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Abstract
Key Message  In an urban area, resistance and resilience of stem diameter growth differ substantially between tree 
species. Traffic emissions are reflected in wood nitrogen isotopes, but do not affect drought tolerance.
Abstract  With increasing drought and heat, the benefits of urban trees such as shading and cooling become more important. 
Yet, it is necessary to identify tree species able to withstand such extreme climatic conditions. We studied the resistance and 
resilience of stem diameter growth of five deciduous tree species in an urban area in Southwest Germany to three exceptional 
drought periods (2003, 2011 and 2015) for differences between and within species, especially considering the intensity of 
traffic emissions (NOx). Analyses of the stable isotopic composition of carbon (δ13C) and oxygen (δ18O) as well as the intrin-
sic water-use efficiency (WUEi) in the tree rings were carried out. Further, we investigated the stable isotopic composition 
of nitrogen in the wood (δ15N) to assess its potential as an indicator of NOx emissions from traffic. Stem diameter growth in 
all species was strongly limited by low water availability in spring, as was also reflected in elevated δ13C and δ18O values in 
Acer platanoides and Tilia cordata, which were particularly sensitive to drought. In contrast, growth of Platanus × hispanica 
and Quercus robur was less affected by drought, and resistance of Carpinus betulus ranged in between. Across species, δ15N 
was higher in trees located closer to roads and exposed to higher NOx traffic emissions. Unexpectedly, these conditions did 
not significantly affect drought resistance/resilience. Our study demonstrates the potential and interpretative challenges of 
coupled dendroecological and isotope analyses. It also indicates clear species-specific differences in drought tolerance and 
thus helps to identify suitable urban tree species.
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Introduction

Trees in urban areas provide a multitude of services 
(Dümpelmann 2020); They contribute to the reduction of air 
pollution as gaseous pollutants are taken up as an effect of 
stomatal conductance and particles are deposited to the sur-
face of the leaves and bark (Maher et al. 2013; Hofman et al. 
2014; Grote et al. 2016; Pace et al. 2020). A simulation study 
carried out in the city of London showed that, while solid 
barriers such as low boundary walls can drastically reduce 
NO2 concentrations on the sidewalk, trees are the most cost-
effective measure to mitigate pollution (Jeanjean et al. 2017). 
Trees also provide further benefits. Especially on warm 
summer days, the temperature below the canopy remains 
substantially lower than above exposed concrete surround-
ings, as the trees provide shading and a further cooling effect 
due to transpiration (Pace et al. 2020; Sanusi and Livesley 
2020). Trees in urban areas also store significant amounts 
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of carbon—especially (old) trees in parks and cemeteries 
contribute to carbon storage (Kändler et al. 2011; Strohbach 
and Haase 2012; Richter et al. 2020).

At the same time, air pollution and its filtering by trees 
may also affect tree growth negatively (Locosselli et al. 
2019). Here, assessing the stable isotopic composition of 
nitrogen in the wood (δ15N) can be useful to find out the 
degree of traffic pollution urban trees experience. Trees uti-
lise nitrogen for different purposes such as (xylem) growth 
and also store it in the stem wood (Cowling and Merrill 
1966; Millard and Grelet 2010), so that δ15N of the wood 
reflects the isotopic composition of the nitrogen which is 
taken up from the soil. While isotope analyses of nitrogen 
oxide (NOx) in vehicle exhaust and air close to a highway 
generally revealed a considerable variation of δ15N, values 
are mostly positive (Ammann et al. 1999; Felix and Elliott 
2014) and thus higher than those of agricultural or natural 
sources (Beyn et al. 2014; Felix and Elliott 2014). Accord-
ingly, δ15N has been found to be higher in trees closer to a 
highway (Saurer et al. 2004; Guerrieri et al. 2009), but stud-
ies for trees in urban areas are lacking. Besides air pollution, 
urban trees are also exposed to soil compaction and soil 
contamination with heavy metals (Czaja et al. 2020), and 
the use of de-icing salt in winter can increase soil salinity 
and induce leaf damage (Dmuchowski et al. 2020, 2021) or 
reduced stem diameter growth (Helama et al. 2020).

However, trees can only provide the services mentioned 
above if they are vital. For instance, the cooling effect of 
roadside Platanus × hispanica trees diminished during a heat 
wave, and as the trees shed up to 50 % of their leaves in 
response to this period of high temperatures and low water 
availability, the positive effect on the microclimate was 
reduced for several weeks, even though overall the condi-
tions remained cooler compared to open areas (Sanusi and 
Livesley 2020). For seedlings of Tilia cordata subjected to a 
drought-stress experiment, a model simulation showed sub-
stantially lower CO2 fixation, evapotranspiration and cool-
ing than for control trees (Zhang et al. 2019). If stomatal 
conductance declines or ceases entirely, this also reduces the 
removal of gaseous air pollution (Pace et al. 2020).

Based on climate modeling, the frequency, duration and 
intensity of heat waves will increase substantially in South-
ern Germany within this century (Zacharias et al. 2014), 
concomitant with a tentatively projected decrease of pre-
cipitation in the vegetation period and an increase in the 
duration of dry periods (LUBW 2013). Therefore, there has 
been an increase in not only the importance of vital trees in 
urban areas providing a beneficial microclimate, but also 
the necessity to identify tree species which may cope with 
increasingly hot and dry conditions.

In the city of Munich, the daily stem diameter growth of 
Tilia cordata trees was negatively correlated with vapour 
pressure deficit in the hot and dry summer months of the 

year 2015. The growth of trees at a paved site was impaired 
more than that of trees on an open green square, indicat-
ing that site conditions may either support or impede tree 
growth during drought periods (Moser et al. 2017). Water 
availability has also been determined a substantial influence 
on stem diameter growth for several tree species in the city 
of Dresden, where Platanus × hispanica and Quercus spp. 
were concluded to be more suitable in urban environments 
experiencing hot and dry conditions than Acer spp. (Gillner 
et al. 2014). There, Platanus × hispanica and Quercus rubra 
showed higher mean water-use efficiency than trees of the 
genera Acer and Tilia (Gillner et al. 2015), indicating that 
different water-use strategies may be the key to interspecific 
differences in drought tolerance (Gillner et al. 2016).

While tree ring series provide an extensive base for ret-
rospective analyses of the influence of climatic conditions 
on tree growth, the informative value of comparing tree ring 
widths is slightly constrained. As stem diameter growth is 
of lower priority compared to other (growth) processes 
(Waring 1987; Dobbertin 2005), narrow tree rings do not 
necessarily imply poor vitality. Rather, the (temporal) com-
petition of resources may have led to them being allocated 
to other compartments, e. g. for fructification in species, 
which exhibit pronounced masting patterns (Mund et al. 
2010; Müller-Haubold et al. 2013). This may however not 
imply a long-term growth inhibition. Thus, to support the 
interpretation of the analysis of tree ring widths with regard 
to drought tolerance, the inter-annual variability in the sta-
ble isotopic composition of carbon and oxygen in the stem 
wood can give additional information on tree physiological 
processes (Gessler et al. 2018).

The isotopic composition of carbon is strongly influenced 
by the relation between stomatal conductance and photo-
synthesis, and increased δ13C values indicate that trees may 
have experienced atmospheric and/or edaphic drought that 
led to reduced stomatal conductance (McCarroll and Loader 
2004). However, an increase of δ13C in the leaf can also be 
due to an increase in photosynthetic capacity at a constant 
stomatal conductance rate, so that the combined analysis 
of the variation of δ13C and δ18O may aid the interpreta-
tion of the underlying physiological processes (Scheidegger 
et al. 2000). The explanatory power of isotope analyses is 
still limited due to several factors of uncertainty (Roden and 
Siegwolf 2012); The oxygen isotopic composition itself is 
on the one hand influenced by the signature of the source 
water and also by leaf water enrichment due to transpiration, 
related to atmospheric condition and stomatal conductance 
(McCarroll and Loader 2004; Gessler et al. 2014). Addi-
tionally, an exchange between oxygen of the assimilates and 
water during transport in the phloem or cellulose synthesis 
may occur (Gessler et al. 2009, 2014), potentially uncou-
pling the signal in the leaf and the wood (Offermann et al. 
2011) and thus also limiting the interpretation in the terms 
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of physiological response to atmospheric conditions. When 
interpreting the isotopic composition of carbon and oxygen 
in the stem wood, it also has to be considered that if stored 
carbohydrate reserves are remobilised, their isotopic sig-
nature is mixed with that of recently assimilated carbon, 
potentially also changing the relationship between oxygen 
and carbon (Roden and Siegwolf 2012; Gessler et al. 2014). 
Despite those potential constraints, various studies have 
found annual δ13C and/or δ18O of stem wood to be well cor-
related with various climatic variables such as temperature, 
precipitation and/or VPD (Hartl-Meier et al. 2015; Vitali 
et al. 2021). Additionally, the intrinsic water-use efficiency 
(WUEi) as calculated from δ13C in tree rings is an indicator 
of the ratio of net photosynthetic rate to stomatal conduct-
ance and can give an insight into general growth and drought 
tolerance strategies of trees (Gessler et al. 2018).

