
Available online at www.sciencedirect.com

2212-8271 © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering

doi: 10.1016/j.procir.2017.12.234

 Procedia CIRP 67 (2018) 410 – 415

ScienceDirect

11th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRP ICME '17

Evolutionary optimization of the failure behavior of load introduction
elements integrated during FRP sandwich structure manufacturing

Jan Schwennena,*, Lukas Kalbhenna, Jérôme Klipfela,
Jens Pfeiflea, Daniel Kupzika, Jürgen Fleischera

awbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49 721 608-41674; fax: +49 721 608-45005. E-mail address: jan.schwennen@kit.edu

Abstract

Due to their high lightweight potential, fiber-reinforced-plastics (FRP) sandwich structures with foam cores are becoming increasingly
important in the automotive industry. To accommodate local forces, load introduction elements called inserts are required. A new type of insert
is integrated into the sandwich panel during manufacturing. To accelerate the design and development process of these inserts, an optimization
framework is developed based on the Abaqus CAE package and the Python programming language. An automated parametric nonlinear finite-
element method (FEM) model is used to evaluate the performance of insert geometries. This model is integrated into an optimization routine
based on a genetic algorithm. The population-based approach is very scalable through parallelization and shows accurate results within
reasonable processing times.
© 2017 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientific Committee of “11th CIRP ICME Conference".

 Keywords: Composite; Load introduction elements; FEM; Optimization; Evolutionary algorithm

1. Introduction

Efficient design plays an increasingly large role in the
automotive and aerospace industries, mostly due to rising
efficiency targets. One approach to weight reduction is the use
of sandwich structures with foam cores and skins out of
carbon-fiber reinforced plastics (CFRP) which provide high
stiffness to weight ratios and favorable energy absorption
capabilities. A weakness of these sandwich structures
however is the difficulty of distributing point loads into the
panel. The load transfer is generally improved by utilizing
load introduction elements, called inserts, to create attachment
points on the panel.

An approach to reduce the high manufacturing costs and
decrease cycle times while maintaining structural
performance by Schwennen et al. [1] is the use of foam cores
that are foamed into a 3D shape in a separate tool. Metallic
parts, such as threaded inserts, can be directly integrated
during the foaming process. The design and performance of
this type of insert is a current area of active research. A wide

range of geometries can be integrated into the foam core
between the CFRP skins, but because these inserts are not as
established as other load transmission methods in the industry,
very few standards and analytical tools exist for these
geometries, making the design and development a very time-
consuming process [2]. Current design approaches involve
laborious parameter studies with multiple cycles of topology
optimization and FEM analyses. Furthermore, the
optimization techniques currently in use do not allow the
direct integration of performance criteria such as failure loads
or energy absorption into the optimization process. The goal
of this project is to develop a framework for the automated
optimization of a specific type of insert and to evaluate the
utility of an evolutionary algorithm for this application.

The insert in question is comprised of a steel bolt
surrounded by a separate insert structure. The load is
introduced into the threaded bolt. The structure surrounding
the bolt is “through-thickness”, i.e. connected to the inner
surfaces of both face sheets. This work focuses on the
optimization of the insert structure surrounding the bolt.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering

411 Jan Schwennen et al. / Procedia CIRP 67 (2018) 410 – 415

2. Parametric FEM Simulation

The baseline geometry of the insert is a rounded dumbbell
based on an optimized shape by Johansson et al. [3]. A
nonlinear FEM model of the baseline geometry was
developed by [4]. To enable automated optimization of the
shape of the insert, a parametric representation of insert
geometries is needed. The Abaqus Scripting Interface is used
to generate an FE model from a set of parameters.

