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Abstract 

Due to their high lightweight potential, fiber-reinforced-plastics (FRP) sandwich structures with foam cores are becoming increasingly 
important in the automotive industry. To accommodate local forces, load introduction elements called inserts are required. A new type of insert 
is integrated into the sandwich panel during manufacturing. To accelerate the design and development process of these inserts, an optimization 
framework is developed based on the Abaqus CAE package and the Python programming language. An automated parametric nonlinear finite-
element method (FEM) model is used to evaluate the performance of insert geometries. This model is integrated into an optimization routine 
based on a genetic algorithm. The population-based approach is very scalable through parallelization and shows accurate results within 
reasonable processing times. 
© 2017 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of “11th CIRP ICME Conference". 
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1. Introduction 

Efficient design plays an increasingly large role in the 
automotive and aerospace industries, mostly due to rising 
efficiency targets. One approach to weight reduction is the use 
of sandwich structures with foam cores and skins out of 
carbon-fiber reinforced plastics (CFRP) which provide high 
stiffness to weight ratios and favorable energy absorption 
capabilities. A weakness of these sandwich structures 
however is the difficulty of distributing point loads into the 
panel. The load transfer is generally improved by utilizing 
load introduction elements, called inserts, to create attachment 
points on the panel. 

An approach to reduce the high manufacturing costs and 
decrease cycle times while maintaining structural 
performance by Schwennen et al. [1] is the use of foam cores 
that are foamed into a 3D shape in a separate tool. Metallic 
parts, such as threaded inserts, can be directly integrated 
during the foaming process. The design and performance of 
this type of insert is a current area of active research. A wide 

range of geometries can be integrated into the foam core 
between the CFRP skins, but because these inserts are not as 
established as other load transmission methods in the industry, 
very few standards and analytical tools exist for these 
geometries, making the design and development a very time-
consuming process [2]. Current design approaches involve 
laborious parameter studies with multiple cycles of topology 
optimization and FEM analyses. Furthermore, the 
optimization techniques currently in use do not allow the 
direct integration of performance criteria such as failure loads 
or energy absorption into the optimization process. The goal 
of this project is to develop a framework for the automated 
optimization of a specific type of insert and to evaluate the 
utility of an evolutionary algorithm for this application. 

The insert in question is comprised of a steel bolt 
surrounded by a separate insert structure. The load is 
introduced into the threaded bolt. The structure surrounding 
the bolt is “through-thickness”, i.e. connected to the inner 
surfaces of both face sheets. This work focuses on the 
optimization of the insert structure surrounding the bolt. 
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2. Parametric FEM Simulation 

The baseline geometry of the insert is a rounded dumbbell 
based on an optimized shape by Johansson et al. [3]. A 
nonlinear FEM model of the baseline geometry was 
developed by [4]. To enable automated optimization of the 
shape of the insert, a parametric representation of insert 
geometries is needed. The Abaqus Scripting Interface is used 
to generate an FE model from a set of parameters.  

2.1. Finite Element Model 

The FE model of the sandwich component is implemented 
in Abaqus/CAE and solved by Abaqus/Explicit [4]. The 
overall geometry of the model in Fig. 2 is equivalent to the 
test pieces used by previous work in this project [1]. The test 
specimens are square sandwich panels with an edge length of 
148 mm. The face sheets (tan, green in Fig. 2) consist of 
unidirectional CFRP layers with a symmetric 0°/90° layup. 
The insert itself consists of a steel center bolt (blue in Fig. 2) 
surrounded by the insert structure (red in Fig. 2). A vertical 
tensile force is applied to the bolt and the sandwich panel is 
held down by a fixture with a circular opening Ø = 125mm. 
Note that the steel insert is not part of the design space and is 
not optimized. Within this work, “insert geometry” refers only 
to the insert structure around the bolt. 

The individual parts of the assembly are created as volume 
bodies. Continuum shell (SC8R) elements are used to mesh 
the composite face sheets and 3D continuum elements 
(C3D8R and C3D6) are used for the rest of the parts. General 
Contact is used for the connections between the individual 
parts. The bonding surface between the foam core and the 
insert structure are modeled by a Cohesive Surface with 
damage. In order to avoid oscillations from sudden 
acceleration, the load amplitude is selected as Smooth Step. 
Due to the strong deformation of the foam, hourglass and 
distortion control are activated. Since the panel, insert, and 
load are symmetric across both the X and Y planes, the 
calculation time is reduced by simulating a quarter of the 
sandwich panel and applying the appropriate boundary 
conditions. Mass scaling is used to reduce the number of 
necessary computation steps. A short time increment leads to 
unnecessarily long computing times, while too large values 
result in an artificial increase in the computational density and 
influence of inertial forces on the simulation result [4]. 