In this study, we investigated (1) how stem diameter 
growth and stable isotopic composition of carbon and oxy-
gen in the wood respond to climatic variation in urban trees 
to find out (2) which tree species are particularly vulnerable 
to drought as indicated by low resistance/resilience of stem 
diameter growth, increased δ13C and δ18O as well as chang-
ing WUEi. Additionally, we aimed to analyse (3) if the expo-
sition to NOx emissions from traffic is reflected in the sta-
ble isotopic composition of nitrogen in the stem wood and, 
finally (4), if there is an interplay between the intensity of 
traffic emissions and the reaction of stem growth to drought.

Material

Study area

The study was conducted in the neighbouring cities of 
Karlsruhe and Rheinstetten, which are located in the North-
west of the state of Baden-Württemberg in Southwest Ger-
many and cover a total area of 206 km2. Karlsruhe has a pop-
ulation of ~ 313,000 and Rheinstetten of ~ 21,000 inhabitants. 
About one-third of their area is classified as forest, while 
about 30 % of the area is urban fabric composed of residen-
tial areas, commercial districts, roads and other sealed as 
well as green urban areas. The remaining area comprises 
arable land, water and port areas, railways and other types 
of land use (Copernicus Land Monitoring Service 2021). 
This study area was chosen as it allows to analyse trees on 
a gradient ranging from the inner area of a large city and its 
outskirts to a small town.

Data on climate and traffic pollution

Data on monthly temperature means and precipitation sums 
were obtained from the German Weather Service DWD (DWD 

Climate Data Center (CDC) 2020a, 2020b). These gridded 
raster data have a resolution of 1 × 1 km, interpolated based on 
weather station data. It is important to note that processes char-
acteristic for urban climate such as urban heat island effects 
are not represented by this data.

Two different types of geospatial data were used to char-
acterise the pollution intensity within the study area. Data on 
the background NO2 concentration (for the year 2010) with a 
spatial resolution of 0.5 × 0.5 km as provided by the Environ-
mental Agency of Baden-Wuerttemberg (LUBW 2014) were 
used to split the study area into three areas of general pollu-
tion intensity (i.e. high intensity in the inner city of Karlsruhe 
[> 30 µg m−3], medium intensity in the outskirts of Karlsruhe 
[24–30 µg m−3] and low intensity in the city of Rheinstetten 
[< 24 µg m−3]). This dataset is based on the interpolation of 
measurements in combination with a chemical transport model 
(LUBW 2014). To characterise the emission load due to traf-
fic for each of the selected sample trees we referred to the 
emission inventory for the year 2014 (LUBW 2017), which 
provides data on the NOx emission by traffic with a spatial 
resolution of 0.5 × 0.5 km based on a compilation of data from 
various sources such as traffic counts in combination with 
emission factors.

Sample trees

Five deciduous broadleaved tree species, which are among 
the most abundant urban tree species in the study area, were 
selected: Acer platanoides (15 %), Quercus robur (8 %), 
Carpinus betulus (7 %), Tilia cordata (6 %) and Platanus × his-
panica (4 %). Within each of the three defined areas of high, 
medium and low intensity of NO2 pollution (s. above), at least 
ten trees per species were selected. Further, half of those trees 
were chosen to be located directly at streets and the other half 
in parks or other sites without direct influence from (high traf-
fic) roads. This selection was carried out based on the tree 
cadastres provided by the cities of Karlsruhe and Rheinstetten 
as well as the road types provided by OpenStreetMap (Open-
StreetMap contributors 2021). The sample trees were further 
selected to have a diameter at breast height (d1.3) of at least 
40 cm in order to guarantee tree ring series with a length 
of > 30 years. In few cases (< 15), trees with smaller d1.3 had 
to be chosen so as to fulfil the other criteria. The elevation of 
the sampled trees varied only slightly (103–117 m a. s. l.), so 
that we conclude that this factor is likely not influential for 
our analysis. In total, 166 sample trees were considered for 
the analysis. Spatial data processing and tree selection were 
carried out in QGIS 3.2 (QGIS.org 2021).
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Methods

Sampling and data preparation

Field work was carried out between September 2019 and 
April 2020. For each sample tree, the diameter at breast 
height (1.3 m), tree height, height of the crown base and 
crown projection area were measured. A mixed soil sam-
ple was collected at a soil depth of 0–40 cm in vicinity of 
the stem base. In few cases it was not possible to collect 
a soil sample or only up to a reduced depth due to (artifi-
cial) soil compaction/sealing. The soil samples were ana-
lysed for the following parameters: Soil texture (according 
to VDLUFA 1991), pH (CaCl2, according to VDLUFA 
1991), cation exchange capacity and sum of base cations 
(according to DIN EN ISO 11260:2011-09), total organic 
carbon (according to DIN EN 15936:2012-11). As an indi-
cator for salinity due to de-icing salt, soil electrical con-
ductivity (at 25 °C) was measured (according to DIN ISO 
11265:1997-06). As a further indicator for the intensity of 
traffic, the contents of lead (Pb) and cadmium (Cd) were 
analysed (according to DIN EN 13657:2003-01). Base 
saturation (BS) was calculated as BS (%) = (sum of base 
cations)/(cation exchange capacity) × 100.

For each sample tree, two tree cores were extracted, 
with one core being extracted perpendicular and one core 
parallel to the street. The extracted cores were air dried, 
mounted in plastic holders and the surface removed with a 
diamond fly cutter to enhance the visibility of the tree ring 
boundaries (Spiecker et al. 2000). The core surfaces were 
scanned with a flatbed scanner and the tree ring boundaries 
defined in WinDendro (Regent Instruments Inc., Canada) 
or—in the case of C. betulus—measured with a measure-
ment table (VIAS, Austria) and a stereo microscope using 
the software Past4 (SCIEM, Austria). When necessary, the 
surface was further prepared with sharp razor blades. If the 
pith was not present on the core, the number of missing 
rings was estimated from the curvature of the innermost 
rings to estimate tree age. In few cases where rings did 
not show any curvature, the number of missing rings was 
reconstructed based on the difference between the length 
of the core and the tree radius (assumed to equal half of 
the measured d1.3) as well as the average width of the 30 
innermost rings for P. × hispanica and the 10 innermost 
rings for the remaining species.

Tree ring chronologies

For each tree, the annual ring widths of the two cores were 
averaged. The resulting tree ring series were detrended by 
fitting a cubic smoothing spline with a 50 % frequency 

cut-off at a length of 15 years and the annual tree ring 
width indices (RWI) calculated by dividing the measured 
tree ring width (TRW) by the expected value of the fit-
ted spline (Fritts 1976). If present, autocorrelation in the 
series was removed by fitting an ARIMA model, where the 
best model was chosen based on the Bayesian information 
criterion (BIC). For each species, the Expressed Popula-
tion Signal (EPS) and mean Gleichläufigkeit (GLK) were 
calculated. Chronologies for each species were built by 
calculating the annual Tukey’s biweight robust mean for 
the period 1982–2018, which is covered by at least two 
thirds of all trees within each species. These steps were 
carried out in R with the packages dplR and forecast (R 
Core Team 2020; Bunn et al. 2021; Hyndman et al. 2021).

Analysis of carbon, oxygen and nitrogen stable 
isotopes

For the analysis of the stable isotopic composition of the car-
bon and oxygen content in the tree rings, six trees per spe-
cies were selected by stratified random sampling based on 
the pollution intensity and the distance to the street to cover 
all six combinations (three pollution intensity levels × two 
locations [street or park]). Due to technical difficulties C. 
betulus could not be considered for isotope analysis. For 
each of the selected trees one core was mechanically sepa-
rated into annual segments for the time period 2000–2018 
(for Q. robur only latewood was used). For the analysis of 
the isotopic composition of the nitrogen content in the wood 
one segment covering the time period 2012–2018 was cut 
from 30 randomly selected trees per species.

