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Abstract
With the complexity of modern microstructured materials, computational
homogenization methods have been shown to provide accurate estimates of
their effective mechanical properties, reducing the involved experimental effort
considerably. After solving the balance of linear momentum on the microscale,
the effective stress is traditionally computed through volume averaging the
microscopic stress field. In the work at hand, we exploit the idea that averaging
the elastic energy may lead to much more accurate effective elastic properties
than through stress averaging. We show that the accuracy is roughly doubled
when using energy equivalence instead of strain equivalence for compatible
iterates of iterative schemes. Thus, to achieve a prescribed accuracy, the nec-
essary effort is roughly reduced by a factor of two. In addition to the theory,
we provide a handbook for utilizing these ideas for modern solvers promi-
nent in FFT-based micromechanics. We demonstrate the superiority of energy
averaging through computational examples, discuss the peculiarities of polar-
ization methods with their non-compatible iterates and expose a superaccuracy
phenomenon occurring for the linear conjugate gradient method.
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1 INTRODUCTION

1.1 State of the art

In the last decades, computational homogenization methods have reached a degree of sophistication which permits their
use as general-purpose tools for materials with rather complex microstructures, see the detailed review article.1 Once the
constitutive behavior of the individual phases constituting the microstructured material is fixed, the computational engi-
neer has to face (at least) three sources of error. For a start, a large class of microstructured materials come with a random
microstructure, necessitating the use of stochastic homogenization approaches.2,3 The effective properties of the mate-
rial only emerge by considering sufficiently large cells, the so-called representative volume elements (RVEs).4-6 When
working with computational cells of finite size, the discrepancy between the effective properties of the medium and the
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apparent properties of the cell under consideration needs to be quantified and made as small as desired. It is well-known
that this error involves a random part, accounting for the fluctuations of the apparent properties on cells of finite size,
and a systematic part, which is caused by additional correlations introduced by working on cells of finite size, see Gloria
and Otto.7 Moreover, the artificially introduced boundary conditions play a decisive role,8-10 with periodic boundary
conditions typically providing more accurate results, at least provided a suitable periodization of the material is used.11-13

The second source of error emerges once a computational cell is fixed. To solve the corrector problem on a computer,
the equations need to be discretized. Classical approaches may be used for this purpose, including finite difference,14

finite element,15 and finite volume16 approaches. However, multiphase materials with complex microstructures come
with their specific challenges, for example, featuring several thousands of inclusions with intricate shapes. In particular,
generating interface-conforming meshes turns out to be challenging in three spatial dimensions.17 Moreover, with the
advent of modern digital image techniques,18,19 it became natural to work with an implicit microstructure description on
voxel meshes. In particular, the exact location of the interfaces between the phases is not accessible for such a descrip-
tion. A positive side effect of such homogenization problems is that the microstructure is typically given on a rectangular
box, simplifying the (outer) boundary description, at least. With these facts in mind, a set of dedicated discretization
methods has been developed, including voxel-based finite element methods20-22 and spectral techniques.23,24 The sec-
ond error on our list comprises the error introduced by the discretization used, in particular related to the width of the
underlying mesh.

Last but not least, once a discretization is chosen, the emerging discretized equations need to be solved, giving rise
to the third error. Indeed, such numerical techniques come with a convergence rate, which in turn is responsible for the
number of iterations required to solve the equations to the desired accuracy. For discretizations on a regular grid, a num-
ber of dedicated computational techniques has been developed, including methods based on the fast Fourier transform
(FFT). These methods utilize the regular structure of a Cartesian grid to construct proper preconditioners for classical
conjugate gradient (CG)25-27 or Newton-CG methods.28,29 Also, closely related solvers were introduced, see the recent
review articles30-33 within the framework of the Lippmann–Schwinger equation.34-36 A key characteristic of the solvers
is that the condition numbers of the preconditioned equations is independent of the mesh size, only depending on the
material contrast, sometimes even bounded independently of it.37

When facing a problem in computational homogenization, the working engineer has to deal with all three error
sources, which in turn are responsible for the runtime. For instance, if the considered cell increases its volume by a fac-
tor of eight, the runtime will typically increase at least by a factor of eight, as well. On the other end of the spectrum,
doubling the desired accuracy of the computational solution method also doubles the runtime, in general, when linearly
converging solvers—more or less unavoidable for large-scale problems—are used.

