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Abstract. Despite many existing approaches, modeling karst
water resources remains challenging as conventional ap-
proaches usually heavily rely on distinct system knowledge.
Artificial neural networks (ANNs), however, require only
little prior knowledge to automatically establish an input–
output relationship. For ANN modeling in karst, the tempo-
ral and spatial data availability is often an important con-
straint, as usually no or few climate stations are located
within or near karst spring catchments. Hence, spatial cover-
age is often not satisfactory and can result in substantial un-
certainties about the true conditions in the catchment, leading
to lower model performance. To overcome these problems,
we apply convolutional neural networks (CNNs) to simulate
karst spring discharge and to directly learn from spatially
distributed climate input data (combined 2D–1D CNNs).
We investigate three karst spring catchments in the Alpine
and Mediterranean region with different meteorological–
hydrological characteristics and hydrodynamic system prop-
erties. We compare the proposed approach both to existing
modeling studies in these regions and to our own 1D CNN
models that are conventionally trained with climate station
input data. Our results show that all the models are excel-
lently suited to modeling karst spring discharge (NSE: 0.73–
0.87, KGE: 0.63–0.86) and can compete with the simulation
results of existing approaches in the respective areas. The 2D
models show a better fit than the 1D models in two of three
cases and automatically learn to focus on the relevant areas

of the input domain. By performing a spatial input sensitivity
analysis, we can further show their usefulness in localizing
the position of karst catchments.

1 Introduction

Karst aquifers and karst springs are crucial for freshwater
supply in many regions, and 9 % of the global population
partly or fully relies on karst water resources (Stevanović,
2019). Karst systems in general are characterized by high
structural heterogeneity due to the at least in large parts
unknown conduit network, which controls the highly vari-
able groundwater flow. These factors make modeling dif-
ficult; nevertheless, different approaches exist, which Jean-
nin et al. (2021) classify as hydrological models (fully dis-
tributed models), pipe flow models (semi-distributed mod-
els), and data-driven models (including reservoir models).
Artificial neural networks (ANNs) or their subgroup of deep
learning (DL) models are part of the last group. In contrast
to the other two categories, which usually require detailed
system knowledge in order to achieve high-quality results,
DL approaches offer an alternative possibility of modeling by
being able to establish an input–output relationship automat-
ically, without detailed system knowledge necessary. Even
though ANNs are not a standard method in karst modeling
yet, different types of ANNs have been applied in modeling
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karst water resources for quite a long time. As one of the first
applications (Johannet et al., 1994) showed, karst spring dis-
charge modeling is possible with ANNs. Since then, appli-
cation of ANNs in hydrology in general has received ever-
growing research attention (e.g., Maier and Dandy, 2000;
Maier et al., 2010). This has amplified even more in the last
years, mainly because of the recent success of DL models
(e.g., Kratzert et al., 2018). Rajaee et al. (2019) more re-
cently reviewed applications of ANNs to groundwater; Sit
et al. (2020) summarize applications to hydrology and wa-
ter resources in general. Recurrent neural networks (RNNs),
such as long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997), are standard models for time series
modeling, because they possess explicit or implicit memory
to remember past time steps, which helps to infer the future.
A consequence is that they are trained sequentially, which
can make them computationally expensive. Convolutional
neural networks (CNNs) (LeCun et al., 2015) on the other
hand use convolutions along the time axis (1D CNNs) to
learn temporal features and can be trained batch-wise, which
therefore usually makes them computationally favorable over
RNNs. One example of this fact exists in the related domain
of groundwater-level forecasting, where Wunsch et al. (2021)
showed that 1D CNNs are considerably faster than RNNs in
the case of single-site model application. CNNs at the same
time exhibited more stable results through less dependency
on the random network initialization and achieved some of
the highest performances in this specific study (better than
LSTM). Other authors similarly applied CNNs successfully
for either groundwater-level forecasting (Afzaal et al., 2020;
Lähivaara et al., 2019; Müller et al., 2020) or rainfall–runoff
modeling (Van et al., 2020; Hussain et al., 2020). Müller et al.
(2020) find in contrast to Wunsch et al. (2021) that CNNs
take a considerably longer time to optimize than LSTMs,
yet both studies agree that they outperform LSTMs in terms
of accuracy. Given these favorable properties of CNNs, we
choose 1D CNNs for karst spring discharge modeling for our
study. To our best knowledge, Jeannin et al. (2021) is the
only study applying CNNs for karst spring discharge model-
ing in some first experiments, and they also find CNNs to be
superior over LSTMs in terms of testing performance.

Data-driven approaches in general are considered to be
black boxes. A way to still build confidence in a model’s
decisions is to understand what the model is doing (ideally,
even why) by using explainable artificial intelligence (XAI).
There are different approaches, which are potentially suited
for this purpose, depending on the specific goal. Such ap-
proaches not only are useful for gaining trust, but also help
during model building to debug the model and to check
which aspects it is focusing on (McGovern et al., 2019). The
class of wrapper methods (Kohavi and John, 1997) incorpo-
rates both the data and the trained model to interpret what
a model has learned. Methods from this class are, for ex-
ample, impurity importance for determining feature impor-
tance in random forest (RF) models (Louppe et al., 2013),

permutation importance (Breiman, 2001) both for RF and
DL models, and partial dependence plots (Friedman, 2001)
that also reveal why a predictor is important. See McGov-
ern et al. (2019) for an overview of these and several other
model interpretation and visualization methods. Especially
for image-alike data, input sensitivity approaches seem suit-
able, as focus regions of the model on the image can be vi-
sualized. Two well-known approaches are occlusion sensitiv-
ity (Zeiler and Fergus, 2014) and RISE (Randomized Input
Sampling for Explanation) (Petsiuk et al., 2018). Both meth-
ods show how relevant each pixel or area is to the decision
of the model (image classification) and can generate an im-
portance heat map (saliency map) for visualization. The idea
behind both algorithms is to use masked versions of an input
image and, by obtaining the respective model output, to learn
the focus regions. A very closely related approach to gener-
ate a saliency map was recently proposed by Anderson and
Radić (2022), which in contrast to RISE and occlusion takes
the physical meaning of the absolute value of each variable
at each pixel into account during the perturbation of the input
data.

One drawback of the 1D CNN approach, as well as most
other data-driven approaches, is the dependency on high data
availability and quality. However, climate stations are of-
ten not available within the catchment itself, do not match
the data availability of the discharge time series (period or
temporal resolution), or are more distant and thus do not
truly represent the climatic conditions within the catchment.
Gridded climate data can provide a solution to such data
availability problems. Several openly available products ex-
ist (e.g., ERA5-Land, Muñoz Sabater, 2019; E-OBS, Cornes
et al., 2018), which provide climate data for several decades
and with, in terms of karst spring modeling, appropriate tem-
poral (hourly or daily) and spatial (0.1◦× 0.1◦) resolution.
However, especially for karst springs, it is not straightfor-
ward to extract relevant time series from the gridded data,
because the spatial extent of the grid cell containing the lo-
cation of the spring usually does not coincide well with the
associated spring catchment position. Moreover, especially
for karst springs, the catchment is often not well known, and,
for larger springs, can stretch over several grid cells. If the
exact position of the catchment is unknown, using gridded
data has the advantage that a broader region can be taken
into account as input to let the model learn the relevant grid
cells automatically.

Besides such modeling aspects, the delineation of karst
catchments is generally important for sustainably exploiting
but also protecting karst water resources by establishing pro-
tection zones accordingly. Malard et al. (2015) explain that
only a few generalizable methods based on models in general
for karst spring catchment delineation have been proposed.
Instead, delineations usually rely on classical hydrogeologi-
cal methods such as assessing geology, topography, hydrol-
ogy, water balance, elaborate tracer tests and geophysical in-
vestigations. These methods usually are complex and costly,
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and thus for many karst springs, exact catchment delineations
are not available at all or at least contain some uncertainties.
Where no information about the catchment is available at all,
an approximate localization is advantageous as a first step
towards an exact delineation, since it facilitates the applica-
tion of more elaborate methods like tracer tests. There has al-
ready been an attempt by Longenecker et al. (2017) to semi-
automatically derive approximate catchment boundaries by
correlating karst spring discharge events with global precipi-
tation measurement (GPM) gridded data (NASA, 2016). The
authors were able to achieve reasonable results with their
method but also noticed that they could not replace conven-
tional methods.