The samples were prepared by applying a Soxhlet extrac-
tion with first methylene dichloride and then methanol and 
then sand-dried overnight at 60 °C. Samples were milled 
with a ball mill (or broken up with a scalpel if the quantity 
was low) and weighed into tin capsules. For the measure-
ment of δ18O, samples were equilibrated in laboratory water 
overnight in a desiccator with lithium chloride (air humid-
ity of 11.3 %) and then vacuum dried for > 2 h in the des-
iccator. For the measurement of δ15N, four measurements 
were carried out for each sample, and for δ13C and δ18O, 
two measurements were carried out for each sample in an 
isotope mass spectrometer (Nu Instruments, UK). Each test 
run was preceded by the measurement of eight laboratory 
standards. During the test run of δ13C, two laboratory stand-
ards were measured every 12 samples, while 6 laboratory 
standards were measured at regular intervals for δ18O. Due 
to the low nitrogen concentrations, each test run included 
between 20 and 25% standards. Isotope ratios are expressed 
as δ13C relative to VPDB, δ18O relative to VSMOW and 
δ15N relative to air. Due to the increased burning of fossil 
fuels since the industrial revolution there has been a decline 
in δ13CO2, which has to be accounted for when analysing 
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the isotopic composition of carbon in tree rings (McCarroll 
and Loader 2004; Belmecheri and Lavergne 2020). There-
fore, the δ13C values measured in the tree rings were cor-
rected based on the pre-industrial value of δ13CO2, assumed 
to be − 6.4‰ (McCarroll and Loader 2004; Belmecheri 
and Lavergne 2020), and monthly measurements of the iso-
topic composition of δ13CO2 at the Mauna Loa Observatory, 
Hawaii (Keeling et al. 2005). Based on the annual mean 
value of these data, an annual offset was calculated with 
which the measured δ13C values were corrected. All further 
analyses are based on these corrected values. As the visual 
inspection of the resulting series suggested the existence of 
linear trends in few series, the individual series of δ13C and 
δ18O were tested for such linear trends, which occurred in 
six series of δ13C and five series in δ18O. Those series were 
detrended linearly based on the residuals of the linear regres-
sion and the mean value of the time series in order to keep 
the original scale. The (detrended) series were then tested 
for autocorrelation by fitting an ARIMA model and autocor-
relation was removed if present (s. above).

The annual intrinsic water use efficiency (WUEi,) of 
each tree was calculated from the annual δ13C values for the 
period 2000–2018 according to Farquhar et al. (1982; Eq. 1), 
where ca is the atmospheric CO2 concentration (ppm), 
δ13Catm the carbon isotopic composition of atmospheric CO2 
(‰), δ13Cr the carbon isotopic composition of the individual 
radial growth tree rings (‰), a the isotope fractionation dur-
ing CO2 diffusion through the stomata (4.4 ‰), b the isotope 
fractionation during carboxylation (27 ‰) and 1.6 the ratio 
of the molar diffusivity of H2O to CO2 in air.

The mean annual atmospheric CO2 concentration and iso-
topic composition of δ13CO2 were obtained from monthly 
measurements of the Mauna Loa Observatory, Hawaii (Keel-
ing et al. 2005; Keeling and Keeling 2017).

Significant differences in mean δ13C, δ18O and WUEi (for 
the whole time period) between species were assessed based 
on pairwise comparisons of the estimated marginal means 
of a linear mixed model of the form in Eq. (2), where yi is 
the response variable (δ13C, δ18O or WUEi,), Xi and � are 
the design matrix and parameter vector for the fixed effect 
(species), Zi and bi are those for the random effect (tree), 
and �i is the residual error, which is assumed to be normally 
distributed.

For species differences in wood δ15N as well as the influ-
ence of the tree position regarding the distance to the street 
and the exposition to traffic emissions, a linear model was 
fit with δ15N as the response variable, and the species, the 

(1)WUEi =
A

g
s

=
ca

1.6
×

(

b − δ13C
atm

+ δ13C
r

b − a

)

(2)yi = Xi� + Zibi + �i

distance to the nearest street (log-transformed) and the inten-
sity of NOx emissions as fixed effects. All analyses were 
carried out in R with the packages lme4 and emmeans (Bates 
et al. 2015; R Core Team 2020; Lenth 2021). The relative 
contribution of each predictor to the explained variance was 
assessed based on its average squared semi-partial correla-
tions calculated over all possible permutations of the predic-
tors, using the package relaimpo in R with the metric lmg 
(Grömping 2006, 2015).

Correlations of RWI, δ13C and δ18O series 
with climate

Relationships between the chronologies of ring width indi-
ces (RWI), δ13C and δ18O and monthly climate parameters 
were assessed by calculating Pearson’s correlation coeffi-
cients for monthly values of precipitation and temperature 
in the vegetation period (March–August) as well as the mean 
temperature and precipitation sum of the preceding summer 
(June–August) and autumn/winter (September–February). 
The analysis was conducted in R with the package treeclim 
(Zang and Biondi 2015; R Core Team 2020).

Drought response and its influences

Years with exceptional drought periods were identified based 
on the standardised precipitation-evapotranspiration index 
(SPEI). A threshold value of – 1.35 was identified by cal-
culating the 10th percentile of the SPEI values of August 
(with a scale of 6 months as an indicator of water availability 
during the vegetation period) for the time period 1900–2018. 
Years between 2000 and 2015 with SPEI-6 values in August 
of – 1.35 or lower were considered for the further analysis. 
PET (after Thornthwaite) and SPEI values were calculated 
in R with the package spei (Beguería and Vicente-Serrano 
2017; R Core Team 2020).

The growth reaction to drought in the identified years 
was analysed based on the indices resistance and resilience 
(Lloret et al. 2011), relating the ring width in the year of 
the drought to the mean pre-drought ring width (termed 
resistance, Rt), and the mean post-drought to the mean pre-
drought ring width (termed resilience, Rs). The analysis was 
conducted in R with the package pointRes (van der Maaten-
Theunissen et al. 2015; R Core Team 2020), employing the 
raw ring width series (averaged per tree) and a reference 
period for mean pre- and post-drought growth levels of 
3 years each.

To test the indices for significant deviations from 1 (i.e. 
a significant difference from the pre-drought growth level) 
as well as for significant differences between species and 
drought periods (i.e. years), a linear mixed model of the 
form in Eq. (3) was fit, where yi is the response variable 
(resistance or resilience), Xi and � are the design matrix 
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Table 1   Overview of diameter 
at breast height, tree height, 
crown length and crown 
projection area of the sample 
trees (mean ± standard 
deviation) at the time of 
sampling, n = 166

Chronology statistics (EPSRWI and GLKRWI) are given for the period 1982–2018, and values for δ13C, δ18O 
and WUEi (mean ± standard deviation of six trees per species) for the period 2000–2018

Species A. platanoides C. betulus P. × hispanica Q. robur T. cordata

ntrees 34 30 38 33 31
Tree age [years] 68 ± 27 71 ± 39 58 ± 18 82 ± 55 70 ± 31
Diameter at 1.3 m [cm] 50.7 ± 7.5 44.6 ± 6.5 64.1 ± 17.3 62.7 ± 19.0 47.6 ± 5.6
Height [m] 16.8 ± 3.7 16.6 ± 3.4 21.0 ± 3.5 19.6 ± 4.7 17.8 ± 3.0
Crown length [m] 13.2 ± 2.5 13.9 ± 2.8 17.5 ± 3.8 15.2 ± 3.7 13.6 ± 2.9
Crown projection area [m2] 95.9 ± 37.3 85.37 ± 33 150 ± 67.5 120 ± 45.7 70.9 ± 24.1
EPSRWI 0.93 0.92 0.96 0.93 0.88
GLKRWI [%] 58 60 63 60 56
ntrees 6 – 6 6 6
δ13C [‰] – 23.3 ± 1.15 NA – 24.6 ± 0.78 – 24.5 ± 1.25 – 24.1 ± 0.74
δ18O [‰] 27.2 ± 0.88 NA 23.8 ± 0.67 25.5 ± 0.77 26.8 ± 0.84
WUEi [μmol CO2 mol−1 H2O] 108 ± 7.43 NA 94.6 ± 4.72 95.0 ± 5.04 99.5 ± 5.55

and parameter vector for the fixed effect (species, year 
and their interaction), Zi and bi are those for the random 
effect (tree), and �i is the residual error. The response vari-
ables were log-transformed to ensure normal distribution 
of residuals.

The estimated marginal means for each species and year 
were first tested against the null hypothesis of no signifi-
cant difference from the pre-drought growth level. Then, 
pairwise comparisons were carried out (both between and 
within species/years) based on Tukey-adjusted p values. 
The analyses were carried out in R with the packages lme4 
and emmeans (Bates et al. 2015; R Core Team 2020; Lenth 
2021).

