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ABSTRACT

Printed electronics is an emerging, complementary technology to classical silicon electronics.
In contrast to silicon technology, which is tailored towards high integration and high perfor-
mance computing with small feature sizes, printed electronics displays less performance and
exhibits larger feature sizes. However, it also offers great advantages, such as lower cost per
area through additive manufacturing, fabrication on flexible and soft substrates, as well as
biodegradability. Moreover, digital printing techniques like inkjet printing enable on-demand
and point-of-use fabrication. Through the availability of affordable printers, digitally printed
electronics may, much like 3D printing, enable custom fabrication in the future. Finally, through
the possibility to cheaply fabricate smart devices, printed electronics is increasingly recognized
as a key driver of the Internet of Things (IoT).

Unfortunately, to leverage these benefits, several challenges need to be overcome. For exam-
ple, the realisation of classical digital designs is often infeasible due to their extensive component
demands and required integration densities. This characteristic may be especially limiting for
small, customized smart devices intended for the processing of sensory data in IoT applica-
tions. Moreover, the additive manufacturing processes of printed electronics exhibit substantial
variations, which make the reliable fabrication of functional circuits difficult.

To address these challenges, adapting concepts from neuromorphic computing to printed
electronics could be a promising approach. Neuromorphic computing is a brain-inspired com-
puting paradigm with neuron-like hardware primitives. As these components operate analog,
they could process sensor data directly, while also offering lower footprints than digital circuitry.
In addition, due to the inherent parallelism of their computations, they may compensate for the
high latencies in printed electronics. This allows to perform lightweight computations directly
on the printed devices, avoiding the need for energy intensive and possibly insecure transmis-
sion. Hence, using printed neuromorphic circuits may be an excellent solution for intelligent
and customized near sensor processing in Internet of Things (IoT) applications. The design of
neuromorphic circuits can be viewed as a machine learning task similar to training artificial
neural networks. This additionally has several benefits over classical manual solutions. For
example, it offers an on-demand design solution in line with the on-demand and customized
fabrication capabilities of printed electronics. Moreover, variations in the fabrication process
can be addressed in the learning process to increase the fabrication yield.

Motivated by this potential, the aim of this thesis is to explore the training of printed
neuromorphic circuits. Additionally, a data-driven approach for modelling the variations of
printed components is described. In detail, the following topics are addressed.
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Printed neural networks
To employ and train printed Neuromorphic Circuits (NCs), models of the main hardware
primitives need to be devised. Through these component models, a model for a printed NC
can be expressed. This model is referred to as printed Neural Network (pNN). To train pNNs,
gradient-based learning methods from classical artificial neural networks can be adapted. How-
ever, several aspects of the training procedure need to be modified to improve the learning
process and ensure the feasibility of the final design. Namely, the loss function, the update
rule and the initialization strategy for the learnable parameters. To verify the approximation
capabilities of pNNs, they are trained and evaluated on several benchmark datasets.

A data-driven framework for variation modelling
Printed components and devices exhibit high variations in production. Variation analysis and
variation modelling of printed devices and components are thus imperative for realizing func-
tional printed circuits. However, modelling printed components is difficult as the underlying
physical relationships are complicated and only partially understood. If the device behaviour
cannot be fully described in a physical model, often empirical or semi-empirical approaches are
employed. Unfortunately, the parameter distribution of such models may not display simple
and classical distributions shapes such as normal distributions. To deal with such effects, a
flexible, data-driven framework is proposed. The framework is then used to develop a variation
model for a printed electrolyte-gated transistor.

Variation-aware training for printed neural networks
To combat the large variations of printed circuits and reduce their impact on printed NCs, vari-
ation models for the components are developed. Based on these variation models, a variation-
aware training procedure for pNNs is proposed. Here, the training objective is modified to
minimize the expected loss under the anticipated variations. When employed, it is able to
improve the robustness of trained pNNs to component variations on benchmark datasets.