Anderson and Radić (2022) already applied gridded me-
teorological data to streamflow modeling in western Canada
and used a coupled 2D CNN–LSTM model to directly pro-
cess spatially distributed input data. They showed that such
models learn the relevant parts of the large-scale gridded
input data for each local or regional streamflow automati-
cally. We adapt and extend this approach to karst spring dis-
charge modeling, however, purely based on CNNs by replac-
ing the LSTM part with a 1D CNN. Similar to the approach
of Anderson and Radić (2022), in our proposed methodol-
ogy the 2D CNN part learns the spatial features of the in-
put data, while the 1D CNN part extracts the temporal fea-
tures, both necessary for simulating the spring discharge time
series. With this combined 2D–1D approach (for the sake
of simplicity in the following 2D-only approach), we can
now directly use gridded meteorological data to potentially
overcome the common data availability problems when us-
ing climate station data for modeling. This approach further
no longer depends on a prior description of the catchment
area, other than a very rough estimation of its approximate
size to make the gridded data section large enough. More-
over, we investigate the potential of this approach to identify-
ing the approximate catchment location based on a modified
spatial input sensitivity analysis from Anderson and Radić
(2022). Deriving recharge areas based on rainfall–discharge
event correlation, as previously done by Longenecker et al.
(2017), requires (i) heterogeneous rainfall at catchment scale,
(ii) precipitation data with sufficient spatial resolution that
capture this heterogeneity and (iii) a karst system without
too much dampening of the precipitation signals. These re-
quirements hold for our proposed methodology as well, but
a potential advantage of ANNs is their nonlinearity, which
may better capture the nonlinear relationships between rain-
fall and discharge.

We explore the applicability of our proposed deep learn-
ing approaches with spatially distributed input data in mod-
eling karst spring discharge in three different study areas
in Austria (Aubach spring), France (Lez spring) and Slove-
nia (Unica springs). All three associated karst areas are well
studied and, for Austria and France, several modeling publi-
cations are available as benchmarks. Discharge of Lez spring
in France was extensively studied in the past, including sev-

eral ANN studies. Please refer to Kong A Siou et al. (2011)
for an overview of older modeling studies at Lez spring with
approaches other than ANNs. We omit three newer ANN
studies because they either do not focus on modeling dis-
charge (Kong-A-Siou et al., 2015) or train models not on
the complete annual cycle (September–August in this re-
gion) but on flash-flood events (Darras et al., 2015, 2017).
The other ANN studies all use classical multilayer percep-
trons (MLPs) or recurrent MLPs for discharge modeling, and
we introduce them shortly in the following. Kong A Siou
et al. (2011, 2012) and Kong-A-Siou et al. (2013) use pre-
cipitation from three or six gauges, respectively, and all use
a similar but slightly varying data basis of 12 to 13 full an-
nual cycles between 1988 and 2006. The testing period is
either the single cycle 2002/03 (Kong A Siou et al., 2012;
Kong-A-Siou et al., 2013) or two cycles roughly in the same
period (2002–2004) (Kong A Siou et al., 2011). Kong-A-
Siou et al. (2014) use data from 1987 to 2007, however, this
time additionally including evapotranspiration and pumping
from the Lez aquifer. For Aubach spring in Austria no ANN
studies exist; however, other modeling studies are available.
Three studies (Chen and Goldscheider, 2014; Chen et al.,
2017b, 2018) based on three successive and improved ver-
sions of a combined lumped parameter (SWMM) and dis-
tributed model investigate and simulate three springs of this
karst system simultaneously. They all achieve high perfor-
mance in terms of NSE (> 0.8), but none of them covered a
complete annual cycle as a contiguous test period. Addition-
ally, they differ considerably in terms of their individual data
basis for modeling (number and position of climate stations
used as input data) as well as their testing periods. The short-
est test set only had 40 d (in fall), and the longest (Chen et al.,
2017b) used 1 year of data for model calibration and per-
formed a split-sample test on the same dataset. This makes a
comparison of modeling results among these studies difficult.
For the third spring (Slovenia), several earlier modeling stud-
ies are available (e.g., Kaufmann et al., 2016; Mayaud et al.,
2019; Kaufmann et al., 2020; Kovačič et al., 2020), even in-
cluding ANNs (Sezen et al., 2019), but none of these directly
modeled Unica springs discharge but rather focused on other
aspects like cave hydraulics or polje modeling. Besides ex-
isting studies, we compare the results of the 2D model with
our own 1D CNN models using climate station input data
to assess the usefulness and possible advantages of the di-
rect use of spatially distributed input data. As spatially dis-
tributed inputs, we use either hourly ERA5-Land reanalysis
data (Muñoz Sabater, 2019), hourly RADOLAN precipita-
tion data (DWD Climate Data Center, 2020), or daily E-OBS
data (Cornes et al., 2018), depending on the temporal res-
olution of spring discharge data. We selected these datasets
among all openly accessible datasets (e.g., via the Coperni-
cus Climate Data Store) because of their available variable
set and their spatial and temporal resolution. We introduce
them in more detail in the following data section. Finally,
we explore the potential of the 2D approach for karst spring
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catchment localization by investigating the spatial input sen-
sitivity of the trained CNN models.

2 Data and study areas

2.1 Overview

In this study, we investigate three different karst springs:
Aubach spring in the Hochifen-Gottesacker area in Austria
(Fig. 1a), springs of the Unica River in Slovenia (Fig. 1b)
and Lez spring in southern France (Fig. 1c). All springs show
different characteristics regarding relevant system proper-
ties (e.g., catchment size, complexity of the hydrological
system), environmental conditions (e.g., dominant climate,
anthropogenic forcing) and data availability (see also Ta-
ble A1). All areas are well studied, and existing data were
easily accessible. Further, several previous modeling ap-
proaches are available for comparison, except for the Slove-
nian spring.

2.2 Aubach spring, Austria

Aubach spring is a major karst spring in the Hochifen-
Gottesacker karst area in the northern Alps at the bor-
der between Germany and Austria. The southern border of
the area is the Schwarzwasser Valley, which geologically
forms the contact zone between the Helvetic Säntis nappe
in the north and sedimentary rocks of the flysch zone in
the south (Goldscheider, 2005). In the northern part, the
dominant karst formation is the Schrattenkalk formation, a
cretaceous limestone with a thickness of about 100 m. The
Schrattenkalk is structured in folds, which hydrogeologi-
cally form parallel subcatchments (Fig. 1a) that contribute
to different proportions to the several springs in the valley
(Goldscheider, 2005; Chen and Goldscheider, 2014). In this
study we focus on one large, non-permanent spring called
Aubach spring (1080 m a.s.l., discharge up to 10 m3 s−1).
The Hochifen-Gottesacker area is largely influenced by sea-
sonal snow accumulation and melting in the elevated regions
(> 1600 m a.s.l.), which is also clearly reflected in the dis-
charge of Aubach spring by increased baseflow and diur-
nal snowmelt-induced variations, especially in the months of
April to June. Earlier studies by Goldscheider (2005) and
Chen and Goldscheider (2014) have identified one major
catchment area of Aubach spring with approximately 9 km2

(Fig. 1a); still, in smaller proportions upstream catchments
can also contribute to Aubach spring discharge depending on
the flow conditions. This applies also to the non-karstified
flysch area directly in the south (southernmost subcatchment
in Fig. 1a), where precipitation events are only relevant dur-
ing low-flow conditions. Then, the surface runoff from this
area sinks into an upstream estavelle and contributes via an
underground connection to the discharge of Aubach spring.
During high-flow conditions, the estavelle itself acts as an
overflow spring, and no contribution from surface runoff at

Aubach spring occurs. Generally, the climate in the area can
be described as cooltemperate and humid, and the mean an-
nual precipitation at the closest used climate station in this
study (Walmendinger Horn) is about 2000 mm (2003–2019).

