegt
werden können. (Nur im SPE-ED Werkzeug)

LXXXIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 22:43:14 - 5 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Kunde anlegen

 Wird unten auch wiederverwendet

Der violette Knoten heißt „create“

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXXV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 22:43:14 - 6 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Vertrag anlegen

LXXXVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 22:43:14 - 7 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Statistik
Folgende Software Execution Graphs sind denkbar:

b. Lösen Sie die einzelnen Modelle und betrachten Sie die
Antwortzeiten. Geben Sie für die einzelnen Szenarien an,
ob das Performanzziel erreicht werden kann sowie die
ermittelten Werte. Analysieren Sie, wo ggf. Probleme
verursacht werden. Welche der in der VL zum SPE
vorgestellten Performanz-Patterns oder -prinzipien
werden verletzt? Welche Anti-Patterns werden
verwendet?

Kunde anlegen:
Es wird eine Antwortzeit von 12 Sekunden vorhergesagt.
Damit kann das Performanzziel erreicht werden.

Auftrag anlegen
Es wird eine Antwortzeit von knapp 136 Sekunden
vorhergesagt. Dies ist bedeutend höher als das
Performanzziel. Hauptursache sind die vielen
Verzögerungen durch den Benutzer, der bei dem Anlegen jeder Position 10 Sekunden
lang nachdenkt. Ohne den Delay durch den Benutzer würde das Szenario noch knapp
10 Sekunden benötigen (dies kann von der Resource Usage in der Results-Sicht
abgelesen werden). Es sollten also beim Anlegen der Positionen Maßnahmen getroffen
werden.

Ergebnisse
Kunde
anlegen

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXXVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 22:43:14 - 8 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Dieser Schluss entspricht dem Centering Principle: Die Konzentration auf die Stellen,
die den höchsten Workload verursachen.
Um die Zeiten für das Anlegen der
Positionen zu verringern, kann sich am
Fast Path Pattern orientiert werden:
Aufwändige Aktionen sollen beschleunigt
werden. Hier ist denkbar, dem Benutzer
mehrere Positionsfelder auf einer Seite
anzuzeigen, so dass die Seite nicht neu
geladen werden muss, und insbesondere
dass der Benutzer die Seite nicht erst von
neuem betrachten muss und dadurch
unterbrochen wird, sondern gleich
weiterarbeiten kann. Die Zeit für das
Ausfüllen der Positionen würde dann
wohl länger als 10 Sekunden dauern, aber
wahrscheinlich weniger als 100 Sekunden
für alle Positionen.

Trotzdem sollte in Erwägung gezogen
werden, das Performanzziel zu verändern.
Der Benutzer muss mindestens zwei
Eingaben tätigen, davon wird die Eingabe
der Positionen länger dauern.

Statistik generieren
Bei dem Anwendungsfall „Statistik
generieren” wird das Performanzziel
ebenfalls deutlich nicht erreicht. Der
kritische Knoten hier ist generateStatistics, darin eingebettet der Knoten getCustomer.
Die Anforderung des Knotens selbst sind gering, allerdings wird er in einer sehr
häufig ausgeführten Schleife verwendet. Hier ist das Processing Versus Frequency
Principle verletzt: Der relativ teure Datenbankzugriff wird zu häufig durchgeführt.
Allerdings kann die Ausführung des Knoten selbst nicht günstiger gestaltet werden.
Eine Option, die aber ggf. schwierig zu realisieren ist,
wäre, die Schnittstelle zu DBAccess nach dem Coupling
Pattern zu erweitern und eine Funktion hinzuzufügen, die
gleich Bestellungen mit allen Kunden dazu zurückliefert.
Hier sollte aber abgewogen werden, ob die Schnittstelle
der Komponente dahingehend erweitert werden soll, oder
ob dies die Wiederverwendbarkeit der Komponente
beeinträchtigt. Ein Pattern, das aber in jedem Fall
angewandt werden sollte, ist das Batching. Es muss nicht
jeder Kunde einzeln aus der Datenbank geladen werden,
dies könnte besser in Einem geschehen. Dazu müsste
allerdings die Zuordnung von Kunden zu Aufträgen
nachträglich geschehen. Ein weiterer Vorteil wäre, dass
ein Kunde mit mehreren Aufträgen nicht mehrmals
geladen werden würde.

Man könnte hier weiterhin das Antipattern Circuitous Treasure Hunt identifizieren,
dass beinhaltet, dass ein Datensatz aus der Datenbank geladen wird, auf Basis der
Ergebnisse weitere Datensätze geladen werden, auf Basis dieser Ergebnisse wieder

Ergebnisse Auftrag anlegen

Ergebnisse
Statistik
generieren

LXXXVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 22:43:14 - 9 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

weitere usw. Im vorliegenden Szenario werden allerdings nur die Kunden abhängig
vom Auftrag geladen, es liegt nur eine milde Form des Circuitous Treasure Hunt vor,
der wegen seiner häufigen Ausführung aber trotzdem die festgestellten Konsequenzen
hat,

c. Geben Sie mindestens drei Entwurfsalternativen an, die die Performanz der
problematischsten Stellen verbessern können. Begründen Sie.

Vergleiche für die Begründung auch Lösung von b.

1. Dem Benutzer mehrere Positionen gleichzeitig anzeigen (Fast Path).

2. Bei der Statistikgenerierung alle Kunden in einem Batch laden und dann
zuordnen (Batching).

3. Die Schnittstelle der DBAccess-Komponenten um eine neue Methode
erweitern, die die Verträge mit den zugeordneten Kunden zurückliefert und
intern diese natürlich performant lädt, mit z.B. Batching (Coupling).

4. Einen Cache einbauen, der die für die Statistik benötigten Daten bereits enthält,
da diese immer dieselben sind.

5. Nur Aufträge aus der Datenbank laden, auf die die angegebenen Parameter des
Benutzers zutreffen (z.B. Zeitraum).

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES LXXXIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 23:36:11 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 16.05.2007

Abgabe der Lösungen: 22.05.2007

Vorstellung der Musterlösung: 25.05.2007

Übungsblatt 4
Ziel der Übung: Weitergehende Performanzanalysen mit SPE-ED.

Allgemeines
Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
martens@ipd.uka.de.

Die Abgabe der Lösungen erfolgt ebenso wie auf Übungsblatt 1 angegeben. Bitte geben Sie in
einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für die Bearbeitung der
einzelnen Aufgaben benötigt haben.

Werkzeuge
Für die Bearbeitung der Aufgaben benötigen Sie das SPE-ED Werkzeug, das Sie in der
zweiten Übung bereits verwendet haben.

Aufgaben
Ein neues Web-Portal mit Nachrichten, Wetter und natürlich Werbung soll entwickelt werden.
Um zu prüfen, ob die geplanten Hardware-Ressourcen ausreichen, um eine genügend große
Anzahl von Benutzern zu bedienen, soll eine Performanzanalyse durchgeführt werden. Neben
dem Aufruf des Portals sollen über den verwendeten Webserver auch Werbungsbanner für
andere Websites angeboten werden. Das folgende Diagramm stellt diese beiden
Anwendungsfälle, die als die performanzkritischen Szenarien identifiziert worden sind, dar.

Show portal

Retrieve
advertising

Web surfers

Ad requesting sites

Web Portal

Premium Member

XC APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 23:36:11 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Das Web-Portal ist auf zwei Servern eingesetzt, einer für den benötigten Webserver und einer
für die interne Datenbank. Weiterhin werden externe Web Services aufgerufen, die
Nachrichten und Wetterdaten liefern. Das folgende Diagramm zeigt das Deployment.

Web Server DB Server

WebServing
Component DBAccess

Web Service
Components

World Wide Web

Clients

Die einzelnen Web Services für Nachrichten und Wetter sind von anderen Anbietern
angeboten, sie stehen zur Entwurfszeit noch nicht fest und werden sich ggf. auch zur Laufzeit
ändern. Hier sind keine Daten über die Einsatzumgebungen bekannt, sondern nur
Schätzungen, wie lange sie für die Bearbeitung einer Anfrage benötigen.

Die beiden Szenarien laufen wie folgt ab:

Szenario Show Portal:

loop

loop

opt

WebServing
Component DBAccess News WS Weather WS

HTTP request

Parse request

Get user prefs

Get Banner

Get weather

Get News

Generate HTML

HTML via HTTP

request Cookie

[cookie]

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XCI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 23:36:11 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Die WebServingComponent erhält eine Anfrage über HTTP und parst diese. Der Webbrowser
des Benutzers wird nach gespeicherten Cookies für diese Seite gefragt. Liegt ein Cookie vor,
so werden die Einstellungen für diesen Benutzer aus der Datenbank geladen, die benötigte
Nachricht ist nur ca. 1 KB groß. Im nächsten Schritt werden die Werbebanner geladen. Die
Anzahl der Werbebanner hängt von den Einstellungen des Benutzers ab, denn der Benutzer
kann seine bevorzugte Auflösung angeben, so dass unterschiedlich viele Inhalte angezeigt
werden können.

Danach wird das Wetter bei einem Web Service abgefragt. Die Daten aller Web Services sind
unbekannt bis auf die ungefähre Antwortzeit, deswegen wird der Web Service nur durch eine
Verzögerung modelliert, und keine Rücksicht auf Auslastung etc. genommen.

In einer Schleife werden die Nachrichten von verschiedenen anderen Web Services geholt
(auch hier kann nur die Verzögerung modelliert werden). Die Anzahl der Nachrichten hängt
ebenfalls von den Einstellungen des Benutzers ab.

Schließlich wird aus den gesammelten Daten eine Website in HTML generiert und zurück an
Benutzer geschickt.

Es wird damit gerechnet, dass ungefähr ein Benutzer pro 5 Sekunden die Seite besucht.
Dreiviertel der Benutzer haben bereits ein Profil auf der Seite haben. Von diesen Benutzern
hat die Hälfte eine größere Auflösung eingestellt, so dass mehr Anzeigen und Nachrichten
angezeigt werden.

Normalerweise werden fünf Anzeigen pro Seite angezeigt, bei einer größeren Auflösung
sieben. Eine Anzeige ist im Durchschnitt 20 KB groß. Weiterhin werden normalerweise 8
Nachrichten angezeigt, bei einer größeren Auflösung 15. Tipp: Sie können den gewichteten
Mittelwert für die Anzahl der benötigten Schleifendurchläufe verwenden.

Die Abfrage der Nachrichten Web Services benötigt 0,3 Sekunden, die Web Services für das
Wetter sind mit 0,4 Sekunden etwas langsamer.

Szenario Werbung abfragen:
Der zweite Anwendungsfall ist das Abfragen von einzelnen Werbebannern (Advertising bzw.
„Ad“) durch andere Webserver oder Clients. Er ist im folgenden Diagramm dargestellt.

WebServing
Component DBAccess

HTTP request

Parse request

Get Ad

Ad via HTTP

Create response

Dieser Anwendungsfall wird von vielen Benutzern gleichzeitig abgefragt, man rechnet mit
durchschnittlich 2 Benutzern pro Sekunde.

Daten zur Hardware-Umgebung
Die CPU des Webservers hat eine Taktrate von 2 GHz. Gehen Sie davon aus, dass eine
Instruktion nur im Schnitt 0,8 Zyklen benötigt. Sie können jeweils 10.000 Instruktionen
zusammenfassen, indem Sie dafür eine Berechnungseinheit (Work Unit) ansetzen. Es wird

XCII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 23:36:11 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

damit gerechnet, dass pro Bearbeitungsschritt maximal 10 Berechnungseinheiten benötigt
werden. Sie müssen allerdings abschätzen, wo in diesem Rahmen die Anforderungen eines
konkreten Bearbeitungsschritts liegt. Die CPU des Datenbankservers kann ebenso abstrahiert
werden, die Taktrate ist allerdings nur 1GHz.

Sie können das mitgelieferte Webserver Facility Template verwenden, müssen hier aber noch
die ServiceTimes der einzelnen Devices anpassen und wieder speichern. Leiten Sie den DB
Server wiederum davon ab, ändern Sie die Service-Time der CPU und speichern Sie es als
DBServer Facility Template. Achten Sie daraus, das DB Server Template nur für das eine
Szenario zu übernehmen. Wählen Sie also bei der Frage, ob Sie es für alle Szenarien
übernehmen wollen, nicht „Ok“, sondern „Create“ aus.

Das Netzwerk zwischen Webserver und Datenbankserver überträgt 1 GBit/s, die Latenzzeit
1ms. Entscheiden Sie, ob Sie als Software Resource Requirement die Größe der zu
übertragenen Daten in KB, oder die Anzahl der Nachrichten oder beides angeben, und
begründen Sie Ihre Entscheidung.

Für die Verzögerung durch die Web Services können Sie einen Delay in Sekunden als
Software Resource Requirements angeben, und diesen auch 1:1 in Computer Resource
Requirements abbilden. Die Anbindung des Web Servers an das Internet ist schnell genug, so
dass sich der Durchsatz nicht bei Konkurrenzsituationen ändert, die Anbindung ist immer
schnell genug.

Der Datenbankserver benötigt für jeden Zugriff auf die Daten zwei Festplattenzugriffe. Gehen
Sie davon aus, dass die Festplatte durchschnittlich 25 MB pro Sekunde lesen kann, aber eine
Latenzzeit von 0,8 ms hat. Entscheiden Sie sich auch hier für Software Resource
Requirements und begründen Sie. Neben den Festplattenzugriffen werden für einen
Datenbankzugriff 30 Berechnungseinheiten (wie oben angegeben) angesetzt.

Die Internetanbindung der Clients ist typischerweise DSL 1000, es werden also 1024 Kbit/s
übertragen. Die Latenzzeit beträgt im Mittel 200ms. Ein Cookie hat eine Durchschnittsgröße
von 2KB.

Bedenken Sie, dass es sich um ein verteiltes System handelt, und Sie für die Abläufe auf den
einzelnen Servern getrennte Szenarien angeben müssen (Caller – Callee, vgl. ergänzten
Foliensatz). Daher werden auch Synchronisationsknoten benötigt. Falls es aufgrund der
Einschränkungen der Menge der Subgraphen nicht möglich ist, für jede Synchronisation
zwischen den Servern Synchronisationsknoten einzuführen, können Sie auch Basisknoten mit
den entsprechenden berechneten Delay ausstatten (da die Synchronisationsknoten ohnehin
nicht weiter ausgewertet werden, sondern der Illustration dienen).

Da der Aufruf des Datenbankszenarios in einer Schleife geschieht, müssen Sie die
Ankunftsrate im Szenario des Datenbankservers entsprechend erhöhen. Beispiel: Bei einer
Ankunftsrate am Webserver von 1 Benutzer pro Sekunde und einer dort vorliegenden Schleife
mit durchschnittliche 10 Durchläufen, in der jeweils das Datenbankszenario abgefragt wird,
müssen Sie die Ankunftsrate für das Datenbankszenario als 10 Benutzer pro Sekunde
angeben.

Performanzziel
Die Anzeige des Portals vom Eintreffen des HTTP Requests bis zum Abschicken der
generierten Seite soll nicht länger als 3 Sekunden benötigen. Sie müssen also die Zeit, um den
HTTP Request zu übertragen, und die Zeit, die für die Übertragung der generierten Seite
benötigt wird, nicht berücksichtigen. Die Zeit für die Abfrage des Cookies ist allerdings
relevant. Die Abfrage eines Werbebanners soll nicht länger als 0,1 Sekunde benötigen,
ebenfalls vom Eintreffen des HTTP Requests bis zum Abschicken des Werbebanners.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XCIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

16.05.2007 23:36:11 - 5 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ihre Aufgaben
a. Nennen Sie das Projekt „Uebung4“. Legen Sie für diese Szenarien Software

Execution Models an. Sie können logisch zusammenhängende Knoten
zusammenfassen, geben Sie ihnen aber aussagekräftige Namen. Machen Sie
weiterhin Gebrauch von der Schachtelung des Ausführungsgraphen (Expand).
Denken Sie aber daran, dass nur drei Subgraphen in dieser Version des SPE-
ED Werkzeugs angelegt werden können. Geben Sie weiterhin die Overhead
Matrix an und begründen Sie Ihre Auswahl.

b. Lösen Sie die einzelnen Modelle für einen einzelnen Benutzer, für mehrere
Benutzer in einem Szenario und per Simulation aus dem Show Portal Szenario.
Betrachten Sie die Antwortzeiten. Geben Sie für die einzelnen Szenarien an, ob
das Performanzziel in den einzelnen Stufen erreicht werden kann sowie die
ermittelten Werte. Analysieren Sie, wo ggf. Probleme verursacht werden, und
schlagen Sie eine Verbesserung der Architektur vor (auch wenn keine
Probleme erkennbar sind).

Geben Sie Ihre Lösungen zu a. und b. in einem separaten Dokument namens uebung04
ab, in einem der erlaubten Dateiformate.

Legen Sie das gesamte SPE-ED Verzeichnis ohne die .exe Datei in Ihren SVN
Repositories ab. Falls Sie die SPE-ED Installation aus dem vorigen Übungsblatt
verwenden wollen, können Sie die Lösung auch in das Verzeichnis zu Übung 2
hochladen. Legen Sie dann aber unbedingt im Verzeichnis „uebung04“ eine Textdatei
mit einem entsprechenden Hinweis an.

Tipp: Sie können Subgraphen in anderen Szenarien wiederverwenden, indem Sie
einen Knoten erweitern (expand) und, bevor Sie Knoten in den neuen Subgraph
einfügen, Edit->Include… und dort den gewünschten Subgraphen auswählen.

1. Bitte geben Sie in einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für
die Bearbeitung der einzelnen Aufgaben benötigt haben:

Aufgabe 1 SPE-ED:

a) Zeitangabe

b) Zeitangabe

XCIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

24.05.2007 10:14:21 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 16.05.2007

Abgabe der Lösungen: 22.05.2007

Vorstellung der Musterlösung: 25.05.2007

Musterlösung Übungsblatt 4
Software Execution Graphs
Es sind drei Szenarien zu erstellen: Show Portal, Retrieve Advertising und DB Process, der
von beiden vorherigen verwendet wird.

Show Portal:

Retrieve Advertising:

DB Process:

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XCV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

24.05.2007 10:14:21 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Overhead Matrix
Die Overhead-Matrizen waren selbst zu erstellen und könnten so aussehen:

Herleitung der Werte:

CPU: Taktrate Webserver 2GHz. Dabei benötigt eine Instruktion nur 0,8 Zyklen. Es können
also 2G / 0,8 = 2,5G Instruktionen pro Sekunde verarbeitet werden. Angabe in der Matrix ist
in Kiloinstruktionen. Also noch 2,5 M KInstr / Sek. Für eine Sekunde ist das umgerechnet 1 /
2,5 * 106 = 4*10-7. Für den DBServer ist bei halber Taktrate die Service Time entsprechend
das Doppelte: 8*10-7.

Disk: Vorgabe: Gehen Sie davon aus, dass die Festplatte durchschnittlich 25 MB pro Sekunde
lesen kann, aber eine Latenzzeit von 0,8 ms hat. Es werden maximal im Mittel 20 KB
ausgelesen. Bestimmung des Einflusses: Die oben genannte Geschwindigkeit: 1 / (25 *
103MB/s) = 0,04 ms pro KB, also benötigt das Auslesen von 20 KB auch 0,8 ms. Die
Latenzzeit ist ähnlich, deswegen sind beide Werte also relevant. Es werden daher zwei
Software Resource Requirements angegeben, einmal die Anzahl der Datenbankzugriffe und
einmal die Größe der zu lesenden Daten. Für den Web Server ist diese Angabe nicht relevant,
daher wird die Angabe weggelassen. Die Service Time der Festplatte wird beim DB Server
mit 1ms angegeben, und die Software Resource Requirements darauf abgebildet: DBAccess
gibt die Menge der Datenbankzugriffe an und beinhaltet auch die nötigen Work Units. Jeder
Datenbankzugriff beinhaltet zwei Festplattenzugriffe à 0,8 ms, daher die Abgabe von 1,6 ms.
DBSize gibt die Menge der zu lesenden Daten in KB an und wird daher auf 0,04ms
abgebildet.

Delay: Die Abbildung wird eins-zu-eins auf Sekunden vorgenommen.

InetMsg: Vorgabe: Die Internetanbindung der Clients ist typischerweise DSL 1000, es werden
also 1024 Kbit/s übertragen. Die Latenzzeit beträgt im Mittel 200ms. Ein Cookie hat eine
Durchschnittsgröße von 2KB. Bestimmung des Einflusses: 1024 Kbit/s = 128 KByte/s, also
wird ein Cookie in 0,015 Sekunden übertragen. Latenzzeit ist 0,2 Sekunden, daher wieder um
den Faktor 10 höher. Es kann nur die Latenzzeit betrachtet werden. Daher wieder als SRR die
Anzahl der Nachrichten über das Internet, Abbildung auf ein Delay von 0,2 Sekunden, da laut
Vorgabe keine nennenswerte Auslastung der Internetverbindung vorliegt.

LocalMsg: Vorgabe: Das Netzwerk zwischen Webserver und Datenbankserver überträgt 1
GBit/s, die Latenzzeit ist 1ms. Es werden hier auch maximal im Mittel 20 KB übertragen, die
(rechne, rechne) in 0,16 Millisekunden übertragen können werden. Auch hier ist die
Latenzzeit also wieder höher und wird allein verwendet. Die Ressource GlNet (Global
Network) wird belastet, die von allen Facilities geteilt wird.

XCVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

24.05.2007 10:14:21 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Für die Auslastung der Netzwerkverbindung ist die Latenzzeit allerdings problematisch, da in
einem durch Router o.ä. unterteilten Netzwerk auch mehrere Nachrichten wie in einer
Pipeline verschickt werden können. Die berechneten Auslastungswerte sind also mit Vorsicht
zu interpretieren. Man könnte prüfen, ob die berechnete Auslastung ungefähr mit der durch
Kollisionen etc. vergrößerten echten Auslastung übereinstimmt.

Schleifendurchläufe
Die Anzahl der geladenen Werbebanner und Nachrichten variiert je nach Benutzungsprofil.
Daher muss der Mittelwert erst einmal berechnet werden.

Vorgaben: Dreiviertel der Benutzer haben bereits ein Profil auf der Seite haben. Von diesen
Benutzern hat die Hälfte eine größere Auflösung eingestellt, so dass mehr Anzeigen und
Nachrichten angezeigt werden. Normalerweise werden fünf Anzeigen pro Seite angezeigt, bei
einer größeren Auflösung sieben. Eine Anzeige ist im Durchschnitt 20 KB groß. Weiterhin
werden normalerweise 8 Nachrichten angezeigt, bei einer größeren Auflösung 15.

Also für die Anzahl der Schleifendurchläufe für die Banner:

7 * 0,75 * 0,5 + 5 * (1 – 0,75 * 0.5) = 5,75

Für die Nachrichten:

15 * 0,75 * 0,5 + 8 * (1 – 0,75 * 0.5) = 10,625

Ankunftsraten
Ankunftsrate Show Portal ist 0,2 jobs/s. Ankunftsrate Retrieve Advertising ist 2 jobs/s. Pro
Aufruf von Show Portal wird die Datenbank im Mittel 5,75-mal für ein Werbebanner und
0,75-mal für das Profil des Benutzers angefragt, insgesamt also 6,5-mal. Die Ankunftsrate für
DB Process ist somit 6,5 * 0,2 jobs/s + 2 jobs/s = 3,3 jobs/s.

Bedingungen
Im DB Process wird entschieden, ob ein Benutzerprofil oder ein Werbebanner geladen wird.
Insgesamt kann dies allerdings auch anders modelliert werden, indem es in zwei Szenarien
aufgeteilt wird. Die Wahrscheinlichkeiten, ob ein Banner oder ein Profil geladen wird, hängt
von den Ankunftsraten der anfragenden Prozesse und der Häufigkeit des Aufrufs innerhalb
der Prozesse zusammen.

Im Szenario Show Portal gilt erst einmal:

psp(getProfile) = 1 / (5,75 + 1) = 0,149 und psp (getAd) = 1 - psp (getProfile) = 0,851

Im Szenario Retrieve Ads wird nur getAd nachgefragt, mit einer Ankunftsrate von 2 jobs/s im
Gegensatz zu 0,2 jobs/s von Show Portal. Insgesamt gilt also:

p(getProfile) = psp(getProfile) * 0,2 / 2,2 = 0,014 und p(getAd) = 1 - p (getProfile) = 0,986

Delays für Synchronisation
Mit den bisherigen Angaben kann ein Delay von 0,002431 s für den DB Process ermittelt
werden (Contention Solution, aber nicht Simulation) und als Delay in den anderen Software
Execution Graphs eingesetzt werden. Es muss nicht simuliert werden, weil der DB Process
mit keinem anderen Szenario die Ressourcen des DBServers teilen muss.

Ergebnisse
Show Portal außerhalb der Vorgaben mit 4,0184 Sekunden Antwortzeit. In der Simulation ist
die Antwortzeit sogar noch höher.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XCVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

24.05.2007 10:14:21 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Retrieve Advertising: Antwortzeit 0,004774 Sekunden und DB Process: Antwortzeit
0,002431 Sekunden. Bei der Simulation starke Schwankungen bei 20.000 Durchläufen,
teilweise kein Erreichen der Konfidenz.

XCVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

23.05.2007 19:44:39 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 23.05.2007

Abgabe der Lösungen: 29.05.2007

Vorstellung der Musterlösung: 01.06.2007

Übungsblatt 5
Ziel der Übung: Einüben des Repository-Konzeptes von Palladio (Aufgabe 1),
weiterführende Aufgabe SPE-ED (Aufgabe 2)

Allgemeines
Die Übungsgruppeneinteilung wird nur noch alle zwei Wochen neu erstellt, Sie bearbeiten
diesen Zettel also mit Ihrem Übungspartner vom letzten Mal.

Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
martens@ipd.uka.de.

Die Abgabe der Lösungen erfolgt ebenso wie auf Übungsblatt 1 angegeben. Bitte geben Sie in
einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für die Bearbeitung der
einzelnen Aufgaben benötigt haben.

Werkzeuge
Für die Bearbeitung der Aufgaben benötigen Sie das SPE-ED Werkzeug, das Sie in der
zweiten Übung bereits verwendet haben. Weiterhin wird die aktuelle Version der PCM Bench
benötigt, die ab morgen im Wiki verlinkt sein wird. Sie können also Aufgabe 1 erst ab
Donnerstag, nachdem die neue Version verfügbar ist, bearbeiten. Sie müssen diese dann
erneut herunterladen und auch die PCM Plugins neu hinzufügen, wie auf Übungszettel 2
angegeben. Weiterhin benötigen Sie das im Wiki verlinkte Repository mit vorbereiteten
primitiven Datentypen (PrimitiveTypes.repository).

Aufgaben

1. PCM: Sie haben das Informationssystem CBIS bereits in Übung 3 bearbeitet. Nun
sollen die dort vorgestellten Konzepte auch im PCM modelliert werden. In der
Zwischenzeit haben sich die Architektur und der Entwurf der einzelnen Komponenten
aufgrund der festgestellten Performanzmängel verändert. So wurde beispielsweise eine
Komponente eingeführt, die einen lokalen Cache für die generierten Statistiken
ausliest. Weiterhin wurden die Komponenten Sales und Statistics überarbeitet und
liegen nun in als FastSales und FastStatistics in einer weiteren Version vor: Die
Abläufe wurden verschlankt, die Benutzer können bei dem Anlegen eines Auftrags
gleich mehrere Positionen angeben. Bei der Aktualisierung des Caches oder der
Abfrage noch nicht vorgehaltener Statistiken werden nicht alle Kunden und Aufträge
einzeln geladen, sondern in Batches.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES XCIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

23.05.2007 19:44:39 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Die alten Versionen der Komponenten bleiben weiterhin zu Dokumentationszwecken
erhalten:

Sales

IOrderMgmt

IDBAccess

ICustMgmt

Statistics
IStatistics

IOrderMgmt

IDBAccess

Weitere Komponenten im
Repository:

Die Anwendungsfälle bleiben weiterhin dieselben:

Anwendungsfälle:

Kunde anlegen

Benutzer

Konto anlegen

Auftrag anlegen

Statistik
generieren

CBIS

<<include>>

Entwurf der Architektur:
Die einzelnen Funktionsbereiche werden weiterhin in einzelnen Komponenten
realisiert: CustomerManagement, AccountingManagement, FastSales und
FastStatistics. Zusätzlich ist die Komponente DBAccess für den Datenbankzugriff
zuständig, sie abstrahiert von den SQL Anfragen an die Datenbank und stellt dem
restlichen System eine objektorientierte Schnittstelle bereit. Die Komponente
UserWebInterface wandelt die Anfragen, die über HTTP eingehen, in Anfragen an die
einzelnen Funktionskomponenten um. Zusätzlich wurde eine Komponente DBCache
vor DBAccess geschaltet, die einige Anfragen an die Datenbank zwischenspeichert
und so teure Datenbankzugriffe erspart.

C APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

23.05.2007 19:44:39 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

UserWeb
Interface

Customer
Management

FastSales

FastStatistics

Accounting
Management

ICustMgmt

IAccMgmt

IOrderMgmt

IStatistics

ICustMgmt

IOrderMgmt

IDBAccess

IDBAccess

IDBAccess

IDBAccess

DBAccess

ICustMgmt

IStatistics

IOrderMgmt

IAccMgmt

IUser IDB

IDB

<<delegate>>
IUser

<<delegate>>

DBCache

IDBAccess

IDBAccess

<<system>>

Für einige Schnittstellen sind bereits weitere Informationen zu den Signaturen und den
darin verwendeten Datentypen verfügbar.

Die Schnittstelle ICustMgmt verfügt u.a. über die Methoden

 String createCustomer(List<String> customerData), die die Kundennummer
zurückgibt

 Customer getCustomer(String customerNo)

 List<Customer> getAllCustomers()

Die Schnittstelle IDBAccess verfügt u.a. über die folgenden Methoden, dabei ist
Storable ein Interface, dass von allen in der Datenbank zu speichernden Datentypen
implementiert wird. Sie können es als Composite Data Type ohne Inner Declarations
modellieren.

 String create(Storable data), die eine Identifikation (z.B. die Kundennummer)
zurückgibt

 List<Storable> getAll(String objecttype)

 Storable get(String id, String objecttype), die das geladene Objekt zurückgibt

Die Schnittstelle IAccMgmt verfügt u.a. über die Methoden

 String createCustomerAccount(String customerNo), die die Kontonummer
zurückgibt.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

23.05.2007 19:44:39 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Dabei besteht der zusammengesetzte Datentyp Customer aus den folgenden
Attributen:

 String customerNo

 String firstname

 String lastname

 String address

Der zusammengesetzte Datentyp Account besteht aus den folgenden Attributen

 String accountNo

 String customerNo

 String accountName

 String accountType

Ihre Aufgaben
a. Modellieren Sie die im CBIS verwendeten Komponenten sowie die alten

Versionen in einem PCM Repository. Erstellen Sie für die Komponenten, die
sinnvolle gemeinsame Provided und/oder Complete Types haben können, auch
diese. Für die anderen brauchen Sie nur die Basic Component Types zu erstellen.
Geben Sie die Signaturen wie oben angegeben an. Sie müssen dazu aus den
gegebenen Datentypen des PrimitiveTypes.repository neue Datentypen erstellen.
Lassen Sie schließlich Ihre Diagramme vom Werkzeug validieren (Diagram ->
Validate) um sicherzustellen, dass keine groben Modellierungsfehler enthalten
sind.

2. SPE-ED: Für das Web Portal System aus dem vorigen Übungsblatt stellt man sich die
Frage, wie viele Benutzer einzelne Werbebanner abfragen können, ohne die Funktionalität
des Portals selbst stark zu beeinträchtigen (Szenario Retrieve Advertising / Werbung
abfragen).

Sie sollen diese Untersuchung mit SPE-ED durchführen. Korrigieren Sie dazu zunächst
Ihre Lösung zu Übung 4 anhand der Ihnen vorliegenden Musterlösung. Sie müssen nicht
exakt dieselben Werte erhalten, insbesondere bei der Simulation ist dies auch gar nicht
möglich. Sie sollten jedoch die Berechnungen der Wahrscheinlichkeiten für
Verzweigungen und der Anzahl der Schleifendurchläufe sowie die Overhead-Matrix
überprüfen und ggf. anpassen. Weiterhin sollten Sie alles korrigieren, was zu Punktabzug
geführt hatte und nicht anders markiert ist.

a. Finden Sie heraus, wie viele Benutzer in der Sekunde Werbebanner abfragen
können, ohne die Antwortzeit des Anwendungsfalls Show Portal um mehr als 10%
zu verändern. Bedenken Sie auch die dadurch höhere Ankunftsrate am DB
Prozess. Geben Sie in Ihrer Abgabe an, welche Untersuchungen Sie durchgeführt
haben, um den Wert festzustellen.

b. Ab einem gewissen Zeitpunkt kann eine Ressource die eingehenden Anfragen
nicht mehr schnell genug abarbeiten, und die Warteschlange wird immer länger.
Finden Sie heraus, ab welcher Benutzerzahl dies in diesem System geschieht und
geben Sie ebenfalls an, wie Sie zu dieser Lösung gekommen sind.

CII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

23.05.2007 19:44:39 - 5 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

3. Zeitaufwand: Bitte geben Sie in einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel
Zeit Sie für die Bearbeitung der einzelnen Aufgaben benötigt haben:

1 a) Zeitangabe

2)

a) Zeitangabe

b) Zeitangabe

Abgabe
Geben Sie Ihre Lösungen zu 1. und 2. in einem separaten Dokument namens uebung05 ab, in
einem der erlaubten Dateiformate.

Legen Sie das gesamte SPE-ED Verzeichnis ohne die .exe Datei in Ihren SVN Repositories
ab. Falls Sie die SPE-ED Installation aus dem vorigen Übungsblatt verwenden wollen,
können Sie die Lösung auch in das Verzeichnis zu Übung 2 hochladen. Legen Sie dann aber
unbedingt im Verzeichnis „uebung05“ eine Textdatei mit einem entsprechenden Hinweis an.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:31:03 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 23.05.2007

Abgabe der Lösungen: 29.05.2007

Vorstellung der Musterlösung: 01.06.2007

Musterlösung Übungsblatt 5

1.

CIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:31:03 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

2.

a) Es sollte die maximale Benutzerzahl für den Anwendungsfall Retrieve Advertising
herauszufinden, bei der der Anwendungsfall Show Portal maximal um 10% langsamer wird.
Da die Simulationslösung für diese Szenarien ohnehin stark streut, lässt sie sich nicht für
diese Untersuchung verwenden. Es müssen die Szenarien also einzeln betrachtet werden.

Zunächst kann durch Erhöhen der Zugriffszahlen für das Szenario herausgefunden werden,
dass im DBProcess Szenario die kritischen Ressourcen liegen, und dass sich die höhere
Zugriffszahl zwar die Anzahl der benötigten Work Units erhöht, dies aber die Auslastung der
CPU kaum beeinträchtigt und sich damit kaum auf den Web Server auswirkt. Kritisch ist die
Auslastung des DB Servers.

Nun kann in einem zweiten Schritt untersuch werden, wie lange der DBProcess Aufruf im
Show Portal Szenario dauern darf, ohne dass die Antwortzeit des gesamten Szenarios um
mehr als 10% steigt. Die Benutzerzahl wird dabei für das Szenario Show Portal nicht
angepasst, nur der Delay für die Synchronisationsknoten.

Die bisherige Antwortzeit lag bei 4,0184 s, eine Steigerung von 10 % läge bei 4,42024 s. Mit
einem Delay für die Synchronisation mit dem Datenbankserver von 0,05 s erhält man eine
Gesamtantwortzeit von 4,3276 s.

Es wird nun untersucht, wie viele Benutzer im DB Process bedient werden können, ohne dass
die Antwortzeit sehr viel höher als 0,05 s wird. Dabei muss bedacht werden, dass der Show
Portal Prozess 1,3 Benutzer pro Sekunde beisteuert. Weiterhin verändern sich die
Wahrscheinlichkeiten, welche Aktion im DBProcess ausgeführt werden sollen: Je höher die
Ankunftsrate von Retrieve Advertising, desto größer die Wahrscheinlichkeit von getAd (im
Gegensatz zu getProfile).