To explain the intra-specific variation of the calculated 
indices resistance and resilience, a linear mixed model of 
the form in Eq. (3) was built with predictors that charac-
terise the individual trees (mean basal area increment in 
the three years preceding the drought [mean BAIpre], basal 
area at 1.3 m stem height [BA] and tree age in the drought 
year) as well as soil parameters (soil texture, pH value, 
base saturation [BS], soil electrical conductivity [SEC], 
total organic carbon content [TOC], Pb and Cd content) 
and site (distance to the nearest street, NOx emissions from 
traffic) as fixed effects. The predictor year (2003, 2011, 
2015) was included as a categorical fixed effect to account 
for systematic differences in drought response caused by 
differing drought conditions (timing, duration and inten-
sity). The predictors were standardised (i.e. centred and 
scaled) for ease of interpretation of the coefficients. For 
each of the species a separate model was fit with tree as a 
random effect. The analysis was carried out in R using the 
packages lme4, lmerTest and effectsize (Bates et al. 2015; 
Kuznetsova et al. 2017; Ben-Shachar et al. 2020; R Core 
Team 2020).

(3)logyi = Xi� + Zibi + �i

To facilitate the interpretation of significant deviations 
from the mean, the time series of δ13C and δ18O were stand-
ardised to a mean of 0 and a standard deviation of 1 and 
annual values were averaged for each species to obtain 
species-specific chronologies of δ13C and δ 18O. We tested 
for each species (ntrees per species = 6) if the annual value 
of δ13C in the year of the drought or the subsequent year 
is significantly higher than 0 (i.e. the mean) by applying 
a one-sample t test. For δ18O we tested if the standardised 
value is significantly different from 0 with a two-sided one-
sample t test. Additionally, mean values for δ13C and δ18O 
(2000–2018) and Rt (2003, 2011 and 2015) were calculated 
and the Pearson’s correlation was calculated between those 
variables across species (ntrees = 24). All calculations were 
carried out in R (R Core Team 2020).

Results

Sample trees and site conditions

The mean d1.3 ranged from 45 cm for C. betulus to 64 cm 
for P. × hispanica. The mean tree height was also greatest 
in P. × hispanica (21 m), and smallest in C. betulus and A. 
platanoides (17 m). Accordingly, P. × hispanica trees had 
the greatest average crown length and crown projection area, 
while T. cordata trees had the smallest mean crown projec-
tion area. Here, it has to be considered that especially road-
side trees are regularly pruned, so that tree height, crown 
height and crown projection area are subject to strong artifi-
cial influence and only represent a “snapshot” of the appear-
ance at the time of measurement. An overview of the number 
of trees per species, the mean diameter at breast height, tree 
height, crown length and crown projection area is given in 
Table 1. Across all sampled tree species, NOx emissions 
from traffic as estimated for the year 2014 ranged between 



Trees	

1 3

Fig. 1   Chronologies of ring 
width indices (RWI) for the 
time period 2000–2018. The 
three years with exceptional 
droughts (2003, 2011 and 2015) 
are highlighted by light grey 
vertical bars

0 and 15.872 kg. The distance to the nearest (main) road 
ranged from 2.2 to 593.2 m, with 75 % of the trees being 
located within a distance of 73 m. Concerning the soil, 42 % 
of the soil samples were classified as weakly loamy sand 
and 27 % as strongly loamy sand. Further 22 % represented 
sandy loam and 3 % silty loam. Soil texture was sand for 
5 % of the samples and 1 % (≙ one sample) could not be 
classified. The mean pH value was 6.38 ± 0.91 [standard 
deviation], the total organic carbon content 2.83 ± 2.49 % 
and the base saturation 82 ± 20 %. The mean soil electrical 
conductivity (at 25 °C) was 103.5 ± 60.3 µS cm−1. The mean 
lead (Pb) content was 86.33 ± 255.25 mg kg dry soil−1 and 
the mean cadmium (Cd) content 0.49 ± 0.46 mg kg dry soil−1 
(data not shown).

Species‑specific tree ring chronologies and mean 
δ13C, δ18O and WUEi

The common variance of the individual series of tree ring 
indices was highest in P. × hispanica, followed by Q. robur, 
A. platanoides, C. betulus and T. cordata, as shown by the 
expressed population signal (EPS) and mean Gleichläufig-
keit (GLK) in Table 1. The chronologies of the five species 
are shown in Fig. 1.

For the time period 2000–2018, the mean value for δ13C 
ranged from – 23.3 ‰ in A. platanoides to – 24.6 ‰ in 
P. × hispanica, with no significant differences between spe-
cies. The mean value for δ18O was lowest in P. × hispanica, 
and highest in A. platanoides. Here, pairwise comparisons 
revealed significant differences between all species but 
between A. platanoides and T. cordata. The mean intrinsic 

water-use efficiency (WUEi) was higher in A. platanoides 
than in the other three species but differences between spe-
cies were not significant at p < 0.05. All values are given 
in Table 1. The time series of annual mean WUEi of each 
species are shown in Fig. 2.

Relationships of tree ring indices, carbon 
and oxygen isotopes with climate

In all species except P. × hispanica precipitation in May 
was positively correlated with ring width (ranging between 
r = 0.32 in C. betulus and r = 0.57 in T. cordata (Table 2). In 
addition, there existed a positive relationship between pre-
cipitation in March and ring width in C. betulus (r = 0.29), 
P. × hispanica (r = 0.28) and Q. robur (r = 0.36), the latter 
also being the only tree species to exhibit a significant cor-
relation between TRW and precipitation in June (r = 0.36). 
Precipitation in July was positively correlated with tree 
ring index in T. cordata (r = 0.24). P. × hispanica was the 
only species showing a significant correlation between the 
precipitation of the previous summer and TRW (r = 0.37). 
Concerning temperature, there was a negative correlation 
between March temperature and tree ring index in Q. robur 
and T. cordata (r= – 0.47 and – 0.33, respectively). In 
contrast, tree ring growth in P. × hispanica was positively 
related with April temperature (r = 0.38). In A. platanoides 
and C. betulus tree ring growth was negatively affected 
by high temperatures in the previous summer (r= – 0.29 
and – 0.44, respectively). Only in A. platanoides and T. 
cordata significant correlations between δ13C and climate 
variables were found (note that no isotope analysis was 
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carried out for C. betulus)—in both species precipitation in 
May was negatively correlated with δ13C values (r= – 0.68 
and – 0.52, respectively). In A. platanoides, δ13C was also 
positively related to August temperature (r = 0.36). In all 
four species precipitation in May was negatively correlated 
with δ18O (between r= – 0.3 in T. cordata and r= – 0.63 in 

P. × hispanica). P. × hispanica was the only species with a 
significant relationship between δ18O and the previous sum-
mer’s precipitation (r = 0.29). In this species, δ18O was also 
positively related to temperature in May (r = 0.42), while 
such a positive correlation was found for July temperature 

Fig. 2   Annual intrinsic water-
use efficiency (WUEi) for the 
time period 2000–2018. The 
three years with exceptional 
droughts (2003, 2011 and 2015) 
are highlighted by light grey 
vertical bars

Table 2   Pearson’s correlation 
coefficients between climate 
variables and ring width index 
(RWI; 1982–2018), δ13C and 
δ18O (2000–2018)

Only climate variables with at least one significant correlation are shown

Species Precipitation Temperature

Mar May Jun Jul Sum prev JJA Mar Apr May Jul Aug Mean prev JJA

A. platanoides
 RWI 0.43 − 0.29
 δ13C − 0.68 0.36
 δ18O − 0.43 0.24

C. betulus
 RWI 0.29 0.32 − 0.44

P. × hispanica
 RWI 0.28 0.37 0.38
 δ13C
 δ18O − 0.63 0.29 0.42

Q. robur
 RWI 0.36 0.53 0.36 − 0.47
 δ13C
 δ18O − 0.53

T. cordata
 RWI 0.57 0.24 – 0.33
 δ13C − 0.52
 δ18O − 0.3
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Table 3   Coefficients and 
proportions of explained 
variance for the predictors of 
the linear model (n = 119) with 
δ15N as response variable and 
A. platanoides as the reference 
level for the predictor species

Coefficient ± se p value Proportion of 
explained vari-
ance (%)

Intercept 4.062 ± 0.465  < 0.001
Species
 P. × hispanica 2.394 ± 0.428  < 0.001 75
 Q. robur − 1.376 ± 0.426 0.002
 T. cordata − 1.161 ± 0.432 0.008

log(distance to nearest road) − 0.501 ± 0.115  < 0.001 16
NOx emissions from traffic 0.196 ± 0.051  < 0.001 9

Fig. 3   Monthly temperature 
means and precipitation sums 
in 2003, 2011, and 2015 (with 
30-year average of the period 
1981–2000 shown as solid 
line) as well as monthly SPEI-3 
values

in A. platanoides (r = 0.24). An overview of all significant 
correlations is provided in Table 2.