For this study we select Aubach spring because of the good
data availability and use 8 years of hourly discharge data pro-
vided by the office of the federal state of Vorarlberg, divi-
sion of water management. Further precipitation and temper-
ature data from three surrounding climate stations are avail-
able: Oberstdorf, Walmendinger Horn (shown in Fig. 1a) and
Diedamskopf. Additionally, due to the high importance of
snow in the area, we run a snowmelt routine as preprocess-
ing of the meteorological input data as described in Chen
et al. (2018). This routine is a slightly modified version (af-
ter Hock, 1999) of the HBV hydrological model snow rou-
tine (e.g., Bergström, 1975, 1995; Kollat et al., 2012; Seibert,
2000), which redistributes the precipitation time series in ac-
cordance with probable snow accumulation and snowmelt.

2.3 Unica springs, Slovenia

The Unica springs (450 m a.s.l.) are located on the south-
ern edge of a karst polje in southwestern Slovenia and are
important from a biodiversity and water supply perspec-
tive. There are two permanent and several temporary springs
that feed the Unica River. The joint discharge during 1989–
2018 ranged from 1 to 90 m3 s−1, while the mean discharge
was 21 m3 s−1 (ARSO, 2020a). The springs are fed by three
clearly distinguishable subcatchments covering an area of
about 820 km2. The main recharge area is the highly kars-
tified Javorniki plateau (up to 1800 m a.s.l., marked B in
Fig. 1b), whose predominant lithology is Cretaceous rocks,
mainly limestones, changing in places to dolomites and brec-
cias. To a lesser extent, Jurassic and Palaeogene carbon-
ate rocks are also present. The thickness of the unsaturated
zone is estimated to be up to several hundred meters (Petrič
et al., 2018, and references therein). To the east, a strike–
slip fault zone controls the hydrology of the area, along
which a chain of karst poljes developed (between 500 and
700 m a.s.l., marked C in Fig. 1b). Upper Triassic dolomites
predominate, changing to Jurassic limestones and dolomites
in the south and west, forming aquifers with fracture poros-
ity which in places have very low to moderate permeability,
and in some parts a superficial river network forms. As the
karst poljes follow each other in a downward series, they are
connected in a common hydrological system with transitions
between surface and groundwater flows and frequent flood-
ing (Mayaud et al., 2019). In the west, the Pivka River basin
(between 500 and 700 m a.s.l., marked A in Fig. 1b) consists
of poorly permeable Eocene flysch in the north, which con-
ditions a surface river network. The southern part consists of
Cretaceous and Jurassic carbonate rocks forming a shallow
karst aquifer. Surface flow occurs during high water levels,
receiving additional water from intermittent springs on the
western foothills of the Javorniki plateau. The water flow of
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Figure 1. Overview of all three study areas, the simulated springs (red star), and their catchments (red lines). Black squares indicate the
locations of climate stations used for 1D modeling (some are outside the shown maps), and blue shadings in the upper map show karst
areas based on WOKAM (Chen et al., 2017a). (a) Hochifen-Gottesacker karst area and Aubach spring; black lines depict minor contributing
subcatchments; (b) Unica River springs and Javorniki karst plateau (B); (c) Lez spring catchment, Lirou overflow spring (black star), and
major fault Corconne-Les Matelles (grey line).

the sinking rivers in the subsurface from regions A and C is
of the channel flow type. We select the springs for this study
because they drain a complex binary karst system of the so-
called classical karst, they are well studied with long records
of hydro-meteorological data and their hydrology is influ-
enced by substantial snow accumulation and melting. The
catchment belongs to the moderate continental climate and is
mostly covered with forests. For this study we use daily dis-
charge data from the Unica–Hasberg gauging station (in the
following called Unica) (ARSO, 2020a) and daily meteoro-
logical data from the Postojna and Cerknica climate stations
ranging from 1981 to 2018 (ARSO, 2020b). These climate
stations (squares in Fig. 1b) are located in the western (Pos-
tojna) and eastern (Cerknica) parts of the catchment, repre-
senting different climate regimes, and are separated by the
karst massif in between. For Postojna station the following
variables are available: precipitation (P ), temperature (T ),
potential evapotranspiration (PET), relative humidity (RH),
snow (S) and new snow (nS). For Cerknica station, only P ,
S and nS exist. Average annual precipitation during 1989–
2018 is about 1500 mm, and on average 33 d of snow cover

occur in Postojna (530 m a.s.l.) per year, while even longer
snow cover is expected on the plateau.

2.4 Lez spring, France

Our third study area is located 15 km north of Montpellier
in southern France, within a large and complex karst system
delimited by rivers and marly terrains. Eastern and western
borders are the Vidourle and Hérault river valleys, and north-
ern and southern borders are piezometric limits. At a larger
scale, northern and southern boundaries are structural bound-
aries due to the Cévennes and Montpellier faults, respec-
tively. The dominant karst formations are Argovian to Kim-
meridgian and Berriasian massive limestones with 650 m to
1000 m thickness. Infiltration occurs mostly diffuse but also
localized through fractures and sinkholes along the basin and
through the major geologic fault of Corconne-Les Matelles
in the northern part of the basin (indicated by a grey line in
Fig. 1c).

The hydrogeological basin associated with Lez spring has
a size of about 240 km2 (Fig. 1c), which is estimated on
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the basis of the hydrodynamic response to high-discharge
continuous pumping into the saturated zone of the aquifer
(Thiéry and Bérard, 1983). However, the effective recharge
catchment of Lez spring, which corresponds to the extent of
Jurassic limestone outcrops, has been estimated to be about
130 km2 (Fleury et al., 2009; Jourde et al., 2014). The Lez
karst aquifer is under anthropogenic pressure (i.e., aquifer
exploitation for water supply), with pumping performed di-
rectly within the karst conduit. The discharge is measured at
the spring pool and is regularly null during low water periods,
when the pumping rate exceeds the natural spring discharge.
Ecological water discharge towards the Lez River (160 L s−1

then 230 L s−1 after 2018) is ensured during such periods by
a partial deviation of the pumped water to the river. Lirou
spring (Fig. 1c) is the main one of several overflow springs
that activate during high-flow periods (Jourde et al., 2014).

The Lez catchment is exposed to a Mediterranean climate
characterized by hot and dry summers, mild winters and
wet falls. Analyses by MeteoFrance show that on average
40 % of the annual precipitation occurs between September
and November, with a high variability across years (Bicalho
et al., 2012). The average annual rainfall rate for the 2008–
2018 period is 904 mm.

For this study, we use nearly 10 years of daily dis-
charge data provided by SNO KARST (Jourde et al., 2018;
SNO KARST, 2021). The temperature data are from the
Prades-le-Lez climate station; we use, however, an interpo-
lated precipitation data series that is derived from a weighted
average of four rainfall stations (Fig. 1c) (similar to Fleury
et al., 2009; Mazzilli et al., 2011), three of them being located
on the Lez catchment (Prades-le-Lez, Valflaunès, Sauteyrar-
gues). The fourth station (Saint-Martin-de-Londres) is lo-
cated a few kilometers west of the catchment. Interpolation
is in principle possible in this area due to the existing to-
pography; at the same time, interpolation based on Thiessen
polygons (compare Appendix B) also allows compensation
for data gaps at single stations. We decided to apply this pre-
processing, because all but Saint-Martin-de-Londres climate
station show such gaps from time to time, which explains
the benefit of including within-catchment precipitation. We
do not use pumping data as input in this study, because these
were only available for a shorter period of time and such data
would also not be available for a real forecast in the future (in
contrast to weather and climate data).