Zunächst wird der grobe Bereich, in dem die Lösung liegt, bestimmt. Es zeigt sich, dass bei
402,3 Benutzern pro Sekunde ohne Anpassung der Wahrscheinlichkeiten im DB Process die
Antwortzeit bei 0,06053 s liegt. Zur Überprüfung wird dieser Wert nochmals in Show Portal
eingesetzt, es ergibt sich dort eine Antwortzeit von 4,3961 s, dieser Wert liegt bereits sehr nah
an der 10%-Grenze.

Die Wahrscheinlichkeiten für die einzelnen Aktionen (Herleitung vgl. letzte Musterlösung):
Ankunftsrate p(getProfile) p(getAd)

350 8.50942E-05 0.99991491
400 7.44628E-05 0.99992554
450 6.61928E-05 0.99993381

Man kann in diesem Bereich also gerundet die Wahrscheinlichkeit p(getProfile) = 0,0001 und
p(getAd) = 0,9999 verwenden.

Für die oben durchgeführte Analyse mit 402,3 Benutzern pro Sekunde ergibt sich nun eine
Antwortzeit von 0,06957 s im DBProcess Szenario. Eingesetzt in Show Portal ergibt sich
dann eine Antwortzeit von 4,4548 s, also mehr als 10 %.

Weitere Untersuchungen für die Feststellung des genauen Werts werden in folgender Tabelle
dargestellt:
Ankunftsrate DBProcess Antwortzeit Antwortzeit Show Portal
402,3 0,06957 s 4,4548 s
401,3 0,06504 s 4,4256 s
400,3 0,06107 s 4,3996 s

Die Ankunftsrate des Retrieve Advertising Szenarios kann also maximal 399 Benutzer pro
Sekunde betragen, ohne dass sich die Antwortzeit von Show Portal um mehr als 10 % erhöht.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:31:03 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

b) Auch hier wird wieder der DB Process betrachtet. Bei einer weiteren Erhöhung der
Ankunftsrate steigt die Antwortzeit des Szenarios ab einem gewissen Punkt deutlich und
sprunghaft an.

Die Ankunftsrate ist für DBProcess angegeben:
Ankunftsrate Antwortzeit Auslastung Disk
415,3 0,7247 s 0,7247 s
416,3 2,6325 s 2,6325 s
417,3 239,67 s 239,67 s

Es wird für eine Ankunftsrate von 416,3 Benutzern pro Sekunde eine Antwortzeit von 2,6325
Sekunden angegeben, die durchschnittliche Auslastung der Festplatte liegt hier ebenfalls bei
2,6325, also wächst hier die Warteschlange kontinuierlich an. Das Ergebnis zur Antwortzeit
muss hinterfragt werden: Wenn die Warteschlange kontinuierlich wächst, steigt auch die
Antwortzeit mit der Zeit, spätere Anfragen werden immer höhere Anfragen haben, und bei
einer theoretisch unbeschränkten Länge der Warteschlange strebt auch die mittlere
Antwortzeit gegen unendlich. Womöglich kommt das Ergebnis von SPE-ED dadurch
zustande, dass die Annahme gemacht wird, dass der Durchsatz des Gesamtsystems immer
gleich der Ankunftsrate ist (so dass die in der Vorlesung vorgestellten Berechnungen
durchgeführt werden können). Diese Annahme ist in unserem Fall jedoch nicht mehr zulässig.
Trotzdem bleibt die Erkenntnis, dass 416,3 Benutzer pro Sekunde nicht mehr abgearbeitet
werden können.

Ab 417,3 Benutzern pro Sekunde ist die Auslastung der Festplatte stark gewachsen und wird
mit 239,67 s angegeben. Auch weitere Erhöhungen ändern nichts daran, dieser Wert
repräsentiert also das Maximum bei SPE-ED und weist auf eine immer weiter wachsende
Warteschlange hin.

Es können also maximal 414 Benutzer Werbung abfragen, bevor die Auslastung der Festplatte
zu sehr steigt.

CVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:30:22 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 30.05.2007

Abgabe der Lösungen: 05.06.2007

Vorstellung der Musterlösung: 08.06.2007

Übungsblatt 6
Ziel der Übung: Erstellen von Service Effekt Spezifikationen im PCM

Allgemeines
Zu dieser Übung gibt es eine neue Übungsgruppeneinteilung.

Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
martens@ipd.uka.de.

Die Abgabe der Lösungen erfolgt ebenso wie auf Übungsblatt 1 angegeben. Bitte geben Sie in
einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für die Bearbeitung der
einzelnen Aufgaben benötigt haben.

Werkzeuge
Für die Bearbeitung der Aufgaben benötigen Sie die PCM Bench und die im Wiki verfügbare
Musterlösung zu Übung 5, die auch bereits die weiteren Informationen für einen Analyse
enthält. Die neue Version der Plugins, die zur Bearbeitung nötig ist, wird erst am Abend
verfügbar sein und im Wiki angekündigt werden.

Denken Sie daran, bei dem Arbeiten mit der PCM Bench keine zwei Diagramme gleichzeitig
geöffnet zu halten und zwischendurch öfter zu speichern.

Aufgaben

1. PCM: Sie haben das Informationssystem CBIS bereits in den Übungen 3 und 5
bearbeitet. Nun sollen auch die Abläufe selbst im PCM modelliert werden.

Zur Übung 5 haben sich die Architektur und der Entwurf der einzelnen Komponenten
aufgrund der festgestellten Performanzmängel verändert. So wurde beispielsweise eine
Komponente eingeführt, die einen lokalen Cache für die generierten Statistiken
ausliest. Weiterhin wurden die Komponenten Sales und Statistics überarbeitet und
liegen nun in als FastSales und FastStatistics in einer weiteren Version vor: Die
Abläufe wurden verschlankt, die Benutzer können bei dem Anlegen eines Auftrags
gleich mehrere Positionen angeben. Bei der Aktualisierung des Caches oder der
Abfrage noch nicht vorgehaltener Statistiken werden nicht alle Kunden und Aufträge
einzeln geladen, sondern in Batches. Die Architektur und die Anwendungsfälle sind
auf Übungsblatt 5 angegeben und bleiben bis auf eine kleine Änderung unverändert.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:30:22 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Architektur

UserWeb
Interface

Customer
Management

FastSales

FastStatistics

Accounting
Management

ICustMgmt

IAccMgmt

IOrderMgmt

IStatistics

ICustMgmt

IOrderMgmt

IDBAccess

IDBAccess

IDBAccess

IDBAccess

DBAccess

ICustMgmt

IStatistics

IOrderMgmt

IAccMgmt

IUser IDB

IDB

<<delegate>>
IUser

<<delegate>>

DBCache

IDBAccess

IDBAccess

<<system>>

ICustMgmt

Die Komponente FastStatistics enthält nun zusätzlich die Schnittstelle ICustMgmt.
Der Complete und Provides Typ wurde nicht angepasst.

Entwurf der Komponenten:
Die Komponenten wurden bereits in Übung 5 im PCM Repository modelliert und
liegen nun in einer überarbeiteten Form im Wiki vor. Für die einzelnen Schnittstellen
müssen nun noch die internen Abläufe als Service Effekt Spezifikationen angegeben
werden. Die Abläufe haben sich aufgrund der Überarbeitungen verändert und wurden
weiterhin verfeinert. Sie sind im Folgenden als Sequenzdiagramme angegeben.

Dabei ist das Verhalten des DBCaches beim Laden nicht mit modelliert, um die
Diagramme nicht zu verkomplizieren. Beim Speichern ist das Verhalten beispielhaft
im Sequenzdiagramm Auftrag anlegen modelliert, im Sequenzdiagramm Kunde
anlegen wurde dies auch zur Vereinfachung weggelassen. In den Service Effekt
Spezifikationen soll jedoch auch folgendes Verhalten mit modelliert werden:

 Bei jedem Speichern von Datensätzen leitet die DBCache Komponente die
Anfragen an die DBAccess Komponente weiter

 Bei jedem Laden von Datensätzen besteht eine 50%-ige Wahrscheinlichkeit,
dass die angeforderten Daten im DBCache vorliegen. Falls die Daten nicht
vorliegen, wird die Anfrage an DBAccess weitergeleitet.

CVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:30:22 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Kunde anlegen:

alt

UserWeb
Interface

Customer
Management DBCache Accounting

Management

Kunde anlegen

requestForm
getRequiredFields

requiredFields
HTMLCustomerForm

submitForm(formData)
createCustomer

get(Customer,parameters)

createAccount

create(account)

accountNo = create(Account)

accountNo
create(customer)

customerNo = createCustomer()
HTMLShowNo

HTMLAlreadyExists

[!alreadyExists]

customerNo = create(Customer)

alreadyExistsData

[alreadyExists]

Dieses Szenario hat sich zu vorher kaum verändert, nur dass nun, um zu prüfen, dass
ein Kunde noch nicht vorliegt, die get(objecttype, parameters) Methode des DBCaches
aufgerufen wird. Wenn diese keine Ergebnisse liefert, existiert der Kunde noch nicht.

Auftrag anlegen:

loop

UserWeb
Interface Sales Customer

Management

Auftrag anlegen

requestForm
getRequiredFields

requiredFields
HTMLOrderForm

createOrder
getCustomer

customer

[positions.size()]

DBCache

´get(Customer, parameters)

customer

submitForm(formData)

HTMLShowNo

create(position)

create(order)

orderNo
orderNo

DBAccess

create(position)

create(order)

orderNo

Hier kann der Benutzer in einem Formular sowohl die Kundennummer als auch
verschiedene Positionen angeben, die alle zusammen als formData an das
UserWebInterface geschickt werden, und der Sales Komponente übergeben werden.
Weiterhin wird jede Position einzeln angelegt, weil das Datenbankschema es so
erfordert.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:30:22 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Statistik generieren:

loop

UserWeb
Interface Statistics Customer

Management

Statistik generieren

requestForm
getRequiredFields

requiredFields
HTMLParametersForm

generateStatistics

getOrders(parameters)

orders

DBCache

get(Order, parameters)

orders

submitParameters

HTMLShowStatistics

getCustomers(parameters)

statisticsPage

[customers.size()]

Order
Management

get(Customer, parameters) : List<Customer>

customers = get(Customer, parameters)

generateStatistics

Hier werden nun zuerst die für die Statistik benötigten Kunden geladen. Die
Parameter, die der Kunde zur Generierung der Statistik angegeben hatte,
beispielsweise einen Zeitraum, oder eine regionale Einschränkung, werden
berücksichtigt und der DBAccess Komponente als Einschränkungen übergeben. Es
werden also nur Kunden geladen, die zu den Parametern passen. Weiterhin werden für
jeden Kunden die entsprechenden Aufträge geladen, auch mit Berücksichtigung der
Parameter. Dabei wird die Kundennummer als einer der Parameter übergeben.

Bedenken Sie, dass im PCM die Service Effekt Automaten für einzelne Methoden aus
den Schnittstellen, nicht für einzelne Anwendungsfälle erstellt werden. Sie müssen
daher beispielsweise für den Aufruf requestForm der UserWebInterface Komponente
die Fallunterscheidung, welche weitere Komponente aufgerufen werden soll,
modellieren. Auch die Methode get(..) der DBAccess Komponente ist betroffen, s.
unten. Überlegen Sie also, welche Methoden in mehreren Anwendungsfällen
vorkommen und wo die zugehörigen Service Effekt Automaten eine
Verallgemeinerung der unterschiedlichen Sequenzdiagramme darstellen müssen.

Verwenden Sie für die Modellierung der Fallunterscheidungen Probabilistic Branches
mit den folgenden Wahrscheinlichkeiten:

 Der Anwendungsfall „Kunde anlegen“ wird in 20% der Fälle ausgeführt, der
Anwendungsfall „Auftrag anlegen“ in 70% der Fälle und nur in 10% der Fälle
wird eine Statistik generiert.

 Eine Anfrage kann zu 50% direkt aus dem Cache beantwortet werden.

 Weiterhin liegen nur 5% der Kunden bereits vor, wenn sie neu angelegt werden
sollen.

Beachten Sie, dass die Wahrscheinlichkeit der Anwendungsfälle auch bestimmt, wie
wahrscheinlich die einzelnen Formen der Datenbankzugriffe sind: Wann werden bei
einem get(..) nur wenige Daten abgerufen, wann viele? Modellieren Sie diese Auswahl
im SEFF für DBAccess.get(..) mit Probabilistic Branches.

Für die Modellierung der SEFFs wurden zu den in Übung 5 angegebenen Signaturen
weiterhin einige Signaturen ergänzt und einige Signaturen verändert. Beides ist im
vorliegenden Modell bereits ein gepflegt:

CX APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:30:22 - 5 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Neue Signaturen:
Schnittstelle IUser:

 String requestForm(String whichForm)

 String submitForm(List<String> formData)
Schnittstelle IOrderMgmt

 String createOrder(List<String> orderData)

 List<Order> getOrders(List<String> parameters)

 List<String> getRequiredFields(String operation)
Schnittstelle IStatistics

 String generateStatistics(List<String> parameters)

 List<String> getRequiredFields(String operation)

Die Schnittstellen ICustMgmt benötigt ebenfalls die Methode

 List<String> getRequiredFields(String operation)
Geänderte Signaturen:
Die Methode get(..) der Schnittstelle IDBAccess hat sich im Vergleich zum letzten
Übungszettel geändert:

 List<Storable> get(String objecttype, List<String> parameters), die eine Liste
von passenden Objekten zurückgibt

Die Methode getCustomer der Schnittstelle ICustMgmt wird wie folgt angepasst:

 List<Customer> getCustomers(List<String> parameters)
Die Methoden getAllCustomers der Schnittstelle ICustMgmt und getAll() der
Schnittstelle IDBAccess werden nicht mehr benötigt und können gelöscht werden.

Weitere Datentypen:
Diese Datentypen sind neu und auch bereits im Modell angelegt. Der Datentyp Order
beinhaltet nur Kopfdaten eines Auftrags und zwar die folgenden:

 String orderNo

 String customerNo

 String orderDate

 String requestedDeliveryDate

Der Datentyp Position enthält folgende Daten:

 String orderNo

 String positionsNo

 String articleNo

 double amount

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:30:22 - 6 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Resource Demands
Die Resource Demands müssen größtenteils wie in Übung 3 angegeben werden. Dabei
ist die Geschwindigkeit der CPU für 1 Work Unit, d.h. 10.000 Kiloinstruktionen,
spezifiziert, Sie müssen die Resource Demands an die CPU also in Work Units à
10.000 Kiloinstruktionen angeben. Da die Abstraktionsebene der Software Resource
Requirements fehlt, müssen Sie die Anforderung DBAccess auf die Ressourcen CPU
und HDD (Festplatte) aufteilen: Ein DBAccess entspricht weiterhin 5 Work Units und
3 Festplattenzugriffen, die direkt als Anforderung an die Ressource HDD modelliert
werden können.

Zur Berechnung der Resource Demands benötigen Sie weiterhin die neuen Angaben
zur Statistikberechnung. Es werden aufgrund der Berücksichtigung der angegebenen
Parameter nun nur noch durchschnittlich 1000 Kunden für die Berechnung der
Statistik aus der Datenbank geladen. Weiterhin hat jeder dieser Kunden im Schnitt 2
Aufträge, die zu den Parametern passen.

Wie bei Übung 3 benötigt das Berechnen der Statistik 3 Work Units pro Bestellung,
die berücksichtigt wird. Diese Berechnung wird erst durchgeführt, nachdem alle
Bestellungen geladen wurden (vgl. Sequenzdiagramm).

Um zu prüfen, ob ein Datenbankeintrag bereits im Cache vorliegt, benötigt die
Komponente DBCache 5 Work Units.

Ihre Aufgaben
1. Modellieren Sie die Service Effekt Spezifikationen für das CBIS auf Basis der

Musterlösung. Für die alten Versionen der Sales und Statistics Komponente müssen keine
SEFFs modelliert werden. Benennen Sie die SEFF Diagramm Dateien nach dem
folgenden Schema: „Komponentenname.Methodenname“, dabei können Sie die Namen
auch abkürzen, solange sie eindeutig bleiben.

Denken Sie daran, vor jedem Wechsel zwischen Diagrammen den Stand des aktuellen
Diagramms zu speichern, um keine Inkonsistenzen zwischen den verschiedenen
Diagrammen zu erhalten.

2. Analysieren Sie das Modell mit der Simulation für einen Benutzer, in dem Sie Run->Open
Run Dialog auswählen und hier eine neue Run Configuration für die SimuBench angeben.

Für die Simulation müssen Sie auswählen, welche Repositories, Systems, etc. Sie für die
Simulation verwenden möchten. Wählen Sie das default.repository als Repository File
aus. Da in unserem Beispiel jede weitere Art von Modell nur einmal vorkommt, wählen
Sie jeweils diese eine Datei aus, die Sie an der Dateiendung erkennen können. Das Usage
File hat die Endung .usagemodel. Sie können weiterhin einen Namen für diese Analyse
vergeben, im Reiter SimuCom.

Führen Sie die Simulation durch und betrachten Sie die Ergebnisse in der SimuBench
Perspektive. Im Experiments View finden Sie Ihren Run der Simulation mit den
verschiedenen Sensordaten. Der Sensor „Response Time of usageScenario“ enthält die
Messdaten zum Gesamtsystem. Ziehen Sie den Sensor per Drag and Drop auf die Fläche
in der Mitte. Wählen Sie JFreeChart Histogram aus und klicken Sie danach im Property
Sheet auf „Update Chart“. Falls das Property Sheet nicht angezeigt wird, klicken Sie
zunächst auf das leere Histogramm.

Fügen Sie einen Screenshot des Histogramms einem Dokument hinzu und geben Sie in 3
– 5 Sätzen an, was aus dem Histogramm geschlossen werden kann. Die Antwort sollte

CXII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

30.05.2007 18:30:22 - 7 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

nicht zu knapp sein, sondern widerspiegeln, dass Sie Zusammenhänge erkennen. Sie
braucht aber auch nicht übermäßig ausführlich sein und das Ergebnis bis ins Detail
betrachten.

Hinweis: Wenn Sie mehrere Durchläufe machen, müssen Sie die Ansicht in der
SimuBench aktualisieren, um auch die neusten Ergebnisse angezeigt zu bekommen.

3. Zeitaufwand: Bitte geben Sie in einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel
Zeit Sie für die Bearbeitung der einzelnen Aufgaben benötigt haben:

1. Zeitangabe

2. Zeitangabe

Abgabe
Das PCM Projekt, ein Dokument mit dem Screenshot der Simulation (im Word, PDF oder
OpenOffice Format) sowie die Angaben des Zeitaufwands müssen eingecheckt werden.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

08.06.2007 15:08:12 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Musterlösung Übungsblatt 6
Vgl. auch eingecheckte Musterlösung

Wahrscheinlichkeiten DBAccess.get:

1000 mal Abfrage von ein bis zwei Aufträgen im Szenario generateStatistics (0.1)

1 mal Abfrage von einem Kunden im Szenario createCustomer (0.2)

1 mal Abfrage von einem Kunden im Szenario createOrder (0.7)

1 mal Abfrage von 1000 Kunden im Szenario generate Statistics (0.1)

1000 * 0.1 = 100

 1 * 0.2 + 1 * 0.7 = 0.9

 1 * 0.1 = 0.1

Also Verhältnis 100 : 0.9 : 0.1, entspricht ungefähr 99 : 0.9 : 0.1 Wahrscheinlichkeiten
 0.99 : 0.009 : 0.001

CXIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

07.06.2007 16:43:52 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 06.06.2007

Abgabe der Lösungen: 12.06.2007

Vorstellung der Musterlösung: 22.06.2007

Übungsblatt 7 a
Ziel der Übung: Erstellen von Service Effekt Spezifikationen mit stochastischen Ausdrücken
im PCM

Allgemeines
Zu dieser Übung gibt es eine neue Übungsgruppeneinteilung, bei der sich nur zwei Gruppen,
die Gruppen 10 und 8, verändert haben, damit niemand zu oft allein arbeiten muss. Es wurde
zufällig bestimmt, wer einzeln arbeitet.

Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
martens@ipd.uka.de.

Die Abgabe der Lösungen erfolgt ebenso wie auf Übungsblatt 1 angegeben. Bitte geben Sie in
einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für die Bearbeitung der
einzelnen Aufgaben benötigt haben.

Hinweis: Der Abgabetermin ist erst in zwei Wochen, dementsprechend hat das Übungsblatt 7
einen größeren Umfang. Dieser Teil entspricht daher der Übung für die erste Woche,
spätestens am 13. Juni wird der zweite Teil herausgegeben.

Werkzeuge
Für die Bearbeitung der Aufgaben benötigen Sie die PCM Bench mit den aktuellsten Plugins
(Führen Sie ein Update durch!) und die im Wiki verfügbare Musterlösung zu Übung 6.

Denken Sie unbedingt daran, bei dem Arbeiten mit der PCM Bench keine zwei Diagramme
gleichzeitig geöffnet zu halten und zwischendurch öfter zu speichern. Falls Sie Probleme bei
der Simulation haben (Plugin konnte nicht erzeugt werden), löschen Sie das automatisch
generierte Projekt

Aufgaben

1. PCM: Sie haben das Informationssystem CBIS bereits in den Übungen 3, 5 und 6
bearbeitet. Nun sollen für die Abläufe, die in Übung 6 spezifiziert wurden, mithilfe
stochastischer Ausdrücke nicht nur die Mittelwerte, sondern auch die Verteilungen
angegeben werden, und außerdem die probabilitischen Verzweigungen durch von den
Parametern abhängigen Verzweigungen ersetzt werden.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

07.06.2007 16:43:52 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Die Wahrscheinlichkeiten für die Ausführung der einzelnen Anwendungsfälle müssen
nur noch einmal im Usage Model definiert werden müssen, die Komponenten können
unabhängig davon werden, indem die Verzweigungen und die
Ressourcenanforderungen parametrisch angegeben werden.

Informationen zum Kontrollfluss:
Bisher wurde davon ausgegangen, dass bei der Generierung der Statistik im Schnitt
1000 Kunden geladen werden. Die genaue Anzahl der zu ladenden Kunden hängt
davon ab, welche Parameter bei der Statistikgenerierung vom Benutzer angegeben
werden. Sind die Parameter sehr einschränkend, müssen nur wenige Datensätze
geladen werden. Sind die Parameter sehr weit gefasst oder liegen sogar gar keine vor,
so werden viele oder sogar alle Kunden aus der Datenbank geladen. Im vorliegenden
Fall wurde von Domänenexperten analysiert, welche Art von Anfragen die Benutzer
wie häufig stellen. Wichtig für die Vorhersage der Performance ist es, wie viele
Datensätze pro Anfrage benötigt werden. Daher wurden die Wahrscheinlichkeiten
bestimmt, zu wie vielen Ergebnissen, d.h. zu wie viel ausgewählten Kunden, die
Parameter führen. Weiterhin wird angenommen, dass die Datenbank 5500
Kundeneinträge hat.

Die Wahrscheinlichkeiten, zu wie vielen geladenen Kunden ein Parameter führt, sind
als Verteilung angegeben, dabei gibt x die Anzahl der zu ladenden Kunden vor:

P(0 <= x < 250) = 0.05

P(250 <= x < 750) = 0.35

P(750 <= x < 1250) = 0.2

P(1250 <= x < 2000) = 0.15

P(2000 <= x < 3500) = 0.15

P(3500 <= x < 5500) = 0.1

Sie müssen die Wahrscheinlichkeiten nicht für alle einzelnen möglichen Werte
berechnen, sondern Sie können eine DoublePDF verwenden. So werden zwar in der
Analyse zwar nicht nur jeweils eine ganzzahlige Anzahl von Kunden betrachtet,
sondern auch Gleitkommazahlen verwendet, der dadurch entstehende Fehler sollte
aber gering sein.

Wie viele Kunden für die Statistik geladen werden, hängt also von der Beschaffenheit
der Parameter ab. Modellieren Sie diese Eigenschaft eines Parameters als
STRUCTURE des Parameters. Die Parameter werden wiederum vom Benutzer
bestimmt und sind in den an das UserWebInterface übergebenen formData enthalten,
d.h. auch hier kann bereits die formData.STRUCTURE mit der obigen Verteilung
angegeben werden. So wird erreicht, dass die Verteilung im Usage Model angegeben
werden kann, und somit richtig modelliert, dass die Parameter von dem
Benutzungsprofil bestimmt werden.

In den letzten Analysen wurde bereist deutlich, dass trotz der bereits verwendeten
Verbesserungen immer noch das Generieren der Statistik sehr lange benötigt. Deshalb
wurde dieser Anwendungsfall nochmals überarbeitet: Es werden nun alle passenden
Aufträge in einem Batch geladen. Folgendes Sequenzdiagramm veranschaulicht den
Ablauf.

CXVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

07.06.2007 16:43:52 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

UserWeb
Interface Statistics Customer

Management

Statistik generieren

requestForm
getRequiredFields

requiredFields
HTMLParametersForm

generateStatistics

getOrders(parameters)

orders

DBCache

get(Order, parameters)

orders

submitParameters

HTMLShowStatistics

getCustomers(parameters)

statisticsPage

Order
Management

get(Customer, parameters) : List<Customer>

customers = get(Customer, parameters)

generateStatistics

Die Schleife zum Abrufen der Aufträge entfällt, alle Informationen sind in den
Parametern enthalten und werden nun von der Datenbank direkt ausgelesen. Dies führt
natürlich dazu, dass in diesem einen Zugriff viele Aufträge geladen werden. Weiterhin
bleibt es dabei, dass im Mittel zwei Aufträge pro Kunde geladen werden.

Aufgrund dieser Änderung kann man aber nicht mehr davon ausgehen, dass 50% der
Anfragen durch den Cache beantwortet werden können, da die Anfragen spezieller
werden. Es können nun nur noch 20% der Anfragen aus dem Cache beantwortet
werden.

Weiterhin wurde bisher davon ausgegangen, dass jeder Auftrag 10 Positionen enthält,
die beim Anlegen des Auftrags einzeln in der Datenbank angelegt werden müssen.
Nun ist auch hier eine genauere Verteilung für die Anzahl der Positionen y eines
Auftrags bekannt:

P(y = 7) = 0.1

P(y = 8) = 0.1

P(y = 9) = 0.2

P(y = 10) = 0.2

P(y = 11) = 0.2

P(y = 12) = 0.1

P(y = 13) = 0.1

Ihre Aufgaben
1. Arbeiten Sie die oben angegebenen zusätzlichen Informationen in das CBIS Projekt ein.

Verwenden Sie als Grundlage für Ihr Projekt die im Wiki verlinkte Musterlösung mit der
Anpassung des FastStatistics-SEFF. Nennen Sie das Projekt um (Refactor->Rename), so
dass es dem Schema „Uebung 07a Gruppe X“ entspricht.

2. Analysieren Sie das Modell erneut mit der Simulation für einen Benutzer, wie bereits in
Übung 6. Simulieren Sie weiterhin nochmal die o.g. Grundlage ohne Anpassungen von
Ihnen, indem Sie ein weiteres Projekt mit dieser Grundlage anlegen.

Fügen Sie das Histogramm einem Dokument hinzu und geben Sie in 3 – 5 Sätzen an, was
sich im Gegensatz zu den Ergebnissen aus Übung 6 verändert hat und woraus diese

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

07.06.2007 16:43:52 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Änderungen resultieren. Die Antwort sollte nicht zu knapp sein, sondern widerspiegeln,
dass Sie Zusammenhänge erkennen. Sie braucht aber auch nicht übermäßig ausführlich
sein und das Ergebnis bis ins Detail betrachten.

Hinweis: Wenn Sie mehrere Durchläufe machen, müssen Sie die Ansicht in der
SimuBench aktualisieren, um auch die neusten Ergebnisse angezeigt zu bekommen.

3. Fragen zu den Konzepten:

a) Benennen Sie die Unterschiede von Probability Mass Functions
(Wahrscheinlichkeitsfunktion) und Probability Density Function (Dichtefunktion). Für
welche Arten von Zufallsvariablen werden sie verwendet? Wie können
Wahrscheinlichkeiten abgelesen werden?

b) Beschreiben Sie mit einem eigenen Beispiel den Unterschied zwischen einer Schleife
(Loop) und einem CollectionIterator.

4. Zeitaufwand: Bitte geben Sie in einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel
Zeit Sie für die Bearbeitung der einzelnen Aufgaben benötigt haben:

1. Zeitangabe

2. Zeitangabe

3. Zeitangabe

Abgabe
Das PCM Projekt, das nach dem Schema „Uebung 07a Gruppe X“ benannt ist (Refactor-
>Rename), ein Dokument mit den Antworten zu Aufgabe 2 und 3 sowie die Angaben des
Zeitaufwands müssen eingecheckt werden.

CXVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

27.10.2007 11:50:00 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 06.06.2007

Abgabe der Lösungen: 12.06.2007

Vorstellung der Musterlösung: 22.06.2007

Übungsblatt 7 b
Ziel der Übung: Erstellen eines kompletten Systems im PCM

Allgemeines
Zu dieser Übung gibt es eine neue Übungsgruppeneinteilung…

Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
martens@ipd.uka.de.

Die Abgabe der Lösungen erfolgt ebenso wie auf Übungsblatt 1 angegeben. Bitte geben Sie in
einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für die Bearbeitung der
einzelnen Aufgaben benötigt haben.

Hinweis: Der Abgabetermin ist erst in zwei Wochen, dementsprechend hat das Übungsblatt 7
einen größeren Umfang. Dieser Teil entspricht daher der Übung für die erste Woche,
spätestens am 13. Juni wird der zweite Teil herausgegeben.

Werkzeuge
Für die Bearbeitung der Aufgaben benötigen Sie die PCM Bench mit den aktuellsten Plugins
(Führen Sie ein Update durch!).

Denken Sie unbedingt daran, bei dem Arbeiten mit der PCM Bench keine zwei Diagramme
gleichzeitig geöffnet zu halten und zwischendurch öfter zu speichern. Falls Sie Probleme bei
der Simulation haben (Plugin konnte nicht erzeugt werden), löschen Sie das automatisch
generierte Projekt

Aufgaben
Eine komponentenbasierte Groupware soll entwickelt werden, die sowohl über iCalendar
Schnittstellen von verschiedener Kalendersoftware wie Mozilla Sunbird als auch über eine
Weboberfläche verwendet werden können. Neben vielen weiteren Anwendungsfällen ist das
Planen eines Termins für eine ganze Gruppe eine Funktion der Groupware und soll im
Folgenden untersucht werden.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

27.10.2007 11:50:00 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Plan date for
group

WebUser

Group
ClientApplicationUser
Das Groupware System ist wie folgt aufgebaut:

CalendarApp
Access

WebAccess

Groupware
Coordinator

Calendar Resource
Management

EMailServer

Logger

IGroupware
IEMail

IResourceManagement

ILogging

ICalendar

Groupware system

iCalendarAccess

IPOP

IWebAccess

Alle Komponenten sind auf einem Server eingesetzt. Für die Festplatte des Servers ist die
Latenzzeit weit größer als die zu lesenden oder schreibenden Daten, sie liegt bei 10 ms. Für
die CPU wird die abstrakte Einheit der Work Units bei der Beschreibung der einzelnen
Resource Demands verwendet. Die eingebaute CPU kann 1000 Work Units pro Sekunde
verarbeiten.

Das folgende Sequenzdiagramm beschreibt den Ablauf des Anwendungsfalls und beinhaltet
gleichzeitig die benötigten Methoden der Signaturen. Falls die Methoden Rückgabewerte
haben, sind diese durch einen Return-Pfeil gekennzeichnet, auf dem der Typ des
Rückgabewerts vermerkt ist und die lokale Variable, der der Wert zugewiesen wird. Enthält
ein späterer Methodenaufruf den Namen der lokalen Variablen, so bedeutet dies, dass diese
lokale Variable übergeben wird.

CXX APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

27.10.2007 11:50:00 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Sequenzdiagramm Groupware Internals:

opt

loop

loop

Groupware
Coordinator Calendar Resource

Management EMailServerLogger

log(String logEntry)

planDate(Criteria criterias, Group group)

1 to 3 times

getRoomOn(Date date)

findDateForGroup

returns date valuing a Date or null
log(String logEntry)

sendEmail(Group group)
[date != null]

planDate(Criteria criterias, Group group)

log(String logEntry)

a Date or null

External POP
Server

Group.users.NUMBER_OF_ELEMENTS

send()

generateEmail

Der Aufruf der GroupwareCoordinator Komponente geschieht entweder über die
iCalendarAccess Schnittstelle, die von verschiedener Kalendersoftware aufgerufen wird, oder
über eine Webseite. Für beide Fälle folgen hier die Sequenzdiagramme.

Sequenzdiagramm iCalendar Access:

CalendarApp
Access

Groupware
Coordinator

planDate(Criteria criterias, Group group)

a Date or null

planDate(Criteria criterias, Group group)

a Date or null

ref Groupware Internals

Sequenzdiagramm WebAccess

WebAccess Groupware
Coordinator

planDate(Criteria criterias, Group group)

a Date or null

HTTP request

HTTP response

ref Groupware Internals

parseRequest

generateResponse

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXXI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

27.10.2007 11:50:00 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Benutzungsprofil:
Es wird geschätzt, dass alle 10 Sekunden ein Benutzer auf das System zugreift, dabei
verwenden 30% die Weboberfläche und 70% andere Kalendersoftware. Die Gruppen, für die
Termine gefunden werden sollen, haben ganz unterschiedliche Größen g, die durch folgende
Verteilung beschrieben werden kann:

P(g = 3) = 0.05

P(g = 4) = 0.1

P(g = 5) = 0.1

P(g = 6) = 0.1

P(g = 7) = 0.15

P(g = 8) = 0.15

P(g = 9) = 0.15

P(g = 10) = 0.1

P(g = 11) =0.1

Resource Demands:
Das Parsen des HTTP Requests sowie das Generieren der HTTP Response benötigen jeweils
10 Work Units.

Das Schreiben eines Log-Eintrags benötigt einen Festplattenzugriff. Es gibt nur einen
globalen Zeiger auf die Datei, auf den nur ein Prozess zu gleichen Zeit Zugriff haben kann
(Acquire – Release).

Das Finden eines möglichen Termins für eine Gruppe (findDateForGroup) benötigt
Rechenzeit der CPU und ist quadratisch abhängig von der Größe der Gruppe. Mit einem
linearen Faktor ergibt sich die Formel (Größe der Gruppe)² * 10 Work Units.

Das Suchen nach einem Raum für einen gegebenen Termin benötigt 10 Work Units.

Für einen gefundenen Termin gibt es nicht unbedingt einen Raum. Die Komponente Calendar
versucht bis zu dreimal, einen möglichen Termin und einen freien Raum zu finden. Falls kein
Termin oder Raum gefunden werden kann, wird null zurückgegeben. Unabhängig davon wird
das Ergebnis zu 80% im ersten Durchlauf gefunden und die Schleife wird abgebrochen, zu
15% erst im zweiten und zu 5% im dritten. Da es sowohl sein kann, dass kein Termin
gefunden werden kann oder auch, dass für den dritten Termin auch kein Raum gefunden
werden, nehmen wir an, dass die Anzahl der Schleifendurchläufe und die Tatsache, dass
schlussendlich ein Termin gefunden wird, unabhängig sind. Zu 95% kann ein Termin
gefunden werden, zu 5% nicht.

Die Komponente EMailServer generiert für jeden Benutzer in der Gruppe (auch den
Terminsteller, falls dieser der Gruppe zugehört) eine Email und sendet sie über POP3. Das
Generieren der Email benötigt 10 Work Units. Der Zeitverbrauch für das Senden einer Email
kann als QoS Annotation für die Required-Schnittstelle des Systems modelliert werden. Der
Zeitverbrauch hier ist eine halbe Sekunde.

Ansätze zur Verringerung der Antwortzeit
Zwei Entwurfsalternativen zur Verringerung der Antwortzeit werden vorgeschlagen.