Factors influencing δ15N

The linear mixed model explained 54 % of the variance of 
δ15N (p < 0.001). The predictor species accounted for 75 % 
of this explained variance with δ15N levels being signifi-
cantly different between all species but between Q. robur 
and T. cordata. Estimated marginal means (± standard error) 
were highest in P. × hispanica (4.96 ± 0.32 ‰), followed by 
A. platanoides (2.56 ± 0.32 ‰), Q. robur (1.40 ± 0.31 ‰) 
and T. cordata (1.19 ± 0.32 ‰). Distance to the nearest street 
had a negative effect on δ15N and the intensity of NOx emis-
sions from traffic a positive effect (Table 3).

Years with exceptional drought periods

For the period 2000–2015, three years were identified as 
years with severe drought periods, i.e. had a mean SPEI-6 
(for August) of − 1.35 or lower. These years were 2003  
(− 2.32), 2011 (− 1.46) and 2015 (− 2.10). In 2003, SPEI-3 
values were ≤ − 1.35 from April to September with the 
drought being most severe in August (− 2.14). In 2011, the 
drought period lasted from March to June with the highest 
severity in May (− 2.41). In 2015, values were first below 
− 1.35 in July and the drought lasted throughout the growing 
season, with the lowest SPEI-3 value occurring in August 
(− 1.96)  (Fig. 3).
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Fig. 4   Box plots of resistance 
and resilience of the five species 
in/after the years 2003, 2011, 
and 2015. Asterisks mark sig-
nificant differences of estimated 
marginal means from 1, and 
letters indicate significant differ-
ences between species (based on 
pairwise comparisons) within 
years. Three outliers (resilience 
for A. platanoides [2.24] and T. 
cordata [2.75] in 2003 and for 
T. cordata [2.17] in 2011 are not 
shown for better visibility)

Resistance and resilience to drought and their 
influencing factors

Across the three years, resistance in A. platanoides was sig-
nificantly lower than in the other four species (0.59 ± 0.02), 
and resistance in T. cordata and C. betulus significantly 
lower than in Q. robur and P. × hispanica (0.71 ± 0.03 and 
0.74 ± 0.03 compared to 0.86 ± 0.03 and 0.94 ± 0.03, respec-
tively). Across all species, resistance differed significantly 
between the  three years considered. It was lowest in 2011 
(0.66 ± 0.02), followed by 2015 (0.77 ± 0.02) and 2003 
(0.86 ± 0.02). In 2003, A. platanoides showed a significant 
growth reduction, while the estimated resistance did not 
differ significantly from 1 for the other species (Fig. 4). In 
2011, all species but P. × hispanica showed a significantly 
reduced TRW. In 2015, growth was not significantly reduced 
in P. × hispanica and Q. robur while A. platanoides and T. 
cordata showed the lowest resistance.

Across all years, the estimated marginal mean of resilience 
to drought was significantly higher in Q. robur (0.9 ± 0.03) 
than in all other species (C. betulus = 0.72 ± 0.02, A. plata-
noides = 0.73 ± 0.02, T. cordata = 0.78 ± 0.03, P. × hispan-
ica = 0.78 ± 0.02). Across all species, resilience was signifi-
cantly highest after 2011 (0.87 ± 0.02) and similar after 2003 
and 2015 (0.75 ± 0.02 and 0.72 ± 0.02, respectively). After 
2003, the estimated mean resilience was significantly below 
1 for all species but Q. robur (Fig. 4). After 2011, however, 
resilience was significantly below 1 for P. × hispanica as well 
as Q. robur while the mean post-drought growth levels were 
similar to the pre-drought levels in C. betulus, T. cordata 
and A. platanoides. As in 2003, all species except Q. robur 
showed an estimated mean resilience below 1 after 2015.

Modelling potential effects of site conditions as well as 
tree-individual characteristics to explain intra-specific vari-
ability in resistance and resilience revealed that for none of 
the tree species there was a significant effect of the tree’s 
distance to the nearest street nor of the general level of NOx 
emissions from traffic (Table 4). Further, only A. plata-
noides, P. × hispanica and T. cordata showed resistance or 
resilience to be affected by soil conditions: the resistance 
of T. cordata was positively affected by the total organic 
carbon content and in A. platanoides, resistance was higher 
in trees growing in weakly as well as in highly loamy sand 
(compared to reference level sand). Further, in T. cordata, 
tree age (in the year of the drought) had a negative effect on 
resistance, and in A. platanoides, C. betulus and T. cordata 
resilience was negatively related to the pre-drought growth 
level (BAIpre). There also was a strong positive effect of 
resistance on resilience, i.e. within each species, trees with 
a strong growth inhibition in the year of the drought also 
showed relatively low post-drought growth compared to the 
pre-drought levels.

Carbon and oxygen stable isotope signals 
in and after years with drought and their 
relationship with drought resistance

None of the four species showed significantly increased val-
ues of δ13C in 2003. However, for Q. robur and T. cordata 
δ13C values were significantly higher than average in the 
following year (2004). T. cordata as well as A. platanoides 
showed significantly increased δ13C values in 2011. δ13C 
was not significantly increased in any of the species in or 
after 2015 (Fig. 5).
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Concerning δ18O, values were significantly higher than 
average in 2003 and 2015 for A. platanoides and P. × his-
panica. While for A. platanoides δ18O was significantly 

elevated in 2004, P. × hispanica showed values significantly 
lower than average. For A. platanoides, δ18O was signifi-
cantly decreased in 2011 and for T. cordata in 2016. For Q. 

Table 4   Estimated standardised coefficients for the linear mixed models with the response variables resistance and resilience

For each species, the number of trees (ntrees) and observations (nobs), the standard deviation of ID and the residuals are shown. For each predictor, 
the standardised coefficient is displayed. Significant effects (p < 0.05) are printed in bold. Coefficients for the levels of the categorical predictor 
year (n = 3; 2003, 2011 and 2015) are not shown. For each model, the marginal and conditional R2 values are given. Note that parameters mean 
BAIpre, BA and age vary by tree and year, while soil and site parameters vary by tree only. Coefficients for pH value, BS (base saturation), SEC 
(soil electrical conductivity), Pb (lead content of the soil), Cd (cadmium content of the soil), NOx emissions, distance to the nearest street and 
BA (basal area in the year of the drought) are not shown as their effects were not significant in any of the models. RL marks the respective refer-
ence level for the categorical predictor soil texture
TOC total organic carbon, mean BAIpre mean basal area increment in the 3 years preceding the year of the drought, Rt resistance.

Resistance Resilience

A. pla C. bet P. × his Q. rob T. cor A. pla C. bet P. × his Q. rob T. cor

nobs (ntrees) 99 (33) 84 (28) 105 (35) 93 (31) 81 (27) 99 (33) 82 (28) 105 (35) 93 (31) 81 (27)
sd ID 0.15 0.20 0.16 0.18 0.00 0.10 0.1 0.00 0.16 0.07
sd Residuals 0.28 0.30 0.29 0.27 0.32 0.29 0.28 0.25 0.26 0.28
Soil texture
 Sand – RL RL RL – – RL RL RL –
 Sandy loam RL 0.11 0.17 0.24 RL RL 0.03 0.24 0.06 RL
 Silty loam 0.45 – − 0.03 0.53 − 0.09 0.02 – 0.34 0.19 0.59
 Weakly loamy sand 0.31 0.19 0.26 0.30 0.20 − 0.10 0.03 0.13 − 0.10 − 0.06
 Strongly loamy sand 0.42 0.12 0.19 0.54 0.00 − 0.01 0.07 0.12 − 0.02 − 0.02

TOC − 0.06 0.05 − 0.07 − 0.03 0.22 − 0.07 0.05 0.04 0.02 − 0.03
Mean BAIpre − 0.04 − 0.04 − 0.06 − 0.09 − 0.02 − 0.09 − 0.19 0.00 − 0.12 − 0.20
Age − 0.02 0.03 − 0.08 − 0.12 − 0.15 − 0.11 − 0.05 0.04 0.02 − 0.12
log(Rt) – – – – – 0.36 0.29 0.42 0.52 0.36
R2

m 0.3 0.2 0.24 0.26 0.41 0.41 0.50 0.29 0.35 0.41
R2

c 0.44 0.45 0.42 0.49 0.41 0.47 0.56 0.29 0.53 0.45

Fig. 5   Mean (± standard 
deviation as light and dark 
grey ribbons) of standardised 
series of δ13C (solid lines) and 
δ18O (dashed lines). For δ13C, 
significantly elevated values in 
the year of the drought (solid 
vertical lines) or subsequent 
year (dotted vertical line) are 
marked by the cross symbol, 
and for δ18O values significantly 
different from 0 are marked by 
the asterisk symbol
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Fig. 6   Correlation between 
mean values (per tree, ntrees = 6) 
of resistance (mean of the years 
2003, 2011 and 2015), δ13C and 
δ18O (mean for 2000–2018)

robur δ18O showed no significant deviation from the series 
mean value in any of the drought years or subsequent years 
(Fig. 5).