2.5 Spatial climate data

Besides climate station data, we explored raster data
from the E-OBS (Cornes et al., 2018), the ERA5-Land
(Muñoz Sabater, 2019) and the RADOLAN (DWD Climate
Data Center, 2020) as spatially distributed model inputs. E-
OBS provides daily gridded meteorological data for Europe
from 1950 to the present, derived from in situ observations,
and ERA5-Land provides hourly reanalysis data from 1981
to the present. Both are available with a spatial resolution

of 0.1◦× 0.1◦ (approximately 8 km× 11 km for all study ar-
eas). Depending on the dataset, different sets of variables are
available. In the case of E-OBS we initially provide our mod-
els with precipitation (P ), mean, minimum and maximum
temperature (T , Tmin, Tmax), relative humidity (RH) and sur-
face shortwave downwelling radiation (Rad). For ERA5-
Land, where a substantially larger set of variables is avail-
able, the following were used as initial inputs: total pre-
cipitation (P ), 2 m temperature (T ), total evaporation (E),
snowmelt (SMLT), snowfall (SF) and volumetric soil wa-
ter of all four available layers (SWVL1: 0–7 cm, SWVL2:
7–28 cm, SWVL3: 28–100 cm, SWVL4: 100–289 cm). Rel-
evant input variables from both datasets are later selected
through Bayesian optimization (see Sect. 3.3). The spatial
extent of the input data is chosen very generously for each
spring, so that between six and eight additional cells are
available as input data around the respective catchments. This
prevents a predefinition of the area that needs to be identified
as relevant and reduces the influence of possible border ef-
fects due to the CNN approach using 3× 3 filters (compare
the methodology section). The resolution of ERA5-Land and
E-OBS data corresponds to the grid cell size shown in the
catchment plots in Fig. 1a–c, although each shows a slightly
different absolute position of their grid center points. De-
pending on the temporal resolution of the available spring
discharge measurements, we choose the spatial input data in
accordance, i.e., E-OBS for Unica and Lez spring and ERA5-
Land for Aubach spring.

Compared with the catchment size of Aubach
spring (about 9 km2), the spatial resolution (approxi-
mately 8 km× 11 km) of the gridded input data is extremely
coarse. We therefore additionally explore a combination of
ERA5-Land input variables (except P ) with radar-based
precipitation data (RADOLAN) that offer a spatial resolu-
tion of 1 km× 1 km (DWD Climate Data Center, 2020). The
higher resolved precipitation data from RADOLAN are thus
augmented with climate variable values from ERA5-Land
(for T , RH, etc.), which were downscaled and re-gridded
to match the 1× 1 km2 RADOLAN grid. Compared with
the ERA5-Land section around Aubach spring, for this
additional analysis we reduce the spatial extent of the 2D
input data to save calculation time but still considerably
increase the total number of cells due to the higher resolution
of the RADOLAN grid.

3 Methodology

3.1 Modeling approach

In this study, we simulate karst spring discharge with deep
learning models using meteorological input data. As proof
of feasibility, we use meteorological data from surrounding
climate stations as inputs to 1D CNN models. However, data
from such stations are often limited to precipitation and tem-
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perature, rarely more, and often exhibit data gaps and limited
record length or coarse sampling intervals. Also, the prox-
imity to the catchment is often not sufficient, which espe-
cially in mountainous regions can introduce a distinct error
in representing the true conditions within the catchment. This
applies especially to variables with higher spatial variability
such as precipitation.

Gridded meteorological data can be a solution to these is-
sues, as they usually provide good temporal coverage and
sampling intervals, a good spatial resolution as well as large-
scale availability (e.g., continental – E-OBS – or even global
– ERA5-Land; see Bandhauer et al., 2021, for a comparison
of both products). Further, especially reanalysis data include
a larger variable set. When the catchment of the spring is
unknown, it remains unclear which cells of the gridded data
should be selected to best represent the climate conditions
in the catchment, because the actual location of the spring is
only a very rough indicator of the location of the catchment.
Based on our revised version of the approach of Anderson
and Radić (2022), we demonstrate a solution by processing
2D inputs and letting the model decide automatically which
parts of the input data are relevant to modeling the spring
discharge.

3.2 CNNs

Convolutional neural networks (LeCun et al., 2015) are
widely applied in several domains such as object recognition
(e.g., Cai et al., 2016), image classification (e.g., Li et al.,
2014), and signal or natural language processing (e.g., Yin
et al., 2017; Kiranyaz et al., 2019). The structure of most
CNN models is based on the repetition of blocks that are
made up of several layers, typically at least one convolutional
layer followed by a pooling layer. The former matches the
dimension of the input data (e.g., 2D for image-alike data,
1D for sequences such as time series) and uses filters with a
fixed size (receptive field) to produce feature maps of the in-
put. The latter performs downsampling of the produced fea-
ture maps and summarizes the features detected in the in-
put. This decreases the total number of parameters of the
model and makes it approximately invariant to small transla-
tions of the input (Goodfellow et al., 2016). A large variety of
model structures based on such blocks in combination with
additional layers in between to prevent exploding gradients
(e.g., batch normalization layers; Ioffe and Szegedy, 2015)
or model overfitting (e.g., dropout layers; Srivastava et al.,
2014) is possible; however, CNNs usually end with one or
several fully connected dense layers to produce a meaningful
output.

From earlier studies (Wunsch et al., 2021; Jeannin et al.,
2021) we know that 1D CNNs are fast, reliable and excel-
lently suited for modeling hydrogeological time series, such
as groundwater levels or spring discharge. We have shown
that they are faster compared with LSTMs, which are often
the method of choice for time series modeling, and even out-

perform them or at least show similar performance (Wunsch
et al., 2021). This is in agreement with the findings of Van
et al. (2020) in the domain of rainfall–runoff modeling. In
Wunsch et al. (2021) we further show that, for the closely
related application of groundwater-level forecasting, CNNs
are less sensitive to the random initialization procedure and
thus provide more stable results. Based on these findings, we
choose CNNs for predicting karst spring discharge in this
study and establish two different setups. One setup uses 1D
meteorological input data from surrounding climate stations
and applies a 1D CNN for forecasting. The second approach
consistently uses a 1D CNN to learn temporal features for
discharge prediction but combined with a time-distributed
2D CNN to learn spatial features directly from gridded cli-
mate input data. Compared with the approach in Anderson
and Radić (2022), we replace the LSTM with a 1D CNN to
make both setups methodologically consistent. Using CNNs
in both setups further helps to assess the influence of using
spatially distributed input data in terms of model accuracy,
as we do not have to speculate whether higher or lower per-
formance might be due to the LSTM model rather than the
input data. The general model structures of both setups are
shown in Fig. 2. They basically use the same 1D model ex-
cept for the position of the dropout layer. We use Bayesian
hyperparameter optimization to select the 1D filter number,
batch size and input sequence length of each model in both
setups.

To reduce the dependency on the random initialization of
the models, we use an ensemble with 10 members, each
based on a different pseudo-random seed. Further, we im-
plement Monte Carlo dropout to estimate the model un-
certainty from a distribution of 100 results for each of the
10 realizations of each model in this study. We derived the
95 % confidence interval from these 100 realizations by us-
ing 1.96 times the standard deviation of the resulting distri-
bution for each time step. Each uncertainty was propagated
while calculating the overall ensemble mean value for fi-
nal evaluation in the test set. This uncertainty is shown as
the confidence interval for each of our simulation results
in the following. We want to point out that this uncertainty
does not include other sources (such as input data uncer-
tainty) but the random number dependency. All our models
are implemented in Python 3.8 (van Rossum, 1995), and we
use the following libraries and frameworks: Numpy (van der
Walt et al., 2011), Pandas (McKinney, 2010; The pandas
development team, 2020), Scikit-Learn (Pedregosa et al.,
2011), Unumpy (Lebigot, 2010), Matplotlib (Hunter, 2007),
BayesOpt (Nogueira, 2014), TensorFlow and its Keras API
(Abadi et al., 2015; Chollet, 2015).

3.3 Model calibration and evaluation

We split the time series data for each site into four parts ac-
cording to Table 1. While the first part is used for training, the
second part (validation) is simultaneously used to prevent the
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Figure 2. Model structures applied for modeling karst spring discharge based on climate station data (a) and gridded meteorological input
data (b). Flatten layers are not displayed.

model from overfitting via early stopping. The model’s hy-
perparameters are optimized according to its performance on
the optimization set, while the last set is used as a completely
independent test set for final evaluation of the model perfor-
mance without data leakage from training or optimization.