1.2 Contributions

The work at hand is focused on the third error exploiting a clever postprocessing of the local solution fields. To be more
precise, there is a “folklore theorem” in computational homogenization which states that the effective elastic properties
converge faster than the local solution fields. This paradigm concerns the accuracy of discretizations, and is based on the
fact that averaging profits from cancellations which adversely affect the convergence of the local fields. A mathematically
precise statement can be found in Ye and Chung.38(Thm. 5)

The starting point of the article at hand was the question whether this principle, which concerned difference between
the discretized and the continuous solution, could also be exploited for a fixed discretization and various solution methods.
To be more precise and for linear elastic constituents, traditionally the workflow proceeds by first computing an approxi-
mate solution of the corrector equation, followed by averaging the associated local stress field to obtain an estimate for the
corresponding column in the (matrix representation of) effective stiffness. In the work at hand, we show that it is actually
more accurate to compute all six (in three spatial dimensions) independent local strain fields first, store them on hard
disk, and to compute the individual entries of the effective stiffness through energy averaging. We demonstrate—both
theoretically and through computational examples—that this simple postprocessing approach roughly doubles the accu-
racy of the computed effective* stiffness relative to the exact effective stiffness associated to this discretization. In turn, if
a specific degree of accuracy is desired, it is actually sufficient to solve the discretized corrector equation only to roughly
half accuracy. In particular, about half of the runtime may be saved with such an approach.39

After this article has been accepted, the author has learnt that the material presented in section 2 has been discussed
in a different context by Bellis et al.,39 section 4.2.
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This work is organized as follows. A theoretical development is given in Section 2, introducing the notation and
giving the main argument. Subsequently, Section 3 discusses how to exploit these theoretical findings in practice, work-
ing out the specifics for FFT-based solution methods. In particular, it is shown how to deal with iterative schemes that
produce non-compatible iterates. Also, it is shown that the linear conjugate gradient method comes with an interest-
ing feature, that is, the spatially averaged stress converges faster in one fixed direction than in the other directions,
see Appendix A.

The developments are restricted to linear elasticity, which forms the point of departure for homogenizing nonlinear
properties and has recently been utilized also to estimate nonlinear properties of composites.40,41 Possible extensions are
discussed in the conclusion section.

2 THE FUNDAMENTAL ESTIMATE

Following standard material in computational homogenization,42 let us consider a rectangular computational cell

Q = [0,L1] × [0,L2] × · · · × [0,Ld], (1)

in d dimensions, and suppose a microscopic stiffness distribution

C ∶ Q → L(Sym(d)), (2)

is given, which associates a stiffness tensor C(x) to every microscopic point x ∈ Q. We assume the stiffness tensors C(x) to
satisfy the minor and major symmetries, that is, we consider them as symmetric linear operators on Sym(d), the symmetric
d × d-tensors. Moreover, to make the derivations well-defined, we assume that the stiffness tensors (2) are essentially
bounded by a constant L > 0 and pointwise positive semi-definite. For any prescribed strain 𝜀 ∈ Sym(d), the (periodic)
corrector displacement field u𝜀 ∈ H1

#(Q;Rd), solves the equation

div C ∶ (𝜀 + ∇su𝜀) = 0, (3)

where ∇s refers to the symmetrized gradient and : is the double contraction. The effective stress

𝜎𝜀 =
⟨
C ∶ (𝜀 + ∇su𝜀)

⟩
Q , (4)

is computed by volume averaging, which is defined by

⟨q⟩Q ≡ 1|Q| ∫Q
q(x) dx, (5)

for any vectorial or tensorial quantity q. As the constitutive law is linear, this process gives rise to an effective stiffness
tensor Ceff ∈ L(Sym(d)), implicitly defined by

C
eff ∶ 𝜀 = 𝜎𝜀, (6)

for any 𝜀 ∈ Sym(d). The effective stiffness tensor Ceff inherits the symmetry property (i.e., the major symmetries) from
the microscopic stiffness distribution (2). This may be seen, for instance, from the alternative representation

𝜉 ∶ C
eff ∶ 𝜀 =

⟨
(𝜉 + ∇su

𝜉
) ∶ C ∶ (𝜀 + ∇su𝜀)

⟩
Q
, 𝜉, 𝜀 ∈ Sym(d), (7)

which is a direct consequence of integration by parts.
The purpose of this work is to exploit the differences between strain equivalence (6) and energy equivalence (7) for

approximate solutions to the corrector equation (3). For any fixed 𝜀 ∈ Sym(d), let us write

𝜀∗ = 𝜀 + ∇su𝜀. (8)



4 SCHNEIDER

For any field 𝜀 ∈ L2(Q; Sym(d)), we may estimate

‖‖‖⟨C ∶ 𝜀⟩Q − ⟨C ∶ 𝜀∗⟩Q
‖‖‖ ≤ ‖C ∶ (𝜀 − 𝜀∗)‖L2 ≤ L ‖𝜀 − 𝜀∗‖L2 , (9)

in terms of the L2-norm

||𝜀||L2 =
√⟨||𝜀||2⟩Q ≡

√⟨𝜀 ∶ 𝜀⟩Q, (10)

and an upper bound L on the eigenvalues of the local stiffnesses C(x). The estimate (9) reveals that, up to a constant, the
accuracy of the effective stress coincides with the accuracy of the local strain field, measured in the L2-norm.