2.1. Finite Element Model

The FE model of the sandwich component is implemented
in Abaqus/CAE and solved by Abaqus/Explicit [4]. The
overall geometry of the model in Fig. 2 is equivalent to the
test pieces used by previous work in this project [1]. The test
specimens are square sandwich panels with an edge length of
148 mm. The face sheets (tan, green in Fig. 2) consist of
unidirectional CFRP layers with a symmetric 0°/90° layup.
The insert itself consists of a steel center bolt (blue in Fig. 2)
surrounded by the insert structure (red in Fig. 2). A vertical
tensile force is applied to the bolt and the sandwich panel is
held down by a fixture with a circular opening Ø = 125mm.
Note that the steel insert is not part of the design space and is
not optimized. Within this work, “insert geometry” refers only
to the insert structure around the bolt.

The individual parts of the assembly are created as volume
bodies. Continuum shell (SC8R) elements are used to mesh
the composite face sheets and 3D continuum elements
(C3D8R and C3D6) are used for the rest of the parts. General
Contact is used for the connections between the individual
parts. The bonding surface between the foam core and the
insert structure are modeled by a Cohesive Surface with
damage. In order to avoid oscillations from sudden
acceleration, the load amplitude is selected as Smooth Step.
Due to the strong deformation of the foam, hourglass and
distortion control are activated. Since the panel, insert, and
load are symmetric across both the X and Y planes, the
calculation time is reduced by simulating a quarter of the
sandwich panel and applying the appropriate boundary
conditions. Mass scaling is used to reduce the number of
necessary computation steps. A short time increment leads to
unnecessarily long computing times, while too large values
result in an artificial increase in the computational density and
influence of inertial forces on the simulation result [4].

2.2. Parametric Geometry

The parametric geometry is a simplification of the original
dummell geometry. It consists of two triangles and a rectangle
(Fig. 1). All geometries are obtained by varying five
parameters: R0, HT, RT, HB, and RB. The 2D shapes defined
by the parameters are revolved 90° around the vertical axis to
form 3D parts. These are then merged into the complete insert
structure. The parameter R0 defines the thickness of the trunk
of the insert structure. RT and RB specify the maximum radii
of the insert at the top and bottom face sheets, respectively.

Fig. 1. (a) FEM model of test panel. (b) Parametric geometry.

HT defines the height of the top triangle, measured vertically
from the top face sheet. The height of the bottom triangle, HB,
is measured from the bottom. All parameters are completely
independent, and can be varied between values of 1 and 30.
The radius of the insert structure is therefore constrained to a
maximum of 34 mm (radius of the steel bolt = 4 mm). The
height of the insert is defined by the core thickness of 20 mm.

2.3. Model Generation

The Abaqus Scripting Interface allows models to be
generated via Python scripting. The model generation script
contains the same commands that a user would execute when
building the model through the graphical user interface (GUI).
With a script, however, the GUI does not need to be started
and the model generation can be completely automated.

The script developed for this implementation reads the
geometry parameters from a file in the working directory. The
parameters define the 2D shapes. These are sketched and then
revolved to create 3D parts. The other components of the
model (see Fig. 1 (a)) are extruded. With the Boolean Merge
function, the individual 3D part instances from the three base
shapes are combined to form the insert structure (Fig. 2).
Boolean Cut is used to cut the merged insert geometry out of
the foam core. Once all part instances are created, the mesh,
materials, boundary conditions, load steps, and interactions
are defined. If-then statements handle the different cases that
arise. Once the model is complete, an Abaqus Model Database
(.cae) and an input file (.inp) are written (Fig. 3).

Fig. 2. Insert modelling: (I) assembly of part instances, (II) merging.

412 Jan Schwennen et al. / Procedia CIRP 67 (2018) 410 – 415

Fig. 3. Evaluation of FEM jobs through the Job and Manager modules.

3. Framework for Geometry Evaluation

For the evolutionary optimization process, a large number
of individual insert geometries must be analyzed. Therefore,
the entire FEM process is automated. An evaluation
framework is implemented using Python 2.7.13 and the
Abaqus Scripting Interface.

3.1 Structure and Functionality of the Framework

Each geometry is defined through a set of parameters as
described in 0. From a parameter set, an Abaqus FEM job is
generated as described in 0. The framework provides two
main functionalities: automated evaluation of individual FEM
jobs including preprocessing and evaluation of results, and a
manager to handle parallelized evaluation of multiple jobs.