Post-fabrication tuning for printed neuromorphic circuits
Depending on the variation of the fabrication process, the yield of printed neuromorphic circuits
may not be sufficient. This may in part be due to incorrectly printed resistors, resulting in
faulty conductance values. In this case, the unique feature of additive manufacturing can be
leveraged to partly restore the intended functionality. To this end, this work describes a post-
fabrication procedure to systematically restore the operation of a printed NCs. The procedure
is evaluated on benchmark datasets under component variations.
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ZUSAMMENFASSUNG

Gedruckte Elektronik ist eine neuartige, komplementäre Technologie zur klassischen Siliz-
iumelektronik. Im Gegensatz zur Siliziumtechnologie, die auf hohe Integration und hohe
Rechenleistung bei kleinen Strukturgrößen zugeschnitten ist, bietet die gedruckte Elektronik
weniger Performanz und weist größere Strukturen auf. Sie bietet jedoch auch große Vorteile,
wie zum Beispiel niedrigere Kosten pro Fläche durch additive Fertigung, die Herstellung auf
mechanisch flexiblen Substraten, sowie die biologische Abbaubarkeit der Komponenten. Außer-
dem ermöglichen digitale Drucktechniken, wie der Tintenstrahldruck, eine Herstellung nach
Bedarf direkt am Einsatzort. Durch die Verfügbarkeit von kostengünstigen Druckern könnte
digital gedruckte Elektronik, ähnlich wie der 3D-Druck, in Zukunft eine individuelle Fertigung
von Schaltungen ermöglichen. Weiterhin wird die gedruckte Elektronik durch die Möglichkeit
smarte Geräte kostengünstig herzustellen zunehmend als eine der wichtigsten Triebkräfte des
Internets der Dinge (IoT) gesehen.

Um diese Potenziale zu realisieren, müssen jedoch einige Herausforderungen bewältigt wer-
den. So ist beispielsweise die Verwendung klassischer, digitaler Designs aufgrund des hohen
Komponentenbedarfs und der erforderlichen Integrationsdichte oft nicht realisierbar. Dies kön-
nte insbesondere eine Einschränkung für kleine, individuelle, intelligente Geräte sein, die für
die Verarbeitung von Sensordaten in IoT-Anwendungen vorgesehen sind. Weiterhin weist der
additive Herstellungsprozess in der gedruckten Elektronik erhebliche Schwankungen auf, die
eine verlässliche Fertigung funktionierender Komponenten erschweren.

Um mit diesen Herausforderungen umzugehen, bietet die Übernahme von Konzepten aus dem
neuromorphen Rechnen einen vielversprechenden Ansatz. Neuromorphes Rechnen ist ein vom
Gehirn inspiriertes Rechenparadigma mit neuronenähnlichen Hardwarebausteinen. Da diese
Komponenten analog arbeiten, könnten sie Sensordaten direkt verarbeiten, wobei sie zusätzlich
einen geringeren Platzbedarf aufweisen. Zusätzlich könnte durch die inhärent parallelen Berech-
nungen die hohen Latenzen der gedruckten Komponenten teilweise kompensiert werden. Dies
ermöglicht leichtgewichtige Berechnungen direkt auf den gedruckten Geräten durchzuführen,
ohne dass eine energieintensive und möglicherweise unsichere Übertragung notwendig wird.
Dieser Ansatz bietet daher eine vielversprechende Lösung für eine intelligente, sensornahe Ver-
arbeitung in IoT-Anwendungen. Der Entwurf neuromorpher Schaltungen kann als ein Problem
des maschinellen Lernens, ähnlich dem Training künstlicher neuronaler Netze, gesehen werden.
Dies hat weitere Vorteile gegenüber manuellem Design. Beispielsweise bietet es eine Entwurfs-
lösung mit der es möglich ist ein Design bei Bedarf, passend zur Fertigung nach Bedarf in der
gedruckten Elektronik, zu erzeugen. Zusätzlich können Variationen in der Herstellung bereits
im Lernprozess berücksichtigt werden um die Ausbeute der Fertigung zu erhöhen.