Fortunately, we can construct a better approximation to the effective stiffness as follows. For this purpose, let 𝜉 ∈
Sym(d) be arbitrary, and write

𝜉∗ = 𝜉 + ∇su
𝜉
. (11)

For arbitrary w, v ∈ H1
#(Q;Rd) write

𝜀 = 𝜀 + ∇sw and 𝜉 = 𝜉 + ∇sv. (12)

Then, the following identity holds

⟨(𝜀 − 𝜀∗) ∶ C ∶ (𝜉 − 𝜉∗)⟩Q = ⟨𝜀 ∶ C ∶ 𝜉⟩Q − 𝜉 ∶ C
eff ∶ 𝜀. (13)

Before coming to the derivation, let us briefly discuss the ramifications. By the Cauchy–Schwarz inequality, and invoking
the upper bound L to the application of the stiffness, we observe

|||⟨𝜀 ∶ C ∶ 𝜉⟩Q − 𝜉 ∶ C
eff ∶ 𝜀

||| = ⟨(𝜀 − 𝜀∗) ∶ C ∶ (𝜉 − 𝜉∗)⟩Q

≤ ||𝜀 − 𝜀∗||L2 ||C ∶ (𝜉 − 𝜉∗)||L2

≤ L ||𝜀 − 𝜀∗||L2 ||𝜉 − 𝜉∗||L2 . (14)

In particular, if we choose 𝜉 = 𝜀 and 𝜉 = 𝜀, we obtain the bound

|||⟨𝜀 ∶ C ∶ 𝜀⟩Q − 𝜀 ∶ C
eff ∶ 𝜀

||| ≤ L ||𝜀 − 𝜀∗||2L2 . (15)

Compared to strain averaging (9), energy averaging involves the square of the L2-error of the local strain fields. In
particular, for computational methods which seek close approximations to the true fields, computing the effective stiff-
ness via energy equivalence, see Section 3 below, leads to essentially double precision than achievable with strain
equivalence.

Let us discuss how to show that the identity (13) holds. Let us split the left-hand side of Equation (13)

⟨(𝜀 − 𝜀∗) ∶ C ∶ (𝜉 − 𝜉∗)⟩Q = ⟨(𝜀 − 𝜀∗) ∶ C ∶ 𝜉⟩Q − ⟨(𝜀 − 𝜀∗) ∶ C ∶ 𝜉∗⟩Q . (16)

Writing the second summand in the form

⟨(𝜀 − 𝜀∗) ∶ C ∶ 𝜉∗⟩Q = ⟨(∇s(w − u𝜀)) ∶ C ∶ 𝜉∗⟩Q , (17)

and invoking the corrector equation (3) for 𝜉∗, we observe that this term is actually zero. Thus, Equation (16) may be
written

⟨(𝜀 − 𝜀∗) ∶ C ∶ (𝜉 − 𝜉∗)⟩Q = ⟨(𝜀 − 𝜀∗) ∶ C ∶ 𝜉⟩Q = ⟨𝜀 ∶ C ∶ 𝜉⟩Q − ⟨𝜀∗ ∶ C ∶ 𝜉⟩Q . (18)
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The last term may be transformed into

⟨𝜀∗ ∶ C ∶ 𝜉⟩Q = ⟨𝜉 ∶ C ∶ 𝜀∗⟩Q

=
⟨
(𝜉 + ∇sv) ∶ C ∶ 𝜀∗

⟩
Q

=
⟨
𝜉 ∶ C ∶ 𝜀∗

⟩
Q
+ ⟨∇sv ∶ C ∶ 𝜀∗⟩Q

= 𝜉 ∶ ⟨C ∶ 𝜀∗⟩Q

= 𝜉 ∶ C
eff ∶ 𝜀, (19)

where we used the form (12) of 𝜉, the fact that the corrector equation (3) holds for 𝜀∗ and the definition (6) of the effective
stiffness. Inserting the latter expression into Equation (18) completes the derivation of the identity (13). We conclude with
a few remarks.

1. We only presumed that the local stiffnesses C(x) are positive semidefinite in order to include porous materials. In a
way, the uniqueness of solutions is used implicitly in the definition of the effective stiffness (6) and also in the accuracy
estimates. Such uniqueness may be obtained for porous materials if the interface between the solid and the gaseous
material is not too rough, see Schneider.37

2. The present discussion centered on the continuous case, that is, the non-discretized corrector equation (3). The the-
ory, however, generalizes viz-a-viz to discretizations of the balance Equation (3) that are based on the displacement
and whose divergence operators are (negative) adjoints of the symmetrized gradient operators. This is the case for
Fourier-type,23,24,43-45 finite-difference,46-49 and finite-element50-53 discretizations used in FFT-based computational
micromechanics.

3. The identity (13) is commonly used when analyzing the convergence of Galerkin methods upon mesh refine-
ment,27,54,55 that is, where the fields 𝜀 and 𝜉 live in an appropriate subspace. In contrast, we use the associated bound
(14) for improving numerical estimates for the effective elastic moduli and a fixed discretization (both in terms of the
type and the mesh level).