As shown in Fig. 6, across species—but not within spe-
cies—there was a significant positive relationship between 
mean δ13C and mean δ18O values (r = 0.48, p = 0.018). Trees 
with more positive mean δ18O values showed lower resist-
ance to drought based on the averaged values across the 
years 2003, 2011 and 2015 (r = − 0.81, p < 0.001). There 
also existed a slightly negative but non-significant relation-
ship between mean δ13C and mean resistance (r = − 0.39, 
p = 0.058), such that the wood of trees with higher resistance 
to drought generally showed lower δ13C values.

Discussion

Influence of weather and particularly drought 
on stem diameter growth

As expected, we found a number of significant correla-
tions with monthly temperature and precipitation and tree-
ring width (TRW) as well as stable isotopes. To our sur-
prise, not only δ13C but especially δ18O showed significant 

correlations with temperature/precipitation as well as signifi-
cant deviations from the mean in/after years with drought 
(Table 2; Fig. 5). As we found a surprisingly good coherence 
between these general influencing factors on TRW and the 
effect of drought (timing) on resistance and resilience, we 
here discuss those results jointly.

The analysis of climate–growth relationships revealed 
that precipitation in spring is positively correlated with TRW 
in all of the five species studied (Table 2). As low water 
availability in spring has a direct effect on the formation of 
earlywood vessels (Herbette et al. 2010), this is also reflected 
in the overall TRW. A positive correlation between tree ring 
growth and precipitation in May has also been found for 
urban A. platanoides trees (Gillner et al. 2014) and for A. 
platanoides and T. cordata in forest stands (Fuchs et al. 
2021). In those two species, lower precipitation in May is 
also reflected in less negative δ13C in our study, indicating 
that the water availability in May is linked to physiologi-
cal drought stress. Thus, it is not surprising for A. plata-
noides and T. cordata to show a particularly low resistance 
in 2011 (compared to 2003 and 2015)—when the drought 
period lasted from early spring on and was most severe in 
May (Fig. 3)—with mean growth levels only reaching 54 % 
and 64 % of the average growth level of the three preceding 
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years, respectively (Fig. 4). The severe drought stress in this 
year is also indicated by significantly elevated δ13C values 
(Fig. 5).

Interestingly, there exists a significant negative corre-
lation with May precipitation for δ18O in all four species, 
for which isotope analysis were carried out (Table 2). Such 
negative correlations with precipitation in spring or summer 
have previously been found for different tree species (Bat-
tipaglia et al. 2008; Hartl-Meier et al. 2015). It is difficult to 
directly translate the oxygen isotope signal in whole wood 
of tree rings into a physiological response to environmental 
conditions at the leaf level due to the potential exchange 
of oxygen in the phloem and during cellulose synthesis 
(Gessler et al. 2009, 2014; Offermann et al. 2011). Yet, a 
clear link between precipitation and δ18O is also indicated 
when considering the year 2016, where δ18O values were 
significantly lower than average in A. platanoides and T. cor-
data (Fig. 5). This is probably not a lagged effect of the pre-
ceding drought in 2015, but can be explained by unusually 
high precipitation in this year’s spring and early summer, 
especially June, which received 111 mm of rainfall com-
pared to the long-term average of 76 mm, also reflected by 
δ13C values being particularly low in that year in T. cordata 
as well as in Q. robur (Fig. 5).

For Q. robur TRW was not only positively influenced 
by precipitation in May/June but also in March (Table 2). 
Similar relations have been found in Quercus spp. for pre-
cipitation in March/April and May in urban and forest trees 
(van der Werf et al. 2007; Gillner et al. 2014; Fuchs et al. 
2021). In this ring-porous species, wood formation sets in 
before bud burst—with a delay between the onset of xylem 
growth and bud burst of two weeks found in Q. petraea in 
France, where xylem growth began in late March (Michelot 
et al. 2012), explaining why precipitation before or at the 
very start of the growing season contributes substantially to 
the annual diameter growth in this species.

P. × hispanica is the only species for which no signifi-
cant correlation between precipitation in May and tree ring 
growth was found, matching the high resistance of this 
species to the spring drought in 2011, where mean growth 
reached 94 % of the mean pre-drought growth level. Still, 
tree ring growth and precipitation in March are positively 
correlated, similar to P. × hispanica trees in Dresden and 
Szczecin, where higher precipitation in February favoured 
growth (Cedro and Nowak 2006; Gillner et al. 2014). This 
species also is the only one to show a positive correla-
tion between tree ring growth and temperature in spring 
(April), similar to a positive correlation found for the 
temperature in February in Dresden (Gillner et al. 2014) 
as well as February and March in Szczecin (Cedro and 
Nowak 2006), possibly pointing to this species’ sensitivity 
to (late) frost. This may also explain the narrow tree ring 

formed in 2013 (Fig. 1), representing the most negative 
ring width index for this species within the  time period 
2000–2018. Indeed, in this year, daily minimum tempera-
tures were particularly low for a few days in mid-March 
and late March (mean of − 6.1 and − 1.8 °C compared 
to an average of 4.1 and 3 °C, respectively, for the time 
period 2009–2017). While to our knowledge there are no 
data available on the leaf phenology of P. × hispanica in 
our study region, we hypothesise that those unusually 
cold periods may have impacted on bud/leaf development 
and so shortened the overall length of the growing season 
and potentially also increased the demand for additional 
resources (Menzel et al. 2015; Príncipe et al. 2016).

P. × hispanica is also the only species to show a positive 
relation between the precipitation of the previous sum-
mer (June–August) and ring width (Table 2). This lagged 
effect is also reflected in this species’ response to drought. 
While resistance is not significantly decreased in any of 
the drought years, average post-drought growth levels only 
reach ~ 74–85 % of pre-drought growth levels (Fig. 4) and 
may be indicative of this species’ anisohydric response 
(McDowell et al. 2008; s. below). Thus, while growth is 
less affected by immediate drought conditions, processes 
which contribute to growth in the subsequent years are 
impaired, such as the accumulation of carbohydrates, 
which are stored for tree ring growth in the subsequent 
year and show the respective isotope signal (Skomarkova 
et al. 2006). This may also explain why TRW is negatively 
correlated with previous year’s summer temperature in A. 
platanoides and C. betulus (Table 2). In A. platanoides, 
such a lagged effect is indicated by higher δ13C and δ18O 
values occurring in wood formed in years, which were pre-
ceded by years with high temperatures in summer (Fig. 5). 
This can also be seen in 2004 for δ13C in Q. robur and 
T. cordata as well as δ18O in A. platanoides. With the 
drought in 2003 being most severe in late summer, ring 
width formation was not substantially affected, as by that 
time in the year the largest part of the ring had presumably 
been completed already (Brinkmann et al. 2016; Hentschel 
et al. 2016), leading to relatively high resistance in most 
species. Yet, the effect of the drought during the period 
of carbon assimilation for storage is then visible in the 
isotopic composition of the following year.

In conclusion, the combined analysis of tree ring width 
as the overall growth response to the prevailing conditions 
and of the carbon and oxygen stable isotopes as indicators 
of physiological drought stress enables a comprehensive 
interpretation of the effects of temperature and precipita-
tion on tree growth. The importance of May precipitation 
is indicated by all three variables but especially by the 
correlation with δ18O in all species.
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et al. 2014). In 2011, however, δ13C values are significantly 
increased while δ18O is significantly lower than average 
(Fig. 5), which would indicate that photosynthetic capacity 
increased while stomatal conductance remained unchanged 
(Scheidegger et al. 2000), as also indicated by the high 
WUEi of A. platanoides in this year, possibly related to 
the influence of timing, duration and intensity of drought 
conditions.

In the above-mentioned study in Dresden, P. × hispan-
ica maintained the highest rates for transpiration, stomatal 
conductance and net photosynthesis during drought of all 
species studied (Gillner et al. 2015). This may explain why 
in our study P. × hispanica was able to exhibit high resist-
ance to drought—it was the only species without a signifi-
cant growth reduction compared to the average pre-drought 
growth levels in any of the three studied drought years 
(Fig. 4), even though significantly increased δ18O values in 
2003 and 2015 (Fig. 5) may indicate a decrease in stomatal 
conductance and photosynthetic capacity (Scheidegger et al. 
2000), while WUEi was not affected (Fig. 2).