Vorschlag 1

CXXII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

27.10.2007 11:50:00 - 5 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Zum einen könnte eine Komponente BufferedEMailServer eingekauft werden, die die
Komponente EMailServer ersetzen kann. Diese Komponente speichert die generierten Emails
erst einmal und verschickt sie erst nach der Rückgabe des Kontrollflusses über POP3. Es kann
davon ausgegangen werden, dass alle anfallenden Emails irgendwann gesendet werden
können, dass der Durchsatz hier also immer höher als die Ankunftsrate ist. Für die
Modellierung bedeutet dies, dass der Aufruf von IPOP.send() gar nicht mehr modelliert
werden muss.

Modellieren Sie die neue Komponente im Repository zusätzlich zur alten und legen Sie ein
neues System, eine neue Allocation und ein neues Usage Model für diesen Fall an, so dass
diese Alternative zusätzlich zum bestehenden System untersucht werden kann. Im Namen der
neuen Modelle soll jeweils der String EA1 vorkommen, um sie vom Ausgangssystem
unterscheiden zu können.

Vorschlag 2:
Der zweite Vorschlag ist recht einfach: Eine doppelt so schnelle CPU soll eingesetzt werden.
Legen Sie hier ein neues Resource Environment, eine neue Allocation und ein neues Usage
Model an. Im Namen der neuen Modelle soll jeweils der String EA2 vorkommen.

Hinweise
Um das System korrekt modellieren zu können, müssen Sie lokale Variablen verwenden.

Wie Lokale Variablen benutzen
Um Eclipse mit mehr Speicher zu starten, können Sie folgendes tun:

 Ändern Sie in der eclispe.ini Datei (im Eclipse Verzeichnis) den Parameter Xmx und
geben Sie zum Beispiel -Xmx1024m an, um den maximal für den Java Heap zur
Verfügung stehenden Speicher zu erhöhen. Der initial zur Verfügung stehende Java
Heap wird mit –Xms angegeben.

 Sie können diese Parameter auch ebenso auf der Kommandozeile oder als Parameter
einer Verknüpfung angeben.

o Kommandozeile: eclipse.exe –Xmx1024m oder

Ihre Aufgaben
1. Modellieren und analysieren Sie das System. Fügen Sie das

Histogramm der Simulation in das Dokument Ihrer Abgabe
ein. Was ist die ungefähre durchschnittliche Antwortzeit, was
die maximale?

2. Untersuchen Sie die beiden weiteren Vorschläge und fügen
Sie auch hier die Histogramme in die Abgabe ein. Geben Sie
an, welche der mit dem Ausgangssystem drei
Entwurfsalternativen die beste Antwortzeit ergibt und anhand
welcher Kriterien Sie dies entschieden haben.

3. Zeitaufwand: Bitte geben Sie in einer separaten Textdatei
„Zeitaufwand.txt“ an, wie viel Zeit Sie für die Bearbeitung der einzelnen Aufgaben
benötigt haben:

1. Zeitangabe

2. Zeitangabe

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXXIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

27.10.2007 11:50:00 - 6 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Abgabe
Das PCM Projekt, das nach dem Schema „Uebung 07b Gruppe X“ benannt ist, ein Dokument
mit den Antworten zu Aufgabe 1 und 2 sowie die Angaben des Zeitaufwands müssen
eingecheckt werden.

CXXIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

15.06.2007 09:28:09 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 15.06.2007

Abgabe der Lösungen: 26.06.2007

Vorstellung der Musterlösung: 29.06.2007

Übungsblatt 8a
Ziel der Übung 8: Erstellen eines kompletten Systems sowohl im SPE-ED als auch im PCM

Allgemeines
Zu dieser Übung gibt es eine neue Übungsgruppeneinteilung, die dann für den zweiten Teil
des Übungsblatts größtenteils bestehen bleibt, nur eine Gruppe wird sich neu aufteilen
müssen, damit niemand zweimal allein arbeiten muss.

Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
martens@ipd.uka.de.

Die Abgabe der Lösungen erfolgt ebenso wie auf Übungsblatt 1 angegeben. Bitte geben Sie in
einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für die Bearbeitung der
einzelnen Aufgaben benötigt haben.

Hinweis: Der Abgabetermin ist erst in anderthalb Wochen.

Werkzeuge
Sie benötigen für den ersten Teil der Übung das SPE-ED Werkzeug.

Aufgaben
Eine komponentenbasierte Groupware soll entwickelt werden, die sowohl über iCalendar
Schnittstellen von verschiedener Kalendersoftware wie Mozilla Sunbird als auch über eine
Weboberfläche verwendet werden können. Neben vielen weiteren Anwendungsfällen ist das
Planen eines Termins für eine ganze Gruppe eine Funktion der Groupware und soll im
Folgenden untersucht werden.

Für die Analyse der Antwortzeit soll jeweils die durchschnittliche sowie die maximale
Antwortzeit untersucht werden.

Plan date for
group

WebUser

Group
ClientApplicationUser

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXXV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

15.06.2007 09:28:09 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Das Groupware System ist wie folgt aufgebaut:

CalendarApp
Access

WebAccess

Groupware
Coordinator

Calendar Resource
Management

EMailServer

Logger

IGroupware
IEMail

IResourceManagement

ILogging

ICalendar

Groupware system

iCalendarAccess

IPOP

IWebAccess

Alle Komponenten sind auf einem Server eingesetzt. Für die Festplatte des Servers ist die
Latenzzeit weit größer als die zu lesenden oder schreibenden Daten, sie liegt bei 10 ms. Für
die CPU wird die abstrakte Einheit der Work Units bei der Beschreibung der einzelnen
Resource Demands verwendet. Die eingebaute CPU kann 1000 Work Units pro Sekunde
verarbeiten.

Das folgende Sequenzdiagramm beschreibt den Ablauf des Anwendungsfalls und beinhaltet
gleichzeitig die benötigten Methoden der Signaturen. Falls die Methoden Rückgabewerte
haben, sind diese durch einen Return-Pfeil gekennzeichnet, auf dem der Typ des
Rückgabewerts vermerkt ist und die lokale Variable, der der Wert zugewiesen wird. Enthält
ein späterer Methodenaufruf den Namen der lokalen Variablen, so bedeutet dies, dass diese
lokale Variable übergeben wird.

CXXVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

15.06.2007 09:28:09 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Sequenzdiagramm Groupware Internals:

opt

loop

loop

Groupware
Coordinator Calendar Resource

Management EMailServerLogger

log(String logEntry)

planDate(Criteria criterias, Group group)

1 to 3 times

getRoomOn(Date date)

findDateForGroup

returns date valuing a Date or null
log(String logEntry)

sendEmail(Group group)
[date != null]

planDate(Criteria criterias, Group group)

log(String logEntry)

a Date or null

External POP
Server

Group.users.NUMBER_OF_ELEMENTS

send()

generateEmail

Der Aufruf der GroupwareCoordinator Komponente geschieht entweder über die
iCalendarAccess Schnittstelle, die von verschiedener Kalendersoftware aufgerufen wird, oder
über eine Webseite. Für beide Fälle folgen hier die Sequenzdiagramme.

Sequenzdiagramm iCalendar Access:

CalendarApp
Access

Groupware
Coordinator

planDate(Criteria criterias, Group group)

a Date or null

planDate(Criteria criterias, Group group)

a Date or null

ref Groupware Internals

Sequenzdiagramm WebAccess

WebAccess Groupware
Coordinator

planDate(Criteria criterias, Group group)

a Date or null

HTTP request

HTTP response

ref Groupware Internals

parseRequest

generateResponse

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXXVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

15.06.2007 09:28:09 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Benutzungsprofil:
Es wird geschätzt, dass alle 10 Sekunden ein Benutzer auf das System zugreift, dabei
verwenden 30% die Weboberfläche und 70% andere Kalendersoftware. Die Gruppen, für die
Termine gefunden werden sollen, haben ganz unterschiedliche Größen g, die durch folgende
Verteilung beschrieben werden kann:

P(g = 3) = 0.05

P(g = 4) = 0.1

P(g = 5) = 0.1

P(g = 6) = 0.1

P(g = 7) = 0.15

P(g = 8) = 0.15

P(g = 9) = 0.15

P(g = 10) = 0.1

P(g = 11) =0.1

Resource Demands:
Das Parsen des HTTP Requests sowie das Generieren der HTTP Response benötigen jeweils
10 Work Units.

Das Schreiben eines Log-Eintrags benötigt einen Festplattenzugriff. Es gibt nur einen
globalen Zeiger auf die Datei, auf den nur ein Prozess zu gleichen Zeit Zugriff haben kann
(Passive Ressource, d.h. Acquire – Release). Dieses Verhalten kann in SPE nicht direkt
modelliert werden. Geben Sie Lösungsideen an, wie man die Modellierung einer passiven
Ressource prinzipiell gestalten könnte. Modellieren Sie hier auch entsprechend oder
begründen Sie, warum der Einfluss vernachlässigt werden kann.

Das Finden eines möglichen Termins für eine Gruppe (findDateForGroup) benötigt
Rechenzeit der CPU und ist quadratisch abhängig von der Größe der Gruppe. Mit einem
linearen Faktor ergibt sich die Formel (Größe der Gruppe)² * 10 Work Units.

Das Suchen nach einem Raum für einen gegebenen Termin benötigt 10 Work Units.

Für einen gefundenen Termin gibt es nicht unbedingt einen Raum. Die Komponente Calendar
versucht bis zu dreimal, einen möglichen Termin und einen freien Raum zu finden. Falls kein
Termin oder Raum gefunden werden kann, wird null zurückgegeben. Unabhängig davon wird
das Ergebnis zu 80% im ersten Durchlauf gefunden und die Schleife wird abgebrochen, zu
15% erst im zweiten und zu 5% im dritten. Da es sowohl sein kann, dass kein Termin
gefunden werden kann oder auch, dass für den dritten Termin auch kein Raum gefunden
werden, nehmen wir an, dass die Anzahl der Schleifendurchläufe und die Tatsache, dass
schlussendlich ein Termin gefunden wird, unabhängig sind. Zu 95% kann ein Termin
gefunden werden, zu 5% nicht.

Die Komponente EMailServer generiert für jeden Benutzer in der Gruppe (auch den
Terminsteller, falls dieser der Gruppe zugehört) eine Email und sendet sie über POP3. Das
Generieren der Email benötigt 10 Work Units. Der Zeitverbrauch für das Senden einer Email
kann als QoS Annotation für die Required-Schnittstelle des Systems modelliert werden. Der
Zeitverbrauch hier ist eine halbe Sekunde.

Ansätze zur Verringerung der Antwortzeit
Zwei Entwurfsalternativen zur Verringerung der Antwortzeit werden vorgeschlagen.

CXXVIII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

15.06.2007 09:28:09 - 5 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Vorschlag 1
Zum einen könnte eine Komponente BufferedEMailServer eingekauft werden, die die
Komponente EMailServer ersetzen kann. Diese Komponente speichert die generierten Emails
erst einmal und verschickt sie erst nach der Rückgabe des Kontrollflusses über POP3. Es kann
davon ausgegangen werden, dass alle anfallenden Emails irgendwann gesendet werden
können, dass der Durchsatz hier also immer höher als die Ankunftsrate ist. Für die
Modellierung bedeutet dies, dass der Aufruf von IPOP.send() gar nicht mehr modelliert
werden muss.

Modellieren Sie die neue Komponente im Repository zusätzlich zur alten und legen Sie ein
neues System, eine neue Allocation und ein neues Usage Model für diesen Fall an, so dass
diese Alternative zusätzlich zum bestehenden System untersucht werden kann. Im Namen der
neuen Modelle soll jeweils der String EA1 vorkommen, um sie vom Ausgangssystem
unterscheiden zu können.

Vorschlag 2:
Der zweite Vorschlag ist recht einfach: Eine doppelt so schnelle CPU soll eingesetzt werden.
Legen Sie hier ein neues Resource Environment, eine neue Allocation und ein neues Usage
Model an. Im Namen der neuen Modelle soll jeweils der String EA2 vorkommen.

Hinweise
Verwenden Sie globale Parameter, um Veränderungen leichter durchzuführen. Globale
Parameter werden im SPEEDManual (nicht im Quickstart Guide, sondern im Wiki
herunterzuladen) auf Seite 2-17 beschrieben.

Sie können ein modelliertes Szenario in einem weiteren Szenario wiederverwenden, dies
bietet sich an, um für das Szenario WebAccess die Interna wiederzuverwenden. Vergleichen
Sie dazu Seite 2-22 im SPEEDManual.

Sie benötigen keine weiteren Angaben von anderen Übungsblättern, für alles, was hier nicht
aufgeführt wird, müssen keine Ressourcenanforderungen modelliert werden.

Ihre Aufgaben
1. Modellieren und analysieren Sie das System. Fügen Sie Screenshots eines

durchschnittlichen Simulationslaufs in das Dokument Ihrer Abgabe ein. Was ist die
ungefähre durchschnittliche Antwortzeit, was die maximale?

2. Untersuchen Sie die beiden weiteren Vorschläge und fügen Sie auch hier die Screenshots
in die Abgabe ein. Geben Sie an, welche der mit dem Ausgangssystem drei
Entwurfsalternativen das beste Antwortzeitverhalten ergibt und anhand welcher Kriterien
Sie dies entschieden haben.

3. Zeitaufwand: Bitte geben Sie in einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel
Zeit Sie für die Bearbeitung der einzelnen Aufgaben benötigt haben:

1. Zeitangabe

2. Zeitangabe

Abgabe
Ein SPE-Verzeichnis namens „Uebung 08a Gruppe X“ mit dem Ausgangssystem sowie zwei
SPE-ED Verzeichnisse, jeweils eines pro Entwurfsalternative EA, die nach dem Schema
„Uebung 08a Gruppe X EA Y“ benannt ist, ein Dokument mit den Antworten zu Aufgabe 1
und 2 sowie die Angaben des Zeitaufwands müssen eingecheckt werden.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXXIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

20.06.2007 17:17:19 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ausgabe: 20.06.2007

Abgabe der Lösungen: 26.06.2007

Vorstellung der Musterlösung: 29.06.2007

Übungsblatt 8b
Ziel der Übung 8: Erstellen eines kompletten Systems sowohl im SPE-ED als auch im PCM

Allgemeines
Zu dieser Übung bleiben alle Übungsgruppen bis auf zwei bestehen. Nur die Gruppen 5 und 8
wurden neu aufgeteilt, damit niemand zweimal allein arbeiten muss.

Sollten Fragen oder Probleme bei der Bearbeitung des Übungsblattes auftreten, so steht Ihnen
im SDQ-Wiki (http://sdqweb.ipd.uka.de/wiki/) ein Diskussionsbereich auf der Seite
zum Praktikum zur Verfügung, in dem Fragen beantwortet werden.

Sollten darüber hinaus Probleme auftreten, wenden Sie sich bitte per E-Mail an
martens@ipd.uka.de.

Die Abgabe der Lösungen erfolgt ebenso wie auf Übungsblatt 1 angegeben. Bitte geben Sie in
einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel Zeit Sie für die Bearbeitung der
einzelnen Aufgaben benötigt haben.

Hinweis: Das System ist dasselbe wie in Übung 8a. Es werden allerdings hier noch ein paar
Hinweise zur Modellierung mit Palladio gemacht.

Werkzeuge
Sie benötigen für diesen zweiten Teil der Übung das PCM Werkzeug mit den aktuellsten
Plugins.

Aufgaben
Eine komponentenbasierte Groupware soll entwickelt werden, die sowohl über iCalendar
Schnittstellen von verschiedener Kalendersoftware wie Mozilla Sunbird als auch über eine
Weboberfläche verwendet werden können. Neben vielen weiteren Anwendungsfällen ist das
Planen eines Termins für eine ganze Gruppe eine Funktion der Groupware und soll im
Folgenden untersucht werden.

Für die Analyse der Antwortzeit soll jeweils die durchschnittliche sowie die maximale
Antwortzeit untersucht werden.

Plan date for
group

WebUser

Group
ClientApplicationUser

CXXX APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

20.06.2007 17:17:19 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Das Groupware System ist wie folgt aufgebaut:

CalendarApp
Access

WebAccess

Groupware
Coordinator

Calendar Resource
Management

EMailServer

Logger

IGroupware
IEMail

IResourceManagement

ILogging

ICalendar

Groupware system

iCalendarAccess

IPOP

IWebAccess

Alle Komponenten sind auf einem Server eingesetzt. Für die Festplatte des Servers ist die
Latenzzeit weit größer als die zu lesenden oder schreibenden Daten, sie liegt bei 10 ms. Für
die CPU wird die abstrakte Einheit der Work Units bei der Beschreibung der einzelnen
Resource Demands verwendet. Die eingebaute CPU kann 1000 Work Units pro Sekunde
verarbeiten.

Das folgende Sequenzdiagramm beschreibt den Ablauf des Anwendungsfalls und beinhaltet
gleichzeitig die benötigten Methoden der Signaturen. Falls die Methoden Rückgabewerte
haben, sind diese durch einen Return-Pfeil gekennzeichnet, auf dem der Typ des
Rückgabewerts vermerkt ist und die lokale Variable, der der Wert zugewiesen wird. Enthält
ein späterer Methodenaufruf den Namen der lokalen Variablen, so bedeutet dies, dass diese
lokale Variable übergeben wird.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXXXI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

20.06.2007 17:17:19 - 3 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Sequenzdiagramm Groupware Internals:

opt

loop

loop

Groupware
Coordinator Calendar Resource

Management EMailServerLogger

log(String logEntry)

planDate(Criteria criterias, Group group)

1 to 3 times

getRoomOn(Date date)

findDateForGroup

returns date valuing a Date or null
log(String logEntry)

sendEmail(Group group)
[date != null]

planDate(Criteria criterias, Group group)

log(String logEntry)

a Date or null

External POP
Server

Group.users.NUMBER_OF_ELEMENTS

send()

generateEmail

Der Aufruf der GroupwareCoordinator Komponente geschieht entweder über die
iCalendarAccess Schnittstelle, die von verschiedener Kalendersoftware aufgerufen wird, oder
über eine Webseite. Für beide Fälle folgen hier die Sequenzdiagramme.

Sequenzdiagramm iCalendar Access:

CalendarApp
Access

Groupware
Coordinator

planDate(Criteria criterias, Group group)

a Date or null

planDate(Criteria criterias, Group group)

a Date or null

ref Groupware Internals

Sequenzdiagramm WebAccess

WebAccess Groupware
Coordinator

planDate(Criteria criterias, Group group)

a Date or null

HTTP request

HTTP response

ref Groupware Internals

parseRequest

generateResponse

CXXXII APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

20.06.2007 17:17:19 - 4 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Benutzungsprofil:
Es wird geschätzt, dass alle 10 Sekunden ein Benutzer auf das System zugreift, dabei
verwenden 30% die Weboberfläche und 70% andere Kalendersoftware. Die Gruppen, für die
Termine gefunden werden sollen, haben ganz unterschiedliche Größen g, die durch folgende
Verteilung beschrieben werden kann:

P(g = 3) = 0.05

P(g = 4) = 0.1

P(g = 5) = 0.1

P(g = 6) = 0.1

P(g = 7) = 0.15

P(g = 8) = 0.15

P(g = 9) = 0.15

P(g = 10) = 0.1

P(g = 11) =0.1

Resource Demands:
Das Parsen des HTTP Requests sowie das Generieren der HTTP Response benötigen jeweils
10 Work Units.

Das Schreiben eines Log-Eintrags benötigt einen Festplattenzugriff. Es gibt nur einen
globalen Zeiger auf die Datei, auf den nur ein Prozess zu gleichen Zeit Zugriff haben kann
(Passive Ressource, d.h. Acquire – Release). Dieses Verhalten kann in SPE nicht direkt
modelliert werden. Geben Sie Lösungsideen an, wie man die Modellierung einer passiven
Ressource prinzipiell gestalten könnte. Modellieren Sie hier auch entsprechend oder
begründen Sie, warum der Einfluss vernachlässigt werden kann.

Das Finden eines möglichen Termins für eine Gruppe (findDateForGroup) benötigt
Rechenzeit der CPU und ist quadratisch abhängig von der Größe der Gruppe. Mit einem
linearen Faktor ergibt sich die Formel (Größe der Gruppe)² * 10 Work Units.

Das Suchen nach einem Raum für einen gegebenen Termin benötigt 10 Work Units.

Für einen gefundenen Termin gibt es nicht unbedingt einen Raum. Die Komponente Calendar
versucht bis zu dreimal, einen möglichen Termin und einen freien Raum zu finden. Falls kein
Termin oder Raum gefunden werden kann, wird null zurückgegeben. Unabhängig davon wird
das Ergebnis zu 80% im ersten Durchlauf gefunden und die Schleife wird abgebrochen, zu
15% erst im zweiten und zu 5% im dritten. Da es sowohl sein kann, dass kein Termin
gefunden werden kann oder auch, dass für den dritten Termin auch kein Raum gefunden
werden, nehmen wir an, dass die Anzahl der Schleifendurchläufe und die Tatsache, dass
schlussendlich ein Termin gefunden wird, unabhängig sind. Zu 95% kann ein Termin
gefunden werden, zu 5% nicht.

Die Komponente EMailServer generiert für jeden Benutzer in der Gruppe (auch den
Terminsteller, falls dieser der Gruppe zugehört) eine Email und sendet sie über POP3. Das
Generieren der Email benötigt 10 Work Units. Der Zeitverbrauch für das Senden einer Email
kann als QoS Annotation für die Required-Schnittstelle des Systems modelliert werden. Der
Zeitverbrauch hier ist eine halbe Sekunde.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXXXIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

20.06.2007 17:17:19 - 5 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Ansätze zur Verringerung der Antwortzeit
Zwei Entwurfsalternativen zur Verringerung der Antwortzeit werden vorgeschlagen.

Vorschlag 1
Zum einen könnte eine Komponente BufferedEMailServer eingekauft werden, die die
Komponente EMailServer ersetzen kann. Diese Komponente speichert die generierten Emails
erst einmal und verschickt sie erst nach der Rückgabe des Kontrollflusses über POP3. Es kann
davon ausgegangen werden, dass alle anfallenden Emails irgendwann gesendet werden
können, dass der Durchsatz hier also immer höher als die Ankunftsrate ist. Für die
Modellierung bedeutet dies, dass der Aufruf von IPOP.send() gar nicht mehr modelliert
werden muss.

Modellieren Sie die neue Komponente im Repository zusätzlich zur alten und legen Sie ein
neues System und eine neue Allocation für diesen Fall an, so dass diese Alternative zusätzlich
zum bestehenden System untersucht werden kann. Im Namen der neuen Modelle soll jeweils
der String EA1 vorkommen, um sie vom Ausgangssystem unterscheiden zu können.

Sie können das bestehende System auch kopieren und nur die eine Komponente austauschen.
Allerdings löscht der Composite Editor für eine gelöschte Assembly noch nicht die
Konnektoren. Sie müssen in diesem Fall also die beiden Konnektoren, die noch die
Assembly_EMailServer referenzieren, im Baumeditor von Hand löschen.

Vorschlag 2:
Der zweite Vorschlag ist recht einfach: Eine doppelt so schnelle CPU soll eingesetzt werden.
Legen Sie hier ein neues Resource Environment und eine neue Allocation an. Im Namen der
neuen Modelle soll jeweils der String EA2 vorkommen.

Hinweise
Um das System korrekt modellieren zu können, müssen Sie lokale Variablen verwenden.

Wenn Sie die Output Variable Usage eines External Calls
anlegen, werden Sie nach dem Namen einer lokalen Variablen
gefragt. Sie können einen neuen Namen eingeben, von nun an
steht eine Variable mit diesem Namen zur Verfügung. Sie
können ihm dann den von der Methode zurückgegebenen Wert
zuweisen. Sie können ihn dann in der weiteren
Parametrisierung wie einen Parameter der aktuellen Methode
verwenden (s.u.).

CXXXIV APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

20.06.2007 17:17:19 - 6 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Verwendung im weiteren Verlauf, beispielsweise als Eingabeparameter in einem weiteren
External Call:

Um Eclipse mit mehr Speicher zu starten, können Sie folgendes tun:

 Ändern Sie in der eclispe.ini Datei (im Eclipse Verzeichnis) den Parameter Xmx und
geben Sie zum Beispiel -Xmx1024m an, um den maximal für den Java Heap zur
Verfügung stehenden Speicher zu erhöhen. Der initial zur Verfügung stehende Java
Heap wird mit –Xms angegeben.

 Sie können diese Parameter auch ebenso auf der Kommandozeile oder als Parameter
einer Verknüpfung angeben.

o Kommandozeile: eclipse.exe –Xmx1024m oder

Ihre Aufgaben
1. Modellieren und analysieren Sie das System. Fügen Sie die

CDF eines Simulationslaufs in das Dokument Ihrer Abgabe
ein. Was ist die ungefähre durchschnittliche Antwortzeit, was
die maximale? Hinweis: In der Vorlesung am Freitag wird
u.a. die Interpretation der Ergebnisse behandelt.

2. Untersuchen Sie die beiden weiteren Vorschläge und fügen
Sie auch hier die CDFs in die Abgabe ein. Geben Sie an,
welche der insgesamt drei Entwürfe das beste
Antwortzeitverhalten ergibt, welcher das zweit beste und
welcher das schlechteste, und anhand welcher Kriterien Sie
dies entschieden haben.

3. Zeitaufwand: Bitte geben Sie in einer separaten Textdatei „Zeitaufwand.txt“ an, wie viel
Zeit Sie für die Bearbeitung der einzelnen Aufgaben benötigt haben:

1. Zeitangabe

2. Zeitangabe

Abgabe
Das PCM Projekt, das nach dem Schema „Uebung 08b Gruppe X“ benannt ist, ein Dokument
mit den Antworten zu Aufgabe 1 und 2 (CDFs im Dokument! Also kein reines Textformat)
sowie die Angaben des Zeitaufwands müssen eingecheckt werden.

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXXXV

CXXXVI APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES

A.6 Durations of Solving Preparatory Exercises

Table A.1 shows the durations for solving the preparatory exercises for the single participants
(linewise) and in average (last line). Missing values were not provided by the participant

APPENDIX A. TUTORIAL SLIDES AND PREPARATORY EXERCISES CXXXVII

Exercise 2 Ex. 3 Ex. 4 Exercise 5 Ex. 6 Ex. 7 Ex. 8a Ex. 8b
SPE Pal SPE SPE Pal SPE Pal Pal SPE Pal
50 40 220 210 45 30 120 300 0 420 960
60 60 240 330 120 60 60 165 360 300 960
45 30 420 240 90 60 30 300 360 170 180
45 30 300 360 90 90 120 240 330 300 420
70 90 170 420 130 180 60 300 210 102 300
120 90 600 420 120 180 20 360 240 105 300
60 45 300 360 90 90 120 540 210 210 330
60 45 420 130 180 60 480 225 180 300
30 180 100 240 90 60 30 360 390 960
30 10 100 260 45 60 30 210 120 360 660
60 45 240 210 120 30 45 360 300 420 960
50 40 220 210 120 90 10 165 120 210 330

100 0 120 120 30 230 120 180
30 30 170 420 120 180 20 480 170 170 180
90 60 300 330 120 60 60 360 170 180 480
90 120 420 360 105 40 15 300 365 270 270
60 30 300 360 105 40 15 195 300 270 480
60 30 100 210 120 90 10 180 240 390 960

360 260 45 60 30 365 660 360
59.4 57.4 258.9 312.2 101.3 89.5 46.6 303.8 253.6 278.3 532.4

Table A.1: Durations of solving preparatory exercises

B Experimental Material

B.1 Experiment Tasks

The reference models can be found on the accompanying DVD of this thesis. If you are reading
a printed version without DVD or an electronic version of this work, and are interested in the
reference models, please contact the author.

B.1.1 Media Store

Palladio

CXXXVIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Fallstudie:
Vergleich von Performanzvorhersageverfahren
Ein neues komponentenbasiertes System zur Speicherung und Abfrage von MP3-Dateien im
Internet soll entwickelt werden. Während der gesamten Entwicklung soll die Performanz des
Entwurfs bewertet werden, um den späteren Benutzern ein System mit akzeptablen
Antwortzeiten bieten zu können. Da Sie mit der Performanzanalyse vertraut sind, werden Sie
gebeten, verschiedene Entwurfsalternativen hinsichtlich ihrer Performanz zu untersuchen.

Zeitstempel
Um untersuchen zu können, wie viel der Zeit auf welche Aufgabenteile entfällt, geben Sie
bitte jeweils minutengenaue Zeiten für die Teilaufgaben an. Sie müssen dabei die
Aufgabenteile nicht alle in der Reihenfolge abarbeiten, in der Sie sie hier vorfinden.
Differenzieren Sie bei den Zeitstempeln weiterhin nach der Zeit für die reine Modellierung
und der Zeit für die Fehlersuche.

Modellieren und analysieren Sie aber zunächst das Ausgangsystem vollständig und erst
danach die Entwurfsalternativen, wenn Ihr Ausgangssystem abgenommen wurde. Führen Sie
auch bei den Entwurfsalternativen erst die Analyse einer Entwurfsalternative durch, bevor Sie
zur nächsten Übergehen. Geben Sie Ihre Ergebnisse direkt in das Ergebnisblatt am Ende ein.

Checken Sie Ihre Lösung jeweils zu einem Zeitstempel in Ihren SVN Account ein, um ein
Backup zu haben.

Zeitstempel auf Extrablatt angeben: Austeilung der Aufgabenstellung.

Übersicht über die Aufgabenstellung
Fallstudie: Vergleich von Performanzvorhersageverfahren .. 1

Zeitstempel ... 1

Übersicht über die Aufgabenstellung ... 1

Durchführung der Untersuchungen .. 2

Palladio ... 2

Bestehender Entwurf .. 3

Benutzungsprofile .. 5

Ressourcenumgebung ... 7

Entwurfsalternativen .. 8

Entwurfsalternative 1: Cache ... 8

Entwurfsalternative 2: Pool für Datenbankverbindungen .. 10

Entwurfsalternative 3: Zweiten Server für die Datenbankkomponenten 11

Entwurfsalternative 4: Bitrate senken .. 12

Entwurfsalternative 5: Dynamischer Lookup .. 14

Fragestellungen .. 15

Zusatzfrage: .. 16

Palladio

APPENDIX B. EXPERIMENTAL MATERIAL CXXXIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Durchführung der Untersuchungen
Modellieren und analysieren Sie zunächst das Ausgangsystem. Lassen Sie Ihre Modellierung
und die Ergebnisse überprüfen, bevor Sie mit der Modellierung der Entwurfsalternativen
beginnen.

Modellieren und analysieren Sie die Entwurfsalternativen in der hier angegebenen
Reihenfolge. Analysieren Sie eine fertiggestellte Entwurfsalternative und tragen Sie die
Ergebnisse in die Tabelle am Ende ein, bevor Sie mit der nächsten Entwurfsalternative
fortfahren.

Arbeiten Sie in einem Verzeichnis Mediastore-Nachname, das Sie bei jedem Zeitstempel
(oder auch häufiger) in Ihr SVN Repository einchecken. Geben Sie in der Log Message den
Zeitstempel an.

Palladio
Untersuchen Sie mit dem PCM die Antwortzeit des Systems. Modellieren Sie hierfür die
Parameter nur mit den für die Performanz relevanten Charakterisierungen. Nutzen Sie die
vorhandenen Parameter der Signaturen im Repository für Charakterisierungen und verwenden
Sie auch Komponentenparameter, wenn die Information nicht aus den Signaturenparametern
geschlossen werden kann.

Wichtig: Laden Sie Modelle nur über „Browse Workspace“, da sie sonst absolut verlinkt sind
und nicht auf anderen Systemen geöffnet werden können.

Legen Sie für die Entwurfsalternativen, bei denen andere Komponenten eingesetzt werden,
ein neues System und eine neue Allokation an, die diese neue Komponente verwenden. Sie
können dazu das alte System kopieren und anpassen. Die Allokation muss neu angelegt
werden. Benennen Sie die neuen Modelle mit dem Suffix -EA-x, wobei x die Nummer der
Alternative angibt. Sie erhalten beispielsweise das System Model File mediaStore-EA-
1.system.

SEFFs müssen neu modelliert werden, sie können nicht aus anderen Komponenten kopiert
werden.

Falls nur das Resource Environment und/oder die Allokation verändert wird, brauchen Sie nur
diese Modelle neu zu erstellen. Auch hier kann das Resource Environment kopiert und
angepasst werden. Verwenden Sie hier ebenfalls das oben angegebene Namensschema.

Legen Sie ein zweites Usage Model für das zweite Benutzungsprofil an. Für die
Entwurfsalternative 2 benötigen Sie weiterhin zwei eigene Benutzungsprofile mit den
angepassten Dateigrößen.

Erzeugen Sie weiterhin für jede Entwurfsalternative und jedes Benutzungsprofil eine eigene
Run Config, die Sie ebenfalls nach dem obigen Schema benennen. Sie haben am Ende also 12
Run Configs angelegt, jeweils zwei pro Entwurfsalternative, weil pro Benutzungsprofil eines.
Benennen Sie die Run Configs und die Simulationsergebnisse wie oben angegeben plus ein
Suffix BP-y für das Benutzungsprofil y.

Sie können die verschiedenen Analysen nicht parallel ausführen, sondern eine nach der
anderen.

Speichern Sie die Analyseergebnisse für das Ausgangssystem und die einzelnen
Entwurfsalternativen als Grafikdatei mit demselben Namensschema. Legen Sie weiterhin
auch die Datenbank mit den Simulationsergebnissen im Projektverzeichnis ab.

CXL APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 3 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Bestehender Entwurf
Das System besteht aus den folgenden Komponenten, die alle auf einem Applikationsserver
eingesetzt sind:

Das dazugehörige Repository mit den benötigten Komponenten, den Schnittstellen und ihren
Signaturen wurden bereits im PCM modelliert. Laden Sie das Projekt aus dem Wiki1 herunter,
benennen Sie es nach dem Schema PCM_Mediastore_Nachname um und vervollständigen
Sie es mit den folgenden Angaben.

Die beiden entscheidenden Anwendungsfälle sind das Herunterladen und Hochladen von
Musikstücken im MP3-Format.

Anwendungsfall 1: Herunterladen:

1 http://sdqweb.ipd.uka.de/wiki/Praktikum_Ingenieurmäßiger_Software-Entwurf_SS07

APPENDIX B. EXPERIMENTAL MATERIAL CXLI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 4 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Über die WebGUI wird das System vom Benutzer verwendet. Im HTTP Request wird eine
Liste von IDs der angeforderten Musikstücke an die WebGUI übergeben. Das Parsen des
HTTP Requests benötigt 10 Work Units. Die Anfrage wird danach vom MediaStore an die
AudioDB weitergeleitet.

Die Komponente AudioDB liefert die gewünschten Musikstücke zurück, indem sie zunächst
in einer Schleife für jede gegebene ID den Dateinamen aus einer speziellen internen
Datenbank im Hauptspeicher lädt (Aufwand pro ID konstant 3 Work Units) und dann die
Datei selbst von der Festplatte lädt (vgl. Angaben für die Festplatte auf Seite 7). Die Liste der
geladenen Musikstücke wird an die MediaStore Komponente zurückgegeben.

Von dort aus wird jedes einzelne Musikstück an die Komponente Watermarking
übergeben, die ein digitales Wasserzeichen einarbeitet und dann das Musikstück zurückgibt.
Die Größe des Musikstücks bleibt unverändert. Das Hinzufügen des Wasserzeichens benötigt
konstant 25 Work Units und weitere 15 Work Units pro zu verarbeitendem MB (1 MB
entspricht 106 Byte).

Das Erzeugen des HTTP Response benötigt weitere 5 Work Units.

Anwendungsfall 2: Hochladen

UC2: Upload

WebGUI Media
Store AudioDB

upload(File file)
addFile(File file)

HTTPUpload(File file)

HTTPResponse response

Parse Request:
10 WU

Create response:
5 WU

Write filename to
DB: 10 WU

Write file to hard
disk: Depending
on file size.