3 CONSEQUENCES FOR POSTPROCESSING SOLUTION METHODS

In this section, we demonstrate how the theory developed in Section 2 may be applied to solution methods used in
computational homogenization. For this purpose, let us detail on how the effective stiffness is typically calculated in com-
putational homogenization. First, select an orthonormal basis e1, … , ed(d+1)∕2 of the space Sym(d) of symmetric d × d
tensors, that is, which satisfy

ei ∶ ej =

{
1, i = j,
0, otherwise,

i, j = 1, … , d(d + 1)∕2. (20)

Then, compute approximate solutions 𝜀i = ei + ∇svi to the corrector equation (3) with 𝜀 = ei. Once the approximate
solutions are computed, the effective stiffness is approximated column-wise via

C
eff,strain ∶ ei ≡ ⟨C ∶ 𝜀i⟩Q , (21)

when using strain equivalence. In contrast, the effective stiffness may be estimated entry-by-entry

ej ∶ C
eff,energy ∶ ei ≡ ⟨

𝜀j ∶ C ∶ 𝜀i
⟩

Q , (22)

via the energy equivalence principle. Both approaches are summarized in Algorithms 1 and 2.
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Algorithm 1. Elastic homogenization by strain equivalence

1: for i = 1,… , d(d + 1)∕2 do
2: solve Equation (3) for 𝜀̄ = ei with result 𝜀i
3: end for
4: Compute effective stiffness Ceff,strain by Ceff,strain ∶ ei ≡ ⟨C ∶ 𝜀i⟩Q column-wise

Algorithm 2. Elastic homogenization by energy equivalence

1: for i = 1,… , d(d + 1)∕2 do
2: solve Equation (3) for 𝜀̄ = ei with result 𝜀i
3: end for
4: Compute effective stiffness Ceff,energy by ej ∶ Ceff,energy ∶ ei ≡ ⟨

𝜀j ∶ C ∶ 𝜀i
⟩

Q entry-wise

Suppose that a numerical solution method is used with a convergence rate encoded by a contraction factor 𝜌 ∈ (0, 1),
that is, for chosen initial guesses 𝜀0

i , the iterates 𝜀k
i approach the solution 𝜀∗i of the corrector equation (3) satisfying the

inequality

||𝜀k
i − 𝜀∗i ||L2 ≤ C 𝜌k ||𝜀0

i − 𝜀∗i ||L2 (23)

with a constant C only depending on the stiffness distribution C and the solution method. Suppose that we always use
k iterations to compute the approximate solution 𝜀k

i for any macroscopic loading ei. Then, the estimate (9) applied to the
strain equivalence (21) yields

‖‖C
eff,strain ∶ ei − C

eff ∶ ei‖‖ ≤ L ||𝜀k
i − 𝜀∗i ||L2 ≤ LC ||𝜀0

i − 𝜀∗i ||L2 𝜌k. (24)

In turn, the estimate (14) applied to the effective stiffness computed via energy equivalence gives

||ej ∶ C
eff,energy ∶ ei − ej ∶ C

eff ∶ ei|| ≤ LC2 ||𝜀0
i − 𝜀∗i ||L2 ||𝜀0

j − 𝜀∗j ||L2 𝜌2k. (25)

Thus, the using energy equivalence produces an effective stiffness which converges twice as fast as using strain
equivalence.

Both inequalities (24) and (25) are estimates, that is, they may be too pessimistic, and involve unknown constants, that
is, the distance to the solution. Thus, we investigate a computational example to assess the sharpness of the estimates.
For this purpose, we investigate Moulinec–Suquet’s basic scheme23,24

𝜀k+1 = 𝜀 − Γ0 ∶ (C − C
0) ∶ 𝜀k, (26)

for solving the corrector equation (3). Here, C0 is the reference material and Γ0 = ∇s(div C0 ∶ ∇s)†div denotes the associ-
ated Green’s operator. We utilize the original Moulinec–Suquet discretization23,24 and investigate a single spherical glass
inclusion at 12.9% volume fraction, see Figure 1A, in a polypropylene matrix with linear elastic material properties shown
in Table 1. We consider a reference material proportional to the identity, whose proportionality constant is set to the aver-
age of the minimum and maximum eigenvalues of the microscopic stiffnesses considered, and measure convergence with
the criterion

residualk ≡ ||C0 ∶ Γ0 ∶ C ∶ 𝜀k||L2⟨
C ∶ 𝜀k

⟩
Q

!≤ tol, (27)

which is proportional to the distance to the solution, yet computable. For a 323-microstructure and 𝜀 = 0.01 e1 ⊗ e1,
the convergence rates of various quantities are compared in Figure 2A. As the reference for the effective stresses, we
take the result of the conjugate gradient method solved up to a tolerance tol = 10−14. We observe that the effective
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(A) (B)

F I G U R E 1 Microstructures considered in this article. (A) Spherical inclusion at 12.9% volume, 323 voxels; (B) Digital sandcore,56 2563

voxels

T A B L E 1 Material parameters used in this article, supplemented by their source.