2.2. Parametric Geometry 

The parametric geometry is a simplification of the original 
dummell geometry. It consists of two triangles and a rectangle 
(Fig. 1). All geometries are obtained by varying five 
parameters: R0, HT, RT, HB, and RB.  The 2D shapes defined 
by the parameters are revolved 90° around the vertical axis to 
form 3D parts. These are then merged into the complete insert 
structure. The parameter R0 defines the thickness of the trunk 
of the insert structure. RT and RB specify the maximum radii 
of the insert at the top and bottom face sheets, respectively. 

 

Fig. 1. (a) FEM model of test panel. (b) Parametric geometry. 

HT defines the height of the top triangle, measured vertically 
from the top face sheet. The height of the bottom triangle, HB, 
is measured from the bottom. All parameters are completely 
independent, and can be varied between values of 1 and 30. 
The radius of the insert structure is therefore constrained to a 
maximum of 34 mm (radius of the steel bolt = 4 mm). The 
height of the insert is defined by the core thickness of 20 mm. 

2.3. Model Generation 

The Abaqus Scripting Interface allows models to be 
generated via Python scripting. The model generation script 
contains the same commands that a user would execute when 
building the model through the graphical user interface (GUI). 
With a script, however, the GUI does not need to be started 
and the model generation can be completely automated.  

The script developed for this implementation reads the 
geometry parameters from a file in the working directory. The 
parameters define the 2D shapes. These are sketched and then 
revolved to create 3D parts. The other components of the 
model (see Fig. 1 (a)) are extruded. With the Boolean Merge 
function, the individual 3D part instances from the three base 
shapes are combined to form the insert structure (Fig. 2). 
Boolean Cut is used to cut the merged insert geometry out of 
the foam core. Once all part instances are created, the mesh, 
materials, boundary conditions, load steps, and interactions 
are defined. If-then statements handle the different cases that 
arise. Once the model is complete, an Abaqus Model Database 
(.cae) and an input file (.inp) are written (Fig. 3). 
 

 

Fig. 2. Insert modelling: (I) assembly of part instances, (II) merging. 
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Fig. 3. Evaluation of FEM jobs through the Job and Manager modules. 

3. Framework for Geometry Evaluation 

For the evolutionary optimization process, a large number 
of individual insert geometries must be analyzed. Therefore, 
the entire FEM process is automated. An evaluation 
framework is implemented using Python 2.7.13 and the 
Abaqus Scripting Interface. 

3.1 Structure and Functionality of the Framework 

Each geometry is defined through a set of parameters as 
described in 0. From a parameter set, an Abaqus FEM job is 
generated as described in 0. The framework provides two 
main functionalities: automated evaluation of individual FEM 
jobs including preprocessing and evaluation of results, and a 
manager to handle parallelized evaluation of multiple jobs. 

 The evaluation framework is based on three Python 
modules, Simulation, Hantel, and Misc. The Simulation 
module contains two classes, Job and Manager. The Job class 
deals with the execution of individual FEM jobs and provides 
functions for preprocessing, model generation, execution, and 
postprocessing. A Manager controls sets of FEM jobs and 
provides a simple interface for parallelized job evaluation. 
The Hantel module is used to separate functions and 
definitions that are specific to the FEM model used in this 
case, such as analytical volume calculation. Any 
miscellaneous functions that are used in various places 
throughout the program (such as functions for cleaning up 
unnecessary files) are located in the Misc module. 

Abaqus CAE provides a separate Python environment that 
includes additional modules for Abaqus-specific functions. 
Using functionality from any of the Abaqus modules, such as 
model generation or data extraction from the output database, 
requires a separate script that runs in the Abaqus Python 
environment. These are generatemodel.py (model generation 
from parameters), gho.py (extraction of history output from 
the output database), and meshnap.py (snapshots of the 
deformed model). The scripts are started from within the 
standard Python environment as needed.  

3.2 Parallelized Evaluation of a Set of Jobs 

Fig. 2 shows how an instance of the Manager class can be 
used to evaluate multiple geometries at once with a single 
command. A number of geometry parameter sets are passed to 
the manager, which creates an instance of the Job class for 
each geometry. These are stored in a job queue until the 
manager’s evaluate_all() method is called. Then, the Manager 
prepares all jobs for evaluation. Through the Jobs’ methods, 

working directories are created, the necessary files are copied, 
and the model generation script is executed.  