Es werden nur einzelne Musikstücke hochgeladen. Aus dem HTTP Request an die WebGUI
wird das hochzuladende Musikstück entnommen (Aufwand zum Parsen 10 Work Units) und
an die MediaStore Komponente weitergereicht. Die MediaStore Komponente leitet das
Musikstück an die AudioDB Komponente weiter. Hier wird zunächst ein Eintrag in die
interne Datenbank gemacht (Aufwand konstant 10 Work Units) und dann das Musikstück in
eine Datei auf die Festplatte geschrieben (vgl. Angaben für die Festplatte auf Seite 7).

Das Erzeugen des HTTP Response benötigt weitere 5 Work Units.

Zeitstempel auf Extrablatt angeben: Kontrollfluss und Resource Demand

CXLII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 5 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Benutzungsprofile
Domänenexperten wurden zu Rate gezogen, um das spätere Benutzungsprofil zu ermitteln.
Sie kamen zu diesen Schlussfolgerungen:

Benutzungsprofil 1

• Es wird immer ein Benutzer das System verwenden. Dies entspricht einem Closed
Workload mit einem Benutzer und einer Think Time von 0.

• In 20% der Fälle werden MP3 Dateien hochgeladen (UC2: Upload), in 80% der Fälle
werden sie heruntergeladen (UC1: Download).

• Die Dateigröße x in Megabytes der Musikstücke ist sehr unterschiedlich, sie können
durch die folgende Verteilung angenähert werden:

P(0,5 MB <= x < 1 MB) = 0.051

P(1 MB <= x < 2 MB) = 0.134

P(2 MB <= x < 3 MB) = 0.193

P(3 MB <= x < 4 MB) = 0.212

P(4 MB <= x < 5 MB) = 0.224

P(5 MB <= x < 6 MB) = 0.186

Der Mittelwert liegt bei einer Dateigröße von 3,5 MB. Die Verteilung ist sowohl für den
Download als auch für den Upload relevant.
Modellieren Sie die Größe der Dateien als Komponentenparameter.

• Die Anzahl der heruntergeladenen Stücke n liegt zwischen einem und 12 Stücken (ein
Album). Um die Spezifikation zu vereinfachen, wurden einige Größenbereiche zu
einem zusammengefasst. Verwenden Sie zur Spezifikation der Verteilung jeweils den
Mittelwert eines jeden Bereichs.

P(n ∈ {1,2,3}) = 0.2
P(n ∈ {4,5,6}) = 0.2
P(n ∈ {7,8,9}) = 0.3
P(n ∈ {10,11,12}) = 0.3

Nur für Entwurfsalternative 4 relevant, aber trotzdem Teil des Benutzungsprofils:

• MP3 Dateien können mit variabler oder konstanter Bitrate kodiert sein. Hier werden
30 % der Musikstücke mit konstanter Bitrate hochgeladen, 70 % mit variabler.

• Die durchschnittliche Bitrate b der hochgeladenen Musikstücke (egal ob konstant oder
variabel) ist wie folgt verteilt:

P(b = 64 kbps) = 0.1
P(b = 128 kbps) = 0.5
P(b = 192 kbps) = 0.2
P(b = 320 kbps) = 0.2

Zeitstempel auf Extrablatt angeben: Benutzungsprofil 1

APPENDIX B. EXPERIMENTAL MATERIAL CXLIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 6 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Benutzungsprofil 2

Es werden weiterhin Vermutungen über die Veränderungen des Benutzungsprofils mit der
Zeit angestellt, denn schließlich soll das System auch dann noch akzeptable Antwortzeiten
haben.

• Nach der Verbreitung des Systems werden auch mehrere Benutzer das System parallel
nutzen. Es wird eine Zwischenankunftszeit von 1,25 Sekunden erwartet.

• Die Anzahl der heruntergeladenen Dateien wird sich erhöhen, da immer mehr Dateien
verfügbar sind. Nehmen Sie an, dass sich die Verteilung um 1 nach oben verschiebt.
Um die Spezifikation zu vereinfachen, wurden einige Größenbereiche zu einem
zusammengefasst. Verwenden Sie zur Spezifikation der Verteilung jeweils den
Mittelwert eines jeden Bereichs. Sie können auch 1 auf die alte Verteilung addieren.

P(n ∈ {2,3,4}) = 0.2
P(n ∈ {5,6,7}) = 0.2
P(n ∈ {8,9,10}) = 0.3
P(n ∈ {11,12,13}) = 0.3

• Das Verhältnis der Anwendungsfälle verschiebt sich weiter in Richtung
UC1:Download, 90% der Benutzer laden Dateien herunter, nur 10% laden Dateien
hoch, da bereits ein reicher Fundus an Musikstücken vorrätig sein wird.

• Die Bitraten sowie die Dateigröße der Musikstücke bleiben so wie in Benutzungsprofil
1.

Zeitstempel auf Extrablatt angeben: Benutzungsprofil 2

CXLIV APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 7 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Ressourcenumgebung
Alle Komponenten sind auf einem Server eingesetzt, wie das obige Diagramm bereits zeigt.
Die CPU des Systems ist ein AMD Athlon XP mit einer Taktrate von 1,145 GHz = 1,145 *
109 Zyklen/s. Ein CPU Zyklus entspricht einer Instruktion. Für die folgenden Angaben wird
der Rechenaufwand in Work Units angegeben. Ein Work Unit entspricht ca. 1,145 * 106
Instruktionen = 1,145 * 106 CPU Zyklen. Es wurde gemessen, dass die Festplatte im
Durchschnitt 24 MB/s = 24 * 106 Byte/s Lesen und Schreiben kann. Ein MB kann also in 42
ms gelesen bzw. geschrieben werden. Die Latenz (Seek Time) der Festplatte kann
vernachlässigt werden.

Das Resource Environment ist für Palladio bereits vorgegeben. Sie müssen allerdings noch
die Verarbeitungsgeschwindigkeiten der Geräte angeben. Für die CPU bietet sich z.B. als
Einheit „Work Units / s“ an, für die Festplatte „Byte/s“ an. Beide Geräte haben bereits die
benötigte Scheduling Policy „Processor Sharing“ voreingestellt.

Zeitstempel auf Extrablatt angeben: Ressourcenumgebung

APPENDIX B. EXPERIMENTAL MATERIAL CXLV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 8 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternativen
Modellieren Sie die Entwurfsalternativen erst, wenn das Ausgangsystem vollständig
modelliert ist. Lassen Sie Ihr Ausgangssystem erst überprüfen, bevor Sie die
Entwurfsalternativen modellieren.

Entwurfsalternative 1: Cache
Motivation

Es soll ein Cache eingesetzt werden, der einige Musikstücke zwischenspeichert und somit in
manchen Fällen den Datenbankzugriff einsparen kann. Allerdings benötigt das Überprüfen
des Caches selbst wieder ein wenig Rechenleistung.

Anpassung des Systems

Eine zusätzliche Komponente DBCache wird in das System eingeführt. Die folgenden
Diagramme zeigen das angepasste System und den angepassten Kontrollfluss.

Ablauf mit zusätzlichem Resource Demand (nicht dargestellte Resource Demands bleiben
unverändert):

UC1: Download

loop

opt

WebGUI Media
Store

Water-
marking AudioDB

download(String[] ids)
queryDB(String[] ids)

ListOfFiles fileList
loop watermark(File file)

File watermarkedFile

DBCache

[not in cache]

ListOfFiles singleFileInList

[for each File
file in fileList]

[ids.size]

getFiles(new String[] id)

HTTPDownload(Request request)

ListOfFiles watermarkedFileList
HTTPResponse response

Check whether in
cache: 1 WU

CXLVI APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 9 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Die Komponente DBCache erhält vom MediaStore die Liste aller angeforderten
Musikstücke. Für jedes Musikstück wird geprüft, ob es im Cache vorliegt. Falls nicht, wird es
einzeln von der Datenbank angefordert. AudioDB.getFiles wird also pro
Schleifendurchlauf nur mit der einen jeweiligen id in der Liste aufgerufen und liefert eine
Liste mit nur dem einen entsprechenden Musikstück zurück. Durch die Schleife wird dann die
gesamte Liste zusammengestellt.

Cache Hit Ratio

Obwohl der Cache nur wenige Musikstücke im Verhältnis zur Gesamtgröße der Datenbank
fassen kann, wird vermutet, dass ein Anteil der angefragten Musikstücke bereits im Cache
vorgehalten sein wird. Die Strategie des Caches wird dazu auch Informationen zu den
aktuellen Charts verwenden, da beliebte, aktuelle Musikstücke viel häufiger nachgefragt
werden und somit im Cache vorgehalten werden können. Es wird davon ausgegangen, dass so
eine Cache Hit Ratio von 20 % erreicht werden kann.

Rechenaufwand zum Prüfen des Caches

Das Prüfen, ob ein Musikstück im Cache vorliegt, kann dank eines Indexes mit nur 1 Work
Units erledigt werden.

Palladio: Sie müssen die Verteilung der Dateigrößen nun auch nochmal als
Komponentenparameter an den Cache hängen, damit sie auch für Dateien aus dem Cache
angegeben werden kann.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 1

APPENDIX B. EXPERIMENTAL MATERIAL CXLVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 10 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 2: Pool für Datenbankverbindungen
Motivation

Um die Zeit für den Zugriff auf die interne Datenbank der AudioDB Komponente zu senken,
kann ein Pool für Datenbankverbindungen eingeführt werden. Dabei muss dann nicht für jede
Anfrage an die Datenbank eine neue Datenbankverbindung geöffnet werden, sondern es wird
eine Datenbankverbindung aus dem Pool verwendet und nach der Benutzung wieder
freigegeben. Allerdings kann so nur noch eine gewisse Anzahl von Threads gleichzeitig auf
die Datenbank zugreifen.

Anpassung des Systems

In diesem Fall soll ein Pool der Größe 5 eingeführt werden. Die bestehende Komponente
AudioDB wird ersetzt durch die Komponente PoolingAudioDB, die diese 5
Datenbankverbindungen verwaltet. Zusätzlich zu dem oben beschrieben Verhalten wird vor
dem Zugriff auf die interne Datenbank der AudioDB Komponente eine
Datenbankverbindung reserviert, und nach dem Datenbankzugriff wieder freigegeben.

Angaben zum Rechenaufwand

Dadurch verringert sich der Rechenaufwand für die Abfrage der Datenbank auf 1 Work Unit,
für das Schreiben in die Datenbank (Use Case Upload) auf 5 Work Units.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 2

CXLVIII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 11 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 3: Zweiten Server für die Datenbankkomponenten
Motivation

Es wird ein zweiter Server bereitgestellt, auf den die AudioDB ausgelagert werden soll.

Anpassung des Systems

Die folgenden Diagramme zeigen das angepasste Deployment, der Kontrollfluss und das
System verändern sich nicht.

Angaben zur Ressourcenumgebung

Der Datenbankserver hat dieselben Leistungsmerkmale wie der Applikationsserver.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 3

APPENDIX B. EXPERIMENTAL MATERIAL CXLIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 12 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 4: Bitrate senken
Motivation

Musikstücke werden in unterschiedlicher Qualität hochgeladen. Weiterhin bietet das MP3
Format die Möglichkeit, Musikstücke mit konstanter oder variabler Bitrate zu kodieren, wobei
bei der Verwendung einer variablen Bitrate in den meisten Fällen kleinere Dateien derselben
Qualität erzeugt werden können. Um Speicherplatz und Zeit beim Herunterladen zu sparen,
kann die Bitrate beim Hochladen verändert werden: Zum einen können für Musikstücke mit
hohen durchschnittlichen Bitraten die durchschnittliche Bitrate gesenkt werden, wodurch
allerdings die Qualität der Stücke sinkt. Weiterhin können Musikstücke, die mit einer
konstanten Bitrate erzeugt wurden, unter Verwendung einer variablen Bitrate umgewandelt
werden. Dabei sinkt die Qualität kaum.

Anpassung des Systems

Eine zusätzliche Komponente Encoding wird in die Architektur eingeführt. Die folgenden
Diagramme zeigen das angepasste System und den angepassten Kontrollfluss für den Upload
Anwendungsfall.

Encoding
MediaStoreWebGUI

Encoding

Digital
Watermarking

AudioDB

<<ResourceContainer>>
Application Server

IHTTP IMediaStore
IAudioDB

ISound

IEncode

Ablauf mit zusätzlichem Resource Demand (nicht dargestellte Resource Demands bleiben
unverändert):

CL APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 13 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Die Komponente Encoding komprimiert ein Musikstück nicht immer, sondern nur, wenn
die Bitrate a) konstant ist oder b) höher als 192 kbps ist. Beide Fälle können zusammen
auftreten, die Effekte werden kombiniert.

• Wenn die Bitrate konstant ist, kann durch die Umwandlung in eine mit variabler
Bitrate kodierte MP3 Datei die Größe der Datei auf durchschnittlich 70% ihrer
ursprünglichen Größe reduziert werden.

• Wenn die Bitrate höher als 192 kbps, wird sie auf 192 kbps gesenkt. Es kann davon
ausgegangen werden, dass die Größe der Datei im selben Verhältnis abnimmt wie die
Bitrate.

Wenn beide Fälle zusammen auftreten, wird trotzdem das Musikstück nur einmal neu kodiert,
d.h. es fällt nur einmal der Rechenaufwand an. Die Größe des Musikstücks wird dann um
70% und um das Verhältnis der neuen zur alten Bitrate abnehmen.

Rechenaufwand zum Neukodieren (für Upload)

Wenn ein Musikstück neu kodiert werden soll, dekodiert die Encoding Komponente das
Musikstück zunächst in das .wav Format, was einen Rechenaufwand von 10 Work Units pro
MB der Ausgangsgröße bedeutet. Danach wird die Datei mit der neuen Bitrate kodiert, dies
benötigt 10 Work Units pro MB der resultierenden MP3.

Falls die Bitrate des Musikstücks nicht geändert wird, wenn also die Bitrate variabel und nicht
größer als 192 kbps ist, fällt kein Rechenaufwand an.

Veränderter Speicherbedarf (für Download)

Diese Rekodierung wirkt sich natürlich auch entsprechend auf die Dateigrößen der
herunterzuladenen Musikstücke aus. Im Durchschnitt werden die Musikstücke also für die
beiden gegebenen Benutzungsprofile um ca. 17% kleiner. Man erhält die folgende
Verteilungsfunktion für die Dateigröße x in MB:

P(0,42 <= x < 0,84) = 0.051

P(0,84 <= x < 1,67) = 0.134

P(1,67 <= x < 2,5) = 0.193

P(2,5 <= x < 3,35) = 0.212

P(3,35 <= x < 4,2) = 0.224

P(4,2 <= x < 5) = 0.186

Verwenden Sie die Verteilungsfunktion nur als Hilfe bei der Modellierung des Ladens von
der Festplatte. Für die Modellierung des Rechenaufwands der Rekodierung können diese
Angaben nicht verwendet werden, denn hier werden nicht alle Stücke neu kodiert. Es müssen
für die Neukodierung also die Angaben der Aufzählung oben verwendet werden.

Geben Sie die neue Verteilung als Komponentenparameter der AudioDB Komponente im
System an.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 4

APPENDIX B. EXPERIMENTAL MATERIAL CLI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 14 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 5: Dynamischer Lookup
Motivation

Diese Entwurfsalternative hat im Gegensatz zu den bisherigen Alternativen nicht zum Ziel,
die Performanz des Systems zu verbessern, sondern die Skalierbarkeit. Wenn alle
Komponenten ihr Kommunikationspartner über einen dynamischen Lookup beim Broker
finden, kann die Allokation der Komponenten leicht verändert werden, beispielsweise können
neue Server angeschafft und einige der Komponenten darauf eingesetzt werden, ohne
Änderungen am Code vornehmen zu müssen. Allerdings benötigt das dynamische Auffinden
des Kommunikationspartners zusätzlichen Rechenaufwand.

Es wurde beschlossen, dass der dynamische Lookup nur verwendet werden soll, wenn sein
Einsatz die Antwortzeit des Systems für die gegebenen Benutzungsprofile um nicht mehr als
10% verschlechtert. Analysieren Sie, ob dieses Performanzziel eingehalten werden kann und
geben Sie an, ob diese Entwurfsalternative nach diesen Vorgaben eingesetzt werden kann.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 5

CLII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 15 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Fragestellungen
Untersuchen Sie das Ausgangssystem und die verschiedenen Entwurfsalternativen und
sichern Sie die Ergebnisse wie oben unter Durchführung (Seite 2) angegeben.

1. Welche Entwurfsalternativen sollten eingesetzt werden*, welche nicht? Differenzieren
Sie Ihre Antwort nach den beiden Benutzungsprofilen. Geben Sie Ihre Antwort und
eine Begründung in der Tabelle 1 unten an.
(*: Die Alternative 5 braucht die Antwortzeit nicht verbessern, darf sie aber nicht
mehr als 10% verschlechtern, um eingesetzt zu werden.)

2. Angenommen, es wäre nicht möglich, alle sinnvollen Entwurfsalternativen
umzusetzen, sondern nur einige, welche wäre das? Stellen Sie eine Reihenfolge der
Entwurfsentscheidungen auf, um diese Frage zu beantworten, und sortieren Sie die
Entwurfsentscheidungen in Tabelle 2, beginnend mit der nützlichsten. Beachten Sie
dabei nicht eventuelle Abhängigkeiten der Entwurfsentscheidungen untereinander.

Entwurfsalternative Benutz-
ungs-
profil

Einsetzen? Mit Begründung.

1: Cache 1

2

2: Pool für Datenbank-
verbindungen

1

2

3: Zweiter Server 1

2

4: Bitrate senken 1

2

5: Dynamischer
Lookup

1

2

Tabelle 1: Bewertung der Entwurfsalternativen

APPENDIX B. EXPERIMENTAL MATERIAL CLIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:19 - 16 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

 Reihenfolge

Entwurfsalternative Benutzungsprofil 1 Benutzungsprofil 2

1: Cache

2: Pool für Datenbankverbindungen

3: Zweiter Server

4: Bitrate senken

Tabelle 2: Reihenfolge der Entwurfsalternativen

Kommentare zu den Entwurfsalternativen:

Zusatzfrage:
Bitte bearbeiten Sie diese Frage erst, wenn alle anderen Fragen beantwortet und die
Antworten akzeptiert worden sind.

1. Wenn Sie beliebig viele Entwurfsalternativen umsetzen können, welche Kombination
ergibt die besten Antwortzeiten?

Für diese Fragestellung müssen Sie verschiedene Kombinationen von Entwurfsalternativen
zusammen analysieren und bewerten.

Beste Kombination:

Begründung:

CLIV APPENDIX B. EXPERIMENTAL MATERIAL

APPENDIX B. EXPERIMENTAL MATERIAL CLV

SPE

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Fallstudie:
Vergleich von Performanzvorhersageverfahren
Ein neues komponentenbasiertes System zur Speicherung und Abfrage von MP3-Dateien im
Internet soll entwickelt werden. Während der gesamten Entwicklung soll die Performanz des
Entwurfs bewertet werden, um den späteren Benutzern ein System mit akzeptablen
Antwortzeiten bieten zu können. Da Sie mit der Performanzanalyse vertraut sind, werden Sie
gebeten, verschiedene Entwurfsalternativen hinsichtlich ihrer Performanz zu untersuchen.

Zeitstempel
Um untersuchen zu können, wie viel der Zeit auf welche Aufgabenteile entfällt, geben Sie
bitte jeweils minutengenaue Zeiten für die Teilaufgaben an. Sie müssen dabei die
Aufgabenteile nicht alle in der Reihenfolge abarbeiten, in der Sie sie hier vorfinden.
Differenzieren Sie bei den Zeitstempeln weiterhin nach der Zeit für die reine Modellierung
und der Zeit für die Fehlersuche.

Modellieren und analysieren Sie aber zunächst das Ausgangsystem vollständig und erst
danach die Entwurfsalternativen, wenn Ihr Ausgangssystem abgenommen wurde. Führen Sie
auch bei den Entwurfsalternativen erst die Analyse einer Entwurfsalternative durch, bevor Sie
zur nächsten Übergehen. Geben Sie Ihre Ergebnisse direkt in das Ergebnisblatt am Ende ein.

Checken Sie Ihre Lösung jeweils zu einem Zeitstempel in Ihren SVN Account ein, um ein
Backup zu haben.

Zeitstempel auf Extrablatt angeben: Austeilung der Aufgabenstellung.

Übersicht über die Aufgabenstellung
Fallstudie: Vergleich von Performanzvorhersageverfahren .. 1

Zeitstempel ... 1

Übersicht über die Aufgabenstellung ... 1

Durchführung der Untersuchungen .. 2

SPE-ED .. 2

Bestehender Entwurf .. 3

Benutzungsprofile .. 5

Ressourcenumgebung ... 7

Entwurfsalternativen .. 8

Entwurfsalternative 1: Cache ... 8

Entwurfsalternative 2: Pool für Datenbankverbindungen .. 10

Entwurfsalternative 3: Zweiten Server für die Datenbankkomponenten 11

Entwurfsalternative 4: Bitrate senken .. 12

Entwurfsalternative 5: Dynamischer Lookup .. 14

Fragestellungen .. 15

Zusatzfrage: .. 16

SPE-ED

CLVI APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Durchführung der Untersuchungen
Modellieren und analysieren Sie zunächst das Ausgangsystem. Lassen Sie Ihre Modellierung
und die Ergebnisse überprüfen, bevor Sie mit der Modellierung der Entwurfsalternativen
beginnen.

Modellieren und analysieren Sie die Entwurfsalternativen in der hier angegebenen
Reihenfolge. Analysieren Sie eine fertiggestellte Entwurfsalternative und tragen Sie die
Ergebnisse in die Tabelle am Ende ein, bevor Sie mit der nächsten Entwurfsalternative
fortfahren.

Arbeiten Sie in einem Verzeichnis Mediastore-Nachname, das Sie bei jedem Zeitstempel
(oder auch häufiger) in Ihr SVN Repository einchecken. Geben Sie in der Log Message den
Zeitstempel an.

SPE-ED
Untersuchen Sie mit SPE-ED die durchschnittliche Antwortzeit.

Legen Sie für jede Entwurfsalternative (EA) und Benutzungsprofil ein eigenes Projekt an. Sie
können die Projekte auch in unterschiedlichen Verzeichnissen in eigenen SPE-ED
Installationen ablegen, damit Sie das Ausgangsprojekt kopieren und weiterverwenden können.
Nennen Sie entweder die Projekte MediaStore-EA-x-BP-y, wobei x die Nummer der
Alternative (0 für den Ausgangsentwurf) und y die Nummer des Benutzungsprofils angibt,
oder benennen Sie die Verzeichnisse nach diesem Schema.

Wichtig: Bedenken Sie, dass Sie nur vier Navigationsboxen zur Verfügung haben und Sie
nicht zu viele Expand Nodes einsetzen können. Gehen Sie also sparsam mit Expand Nodes
um, indem Sie Sequenzen innerhalb einer Expand Node zusammenfassen und als eine Basic
Node modellieren. Nur für Schleifen und Verzweigungen sollten Expand Nodes verwendet
werden, aber auch hier nicht immer. Überlegen Sie, wie Sie die verfügbaren
Navigationsboxen verwenden, bevor Sie mit der Modellierung beginnen.

Bewerten Sie die Entwurfsalternativen aufgrund der Antwortzeiten für beide
Anwendungsfälle. Der einfachste Weg hierfür ist es, jeweils beide Anwendungsfälle in einem
Szenario zu modellieren. Sie haben dann den Vorteil, dass Sie nur die „Scenario Contention
Analyse“ durchführen müssen. Für Entwurfsalternative 4 benötigen Sie ein weiteres Szenario
auf einer weiteren Facility. Untersuchen Sie die Antwortzeit für dieses Szenario und setzen
Sie das Ergebnis in einen Synchronisationsknoten im Ausgangsszenario als Delay ein. Auch
hier benötigen Sie also keine Simulation.

Prüfen Sie bei jeder Analyse, ob immer noch die richtige Analyseart ausgewählt ist.

Speichern Sie einen Screenshot der Analyseergebnisse für das Ausgangssystem und die
einzelnen Entwurfsalternativen als Grafikdatei mit demselben Namensschema. Insgesamt
müssen Sie 12 Dateien speichern, durch die Kombination von 6 Entwurfsalternativen
(inklusive dem Ausgangssystem als EA0) mit zwei Benutzungsprofilen.

APPENDIX B. EXPERIMENTAL MATERIAL CLVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 3 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Bestehender Entwurf
Das System besteht aus den folgenden Komponenten, die alle auf einem Applikationsserver
eingesetzt sind:

Die beiden entscheidenden Anwendungsfälle sind das Herunterladen und Hochladen von
Musikstücken im MP3-Format.

Anwendungsfall 1: Herunterladen:

Über die WebGUI wird das System vom Benutzer verwendet. Im HTTP Request wird eine
Liste von IDs der angeforderten Musikstücke an die WebGUI übergeben. Das Parsen des
HTTP Requests benötigt 10 Work Units. Die Anfrage wird danach vom MediaStore an die
AudioDB weitergeleitet.

Die Komponente AudioDB liefert die gewünschten Musikstücke zurück, indem sie zunächst
in einer Schleife für jede gegebene ID den Dateinamen aus einer speziellen internen
Datenbank im Hauptspeicher lädt (Aufwand pro ID konstant 3 Work Units) und dann die

CLVIII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 4 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Datei selbst von der Festplatte lädt (vgl. Angaben für die Festplatte auf Seite 7). Die Liste der
geladenen Musikstücke wird an die MediaStore Komponente zurückgegeben.

Von dort aus wird jedes einzelne Musikstück an die Komponente Watermarking
übergeben, die ein digitales Wasserzeichen einarbeitet und dann das Musikstück zurückgibt.
Die Größe des Musikstücks bleibt unverändert. Das Hinzufügen des Wasserzeichens benötigt
konstant 25 Work Units und weitere 15 Work Units pro zu verarbeitendem MB (1 MB
entspricht 106 Byte).

Das Erzeugen des HTTP Response benötigt weitere 5 Work Units.

Anwendungsfall 2: Hochladen

Es werden nur einzelne Musikstücke hochgeladen. Aus dem HTTP Request an die WebGUI
wird das hochzuladende Musikstück entnommen (Aufwand zum Parsen 10 Work Units) und
an die MediaStore Komponente weitergereicht. Die MediaStore Komponente leitet das
Musikstück an die AudioDB Komponente weiter. Hier wird zunächst ein Eintrag in die
interne Datenbank gemacht (Aufwand konstant 10 Work Units) und dann das Musikstück in
eine Datei auf die Festplatte geschrieben (vgl. Angaben für die Festplatte auf Seite 7).

Das Erzeugen des HTTP Response benötigt weitere 5 Work Units.

Modellieren Sie für SPE-ED beide Anwendungsfälle in einem Szenario. So können Sie eine
durchschnittliche Antwortzeit für beide Anwendungsfälle ermitteln.

Zeitstempel auf Extrablatt angeben: Kontrollfluss und Resource Demand

APPENDIX B. EXPERIMENTAL MATERIAL CLIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 5 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Benutzungsprofile
Domänenexperten wurden zu Rate gezogen, um das spätere Benutzungsprofil zu ermitteln.
Sie kamen zu diesen Schlussfolgerungen:

Benutzungsprofil 1

• Es wird immer ein Benutzer das System verwenden. Dies entspricht einem Closed
Workload mit einem Benutzer und einer Think Time von 0.

• In 20% der Fälle werden MP3 Dateien hochgeladen (UC2: Upload), in 80% der Fälle
werden sie heruntergeladen (UC1: Download).

• Die Dateigröße x in Megabytes der Musikstücke ist sehr unterschiedlich, sie können
durch die folgende Verteilung angenähert werden:

P(0,5 MB <= x < 1 MB) = 0.051

P(1 MB <= x < 2 MB) = 0.134

P(2 MB <= x < 3 MB) = 0.193

P(3 MB <= x < 4 MB) = 0.212

P(4 MB <= x < 5 MB) = 0.224

P(5 MB <= x < 6 MB) = 0.186

Der Mittelwert liegt bei einer Dateigröße von 3,5 MB. Die Verteilung ist sowohl für den
Download als auch für den Upload relevant.

• Die Anzahl der heruntergeladenen Stücke n liegt zwischen einem und 12 Stücken (ein
Album). Um die Spezifikation zu vereinfachen, wurden einige Größenbereiche zu
einem zusammengefasst. Verwenden Sie zur Spezifikation der Verteilung jeweils den
Mittelwert eines jeden Bereichs.

P(n ∈ {1,2,3}) = 0.2
P(n ∈ {4,5,6}) = 0.2
P(n ∈ {7,8,9}) = 0.3
P(n ∈ {10,11,12}) = 0.3

Der gesamte Mittelwert liegt damit bei 7,1 Musikstücken.

Nur für Entwurfsalternative 4 relevant, aber trotzdem Teil des Benutzungsprofils:

• MP3 Dateien können mit variabler oder konstanter Bitrate kodiert sein. Hier werden
30 % der Musikstücke mit konstanter Bitrate hochgeladen, 70 % mit variabler.

• Die durchschnittliche Bitrate b der hochgeladenen Musikstücke (egal ob konstant oder
variabel) ist wie folgt verteilt:

P(b = 64 kbps) = 0.1
P(b = 128 kbps) = 0.5
P(b = 192 kbps) = 0.2
P(b = 320 kbps) = 0.2

Zeitstempel auf Extrablatt angeben: Benutzungsprofil 1

CLX APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 6 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Benutzungsprofil 2

Es werden weiterhin Vermutungen über die Veränderungen des Benutzungsprofils mit der
Zeit angestellt, denn schließlich soll das System auch dann noch akzeptable Antwortzeiten
haben.

• Nach der Verbreitung des Systems werden auch mehrere Benutzer das System parallel
nutzen. Es wird eine Ankunftsrate von 0,8 Benutzern pro Sekunde erwartet.

• Die Anzahl der heruntergeladenen Dateien wird sich erhöhen, da immer mehr Dateien
verfügbar sind. Nehmen Sie an, dass sich die Verteilung um 1 nach oben verschiebt.
Um die Spezifikation zu vereinfachen, wurden einige Größenbereiche zu einem
zusammengefasst. Verwenden Sie zur Spezifikation der Verteilung jeweils den
Mittelwert eines jeden Bereichs. Sie können bei Palladio auch 1 auf die alte Verteilung
addieren.

P(n ∈ {2,3,4}) = 0.2
P(n ∈ {5,6,7}) = 0.2
P(n ∈ {8,9,10}) = 0.3
P(n ∈ {11,12,13}) = 0.3

Der gesamte Mittelwert liegt damit bei 8,1 Musikstücken.

• Das Verhältnis der Anwendungsfälle verschiebt sich weiter in Richtung
UC1:Download, 90% der Benutzer laden Dateien herunter, nur 10% laden Dateien
hoch, da bereits ein reicher Fundus an Musikstücken vorrätig sein wird.

• Die Bitraten sowie die Dateigröße der Musikstücke bleiben so wie in Benutzungsprofil
1.

Zeitstempel auf Extrablatt angeben: Benutzungsprofil 2

APPENDIX B. EXPERIMENTAL MATERIAL CLXI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 7 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Ressourcenumgebung
Alle Komponenten sind auf einem Server eingesetzt, wie das obige Diagramm bereits zeigt.
Die CPU des Systems ist ein AMD Athlon XP mit einer Taktrate von 1,145 GHz = 1,145 *
109 Zyklen/s. Ein CPU Zyklus entspricht einer Instruktion. Für die folgenden Angaben wird
der Rechenaufwand in Work Units angegeben. Ein Work Unit entspricht ca. 1,145 * 106
Instruktionen = 1,145 * 106 CPU Zyklen. Es wurde gemessen, dass die Festplatte im
Durchschnitt 24 MB/s = 24 * 106 Byte/s Lesen und Schreiben kann. Ein MB kann also in 42
ms gelesen bzw. geschrieben werden. Die Latenz (Seek Time) der Festplatte kann
vernachlässigt werden.

Verwenden Sie für SPE-ED die Webserver Facility und legen Sie ein neues Software Spec
Template an. Ändern Sie auch die Service Unit und Service Time der einzelnen Devices. Für
die CPU bietet sich z.B. als Einheit „Megainstruktionen“ an, für die Festplatte „MB from
HD“ an.

Zeitstempel auf Extrablatt angeben: Ressourcenumgebung

CLXII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 8 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternativen
Modellieren Sie die Entwurfsalternativen erst, wenn das Ausgangsystem vollständig
modelliert ist. Lassen Sie Ihr Ausgangssystem erst überprüfen, bevor Sie die
Entwurfsalternativen modellieren.

Entwurfsalternative 1: Cache
Motivation

Es soll ein Cache eingesetzt werden, der einige Musikstücke zwischenspeichert und somit in
manchen Fällen den Datenbankzugriff einsparen kann. Allerdings benötigt das Überprüfen
des Caches selbst wieder ein wenig Rechenleistung.

Anpassung des Systems

Eine zusätzliche Komponente DBCache wird in das System eingeführt. Die folgenden
Diagramme zeigen das angepasste System und den angepassten Kontrollfluss.

Ablauf mit zusätzlichem Resource Demand (nicht dargestellte Resource Demands bleiben
unverändert):

UC1: Download

loop

opt

WebGUI Media
Store

Water-
marking AudioDB

download(String[] ids)
queryDB(String[] ids)

ListOfFiles fileList
loop watermark(File file)

File watermarkedFile

DBCache

[not in cache]

ListOfFiles singleFileInList

[for each File
file in fileList]

[ids.size]

getFiles(new String[] id)

HTTPDownload(Request request)

ListOfFiles watermarkedFileList
HTTPResponse response

Check whether in
cache: 1 WU

APPENDIX B. EXPERIMENTAL MATERIAL CLXIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 9 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Die Komponente DBCache erhält vom MediaStore die Liste aller angeforderten
Musikstücke. Für jedes Musikstück wird geprüft, ob es im Cache vorliegt. Falls nicht, wird es
einzeln von der Datenbank angefordert. AudioDB.getFiles wird also pro
Schleifendurchlauf nur mit der einen jeweiligen id in der Liste aufgerufen und liefert eine
Liste mit nur dem einen entsprechenden Musikstück zurück. Durch die Schleife wird dann die
gesamte Liste zusammengestellt.

Cache Hit Ratio

Obwohl der Cache nur wenige Musikstücke im Verhältnis zur Gesamtgröße der Datenbank
fassen kann, wird vermutet, dass ein Anteil der angefragten Musikstücke bereits im Cache
vorgehalten sein wird. Die Strategie des Caches wird dazu auch Informationen zu den
aktuellen Charts verwenden, da beliebte, aktuelle Musikstücke viel häufiger nachgefragt
werden und somit im Cache vorgehalten werden können. Es wird davon ausgegangen, dass so
eine Cache Hit Ratio von 20 % erreicht werden kann.

Rechenaufwand zum Prüfen des Caches

Das Prüfen, ob ein Musikstück im Cache vorliegt, kann dank eines Indexes mit nur 1 Work
Units erledigt werden.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 1

CLXIV APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 10 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 2: Pool für Datenbankverbindungen
Motivation

Um die Zeit für den Zugriff auf die interne Datenbank der AudioDB Komponente zu senken,
kann ein Pool für Datenbankverbindungen eingeführt werden. Dabei muss dann nicht für jede
Anfrage an die Datenbank eine neue Datenbankverbindung geöffnet werden, sondern es wird
eine Datenbankverbindung aus dem Pool verwendet und nach der Benutzung wieder
freigegeben. Allerdings kann so nur noch eine gewisse Anzahl von Threads gleichzeitig auf
die Datenbank zugreifen.

Anpassung des Systems

In diesem Fall soll ein Pool der Größe 5 eingeführt werden. Die bestehende Komponente
AudioDB wird ersetzt durch die Komponente PoolingAudioDB, die diese 5
Datenbankverbindungen verwaltet. Zusätzlich zu dem oben beschrieben Verhalten wird vor
dem Zugriff auf die interne Datenbank der AudioDB Komponente eine
Datenbankverbindung reserviert, und nach dem Datenbankzugriff wieder freigegeben.

Angaben zum Rechenaufwand

Dadurch verringert sich der Rechenaufwand für die Abfrage der Datenbank auf 1 Work Unit,
für das Schreiben in die Datenbank (Use Case Upload) auf 5 Work Units.