Material E in GPa 𝝂

E-glass inclusion57 72 0.22

Polymer matrix57 2.1 0.3

Quartz sand grains58,59 66.9 0.25

Quartz glass binder60 71.7 0.17

stresses computed by the strain equivalence principle (21) converge with the same rate as the residual. This observation
agrees with the theoretical prediction (24). Furthermore, Figure 2A reveals that the effective stress computed by energy
equivalence (22) converges with twice the rate, conforming to theory (25).

Interestingly, this type of higher accuracy also continues to hold for solvers extending the basic scheme, as long as
each iterate satisfies kinematic compatibility. As an example of a solution method without monotone convergence we
consider Nesterov’s method,61,62 introduced into FFT-based computational homogenization in the work.63 In Figure 2B,
we observe that the effective properties computed by strain equivalence are much more prone to fluctuations than the
results postprocessed through energy equivalence. Moreover, the latter are consistently more accurate than the former,
again following the square of the residual closely.

For both considered examples shown in Figure 2 that, for a fixed accuracy, only half of the iterations are required for
energy equivalence than for strain equivalence.

The golden standard for solving linear problems with symmetric and positive definite linear operator is the conjugate
gradient method,25 which was proposed in the context of FFT-based micromechanics by Brisard and Dormieux27 and
Zeman et al.26 Applied to the same problem as before, Figure 2C shows that something interesting is happening. In fact,
five of the six stress components converge with the same rate as the residual. In Figure 2C, only the yy-component is
shown. However, the xx-component of the stress, the one aligned with the macroscopic direction of strain, converges with
double rate when computed by strain equivalence. Thus, it appears that working with energy equivalence is not strictly
necessary for the CG method, at least provided only the quantity

𝜀 ∶ ⟨C ∶ 𝜀⟩Q , (28)

is of interest. In fact, for the standard implementation of the CG method (with an initial guess of 𝜀0 ≡ 𝜀), the identity

𝜀 ∶
⟨
C ∶ 𝜀k+1⟩

Q =
⟨
𝜀k ∶ C ∶ 𝜀k+1⟩

Q , (29)
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(A) (B)

(C) (D)

F I G U R E 2 Comparison of different averaging methods for estimating the effective properties compared to the residual (27) for various
solvers and the single-inclusion microstructure, see Figure 1A. (A) Basic scheme; (B) Nesterov’s method; (C) CG; (D) ADMM with 𝛾 = 0

can be shown for each iteration index k ≥ 0. In particular, strain-equivalence type averaging in macroscopic loading direc-
tion actually emulates energy equivalence when using CG. In particular, in view of r-linear convergence of the form (23),
we obtain

|||𝜀 ∶
⟨
C ∶ 𝜀k+1⟩

Q − 𝜀 ∶ C
eff ∶ 𝜀

||| ≤ LC2 ||𝜀0 − 𝜀∗||2 𝜌2k+1, (30)

that is, convergence with the double rate. In fact, these considerations provide an insight into the CG method and show
that some components of the stress converge much faster than others. In particular, extra accuracy is provided in the
direction of interest by CG automatically.

The identity (29) may be shown exploiting the various orthogonality properties of CG, see Appendix A. When deriving
the identity (13), the compatibility of (at least one of) the test fields 𝜀 and 𝜉 was essential. To check whether this condition
is actually necessary we investigate the ADMM iterative scheme

𝜀
k+ 1

2 = 𝜀 − Γ0 ∶ (𝜎k − C
0 ∶ ek),

𝜀k+1 = 2(1 − 𝛾)𝜀k+ 1
2 − (1 − 2𝛾)ek,

(C + C
0) ∶ ek+1 = 𝜎k + C

0 ∶ 𝜀k+1,

𝜎k+1 = 𝜎k + C
0 ∶ (𝜀k+1 − ek+1), (31)

specialized to linear elasticity, initialized by

e0 ≡ 𝜀0 and 𝜎0 = C ∶ 𝜀0, (32)



SCHNEIDER 9

for prescribed 𝜀0. For 𝛾 = 1∕2, the method (31) was introduced into the FFT community by Michel et al.64,65 under
the name accelerated scheme. For general 𝛾 ∈ [0, 1), the method (31) was considered by Monchiet and Bonnet.66,67

Moulinec and Silva68 pointed out that, for 𝛾 = 0, the iterative scheme (31) coincides with the polarization-based algorithm
introduced by Eyre and Milton.69

The iterative scheme (31) involves three strain fields, 𝜀k+1∕2, 𝜀k, and ek, and a stress field 𝜎k. The strain field 𝜀k+1∕2 is
always compatible (provided 𝜀0 is compatible), whereas the fields ek and 𝜎k are always related by the constitutive law, that
is, Hooke’s law

𝜎k = C ∶ ek. (33)

Only upon convergence, the field ek becomes compatible (as all three strain fields coincide). In Figure 2D, the convergence
behavior of ADMM with 𝛾 = 0 is shown, together with online estimates of the averaged stresses in x- and y-direction as
well as the energy ⟨

𝜀k ∶ 𝜎k⟩
Q . (34)