Motiviert durch dieses Potenzial ist das Ziel dieser Arbeit die Erforschung des Trainings von
gedruckten neuromorphen Schaltungen. Weiterhin wird ein datengetriebener Modellierungs-
ansatz beschrieben, um Variationen gedruckter, elektronischer Komponenten zu modellieren.
Im Einzelnen werden die folgenden Themen behandelt.
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Gedruckte neuronale Netze
Um gedruckte neuromorphe Schaltungen einzusetzen und zu trainieren, werden Modelle ihrer
Grundkomponenten benötigt. Mit Hilfe dieser Modelle kann daraufhin ein Modell der gedruck-
ten neuromorphen Schaltung erzeugt werden. Dieses Modell wird als gedrucktes neuronales
Netz bezeichnet. Um gedruckte neuronale Netze zu trainieren, können gradientenbasierte Lern-
verfahren, wie sie im Training klassischer neuronalen Netze verwendet werden, adaptiert wer-
den. Zur Verbesserung des Lernprozesses und um zu garantieren, dass das finale Design valide
ist, müssen mehrere Schritte des Trainingsprozesses angepasst werden. Hierzu gehören beispiel-
sweise die Verlustfunktion, die Update-Regel und die Initialisierung der lernbaren Parameter.
Zur Verifizierung der Approximationseigenschaften der gedruckten neuronalen Netze werden
diese auf mehreren Benchmarkdatensätzen trainiert und evaluiert.

Ein datengetriebener Ansatz zur Entwicklung von Variationsmodellen
Gedruckte Bauelemente und Komponenten weisen in der Produktion hohe Schwankungen auf.
Variationsanalyse und Variationsmodellierung von gedruckten Bauelementen und Komponen-
ten sind daher für die Realisierung funktionaler gedruckter Schaltungen unerlässlich. Die
Modellierung von gedruckten Komponenten ist jedoch schwierig, da die zugrunde liegenden
physikalischen Zusammenhänge kompliziert, und bisher nur teilweise verstanden sind. Falls
das Verhalten eines Bauelements nicht vollständig durch ein physikalisches Modell beschrieben
werden kann, werden häufig empirische oder teilweise empirische Ansätze verwendet. Leider
weisen die Parameterverteilungen solcher Modelle oft keine klassischen Verteilungsfunktionen
wie zum Beispiel Normalverteilungen auf. Um mit solchen Effekten umzugehen, wird ein
flexibler, datengetriebener Ansatz vorgeschlagen. Dieser wird daraufhin verwendet um ein
Variationsmodell für einen gedruckten Transistor zu entwickeln.

Trainieren von gedruckten neuronalen Netzen unter Variation
Um mit den großen Variationen bei der Fertigung gedruckter Schaltungen umzugehen, und
ihren Einfluss auf gedruckte neuromorphe Schaltungen zu mildern, werden Variationsmodelle
ihrer Kompontenten entwickelt. Basierend auf diesen Variationsmodellen wird ein angepasster
Trainingsansatz für gedruckte neuronale Netze entwickelt. Hierbei wird die Zielfunktion des
Trainings dahingehend modifiziert den erwarteten Verlust unter der antizipierten Variation zu
minimieren. Durch den Einsatz dieses Verfahrens ist es möglich, die Robustheit trainierter
gedruckter neuronaler Netze gegen Komponentenvariationen auf Benchmarkdatensätzen zu er-
höhen.

Ein Nachbearbeitungsverfahren für gedruckte neuromorphe Schaltungen
Je nach Schwankung des Herstellungsprozesses ist die Ausbeute von gedruckten neuromorphen
Schaltungen gering. Dies kann zum Teil auf ungenau gedruckte Widerstände zurückzuführen
sein. Um diese Produktionsfehler zu korrigieren kann eine einzigartige Eigenschaft der additiven
Fertigung genutzt werden. Diese ermöglicht es, die ursprünglich beabsichtigte Funktionalität
(teilweise) wiederherzustellen. Um dies zu erreichen, wird in dieser Arbeit ein Verfahren zur
systematischen Wiederherstellung der Funktion einer gedruckten neuromorphen Schaltungen
vorgestellt. Hierfür werden die vorab eingeführten gedruckten neuronalen Netze verwendet.
Das Verfahren wird ebenfalls an einer Reihe von Benchmark-Datensätzen unter Komponenten-
variationen evaluiert.
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Remarks on notation and mathematical formulations

The notation used in this work is largely influenced by the book of Christopher Bishop [13].
Scalar values are usually denoted by lowercase, italic characters, e.g., λ, α, s. To distinguish
vectors from scalars, the former are displayed as bold lowercase letters, e.g. x, w, while matrices
are displayed in bold uppercase letters, e.g., Σ, W. The transpose of a vector (or matrix) x is
denoted by x>. Vectors are defined as column vectors, e.g., x = [x1, x2, · · · ]>. If not specified
otherwise, all scalars, vectors and matrices consist of real numbers from R. Interval ranges of
variables are expressed through x ∈ [a, b), denoting a ≤ x < b.