Hinweise SPE-ED

In SPE-ED können solche Pools nicht direkt modelliert werden. Sie müssen bei dieser
Alternative abschätzen, wie lange die Anfrage eines Benutzers durch die Verwendung des
Pools verzögert wird. Dies hängt von der Ankunftsrate der Benutzer sowie der Dauer, wie
lange die Ressource blockiert ist, ab.

Geben Sie auch hier an, wie Sie die Verzögerung abschätzen: _____________ Millisekunden

Begründung:

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 2

APPENDIX B. EXPERIMENTAL MATERIAL CLXV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 11 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 3: Zweiten Server für die Datenbankkomponenten
Motivation

Es wird ein zweiter Server bereitgestellt, auf den die AudioDB ausgelagert werden soll.

Anpassung des Systems

Die folgenden Diagramme zeigen das angepasste Deployment, der Kontrollfluss und das
System verändern sich nicht.

Angaben zur Ressourcenumgebung

Der Datenbankserver hat dieselben Leistungsmerkmale wie der Applikationsserver.

Verwenden Sie für SPE-ED das vorgefertigte Facility Template DBServer und passen Sie die
Overhead Matrix auch hier an.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 3

CLXVI APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 12 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 4: Bitrate senken
Motivation

Musikstücke werden in unterschiedlicher Qualität hochgeladen. Weiterhin bietet das MP3
Format die Möglichkeit, Musikstücke mit konstanter oder variabler Bitrate zu kodieren, wobei
bei der Verwendung einer variablen Bitrate in den meisten Fällen kleinere Dateien derselben
Qualität erzeugt werden können. Um Speicherplatz und Zeit beim Herunterladen zu sparen,
kann die Bitrate beim Hochladen verändert werden: Zum einen können für Musikstücke mit
hohen durchschnittlichen Bitraten die durchschnittliche Bitrate gesenkt werden, wodurch
allerdings die Qualität der Stücke sinkt. Weiterhin können Musikstücke, die mit einer
konstanten Bitrate erzeugt wurden, unter Verwendung einer variablen Bitrate umgewandelt
werden. Dabei sinkt die Qualität kaum.

Anpassung des Systems

Eine zusätzliche Komponente Encoding wird in die Architektur eingeführt. Die folgenden
Diagramme zeigen das angepasste System und den angepassten Kontrollfluss für den Upload
Anwendungsfall.

Encoding
MediaStoreWebGUI

Encoding

Digital
Watermarking

AudioDB

<<ResourceContainer>>
Application Server

IHTTP IMediaStore
IAudioDB

ISound

IEncode

Ablauf mit zusätzlichem Resource Demand (nicht dargestellte Resource Demands bleiben
unverändert):

APPENDIX B. EXPERIMENTAL MATERIAL CLXVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 13 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Die Komponente Encoding komprimiert ein Musikstück nicht immer, sondern nur, wenn
die Bitrate a) konstant ist oder b) höher als 192 kbps ist. Beide Fälle können zusammen
auftreten, die Effekte werden kombiniert.

• Wenn die Bitrate konstant ist, kann durch die Umwandlung in eine mit variabler
Bitrate kodierte MP3 Datei die Größe der Datei auf durchschnittlich 70% ihrer
ursprünglichen Größe reduziert werden.

• Wenn die Bitrate höher als 192 kbps, wird sie auf 192 kbps gesenkt. Es kann davon
ausgegangen werden, dass die Größe der Datei im selben Verhältnis abnimmt wie die
Bitrate.

Wenn beide Fälle zusammen auftreten, wird trotzdem das Musikstück nur einmal neu kodiert,
d.h. es fällt nur einmal der Rechenaufwand an. Die Größe des Musikstücks wird dann um
70% und um das Verhältnis der neuen zur alten Bitrate abnimmt.

Rechenaufwand zum Neukodieren (für Upload)

Wenn ein Musikstück neu kodiert werden soll, dekodiert die Encoding Komponente das
Musikstück zunächst in das .wav Format, was einen Rechenaufwand von 10 Work Units pro
MB der Ausgangsgröße bedeutet. Danach wird die Datei mit der neuen Bitrate kodiert, dies
benötigt 10 Work Units pro MB der resultierenden MP3.

Falls die Bitrate des Musikstücks nicht geändert wird, wenn also die Bitrate variabel und nicht
größer als 192 kbps ist, fällt kein Rechenaufwand an.

Veränderter Speicherbedarf (für Download)

Diese Rekodierung wirkt sich natürlich auch entsprechend auf die Dateigrößen der
herunterzuladenen Musikstücke aus. Im Durchschnitt werden die Musikstücke also für die
beiden gegebenen Benutzungsprofile um ca. 17% kleiner. Man erhält die folgende
Verteilungsfunktion für die Dateigröße x in MB:

P(0,42 <= x < 0,84) = 0.051

P(0,84 <= x < 1,67) = 0.134

P(1,67 <= x < 2,5) = 0.193

P(2,5 <= x < 3,35) = 0.212

P(3,35 <= x < 4,2) = 0.224

P(4,2 <= x < 5) = 0.186

Der Mittelwert dieser Verteilung liegt bei 2,93 MB. Verwenden Sie die Verteilungsfunktion
nur als Hilfe bei der Modellierung des Ladens von der Festplatte. Bei SPE-ED können Sie den
Mittelwert auch für den Resource Demand beim Schreiben auf die Festplatte verwenden. Für
die Modellierung des Rechenaufwands der Rekodierung können diese Angaben nicht
verwendet werden, denn hier werden nicht alle Stücke neu kodiert. Es müssen für die
Neukodierung also die Angaben der Aufzählung oben verwendet werden.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 4

CLXVIII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 14 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 5: Dynamischer Lookup
Motivation

Diese Entwurfsalternative hat im Gegensatz zu den bisherigen Alternativen nicht zum Ziel,
die Performanz des Systems zu verbessern, sondern die Skalierbarkeit. Wenn alle
Komponenten ihr Kommunikationspartner über einen dynamischen Lookup beim Broker
finden, kann die Allokation der Komponenten leicht verändert werden, beispielsweise können
neue Server angeschafft und einige der Komponenten darauf eingesetzt werden, ohne
Änderungen am Code vornehmen zu müssen. Allerdings benötigt das dynamische Auffinden
des Kommunikationspartners zusätzlichen Rechenaufwand.

Es wurde beschlossen, dass der dynamische Lookup nur verwendet werden soll, wenn sein
Einsatz die Antwortzeit des Systems für die gegebenen Benutzungsprofile um nicht mehr als
10% verschlechtert. Analysieren Sie, ob dieses Performanzziel eingehalten werden kann und
geben Sie an, ob diese Entwurfsalternative nach diesen Vorgaben eingesetzt werden kann.

Angaben zum Rechenaufwand

Der dynamische Lookup einer anderen Komponente kostet 17 Work Units.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 5

APPENDIX B. EXPERIMENTAL MATERIAL CLXIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 15 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Fragestellungen
Untersuchen Sie das Ausgangssystem und die verschiedenen Entwurfsalternativen und
sichern Sie die Ergebnisse wie oben unter Durchführung (Seite 2) angegeben.

1. Welche Entwurfsalternativen sollten eingesetzt werden*, welche nicht? Differenzieren
Sie Ihre Antwort nach den beiden Benutzungsprofilen. Geben Sie Ihre Antwort und
eine Begründung in der Tabelle 1 unten an.
(*: Die Alternative 5 braucht die Antwortzeit nicht verbessern, darf sie aber nicht
mehr als 10% verschlechtern, um eingesetzt zu werden.)

2. Angenommen, es wäre nicht möglich, alle sinnvollen Entwurfsalternativen
umzusetzen, sondern nur einige, welche wäre das? Stellen Sie eine Reihenfolge der
Entwurfsentscheidungen auf, um diese Frage zu beantworten, und sortieren Sie die
Entwurfsentscheidungen in Tabelle 2, beginnend mit der nützlichsten. Beachten Sie
dabei nicht eventuelle Abhängigkeiten der Entwurfsentscheidungen untereinander.

Entwurfsalternative Benutz-
ungs-
profil

Durchschn.
Antwort-
zeit

Einsetzen? Mit Begründung.

1: Cache 1

2

2: Pool für Datenbank-
verbindungen

1

2

3: Zweiter Server 1

2

4: Bitrate senken 1

2

5: Dynamischer
Lookup

1

2

Tabelle 1: Bewertung der Entwurfsalternativen

CLXX APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:33 - 16 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

 Reihenfolge

Entwurfsalternative Benutzungsprofil 1 Benutzungsprofil 2

1: Cache

2: Pool für Datenbankverbindungen

3: Zweiter Server

4: Bitrate senken

Tabelle 2: Reihenfolge der Entwurfsalternativen

Kommentare zu den Entwurfsalternativen:

Zusatzfrage:
Bitte bearbeiten Sie diese Frage erst, wenn alle anderen Fragen beantwortet und die
Antworten akzeptiert worden sind.

1. Wenn Sie beliebig viele Entwurfsalternativen umsetzen können, welche Kombination
ergibt die besten Antwortzeiten?

Für diese Fragestellung müssen Sie verschiedene Kombinationen von Entwurfsalternativen
zusammen analysieren und bewerten.

Beste Kombination:

APPENDIX B. EXPERIMENTAL MATERIAL CLXXI

CLXXII APPENDIX B. EXPERIMENTAL MATERIAL

B.1.2 Web Server

Palladio

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Name: ___

Fallstudie:
Vergleich von Performanzvorhersageverfahren
Ein neuer komponentenbasierter Webserver soll entwickelt werden. Während der gesamten
Entwicklung soll die Performanz des Entwurfs bewertet werden, um den späteren Benutzern
ein System mit akzeptablen Antwortzeiten bieten zu können. Da Sie mit der
Performanzanalyse vertraut sind, werden Sie gebeten, verschiedene Entwurfsalternativen
hinsichtlich ihrer Performanz zu untersuchen.

Zeitstempel
Um untersuchen zu können, wie viel der Zeit auf welche Aufgabenteile entfällt, geben Sie
bitte jeweils minutengenaue Zeiten für die Teilaufgaben an. Sie müssen dabei die
Aufgabenteile nicht alle in der Reihenfolge abarbeiten, in der Sie sie hier vorfinden.
Differenzieren Sie bei den Zeitstempeln weiterhin nach der Zeit für die reine Modellierung
und der Zeit für die Fehlersuche.

Modellieren und analysieren Sie aber zunächst das Ausgangsystem vollständig und erst
danach die Entwurfsalternativen, wenn Ihr Ausgangssystem abgenommen wurde. Führen Sie
auch bei den Entwurfsalternativen erst die Analyse einer Entwurfsalternative durch, bevor Sie
zur nächsten übergehen. Geben Sie Ihre Ergebnisse direkt in das Ergebnisblatt am Ende ein.

Checken Sie Ihre Lösung jeweils zu einem Zeitstempel in Ihren SVN Account ein, um ein
Backup zu haben.

Zeitstempel auf Extrablatt angeben: Austeilung der Aufgabenstellung.

Übersicht über die Aufgabenstellung:
Fallstudie: Vergleich von Performanzvorhersageverfahren .. 1

Zeitstempel ... 1

Übersicht über die Aufgabenstellung: .. 1

Durchführung der Untersuchungen .. 2

Palladio: .. 2

Bestehender Entwurf .. 4

Resource Demands ... 7

Benutzungsprofile .. 8

Ressourcenumgebung ... 10

Entwurfsalternativen .. 11

Entwurfsalternative 1: Cache für dynamische Inhalte ... 11

Entwurfsalternative 2: Dynamischer Lookup .. 12

Entwurfsalternative 3: Logging parallelisieren .. 13

Entwurfsalternative 4: Hardware Replikation mit einem zweiten Server 15

Palladio

APPENDIX B. EXPERIMENTAL MATERIAL CLXXIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 5: Thread Pool .. 16

Fragestellungen .. 17

Durchführung der Untersuchungen
Modellieren und analysieren Sie zunächst das Ausgangsystem. Lassen Sie Ihre Modellierung
und die Ergebnisse überprüfen, bevor Sie mit der Modellierung der Entwurfsalternativen
beginnen.

Modellieren und analysieren Sie die Entwurfsalternativen in der hier angegebenen
Reihenfolge. Analysieren Sie eine fertiggestellte Entwurfsalternative und tragen Sie die
Ergebnisse in die Tabelle am Ende ein, bevor Sie mit der nächsten Entwurfsalternative
fortfahren.

Arbeiten Sie in einem Verzeichnis Webserver-Nachname, das Sie bei jedem Zeitstempel
(oder auch häufiger) in Ihr SVN Repository einchecken. Geben Sie in der Log Message den
Namen des Zeitstempels an.

Palladio:
Untersuchen Sie mit dem PCM die Antwortzeit des Systems. Modellieren Sie hierfür die
Parameter nur mit den für die Performanz relevanten Charakterisierungen. Nutzen Sie die
vorhandenen Parameter der vorgegebenen Signaturen aus dem Repository für
Charakterisierungen und verwenden Sie auch Komponentenparameter, wenn die Information
nicht aus den Signaturenparametern geschlossen werden kann.

Wichtig: Laden Sie Modelle nur über „Browse Workspace“, da sie sonst absolut verlinkt sind
und nicht auf anderen Systemen geöffnet werden können. Eine neue Eclipse Version ist
benötigt, nicht nur neue Versionen der Plugins. Sie finden die Version im Wiki1.

Legen Sie für die Entwurfsalternativen, bei denen andere Komponenten eingesetzt werden,
ein neues System und eine neue Allokation an, die diese neue Komponente verwenden. Sie
können dazu das alte System kopieren und anpassen. Die Allokation muss neu angelegt
werden. Benennen Sie die neuen Modelle mit dem Suffix -EA-x, wobei x die Nummer der
Alternative (0 für den Ausgangsentwurf) angibt. Sie erhalten beispielsweise das System
Model File webserver-EA-1.system.

SEFFs müssen neu modelliert werden, sie können nicht aus anderen Komponenten kopiert
werden.

Falls nur das Resource Environment und/oder die Allokation verändert wird, brauchen Sie nur
diese Modelle neu zu erstellen. Auch hier kann das Resource Environment kopiert und
angepasst werden. Verwenden Sie hier ebenfalls das oben angegebene Namensschema.

Legen Sie ein zweites Usage Model für das zweite Benutzungsprofil an. Für die
Entwurfsalternative 2 benötigen Sie weiterhin zwei eigene Benutzungsprofile mit den
angepassten Dateigrößen.

Erzeugen Sie weiterhin für jede Entwurfsalternative und jedes Benutzungsprofil eine eigene
Run Config, die Sie ebenfalls nach dem obigen Schema benennen. Sie haben am Ende also 12
Run Configs angelegt, jeweils zwei pro Entwurfsalternative, nämlich pro Benutzungsprofil
eines. Benennen Sie die Run Configs und die Simulationsergebnisse wie oben angegeben plus
ein Suffix BP-y für das Benutzungsprofil y.

1 http://sdqweb.ipd.uka.de/wiki/Praktikum_Ingenieurmäßiger_Software-Entwurf_SS07

CLXXIV APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 3 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Sie können die verschiedenen Analysen nicht parallel ausführen, sondern eine nach der
anderen. Vergleichen Sie bei der Untersuchung des Benutzungsprofils 2 nur Ergebnisse, die
mit der gleichen Simulationszeit erstellt wurden. Verändern Sie die Auflösung der
Histogramme bzw. CDFs, um die Ergebnisse besser dargestellt zu sehen.

Speichern Sie die Analyseergebnisse für das Ausgangssystem und die einzelnen
Entwurfsalternativen als Grafikdatei mit demselben Namensschema. Die Datenbank muss
nicht gespeichert werden.

APPENDIX B. EXPERIMENTAL MATERIAL CLXXV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 4 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Bestehender Entwurf

Abbildung 1: Ausgangssystem und Deployment

Das dazugehörige Repository mit den benötigten Komponenten, den Schnittstellen und ihren
Signaturen wurden bereits im PCM modelliert. Laden Sie das Projekt aus dem Wiki2 herunter,
benennen Sie es nach dem Schema PCM_Webserver_Nachname um und vervollständigen
Sie es mit den folgenden Angaben.

Interaktion zwischen Benutzer und Server:

Benutzer fordern eine Seite vom Webserver an. Dieser liefert zunächst die HTML Seite
selbst zurück. Danach fragt der Browser des Benutzers die einzelnen Multimediainhalte, z.B.
Bilder, die die HTML Seite referenziert, beim Webserver ab.

Abbildung 2: Sequenzdiagramm Interaktion Benutzer Server

Für diesen gesamten Ablauf soll die Antwortzeit ermittelt werden.

Interne Verarbeitung eines Requests

2 http://sdqweb.ipd.uka.de/wiki/Praktikum_Ingenieurmäßiger_Software-Entwurf_SS07

CLXXVI APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 5 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

In diesem Abschnitt wird zunächst der Ablauf innerhalb des Webserver Systems beschrieben.
Die Resource Demands sind im Sequenzdiagramm „Request Handling“ (Abbildung 3) auf der
nächsten Seite und im Abschnitt „Resource Demands“ auf Seite 7 aufgeführt.

Der Webserver selbst bietet nach außen nur eine Schnittstelle mit der Methode HTTPRequest
an. Der gesendete HTTP Request wird zunächst von einer Dispatcher Komponente
angenommen, die für diesen Request einen neuen Thread abspaltet, der die Bearbeitung
übernimmt.

Im neuen Thread wird die RequestAnalyser Komponente aufgerufen. Der
RequestAnalyser schickt zunächst eine Nachricht an den Monitor, der die Tatsache,
dass ein Request eingetroffen ist und nun bearbeitet wird, notiert. Danach wird der Request
zunächst geparst und dann zur Bearbeitung weitergegeben.

Die Komponenten StaticFileProvider und DynamicFileProvider sind in einer
Zuständigkeitskette (Chain of Responsibility) angeordnet: Die Komponenten der Kette
prüfen, ob sie für die Bearbeitung zuständig sind, wenn nicht, leiten sie die Anfrage weiter.
Die Prüfung geschieht anhand der Dateiendung in der URL: Bei einer Dateiendung .html, .gif,
.png usw. ist der StaticFileProvider zuständig. Bei der Dateiendung .php ist der
DynamicFileProvider zuständig. Durch die Verwendung dieses Musters wird die
Entscheidung, welche Komponente welche Anfragen bearbeitet, variabel gehalten.

Der Request wird also zunächst an den StaticFileProvider weitergegeben. Wenn es
sich um ein statisch zu beantwortende Anfrage handelt, wie eine statische HTML Seite oder
ein statischer Mutimediainhalt (Bild, Video, …), so wird die Anfrage direkt von dieser
Komponente beantwortet. Andernfalls wird sie an den DynamicFileProvider
weitergeleitet.

Der DynamicFileProvider beantwortet dynamische Anfragen. Dies können mit PHP
generierte Seiten oder Multimediainhalte sein. Hierzu wird der Request analysiert und, je
nach Inhalt, verschiedene Methoden des ContentGenerator aufgerufen. Wenn eine
HTML Seite generiert werden soll, wird die Methode generateHTML(..) aufgerufen. Wenn
ein Multimediainhalt generiert werden soll, wird die Methode generateMultimedia(..)
aufgerufen. Der ContentGenerator generiert den HTML Code oder den angeforderten
Multimediainhalt und liefert ihn zurück. Der Datentyp Content beinhaltet somit entweder ein
HTML Dokument oder Multimediainhalte.

Andere Arten der Anfragen als statische und dynamische sind zur Zeit nicht vorgesehen und
müssen auch nicht beachtet werden.

Der RequestAnalyser lässt nun vom Monitor einen weiteren Eintrag in die Logdatei
vornehmen und erzeugt dann für den zurückgegebenen Content ein HTTP Response Objekt.

APPENDIX B. EXPERIMENTAL MATERIAL CLXXVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 6 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Abbildung 3: Sequenzdiagramm Request Handling

Die Übertragung von HTTP Request und Response über das Netzwerk wird vernachlässigt.
Modellieren Sie so, als wäre dies in Nullzeit möglich. Insgesamt soll die Antwortzeit vom
Absenden des Requests für die HTML Seite bis zum Erhalt des letzten Multimediaobjekts
modelliert werden.

Zeitstempel auf Extrablatt angeben: Kontrollfluss

CLXXVIII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 7 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Resource Demands
Es folgen die Angaben zum Aufwand, die teilweise auch schon im Sequenzdiagramm oben
enthalten sind:

Dispatcher

• Das Erzeugen eines neuen Threads benötigt 10 Work Units (WU). Da der Hauptthread
keine weitere Aufgaben übernimmt, muss die Tatsache, dass der Kontrollfluss in
diesem neuen Thread weitergeht, nicht explizit modelliert werden, nur der Aufwand
für das Erzeugen des Threads ist von Interesse.

RequestAnalyser

• Das Parsen des HTTP Requests durch den RequestAnalyser benötigt 10 Work
Units

• Das Erzeugen der HTTP Response aus dem gegebenen Content benötigt 5 Work
Units.

StaticFileProvider

• Statische Seiten können schnell geliefert werden, da diese meistens bereits im
Hauptspeicher des Webserver vorliegen. Sie müssen dann nur noch in die
Datenstruktur Content überführt werden, was 1 Work Unit kostet.

• Das Liefern eines statischen Multimediaobjekts benötigt 1 Festplattenzugriff,
weiterhin muss es ebenfalls in die Datenstruktur Content überführt werden, was 1
Work Unit kostet.

DynamicFileProvider

• Für dynamische Inhalte wird festgestellt, welche Art von Request vorliegt (HTML
Seite oder Multimediainhalt, Kosten 1 Work Unit) und der Request dann an die
entsprechende Methode der ContentGenerator Komponente weitergeleitet.

ContentGenerator

• Bei dynamischen HTML Seiten liegt der Aufwand zur Interpretierung bei 10 Work
Units pro KB der resultierenden HTML Seite.

• Dynamische Multimediaobjekte benötigen 15 Work Units pro KB des resultierenden
Multimediainhalts.

Monitor

• Das Erzeugen eines Eintrags in der Logdatei benötigt einen Festplattenzugriff.

Zeitstempel auf Extrablatt angeben: Resource Demands

APPENDIX B. EXPERIMENTAL MATERIAL CLXXIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 8 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Benutzungsprofile
Domänenexperten wurden zu Rate gezogen, um mögliche Benutzungsprofile zu ermitteln. Für
einen Webserver ist dies natürlich nicht leicht zu bestimmen, da viele verschiedene
Benutzungsprofile denkbar sind. Die Domänenexperten haben aber trotzdem zwei
Benutzungsprofile definiert, die für die Bewertung der Performanz verwendet werden können:

Benutzungsprofil 1

Das erste Benutzungsprofil spiegelt eine Verwendung des Webservers mit viel Multimedia-
Inhalt auf häufig statischen Seiten wieder.

• Es greift nur ein Benutzer zur Zeit auf das System zu.
• Closed Workload, Think Time 0
• In 40% der Fälle werden statische HTML Seiten abgefragt, in 60% der Fälle

dynamische.
• Multimediainhalte sind zu 70% statisch und zu 30% dynamisch generiert.
• Anzahl der Multimediaobjekte pro Seite x:

P(x = 0) = 0,1

P(x = 1) = 0,1

P(x = 2) = 0,2

P(x = 3) = 0,3

P(x = 4) = 0,2

P(x = 5) = 0,1

• Bei den dynamischen Inhalten spielt die Größe der resultierenden Datei eine Rolle.

Größe der resultierenden, dynamisch erzeugten HTML Seiten x in KB = 103 Byte:

P(5 KB <= x < 10 KB) = 0,3

P(10 KB <= x < 15 KB) = 0,5

P(15 KB <= x < 20 KB) = 0,2

Größe der resultierenden, dynamisch erzeugten Multimediainhalte x in KB:

P(5 KB <= x < 25 KB) = 0,2

P(25 KB <= x < 75 KB) = 0,6

P(75 KB <= x < 100 KB) = 0,2

Palladio: Modellieren Sie diese beiden Verteilungen als Komponentenparameter, da
sie nicht aus dem Request geschlossen werden können.

Zeitstempel auf Extrablatt angeben: Benutzungsprofil 1

CLXXX APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 9 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Benutzungsprofil 2

Im zweiten Benutzungsprofil werden mehr dynamische textuelle Inhalte abgerufen, wie
beispielsweise in einem Wiki. Weiterhin werden mehr Benutzer erwartet.

• Die Zwischenankunftszeit ist exponentialverteilt mit dem Erwartungswert 1 Sekunde.
Tragen Sie in den StoEx des Open Workload einfach „Exp(1)“ ein.

• In 20% der Fälle werden statische HTML Seiten abgefragt, in 80% der Fälle
dynamische.

• Es werden weniger Multimediainhalte pro Seite abgefragt. Anzahl der
Multimediaobjekte pro Seite x:

P(x = 0) = 0,3

P(x = 1) = 0,3

P(x = 2) = 0,2

P(x = 3) = 0,1

P(x = 4) = 0,1

• Es werden mehr dynamische Multimediainhalte abgefragt. Multimediainhalte sind nun
zu 60% statisch und zu 40% dynamisch generiert.

Zeitstempel auf Extrablatt angeben: Benutzungsprofil 2

APPENDIX B. EXPERIMENTAL MATERIAL CLXXXI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 10 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Ressourcenumgebung
Alle Komponenten sind auf einem Server eingesetzt, wie Abbildung 1 bereits zeigt. Die CPU
des Systems ist ein AMD Athlon XP mit einer Taktrate von 1,145 GHz. Ein CPU Zyklus
entspricht einer Instruktion. Für die Angaben wurde der Rechenaufwand in Work Units
angegeben. Ein Work Unit entspricht ca. 1,145 * 106 Instruktionen = 1,145 * 106 CPU
Zyklen. Es wurde gemessen, dass die Latenzzeit der Festplatte (Seek Time) 3,5 ms ist und sie
weiterhin ca. 24 MB/s = 24 * 106 Byte/s lesen bzw. schreiben kann.

Das Resource Environment ist für Palladio bereits vorgegeben. Sie müssen allerdings noch
die Verarbeitungsgeschwindigkeiten der Geräte angeben. Für die CPU bietet sich z.B. als
Einheit „Work Units pro Sekunde“ an. Für die Festplatte modellieren Sie nur die Latenz (Seek
Time), der Durchsatz kann vernachlässigt werden. Beide Geräte haben bereits die benötigte
Scheduling Policy „Processor Sharing“ voreingestellt.

Zeitstempel auf Extrablatt angeben: Ressourcenumgebung

CLXXXII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 11 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternativen
Modellieren Sie die Entwurfsalternativen erst, wenn das Ausgangsystem vollständig
modelliert ist. Lassen Sie Ihr Ausgangssystem erst überprüfen, bevor Sie die
Entwurfsalternativen modellieren.

Entwurfsalternative 1: Cache für dynamische Inhalte
Motivation

Die Erzeugung von Seiten mit dynamischem Inhalt erfordert Rechenzeit und muss im
Normalbetrieb für jeden Request neu geschehen. Bei der Erzeugung von PHP Seiten muss
beispielsweise zunächst das PHP Skript interpretiert werden und danach mit dem erzeugten
ausführbaren PHP Code die tatsächliche HTML Seite generiert werden. Wenn jedoch
dieselben Inhalte immer wieder angefragt werden, die außerdem rechenintensiv in der
Erzeugung sind, kann es sinnvoll sein, einen Cache für dynamische Seiten einzusetzen. Ein
Beispiel ist eAccelerator, einem sog. PHP Accelerator, der den ausführbaren PHP Code
zwischenspeichert.

Anpassung des Systems

Die Komponente ContentGenerator wird in dieser Entwurfsalternative durch die Komponente
AcceleratedContentGenerator ersetzt. Innerhalb dieser Komponente ist der Resource Demand
zum Erzeugen eines dynamischen Inhalts nun anders als oben unter Ressourcenumgebung
angegeben:

• 30 % des dynamischen Inhalts (Seiten und Multimediainhalte) liegen im Cache der
AcceleratedContentGenerator Komponente bereits ausführbar vor. Für diese fallen nur
3 Work Units pro KB der resultierenden Datei für die Ausführung an.

• Für die anderen 70 % des dynamischen Inhalts wird weiterhin zuerst die Skriptdatei
von der AcceleratedContentGenerator Komponente interpretiert und dann die Inhalte
(HTML oder Multimediaobjekt) generiert. Der Aufwand zur Erzeugung liegt hier
weiterhin bei 10 bzw. 15 Work Units pro KB der resultierenden Datei.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 1

Abbildung 4: Entwurfsalternative 1: System und Deployment

APPENDIX B. EXPERIMENTAL MATERIAL CLXXXIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 12 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 2: Dynamischer Lookup
Motivation

Diese Entwurfsalternative hat im Gegensatz zu den bisherigen Alternativen nicht zum Ziel,
die Performanz des Systems zu verbessern, sondern die Skalierbarkeit. Wenn alle
Komponenten ihr Kommunikationspartner über einen dynamischen Lookup finden, kann die
Allokation der Komponenten leicht verändert werden, beispielsweise können neue Server
angeschafft und einige der Komponenten darauf eingesetzt werden, ohne Änderungen am
Code vornehmen zu müssen. Allerdings benötigt das dynamische Auffinden des
Kommunikationspartners zusätzlichen Rechenaufwand.

Es wurde beschlossen, dass der dynamische Lookup nur verwendet werden soll, wenn sein
Einsatz die Antwortzeit des Systems für die gegebenen Benutzungsprofile um nicht mehr als
10% verschlechtert. Analysieren Sie, ob dieses Performanzziel eingehalten werden kann und
geben Sie an, ob diese Entwurfsalternative nach diesen Vorgaben eingesetzt werden kann.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 2

CLXXXIV APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 13 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 3: Logging parallelisieren
Motivation

Eine weitere Alternative zur Reduzierung des Aufwands, das Logging über die Monitor-
Komponente wenn möglich parallel zum eigentlichen Kontrollfluss auszuführen.

Anpassung des Systems

Dafür wird eine neue Komponente FastRequestAnalyser eingeführt, die die RequestAnalyser
Komponente ersetzt und sich wie unten angeben verhält. Der erste Aufruf der Monitor-
Komponente kann parallel zur Weiterverarbeitung des Requests durch den Static- bzw.
DynamicFileProvider geschehen. Für den zweiten Aufruf werden die Ergebnisse des
StaticFileProviders für die Zusammenfassung der Response benötigt. Der zweite Aufruf kann
also nur parallel zur Generierung der Response durchgeführt werden. Um dies zu
verdeutlichen, wurde im unten angegebenen Sequenzdiagramm die Generierung der HTTP
Response diesmal explizit modelliert.

Um parallel arbeiten zu können, muss ein Thread für das Logging vom Haupt-Thread
abgespalten werden, der Resource Demand dafür ist im Abschnitt Resource Demands auf
Seite 7 angegeben. Dieser Thread kann für den zweiten parallelen Abschnitt wiederverwendet
werden, der Aufwand für das Erzeugen eines neuen Threads fällt also nur einmal an.

Abbildung 5: Entwurfsalternative 3: System und Deployment

Sequenzdiagramm auf der nächsten Seite.

APPENDIX B. EXPERIMENTAL MATERIAL CLXXXV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 14 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Abbildung 6: Entwurfsalternative 3: Veränderter Ablauf

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 3

CLXXXVI APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 15 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 4: Hardware Replikation mit einem zweiten Server
Motivation

Ein Teil der Komponenten wird in dieser Entwurfsalternative auf einen zweiten Server
ausgelagert. In diesem Fall wurde beschlossen, die Komponenten DynamicFileProvider und
ContentGenerator auf den zweiten Server auszulagern, so dass der erste Server die Anfragen
annimmt, analysiert und statische Anfragen bedient, und der zweite dynamische Anfragen.

Angaben zur Ressourcenumgebung

Der zweite Server (AppServer) hat eine doppelt so schnelle CPU wie der erste. Die Festplatte
hat die gleichen Leistungsmerkmale.

Das folgende Diagramm zeigt die neue Allokation des Systems:

Dispatcher

Monitor

Request
Analyser

IParseRequest

Static File
Provider

Dynamic
FileProvider

IServeRequest

Content
Generator

IDynamicContent

IServeRequest
IHTTP

IMonitor

<<Resource Container>>
Webserver

<<Resource Container>>
AppServer

<<LinkingResource>>
1GBit LAN, Latency 0.5 ms

Abbildung 7: Entwurfsalternative 4: System und Deployment

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 4

APPENDIX B. EXPERIMENTAL MATERIAL CLXXXVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 16 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 5: Thread Pool
Motivation

Im Normalbetrieb erstellt der Webserver in der Dispatcher Komponente für jede Anfrage
einen neuen Thread. Die Erzeugung eines Threads ist dabei mit Rechenaufwand verbunden.

Eine Entwurfsalternative ist die Einführung eines Thread Pools. Hier hält der Webserver
bereits eine Anzahl Threads vor, und weist jedem Request dann nur noch einen Thread zu.
Ein Vorteil dieser Entwurfsalternative ist, dass bei einer hohen Last nicht mehr zu viele
Threads gleichzeitig aktiv sind und durch ständigen Kontextwechsel die Ressourcen nur
suboptimal ausnutzen. Weiterhin wird die Zeit für die Erzeugung eines neuen Threads
eingespart.

Anpassung des Systems

Modellieren Sie einen Threadpool der Größe 8. Gehen Sie dabei davon aus, dass mit dem
Holen eines Threads aus dem Threadpool kein Rechenaufwand verbunden ist.

Diese Entwurfsalternative wird durch eine neue Komponente PoolingDispatcher realisiert, die
die Komponente Dispatcher ersetzt.

Abbildung 8: Entwurfsalternative 5: System und Deployment

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 5

CLXXXVIII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 17 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Fragestellungen
Untersuchen Sie das Ausgangssystem und die verschiedenen Entwurfsalternativen und
sichern Sie die Ergebnisse wie oben unter Durchführung (Seite 2) angegeben.

1. Welche Entwurfsalternativen sollten eingesetzt werden*, welche nicht? Differenzieren
Sie Ihre Antwort nach den beiden Benutzungsprofilen. Geben Sie Ihre Antwort und
eine Begründung in der Tabelle 1 unten an.
(*: Die Alternative 2 braucht die Antwortzeit nicht verbessern, darf sie aber nicht
mehr als 10% verschlechtern, um eingesetzt zu werden.)

2. Angenommen, es wäre nicht möglich, alle sinnvollen Entwurfsalternativen
umzusetzen, sondern nur einige, welche wäre das? Stellen Sie eine Reihenfolge der
Entwurfsentscheidungen auf, um diese Frage zu beantworten, und sortieren Sie die
Entwurfsentscheidungen in Tabelle 2, beginnend mit der nützlichsten. Beachten Sie
dabei nicht eventuelle Abhängigkeiten der Entwurfsentscheidungen untereinander.

Verschiedene Zeitstempel auf Extrablatt angeben: Analyse

Entwurfsalternative Benutz-
ungs-
profil

Einsetzen? Mit Begründung.

1: Cache für dyn.

 Inhalte

1

2

2: Dynamischer

 Lookup

1

2

3: Logging

 parallelisieren

1

2

4: Hardware

 Replikation

1

2

5: Thread Pool 1

2

Tabelle 1: Bewertung der Entwurfsalternativen

APPENDIX B. EXPERIMENTAL MATERIAL CLXXXIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:47 - 18 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

 Reihenfolge

Entwurfsalternative Benutzungsprofil 1 Benutzungsprofil 2

1: Cache für dyn. Inhalte

3: Logging parallelisieren

4: Hardware Replikation

5: Thread Pool
Tabelle 2: Reihenfolge der Entwurfsalternativen

Kommentare zu den Entwurfsalternativen:

CXC APPENDIX B. EXPERIMENTAL MATERIAL

APPENDIX B. EXPERIMENTAL MATERIAL CXCI

SPE

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Name: ___

Fallstudie:
Vergleich von Performanzvorhersageverfahren
Ein neuer komponentenbasierter Webserver soll entwickelt werden. Während der gesamten
Entwicklung soll die Performanz des Entwurfs bewertet werden, um den späteren Benutzern
ein System mit akzeptablen Antwortzeiten bieten zu können. Da Sie mit der
Performanzanalyse vertraut sind, werden Sie gebeten, verschiedene Entwurfsalternativen
hinsichtlich ihrer Performanz zu untersuchen.