Training epoch number and early stopping patience are
varied manually for each model at each test site. Hyperpa-
rameters for the 1D CNNs of both setups are optimized on
the respective optimization set as stated above, maximizing
the sum of Nash–Sutcliffe efficiency and R2 (calculated as
explained below). The number of optimization steps is also
varied manually for each model and is always a trade-off be-
tween accuracy and computational costs. In case of many
available input variables, we treat input variable selection
equally as a global optimization problem and use Bayesian
optimization to simultaneously select a proper set of input
variables and hyperparameters. Thus, input optimization is
used for each 2D model, as ERA5-Land and E-OBS of-
fer several different climate variables, as well as for the 1D
model of Unica springs, where the climate station records
provide additional climate variables such as snow cover. For
Lez spring and Aubach spring, only a smaller input variable
set is available (mainly precipitation and temperature) and
hence fully used. For all models we use an additional in-
put (Tsin), which is a sine curve fitted to the temperature data.
This variable can provide the model with noise-free informa-
tion on seasonality and on the current position in the annual
cycle (Kong-A-Siou et al., 2014). Precipitation is the only
variable that is not optimized but that is fixed as input, be-
cause it undoubtedly has a major influence on the discharge
of a karst spring. The optimized hyperparameters, informa-
tion on some fixed hyperparameters, and a summary of the
number of parameters in each model are given in Table D1.

We calculate several metrics to evaluate the performance
of our models: Nash–Sutcliffe efficiency (NSE) (Nash and
Sutcliffe, 1970), squared Pearson r (R2), root mean squared
error (RMSE), bias (Bias) as well as Kling–Gupta effi-
ciency (KGE) (Gupta et al., 2009). For squared Pearson r

we use the notation of the coefficient of determination (R2),

because we compare the linear fit between simulated and ob-
served discharge and thus of a simple linear model, which
makes them equal in this case.

3.4 Spatial input sensitivity and catchment localization

Anderson and Radić (2022) show in their study that com-
bined 2D CNN–LSTM models can learn to focus on specific
areas of the spatially distributed input data and that these
make physical sense. We modify this approach and trans-
fer it to karst spring modeling, where we demonstrate that
this approach is suited to approximating the location of karst
catchments.

We use the Gaussian spatial perturbation approach from
Anderson and Radić (2022), which is similar to other input
sensitivity algorithms such as occlusion (Zeiler and Fergus,
2014) or RISE (Petsiuk et al., 2018), but in contrast to these
methods, it takes into account the physical meaning of the
absolute value of each variable at each pixel during the per-
turbation. We modify this approach so that only a single input
channel (e.g., precipitation) is perturbed at a time for the sen-
sitivity analysis. For details of this approach, we refer to the
original study. In short, it works by perturbing spatial frac-
tions of the input data by adding or subtracting a 2D Gaussian
curve from the input data at a certain location. Both the per-
turbed and unperturbed data are passed through the trained
model to determine the resulting simulation error between
them. In this way, after many iterations, heat maps are created
that show how sensitive the trained model is to perturbations
of certain areas of the input data.

The considered input variables in our study show different
properties in terms of spatial heterogeneity and variability.
Temperature, for example, usually exhibits a distinct spatial
autocorrelation, meaning that temperature information from
outside the catchment area may be used to infer temperature
within the catchment area. In contrast, precipitation is less
spatially autocorrelated, meaning that precipitation informa-
tion from outside the catchment area is less related to precipi-
tation from inside the catchment area. Therefore, we hypoth-
esize that the within-catchment precipitation fields will be
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Table 1. Data splitting schemes for all study areas (number of values in parentheses).

Time Training Validation Optimization Testing
interval

Aubach spring Hourly 2012–2017 2018 2019 2020
(44 807) (8760) (8760) (7320)

Unica spring Daily 1981–2012 2013+ 2014 2015+ 2016 2017+ 2018
(11 687) (730) (731) (730)

Lez spring Daily 2008–2016 2017 2018 2019
(2629) (366) (365) (701)

most important for the model’s prediction, and we will test
this hypothesis by visually inspecting the sensitivity maps
produced by the modified approach of Anderson and Radić
(2022). Compared with the original approach by Anderson
and Radić (2022), we therefore perturb only single channels
at a time, instead of all channels at once, to separate the in-
fluence of each channel on the model output.

4 Results and discussion

4.1 Aubach spring

Figure 3a shows the simulation results of the 1D CNN model
for the test period 2020, using only available climate sta-
tion input data. Error measures indicate a high accuracy of
the model simulation: NSE and R2 values are both 0.74, and
KGE is 0.79. We observe that peaks in winter and spring are
underestimated. The snowmelt period, clearly visible in in-
creased baseflow and diurnal variations from April to June, is
nicely fitted, as well as the following summer peaks. A short
series of discharge peaks in the end of September/beginning
of October is not captured. We assume that these were caused
by small-scale precipitation events that are not represented
in the data of the climate stations used as inputs. Interest-
ingly, diurnal variations, which might be learned during the
snowmelt period, are also visible in periods not influenced by
snow (e.g., in August). From Chen et al. (2017b) we know
the high relevance of snow in this area and, by coupling the
CNN model with snow routine data preprocessing, we are
able to further improve the model performance (Fig. 3b). We
can now achieve a fit with 0.77 for both NSE and R2, and
KGE increases to 0.84. Our model is able to better fit the
second-largest peak of the whole dataset, which occurs in
February, though the peak is slightly overestimated, whereas
other peaks still tend to be underestimated. The snowmelt pe-
riod remains well simulated but shows increasing deviations
close to the end of the period. The earlier noticed diurnal
variations in summer and fall are now diminished, which is
presumably an effect of the snowmelt preprocessing.

Please note that the 95 % model uncertainty from random
number dependency, estimated from 10 differently initial-

ized models with a Monte Carlo dropout distribution from
100 runs each (i.e., 1000 simulations in total), is very low
for both modeling results (a+ b) compared with the over-
all variability of the discharge. We assume the spatially lim-
ited input data to be the major source of error in the com-
plete modeling procedure, because all climate stations are
located outside of the catchment area and thus introduce dis-
tinct uncertainty about the true conditions within the catch-
ment. Other modeling approaches (Chen and Goldscheider,
2014; Chen et al., 2017b, 2018) based on combined lumped
parameter (SWMM) and distributed models achieve similar
or higher NSE values for the simulation of Aubach spring
discharge (0.92, 0.83, and 0.80, respectively). As mentioned,
the results are, however, hardly comparable with each other
nor with this study. Reasons are (i) different input data (num-
ber and position of climate stations), (ii) different simulation
periods, and (iii) very different test set lengths. One reason
for the slightly lower performance of our model could be that
none of the previous studies covered a complete annual cycle
as a contiguous test period, including high peaks in late win-
ter and strong snowmelt influence in spring and early sum-
mer.

Figure 3c shows the results of the 2D modeling setup us-
ing (only) ERA5-Land input data. Based on the described
optimization procedure, the model uses the following inputs:
P , T , E, SMLT, SWVL2 and SWVL4 (for a comparison
of selected input variables with other study areas, see also
Table A1). The performance of the 2D model is similar to
that of the 1D models, showing a NSE (0.76) and RMSE
in between both: a larger R2 (0.8) but a lower KGE (0.71).
This performance is still high considering that the major
catchment is extremely small (about 9 km2) compared with
one ERA5-Land grid cell and that a large grid section of
14× 14 ERA5-Land cells (1.4◦× 1.4◦) was used as input.
We see that the major peak in February is slightly underes-
timated as well as the beginning of the snowmelt period in
April; however, the end of this period in May/June has im-
proved now compared with (b). Both 1D models are superior
in estimating the peaks, especially during summer, except the
already mentioned peaks in September/October, which have
improved using the 2D input data. This supports the assump-
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Figure 3. Simulation results for the year 2020 at Aubach spring: (a) 1D model based on climate station inputs, (b) 1D model with additional
snow routine preprocessing, (c) 2D model based on ERA5-Land gridded data and (d) 2D model with combination of ERA5-Land data and
RADOLAN precipitation input.

tion that the climate stations do not represent these precipita-
tion events but that the 2D data do due to their spatial nature.

