KIT | KIT-Bibliothek | Impressum | Datenschutz

Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets

Schucknecht, Anne 1; Seo, Bumsuk 1; Krämer, Alexander; Asam, Sarah 2; Atzberger, Clement; Kiese, Ralf ORCID iD icon 1
1 Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT)
2 Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Abstract (englisch):

Grasslands are an important part of pre-Alpine and Alpine landscapes. Despite the economic value and the significant role of grasslands in carbon and nitrogen (N) cycling, spatially explicit information on grassland biomass and quality is rarely available. Remotely sensed data from unmanned aircraft systems (UASs) and satellites might be an option to overcome this gap. Our study aims to investigate the potential of low-cost UAS-based multispectral sensors for estimating above-ground biomass (dry matter, DM) and plant N concentration. In our analysis, we compared two different sensors (Parrot Sequoia, SEQ; MicaSense RedEdge-M, REM), three statistical models (linear model; random forests, RFs; gradient-boosting machines, GBMs), and six predictor sets (i.e. different combinations of raw reflectance, vegetation indices, and canopy height). Canopy height information can be derived from UAS sensors but was not available in our study. Therefore, we tested the added value of this structural information with in situ measured bulk canopy height data. A combined field sampling and flight campaign was conducted in April 2018 at different grassland sites in southern Germany to obtain in situ and the corresponding spectral data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000146952
Veröffentlicht am 02.06.2022
Originalveröffentlichung
DOI: 10.5194/bg-19-2699-2022
Scopus
Zitationen: 17
Web of Science
Zitationen: 15
Dimensions
Zitationen: 18
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.06.2022
Sprache Englisch
Identifikator ISSN: 1726-4189
KITopen-ID: 1000146952
HGF-Programm 12.11.23 (POF IV, LK 01) Adaptation of managed landscapes to climate change
Weitere HGF-Programme 12.11.21 (POF IV, LK 01) Natural ecosystems as sources and sinks of GHGs
Erschienen in Biogeosciences
Verlag Copernicus Publications
Band 19
Heft 10
Seiten 2699–2727
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 31.05.2022
Schlagwörter UAS, grassland, plant Nitrogen, dry matter, biomass, machine learning, low-cost sensor, spectral data
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page