Zeitstempel
Um untersuchen zu können, wie viel der Zeit auf welche Aufgabenteile entfällt, geben Sie
bitte jeweils minutengenaue Zeiten für die Teilaufgaben an. Sie müssen dabei die
Aufgabenteile nicht alle in der Reihenfolge abarbeiten, in der Sie sie hier vorfinden.
Differenzieren Sie bei den Zeitstempeln weiterhin nach der Zeit für die reine Modellierung
und der Zeit für die Fehlersuche.

Modellieren und analysieren Sie aber zunächst das Ausgangsystem vollständig und erst
danach die Entwurfsalternativen, wenn Ihr Ausgangssystem abgenommen wurde. Führen Sie
auch bei den Entwurfsalternativen erst die Analyse einer Entwurfsalternative durch, bevor Sie
zur nächsten übergehen. Geben Sie Ihre Ergebnisse direkt in das Ergebnisblatt am Ende ein.

Checken Sie Ihre Lösung jeweils zu einem Zeitstempel in Ihren SVN Account ein, um ein
Backup zu haben.

Zeitstempel auf Extrablatt angeben: Austeilung der Aufgabenstellung.

Übersicht über die Aufgabenstellung:
Fallstudie: Vergleich von Performanzvorhersageverfahren .. 1

Zeitstempel ... 1

Übersicht über die Aufgabenstellung: .. 1

Durchführung der Untersuchungen .. 2

SPE ... 2

Bestehender Entwurf .. 3

Resource Demands ... 6

Benutzungsprofile .. 7

Ressourcenumgebung ... 9

Entwurfsalternativen .. 10

Entwurfsalternative 1: Cache für dynamische Inhalte ... 10

Entwurfsalternative 2: Dynamischer Lookup .. 11

Entwurfsalternative 3: Logging parallelisieren .. 12

Entwurfsalternative 4: Hardware Replikation mit einem zweiten Server 14

SPE-ED

CXCII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 5: Thread Pool .. 15

Fragestellungen .. 16

Durchführung der Untersuchungen
Modellieren und analysieren Sie zunächst das Ausgangsystem. Lassen Sie Ihre Modellierung
und die Ergebnisse überprüfen, bevor Sie mit der Modellierung der Entwurfsalternativen
beginnen.

Modellieren und analysieren Sie die Entwurfsalternativen in der hier angegebenen
Reihenfolge. Analysieren Sie eine fertiggestellte Entwurfsalternative und tragen Sie die
Ergebnisse in die Tabelle am Ende ein, bevor Sie mit der nächsten Entwurfsalternative
fortfahren.

Arbeiten Sie in einem Verzeichnis Webserver-Nachname, das Sie bei jedem Zeitstempel
(oder auch häufiger) in Ihr SVN Repository einchecken. Geben Sie in der Log Message den
Namen des Zeitstempels an.

SPE
Untersuchen Sie mit SPE-ED die durchschnittliche Antwortzeit.

Legen Sie für jede Entwurfsalternative (EA) und Benutzungsprofil ein eigenes Projekt an. Sie
können die Projekte auch in unterschiedlichen Verzeichnissen in eigenen SPE-ED
Installationen ablegen, damit Sie das Ausgangsprojekt kopieren und weiterverwenden können.
Nennen Sie entweder die Projekte Webserver-EA-x-BP-y, wobei x die Nummer der
Alternative (0 für den Ausgangsentwurf) und y die Nummer des Benutzungsprofils angibt,
oder benennen Sie die Verzeichnisse nach diesem Schema.

Wichtig: Bedenken Sie, dass Sie nur vier Navigationsboxen zur Verfügung haben und Sie
nicht zu viele Expand Nodes einsetzen können. Gehen Sie also sparsam mit Expand Nodes
um, indem Sie Sequenzen innerhalb einer Expand Node zusammenfassen und als eine Basic
Node modellieren. Nur für Schleifen und Verzweigungen sollten Expand Nodes verwendet
werden, aber auch hier nicht immer. Überlegen Sie, wie Sie die verfügbaren
Navigationsboxen verwenden, bevor Sie mit der Modellierung beginnen.

Bewerten Sie die Entwurfsalternativen aufgrund der Antwortzeiten für beide
Anwendungsfälle. Der einfachste Weg hierfür ist es, jeweils beide Anwendungsfälle in einem
Szenario zu modellieren. Sie haben dann den Vorteil, dass Sie nur die „Scenario Contention
Analyse“ durchführen müssen. Für Entwurfsalternative 1 benötigen Sie ein weiteres Szenario
auf einer weiteren Facility. Untersuchen Sie die Antwortzeit für dieses Szenario und setzen
Sie das Ergebnis in einen Synchronisationsknoten im Ausgangsszenario als Delay ein. Auch
hier benötigen Sie also keine Simulation.

Prüfen Sie bei jeder Analyse, ob immer noch die richtige Analyseart ausgewählt ist.

Speichern Sie einen Screenshot der Analyseergebnisse für das Ausgangssystem und die
einzelnen Entwurfsalternativen als Grafikdatei mit demselben Namensschema. Insgesamt
müssen Sie 12 Dateien speichern, durch die Kombination von 6 Entwurfsalternativen
(inklusive dem Ausgangssystem als EA0) mit zwei Benutzungsprofilen.

APPENDIX B. EXPERIMENTAL MATERIAL CXCIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 3 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Bestehender Entwurf

Abbildung 1: Ausgangssystem und Deployment

Interaktion zwischen Benutzer und Server:

Benutzer fordern eine Seite vom Webserver an. Dieser liefert zunächst die HTML Seite
selbst zurück. Danach fragt der Browser des Benutzers die einzelnen Multimediainhalte, z.B.
Bilder, die die HTML Seite referenziert, beim Webserver ab.

Abbildung 2: Sequenzdiagramm Interaktion Benutzer Server

Für diesen gesamten Ablauf soll die Antwortzeit ermittelt werden.

Interne Verarbeitung eines Requests

In diesem Abschnitt wird zunächst der Ablauf innerhalb des Webserver Systems beschrieben.
Die Resource Demands sind im Sequenzdiagramm „Request Handling“ (Abbildung 3) auf der
nächsten Seite und im Abschnitt „Resource Demands“ auf Seite 6 aufgeführt.

Der Webserver selbst bietet nach außen nur eine Schnittstelle mit der Methode HTTPRequest
an. Der gesendete HTTP Request wird zunächst von einer Dispatcher Komponente
angenommen, die für diesen Request einen neuen Thread abspaltet, der die Bearbeitung
übernimmt.

CXCIV APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 4 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Im neuen Thread wird die RequestAnalyser Komponente aufgerufen. Der
RequestAnalyser schickt zunächst eine Nachricht an den Monitor, der die Tatsache,
dass ein Request eingetroffen ist und nun bearbeitet wird, notiert. Danach wird der Request
zunächst geparst und dann zur Bearbeitung weitergegeben.

Die Komponenten StaticFileProvider und DynamicFileProvider sind in einer
Zuständigkeitskette (Chain of Responsibility) angeordnet: Die Komponenten der Kette
prüfen, ob sie für die Bearbeitung zuständig sind, wenn nicht, leiten sie die Anfrage weiter.
Die Prüfung geschieht anhand der Dateiendung in der URL: Bei einer Dateiendung .html, .gif,
.png usw. ist der StaticFileProvider zuständig. Bei der Dateiendung .php ist der
DynamicFileProvider zuständig. Durch die Verwendung dieses Musters wird die
Entscheidung, welche Komponente welche Anfragen bearbeitet, variabel gehalten.

Der Request wird also zunächst an den StaticFileProvider weitergegeben. Wenn es
sich um ein statisch zu beantwortende Anfrage handelt, wie eine statische HTML Seite oder
ein statischer Mutimediainhalt (Bild, Video, …), so wird die Anfrage direkt von dieser
Komponente beantwortet. Andernfalls wird sie an den DynamicFileProvider
weitergeleitet.

Der DynamicFileProvider beantwortet dynamische Anfragen. Dies können mit PHP
generierte Seiten oder Multimediainhalte sein. Hierzu wird der Request analysiert und, je
nach Inhalt, verschiedene Methoden des ContentGenerator aufgerufen. Wenn eine
HTML Seite generiert werden soll, wird die Methode generateHTML(..) aufgerufen. Wenn
ein Multimediainhalt generiert werden soll, wird die Methode generateMultimedia(..)
aufgerufen. Der ContentGenerator generiert den HTML Code oder den angeforderten
Multimediainhalt und liefert ihn zurück. Der Datentyp Content beinhaltet somit entweder ein
HTML Dokument oder Multimediainhalte.

Andere Arten der Anfragen als statische und dynamische sind zur Zeit nicht vorgesehen und
müssen auch nicht beachtet werden.

Der RequestAnalyser lässt nun vom Monitor einen weiteren Eintrag in die Logdatei
vornehmen und erzeugt dann für den zurückgegebenen Content ein HTTP Response Objekt.

APPENDIX B. EXPERIMENTAL MATERIAL CXCV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 5 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Abbildung 3: Sequenzdiagramm Request Handling

Die Übertragung von HTTP Request und Response über das Netzwerk wird vernachlässigt.
Modellieren Sie so, als wäre dies in Nullzeit möglich. Insgesamt soll die Antwortzeit vom
Absenden des Requests für die HTML Seite bis zum Erhalt des letzten Multimediaobjekts
modelliert werden.

Zeitstempel auf Extrablatt angeben: Kontrollfluss

CXCVI APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 6 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Resource Demands
Es folgen die Angaben zum Aufwand, die teilweise auch schon im Sequenzdiagramm oben
enthalten sind:

Dispatcher

• Das Erzeugen eines neuen Threads benötigt 10 Work Units (WU). Da der Hauptthread
keine weitere Aufgaben übernimmt, muss die Tatsache, dass der Kontrollfluss in
diesem neuen Thread weitergeht, nicht explizit modelliert werden, nur der Aufwand
für das Erzeugen des Threads ist von Interesse.

RequestAnalyser

• Das Parsen des HTTP Requests durch den RequestAnalyser benötigt 10 Work
Units

• Das Erzeugen der HTTP Response aus dem gegebenen Content benötigt 5 Work
Units.

StaticFileProvider

• Statische Seiten können schnell geliefert werden, da diese meistens bereits im
Hauptspeicher des Webserver vorliegen. Sie müssen dann nur noch in die
Datenstruktur Content überführt werden, was 1 Work Unit kostet.
Das statische Multimediaobjekt wird von der Festplatte geladen, d.h. es wird 1
Festplattenzugriff benötigt. Der Mittelwert der Größe der geladenen
Multimediaobjekte ist 50 KB. Weiterhin muss es ebenfalls in die Datenstruktur
Content überführt werden, was 1 Work Unit kostet.

DynamicFileProvider

• Für dynamische Inhalte wird festgestellt, welche Art von Request vorliegt (HTML
Seite oder Multimediainhalt, Kosten 1 Work Unit) und der Request dann an die
entsprechende Methode der ContentGenerator Komponente weitergeleitet.

ContentGenerator

• Bei dynamischen HTML Seiten liegt der Aufwand zur Interpretierung bei 10 Work
Units pro KB der resultierenden HTML Seite.

• Dynamische Multimediaobjekte benötigen 15 Work Units pro KB des resultierenden
Multimediainhalts.

Monitor

• Das Erzeugen eines Eintrags in der Logdatei benötigt einen Festplattenzugriff. Es
werden ca. 240 Byte pro Zugriff geschrieben.

Zeitstempel auf Extrablatt angeben: Resource Demands

APPENDIX B. EXPERIMENTAL MATERIAL CXCVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 7 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Benutzungsprofile
Domänenexperten wurden zu Rate gezogen, um mögliche Benutzungsprofile zu ermitteln. Für
einen Webserver ist dies natürlich nicht leicht zu bestimmen, da viele verschiedene
Benutzungsprofile denkbar sind. Die Domänenexperten haben aber trotzdem zwei
Benutzungsprofile definiert, die für die Bewertung der Performanz verwendet werden können:

Benutzungsprofil 1

Das erste Benutzungsprofil spiegelt eine Verwendung des Webservers mit viel Multimedia-
Inhalt auf häufig statischen Seiten wieder.

• Es greift nur ein Benutzer zur Zeit auf das System zu.
• No Contention Lösung oder Closed Workload, Think Time 0
• In 40% der Fälle werden statische HTML Seiten abgefragt, in 60% der Fälle

dynamische.
• Multimediainhalte sind zu 70% statisch und zu 30% dynamisch generiert.
• Anzahl der Multimediaobjekte pro Seite: Mittelwert 2,5
• Bei den dynamischen Inhalten spielt die Größe der resultierenden Datei eine Rolle.

Größe der resultierenden, dynamisch erzeugten HTML Seiten x in KB = 103 Byte:
o Mittelwert 12 KB

Größe der resultierenden, dynamisch erzeugten Multimediainhalte x in KB:

o Mittelwert 50 KB

• Die Verteilungen werden nicht direkt benötigt, nur ggf. für die Abschätzung in
Entwurfsalternative 5: Thread Pool:

Verteilung der Größe der resultierenden, dynamisch erzeugten HTML Seiten

P(5 KB <= x < 10 KB) = 0,3

P(10 KB <= x < 15 KB) = 0,5

P(15 KB <= x < 20 KB) = 0,2

Verteilung der Größe der resultierenden, dynamisch erzeugten Multimediainhalte

P(5 KB <= x < 25 KB) = 0,2

P(25 KB <= x < 75 KB) = 0,6

P(75 KB <= x < 100 KB) = 0,2

Verteilung der Anzahl von Multimediaobjekten x pro Seite:

P(x = 0) = 0,1

P(x = 1) = 0,1

P(x = 2) = 0,2

P(x = 3) = 0,3

P(x = 4) = 0,2

P(x = 5) = 0,1

Zeitstempel auf Extrablatt angeben: Benutzungsprofil 1

CXCVIII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 8 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Benutzungsprofil 2

Im zweiten Benutzungsprofil werden mehr dynamische textuelle Inhalte abgerufen, wie
beispielsweise in einem Wiki. Weiterhin werden mehr Benutzer erwartet.

• Ankunftsrate 1 Benutzer pro Sekunde
• In 20% der Fälle werden statische HTML Seiten abgefragt, in 80% der Fälle

dynamische.
• Es werden mehr dynamische Multimediainhalte abgefragt. Multimediainhalte sind nun

zu 60% statisch und zu 40% dynamisch generiert.
• Es werden weniger Multimediainhalte pro Seite abgefragt, im Mittel nur 1,4.

Die Verteilungen werden nicht direkt benötigt, nur ggf. für die Abschätzung in
Entwurfsalternative 5: Thread Pool:
Verteilung der Anzahl von Multimediaobjekten x pro Seite:

P(x = 0) = 0,3

P(x = 1) = 0,3

P(x = 2) = 0,2

P(x = 3) = 0,1

P(x = 4) = 0,1

Zeitstempel auf Extrablatt angeben: Benutzungsprofil 2

APPENDIX B. EXPERIMENTAL MATERIAL CXCIX

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 9 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Ressourcenumgebung
Alle Komponenten sind auf einem Server eingesetzt, wie Abbildung 1 bereits zeigt. Die CPU
des Systems ist ein AMD Athlon XP mit einer Taktrate von 1,145 GHz. Ein CPU Zyklus
entspricht einer Instruktion. Für die Angaben wurde der Rechenaufwand in Work Units
angegeben. Ein Work Unit entspricht ca. 1,145 * 106 Instruktionen = 1,145 * 106 CPU
Zyklen. Es wurde gemessen, dass die Latenzzeit der Festplatte (Seek Time) 3,5 ms ist und sie
weiterhin ca. 24 MB/s = 24 * 106 Byte/s lesen bzw. schreiben kann.

Verwenden Sie für SPE-ED die Webserver Facility und legen Sie ein neues Software Spec
Template an. Ändern Sie die auch Service Unit und Service Time der einzelnen Devices. Für
die CPU bietet sich z.B. als Service Einheit „Megainstruktionen“ an.

Zeitstempel auf Extrablatt angeben: Ressourcenumgebung

CC APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 10 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternativen
Modellieren Sie die Entwurfsalternativen erst, wenn das Ausgangsystem vollständig
modelliert ist. Lassen Sie Ihr Ausgangssystem erst überprüfen, bevor Sie die
Entwurfsalternativen modellieren.

Entwurfsalternative 1: Cache für dynamische Inhalte
Motivation

Die Erzeugung von Seiten mit dynamischem Inhalt erfordert Rechenzeit und muss im
Normalbetrieb für jeden Request neu geschehen. Bei der Erzeugung von PHP Seiten muss
beispielsweise zunächst das PHP Skript interpretiert werden und danach mit dem erzeugten
ausführbaren PHP Code die tatsächliche HTML Seite generiert werden. Wenn jedoch
dieselben Inhalte immer wieder angefragt werden, die außerdem rechenintensiv in der
Erzeugung sind, kann es sinnvoll sein, einen Cache für dynamische Seiten einzusetzen. Ein
Beispiel ist eAccelerator, einem sog. PHP Accelerator, der den ausführbaren PHP Code
zwischenspeichert.

Anpassung des Systems

Die Komponente ContentGenerator wird in dieser Entwurfsalternative durch die Komponente
AcceleratedContentGenerator ersetzt. Innerhalb dieser Komponente ist der Resource Demand
zum Erzeugen eines dynamischen Inhalts nun anders als oben unter Ressourcenumgebung
angegeben:

• 30 % des dynamischen Inhalts (Seiten und Multimediainhalte) liegen im Cache der
AcceleratedContentGenerator Komponente bereits ausführbar vor. Für diese fallen nur
3 Work Units pro KB der resultierenden Datei für die Ausführung an.

• Für die anderen 70 % des dynamischen Inhalts wird weiterhin zuerst die Skriptdatei
von der AcceleratedContentGenerator Komponente interpretiert und dann die Inhalte
(HTML oder Multimediaobjekt) generiert. Der Aufwand zur Erzeugung liegt hier
weiterhin bei 10 bzw. 15 Work Units pro KB der resultierenden Datei.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 1

Abbildung 4: Entwurfsalternative 1: System und Deployment

APPENDIX B. EXPERIMENTAL MATERIAL CCI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 11 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 2: Dynamischer Lookup
Motivation

Diese Entwurfsalternative hat im Gegensatz zu den bisherigen Alternativen nicht zum Ziel,
die Performanz des Systems zu verbessern, sondern die Skalierbarkeit. Wenn alle
Komponenten ihr Kommunikationspartner über einen dynamischen Lookup finden, kann die
Allokation der Komponenten leicht verändert werden, beispielsweise können neue Server
angeschafft und einige der Komponenten darauf eingesetzt werden, ohne Änderungen am
Code vornehmen zu müssen. Allerdings benötigt das dynamische Auffinden des
Kommunikationspartners zusätzlichen Rechenaufwand.

Es wurde beschlossen, dass der dynamische Lookup nur verwendet werden soll, wenn sein
Einsatz die Antwortzeit des Systems für die gegebenen Benutzungsprofile um nicht mehr als
10% verschlechtert. Analysieren Sie, ob dieses Performanzziel eingehalten werden kann und
geben Sie an, ob diese Entwurfsalternative nach diesen Vorgaben eingesetzt werden kann.

Angaben zum Rechenaufwand

• Der dynamische Lookup einer anderen Komponente kostet 17 Work Units.

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 2

CCII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 12 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 3: Logging parallelisieren
Motivation

Eine weitere Alternative zur Reduzierung des Aufwands, das Logging über die Monitor-
Komponente wenn möglich parallel zum eigentlichen Kontrollfluss auszuführen.

Anpassung des Systems

Dafür wird eine neue Komponente FastRequestAnalyser eingeführt, die die RequestAnalyser
Komponente ersetzt und sich wie unten angeben verhält. Der erste Aufruf der Monitor-
Komponente kann parallel zur Weiterverarbeitung des Requests durch den Static- bzw.
DynamicFileProvider geschehen. Für den zweiten Aufruf werden die Ergebnisse des
StaticFileProviders für die Zusammenfassung der Response benötigt. Der zweite Aufruf kann
also nur parallel zur Generierung der Response durchgeführt werden. Um dies zu
verdeutlichen, wurde im unten angegebenen Sequenzdiagramm die Generierung der HTTP
Response diesmal explizit modelliert.

Um parallel arbeiten zu können, muss ein Thread für das Logging vom Haupt-Thread
abgespalten werden, der Resource Demand dafür ist im Abschnitt Resource Demands auf
Seite 6 angegeben. Dieser Thread kann für den zweiten parallelen Abschnitt wiederverwendet
werden, der Aufwand für das Erzeugen eines neuen Threads fällt also nur einmal an.

In SPE-ED können Sie die Parallelität nicht direkt modellieren. Sie müssen hier abschätzen,
welche Software Resource Requirements weggelassen werden können.

Abbildung 5: Entwurfsalternative 3: System und Deployment

Sequenzdiagramm auf der nächsten Seite.

APPENDIX B. EXPERIMENTAL MATERIAL CCIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 13 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Abbildung 6: Entwurfsalternative 3: Veränderter Ablauf

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 3

CCIV APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 14 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 4: Hardware Replikation mit einem zweiten Server
Motivation

Ein Teil der Komponenten wird in dieser Entwurfsalternative auf einen zweiten Server
ausgelagert. In diesem Fall wurde beschlossen, die Komponenten DynamicFileProvider und
ContentGenerator auf den zweiten Server auszulagern, so dass der erste Server die Anfragen
annimmt, analysiert und statische Anfragen bedient, und der zweite dynamische Anfragen.

Angaben zur Ressourcenumgebung

Der zweite Server (AppServer) hat eine doppelt so schnelle CPU wie der erste. Die Festplatte
hat die gleichen Leistungsmerkmale. Verwenden Sie das DB Server Facility Template und
passen Sie die Daten in der Overhead Matrix an. Denken Sie daran, die Anzahl der Festplatten
auf 1 zu setzen.

Das folgende Diagramm zeigt die neue Allokation des Systems:

Dispatcher

Monitor

Request
Analyser

IParseRequest

Static File
Provider

Dynamic
FileProvider

IServeRequest

Content
Generator

IDynamicContent

IServeRequest
IHTTP

IMonitor

<<Resource Container>>
Webserver

<<Resource Container>>
AppServer

<<LinkingResource>>
1GBit LAN, Latency 0.5 ms

Abbildung 7: Entwurfsalternative 4: System und Deployment

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 4

APPENDIX B. EXPERIMENTAL MATERIAL CCV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 15 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Entwurfsalternative 5: Thread Pool
Motivation

Im Normalbetrieb erstellt der Webserver in der Dispatcher Komponente für jede Anfrage
einen neuen Thread. Die Erzeugung eines Threads ist dabei mit Rechenaufwand verbunden.

Eine Entwurfsalternative ist die Einführung eines Thread Pools. Hier hält der Webserver
bereits eine Anzahl Threads vor, und weist jedem Request dann nur noch einen Thread zu.
Ein Vorteil dieser Entwurfsalternative ist, dass bei einer hohen Last nicht mehr zu viele
Threads gleichzeitig aktiv sind und durch ständigen Kontextwechsel die Ressourcen nur
suboptimal ausnutzen. Weiterhin wird die Zeit für die Erzeugung eines neuen Threads
eingespart.

Anpassung des Systems

Modellieren Sie einen Threadpool der Größe 8. Gehen Sie dabei davon aus, dass mit dem
Holen eines Threads aus dem Threadpool kein Rechenaufwand verbunden ist. Für SPE-ED
müssen Sie abschätzen, wie lange die Anfrage eines Benutzers ggf. durch die Verwendung
des Pools verzögert wird. Dies hängt von der Ankunftsrate der Benutzer sowie der Dauer, wie
lange die Ressource blockiert ist, ab. Im Ein-Benutzer-Fall im Benutzungsprofil 1 tritt
natürlich keine Verzögerung auf.

Geben Sie Ihre Schätzung sowie eine knappe Herleitung außerdem hier an: Durchschnittliche
Verzögerung durch Thread Pool im Benutzungsprofil 2:

 __________________ weil

Diese Entwurfsalternative wird durch eine neue Komponente PoolingDispatcher realisiert, die
die Komponente Dispatcher ersetzt.

Abbildung 8: Entwurfsalternative 5: System und Deployment

Zeitstempel auf Extrablatt angeben: Entwurfsalternative 5

CCVI APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 16 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Fragestellungen
Untersuchen Sie das Ausgangssystem und die verschiedenen Entwurfsalternativen und
sichern Sie die Ergebnisse wie oben unter Durchführung (Seite 2) angegeben.

1. Welche Entwurfsalternativen sollten eingesetzt werden*, welche nicht? Differenzieren
Sie Ihre Antwort nach den beiden Benutzungsprofilen. Geben Sie Ihre Antwort und
eine Begründung in der Tabelle 1 unten an.
(*: Die Alternative 2 braucht die Antwortzeit nicht verbessern, darf sie aber nicht
mehr als 10% verschlechtern, um eingesetzt zu werden.)

2. Angenommen, es wäre nicht möglich, alle sinnvollen Entwurfsalternativen
umzusetzen, sondern nur einige, welche wäre das? Stellen Sie eine Reihenfolge der
Entwurfsentscheidungen auf, um diese Frage zu beantworten, und sortieren Sie die
Entwurfsentscheidungen in Tabelle 2, beginnend mit der nützlichsten. Beachten Sie
dabei nicht eventuelle Abhängigkeiten der Entwurfsentscheidungen untereinander.

Verschiedene Zeitstempel auf Extrablatt angeben: Analyse

Entwurfsalternative Benutz-
ungs-
profil

Durchschn.
Antwort-
zeit

Einsetzen? Mit Begründung.

1: Cache für dyn.

 Inhalte

1

2

2: Dynamischer

 Lookup

1

2

3: Logging

 parallelisieren

1

2

4: Hardware

 Replikation

1

2

5: Thread Pool 1

2

Tabelle 1: Bewertung der Entwurfsalternativen

APPENDIX B. EXPERIMENTAL MATERIAL CCVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:04 - 17 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

 Reihenfolge

Entwurfsalternative Benutzungsprofil 1 Benutzungsprofil 2

1: Cache für dyn. Inhalte

3: Logging parallelisieren

4: Hardware Replikation

5: Thread Pool
Tabelle 2: Reihenfolge der Entwurfsalternativen

Kommentare zu den Entwurfsalternativen:

CCVIII APPENDIX B. EXPERIMENTAL MATERIAL

APPENDIX B. EXPERIMENTAL MATERIAL CCIX

Applying Bayes’ Rule

If the control flow for both kinds of requests are combined, the arrival rate needs adjustment and
the probabilities of the different branches have to be calculated using Bayes’ Rule (for details,
see [Sac97, p.78]). In the task description, the following probabilities are given for usage profile
1:

p(HTML) = 1/3.5, p(Multimedia) = 2.5/3.5

p(static|HTML) = 0.4, p(dynamic|HTML) = 0.6

p(static|Multimedia) = 0.7, p(dynamic|Multimedia) = 0.3

For usage profile 2, these probabilities are given:

p(HTML) = 1/2.4, p(Multimedia) = 1.4/2.4

p(static|HTML) = 0.2, p(dynamic|HTML) = 0.8

p(static|Multimedia) = 0.6, p(dynamic|Multimedia) = 0.4

For the modelling of the control flow, however, it first needs to be distinguished whether a static
or dynamic object is requested, because the responsible component is found out first. Only
after this the respective component handles the distinction of HTML and Multimedia contents.
Thus, for the annotations of the first branch to find the responsible component, the probabilities
p(static) and p(dynamic) are needed. They can easily be calculated from the probability tree.

p(static) = p(HTML)p(static|HTML) + p(Multimedia)p(static|Multimedia)

= 0.614

p(dynamic) = p(HTML)p(dynamic|HTML) + p(Multimedia)p(dynamic|Multimedia)

= 0.386

For usage profile 2, the following values are calculated:

p(static) = 0.433

p(dynamic) = 0.567

Now, for the responsible component the probabilities whether an HTML or a Multimedia object
is requested are needed, namely p(HTML|static), p(Multimedia|static), p(HTML|dynamic)
and p(Multimedia|dynamic). These values can be calculated by applying Bayes’ Rule, which
helps to calculated a posteriori probabilities:

P (A|B) =
P (B|A) · P (A)

P (B)

CCX APPENDIX B. EXPERIMENTAL MATERIAL

Using Bayes’ Rule, the needed probabilities can be calculated as follows:

p(HTML|static) =
p(static|HTML) · p(HTML)

p(static)
= 0.186

p(Multimedia|static) =
p(static|Multimedia) · p(Multimedia)

p(static)
= 0.814

p(HTML|dynamic) =
p(dynamic|HTML) · p(HTML)

p(dynamic)
= 0.444

p(Multimedia|dynamic) =
p(dynamic|Multimedia) · p(Multimedia)

p(dynamic)
= 0.556

For usage profile 2:

p(HTML|static) = 0.192

p(Multimedia|static) = 0.808

p(HTML|dynamic) = 0.588

p(Multimedia|dynamic) = 0.412

B.2 Rank Estimation

B.2.1 Media Store

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:02 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Abschätzung des Nutzens der Entwurfsalternativen

Name: ________________________________

Bitte geben Sie eine Abschätzung ab, welche Entwurfsalternative die Antwortzeit am
stärksten verbessert, welche am zweitstärksten, usw. Stellen Sie dafür eine Reihenfolge auf,
beginnend mit der besten Entwurfsalternative. Sie können einen Rang zweimal vergeben,
wenn Sie zwei Alternativen für gleich gut halten. Geben Sie außerdem an, ob die
Entwurfsalternativen die Performanz überhaupt positiv beeinflussen werden und wie stark.

Verwenden Sie für die Einschätzung folgende Abkürzungen:

- - Verschlechtert die Performanz deutlich

- Verschlechtert die Performanz etwas

o Neutral

+ Verbessert die Performanz etwas

++ Verbessert die Performanz deutlich

 Reihenfolge Verbessert
Antwortverhalten?

Entwurfsalternative Ein-
benutzerfall

Mehr-
benutzerfall

Ein-
benutzerfall

Mehr-
benutzerfall

1: Cache

2: Pool für Datenbank-
verbindungen

3: Zweiter Server

4: Bitrate senken

5: Dynamischer Lookup

Kommentare:

APPENDIX B. EXPERIMENTAL MATERIAL CCXI

CCXII APPENDIX B. EXPERIMENTAL MATERIAL

B.2.2 Web Server

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:08:22 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Abschätzung des Nutzens der Entwurfsalternativen

Name: ________________________________

Bitte geben Sie eine Abschätzung ab, welche Entwurfsalternative die Antwortzeit am
stärksten verbessert, welche am zweitstärksten, usw. Stellen Sie dafür eine Reihenfolge auf,
beginnend mit der besten Entwurfsalternative. Sie können einen Rang zweimal vergeben,
wenn Sie zwei Alternativen für gleich gut halten. Geben Sie außerdem an, ob die
Entwurfsalternativen die Performanz überhaupt positiv beeinflussen werden und wie stark.

Verwenden Sie für die Einschätzung folgende Abkürzungen:

- - Verschlechtert die Performanz deutlich

- Verschlechtert die Performanz etwas

o Neutral

+ Verbessert die Performanz etwas

++ Verbessert die Performanz deutlich

 Reihenfolge Verbessert
Antwortverhalten?

Entwurfsalternative Ein-
benutzerfall

Mehr-
benutzerfall

Ein-
benutzerfall

Mehr-
benutzerfall

1: Cache für dynamische
Inhalte

2: Dynamischer Lookup

3: Logging parallelisieren

4: Hardware-Replikation
mit zweitem Server

5: Thread Pool

Kommentare:

APPENDIX B. EXPERIMENTAL MATERIAL CCXIII

CCXIV APPENDIX B. EXPERIMENTAL MATERIAL

B.3 Time Stamps

B.3.1 Media Store

Palladio

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:25:38 - 1 -

SE
Xperf=1.00

Xloss=0.01

Software-Entwurf

 und -Qualität

Zeiten Palladio

Name: ________________________________

Die Teilbereiche müssen nicht in dieser Reihenfolge bearbeitet werden, deshalb sind die

Zeiten hier nicht unbedingt chronologisch geordnet. Geben Sie bitte für jeden Aufgabe Start-

und Endzeitpunkt an. Wenn Sie zwei Aufgaben parallel bearbeiten, geben Sie dies bitte an.

Austeilung der Aufgabenstellung: _______________________

Kontrollfluss

Durchgelesen: _______________________

Modelliert: _________________________

Resource Demand

Durchgelesen: _______________________

Modelliert: _________________________

Ressourcenumgebung

Durchgelesen: _______________________

Modelliert: _________________________

Benutzungsprofil 1

Durchgelesen: _______________________

Modelliert: _________________________

Fehlersuche: ________________________

Analyse: ___________________________

Benutzungsprofil 2

Durchgelesen: _______________________

Modelliert: _________________________

Fehlersuche: ________________________

Analyse: ___________________________

Entwurfsalternative 1

Durchgelesen: _______________________

APPENDIX B. EXPERIMENTAL MATERIAL CCXV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:25:38 - 2 -

SE
Xperf=1.00

Xloss=0.01

Software-Entwurf

 und -Qualität

Modelliert: _________________________

Fehlersuche: ________________________

Analyse: ___________________________

Entwurfsalternative 2

Durchgelesen: _______________________

Modelliert: _________________________

Fehlersuche: ________________________

Analyse: ___________________________

Entwurfsalternative 3

Durchgelesen: _______________________

Modelliert: _________________________

Fehlersuche: ________________________

Analyse: ___________________________

Entwurfsalternative 4

Durchgelesen: _______________________

Modelliert: _________________________

Fehlersuche: ________________________

Analyse: ___________________________

Entwurfsalternative 5

Durchgelesen: _______________________

Modelliert: _________________________

Fehlersuche: ________________________

Analyse: ___________________________

Bestimmung der Reihenfolge der Entwurfsalternativen: ___________________________

Zusatzfrage: ________________________________

Abgabe: __________________________________

CCXVI APPENDIX B. EXPERIMENTAL MATERIAL

APPENDIX B. EXPERIMENTAL MATERIAL CCXVII

SPE

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:26:19 - 1 -

SE
Xperf=1.00

Xloss=0.01

Software-Entwurf

 und -Qualität

Zeiten SPE-ED

Name: ________________________________

Die Teilbereiche müssen nicht in dieser Reihenfolge bearbeitet werden, deshalb sind die

Zeiten hier nicht unbedingt chronologisch geordnet. Geben Sie bitte für jeden Aufgabe Start-

und Endzeitpunkt an. Wenn Sie zwei Aufgaben parallel bearbeiten, geben Sie dies bitte an.