To account for the small area of the catchment of Aubach
spring, Fig. 3d shows the results of the 2D input data, using
the spatially higher-resolved RADOLAN precipitation data
in combination with downscaled ERA5-Land data. We have

reduced the spatial extent of the 2D input but still have a
reasonable buffer around the catchments and, compared with
the former 2D model, increase the grid cell number consider-
ably (22× 22 or 222 km2). The optimized model uses P , T ,
Tsin, SMLT, SF, and SWVL1/2/4 as inputs and thus omits E

and SWVL3. This model shows the best performance of all
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Figure 4. Simulation results for 2017–2018 at Unica springs in Slovenia using climate station input data (a) and E-OBS gridded data (b).

four models by reaching a NSE of 0.81, R2 of 0.82 and KGE
of 0.81. Similar to the model in Fig. 3c, the beginning of
the snowmelt period in April remains slightly underestimated
and, compared with the 1D models, the peaks in summer
are less well fitted. Nevertheless, we generally see an accu-
rate fit: especially the largest peak in February is well re-
produced. Compared with the 1D approach, the main source
of uncertainty for both 2D models should be the uncertainty
of ERA5-Land variables. Their values originate from large
grid cells in comparison with the catchment size, and thus
it is not clear how well they represent the true conditions
at catchment scale. A more elaborate downscaling of ERA5
data or other high-resolved climate data for a combination
with RADOLAN precipitation data might be a promising ap-
proach for simulating small catchments like this one. Model
uncertainty derived from random number effects and Monte
Carlo dropout is (equal to the 1D models) satisfyingly small.
In total, we think that both the 1D and 2D approaches for
this catchment bear substantial shortcomings in terms of how
well the input data represent the true conditions in the catch-
ment, even though the simulation results are generally very
accurate. On the one hand the climate stations represent the
true observed climate, and on the other hand this is true only
for a very specific point, which is in this case outside the
catchment and embedded in a highly variable topography.
The 2D data have a too coarse spatial resolution compared
with the size of the Aubach spring catchment and are them-
selves modeled (in the case of ERA5-Land). We therefore do
not think that one approach is superior for this study area, but

we can show that even in this case with relatively coarsely
gridded input data compared with the catchment size, the 2D
approach offers a decent alternative in case of missing cli-
mate station data.

4.2 Unica springs

Figure 4 summarizes the 1D and 2D model performance on
the years 2017 and 2018 for Unica springs in Slovenia. The
simulation of this quite large catchment area (820 km2) is
based on the data of only two climate stations (Postojna and
Cerknica). All available input variables from both stations
except relative humidity from Postojna station and new snow
from Cerknica station were used as inputs as selected by the
Bayesian optimization model. The 1D model shows good
performance overall (NSE: 0.73, R2: 0.79, KGE: 0.63), in-
cluding a response for all major discharge events. However,
recession slopes, especially in 2017, are underestimated sub-
stantially, and the plateau shapes of the large peaks (e.g., Jan-
uary 2018) are not well captured but rather simulated as mul-
tiple peaks. In general, many of the high-flow events at this
gauge have a quite long duration of days to even weeks, re-
sulting in such plateau-like shapes. This is due to the reg-
ular flooding of the polje. After the drainage areas of the
polje are completely flooded, there is a progressive back-
flooding and a steady rise in the water level, which makes it
impossible to accurately monitor the flow conditions under
these conditions. Therefore, during the plateau-like peaks,
when we cannot observe the true flow, the peaks simulated
by the ANN might be conceptually true, which is however
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not possible to evaluate. The peak in April 2018 is quite
clearly underestimated, whereas the following low-flow pe-
riod (summer 2018) is slightly overestimated. Such overes-
timation might be due to small-scale meteorological events
that are detected by the climate stations but that do not well
represent the conditions in the whole catchment area. It is
also important to notice that during 2014 and 2018 substan-
tial environmental changes occurred in the catchment (Ko-
vačič et al., 2020). During this period a considerable amount
of vegetation was destroyed by a series of large-scale forest
disturbances. We expect the evapotranspiration changed due
to changes in canopy interception, water use and soil mois-
ture. As a result, spring behavior has likely changed, because
vegetation cover is an important element of the water balance
and recharge events may have resulted in higher infiltration
rates and more intense spring response as well as more pro-
nounced droughts. The effect of this environmental change
on the model performance is hard to evaluate, because it is
not part of the training data. However, the model was opti-
mized and validated (early stopping) on a part of the period
with environmental changes, which means that the model
may infer some information on the changes from these pe-
riods (2014–2016). It is not expedient to exclude this change
from model building, since this would require shortening the
time series to the period after 2018, thus losing almost the
complete data basis. Due to highly complex hydraulic be-
havior in this study area, which is, for example, related to the
already mentioned polje flooding and to a strongly variable
water level in the system that also varies the catchment area,
extracting the highly nonlinear precipitation discharge is es-
pecially challenging. We generally observe fewer dynamics
in terms of the number of flood pulse events compared with
Aubach spring. In terms of intensity of hydrologic variability,
discharge rates can vary by about 2 orders of magnitude. This
is primarily due to the large size of the catchment area, the
very high degree of karstification of the carbonate rocks, and
the fact that the main spring may act as an overflow spring.

By using the 2D input data from 18×21 E-OBS grid cells,
we were able to improve the model performance substan-
tially (Fig. 4b), reaching now a NSE of 0.83, a R2 of 0.84 and
a KGE of 0.80. Model input variables are P , Tmax, RH and
Rad. We generally observe a similar shape of the simulation
to the 1D model but with overall reduced errors. Still, the
plateau shapes of some peaks are not well captured, but the
same conceptual understanding as for the 1D model seems to
be learned, which means the model mainly simulates peaks
instead of plateau-shaped high-flow events. The slopes of the
recessions are still generally underestimated, especially the
simulation of low-flow periods, and minor discharge events
improve clearly though. The improved results are plausible,
because we can expect precipitation events to be represented
more accurately in the gridded data that in the point data of
only two climate stations, especially considering the size of
the catchment. As for Aubach spring, both models show a
comparably low model uncertainty based on random num-

ber variation and Monte Carlo dropout, and the model un-
certainty of the 2D simulation is even a bit lower than for
the 1D model. Again, we assume the spatially limited cli-
mate station data to be the main source of data uncertainty in
the 1D model, because meteorological stations are located on
the western and eastern sides of the karst massif. The mas-
sif itself represents the orographic barrier with different tem-
perature and precipitation regimes that are certainly not cap-
tured by the considered meteorological stations. Concerning
the 2D data, the grid resolution is sufficiently high to ade-
quately represent the climatic conditions in this large-sized
catchment.

4.3 Lez spring

Lez spring represents a third class of study area, as the catch-
ment size (around 240 km2) is somewhere in between the two
others, the climate is Mediterranean and the spring runs dry
for a considerable amount of time during the annual cycle
due to a constant exploitation of the karst aquifer through
pumping. Figure 5 shows both the results for the 1D (a) and
2D (b) models. Despite comparably short training (daily data,
starting in 2008), we observe a very high fit of the 1D model
above 0.86 for NSE, R2 and KGE as well as the timing of
the peaks and the absolute height of the peaks, as the dry pe-
riods are simulated accurately, except for some deviations in
early 2019.

For the 2D model we use input data from 19× 18 E-OBS
grid cells, and the Bayesian model selects only RH and Rad
as inputs besides the fixed input P . Considering the high rel-
evance of potential evapotranspiration (PET) in the Mediter-
ranean, it is a bit surprising that temperature, as a major
driver of PET, is not selected (neither T , Tmin nor Tmax).
However, relative humidity is also important for calculat-
ing PET (King et al., 2015) (e.g., low RH favors high evap-
oration), and the information on seasonality well encoded
in a temperature time series is presumably deducible from
the radiation data (higher in summer than in winter). The
performance of the model is very good but clearly lower
compared with the 1D model, showing NSE, R2, and KGE
between 0.75 and 0.78. Generally, the simulation is better
in 2018 than in 2019, which is, however, also a tendency
of the 1D model. The model simulated some non-existent
peaks in the dry sections: after all, one of them (in Octo-
ber 2018) clearly also occurs in the 1D model’s simulation.
Presumably, the input data are accountable for the general
performance differences between both modeling approaches.
The climate stations, from which the interpolated precipi-
tation time series is derived, are mainly located inside the
catchment and additionally represent a good spatial cover-
age. Compared with both other study areas, the 1D input data
here best represent the climatic conditions within the catch-
ment. Based on the lower performance of the 2D model, we
conclude that it seems to be harder to extract the relevant
relationships between climate forcing and spring discharge
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Figure 5. Simulation results for 2018–2019 at Lez spring in France using climate station input data (a) and E-OBS gridded data (b).

from the gridded data. This may be related to a less favorable
ratio of grid cell size to catchment size than for the Unica
catchment, for example. The model uncertainty based on ini-
tializations and derived from Monte Carlo dropout again is
small for both model setups, especially during dry periods.