Sets of variables, e.g. {θn | n = 1, · · · , N}, are often collected in vectors, e.g. θ, for brevity
of notation. The vector 1 and the matrix I respectively denote a vector of ones and the identity
matrix. The dimensions should thereby be clear from the context. When operations such as
sums are performed over the entries of a vector (or a set), the endpoint of the sum is often left
unspecified, e.g., w>x =

∑
iwixi or

∑
i θi = θ>1. This is done for increased readability and

to avoid the definition of infrequently used variables.

At several points in this work, parameterized functions are introduced, e.g., a function
ψ(x,θ), where the parameters θ are found through optimization routines. To distinguish
between the inputs x and the parameters θ, the latter are written as subscripts to the func-
tion, e.g., ψθ(x). Additionally, when a one-dimensional function φ(x) : R1 → R1 is applied to
a vector or matrix, the operation should be understood as an element-wise application of φ.
Consequently, also order relations like ≤ are used on numbers and on vectors. In the latter case,
they refer to an element-wise operation. In some equations, the indicator function 1{·} is used,
which will be defined as 1 if the respective condition is met and 0 otherwise. As with other
functions defined for scalars, 1{·} applies in an element-wise fashion to vectors and matrices.
The rest of the expressions should be clear from the context.

Finally, many problems in this work are formulated as optimisation problems. Most of
the time, this is done to signify an intention and reveal an approach to tackle the problem.
Hence, finding a "good" solution for these problems will often suffice. To find these solutions,
gradient-based techniques are frequently applied even in cases where the respective function is
not differentiable at every point in the input domain. Such situations are mostly due to the use
of hinge functions, i.e., (·)+ = max{0, ·} or indicator functions 1{·}. Although differentiability
is commonly not assured, continuity for the relevant parameters is usually given. Nevertheless,
the application of gradient-based methods may be seen as heuristically motivated.

Employed software

The implementation of all components was done using python with the help of several libraries.
For fitting linear models and Gaussian mixtures, the scikit-learn library [118] was used. General
optimization problems for parameter fitting of nonlinear models were solved using scipy [149]
(optimize). Statistical calculations such as statistical tests were also performed using the scipy
(stats) package. All data was handled using pandas [106] and numpy [61] and (printed) neural
networks were implemented using pytorch [117]. The plots and illustrations were generated
using matplotlib [73], and flowcharts were created using Microsoft Powerpoint 2016.
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Previously published results

Several contents of this work have already been published as parts of collaborative work.

• Chapter 3 is mainly based on [156], where the printed neural network model and training
algorithm were published. They are also briefly discussed in [154, Sec. 4.1] alongside the
hardware primitives for printed neuromorphic computing. Compared to both sources,
the chapter provides more in-depth explanations of the modelling and training steps with
several additional illustrations.

• Chapter 4 has been published in [126] and is also discussed in [124, Sec. 3.4]. Compared
to the publication, the chapter present a more in-depth explanation of the variation
modelling and puts less emphasize on the technology of the printed electrolyte-gated
transistor for which a model was developed.

• Chapter 5 is also based on [156]. Compared to the paper, it presents the development
of the circuit component models in detail through the procedure described in Chapter 4.
Additionally, the experiments are extended considerably and also involve an additional
dataset, variation levels and graphs, alongside a more detailed analysis of the results.

• Chapter 6 is accepted for publication as [67] by the time of writing this thesis. Compared
to the submitted work, the chapter provides a more detailed description of the method
and extended experiments.
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1 Introduction

The Internet of Things (IoT) [25] is seen as a major technological revolution. According to
the vision, sensors and electronics are embedded as a core component in everyday objects.
This allows them to be connected seamlessly, communicate, and exhibit responsiveness to
contextual changes, promising radical innovations for industrial applications as well as the
customer experience. For example, industries like retail and agriculture may be able to track
individual products through smart labels [130] and verify their authenticity. This is not only
limited to expensive items, but even disposable, low-cost consumer goods such as milk boxes,
bandages or even single pills could be enhanced with electronics in the future [110]. This may
allow to assess the quality of products in terms of freshness or spoilage [130] and dynamically
adjust their prices on a per-product basis. Smart clothes could measure health indicators [151]
and detect body odor, while smart cups [8] may display the correct drinking temperature
for coffee, tea or other beverages, allowing to completely rethink the interaction with simple,
everyday objects.