Individual Abaqus processes are started to analyze the 
input file (INP) of each job. In contrast to the domain-level 
parallelization provided by Abaqus, no data is exchanged 
between the individual processes, as each process evaluates a 
separate job. This allows the number of parallelized job 
evaluations to be scaled linearly with the number of available 
processors, i.e. a machine with twice the number of CPU 
cores will be able to evaluate twice as many jobs in the same 
time.  

After evaluation of all jobs by Abaqus CAE, the results of 
each simulation are stored in Abaqus output database (ODB) 
files in the working directories of the jobs. The manager then 
calls the postprocessing method of each job, which extracts 
the data from the ODB file by running the script gho.py in the 
Abaqus Python environment. The history data from the job is 
processed within the standard Python environment to 
determine the performance of the insert and the data is stored 
in the job object.  

3.3 FEA Result Assessment  

Functions were implemented to extract the performance 
data from the FEA results. The displacement and force at the 
reference node for each history output interval are available 
from the simulation. The largest force over the simulation set 
is defined as the maximum load. The first failure load is 
determined by a one percent drop in the reaction force. Any 
drops due to initial oscillations in the model are ignored, up to 
100 N. 

As mentioned in chapter 2.1, mass scaling effects can 
significantly influence FEA results, and must be monitored. 
For this quasi-static case, any kinetic energy in the simulation 
is mainly a product of high densities from excessive mass 
scaling. By visually comparing the internal (ALLIE) and 
kinetic energy (ALLKE) curves of the simulation, significant 
mass scaling effects become immediately apparent. However, 
due to the large number of simulations evaluated during an 
optimization, manual comparison of the curves is not 
practicable. To realize this method in the optimization, the 
kinetic energy history data is integrated over the model 
displacement. The resulting number value provides an 
assessment of the amount of kinetic energy over the course of 
the simulation. The influence was determined by evaluating 
an identical FE-model multiple times with various target-
time-increments. The settings for the model used for the 
optimization were adjusted to minimize the influence of mass 
scaling in the simulations.  

To decrease the runtime of the optimization, results are 
stored in a database across multiple runs. Non-unique 
parameter sets then do not need to be re-evaluated, as the 
results can simply be extracted from the database. This further 
reduces calculation times as more results are added to the 
archive. 
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4. Systematic Variation of Geometry  

As a preliminary step before the optimization, the 
dimensions of the search space were investigated through a 
systematic variation of the geometry.  

For this purpose, a pre-defined set of about 1500 parameter 
sets, spaced evenly over the search space, were generated. 
Because of the small number of geometries (1500 out of over 
107 possible unique parameter sets), this method is not suited 
for optimization. However, it can be used to gauge the effect 
of different fitness functions applied to the data set. This 
proved useful in adjusting the weighting factors in the 
aggregated fitness function. Furthermore, the weight-specific 
failure loads of the insert geometries evaluated in the variation 
can be used as a benchmark to compare the results of the 
optimization runs. 

Fig. 4 shows a scatter plot of the individuals evaluated in 
the systematic variation. The diagonal lines represent constant 
finesses with increasing values (higher failure load & lower 
mass) towards the lower left. The search space was covered 
more precisely in the area of low mass, and fewer heavier 
geometries were evaluated. A clear Pareto front (set of 
optimal geometries) is not visible, with some individual points 
scattered at higher fitness values outside of the main bulk. The 
systematic variation gives a good overview of the search 
space. However, a global optimization should be able to find 
better geometries between the scattered points on the lower 
left of the main bulk. 

 

 
Fig. 4. Scatter plot of individuals evaluated in the systematic variation. 

5. Optimization with an Evolutionary Algorithm 

The goal of this work is to automatically optimize the 
failure behavior of the insert. The non-linear nature of the 
finite-element model disqualifies the use of topology-
optimization techniques. Furthermore, the optimization 
problem is classified as a “black box” problem, as only the 
input (parameters) and corresponding output (failure and max. 
loads) are known. The global optimum is to be found. 
Evolutionary algorithms (EA) provide this capability, without 
requiring the approximation of any derivatives or prior 
knowledge of the problem. Another major advantage of the 
evolutionary method is the population-based approach, which 
lends itself very well to parallelized evaluation. An approach 
similar to that of Łodygowski et al. [5] is applied. 