The results of our models (1D NSE: 0.87, 2D NSE: 0.75)
can compete with the results from several earlier studies
(NSE: 0.76–0.88, Kong A Siou et al., 2011; NSE: 0.76–
079, Kong-A-Siou et al., 2014); however, we do not beat
the maximum performance reported by Kong A Siou et al.
(2012) (NSE: 0.69–0.95) and Kong-A-Siou et al. (2013)
(NSE: 0.96). Generally, all studies, including ours, achieve
high performance, and it is hard to conclude reasons for the
superiority of one or other study, as several factors differ
among them, such as model types, training and testing pe-
riods, or set of input variables. For our study, we chose not to
include pumping data (as used in Kong-A-Siou et al., 2014)
due to the data availability reasons elaborated in Sect. 2.4
as well as to be consistent in the 2D modeling approach,
which would need an update of the model structure due to
the 1D time series character of the pumping data. The 2D ap-
proach still shows very good performance in general; how-
ever, in comparison among all mentioned NSE values, its
performance is rather low. Nevertheless, we conclude that if
no climate station data are available to apply a 1D model, the
2D approach still offers a reasonable substitute.

4.4 Spatial input sensitivity results

The most important results of the spatial input sensitivity
analysis from all catchments are shown in Fig. 6. In the case
of Aubach spring modeled with ERA5-Land data (Fig. 6a),
we can see that the catchment is smaller than one grid cell.
Hence, despite the quite good discharge modeling, we see
no clear spatial meaning of the precipitation channel heat
map. We also find a border effect with an almost uniform de-
crease in sensitivity toward the edges, which is an important
reason to make the spatial extent of the data large enough.
This effect could be related to the size of the filter in the
convolutional layer (3× 3), as it sometimes only occurs in
the one or two outermost pixels (e.g., Fig. 6c). In combina-
tion with zero-padding, which we apply to improve the in-
formative value of the edges and to maintain the data size
throughout the convolutions, this may result in such an er-
ror halo, as also illustrated by Innamorati et al. (2020). Yet
its origin remains unclear, and not all heat maps show this
pattern (Fig. 6d), which questions the hypothesis of this be-
ing a purely technical issue. For Aubach spring, precipita-
tion shows only the fourth-highest sensitivity (S) in terms of
absolute values, while the second-most sensitive variable is
snowmelt, which also shows the best spatial agreement with
the catchment area. This is plausible insofar as the discharge
for a large part of the time is dominated by snowmelt and to a
lesser extent directly by precipitation. We conclude that even
though the modeling results are satisfying, not much mean-
ing can be extracted from the spatial sensitivity analysis for
such a small catchment, given the existing spatial resolution
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Figure 6. Heat maps of spatial input sensitivity for Aubach spring based on ERA5-Land gridded data (a) and for Aubach spring based on
RADOLAN precipitation data (b), Unica springs (c) and Lez spring (d), both based on E-OBS gridded data. In the case of (c) and (d),
light-grey lines indicate the coastlines for orientation.

of the gridded data. Please find heat maps of all other vari-
ables in Fig. C1. The combined approach of RADOLAN and
ERA5-Land data (Fig. 6b) shows the heat map in more detail
in relation to the size of the catchment. We show only the
precipitation heat map, because it is the only variable with
a native resolution of 1 km× 1 km, and we do not consider
the spatial patterns of the remaining ERA5-Land-based vari-
ables to be meaningful to interpret. We observe that the most
sensitive cells are identified close to the spring and at the bor-

der between the main catchment and the southern adjacent
subcatchment. Due to the small scale of the spatial extent
shown in Fig. 6b in relation to the spatial extent of precip-
itation events, the model is not able to sharply distinguish
between precipitation inside and outside the catchment. This
is presumably also related to the data, as precipitation is not
directly measured but is estimated from radar signals and
subsequently adjusted according to measured values from
nearby climate stations. It remains unclear whether precip-

Hydrol. Earth Syst. Sci., 26, 2405–2430, 2022 https://doi.org/10.5194/hess-26-2405-2022



A. Wunsch et al.: Deep-learning-based karst spring discharge modeling 2419

itation is spatially resolved with sufficient accuracy in such
alpine valleys on a kilometer scale. No plausible reasoning
exists for the two separate sensitive areas in the southwest-
ern and northeastern corners; however, they are less sensitive
than the center cells of the map.

Heat maps of all four selected E-OBS variables at the
Unica catchment are shown in Fig. 6c. In accordance with
our expectation for karst areas, we see the highest sensitivity
for precipitation, which visually also identifies the catchment
area very well. Especially Tmax and RH show high sensitivi-
ties in larger areas; however, they are usually highly spatially
autocorrelated and do not show a strong spatial heterogene-
ity like precipitation, which makes it plausible that the model
learns from larger areas and does not concentrate strongly on
the catchment itself. The model further identifies an area in
the north as most sensitive for radiation.

Heat maps of the 2D Lez spring model are shown in
Fig. 6d. In this area the model very strongly ignores large
parts of the input data (dark blue, no visible border effects)
and comparably sharply identifies the relevant area for the
spring. This might be related to the higher spatial hetero-
geneity of precipitation in a Mediterranean climate (Fres-
nay et al., 2012), which in this specific region has a special
importance (severe flash floods known as Cévenol episodes;
Kong A Siou et al., 2011). Generally, we observe a slight
southerly and easterly shift of the highest sensitivity com-
pared with the catchment position. This might be related to
the performance of the 2D approach, which could not com-
pete with the 1D models. Maybe the model did not exactly
learn the most relevant spatial features. The most sensitive
variable is precipitation, while the RH channel shows the best
spatial fit. We furthermore see that the size of the catchment
is about the minimum size to produce meaningful heat maps
based on this given grid resolution, which also corresponds
to our interpretation of the 2D model performance shortcom-
ings in comparison with the 1D approach.

Given the spatial resolution of the used input data, the
obtained heat maps, and the simulation results of all three
catchments, the Unica springs catchment seems to be most
appropriate for further investigating the usefulness for catch-
ment localization. It has the highest ratio of catchment size to
data resolution and exhibits both generally high performance
of the ANN models and especially a considerably improved
performance when using spatially distributed inputs com-
pared with climate station input data. Thus, we used Unica
springs to conduct additional experiments to investigate the
sensitivity of our approach to the absolute catchment loca-
tion within the considered area of the input data. Figure 7
shows the results of these experiments, where we shifted the
2D input data boundaries in such a way that the catchment is
located in one of the four corners or edges, leading to eight
additional modeling results, named by the position of the
catchment in the considered area of the input data (e.g., up-
left: catchment in the upper left corner). First of all, we find
that all models successfully model the spring discharge curve

and similarly learn the relevant grid cells of the considered
input area; i.e., they are able to learn the approximate posi-
tion of the catchment. The NSE values vary moderately be-
tween 0.80 and 0.85 among all models. The heat maps of the
precipitation input channel visually well identify the location
of the catchment for each of the different considered areas of
the input data. We find that, regardless of the catchment’s
position within the considered areas of the input data, the re-
sulting highly sensitive area in the P channel well indicates
the true catchment position. For the heat maps of the other in-
put channels, we see that usually larger areas are identified as
relevant and that more variations between the models occur.
Two things are particularly noticeable here. First, the identi-
fied sensitive input areas are generally slightly smaller for the
up∗ models, which is possibly related to the fact that the con-
sidered area of the input data is shifted towards the Mediter-
ranean Sea, where no input data are available in the E-OBS
dataset (compare the grey coastline). These areas contain ze-
ros or mean values and show no temporal variation that could
be used to model the spring discharge. Second, the noticeably
best-performing model (downleft, NSE of 0.85) is the model
with the least fraction of no-data cells (due to the sea). In-
tuitively, we would not have expected the best performance
here but rather with the upright model, since there it is almost
predetermined where the model has to learn. So, the model
seems to be able to use the larger amount of “useful data”,
even outside the catchment, to improve the overall perfor-
mance. To possibly delineate a catchment from these results,
a strategy has to be developed regarding the sensitivity con-
trast between the catchment and its surroundings. From our
results we conclude that focusing on the precipitation chan-
nel is the most promising approach for potential catchment
delineation. This however only makes sense if (i) precipita-
tion is sufficiently heterogeneous at the scale of investiga-
tion, (ii) if conceptually spring discharge is mainly driven by
precipitation (not snowmelt, for example) and (iii) the grid-
ded climate data are provided at a relatively high spatial res-
olution compared with the catchment size. Please find the
precipitation channel heat maps for Aubach spring and Lez
spring in Figs. C2 and C3.