Printed electronics can be seen as a major enabler of this revolution. Even though printed
electronics is not as efficient as its silicon counterpart, it promises a low-cost fabrication of
possibly disposable electronic components on various substrates [130]. Aside from replication
printing techniques aiming for the mass production of standardized devices such as displays or
batteries [33, Sec. 4.3], jet-printing technologies [33, Sec. 4.2] offer interesting capabilities in
the context of IoT. Since their manufacturing tools are comparably affordable, they hold the
potential of a democratisation of manufacturing technology, allowing the on-demand fabrication
of low-cost, custom circuitry, anywhere and by anyone. In combination with 3D printing
and functional inks, individuals may be able to create their own smart devices with desired
geometries and material properties [130].

Unfortunately, printed electronics also offers several drawbacks. Among them are high laten-
cies and comparably large footprints [14]. This is especially true for classical, digital designs
[110], which may therefore often be unsuitable. Hence, realizing custom sensor processing
circuitry in printed electronics will not be straightforward. While analog designs compare
more favourably [154, Sec. 6.1], their design is often more complicated and most circuits are
designed by experts with many years of experience in the field. Especially when designing
circuits for novel technologies such as printed electronics, a thorough understanding of the
underlying physics is required. Additionally, immature processes often lead to substantial vari-
ations which require especially robust designs. Unfortunately, proper design rules are not yet
established. Hence, to enable the vision of truly customized, ubiquitous smart devices, flexible,
automatic modelling and design solutions are imperative.

To tackle these problems, this work proposes the use of neuromorphic computing as a com-
putation paradigm. This promises several benefits. Firstly, neuromorphic components can
operate analog and thus directly process sensory data [156]. Additionally, the distributed, par-
allel character of the computations may allow to compensate for the high latencies in printed
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electronics [67]. Finally, the use of neuromorphic components allows to formulate the design
search problem as an optimisation problem similar to training artificial neural networks. Here,
variations can be considered in the training procedure to obtain robust designs [156].

1.1 Objective and summary of contributions

The aim of this thesis is to explore the modelling and training of printed neuromorphic circuits.
The contributions of this work can be categorized into the following main topics.

Modelling components of printed neuromorphic circuits

To train printed Neuromorphic Circuits (NCs), models describing their behaviour are required.
The behaviour of the circuit thereby depends on the behaviour of its main components, also
referred to as hardware primitives. These hardware primitives are the resistor crossbar, the
activation function circuit and the inverter function circuit. The resistor crossbar thereby
realizes a weighted sum operation and the activation function circuit introduces nonlinear
behaviour. Additionally, the inverter function circuit is required to express a notion of negative
weights, as these cannot be implemented directly.

In this work, nominal and variation models for these hardware primitives are proposed. The
models are tailored towards training algorithms addressing the special characteristics of printed
NCs. For example, the ability to fabricate only one of two alternative connections (inverted
and noninverted), depending on which one is required for the specific task. Furthermore, the
variation models allow to not only assess the quality of printed NCs under variation, but also
to consider them in the training procedure.

To model more complex distribution and correlations, a data-driven framework for variation
modelling was developed. The framework is not limited to modelling NCs components but can
also be used to model the variation in other electronic components or circuits such as printed
transistors, e.g., [126]. The models for the individual components can be combined to form a
model for a printed neuromorphic circuit. This model is referred to as printed Neural Network
(pNN).

Training printed neuromophic circuits

Training printed NCs refers to finding configurations of the adjustable components of the
NC to realize a desired functionality. Hence, training can be seen as an automatic design
solution for circuits composed of hardware primitives of printed NCs. Based on a model of a
printed NC (the pNN), training algorithms similar to those of artificial neural networks can
be developed. A suitable training algorithm for printed NCs should be able to respect the
characteristics of the technology. Namely, technologically feasible ranges for the conductances
of resistors. Additionally, the comparably large variation in fabrication of printed circuits
should be accounted for.