Austeilung der Aufgabenstellung: _______________________

Kontrollfluss

Durchgelesen: _______________________

Modelliert: _________________________

Ressourcenumgebung

Durchgelesen: _______________________

Modelliert: _________________________

Resource Demand und Benutzungsprofile

Resource Demand durchgelesen: ______________________

Benutzungsprofil 1 durchgelesen: _______________________

Mit Benutzungsprofil 1 modelliert: ______________________

Fehlersuche: __

Analyse: ___

Benutzungsprofil 2 durchgelesen: _______________________

Mit Benutzungsprofil 2 modelliert: ______________________

Fehlersuche: __

Analyse: ___

Entwurfsalternative 1

Durchgelesen: _______________________

Für Benutzungsprofil 1 modelliert: _________________________

Für Benutzungsprofil 2 modelliert: _________________________

Fehlersuche: __

CCXVIII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:26:19 - 2 -

SE
Xperf=1.00

Xloss=0.01

Software-Entwurf

 und -Qualität

Analyse: ___

Entwurfsalternative 2

Durchgelesen: _______________________

Für Benutzungsprofil 1 modelliert: _________________________

Für Benutzungsprofil 2 modelliert: _________________________

Fehlersuche: __

Analyse: ___

Entwurfsalternative 3

Durchgelesen: _______________________

Für Benutzungsprofil 1 modelliert: _________________________

Für Benutzungsprofil 2 modelliert: _________________________

Fehlersuche: __

Analyse: ___

Entwurfsalternative 4

Durchgelesen: _______________________

Für Benutzungsprofil 1 modelliert: _________________________

Für Benutzungsprofil 2 modelliert: _________________________

Fehlersuche: __

Analyse: ___

Entwurfsalternative 5

Durchgelesen: _______________________

Für Benutzungsprofil 1 modelliert: _________________________

Für Benutzungsprofil 2 modelliert: _________________________

Fehlersuche: __

Analyse: ___

Bestimmung der Reihenfolge der Entwurfsalternativen: ______________________________

Zusatzfrage: ________________________________

Abgabe: __________________________________

APPENDIX B. EXPERIMENTAL MATERIAL CCXIX

CCXX APPENDIX B. EXPERIMENTAL MATERIAL

B.3.2 Web Server

Palladio

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:19 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Zeiten Palladio

Name: ________________________________

Die Teilbereiche müssen nicht in dieser Reihenfolge bearbeitet werden, deshalb sind die
Zeiten hier nicht unbedingt chronologisch geordnet. Geben Sie bitte für jeden Aufgabe Start-
und Endzeitpunkt oder die Dauer an. Wenn Sie zwei Aufgaben parallel bearbeiten, schätzen
Sie bitte die Anteile ab, und geben Sie die Dauer einzeln an. Insgesamt sollten die Zeiten so
angegeben werden, dass wir die Dauer der einzelnen Aufgabenteile bestimmen können.

Austeilung der Aufgabenstellung: _______________________

 Startzeitpunkt Endzeitpunkt Dauer

Durchlesen

Abschätzung und Reihenfolge im
Voraus

Kontrollfluss

Modelliert:

Resource Demand

Modelliert:

Ressourcenumgebung

Modelliert

Benutzungsprofil 1

Modelliert

Fehlersuche

Analyse

Benutzungsprofil 2

Modelliert

Fehlersuche

Analyse

APPENDIX B. EXPERIMENTAL MATERIAL CCXXI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:19 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

 Startzeitpunkt Endzeitpunkt Dauer

Entwurfsalternative 1

Modelliert

Fehlersuche

Analyse für Benutzungsprofil 1

Analyse für Benutzungsprofil 2

Entwurfsalternative 2

Modelliert

Fehlersuche

Analyse für Benutzungsprofil 1

Analyse für Benutzungsprofil 2

Entwurfsalternative 3

Modelliert

Fehlersuche

Analyse für Benutzungsprofil 1

Analyse für Benutzungsprofil 2

Entwurfsalternative 4

Modelliert

Fehlersuche

Analyse für Benutzungsprofil 1

Analyse für Benutzungsprofil 2

Entwurfsalternative 5

Modelliert

Fehlersuche

Analyse für Benutzungsprofil 1

Analyse für Benutzungsprofil 2

Bestimmung der Reihenfolge der
Entwurfsalternativen:

Abgabe: __________________________________

CCXXII APPENDIX B. EXPERIMENTAL MATERIAL

APPENDIX B. EXPERIMENTAL MATERIAL CCXXIII

SPE

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:29 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Zeiten SPEED

Name: ________________________________

Die Teilbereiche müssen nicht in dieser Reihenfolge bearbeitet werden, deshalb sind die
Zeiten hier nicht unbedingt chronologisch geordnet. Geben Sie bitte für jeden Aufgabe Start-
und Endzeitpunkt oder die Dauer an. Wenn Sie zwei Aufgaben parallel bearbeiten, schätzen
Sie bitte die Anteile ab, und geben Sie die Dauer einzeln an. Insgesamt sollten die Zeiten so
angegeben werden, dass wir die Dauer der einzelnen Aufgabenteile bestimmen können.

Austeilung der Aufgabenstellung: _______________________

 Startzeitpunkt Endzeitpunkt Dauer

Durchlesen

Abschätzung Voraus

Kontrollfluss

Modelliert:

Ressourcenumgebung

Modelliert

Mit Benutzungsprofil 1 modelliert

Fehlersuche

Analyse:

Mit Benutzungsprofil 2 modelliert

Fehlersuche

Analyse

Entwurfsalternative 1

Für Benutzungsprofil 1 modelliert:

Für Benutzungsprofil 2 modelliert:

Fehlersuche:

Analyse:

CCXXIV APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:29 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

 Startzeitpunkt Endzeitpunkt Dauer

Entwurfsalternative 2

Für Benutzungsprofil 1 modelliert:

Für Benutzungsprofil 2 modelliert:

Fehlersuche:

Analyse:

Entwurfsalternative 3

Für Benutzungsprofil 1 modelliert:

Für Benutzungsprofil 2 modelliert:

Fehlersuche:

Analyse:

Entwurfsalternative 4

Für Benutzungsprofil 1 modelliert:

Für Benutzungsprofil 2 modelliert:

Fehlersuche:

Analyse:

Entwurfsalternative 5

Für Benutzungsprofil 1 modelliert:

Für Benutzungsprofil 2 modelliert:

Fehlersuche:

Analyse:

Bestimmung der Reihenfolge der
Entwurfsalternativen:

Abgabe: __________________________________

APPENDIX B. EXPERIMENTAL MATERIAL CCXXV

CCXXVI APPENDIX B. EXPERIMENTAL MATERIAL

B.4 Qualitative Questionnaires

B.4.1 Questionnaire Media Store

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:23:54 - 1 -

SE
Xperf=1.00

Xloss=0.01

Software-Entwurf

 und -Qualität

Fragebogen zur Mediastore-Aufgabe

Name: ________________________________ Verwendetes Werkzeug: _______________

Aufgabenstellung und Methode

Bitte geben Sie an, welche Teile der Aufgabenstellung verständlich waren und welche nicht.

Was waren die Probleme bei der Besarbeitung? Fügen Sie ggf. Aspekte hinzu.

 Verständ-

lich?

Probleme

Aufgabe im Ganzen

Statische Struktur

des Systems

Kontrollfluss

Resource Demands

Benutzungsprofil

Welcher Aspekt der Methode war am schwierigsten umzusetzen? Was war das Problem?

APPENDIX B. EXPERIMENTAL MATERIAL CCXXVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:23:54 - 2 -

SE
Xperf=1.00

Xloss=0.01

Software-Entwurf

 und -Qualität

War die Bearbeitungszeit angemessen? Falls nicht, war sie zu lang oder zu kurz?

Wofür haben Sie die meiste Zeit benötigt? Wie lange in etwa?

Welche anderen Aufgaben(-teile) waren zeitaufwändig? Wie lange haben Sie in etwa dafür

benötigt?

Vorbereitung

Wurden Sie im Praktikum auf alle Aspekte der Aufgabe vorbereitet? Falls nicht, welche

Aspekte fehlten?

Welche Aspekte wurden zwar im Praktikum vorgestellt, allerdings nicht in der Tiefe, wie sie

für die Aufgabe benötigt wurde?

Werkzeug

Traten während der Bearbeitung der Aufgabe Probleme mit dem Werkzeug auf? Wenn ja,

welche?

CCXXVIII APPENDIX B. EXPERIMENTAL MATERIAL

APPENDIX B. EXPERIMENTAL MATERIAL CCXXIX

B.4.2 Questionnaire Web Server

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 10:34:24 - 1 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

Fragebogen zur Webserver-Aufgabe

Name: ________________________________ Verwendetes Werkzeug: _______________

Aufgabenstellung und Methode
Bitte geben Sie an, welche Teile der Aufgabenstellung verständlich waren und welche nicht.
Was waren die Probleme bei der Bearbeitung? Fügen Sie ggf. Aspekte hinzu.

 Verständ-
lich?

Probleme

Aufgabe im Ganzen

Statische Struktur

des Systems

Kontrollfluss

Resource Demands

Benutzungsprofil

Welcher Aspekt der Methode war am schwierigsten umzusetzen? Was war das Problem?

CCXXX APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 10:34:24 - 2 -

SE 1.00
0.01

Software-Entwurf
 und -Qualität

War die Bearbeitungszeit angemessen? Falls nicht, war sie zu lang oder zu kurz?

Wofür haben Sie die meiste Zeit benötigt? Wie lange in etwa?

Welche anderen Aufgaben(-teile) waren zeitaufwändig? Wie lange haben Sie in etwa dafür
benötigt?

Vorbereitung
Wurden Sie im Praktikum auf alle Aspekte der Aufgabe vorbereitet? Falls nicht, welche
Aspekte fehlten?

Welche Aspekte wurden zwar im Praktikum vorgestellt, allerdings nicht in der Tiefe, wie sie
für die Aufgabe benötigt wurde?

Werkzeug
Traten während der Bearbeitung der Aufgabe Probleme mit dem Werkzeug auf? Wenn ja,
welche?

APPENDIX B. EXPERIMENTAL MATERIAL CCXXXI

CCXXXII APPENDIX B. EXPERIMENTAL MATERIAL

B.4.3 Comparing Questionnaire

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:27 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Nachträglicher Fragebogen

Name: ________________________________

Dieser Fragebogen dient nicht dazu, Sie zu bewerten, sondern die Verfahren. Ihre Antworten
haben also keinerlei Auswirkung auf die Benotung.

Aufgabenstellungen
1. Waren die Aufgabenstellung 1 (Mediastore) Ihrem Kenntnisstand angemessen? Wenn

nicht, was war problematisch?

2. Waren die Aufgabenstellung 2 (Webserver) Ihrem Kenntnisstand angemessen? Wenn
nicht, was war problematisch?

3. War der Schwierigkeitsgrad der Aufgaben unterschiedlich? Falls ja, welche war schwerer
und warum?

4. Konnten Sie Erfahrungen aus der ersten Aufgabenstellung in der zweiten anwenden?
Wenn ja, welche?

Palladio

Konzepte
5. Ist das Vorgehensmodell verständlich? Falls nicht, was war problematisch?

6. Konnte das Metamodell nachvollzogen werden? Falls nicht, was war problematisch?

APPENDIX B. EXPERIMENTAL MATERIAL CCXXXIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:27 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

7. Bewerten Sie die Verständlichkeit der folgenden Konzepte. Bitte bewerten Sie die
Aspekte auf einer Skala ++, +, o, -, --. Bitte bewerten Sie das Konzept an sich und nicht
die Umsetzung in den Werkzeugen.

Was sind die Gründe für Ihre Bewertung?

Konzept Bewertung Gründe

Repository
Model

SEFF
Spezifikation

System

Allocation

Resource
Environment

Usage Model

Parametri-
sierung

Visualisierung
der
Ergebnisse

Verteilungs-
funktionen

8. Hilft die Rollenaufteilung beim Verständnis der verschiedenen Konzepte?

CCXXXIV APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:27 - 3 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

9. Bewerten Sie die Parametrisierung der SEFFs und die getrennte Spezifikation der
Parameter im Usage Model und als Komponentenparameter. Welche Vorteile und
Nachteile sehen Sie?

10. Sehen Sie weitere oder andere Vor- bzw. Nachteile der Parametrisierung bei größeren,
komplexeren Modellen?

11. Erleichtert die Parametrisierung die Spezifikation eines SEFF an sich oder bedeutet sie
einen Mehraufwand?

12. Erleichtert oder erschwert die Parametrisierung die Spezifikation von komplexen
Verzweigungswahrscheinlichkeiten, wie beispielsweise in der Bitraten-Alternative des
Mediastores oder bei der Bestimmung der Art des gelieferten Inhalts beim Webserver?

13. Bewerten Sie automatisierte Transformationen, die übliche performanzrelevante
Entscheidungen einbauen (denken Sie an die Broker-Alternative mit dem dynamischen
Lookup von Komponenten). Denken Sie auch an Fälle, die komplexer als unser Broker
Beispiel wären. Welche Vorteile und Nachteile sehen Sie?

Werkzeug
14. Ist das PCM Werkzeug geeignet für die Performanzvorhersage? Was sind positive, was

negative Aspekte?

APPENDIX B. EXPERIMENTAL MATERIAL CCXXXV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:27 - 4 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

15. Würden Sie anstelle der konkreten graphischen Syntax für einige Teile eine textuelle
Syntax bevorzugen, z.B. für den SEFF eine Art Pseudo-Code? Wenn ja, welche Teile des
Modells würden Sie auf textuelle Eingabe umstellen?

16. Falls die Parametrisierung problematisch war: Ist es ein prinzipielles Problem oder liegt es
an der Darstellung im SEFF bzw. Usage Model?

Verbesserung
17. Wenn Sie das Palladio Verfahren und sein Werkzeug verbessern könnten, was würden Sie

ändern?

SPE

Konzepte
18. Ist das Vorgehensmodell verständlich?

19. Bewerten Sie die Verständlichkeit der folgenden Konzepte. Bitte bewerten Sie die
Aspekte auf einer Skala ++, +, o, -, --. Bitte bewerten Sie das Konzept an sich und nicht
die Umsetzung in den Werkzeugen.

Was sind die Gründe für Ihre Bewertung?

Konzept Bewertung Gründe

Aufteilung in
Scenarios

Software
Model

Overhead
Matrix

CCXXXVI APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:27 - 5 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Konzept Bewertung Gründe

System Model

Verteilte
Systeme

Verschiedene
Solutions

Visualisierung
der Ergebnisse

Werkzeug
20. Ist das SPE-ED Werkzeug geeignet für die Performanzvorhersage? Was sind positive, was

negative Aspekte?

Verbesserung
21. Wenn Sie das SPE Verfahren und sein Werkzeug SPE-ED verbessern könnten, was

würden Sie ändern?

Interpretierung der Ergebnisse
22. War die Interpretation der Verteilungsfunktionen bei Palladio schwerer als die

Mittelwertbetrachtung bei SPE-ED?

23. Liefert die Auswertung von Verteilungsfunktionen bessere Entscheidungsgrundlagen für
Entwurfsentscheidungen?

APPENDIX B. EXPERIMENTAL MATERIAL CCXXXVII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:27 - 6 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Aufwand
24. Welches Verfahren hat den höheren Lernaufwand? Warum?

25. Welches Verfahren ist aufwändiger in der Anwendung? Warum?

26. Bei Palladio werden die Aufgaben eigentlich auf Rollen aufgeteilt, die Sie im Experiment

alle gleichzeitig eingenommen haben. Wie bewerten Sie die Aufwandsfrage, wenn die
Rollen von verschiedenen Personen ausgeführt worden wären?

27. Welches Werkzeug ist schneller zu bedienen?

Vergleich der Verfahren
28. Welches Verfahren ist besser zur Vorhersage der Performanz geeignet?

29. Haben Sie bei einem Verfahren ein größeres Vertrauen in die Güte der Vorhersagen?
Wenn ja, bei welchem Verfahren und warum?

30. Welches der Verfahren ist besser verständlich?

CCXXXVIII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:27 - 7 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

31. Mit welchem Verfahren haben Sie lieber gearbeitet? Warum?

32. Welches Werkzeug bevorzugen Sie? Was sind die Gründe dafür?

Weitere Kommentare
Falls Sie noch weitere Kommentare haben, geben Sie sie hier an:

APPENDIX B. EXPERIMENTAL MATERIAL CCXXXIX

CCXL APPENDIX B. EXPERIMENTAL MATERIAL

B.5 Acceptance Tests

B.5.1 Check Lists

Media Store

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:04 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Checkliste

Palladio:
• Analysiert mit Simulation
• Ergebnisse im Rahmen
• Beide Anwendungsfälle modelliert
• Kontrollfluss durch 4 bzw. 3 Komponenten
• Processing Rate im Resource Environment gesetzt.

Entwurfsalternativen:

1. Branch bei Cache
2. Pool mit Acquire Release
3. Neue Allocation mit zweitem Server
4. Fallunterscheidung im Encoding SEFF
5. Haken für dynamischen Lookup

Ausgangssystem, 1 Benutzer

Kleiner Balken bei 0,

Peaks bei 0.2, 1.2,1.9,2.5,

Maximum bei 3.1

Ausgangsystem, Mehrbenutzer

Erster Balken bei 0,

Peak bei 3,

Maximum bei 15

APPENDIX B. EXPERIMENTAL MATERIAL CCXLI

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:04 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Alle EA, 1 Benutzer

Von oben nach unten: EA4
(Encoding), EA1 (Caching), EA2
(Pool), EA0 (Original), EA5
(Broker), EA3 (2.Server)

Alle EA, Mehrbenutzer

Von oben nach unten: EA4
(Encoding), EA1 (Caching), EA2
(Pool), EA0 (Original), EA3
(2.Server), EA5 (Broker)

CCXLII APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:04 - 3 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

SPE:

• Analysiert mit Contention Solution

(ggf. Simulation)?
• Ergebnisse im Rahmen
• Beide Anwendungsfälle modelliert
• Download mit Loop
• Overhead Matrix ausgefüllt

Entwurfsalternativen:

1. Branch bei Cache
2. Abschätzung für Acquire Release angegeben auf dem Zettel
3. Zweites Szenario für zweiten Server
4. Fallunterscheidung für Encoding Alternativen
5. Zusätzliche Work Units für dynamischen Lookup

EA \ BP 1 2
Original 1.3317 8.9139
1: Cache 1.1627 3.952
2: Pool 1.3214 9.3835

3: 2. Server 1.352 8.9332
4: Bitrate 1.069 3.9575
5: Broker 1.4793 9.7487

APPENDIX B. EXPERIMENTAL MATERIAL CCXLIII

CCXLIV APPENDIX B. EXPERIMENTAL MATERIAL

Web Server

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:16 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Checkliste Webserver

Palladio:
• Analysiert mit Simulation
• Ergebnisse im Rahmen
• Anwendungsfall mit beiden Aufrufen des Webservers modelliert
• Kontrollfluss durch 6 Komponenten
• Processing Rate im Resource Environment gesetzt.
• CDF und Histogramm mit Auflösung <1 Sek. betrachten.

Entwurfsalternativen:

1. Branch bei Cache
2. Haken für dynamischen Lookup
3. 2 Fork Actions für Parallelität
4. Neue Allokation mit zweitem Resource Environment
5. Acquire-Release in Dispatcher Komponente

Ausgangssystem, 1 Benutzer

Kleiner Balken bei 0,

Spitzer Peak bei 0.2

Flacher Peak bei 1,2

Dellen bei 0,5 und 1,8

Maximum bei knapp unter 4

Ausgangsystem, Mehrbenutzer

Erster Balken bei 0,

Abfallend nach links

2. Peak ggf. noch zu erkennen

Maximum je nach SimTime

Hier Maximum 75 bei ST 3000

APPENDIX B. EXPERIMENTAL MATERIAL CCXLV

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:16 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Alle EA, 1 Benutzer

Von oben nach unten:

• EA4 (2. Server) u EA1 (Caching),
• EA3 (Log), EA5 (Threadpool), EA0

(Original)
• EA2 (Broker)

Alle EA, Mehrbenutzer

Von oben nach unten:

• EA4 (2. Server) u EA1 (Caching),
• EA3 (Log), EA5 (Threadpool)
• EA0 (Original)
• EA2 (Broker)

Nur EA4 und EA1, Mehrbenutzer

Glatter, und im Bereich 53% - 82%
oberhalb: EA1 Cache

Zappeliger und im Bereich 82% - Ende
oberhalb: EA4 2. Server

Insgesamt also recht gleichwertig.

CCXLVI APPENDIX B. EXPERIMENTAL MATERIAL

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:10:16 - 3 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

SPE:

• Analysiert mit Contention Solution

(ggf. Simulation)?
• Ergebnisse im Rahmen
• Beide Requests modelliert
• Overhead Matrix ausgefüllt

Entwurfsalternativen:

1. Branch bei Cache
2. Zusätzliche Work Units für dynamischen

Lookup
3. HD Access bei Logger weggelassen
4. Verteilung in 2 Szenarien, mit Delay

eingesetzt
5. Abschätzung für Acquire Release

angegeben auf dem Zettel

EA \ BP 1 2

0: Original 0.7599 1.3941

1: Cache 0.5754 0.8652

2: Broker 1.0438 3.129

3: Par. Log 0.7703 1.3768

4: 2. Server 0.4425 0.4033*

5: Pool 0.7249 1.2663

*: Komischer Wert, sollte
eigentlich höher sein. Daher

höhere Werte ok!

APPENDIX B. EXPERIMENTAL MATERIAL CCXLVII

CCXLVIII APPENDIX B. EXPERIMENTAL MATERIAL

B.5.2 Acceptance Test Protocols

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:09:53 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Akzeptanztest Webserver

Name des Teilnehmers: ___

Angeben, wann Ergebnisse geprüft wurden, und mit welchem Ergebnis. Falls Probleme
auftraten, diese hier vermerken.

Stufen: abgenommen von:

1. Ausgangssystem mit Analyse

2. Entwurfsalternative 1

3. Entwurfsalternative 2

4. Entwurfsalternative 3

5. Entwurfsalternative 4

6. Entwurfsalternative 5

APPENDIX B. EXPERIMENTAL MATERIAL CCXLIX

CCL APPENDIX B. EXPERIMENTAL MATERIAL

B.6 Question Protocol

B.6.1 Question Protocol Sheets

Media Store

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:37:32 - 1 -

SE
Xperf=1.00

Xloss=0.01

Software-Entwurf

 und -Qualität

Fragenprotokoll

Wer stellte wann welche Frage? Welches Werkzeug hat er benutzt? Wer beantwortete die

Frage?

APPENDIX B. EXPERIMENTAL MATERIAL CCLI

CCLII APPENDIX B. EXPERIMENTAL MATERIAL

Web Server

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:05 - 1 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Fragenprotokoll vom 07.07.2007

Fragen beantwortet von: ___________________________

Wann Wer Werkzeug Frage

APPENDIX B. EXPERIMENTAL MATERIAL CCLIII

Prof. Dr. Reussner, Software-Entwurf und -Qualität, Universität Karlsruhe (TH)
Praktikum Ingenieurmäßiger Software-Entwurf, SoSe 2007

19.10.2007 23:07:05 - 2 -

SE Xperf=1.00
Xloss=0.01

Software-Entwurf
 und -Qualität

Wann Wer Werkzeug Frage

CCLIV APPENDIX B. EXPERIMENTAL MATERIAL

C Resulting Data

The models created by the participants can be found on the accompanying DVD of this thesis.
If you are reading a printed version without DVD or an electronic version of this work, and are
interested in the created models, please contact the author.

C.1 Predictions of the Participants

Predicted mean response time for the UP1 of Media Store with Palladio
p ∈ PMS

Pal vMS
0 vMS

1 vMS
2 vMS

3 vMS
4 vMS

5 Mean deviation
1 1.32 1.16 1.31 1.33 1.15 1.45 0.04
2 1.31 1.13 1.44 0.03
3 1.30 1.09 1.31 1.47 1.10 1.41 0.05
4 1.28 1.09 1.43 0.06
5 1.34 1.16 1.32 1.49 1.20 1.46 0.02
6 1.36 1.18 1.32 2.48 1.48 0.20
7 1.31 1.14 1.32 1.47 0.01
Reference 1.33 1.16 1.32 1.52 1.15 1.47 0
Deviation 0.03 0.03 0.01 0.30 0.03 0.02 0.07

Predicted mean response time for the UP2 of Media Store with Palladio
p ∈ PMS

Pal vMS
0 vMS

1 vMS
2 vMS

3 vMS
4 vMS

5 Mean deviation
1 3.14 1.87 2.89 3.01 1.76 3.70 0.18
2 2.92 1.86 3.41 0.23
3 2.73 1.78 2.90 3.18 1.71 3.54 0.19
4 2.78 1.76 3.28 0.32
5 3.10 1.86 3.01 3.41 1.88 3.49 0.12
6 2.93 1.81 3.02 4.49 3.32 0.41
7 3.26 1.78 3.12 3.59 0.07
Reference 3.43 1.82 3.12 3.24 1.84 3.53 0
Deviation 0.45 0.04 0.13 0.43 0.08 0.12 0.21

CCLV

CCLVI APPENDIX C. RESULTING DATA

Predicted mean response time for the UP1 of Media Store with SPE
p ∈ PMS

SPE vMS
0 vMS

1 vMS
2 vMS

3 vMS
4 vMS

5 Mean deviation
9 1.34 1.18 1.92 1.53 1.46 0.13
10 1.34 1.17 1.32 1.51 1.15 1.47 0.02
11 0.95 0.79 0.95 1.12 0.81 0.98 0.37
12 1.34 1.17 1.33 1.50 1.15 1.47 0.02
13 1.34 1.17 1.33 1.27 1.47 0.05
14 0.95 0.79 0.95 1.12 0.81 0.98 0.37
15 1.42 1.26 1.40 1.58 1.23 1.56 0.10
16 1.21 1.05 1.20 1.21 1.03 1.24 0.15
17 1.34 1.17 1.33 1.34 1.29 1.47 0.07
Reference 1.33 1.17 1.32 1.50 1.05 1.46 0
Deviation 0.11 0.11 0.17 0.17 0.16 0.15 0.15

Predicted mean response time for the UP2 of Media Store with SPE
p ∈ PMS

SPE vMS
0 vMS

1 vMS
2 vMS

3 vMS
4 vMS

5 Mean deviation
9 9.45 4.07 9.40 3.18 10.24 1.34
10 9.46 4.05 9.41 9.66 4.22 10.24 0.29
11 8.42 3.01 8.42 8.63 3.45 8.46 0.82
12 9.46 4.06 9.41 9.61 4.30 10.24 0.30
13 9.46 4.06 9.26 8.69 10.24 0.17
14 8.42 3.01 8.42 8.63 5.45 8.46 0.94
15 9.90 4.59 9.81 3.66 4.66 11.18 1.51
16 8.50 3.50 8.46 8.47 3.83 8.57 0.66
17 9.46 4.06 9.41 5.68 4.54 10.24 0.77
Reference 9.46 3.98 8.93 8.95 4.09 9.88 0
Deviation 0.39 0.38 0.51 1.90 0.51 0.81 0.75

Predicted mean response time for the UP1 of Web Server with Palladio
p ∈ PWS

Pal vWS
0 vWS

1 vWS
2 vWS

3 vWS
4 vWS

5 Mean deviation
10 0.80 0.64 1.13 0.79 0.47 0.76 0.02
11 0.82 0.66 1.15 0.78 0.03
12 0.82 0.66 1.10 0.80 0.47 0.78 0.01
13 0.81 0.65 1.11 0.84 0.47 0.77 0.01
14 0.82 0.66 1.11 0.79 0.58 0.78 0.03
15 0.79 0.50 1.11 0.05
16 0.82 0.30 1.13 0.83 0.47 0.83 0.08
17 0.81 0.66 1.13 0.80 0.48 0.43 0.08
Reference 0.81 0.64 1.10 0.84 0.48 0.78 0
Deviation 0.01 0.07 0.02 0.04 0.02 0.07 0.04

APPENDIX C. RESULTING DATA CCLVII

Predicted mean response time for the UP2 of Web Server with Palladio
p ∈ PWS

Pal vWS
0 vWS

1 vWS
2 vWS

3 vWS
4 vWS

5 Mean deviation
10 1.31 0.64 3.48 1.44 0.44 1.38 0.20
11 1.38 0.94 4.32 1.35 0.26
12 1.48 0.94 3.43 1.46 0.45 1.37 0.16
13 1.58 0.87 4.02 1.70 0.44 1.38 0.06
14 1.37 0.79 4.78 1.29 0.45 1.34 0.26
15 1.25 0.53 3.35 0.44
16 1.46 0.29 3.80 1.52 0.47 1.42 0.17
17 1.54 0.88 4.36 1.36 0.43 1.17 0.17
Reference 1.69 0.84 3.93 1.58 0.44 1.38 0
Deviation 0.27 0.17 0.43 0.17 0.01 0.05 0.18

Predicted mean response time for the UP1 of Web Server with SPE
p ∈ PWS

SPE vWS
0 vWS

1 vWS
2 vWS

3 vWS
4 vWS

5 Mean deviation
1 0.76 0.60 1.00 0.73 0.44 0.72 0.02
2 0.76 0.61 1.08 0.74 0.44 0.72 0.01
3 0.76 0.61 1.05 0.77 0.43 0.73 0.00
4 0.76 0.61 1.10 0.77 0.40 0.76 0.02
5 0.76 0.61 1.10 0.77 0.55 0.76 0.03
6 0.77 0.65 1.04 0.77 0.44 0.73 0.01
7 0.76 0.61 1.04 0.81 0.42 0.72 0.01
8 0.83 0.62 1.12 0.77 0.44 0.73 0.03
Reference 0.76 0.61 1.04 0.77 0.44 0.72 0
Deviation 0.00 0.01 0.03 0.02 0.03 0.01 0.02

Predicted mean response time for the UP2 of Web Server with SPE
p ∈ PWS

SPE vWS
0 vWS

1 vWS
2 vWS

3 vWS
4 vWS

5 Mean deviation
1 1.39 0.86 3.70 1.37 0.58 1.26 0.05
2 1.39 0.86 4.16 1.38 0.58 1.27 0.12
3 1.40 0.87 3.76 1.53 1.08 1.27 0.12
4 1.31 0.82 4.24 1.42 0.44 1.31 0.13
5 1.39 0.85 4.85 1.45 0.52 1.39 0.24
6 1.39 0.87 3.74 1.51 0.32 1.29 0.03
7 1.39 0.86 3.73 1.52 0.47 1.26 0.01
8 1.45 0.89 4.82 1.34 0.59 1.30 0.26
Reference 1.39 0.87 3.72 1.52 0.44 1.27 0
Deviation 0.01 0.01 0.31 0.07 0.17 0.03 0.1

CCLVIII APPENDIX C. RESULTING DATA

C.2 Duration and Break Down

p ∈ PPal,MS 1 2 3 4 5 6 7
Duration reading 40 35 25 59 50 38 45
Control flow modelling 30 23 60 25 23
Resource demand modelling 15 17 20 38 9
Resource envi-
ronment

modelling 5 15 10 3 24

UP1 modelling 10 26 15 28 16
searching for errors 25 15 35 0
analysis 10 24 1 34

UP2 modelling 10 25 4 6
searching for errors 25 0 112 0
analysis 5 7 1 2

Duration v0 135 152 135 247 114
v1 modelling 25 26 35 16 33

searching for errors 5 32 5 16
analysis 5 58 5 1 32

Duration v1 35 116 45 33 65
v2 modelling 25 30 7 23

searching for errors 5 5 7
analysis 10 10 1 13

Duration v2 40 45 15 36
v3 modelling 5 10 8 2

searching for errors 0 5 3
analysis 10 5 1 2

Duration v3 15 15 14 7
v4 modelling 60 45 9

searching for errors 0 0 37
analysis 0 15 1

Duration v4 60 60 47 0
v5 modelling 0 10 1 4

searching for errors 0 0 3
analysis 5 10 1 3

Duration v5 5 20 5 7
Rank variants 2 10 16 2
Additional question 10 1
Turn in 0 8
Duration for questionnaires 0 2 20 0 16 11 0
Duration for work on task 290 270 340 ? 377 240 345
Overall duration (minutes) 330 305 365 ? 427 278 390

APPENDIX C. RESULTING DATA CCLIX

p ∈ PSPE,MS 9 10 11 12 13 14 15 16 17
Duration reading 22 25 20 38 20 24 27 30 45
Control flow modelling 20 20 20 55 18 19 8 10
Resource demand modelling
Resource envi-
ronment

modelling 7 20 16 15 18 16 20 12

UP1 modelling 74 9 15 13 20 4 12 0 18
searching for errors 9 4
analyse 12 3 10 20 6 5

UP2 modelling 21 3 25 3 20 2 7 22 5
searching for errors 2
analyse 1 2 5 1 10 5

Duration v0 95 63 80 57 125 63 70 54 55
v1 modelling 15 10 9 28 13 15 39 19

UP2 4 10 3 5 3 5 15 3
searching for errors 0 1
analyse 0 8 10 1

Duration v1 25 19 20 12 33 25 30 55 22
v2 modelling 10 20 39 40 10 20 31 15

UP2 23 8 30 5 14 3
searching for errors 13 1
analyse 24 4 5

Duration v2 ? 34 43 51 53 40 30 45 19
v3 modelling 17 30 35 65 54 75 38 15

UP2 15 15 9 5 5 9
searching for errors 30 10 25 10
analyse 3 13 5

Duration v3 ? 62 45 57 103 54 85 43 34
v4 modelling 25 50 30 12 30 21 30

UP2 15 20 25 63 15 10 2
searching for errors 21
analyse 3 5 8

Duration v4 ? 40 70 58 0 75 50 52 40
v5 modelling 10 10 9 17 18 20 4 11

UP2 7 10 1 5 12 4
searching for errors
analyse 5 2

Duration v5 ? 17 20 10 17 18 30 16 17
Rank variants 8 2 10 1 7 8
Additional question 10 1 28 20
Turn in 20
Duration for questionnaires 0 38 2 10 0 2 28 7 28
Duration for work on task 349 273 280 255 331 277 323 272 215
Overall duration (minutes) 371 298 300 293 351 301 350 302 260

CCLX APPENDIX C. RESULTING DATA

p ∈ PPal,WS 10 11 12 13 14 15 16 17
Duration reading 20 40 21 20 30 25 14 20
Estimation of ranking 6 5 4 5 25 5 4 3
Control flow modelling 22 65 54 40 54 50 71 77
Resource demand modelling 12 60 24 30 0 30 0 10
Resource envi-
ronment

modelling 4 5 13 20 29 10 5 10

UP1 modelling 11 22 12 22 10 30 8 30
searching for errors 10 95 11 3 15 100 47 10
analyse 10 12 0 5 10 0 0

UP2 modelling 29 10 10 5 3 20 42 5
searching for errors 0 0 14 0 0 0 0 0
analyse 0 0 10 5 5 10 0 0

Duration v0 98 257 160 125 121 260 173 142
v1 modelling 16 10 24 15 27 30 28 15

searching for errors 17 10
analysis UP1 7 2 5 2 10
analysis UP2 2 5 2 10

Duration v1 23 10 28 25 31 50 45 25
v2 modelling 1 15 3 2 5 10 2 2

searching for errors
analysis UP1 4 1 2 1 5
analysis UP2 2 3 1 5

Duration v2 5 15 6 7 7 20 2 2
v3 modelling 16 40 17 25 15 15 27 15

searching for errors 6 10 23
analysis UP1 2 2 5 5
analysis UP2 5 1 5 5

Duration v3 23 40 26 35 25 25 50 15
v4 modelling 8 10 25 5 20 10

searching for errors 3 15
analysis UP1 1 2 5 1
analysis UP2 7 2 5 2

Duration v4 16 0 14 35 8 0 23 25
v5 modelling 7 10 15 20 10 15

searching for errors 5
analysis UP1 1 3 3 2
analysis UP2 2 2 2 3

Duration v5 10 0 15 20 25 0 15 15
Duration all variants 77 65 89 122 96 95 135 82
Average 15 22 18 24 19 32 27 16
Ranking 44 68 30 10 10
Turn in
Duration questionnaires 44 0 0 68 30 0 10 10
Duration for work on task 219 322 249 315 247 355 318 234
Overall duration (in minutes) 239 362 270 340 277 380 332 254

APPENDIX C. RESULTING DATA CCLXI

p ∈ PSPE,WS 1 2 3 4 5 6 7 8
Duration reading 20 27 20 24 20 40 30 31
Estimation of ranking 5 4 5 2 3 20 30 7
Control flow modelling 20 35 30 67 15 10 85 86
Resource envi-
ronment

modelling 10 15 10 23 5 15

UP1 modelling 25 99 11 5
searching for errors 4 5 8 5
analyse 5 2 2 2 5 1

UP2 modelling 16 17 4 10 12
searching for errors 5 37
analyse 5 2 2 2 20 1

Duration v0 40 104 49 166 115 54 97 113
v1 modelling 10 18 5 6 5 10 15 20

UP2 5 2 5 3 3 4
searching for errors 8 3
analyse 5 2 5 3 4 1

Duration v1 20 30 15 6 14 17 20 20
v2 modelling 5 14 5 5 3 10 5 17

UP2 5 4 1 5 4 10 3 5
searching for errors 3 2
analyse 5 2 5 1 5 1

Duration v2 15 23 11 10 10 25 9 22
v3 modelling 5 11 8 15 16 4 15 15

UP2 5 7 5 2 2 3 5 10
searching for errors 3 1 30
analyse 5 2 5 3 6 5

Duration v3 15 23 18 17 22 13 55 25
v4 modelling 35 22 35 22 16 15 20 40

UP2 15 8 10 3 10 10 6
searching for errors 12 5 3 10 25
analyse 5 2 3 10 5

Duration v4 55 44 50 22 25 45 60 46
v5 modelling 25 3 5 15 2 2 5 7

UP2 15 18 35 32 3 25 31
searching for errors 3 1 5
analyse 5 2 5 1 10 1

Duration v5 45 26 45 15 36 15 36 38
Duration all vari-
ants

150 146 139 70 107 115 180 151

Average 30 29 28 14 21 23 36 30
Ranking variants 5 3 20 11 15 4
Turn in
Duration questionnaires 5 3 20 0 11 15 4 0
Duration for work on task 195 253 208 236 233 184 281 264
Overall duration (in minutes) 215 280 228 260 253 224 311 295

CCLXII APPENDIX C. RESULTING DATA

C.3 Problems

In the section C.3.1, the actual recorded problems are presented. The first 4 tables present the
question protocol for both the Media Store task and the Web Server task. The following 4
tables present the collected problems from the acceptance test for both tasks. Finally, 4 tables
present the problems found in the final models.