We observe a rather fast convergence of the residual. The estimates for the stress, obtained both by strain and by energy
equivalence, do converge at the same rate. Thus, incompatible test fields cannot profit from the increased accuracy pro-
vided by the fundamental identity (13), which presupposes compatibility. Rather, it appears advantageous to work with
the compatible field 𝜀k+1∕2 instead. To investigate this idea, we computed, in addition, the energy⟨

𝜀k+1∕2 ∶ C ∶ 𝜀k+1∕2⟩
Q , (35)

highlighted in orange in Figure 2D. It turns out that the energy (35) is not only consistently more accurate than the naive
version (34), but also converges at a higher rate, as predicted by our theory. In particular, when polarization schemes are
used for solving the corrector equation (3), the effective elastic properties of a composite should be computed by energy
equivalence with the field 𝜀k+1∕2, dispensing with the fields 𝜀k, ek, and 𝜎k! If an implementation on the polarization is
used, see Schneider et al.70 for details, the final polarization field Pk should be postprocessed to the field

𝜀k+1∕2 = 𝜀 + Γ0 ∶ (C − C
0)(C + C

0)−1 ∶ Pk,

serving as the basis for strain equivalence.
Next, we consider a more complex material. More precisely, we look at a sand core microstructure,56 see Figure 1B,

composed of individual sand grains (dark) bound together by an anorganic binder (green). The microstructure consists
of three phases: the sand grains, about 1%-vol of binder and the remaining about 40% of pore space. We use the staggered
grid discretization47 due to its advantages for porous materials,37 rely upon the material parameters listed in Table 1 and
subject the composite to a strain of 𝜀 = 0.01 e1 ⊗ e1. The performance of the individual solvers and the stiffness-extraction
schemes are shown in Figure 3. The basic scheme, see Figure 3A, converges rather slowly. The averaged stresses converge
at a similar rate, with an exception for the transverse stress 𝜎yy roughly at iteration 450. The stress obtained through energy
equivalence converges faster and is more than one order of magnitude more accurate than the strain-equivalence results.
Although the basic scheme is not competitive in terms of residual versus runtime, it would still be possible to extract
sufficiently accurate effective properties in reasonable time through energy equivalence.

As the second solver we consider Nesterov’s method, this time with speed restart.71 This setup is necessary for porous
materials and the inherent infinite material contrast, as the theoretically optimal damping coefficient degenerates to unity
in this case (which is clearly not optimal). In Figure 3B, we observe a similar behavior as for the basic scheme, but with
non-monotonic convergence behavior.

Taking a look at the conjugate gradient method, see Figure 3C, we see that the transverse stress 𝜎yy converges with
the same rate as the residual, whereas the axial stress 𝜎xx obtained through strain equivalence, converges with the double
rate. This again confirms the theoretical developments in Appendix A.

Last but not least, we take a look at ADMM (31) with 𝛾 = 1∕4 and an adaptive selection of the reference material, the
Lorenz and Tran-Dinh scaling,72 which turned out to perform best among several studied choices.73 We observe that the
stresses computed either by strain or by energy equivalence (34) all converge at the same rate which is moreover propor-
tional to the convergence criterion. However, for this scenario and after about 100 iterations, energy equivalence produces
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(A) (B)

(C) (D)

F I G U R E 3 Comparison of different averaging methods for estimating the effective properties compared to the residual (27) for various
solvers and the sandcore microstructure, see Figure 1B. (A) Basic scheme; (B) Nesterov’s method; (C) CG; (D) ADMM with 𝛾 = 1∕4

results that are between one and two orders of magnitude more accurate than those obtained through strain equivalence.
Even more powerful is using the improved estimate (35) based on the iterate 𝜀k+1∕2, as it features a convergence rate that
is twice as high as the other averaging possibilities.

4 CONCLUSION

This work was devoted to improving the calculated effective linear elastic properties of composites through averaging
the elastic energy rather than the stress field. We worked with periodic boundary conditions, although other boundary
conditions do work as long as an appropriate integration by parts is available, classically encoded by the validity of the
Hill–Mandel condition.

We could show that the accuracy is roughly doubled when the energy equivalence is used rather than strain equiv-
alence. Moreover, we discussed how to take advantage of these ideas also for polarization methods which come with
non-compatible iterates. Last but not least, we showed that a specific component of the averaged stress does indeed
converge as if energy equivalence was used for iterates of the linear conjugate gradient method.