5.1 Implementation 

To expand the simulation framework with the capability 
for optimization, an additional module is implemented within 
the Python package containing the framework. The module is 
adapted from an existing open source (GPL) Python package 
for genetic algorithms, called Galileo [6]. The module 
contains two classes, Population and Chromosome, which 
together provide the entire functionality of an evolutionary 
algorithm. The Population class represents a generation of 
individuals and implements methods to prepare the population 
and to execute each of the steps of the EA. A Chromosome 
object represents an individual in the population, i.e. the 
Population object contains and operates on a set of 
Chromosome objects.  

To perform the optimization, the optimization module is 
imported into the control script. The evolutionary process is 
started by instantiating an object of the Population class, 
creating an initial population, and then calling methods on the 
population for each step of the algorithm: Evaluate, Select, 
Recombine, Mutate, and Replace. The algorithm’s goal is to 
maximize the overall fitness of the population. Evaluation of 
the individuals is accomplished using a Manager object from 
the Simulation class (as described in 3.2). The results are 
translated to fitness values using an aggregated fitness 
function (see 5.2). The fittest genes are selected for 
recombination. Offspring are generated and mutated, all of the 
offspring replace the parents in the current generation, and the 
process starts again with evaluation. 

5.2 Fitness Function by Aggregation 

The performance of individual geometries in the FEM 
simulations are translated into a fitness for the evolutionary 
algorithm by means of the fitness function. The aggregation 
method was chosen to take into account the first failure load 
and the volume of the insert (Eq 1). The failure load of an 
individual, )(xF , is scaled to a value between 0.0 and 1.0 

through division by 20.1 kN, the highest failure load observed 
in the systematic variation. The volume of the insert structure 

)(xV is scaled to [0.0, 1.0] by the maximum volume allowed 

by the constraints on the insert geometry. The largest possible 
insert geometry has a volume of  roughly  72 cm³. 
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The weighting factors Fw  and Vw  specify the relative 

importance of each objective over the other and are defined so 
that 100VF ww . With this fitness function, the highest 

possible finesses are at very high failure loads and volumes 
that are as close to zero as possible. 
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5.3 Selection Methods 

In the selection step, the fittest individuals are chosen for 
recombination. The framework implements three selection 
methods: fitness-proportional selection, ranked selection, and 
elite-ranked selection. In fitness-proportional selection, the 
probability of selection is directly related to the individual's 
fitness in proportion to the total fitness of the population. To 
prevent issues with selection bias, ranked selection is also 
implemented, in which individuals in the population are 
sorted from worst to best and assigned a rank. Selection is 
then performed based on these ranks instead of individual 
fitness values. Thus, the probability distribution is uniform, 
and extremely fit individuals are prevented from taking over 
the population [7]. The third selection method implemented in 
the framework is called elite-ranked selection. This functions 
identically to ranked selection, except that only a certain 
number of individuals are eligible for selection. This method 
combines the relatively even selection probabilities of ranked 
selection with a strong pressure toward more fit individuals. 

5.4 Recombination Methods 

In the recombination step, parents selected with the 
selection function are combined to produce offspring. The two 
methods implemented in the framework, uniform and flat 
crossover, produce one offspring from two parents. Uniform 
crossover simply chooses the parameter values for the 
offspring randomly from either parent. Each parameter in 
each parent has a chance of 50% of being passed down to the 
offspring of the parents. Flat crossover, also called arithmetic 
crossover, creates an offspring that is a linear combination of 
the parents’ features. The bias of the combination is 
determined by a uniform random number generated for each 
parameter in the chromosome. 

5.5 Mutation Methods 

Mutation is performed on a certain percentage of the 
offspring derived from the parents in order to introduce 
genetic diversity into the population and allow the EA to 
explore new areas of the search space. It also prevents 
inbreeding and evolutionary dead ends, which are more 
common in EAs due to the relatively small populations. The 
framework implements two types of mutation: random and 
uniform. Random mutation is the simplest method. After the 
recombination step, with a probability specified by the 
mutation rate, each gene of each individual is reinitialized to a 
random value within its allowable range. This introduces 
diversity, but does not allow tuning of the mutation range. In 
other words, a single mutation can place the mutated 
individual very far away from the un-mutated individual in 
the search space. The uniform method allows the range of the 
mutation to be limited by introducing a parameter for the 
magnitude of the mutation, called the mutation range. 

 
 

6. Results 

The following sections give an overview of the 
performance and results of the optimization runs that were 
performed over the course of this work. 