Q. robur shows slightly lower resistance than P. × his-
panica, however followed by the highest overall resilience 
across all species we sampled (Fig. 7). In a young forest 
stand, Q. robur has shown to maintain high transpiration 
rates despite low precipitation and high evapotranspiration 
in summer, which can be explained by its deeper rooting 
system, allowing Q. robur to access water in deeper soil 
layers and so maintain high water potential during drought 
(Zapater et al. 2012). While it has to be considered that root-
ing depths of our sample trees may be artificially restricted 
in urban sites, especially for roadside trees, such a positive 
effect may still likely explain the overall good performance 
of Q. robur during and after drought, as also indicated by 
the comparably low mean δ18O in this species (s. below), 
especially as none of our sample trees received any artificial 
irrigation. In ring-porous Q. robur, mean growth was neither 
affected substantially in or after the years 2003 and 2015, 
in which drought periods occurred in summer, whereas on 
the contrary both resistance and resilience were especially 
low in/after 2011 (Fig. 4). This indicates that while TRW of 
Q. robur is largely unaffected by summer drought, spring 
drought has both an immediate and lasting effect, which is 
in line with a study of Q. robur across Europe (Bose et al. 
2021).

T. cordata and C. betulus show both comparable resist-
ance and resilience overall, which generally ranges between 
the values of the other species (Fig. 7). T. cordata has been 
attributed both rather isohydric (Leuschner et al. 2019) and 
anisohydric behaviour (Gillner et al. 2016; Moser et al. 
2017), presumably related to different underlying definitions 
and traits considered, as well as tree water relations being 
influenced by environmental factors (Hochberg et al. 2018). 
In our study, T. cordata showed significantly reduced TRW 

Fig. 7   Estimated marginal means (± standard error) of resistance (Rt) 
and resilience (Rs) per species across all years, compared to the mean 
pre-drought growth level as the relative reference (≙ 100 %)

Differences between species in the stem diameter 
growth reaction to drought

Based on the analysis of resistance and resilience we aimed 
to find out about species-specific drought tolerance. Indeed, 
irrespective of differences in resistance and resilience 
between the three years considered, the five species show 
distinct general patterns of resistance and resilience (Fig. 7), 
indicating that both immediate and delayed responses to 
drought have to be taken into account when evaluating the 
species-specific strategies to cope with drought. To back 
up those results, we additionally carried out an analysis of 
the stable carbon and oxygen isotopes. By combining the 
analysis of the imprint of the physiological response and 
the resulting stem diameter growth, we expected to gain a 
deeper insight into the underlying species-specific processes 
that we will discuss here.

The significantly lower resistance in A. platanoides than 
in the other four species (Fig. 7) indicates that stem growth 
is substantially impaired by drought in this species, which 
has also been observed in a study of Acer spp., Quercus 
spp. and P. × hispanica in the city of Dresden (Gillner et al. 
2014). The significantly increased δ18O in combination with 
relatively unchanged δ13C values as observed in 2003 and 
2015 (Fig. 5) may, according to the conceptual model of 
Scheidegger et al. (2000), indicate a decrease in stomatal 
conductance and photosynthetic capacity—assuming that 
δ18O in wood is mostly driven by the variability in stomatal 
conductance rather than in δ18O of the source water. Such 
a response has also been observed in A. platanoides dur-
ing drought in Dresden (Gillner et al. 2015) as well as A. 
platanoides seedlings in a drought experiment (Hommel 



Trees	

1 3

in 2011 and 2015 (Fig. 4). However, while stem diameter 
growth may have been reduced or even ceased completely 
during drought, carbon assimilation may have still been kept 
up, as it is generally less sensitive to water shortage than 
xylem growth (Barbaroux and Breda 2002). This is then 
reflected in elevated δ13C values in 2011, where the drought 
occurred during the period of xylem formation, and in 2004, 
when presumably carbon assimilated during the drought of 
2003 was built into the xylem (Fig. 5). After 2015, however, 
T. cordata showed the lowest resilience compared to 2003 
and 2011, reaching on average only 69 % of the mean pre-
drought growth level after already showing low resistance 
with a mean growth reduction of 35 % (Fig. 4). This does 
not necessarily imply reduced drought tolerance but could 
also be a sign of acclimation to drought (Gessler et al. 2020), 
especially in combination with T. cordata showing enhanced 
growth of fine roots in deeper soil layers during drought to 
gain access to further water resources (Stratópoulos et al. 
2019).

While C. betulus overall showed a similar resistance com-
pared to T. cordata, stem diameter growth did generally not 
recover after the year of the drought, but was on average 
even lower in the succeeding years, indicating an over-
all high vulnerability of stem diameter growth to drought 
(Fig. 7). This species has been found to show a high degree 
of stomatal regulation upon edaphic/atmospheric drought, 
probably amplified by its shallow rooting system (Köcher 
et al. 2009; Zapater et al. 2012). However, C. betulus has a 
comparably cavitation-resistant xylem (Zapater et al. 2012; 
Li et al. 2016), underlining how the different tree species 
have developed different strategies to cope with drought.

Concerning the observed differences in the resistance 
of stem diameter growth to drought between species, the 
negative correlation between mean tree δ18O and resist-
ance (Fig. 6) suggests that the inter-specific differences 
in mean δ18O may be related to drought tolerance in some 
way. While it is difficult to disentangle the different pro-
cesses that affect δ18O in the xylem (Gessler et al. 2014), 
the rooting depth could be an important factor, with water 
in greater soil depths generally being depleted in 18O (Offer-
mann et al. 2011; Gessler et al. 2014; Treydte et al. 2014; 
Hartl-Meier et al. 2015). Especially, as P. × hispanica and 
Q. robur, which show the lowest mean δ18O values, have 
higher d1.3, tree height and crown size (at time of sampling, 
Table 1), this could indicate higher belowground biomass 
and presumably deeper rooting, even though general con-
straints due to the artificially restricted growing space in our 
urban study area have to be considered. It appears likely that 
processes, which influence the species-specific mean δ18O 
also affect the species’ resistance to drought, even though 
we cannot determine whether there exists a direct influence 
(such as greater rooting depth or site conditions) or indirect 
links between physiological processes, TRW and the oxygen 

isotopic composition in wood, and how these are causally 
connected. For instance, in T. cordata a negative correlation 
between mean δ18O and the total organic carbon (TOC) of 
the soil could be observed (r = − 0.78, p < 0.001, n = 6). 
This may indicate that in the mostly sandy soils, the water 
holding capacity (assumed to be greatly influenced by TOC) 
has a substantial effect on physiological processes, which is 
then reflected in the mean isotopic composition of oxygen 
in wood. However, such a negative correlation did not exist 
within the other tree species or across species.

Overall, our results are in line with the conclusion of 
Gillner et al. (2014, 2015), stating that Acer spp. is par-
ticularly sensitive to drought, while P. × hispanica as well 
as Quercus spp. are better suited for urban areas prone to 
drought. This conclusion is also corroborated by our finding 
of WUEi being largely unaffected by drought in P. × hispan-
ica and Q. robur. However, it also has to be noted that many 
additional factors have to be considered when evaluating 
the overall suitability of tree species, such as diseases like 
the canker stain disease caused by the fungus Ceratocystis 
platani, which has led to the severe dieback of Platanus 
trees throughout North America and Europe (Tsopelas et al. 
2017).

Influence of intensity of traffic emissions 
on the isotopic composition of nitrogen in wood