 The evaluation framework is based on three Python
modules, Simulation, Hantel, and Misc. The Simulation
module contains two classes, Job and Manager. The Job class
deals with the execution of individual FEM jobs and provides
functions for preprocessing, model generation, execution, and
postprocessing. A Manager controls sets of FEM jobs and
provides a simple interface for parallelized job evaluation.
The Hantel module is used to separate functions and
definitions that are specific to the FEM model used in this
case, such as analytical volume calculation. Any
miscellaneous functions that are used in various places
throughout the program (such as functions for cleaning up
unnecessary files) are located in the Misc module.

Abaqus CAE provides a separate Python environment that
includes additional modules for Abaqus-specific functions.
Using functionality from any of the Abaqus modules, such as
model generation or data extraction from the output database,
requires a separate script that runs in the Abaqus Python
environment. These are generatemodel.py (model generation
from parameters), gho.py (extraction of history output from
the output database), and meshnap.py (snapshots of the
deformed model). The scripts are started from within the
standard Python environment as needed.

3.2 Parallelized Evaluation of a Set of Jobs

Fig. 2 shows how an instance of the Manager class can be
used to evaluate multiple geometries at once with a single
command. A number of geometry parameter sets are passed to
the manager, which creates an instance of the Job class for
each geometry. These are stored in a job queue until the
manager’s evaluate_all() method is called. Then, the Manager
prepares all jobs for evaluation. Through the Jobs’ methods,

working directories are created, the necessary files are copied,
and the model generation script is executed.

Individual Abaqus processes are started to analyze the
input file (INP) of each job. In contrast to the domain-level
parallelization provided by Abaqus, no data is exchanged
between the individual processes, as each process evaluates a
separate job. This allows the number of parallelized job
evaluations to be scaled linearly with the number of available
processors, i.e. a machine with twice the number of CPU
cores will be able to evaluate twice as many jobs in the same
time.

After evaluation of all jobs by Abaqus CAE, the results of
each simulation are stored in Abaqus output database (ODB)
files in the working directories of the jobs. The manager then
calls the postprocessing method of each job, which extracts
the data from the ODB file by running the script gho.py in the
Abaqus Python environment. The history data from the job is
processed within the standard Python environment to
determine the performance of the insert and the data is stored
in the job object.

3.3 FEA Result Assessment

Functions were implemented to extract the performance
data from the FEA results. The displacement and force at the
reference node for each history output interval are available
from the simulation. The largest force over the simulation set
is defined as the maximum load. The first failure load is
determined by a one percent drop in the reaction force. Any
drops due to initial oscillations in the model are ignored, up to
100 N.

As mentioned in chapter 2.1, mass scaling effects can
significantly influence FEA results, and must be monitored.
For this quasi-static case, any kinetic energy in the simulation
is mainly a product of high densities from excessive mass
scaling. By visually comparing the internal (ALLIE) and
kinetic energy (ALLKE) curves of the simulation, significant
mass scaling effects become immediately apparent. However,
due to the large number of simulations evaluated during an
optimization, manual comparison of the curves is not
practicable. To realize this method in the optimization, the
kinetic energy history data is integrated over the model
displacement. The resulting number value provides an
assessment of the amount of kinetic energy over the course of
the simulation. The influence was determined by evaluating
an identical FE-model multiple times with various target-
time-increments. The settings for the model used for the
optimization were adjusted to minimize the influence of mass
scaling in the simulations.

To decrease the runtime of the optimization, results are
stored in a database across multiple runs. Non-unique
parameter sets then do not need to be re-evaluated, as the
results can simply be extracted from the database. This further
reduces calculation times as more results are added to the
archive.

413 Jan Schwennen et al. / Procedia CIRP 67 (2018) 410 – 415

4. Systematic Variation of Geometry

As a preliminary step before the optimization, the
dimensions of the search space were investigated through a
systematic variation of the geometry.