In retrospect, the difference between the two averaging schemes does not come as a surprise. For instance, the identity

||C0 ∶ Γ0 ∶ C ∶ 𝜀k||L2 =
⟨
𝜀k+1 ∶ C

0 ∶ 𝜀k+1⟩
Q −

⟨
𝜀k ∶ C

0 ∶ 𝜀k⟩
Q − 2

(⟨
𝜀k ∶ C ∶ 𝜀k⟩

Q − 𝜀 ∶
⟨
C ∶ 𝜀k⟩

Q

)
, (36)
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provided by Ernesti et al.74(eq. 3.6) expresses the residual (27) of the basic scheme as the difference of elastic energies of
subsequent iterates and the failure to satisfy the Hill–Mandel condition.75,76 Clearly, over the last decades computational
micromechanics has developed significantly, moving beyond linear elasticity despite its central importance. Thus, it is
imperative to understand whether a strategy similar to energy equivalence is also feasible to work for constitutive laws
that are inelastic. Perhaps the simplest such example concerns thermal eigenstrains 𝛼(x), prescribed at each microscopic
point x ∈ Q. The effective eigenstress 𝜎 computes via

𝜎 = ⟨C ∶ 𝜉∗⟩Q , where the stress associated to 𝜉∗ = ∇sv∗ − 𝛼, (37)

is in equilibrium. The classical Mandel–Levin formula77,78 allows one to bypass computing 𝜉∗, as long as the correctors
𝜀∗i corresponding to the macroscopic loads ei are available through the expression

ei ∶ 𝜎 =
⟨
𝜀∗i ∶ C ∶ 𝛼

⟩
Q . (38)

Clearly, if the correctors 𝜀i are only computed with finite precision, the estimate

⟨𝜀i ∶ C ∶ 𝛼⟩Q − ei ∶ 𝜎 = O(||𝜀i − 𝜀∗i ||L2), (39)

will be sharp, in general, and no superaccuracy can be reached. Instead, if a further approximation 𝜉 to the corrector 𝜉∗
is available, an estimate

⟨𝜀i ∶ C ∶ 𝜉⟩Q − ei ∶ 𝜎 = O(||𝜀i − 𝜀∗i ||L2 ||𝜉 − 𝜉∗||L2), (40)

follows. This means, on the other hand, that—in three spatial dimensions—an additional seventh corrector problem needs
to be solved. Thus, to reach a prescribed accuracy acc, instead of solving six problems to acc, seven problems need to
be solved to acc∕2. Thus, when thermal eigenstresses are of interest, the effort is only reduced by 41.6% through energy
equivalence.

Things get even more complicated for general non-linear constitutive laws. For such a scenario, the field 𝜀i in the
estimate (40) should be replaced by a corresponding linearized corrector.79 Depending on the effort involved in evaluating
the nonlinear constitutive law, it may be advantageous to spend time computing the (six) tangent correctors instead of
computing the single (nonlinear) corrector field to high accuracy. Similarly, it would be of interest to investigate whether
an extension to finite strains is possible.
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APPENDIX A. STRAIN EQUIVALENCE AND CG

The purpose of this section is to show the identity (29)

𝜀 ∶
⟨
C ∶ 𝜀k+1⟩

Q =
⟨
𝜀k ∶ C ∶ 𝜀k+1⟩

Q , (A1)

for linear CG. For this purpose, we need some terminology and background for the linear conjugate gradient method,
which is standard80(section 5.1). Let us consider a Hilbert space V with inner product (⋅, ⋅)V , together with a bounded,
self-adjoint and positive semi-definite linear operator A ∈ L(V), and a given right-hand side b. We wish to solve the linear
equation

Ax = b, (A2)

for x ∈ V , which we rephrase as the critical point equation associated to the quadratic function

𝜙 ∶ V → R, 𝜙(x) = 1
2

(x,Ax)V − (b, x)V . (A3)

A sequence of directions d0, d1, … is called A-conjugate provided di ≠ 0 for all i and the condition

(Adi, dj) = 0, (A4)

holds for all i ≠ j. A-conjugacy (A4) may be thought of as a generalized orthogonality condition between vectors. For any
starting point x0 ∈ V and a sequence of A-conjugate directions, the conjugate directions method seeks iterates in the form

xk+1 = xk + 𝛼k dk (A5)
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with 𝛼k determined through a line search

𝛼k = arg min𝛼𝜙(xk + 𝛼 dk). (A6)

It is not difficult to see that the identity

𝛼k = −
(gk, dk)V

(dk,Adk)V
, (A7)

holds in terms of the gradient

gk = Axk − b. (A8)

Due to the A-conjugacy (A4), it can be shown that, for any k > 0, the step sizes 𝛼i (i ≤ k) are actually jointly minimal, that
is, the identity

(𝛼0, … , 𝛼k) = arg min(𝛼̃0,… ,𝛼̃k)𝜙

(
x0 +

k∑
i=0

𝛼̃i di

)
, (A9)

encodes that previous progress is actually preserved by a conjugate direction method. The conjugate gradient method
arises by applying Gram–Schmidt orthogonalization to the negative gradient direction, that is,

dk = −gk +
k−1∑
i=0

(gk, di)V||di||2V di with ||di||2V ≡ (di, di)V . (A10)

Through algebraic manipulations, it is straightforward to see that all but the last term vanish, and we are led to the
expression

dk = −gk +
||gk||2V||gk−1||2V dk−1, k ≥ 1, (A11)

and practical implementations of the conjugate gradient method.25 Of relevance to us is the following immediate
consequence of Equations (A7) and (A11): the current gradient is orthogonal to the previous conjugate directions