In the section C.3.2, the amount of problems for each category is presented, still separated by
the three dimensions occurence, problem area and severity.

C.3.1 Record of Problems

In the in line tables, the following keys for problem area and problem severity are used due to
space limitations:

Area: 0 = Tool, 1 = Methodology, 2 = Task

Severity: 2 = major, 1 = intermediate, 0 = minor

Question Protocol

Question protocol Media Store and Palladio
Quantity Question / Problem / Answer Area Class Severity
1 Komponentenparameter allgemein 1 Component

parameters
2

1 Wo Komponentenparameter spezifizieren? 0 Usage 2
1 Mittelwert als Komponentenparameter verwendet

- > nur bei SPE-ED verwenden!
2 Usage pro-

file
1

1 Komponentenparameter an zuviele Komponenten
gehängt

1 Component
parameters

1

1 Wie Name des Komponentenparameters bestim-
men? -> einfach angeben

0 Usage 1

1 Komponentenparameter wird nicht in StoEx
angezeigt -> geht trotzdem

0 Usage 1

1 Neue Verteilung bei Encoding auch dort als Kom-
ponentenparameter? -> Nein, parametrisieren

1 Component
parameters

1

1 Charakterisierung des Komponentenparameters
mit angeben

1 Component
parameters

2

4 Return in zwei SetVariableActions 1 Parameters 1
1 Wie wird RETURN charakterisiert? SetVariable-

Action
1 Parameters 2

1 Rückgabewerte der DB modellieren, Größe der
Files

1 Parameters 1

APPENDIX C. RESULTING DATA CCLXIII

Question protocol Media Store and Palladio
Quantity Question / Problem / Answer Area Class Severity
1 Andere Parametrisierung verwendet als gesetzt:

Hinweis: Genau die setzen die gebraucht,
STRUCTURE ist kein Oberbegriff für alle

1 Parameters 2

1 INNER Charakterisierung einer Collection unklar 1 Parameters 2
1 Outparameter falsch zugewiesen 1 Parameters 1
1 EA1 anstatt NoE = 1 im Cache NoE = files.NoE

-> too many users spawned
1 Parameters 2

1 Wusste nicht mehr, dass es EnumPDF gibt 1 Parameters 1
2 Konvertierung DoublePDF in Integer (Trunc) 1 Types and

units
1

1 Umrechnungsproblem MB <-> Byte 1 Types and
units

1

1 Erklärt das Bytesize nicht explizit mal NoE
genommen werden muss

1 Types and
units

1

1 Wie BP2 modellieren, neues Scenario oder neues
File? -> neues File

0 Usage 1

1 Hinweis: Alte Simulation verwendet bzw.
falsches Eclipse

0 Bug 1

1 Unvollständiger Usage Flow 0 Error 1
1 Repository der Primitive Types ausgewählt 0 Error 1
1 Entwurf auf falsches Resource Environment al-

lokiert. Dadurch Demand -> unendlich
0 Error 1

1 Wie ist Verteilung der Anzahl der Dateien
gemeint?

2 Usage Pro-
file

1

1 Verteilung Dateigrößen falsch verstanden 2 Usage Pro-
file

1

1 Loop fehlte in SEFF, da nicht in Sequenzdia-
gramm deutlich (nur im Text)

2 Control
flow

2

Question protocol Media Store and SPE
Quantity Question / Problem / Answer Area Class Severity
1 Encode mit 4 Branches 2 Control

flow
1

1 Anwendungsfälle alle in ein Szenario? Nur
nochmal bestätigt

1 Verteilung: Im DB Szenario Werte aus Branches
nehmen

1 Distributed
system

2

1 Studi merkte selbst dass zu hohe Werte in EA3 ->
Ankunftsrate DB Szenario

1 System bei Verteilung... (Frage vergessen) 1 Distributed
system

1

CCLXIV APPENDIX C. RESULTING DATA

Question protocol Media Store and SPE
Quantity Question / Problem / Answer Area Class Severity
1 Warum nicht DB auf mehrere Szenarien: Weil auf

einer Maschine
1 Distributed

system
1

1 Wie kombiniert man die beiden Szenarien zu
einem?

1 Distributed
system

2

2 Wie Processing Rate angeben, wie weit runden 1 Overhead 0
1 Wie SPE Projekt vervielfältigen 1 Projects 0
1 Berechnung der Wartezeit am Pool: Wie weiter,

wenn Zeit zwischen Benutzern bekannt? Hinweis:
Wie lange braucht Benutzer den Pool

1 Passive Re-
source

0

1 Berechnung Pool: Kann man ganz klein auf 0 run-
den? ja

1 Passive Re-
source

0

3 Berechnung Pool: Korrigiert das HD Zugriff nicht
in Pool mit drin

1 Passive Re-
source

0

1 Netzwerk zu System Entry wird nicht modelliert? 2 Control
flow

1

1 SPE: Zugriff auf Cache kostet nichts? 2 Annotation 0
1 SPE: Müssen Verteilungen in Aufgabenstellung

berücksichtigt werden?
2 Usage Pro-

file
0

Question protocol Web Server and Palladio
Quantity Question / Problem / Answer Area Class Severity
2 Wie spezifiziert man Komponentenparameter ->

im System
0 Usage 2

1 Wie spezifiziert man Komponentenparameter im
System -> Baum, Rechtsklick... gezeigt

0 Usage 2

1 Größe der Dateien wirklich als Komponentenpa-
rameter?

1 Component
parameters

0

1 Wie spezifiziert man den Namen einer Kompo-
nentenparameters?

0 Usage 1

1 Wie modelliert man die zwei Charakterisierungen
im UM? Hinweis: EnumPMF

1 Parameters 1

1 Out of Memory: Internal Demand falsch: nicht
durch 1000 geteilt.

1 Types and
units

2

1 Wo ist das System Diagram zu finden -> Compos-
ite benutzen

0 Usage 2

1 RequestAnalyser nicht im Repository gefunden 0 Usage 0
1 Wie Usage Model anlegen? 0 Usage 2
2 Wie etwas in ForkedBehaviour angeben? -> Re-

source Demanding Behaviour hineinziehen
0 Usage 2

1 Compilerfehler -> Rollen falsch verbunden 0 Error 1
2 Compilerfehler -> Leerer StoEx 0 Error 1

APPENDIX C. RESULTING DATA CCLXV

Question protocol Web Server and Palladio
Quantity Question / Problem / Answer Area Class Severity
1 Hatte Usagemodell und Diagramm kopiert und

damit Modell kaputt gemacht.
0 Usage 1

1 Beim Anlegen eines AssembyConnectors hat der
Editor einen ChildCompoContext auf null gesetzt.
Unklar

0 Bug 1

1 Frage zu Resource Demands: Egal ob 1WU.(0
oder 1 HD) oder (1 WU oder 1WU+1HD)?

0 Usage 0

1 Probleme beim Anlegen von Forks, Tool Restart
half

0 Bug 0

1 Exception: BranchAction mit nur einer Guarded-
BranchTransition.

0 Error 1

2 Wo Broker einstellen? 0 Usage 2
1 EA1: Modelle referenzierten sich falsch 0 Bug 2
1 Wird Name für Usage Model vergeben, ändert

sich die Ausgabe bei den Sim-Ergebnissen, ”Us-
age Model” als String verschwindet.

0 Bug 0

1 Unklar, dass in Allokation keine Linking Re-
source dargestellt.

0 Usage 1

1 Validierer mag keine Forks ohne Startzustand 0 Error 1
1 Fehler in Generatorlauf -> Falsche Allokation 0 Error 1
1 Im Usage Model Iterations auf 0 0 Usage 1
1 Out of Memory: Resource Environment falsch:

Disc Processing Rate falscch bestimmt
1 Types and

units
2

1 Haben statische Seiten auch MM Inhalte? 2 Control
flow

1

1 Richtig dass keine Kosten für den Aufruf der
Komponente?

2 Annotation 1

Question protocol Web Server and SPE
Quantity Question / Problem / Answer Area Class Severity
1 Wo globale Parameter angeben? 0 Usage 1
1 Wie Wahrscheinlichkeiten angeben? -> Hinweis

auf Wahrscheinlichkeitsbaum und VL
1 Probabilities 2

1 Wie Tool klarmachen, dass einmal HTML und
mal MM abgefragt wird? Möglichkeiten erläutert
(Nur Mittelwerte oder UM mit modellieren)

1 Probabilities 2

1 Wie ist die Wahrscheinlichkeit für HTML und
MM -> gesagt das 1 / (1+2.5) bzw 2.5/(1+2.5)

1 Probabilities 2

1 Wie p(statisch)ermitteln, was danach 1 Probabilities 2
1 Frage ob man auch direkt UM modellieren kann

ohen Bayes -> ja klar
1 Probabilities 0

CCLXVI APPENDIX C. RESULTING DATA

Question protocol Web Server and SPE
Quantity Question / Problem / Answer Area Class Severity
1 Frage ob für die Performanz nicht relevantes

weggelassen werden kann -> im Prinzip ja (macht
er aber nun doch nicht.

1 Abschätzung auf 0 ok? -> ja 1 Passive Re-
source

0

2 Wie Abschätzen p(Verweilzeit > x)? Einfach
schätzen

1 Passive Re-
source

0

1 Wie abschätzen? Hinweise geben. 1 Passive Re-
source

0

1 Rechnung so richtig? -> noch hoch 8, weil für 8
Benutzer hintereinander

1 Passive Re-
source

0

1 Bei EA5 BP1 nichts verändert: Doch, 10 WU weg 2 Annotation 1
1 StaticFileProvider kein WU um zu prüfen welcher

Request-Typ?
2 Annotation 0

1 Wird pro Benutzer oder pro Request ein Thread
angefordert?

2 Control
flow

1

Problems in Acceptance Tests

Acceptance test Media Store and Palladio
Quantity Question / Problem / Answer Area Class Severity
1 EA1 BP2: NoE im Cache war erst nicht 1. Weit-

erhin verdächtiger Peak bei 0.
2 Control

flow
2

Acceptance test Media Store and SPE
Quantity Question / Problem / Answer Area Class Severity
1 EA3 BP1: 1x Fehler in Overhead (nicht aktual-

isiert für DB, zweite Disk)
1 Overhead 2

1 EA3 BP1: 1x Netzwerk vergessen 1 Overhead 0
1 EA3 BP1: Service Times des DBServers wurden

nicht angepasst.
1 Overhead 2

1 EA3 BP2: Im Overhead fehlte 1 für Delay.
Danach Ergebnis komisch, aber keine Gründe zu
finden.

1 Overhead 2

1 EA0 BP1: Im Overhead fehlte 1. EA2 BP2: Delay
verändert.

1 Overhead 2

1 EA1 BP1: Cache nur einmal abgefragt, nicht pro
File. Hat Ergebnisse mit Sitznachbar verglichen.

2 Control
flow

2

1 EA4 BP1: variable neu kodiert. Neukodierung
vergessen.

2 Control
flow

1

APPENDIX C. RESULTING DATA CCLXVII

Acceptance test Media Store and SPE
Quantity Question / Problem / Answer Area Class Severity
1 EA0 BP1: Watermark fehlerhaft auf HDD anstatt

CPU. EA3 BP1: Werte aus dem Inneren der
Branches nehmen

1 Overhead 2

1 EA4 BP1: 4. Fall konstant, <192 fehlte. 2 Control
flow

1

1 EA3 BP2: DB Sachen in ein Szenario oder Ser-
vice Level anpassen. Danach zwar komisches
Ergebnis, aber keine Gründe gefunden.

1 Distributed
System

2

1 EA4 BP1: 4. Fall nicht berücksichtigt(variabel,
>192)

2 Control
flow

1

Acceptance test Web Server and Palladio
Quantity Question / Problem / Answer Area Class Severity
1 EA0: EA0: Korrektur von static/dynamic bei MM

Daten.
2 Control

flow
2

1 VALUE anstatt BYTESIZE bei Kompparams ver-
wendet.

1 component
parameters

1

1 EA3: Versehentlich zuerst AccContentGenerator
verwendet.

1 Assembly 2

1 EA0: Eine Parameterübergabe war fehlerhaft 1 Parameters 1
1 EA0 BP2: request.type und request.url.type ver-

tauscht.
1 Parameters 1

1 EA0: Komponentenparameter als IntPMF model-
liert, wusste nicht, wie DoublePDF geht.

1 Types and
units

1

1 EA4: Return Value nicht modelliert. 1 Parameters 1
1 EA0: Verteilungen im SEFF anstatt KomParams,

DoublePMF anstatt DoublePDF
1 Types and

units
1

1 EA0: Usage Model umständlich und fehlerhaft. 1 Usage
model

2

1 EA1: Modelle referenzierten sich untereinander
fehlerhaft

0 Bug 2

Acceptance test Web Server and SPE
Quantity Question / Problem / Answer Area Class Severity
1 EA0: Hatte für jedes KB 1 HD Access. 1 Overhead 1
1 EA4: Bei dynamisch nicht 50 von HD laden:

Macht aber kaum etwas aus.
2 Annotation 0

1 EA0 : Wahrscheinlichkeiten: nur % stat/dyn be-
trachtet, nicht MM.

1 Probabilities 1

1 EA1: p(CacheHit) und p(CacheMiss) verwech-
selt.

2 Control
flow

2

CCLXVIII APPENDIX C. RESULTING DATA

Acceptance test Web Server and SPE
Quantity Question / Problem / Answer Area Class Severity
1 EA2: Falsch kopiert von Cache. 0 Usage 2
1 EA3: Demand zum Erzeugen eines Threads nicht

dabei.
2 Annotation 1

1 EA4: Delay war auf 0. 1 Overhead 2
1 EA0 BP2: Selbst zu hohe Zeit erkannt. Hinweis:

in Overhead auch HD angeben.
1 Overhead 1

1 Wahrscheinlichkeiten p(HTM|stat) usw. berech-
nen.

1 Probabilities 1

1 EA4: Bei Aufruf des Appservers nochmal zwis-
chen statisch / dynamisch unterschieden, daher zu
niedrige Werte

1 Distributed
system

1

1 EA0: Zu niedrig, war nur Antwortzeit für einen
Request: mal 3,5 nehmen.

1 Projects 2

1 EA4: Problem mit Service Time im Overhead. 1 Overhead 1
1 EA4 BP2: War No Contention Lösung, daher erst

zu niedrig
1 Solution 1

1 EA3: Fehler in Overhead, 1 WU = ... 1 Overhead 1
1 EA4: Overhead Appserver CPU nicht doppelt so

schnell gemacht. Loop war zu oft, selbst gefun-
den.

2 Annotation 2

1 EA2:Mal 1 MB von HD gelesen, auch schon in
EA0, aber nicht korrigiert

1 Overhead 1

Problems in Final Models

Final models Media Store and Palladio
Quantity Question / Problem / Answer Area Class Severity
1 Filesize auch bei Upload als Komponentenparam-

eter
1 Component

Parameters
0

2 Filesize alsKoParam der WebGUI 1 Component
Parameters

0

2 Konstant und >192 nicht berücksichtigt 2 Control
flow

1

1 Modelle referenzieren sich falsch, daher Cache
nicht benutzt

0 Bug 2

1 Dateigröße in ganzen MB angegeben als Dou-
ble angegeben. Macht aber nichts, da entspr.
*1E6 genommen. Nur leichte Abweichungen da
manchmal nicht auf Byte gerundet

1 Types and
units

0

APPENDIX C. RESULTING DATA CCLXIX

Final models Media Store and SPE
Quantity Question / Problem / Answer Area Class Severity
1 Only 1 WU instead of 3 to get Filename from the

database(EA0 UP1, UP2 is right)
2 Annotation 0

2 0.00019 for CPU service time instead of 0.001 1 Overhead 1
1 modelled lan as delay for EA3 UP1 1 Overhead 0
1 EA3 UP1 Overhead defekt, delay für DB Server

weg (kein Fehler von Henß)
0 Bug 0

1 Added 1 WU for each component call 2 Annotation 0
1 Service Time CPU 0.001145 for 1 WU is too long 1 Overhead 1
2 DB Server has two hard disks, thus results are

much lower.
1 Overhead 2

1 BP2 used 7.1 as mean for filesize, not 8.1 2 Usage Pro-
file

1

1 EA4 UP1 3.5*1.33*10*0.44 is not representing
the encoding

1 Miscalculation1

1 EA3 used time of branch node, which is multi-
plied with probability and thus too low.

1 Distributed
system

1

1 Tiny error: WU to read from DB using the DB
Connection Pool is 0.2 too high

2 Annotation 0

1 Used Latency instead of transfer time for LAN,
which is lower by factor 50

1 Overhead 1

1 slightly wrong encoding: 28.292 instead of 25.102
WU

1 Miscalculation0

1 EA5 10 WU instead of 17 for very first component
lookup

2 Annotation 0

3 EA3: Did not model the network 1 Overhead 1
1 EA4: Used commas instead of dots for encoding

demand: encoding by factor 10 slower!
0 Usage 1

1 EA0 UP2: Didn’t adjust WUs for reading from
DB for number of files, 3 WU difference

2 Annotation 1

1 EA1: Reading from DB not after cache checking 2 Control
flow

0

1 EA3 UP1: Used time to download from DB server
for delay for upload as well

1 Distributed
system

1

Final models Web Server and Palladio
Quantity Question / Problem / Answer Area Class Severity
1 Beim Threadpool trotzdem 10 WU zum Erzeugen 2 Annotation 1
3 Demand zum erzeugen des 2. Thread bei paral-

leled logging vergessen
2 Annotation 1

1 Demand zum Parsen der Seite bei FastRequest-
Analyser (ParLog) vergessen

2 Annotation 1

CCLXX APPENDIX C. RESULTING DATA

Final models Web Server and Palladio
Quantity Question / Problem / Answer Area Class Severity
1 Keine Komponentenparameter verwendet, son-

dern Verteilungen direkt ins Modell
1 Component

parameters
0

1 Trunc vor *1000 bei Dateigröße, also immer auf
KB gerundet.

1 Types and
units

1

1 DynamicFileProvider does not return a filesize
(thus, it cannot be used for EA4)

1 Parameters 1

1 DoublePMF instead of DoublePDF for the file-
sizes, strongly influences the distributions and the
deviation (was detected after looking at the re-
sults)

1 Types and
units

2

Final models Web Server and SPE
Quantity Question / Problem / Answer Area Class Severity
1 paralleled logging anders modelliert, in 50% der

Fälle 2. Logging, immer 1. Logging
2 Control

flow
1

3 Beim Threadpool trotzdem 10 WU zum Erzeugen 2 Annotation 1
5 HD Latenz belastet Delay, nicht Festplatte 1 Overhead 1
3 EA4: Analysed the DB scenarios separately for

UP2, not in one for contention
1 Distributed

system
1

1 Demand for dynamic MM generation slightly
wrong

1 Miscalculation0

1 Lookups are all outside the branches, but two
should be in dynamic branch

2 Control
flow

1

1 left out response generation instead of logging for
EA3

2 Annotation 0

1 Latency of 1 ms for LAN in EA4 1 Overhead 1
1 Added HD Access for dynamic MM 2 Annotation 1
1 put lookup for static file provider in branch, but it

is always needed (Chain of Resp)
2 Control

flow
1

1 Forgot demand to create a second thread in paral-
leled logging alternative

2 Annotation 1

1 Latency LAN is 5ms instead of 0.5ms 1 Overhead 1
1 Latency of LAN is added for each transfered KB 1 Overhead 1
1 DB Server has arrival rate of 3.5 and full probabil-

ities in the branches, i.e. load is too high
1 Distributed

system
1

2 EA4: Did not model the network 1 Overhead 1
1 EA4: Service time of called appserver is too high. 1 Distributed

system
1

1 EA4: Interchanged (mixed up) probabilities for
HTML and Multimedia in appserver

1 Probabilities 1

1 EA3: Twice a new second thread is generated,
thus 10 WU too much per request

2 Annotation 1

APPENDIX C. RESULTING DATA CCLXXI

Severity Control flow Annotation Usage Profile
Media Store, 16 participants

minor 0 1 0
intermediate 2 0 3
major 1 0 0
Web Server, 16 participants
minor 0 1 0
intermediate 0 2 1
major 0 0 0

Table C.13: M2.1 Number of questions concerning the experiment task

C.3.2 Cumulated Data

The first three tables show the number of question from the question protocol: Related to the
task (table C.13, related to Palladio (table C.15) and related to SPE (table C.17).

Following, the next three tables show the number of problems in the acceptance test: Related to
the task (table C.18, related to Palladio (table C.20) and related to SPE (table C.22).

Finally, the last three tables show the number of problems in the final models: Related to the
task (table C.23, related to Palladio (table C.25) and related to SPE (table C.27).

C.4 Answers to Questionnaire

C.4.1 Question 17

Answers to question 17: Improvements for the Palladio approach and the PCM Bench:

Automatische Weitergabe der Parametercharakterisierungen; Bessere Fehlerer-
kennung; Parametrisierung; Verbesserung der Analysemöglichkeiten (bessere Ver-
gleichsdiagramme); Verbesserung der Editoren (textuelle Teilmodellierung); fle-
xiblere graphische Editoren (Copy and Paste, Drag & Drop); Ein Click-through-
wizard für alle elementaren Elemente; Automatische Code-Generierung; Verste-
cken der nicht benötigten Schaltflächen; Viele Bugs; Variablen durchreichen un-
übersichtlich; Oft nicht klar wann keine Autovervollständigung und wann fehler-
hafte Meldung; Möglicherweise wäre es sinnvoll beim Spezifizieren eines Kompo-
nentenaufrufs darüber informiert zu werden, welche Parameter spez. werden müs-
sen; Bessere Trennung der Rollen, z.B. durch verschiedene Sichten; EMF bedingte
Schwachstellen, die bereits im Bugzilla stehen; Skript-Anbindung für den Kon-
trollfluss in SEFF; Kopierfunktion zwischen den SEFF; Textuelle konkrete Syntax:
Alternatives UI für Entwickler mit Hang zum Code (und zur Effizienz); Bugfixing
fürs Werkzeug; Doku; GUI-Konzept auf Schnelligkeit auslegen; Algorithmische
Bewertung neben den SEFFs; Die Handhabung der GUI: Erzeugen aller Model-
le/Diagramme über ein „new”; Einheitliche Erstellungsmethode für die Modelle
und Diagramme; Oft unklar, „wo man hinklicken soll” in der grafischen Darstel-
lung; Usage Model(?) wieso open/closed belastung „außerhalb des Kastens”; Bugs
fixen; mehr graphische Editoren statt Baumansicht; verschachtelte SEFFs -> über-
sichtlicher; plattformunabhängigkeit

C.4.2 Question 21

Answers to question 21: Improvements for the SPE approach and the SPE-ED tool:

CCLXXII APPENDIX C. RESULTING DATA

Tool Methodology

U
sa

ge

E
rr

or

B
ug

Pa
ra

m
et

er
s

C
om

po
ne

nt
pa

ra
m

et
er

s

Ty
pe

s
an

d
un

its

A
ss

em
bl

y

U
sa

ge
m

od
el

Media Store, 7 participants
minor 0 0 0 0 0 0 0 0
intermediate 3 3 1 7 2 4 0 0
major 1 0 0 4 2 0 0 0
Web Server, 8 participants
minor 2 0 2 0 1 0 0 0
intermediate 7 3 1 1 0 0 0 0
major 9 0 1 0 0 2 0 0

Table C.15: M2.1 Number of questions concerning Palladio

Tool Methodology

U
sa

ge

E
rr

or

B
ug

O
ve

rh
ea

d

D
is

tr
ib

ut
ed

sy
st

em

Pr
oj

ec
ts

Pa
ss

iv
e

R
es

ou
rc

e

M
is

ca
lc

ul
at

io
n

Pr
ob

ab
ili

tie
s

So
lu

tio
n

Media Store, 9 participants
minor 0 0 0 2 0 1 5 0 0 0
intermediate 0 0 0 0 2 0 0 0 0 0
major 0 0 0 0 2 0 0 0 0 0
Web Server, 8 participants
minor 0 0 0 0 0 0 5 0 1 0
intermediate 1 0 0 0 0 0 0 0 0 0
major 0 0 0 0 0 0 0 0 4 0

Table C.17: M2.1 Number of questions concerning SPE

APPENDIX C. RESULTING DATA CCLXXIII

Control flow Annotation Usage Profile
Media Store, 16 participants
minor 0 0 0
intermediate 3 0 0
major 2 0 0
Web Server, 16 participants
minor 0 1 0
intermediate 0 1 0
major 2 1 0

Table C.18: M2.1 Number of problems in the acceptance test concerning the experiment task

Tool Methodology

U
sa

ge

E
rr

or

B
ug

Pa
ra

m
et

er
s

C
om

po
ne

nt
pa

ra
m

et
er

s

Ty
pe

s
an

d
un

its

A
ss

em
bl

y

U
sa

ge
m

od
el

Media Store, 7 participants
minor 0 0 0 0 0 0 0 0
intermediate 0 0 0 0 0 0 0 0
major 0 0 0 0 0 0 0 0
Web Server, 8 participants
minor 0 0 0 0 0 0 0 0
intermediate 0 0 0 3 1 2 0 0
major 0 0 1 0 0 0 1 1

Table C.20: M2.1 Number of problems in the acceptance test concerning Palladio

CCLXXIV APPENDIX C. RESULTING DATA

Tool Methodology

U
sa

ge

E
rr

or

B
ug

O
ve

rh
ea

d

D
is

tr
ib

ut
ed

sy
st

em

Pr
oj

ec
ts

Pa
ss

iv
e

R
es

ou
rc

e

M
is

ca
lc

ul
at

io
n

Pr
ob

ab
ili

tie
s

So
lu

tio
n

Media Store, 9 participants
minor 0 0 0 1 0 0 0 0 0 0
intermediate 0 0 0 0 0 0 0 0 0 0
major 0 0 0 5 1 0 0 0 0 0
Web Server, 8 participants
minor 0 0 0 0 0 0 0 0 0 0
intermediate 0 0 0 5 1 0 0 0 2 1
major 1 0 0 1 0 1 0 0 0 0

Table C.22: M2.1 Number of problems in the acceptance test concerning SPE

Severity Control flow Annotation Usage Profile
Media Store, 16 participants
minor 1 4 0
intermediate 2 1 1
major 0 0 0
Web Server, 16 participants
minor 0 1 0
intermediate 3 11 0
major 0 0 0

Table C.23: M2.1 Number of errors in the model concerning the experiment task

APPENDIX C. RESULTING DATA CCLXXV

Tool Methodology

U
sa

ge

E
rr

or

B
ug

Pa
ra

m
et

er
s

C
om

po
ne

nt
pa

ra
m

et
er

s

Ty
pe

s
an

d
un

its

A
ss

em
bl

y

U
sa

ge
m

od
el

Media Store, 7 participants
minor 0 0 0 0 3 1 0 0
intermediate 0 0 0 0 0 0 0 0
major 0 0 1 0 0 0 0 0
Web Server, 8 participants
minor 0 0 0 0 1 0 0 0
intermediate 0 0 0 1 0 1 0 0
major 0 0 0 0 0 0 0 0

Table C.25: M2.1 Number of errors in the model concerning Palladio

Tool Methodology

U
sa

ge

E
rr

or

B
ug

O
ve

rh
ea

d

D
is

tr
ib

ut
ed

sy
st

em

Pr
oj

ec
ts

Pa
ss

iv
e

R
es

ou
rc

e

M
is

ca
lc

ul
at

io
n

Pr
ob

ab
ili

tie
s

So
lu

tio
n

Media Store, 9 participants
minor 0 0 1 1 0 0 0 1 0 0
intermediate 1 0 0 7 2 0 0 1 0 0
major 0 0 0 2 0 0 0 0 0 0
Web Server, 8 participants
minor 0 0 0 0 0 0 0 1 0 0
intermediate 0 0 0 10 5 0 0 0 1 0
major 0 0 0 0 0 0 0 0 0 0

Table C.27: M2.1 Number of errors in the model concerning SPE

CCLXXVI APPENDIX C. RESULTING DATA

Bessere Abbildung für verteilte Systeme; Schwer zu bedienen; Da weniger Ein-
flüsse modellierbar sehr abstrakt (nicht so genau); Benutzerfreundlichkeit des Werk-
zeugs; Mittelwertbetrachtung; Verwaltung der Szenarien/Konfigurationen; Verschie-
ben etc. im Editor erlauben; Referenzen statt copy-include; Moderne GUI; Dia-
gramme; Umstellung auf moderne Technologie, Tabs, etc.; Neuentwicklung; kom-
plett neu schreiben, insbesondere die GUI; Darstellung; kein wirklicher Aufruf
anderer Szenarien, sondern Umweg über Delay; Die Oberfläche, komplett! Mehr
auf Modellierung und Wiederverwendbarkeit ausrichten; Bedienerführung (GUI);
künstliche Limitierungen entfernen (Feldgröße, max Anzahl Ebenen); Vorgehen
näher an das SW-Entwicklungsmodell anlehnen; wegwerfen; Simulationsfunktion
unbrauchbar; Probleme mit Branches; Bugs fixen; Benutzeroberfläche modernisie-
ren; Undo, Copy & Paste einbauen; Undo und viele weitere nützliche Funktionen;
komplett neu entwickeln

C.4.3 Question 29

Answers to question 29: Reasons for having more trust in the quality of the predictions for one
approach:

Weil ich alles genauer modellieren konnte; Da mehr Einflussfaktoren berück-
sichtigt; bessere Simulation und Betrachtung durch Verteilungsfunktionen; Simu-
lation und Modelle weniger abstrakt; Man kann den Simulationscode einsehen; da
Verteilung; wegen der Wahrscheinlichkeitsfunktion; Reduzierung auf Mittel- und
Max-Werte bei SPE-ED vielleicht zu einseitig; Komplexität des SW Modells wird
hinreichend exakt abgebildet; SPE-ED modelliert ungenau; möglicherweise PCM
wegen Verteilungen; Spezifikation der Verteilungen anstatt nur Mittelwerte mög-
lich; Die Vorgänge innerhalb des Tools sind besser nachzuvollziehen, nicht zuletzt,
da man auch die Möglichkeit hat, sich das Generat anzusehen; da nicht nur ein
Wert, sondern eine Funktion, gerade bei der Simulation und Mehrbenutzerbetrieb;
höhere Transparenz; keine (stark) vereinfachten Annahmen (Verteilungen bei SPE);
beide haben Probleme, daher wenig Vertrauen; da ich so ungefähr verstehe, wie al-
les berechnet ist, bei SPE-ED scheint mir der Mittelwert nicht realistisch, außerdem
weiß ich nicht genau wie die Performanz bei SPE-ED analytisch bestimmt ist; weil
genauer modelliert werden kann; genauer

C.4.4 Question 31

Answers to question 31: Reasons for preferring Palladio:

mehr Realitätsnah; da Bedienung besser war; viel modernerer Ansatz (Kompo-
nentenansatz usw.); komplexer, flexibler, mächtiger; Neu-Effekt; Eclipse gewohnte
Umgebung; in Weiterentwicklung, Komponentenkonzepte und MDSD Kompatibi-
lität; genauere Trennung der Rollen; genauere Abbildung in Modellen; intuitive
Oberfläche; Modellierung kam mir genauer vor; bessere Modellierung; wegen der
Bedienung; intuitiver (näher an der SW Entwicklung); SPE-ED ist alle 10 Minuten

APPENDIX C. RESULTING DATA CCLXXVII

abgestürzt; mehr Vertrauen; Usability höher; Arbeit weniger frustrierend, wenn was
nicht läuft; interessanter, komfortabler, präziser; nur die vielen Bugs haben genervt;
wegen der Benutzeroberfläche

Answers to question 31: Reasons for preferring SPE:

bei PCM nach längerer Zeit gesucht wo Variablen falsch übergeben und nur noch
Kästchen gesehen; sehr viel einfacher

Acknowledgements

First of all, I would like to thank Ralf Reussner, Steffen Becker and Heiko Koziolek for their
great mentoring of this thesis. They gave valuable advice, supported me in teaching Palladio,
provided slides for the lectures and spent a lot of time pre-reading the thesis. Additionally, I
thank Klaus Krogmann for helping along during the experiment sessions.

Additionally, thanks to Walter Tichy and Lutz Prechelt for reviewing the experiment design and
giving helpful comments, and Willi Hasselbring for examining this thesis in Oldenburg.

I also want to thank my parents, who supported me all my life in whatever I wanted to do, and
were always a safe harbour to me.

Finally, thanks to all my friends, especially Jan Zeh, who had patience with me when I spent
time on my studies.

CCLXXVIII

Declaration

This thesis is my own work and contains no material that has been accepted for the award of
any other degree or diploma in any university.

To the best of my knowledge and belief, this thesis contains no material previously published
by any other person except where due acknowledgment has been made.

Oldenburg, 14th November 2007,

Anne Martens

CCLXXIX

	Introduction
	Motivation
	Contribution
	Related Work
	Structure of this Thesis

	Performance Prediction
	Theoretical Foundations
	Performance Prediction for Component-based Systems
	The Palladio Approach
	Other Component-based Prediction Approaches

	Monolithic Prediction Approaches
	The SPE Approach
	Comparability of the Approaches

	Research Method
	Empirical Studies in Software Engineering
	Controlled Experiment
	Related Empirical Studies

	Goal-Question-Metric Plan
	Goal of the Experiment
	Questions and Derived Metrics

	Design and Conduction of the Experiment
	Participants
	Preparation
	Preparatory Exercises
	Results of the Preparation

	The Experiment
	Experiment Plan
	Experimental Tasks
	Execution of the Experiment

	Validity of this Experiment
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Results
	Results of the Metrics
	What is the quality of the created performance prediction models?
	What are the reasons for the model's quality?
	What is the duration of predicting the performance?
	What are the reasons for the duration?

	Discussion of the Results
	Differences of the Approaches
	Differences of the Systems under Study
	Further Assessment of the Validity

	Conclusions and Outlook
	Summary
	Knowledge gained
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Tutorial Slides and Preparatory Exercises
	Introductory Tutorial Slides
	SPE-ED Tutorial Slides
	Palladio Tutorial Slides
	Review Slides
	Preparatory Exercises
	Durations of Solving Preparatory Exercises

	Experimental Material
	Experiment Tasks
	Media Store
	Web Server

	Rank Estimation
	Media Store
	Web Server

	Time Stamps
	Media Store
	Web Server

	Qualitative Questionnaires
	Questionnaire Media Store
	Questionnaire Web Server
	Comparing Questionnaire

	Acceptance Tests
	Check Lists
	Acceptance Test Protocols

	Question Protocol
	Question Protocol Sheets

	Resulting Data
	Predictions of the Participants
	Duration and Break Down
	Problems
	Record of Problems
	Cumulated Data

	Answers to Questionnaire
	Question 17
	Question 21
	Question 29
	Question 31

	Acknowledgements