With our analysis, we aimed to investigate if the isotopic 
composition of nitrogen can serve as an indicator of traffic 
emissions in urban trees. Across species, δ15N values for 
trees with a maximum distance of 15 m to the next street 
vary between − 2.6 and 10.2 ‰ and are thus well in the 
range of δ15N values measured in the air about 10 m from a 
highway in Switzerland for NO2 (~ 2–10 ‰) and NO (~ − 5 
to 10 ‰) by Ammann et al. (1999). A generally large vari-
ation in the isotopic composition of nitrogen in roadside 
air can be explained by a number of factors such as traffic 
density, the specifications of engines and catalytic convert-
ers as well as the mixing of traffic exhaust with ambient air 
(Ammann et al. 1999; Felix and Elliott 2014). Additionally, 
it has to be considered that the isotopic composition of wood 
does not directly reflect that of the air but is also influenced 
by soil processes and uptake. Especially, the ratio between 
NH4 and NO3 in the soil, which is affected by factors such 
as an increase in net nitrification due to high nitrogen depo-
sition rates, may influence the δ15N values of the nitrogen 
taken up by trees (Hart and Classen 2003; Savard 2010). 
Most tree species prefer nitrogen uptake as NH4, which is 
15N-enriched, over NO3, which is 15N-depleted (Hart and 
Classen 2003), as was confirmed for C. betulus, T. cordata 
and A. pseudoplatanus growing in a mixed forest stand 
(Jacob and Leuschner 2014). This contradicts our finding 
of δ15N values being significantly lower in T. cordata than 
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in A. platanoides and indicates that additional (species-
specific) factors such as different rooting depths (Tomlin-
son et al. 2015) and mycorrhiza (Craine et al. 2009) may 
play a role as well. A high intensity of colonisation with 
mycorrhizal fungi of different genera has, for instance, been 
identified in roadside T. cordata trees in Finland (Timonen 
and Kauppinen 2008). Apart from inter-specific differences, 
δ15N values are higher in trees located closer to streets and 
located at sites exposed to higher (estimated) traffic emis-
sions (NOx). Elevated δ15N values in trees closer to roads 
compared to trees not directly located at the roadside have 
also been found in Pinus halepensis (Mifsud et al. 2021) 
and Picea abies (Saurer et al. 2004; Guerrieri et al. 2009). 
Hence, we conclude that δ15N values in the wood primarily 
reflect species-specific nitrogen uptake preferences, rooting 
depths and mycorrhizal colonisation on the one hand and, to 
a lesser extent, exposure to NOx emissions from traffic on the 
other hand (Table 3). While we did not expect such a strong 
species-specific variability in nitrogen isotopes, our assump-
tion of δ15N reflecting traffic emissions was confirmed by 
our analysis. Our analysis thus provides novel insights into 
the potential use of δ15N as an indicator of NOx emissions in 
urban areas, and also the need to account for species-specific 
variability in the nitrogen isotopic composition of wood. 
This may however only hold for spatial comparisons with 
a relatively large sample size as correlations on an annual 
basis are blurred by radial translocation of nitrogen lead-
ing to a certain variability over time, which itself has been 
shown to not be correlated between trees or with annual 
nitrogen deposition rates (Hart and Classen 2003).

Influence of site conditions and tree characteristics 
on intra‑specific variability of resistance 
and resilience to drought

Contrary to our expectations, the resistance and resilience 
to drought were not influenced by the distance to the nearest 
street and NOx emissions from traffic, despite those factors 
being indicators of NOx exposition as shown by their sig-
nificant effects on δ15N in the stem wood. Likewise, a study 
on trees of the species Tipuana tipu in São Paulo showed 
that growth rates of trees located at sidewalks did not differ 
significantly from those of trees located in parks (Locosselli 
et al. 2019), suggesting that growth and drought tolerance of 
trees in urban areas are not overly influenced by their direct 
surrounding. Yet, in this mentioned study, trees exposed 
to higher levels of industrial PM10 emissions had lower 
growth rates than trees being exposed to lower emission 
levels (Locosselli et al. 2019). In our study area, NOx and 
PM10 emissions from traffic are highly correlated (r = 0.89, 
p < 0.001), so that an effect of PM10 could probably not be 
separated from that of NOx and would be expected to show 
as a significant effect of NOx. Additionally, general growth 

rates may be affected in a different way than resistance to 
drought in specific years.

For T. cordata, the total organic carbon content of the 
soil has a positive effect on drought resistance (Table 4). 
A higher amount of organic carbon in the soil increases 
water retention, especially in sandy soils (Rawls et al. 2003; 
Minasny and McBratney 2017)—the soil texture more than 
80 % of the sampled T. cordata trees grow in. A. platanoides 
was the only species, for which a direct effect of soil tex-
ture on resistance could be found (Table 4), pointing to a 
very specialised requirement regarding soil texture, with 
a relatively low share of clay, slightly higher share of silt 
and a considerably high percentage of sand being favour-
able for the growth of A. platanoides, which should how-
ever be investigated further. Nonetheless it is interesting to 
note that those two species, which show comparably strong 
(physiological) reactions to drought— A. platanoides and 
T. cordata—are the only two species whose drought resist-
ance is affected by soil parameters, which are further likely 
related to the available water capacity of the soil and thus 
to water supply during drought periods. This finding may 
also be related to (restricted) root growth in those species, 
as also indicated by the relatively high mean δ18O values in 
those two species.

Further, only T. cordata trees show a negative effect 
of tree age on drought resistance, despite maximum age 
(~ 150 years) in this species being lower than in all other 
sampled tree species except for P. × hispanica. Decreas-
ing resilience with increasing age has also been observed 
in Picea abies, Abies alba and Fagus sylvatica (Zang et al. 
2014), and may be related to reduced photosynthetic activ-
ity in older trees, even though the exact mechanisms remain 
unclear (Yoder et al. 1994; Bond 2000).

In A. platanoides, C. betulus and T. cordata resilience 
is negatively affected by the pre-drought growth lev-
els (Table 4). This effect of fast-growing trees showing a 
reduced capacity to return to pre-drought growth levels 
(in relative terms) has been observed in various tree spe-
cies (Martinez-Vilalta et  al. 2012; Zang et  al. 2014). It 
may be linked to different overall growth strategies, where 
fast-growing trees allocate proportionally more carbon to 
aboveground than belowground biomass, which however 
turns out to be disadvantageous in terms of drought toler-
ance (Martinez-Vilalta et al. 2012; Zang et al. 2014). Inter-
estingly, those effects can also only be found in those tree 
species, for which our analysis revealed a generally stronger 
dependence on water availability, whereas the generally high 
drought resistance and resilience of P. × hispanica and Q. 
robur appear to be largely unaffected by tree or site factors 
(Table 4). The modelling approach revealed that—within 
species—resistance to drought is a strong predictor of resil-
ience itself, such that individual trees in which growth was 
less affected by drought have a higher resilience as well. 
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However, it has to be noted that this does not imply general 
intra-specific differences in the vitality of our sample trees, 
as the ranking of individual trees still differs substantially 
between years (data not shown).

Altogether, a large part of the intra-specific variability 
in terms of stem growth reaction to drought remains unex-
plained (Table 4), indicating that additional factors have to 
be considered. Studies suggest that the proximity to street 
lamps (Liu et al. 2021) or mobile phone towers (Waldmann-
Selsam et al. 2016) may affect the growth and/or vitality of 
urban trees. Nonetheless, our results are concomitant with 
a recent study on hydraulic traits which serve as indicators 
of drought tolerance—such as the water potential at which 
xylem conductivity has decreased by 50 % (P50)—in A. pla-
tanoides, T. cordata and C. betulus, where the greatest part 
of the variance found in the data could be attributed to indi-
vidual differences rather than climatic or edaphic conditions 
(Fuchs et al. 2021). Given such presumed variation in physi-
ological parameters it is not surprising to see intra-specific 
variability in the resulting growth reactions to drought. In 
addition, genetic differences may be an important factor as 
well, especially as we did not take differences between cul-
tivars into account. Last, it has to be considered that due 
to the complex processes in the soil and between soil and 
tree, interactions between the measured parameters as well 
as non-linear effects may occur, so that further studies incor-
porating those points are needed.

Conclusion

To our knowledge, this is the first study to combine dendro-
ecological and isotope analysis to investigate the drought 
response of urban trees, especially also considering a poten-
tial influence of traffic emissions. Based on our analysis of 
tree ring widths and the isotopic composition of carbon 
and oxygen in the whole wood of tree rings, stem diam-
eter growth in the five deciduous tree species is strongly 
influenced by water availability in spring. Hence, a drought 
period occurring in spring has a particularly detrimental 
effect on the current year’s stem diameter growth. Physi-
ological drought stress is reflected in elevated δ13C and/or 
δ18O values and increased water-use efficiency in A. pla-
tanoides and T. cordata, which can be concluded to react 
more sensitively to drought than Q. robur and P. × hispanica, 
while C. betulus can be ranked in between concerning its 
resistance to drought, but shows comparably low resilience. 
Overall, Q. robur exhibits a relatively high resistance and 
resilience, especially to summer droughts, which may indi-
cate that it is a suitable tree species to be planted in urban 
areas. With regard to the methods applied, we conclude that 

neither the analysis of tree ring widths nor stable isotopes 
alone would have sufficed for the conclusions we drew based 
on the coupled approach concerning the drought tolerance 
of urban trees. Further, our study is the first to show that the 
analysis of δ15N in the whole wood of the trees can serve as 
an indicator of the intensity of traffic pollution trees in urban 
areas are exposed to. However, contrary to our expectations 
and based on our modelling approach, the respective site 
conditions such as the amount of NOx emissions and the 
distance to the nearest street do not influence resistance and 
resilience of stem diameter growth to drought. While our 
study provides valuable knowledge on the suitability of dif-
ferent tree species for urban areas, especially by combining 
dendroecological and isotope analysis, the trees show a large 
intra-specific variability, which requires further investiga-
tion, especially focussing on physiological processes.
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