For this purpose, a pre-defined set of about 1500 parameter
sets, spaced evenly over the search space, were generated.
Because of the small number of geometries (1500 out of over
107 possible unique parameter sets), this method is not suited
for optimization. However, it can be used to gauge the effect
of different fitness functions applied to the data set. This
proved useful in adjusting the weighting factors in the
aggregated fitness function. Furthermore, the weight-specific
failure loads of the insert geometries evaluated in the variation
can be used as a benchmark to compare the results of the
optimization runs.

Fig. 4 shows a scatter plot of the individuals evaluated in
the systematic variation. The diagonal lines represent constant
finesses with increasing values (higher failure load & lower
mass) towards the lower left. The search space was covered
more precisely in the area of low mass, and fewer heavier
geometries were evaluated. A clear Pareto front (set of
optimal geometries) is not visible, with some individual points
scattered at higher fitness values outside of the main bulk. The
systematic variation gives a good overview of the search
space. However, a global optimization should be able to find
better geometries between the scattered points on the lower
left of the main bulk.

Fig. 4. Scatter plot of individuals evaluated in the systematic variation.

5. Optimization with an Evolutionary Algorithm

The goal of this work is to automatically optimize the
failure behavior of the insert. The non-linear nature of the
finite-element model disqualifies the use of topology-
optimization techniques. Furthermore, the optimization
problem is classified as a “black box” problem, as only the
input (parameters) and corresponding output (failure and max.
loads) are known. The global optimum is to be found.
Evolutionary algorithms (EA) provide this capability, without
requiring the approximation of any derivatives or prior
knowledge of the problem. Another major advantage of the
evolutionary method is the population-based approach, which
lends itself very well to parallelized evaluation. An approach
similar to that of Łodygowski et al. [5] is applied.

5.1 Implementation

To expand the simulation framework with the capability
for optimization, an additional module is implemented within
the Python package containing the framework. The module is
adapted from an existing open source (GPL) Python package
for genetic algorithms, called Galileo [6]. The module
contains two classes, Population and Chromosome, which
together provide the entire functionality of an evolutionary
algorithm. The Population class represents a generation of
individuals and implements methods to prepare the population
and to execute each of the steps of the EA. A Chromosome
object represents an individual in the population, i.e. the
Population object contains and operates on a set of
Chromosome objects.

To perform the optimization, the optimization module is
imported into the control script. The evolutionary process is
started by instantiating an object of the Population class,
creating an initial population, and then calling methods on the
population for each step of the algorithm: Evaluate, Select,
Recombine, Mutate, and Replace. The algorithm’s goal is to
maximize the overall fitness of the population. Evaluation of
the individuals is accomplished using a Manager object from
the Simulation class (as described in 3.2). The results are
translated to fitness values using an aggregated fitness
function (see 5.2). The fittest genes are selected for
recombination. Offspring are generated and mutated, all of the
offspring replace the parents in the current generation, and the
process starts again with evaluation.

5.2 Fitness Function by Aggregation

The performance of individual geometries in the FEM
simulations are translated into a fitness for the evolutionary
algorithm by means of the fitness function. The aggregation
method was chosen to take into account the first failure load
and the volume of the insert (Eq 1). The failure load of an
individual,)(xF , is scaled to a value between 0.0 and 1.0

through division by 20.1 kN, the highest failure load observed
in the systematic variation. The volume of the insert structure

)(xV is scaled to [0.0, 1.0] by the maximum volume allowed

by the constraints on the insert geometry. The largest possible
insert geometry has a volume of roughly 72 cm³.

³72

)(
1*

1.20

)(
*)(

cm

xV
w

kN

xF
wxf VF (1)

The weighting factors Fw and Vw specify the relative

importance of each objective over the other and are defined so
that 100VF ww . With this fitness function, the highest

possible finesses are at very high failure loads and volumes
that are as close to zero as possible.