(gk, di)V = 0, i < k. (A12)

To apply this technology to computational homogenization, we set

V = L2(Q; Sym(d)), (A13)

endowed with the inner product

(𝜀1, 𝜀2)V =
⟨
𝜀1 ∶ C

0 ∶ 𝜀2
⟩

Q , (A14)

for a fixed (possibly anisotropic) reference material C0. Moreover, for prescribed macroscopic strain 𝜀 ∈ Sym(d), we set

A𝜀 = Γ0 ∶ C ∶ 𝜀 and b = −Γ0 ∶ C ∶ 𝜀. (A15)

Upon solving the linear equation (A2) for the strain fluctuation 𝜀̃, the solution 𝜀 to the balance equation (3) is recovered
via 𝜀 = 𝜀 + 𝜀̃, see Zeman et al.26 If we choose 𝜀̃0 = 0, we may write the kth CG iterate in the form

𝜀̃k =
k∑

i=0
𝛼iDi, (A16)
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where we write an uppercase Di instead of di for the search direction to emphasize that this is actually a (compatible)
strain field. In particular, we observe⟨

𝜀k ∶ C ∶ 𝜀k+1⟩
Q =

⟨
𝜀 ∶ C ∶ 𝜀k+1⟩

Q +
⟨
𝜀̃k ∶ C ∶ 𝜀k+1⟩

Q

= 𝜀 ∶
⟨
C ∶ 𝜀k+1⟩

Q +
⟨
𝜀̃k ∶ C ∶ 𝜀k+1⟩

Q . (A17)

Taking a closer look at the term

⟨
𝜀̃k ∶ C ∶ 𝜀k+1⟩

Q =

⟨ k∑
i=0

𝛼iDi ∶ C ∶ 𝜀k+1

⟩
Q

=
k∑

i=0
𝛼i
⟨

Di ∶ C ∶ 𝜀k+1⟩
Q , (A18)

and using the compatibility of Di = Γ0 ∶ C0 ∶ Di,55 we observe

⟨
𝜀̃k ∶ C ∶ 𝜀k+1⟩

Q =
k∑

i=0
𝛼i
⟨

Di ∶ C ∶ 𝜀k+1⟩
Q

=
k∑

i=0
𝛼i
⟨
Γ0 ∶ C

0 ∶ Di ∶ C ∶ 𝜀k+1⟩
Q

=
k∑

i=0
𝛼i
(
Γ0 ∶ C

0 ∶ Di, (C0)−1 ∶ C ∶ 𝜀k+1)
V

=
k∑

i=0
𝛼i
(

Di,Γ0 ∶ C
0 ∶ (C0)−1 ∶ C ∶ 𝜀k+1)

V

=
k∑

i=0
𝛼i
(

Di,Γ0 ∶ C ∶ 𝜀k+1)
V

=
k∑

i=0
𝛼i
(

Di,Γ0 ∶ C ∶ (𝜀 + 𝜀̃k+1)
V

=
k∑

i=0
𝛼i
(

Di,Gk+1)
V

= 0, (A19)

where we used that the operator Γ0 ∶ C0 is self-adjoint w.r.t. the inner product (A14) and that the orthogonality condition
(A12) holds between the search directions Di and the gradient Gk+1 for i ≤ k. Thus, Equation (A1) is a direct consequence
of the previous ideas and Equation (A17).

As a side remark, if 𝜀̃0 ≠ 0 is chosen as the initial guess, we still get the identity

⟨
𝜀 ∶ C ∶ 𝜀k+1⟩

Q =

⟨(
𝜀 +

k∑
i=0

𝛿i Di

)
∶ C ∶ 𝜀k+1

⟩
Q

, (A20)

for any coefficients 𝛿i. In particular, invoking the estimate (14) for 𝜀 = 𝜀k+1, 𝜉 = 𝜀 and

𝜉 = 𝜀 +
k∑

i=0
𝛿i Di, (A21)
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gives

|||𝜀 ∶
⟨
C ∶ 𝜀k+1⟩

Q − 𝜀 ∶ C
eff ∶ 𝜀

||| ≤ L ||𝜀k+1 − 𝜀∗||L2

‖‖‖‖‖‖𝜀 +
k∑

i=0
𝛿i Di − 𝜀∗

‖‖‖‖‖‖L2

. (A22)

As we may choose the coefficients 𝛿i to our liking, we even obtain

|||𝜀 ∶
⟨
C ∶ 𝜀k+1⟩

Q − 𝜀 ∶ C
eff ∶ 𝜀

||| ≤ min
(𝛿0,… ,𝛿k)

L ||𝜀k+1 − 𝜀∗||L2

‖‖‖‖‖‖𝜀 +
k∑

i=0
𝛿i Di − 𝜀∗

‖‖‖‖‖‖L2

. (A23)

Thus, we also expect a superaccuracy result for the computed stress on the generated Krylov subspaces, however, in a
slightly more complicated form.
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