In summary, we observe that the approach in its current
form can produce meaningful heat maps for at least roughly
locating karst spring catchments. At least for the precipita-
tion channel, we showed that the location of the catchment
is successfully learned, regardless of the position within the
considered area of the input data, if the ratio of catchment
size to grid cell size is favorable (as for Unica springs). We
notice that it generally works better the larger the catchment
area, especially in relation to the grid cell size, but the abso-
lute size of the catchment itself appears to also be important.
For small catchments it seems harder to extract precise catch-
ment locations, even if spatially finer-resolved data are avail-
able. This might be related to the fact that, at small scales,
even precipitation has a distinct spatial correlation, which can
lead to higher sensitivity also in areas outside the catchment.
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Unica catchment heat maps (shifted)

Figure 7. Heat maps of spatial input sensitivity for the Unica springs catchment based on E-OBS gridded data. The considered area of the
gridded input data is shifted to demonstrate the spatial learning capabilities of the models.

However, one should keep in mind that these conclusions are
only tendencies as we only investigated a small number of
catchments. To develop a catchment delineation strategy, fu-
ture investigations should analyze more catchments with ad-
equate ratios of size to grid cell resolution, such as the Unica
catchment. Moreover, it can be expected that more and better
gridded meteorological data products will be available in the
future, which might lead to better results with the proposed
methodology, also for catchments with varying sizes.

5 Conclusions

From the obtained insights we can conclude that karst spring
discharge can be predicted accurately with the presented
1D and 2D approaches. Their performance competes with
that of existing models in the three study areas. One main
advantage compared with conventional modeling approaches
in karst is that, in order to obtain precise discharge simula-
tions, far less prior knowledge of the system under consid-
eration is required. Thus, using ANNs can generally reduce
the amount of preliminary work that would be required to
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gain such sufficient system knowledge. We can further show
that gridded climate data can provide an excellent substitute
for non-existent or patchy climate station data. This does not
require knowledge of the exact catchment area, which is a
critical component, especially for karst springs. Rather, cou-
pled 2D–1D CNNs can be used to generate a first approxima-
tion of the catchment location. However, as was shown, this
approach still needs further development to more accurately
localize the catchment, for example by modifying the input
sensitivity approach and by defining a routine to infer the
catchment location from the sensitivity data other than visual
inspection. An important factor in achieving more accurate
catchment localization is 2D meteorological input data with
a finer spatial resolution in relation to the catchment size,
because we found the approach to work best for the largest
catchment. Additionally, a sufficient heterogeneity of precip-
itation in comparison with the catchment size is necessary,
which, however, cannot be controlled but possibly limits the
application in some karst areas. Given these developments
and conditions, the approach’s capabilities to delineate karst
catchments should be further investigated, ideally including
an evaluation against tracer tests and hydrogeological stud-
ies. In terms of accuracy, we do not find that one of the
tested model setups (1D and 2D) is fundamentally superior.
A key benefit of the 2D approach, which uses spatially dis-
cretized input data, is the spatially and temporally complete
nature of the data and the number of variables available for
study. Furthermore, for many areas the openly available 2D
climate data are more easily accessible than climate station
data, which still have to be collected from various different
authorities if accessible or existent at all. A weak spot of the
2D approach is a substantially higher computational effort
due to the large number of model parameters and the larger
amount of data that has to be processed during training and
optimization. In summary, gridded meteorological data are
useful for overcoming missing climate station data and get-
ting quite a good idea of the spatial extent of larger catch-
ments, given sufficiently small grid cell sizes.
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Appendix A: Study area comparison table

Table A1. Summary and comparison of different aspects of all three study areas.

Aubach spring Unica springs Lez springs

Country Austria Slovenia France

Climate Cool temperate and humid Moderate continental Mediterranean

Catchment area (km2) 9 820 240
Mean precipitation (mm yr−1) 2000 1500 904
Station, period (Walm.-Horn, 2003–2019) (1989–2018) (2008–2018)

Spatially distributed input datasets ERA5-Land, RADOLAN E-OBS E-OBS
Offered variables P , T , Tsin, E, SMLT, P , T , Tmin, Tmax, P , T , Tmin, Tmax,

SF, SWVL1–4 Tsin, RH, Rad Tsin, RH, Rad

Selected variables ERA5 model: P , T , E, P , Tmax, RH, Rad P , RH, Rad
SMLT, SWVL2, 4
RADOLAN model: P , T , Tsin,
SMLT, SF, SWVL1, 2, 4

Omitted variables ERA5 model: Tsin, SF, T , Tmin, Tsin T , Tmin, Tmax, Tsin
SWVL1, 3
RADOLAN model: E, SWVL3

Appendix B: Lez catchment precipitation interpolation

The Thiessen polygon interpolation method consists of cal-
culating a weighted average of the precipitation data by allo-
cating a contribution percentage to each meteorological sta-
tion, based on its influence area in the catchment. These in-
fluence areas are calculated through geometric operations.
First, we draw straight-line segments between each adjacent
station, and then we add the perpendicular bisectors of each
segment, which will define the edges of the polygons. Each
meteorological station thus corresponds to a particular poly-
gon, for which the precipitation over the surface is assumed
to be the same as the measured precipitation at the station.

The weighted average of the precipitation Pwa at each time
step is calculated as follows:

Pwa =

n∑
i=1

AiPi

A
, (B1)

with n the number of meteorological stations, Ai the area
(over the catchment) of the polygon corresponding to the
ith station, Pi the precipitation measured at the ith station
and A the area of the catchment.
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Appendix C: Heat maps

Figure C1. Spatial input sensitivity heat maps for Aubach spring based on ERA5-Land gridded data.
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Figure C2. P-channel heat maps based on ERA5-Land gridded data for Aubach spring with shifted area of the spatial input data in relation
to the catchment position.
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Figure C3. P-channel heat maps based on E-OBS gridded data for Lez spring with shifted area of the spatial input data in relation to the
catchment position.
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Appendix D: Model overview

Table D1. Model parameter summary table.

Aubach Aubach Lez Unica
(ERA5) (RADOLAN)

Optimized HP

n (1D conv. filter) 128 128 16 16
input seq. length 54 (h) 162 (h) 53 (d) 40 (d)
batch size 64 256 32 32

Other HPs

Initial learning rate 0.001 0.001 0.001 0.001
Training epochs 100 100 100 100
Early stopping patience 12 8 12 12

Model summaries

Total parameters 708 353 1 502 849 358 977 384 017
Trainable parameters 708 097 1 502 593 358 945 383 985
Non-trainable parameters 256 256 32 32

Code and data availability. We provide complete model codes
on Github (https://doi.org/10.5281/zenodo.5184692) (Wunsch,
2021). Due to redistribution restrictions from several par-
ties, we cannot provide a dataset. Nevertheless, the data are
available from the respective local authorities listed in the
main text and in the following: 2D datasets are fully accessi-
ble online: E-OBS (https://doi.org/10.24381/CDS.151D3EC6;
Copernicus Climate Change Service, 2020), ERA5-Land
(https://doi.org/10.24381/CDS.E2161BAC; Muñoz Sabater,
2019). Aubach spring discharge and climate data from surrounding
climate stations in Austria are available on request from the office
of the federal state of Vorarlberg, division of water management,
and Oberstdorf station data (German Meteorological Service) are
available via the DWD Open Data Server (https://opendata.dwd.de/;
DWD, 2022). Data from Slovenia can be retrieved from ARSO
(Slovenian Environment Agency) (http://vode.arso.gov.si/hidarhiv/,
ARSO, 2020a and http://www.meteo.si, ARSO, 2020b). Lez
spring discharge was provided by SNO KARST (2021)
(https://doi.org/10.15148/CFD01A5B-B7FD-41AA-8884-
84DBDDAC767E), and climate data are available on request
from MeteoFrance.
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