414 Jan Schwennen et al. / Procedia CIRP 67 (2018) 410 – 415

5.3 Selection Methods

In the selection step, the fittest individuals are chosen for
recombination. The framework implements three selection
methods: fitness-proportional selection, ranked selection, and
elite-ranked selection. In fitness-proportional selection, the
probability of selection is directly related to the individual's
fitness in proportion to the total fitness of the population. To
prevent issues with selection bias, ranked selection is also
implemented, in which individuals in the population are
sorted from worst to best and assigned a rank. Selection is
then performed based on these ranks instead of individual
fitness values. Thus, the probability distribution is uniform,
and extremely fit individuals are prevented from taking over
the population [7]. The third selection method implemented in
the framework is called elite-ranked selection. This functions
identically to ranked selection, except that only a certain
number of individuals are eligible for selection. This method
combines the relatively even selection probabilities of ranked
selection with a strong pressure toward more fit individuals.

5.4 Recombination Methods

In the recombination step, parents selected with the
selection function are combined to produce offspring. The two
methods implemented in the framework, uniform and flat
crossover, produce one offspring from two parents. Uniform
crossover simply chooses the parameter values for the
offspring randomly from either parent. Each parameter in
each parent has a chance of 50% of being passed down to the
offspring of the parents. Flat crossover, also called arithmetic
crossover, creates an offspring that is a linear combination of
the parents’ features. The bias of the combination is
determined by a uniform random number generated for each
parameter in the chromosome.

5.5 Mutation Methods

Mutation is performed on a certain percentage of the
offspring derived from the parents in order to introduce
genetic diversity into the population and allow the EA to
explore new areas of the search space. It also prevents
inbreeding and evolutionary dead ends, which are more
common in EAs due to the relatively small populations. The
framework implements two types of mutation: random and
uniform. Random mutation is the simplest method. After the
recombination step, with a probability specified by the
mutation rate, each gene of each individual is reinitialized to a
random value within its allowable range. This introduces
diversity, but does not allow tuning of the mutation range. In
other words, a single mutation can place the mutated
individual very far away from the un-mutated individual in
the search space. The uniform method allows the range of the
mutation to be limited by introducing a parameter for the
magnitude of the mutation, called the mutation range.

6. Results

The following sections give an overview of the
performance and results of the optimization runs that were
performed over the course of this work.

6.1. Algorithm Configuration

As the evolutionary approach is based on randomly
generated numbers (non-deterministic) convergence speed
and results may vary between runs with identical
configurations. In order to assess the effect of different
algorithm setups, each parameter setting was tested a
minimum number of three times.

The elite ranked selection method proved useful for the
application, resulting in significantly faster convergence. The
adverse effect of a decreased exploration of the search space
can be compensated by carrying out multiple optimization
runs. Overall the influence of elite selection is rated beneficial
for the present application.

 Additionally, uniform mutation (described in 5.5) with the
mutation range set to 30% of the total parameter range was
tested. A strong increase in convergence speed could be
observed while maintaining consistently good results.
However, as the effect on the exploration of the seach space
could not be quantified and acceptable runtimes had already
been reached, random mutation was chosen for the remaining
runs. In a future use case, with more complex geometry
parametrizations, uniform mutation with a specified range
may have a useful effect.

6.2. Overview of Evaluated Geometries

Throughout all optimization runs, a total of more than
65,000 individual geometries were simulated. The solution
space is visualized in Fig. 4, which shows the relationship
between the objective function values (first failure & mass)
and the fitness (diagonal contour lines). The well-defined
outline of the scatter plot towards the lower left corner clearly
shows the set of optimal geometries (Pareto-frontier). The
evolutionary algorithm consistently returns the Pareto-optimal
geometries for a set of fitness function weights.

Fig. 5. Scatter plot of individuals evaluated throughout all evolutionary
optimization runs.

415 Jan Schwennen et al. / Procedia CIRP 67 (2018) 410 – 415

Fig. 6. (a) Exemplary optimized geometry. (b) Force-displacement plot of
optimized and initial insert structures.