6.1. Algorithm Configuration 

As the evolutionary approach is based on randomly 
generated numbers (non-deterministic) convergence speed 
and results may vary between runs with identical 
configurations. In order to assess the effect of different 
algorithm setups, each parameter setting was tested a 
minimum number of three times.  

The elite ranked selection method proved useful for the 
application, resulting in significantly faster convergence. The 
adverse effect of a decreased exploration of the search space 
can be compensated by carrying out multiple optimization 
runs. Overall the influence of elite selection is rated beneficial 
for the present application. 

 Additionally, uniform mutation (described in 5.5) with the  
mutation range set to 30% of the total parameter range was 
tested. A strong increase in convergence speed could be 
observed while maintaining consistently good results. 
However, as the effect on the exploration of the seach space 
could not be quantified and acceptable runtimes had already 
been reached, random mutation was chosen for the remaining 
runs. In a future use case, with more complex geometry 
parametrizations, uniform mutation with a specified range 
may have a useful effect. 

6.2. Overview of Evaluated Geometries 

Throughout all optimization runs, a total of more than      
65,000 individual geometries were simulated. The solution 
space is visualized in Fig. 4, which shows the relationship 
between the objective function values (first failure & mass) 
and the fitness (diagonal contour lines). The well-defined 
outline of the scatter plot towards the lower left corner clearly 
shows the set of optimal geometries (Pareto-frontier). The 
evolutionary algorithm consistently returns the Pareto-optimal 
geometries for a set of fitness function weights. 

 

 

Fig. 5. Scatter plot of individuals evaluated throughout all evolutionary 
optimization runs. 
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Fig. 6. (a) Exemplary optimized geometry. (b) Force-displacement plot of 
optimized and initial insert structures. 

6.3. Resulting Geometry 

An optimization of first failure load with only minimal 
consideration of dumbbell-mass (i.e. no penalty for heavy 
geometries) will result in an upward facing truncated-cone-
shape with a 45-degree angle. This geometry results in 
advantageous stress conditions for the cohesive bond and 
therefore a delayed first failure. The maximum load is only 
slightly higher than the first failure load. An optimization of 
only the maximum failure delivers a dumbbell-insert with 
large top and bottom triangles to maximize the bonding 
surface between dumbbell and both upper and lower CFRP-
layer. An early first failure is observed. 

As both geometries are too massive for lightweight 
construction application, a compromise must be found using 
the fitness function. The cross-section of a typical optimized 
geometry with weighting factors of Fw  = 35 and Vw = 65 is 

displayed in (a). Additionally the force displacement curves of 
the optimized geometries and the parametric geometry 
resembling the initial insert shape are shown in Fig. 6b. 

When comparing the graphs, a drastic improvement in first 
failure performance can be noted. The optimized geometry 
shows a failure load of 20.4 kN compared to 8.32 kN of the 
original insert. Furthermore, the difference between first and 
maximum failure loads of the optimized geometries is much 
smaller, which demonstrates a better utilization of the load 
transmission potential in the FE-Model.  

6.4. Mesh Verification 

As the FEM-model had to be fully optimized regarding 
computation times, a comparatively coarse mesh, created by 
the Abaqus automatic meshing algorithm, had to be used. To 
verify the simulation results, additional models of some of the 
optimized dumbbell-shapes were created manually with a fine 
mesh. The results show a maximum deviation of the first and 
maximum failure loads of ten percent between the models. 
This is deemed adequate, as relative evaluation is considered 
far more important for the purpose of an optimization than 
accurate failure load values. 
 

Summary 

The primary goal of this work was to enable the 
optimization of non-linear behavior of load-introduction 
elements in FRP sandwich panels. A software framework was 
developed in Python for this purpose. Automated model 
generation from a set up independent parameters is achieved 
with the Abaqus Scripting Interface. The evaluation of the FE 
models is fully automated and can be highly parallelized to 
greatly reduce runtimes for sets of models.  

An evolutionary algorithm was applied to drive the 
optimization process and was found to be well-suited for this 
problem. Furthermore, optimization runtimes of under 12 
hours were achieved, while maintaining verifiable simulation 
results.  

Further experimental validation and adjustment of the 
model is necessary to more accurately model different failure 
modes. Additionally, greater design freedom in the form of 
more complex geometries and non-rotation-symmetric 
dumbbell shapes should be implemented. This will most 
likely also require a more finely-tuned approach to the 
generation of the mesh of the insert structure and foam core. 
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