6.3. Resulting Geometry

An optimization of first failure load with only minimal
consideration of dumbbell-mass (i.e. no penalty for heavy
geometries) will result in an upward facing truncated-cone-
shape with a 45-degree angle. This geometry results in
advantageous stress conditions for the cohesive bond and
therefore a delayed first failure. The maximum load is only
slightly higher than the first failure load. An optimization of
only the maximum failure delivers a dumbbell-insert with
large top and bottom triangles to maximize the bonding
surface between dumbbell and both upper and lower CFRP-
layer. An early first failure is observed.

As both geometries are too massive for lightweight
construction application, a compromise must be found using
the fitness function. The cross-section of a typical optimized
geometry with weighting factors of Fw = 35 and Vw = 65 is

displayed in (a). Additionally the force displacement curves of
the optimized geometries and the parametric geometry
resembling the initial insert shape are shown in Fig. 6b.

When comparing the graphs, a drastic improvement in first
failure performance can be noted. The optimized geometry
shows a failure load of 20.4 kN compared to 8.32 kN of the
original insert. Furthermore, the difference between first and
maximum failure loads of the optimized geometries is much
smaller, which demonstrates a better utilization of the load
transmission potential in the FE-Model.

6.4. Mesh Verification

As the FEM-model had to be fully optimized regarding
computation times, a comparatively coarse mesh, created by
the Abaqus automatic meshing algorithm, had to be used. To
verify the simulation results, additional models of some of the
optimized dumbbell-shapes were created manually with a fine
mesh. The results show a maximum deviation of the first and
maximum failure loads of ten percent between the models.
This is deemed adequate, as relative evaluation is considered
far more important for the purpose of an optimization than
accurate failure load values.

Summary

The primary goal of this work was to enable the
optimization of non-linear behavior of load-introduction
elements in FRP sandwich panels. A software framework was
developed in Python for this purpose. Automated model
generation from a set up independent parameters is achieved
with the Abaqus Scripting Interface. The evaluation of the FE
models is fully automated and can be highly parallelized to
greatly reduce runtimes for sets of models.

An evolutionary algorithm was applied to drive the
optimization process and was found to be well-suited for this
problem. Furthermore, optimization runtimes of under 12
hours were achieved, while maintaining verifiable simulation
results.

Further experimental validation and adjustment of the
model is necessary to more accurately model different failure
modes. Additionally, greater design freedom in the form of
more complex geometries and non-rotation-symmetric
dumbbell shapes should be implemented. This will most
likely also require a more finely-tuned approach to the
generation of the mesh of the insert structure and foam core.

Acknowledgements

At this point, we wish to extend out special gratitude to the
Federal Ministry of Education and Research (BMBF) which
has funded the presented work under Grant No. 03X3041S.

References

[1] Schwennen, J., Sessner, V. & Fleischer, J., A New Approach on
Integrating Joining Inserts for Composite Sandwich Structures with Foam
Cores. 6th CIRP Conference on Assembly Technologies and Systems
(CATS), 2016; Vol. 44, pp. 310-315.

[2] Fliegener, S., Johe, J., Design and Optimization of Load Application
Elements for Thermoplastic Sandwich Structures in Automotive
Applications. 11th International Conference on Sandwich Structures
(ICSS-11), 2016.

[3] Johansson, H., The optimized post-fitted foam sandwich insert. 13th.
European Conference on Composite Materials, 2008; pp. 1–7.

[4] Schwennen, J., Kupzik, D., Fleischer, J., Development of a Calculation
Model for Load Introduction Elements Integrated During FRP Sandwich
Structure Manufacturing. Accepted for SAMPE Seattle 2017.

[5] Lodygowski, T., Szajek, K., Wierszycki, M., Optimization of dental
implant using genetic algorithm. Journal of Theoretical and Applied
Mechanics, 2009; Vol. 47, pp. 573-598.

[6] Goodman-Wilson, D., Galileo: a Distributed Genetic Algorithm,
https://github.com/DEGoodmanWilson/Galileo Accessed: 2017-02-19.

[7] Whitley D., The Genitor Algorithm and Selection Pressure: Why Rank-
Based Allocation of Reproductive Trials is Best. 3rd International
Conference on Genetic Algorithms, San Fransisco, USA, 1989; pp. 116-
123.