To address these characteristics, this work proposes a training algorithm that respects the
limited ranges of conductance values. Additionally, anticipated component variations are ad-
dressed by a modified training objective and Monte Carlo gradient estimation. Furthermore,
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a loss function to guide the training procedure toward desired configurations and an initialisa-
tion scheme to improve the learning dynamics are proposed. Finally, a post-fabrication tuning
procedure to increase the yield of printed NCs through additive manufacturing is described.

1.2 The structure of this work

The rest of this work is structured in the following chapters:

• Chapter 2 provides a background on printed electronics and its challenges. Then, the
concept of automatic circuit design is briefly introduced to provide context to this work.
Furthermore, neuromorphic circuits, artificial neural networks and gradient-based learn-
ing are presented as additional preliminaries to the following chapters.

• Chapter 3 introduces printed neural networks as a model for learning the functional-
ity of printed neuromorphic circuits. Furthermore, the steps of the training procedure
for printed neural networks are discussed in detail, and several trained printed neural
networks are evaluated on benchmark datasets.

• Chapter 4 introduces the data-driven variation modelling framework. A special focus is
placed on semi-empirical models involving fitting parameters. The framework is evaluated
by developing a variation model for a printed electrolyte-gated transistor.

• Chapter 5 directly builds on Chapter 3 and discusses a method for variation-aware train-
ing of printed neural networks. For this purpose, variation models for the core components
of printed neuromorphic circuits are developed. The framework of Chapter 4 is thereby
employed to devise variation models for activation function and inverter circuits. Printed
neural networks trained using the proposed procedure are then evaluated under simulated
variations.

• Chapter 6 proposes a post-fabrication tuning procedure for neuromorphic circuits based
on the printed neural network model from Chapter 3. The procedure allows to system-
atically reprint parts of the circuit in order to restore the intended operation and is also
evaluated under simulated conductance variation.

• Chapter 7 summarizes the work and provides an outlook on future research directions.

Chapters 3 - 6 introduce further preliminaries and background material in a dedicated section
and close with a discussion and possible directions for future work.
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2 Background

To provide context to this work, the following briefly introduces printed electronics and chal-
lenges in designing and modelling printed circuitry. The introduction is followed by brief review
of automatic circuit design which is related to the design approach of training neuromorphic
circuitry. Then, neuromorphic circuits and the concept of neuromorphic computing, which
focuses on a brain-inspired computing paradigm, is described. As one of the underlying con-
cepts for this work is artificial neural networks, they are briefly introduced as a prerequisite.
Additionally, gradient-based learning, which is the most common strategy employed to train
artificial neural networks, is explained. Finally, the basic hardware primitives of neuromorphic
circuits are introduced and the differences between printed and programmable NCs fabricated
in conventional technologies are outlined.

2.1 Printed electronics

Printed electronics is an emerging, complementary technology to conventional, silicon-based
electronics [101]. Conventional electronics are fabricated through subtractive processes of re-
moving material via lithography and etching. Contrary to that, manufacturing in printed elec-
tronics is an additive process where material is only deployed where it is needed [33, Sec. 1.1].
This characteristic leads to different properties of the fabricated circuits. Even though printed
electronics cannot challenge conventional electronics in terms of integration density and per-
formance, they exhibit lower fabrication costs (per area) and allow for fabrication on a wide
range of different substrates through conductive inks [24]. Most notably, printed circuits can
be fabricated on flexible and stretchable substrates such as textile [12, 95], foil or paper [23].
Furthermore, through appropriate choice of materials, nontoxic, bio-degradable and possibly
edible electronic components [83, 113, 121] can be fabricated.

These characteristics allow printed electronics to target many novel application domains
for which solutions in conventional electronics are either too expensive, or cannot meet the
required specifications [123, 110]. Examples include applications for soft sensors [99, 90, 82], soft
robotics [28] and e-textiles [12]. Additionally, cheap, disposable and short-term-use electronic
products [121] can be utilized for medical and agricultural applications [113, 81], as well as smart
packaging [20] and labelling [147]. Especially recently developed low-voltage technologies, such
as the printed electrolyte-gated transistors [100, 101], in conjunction with printed batteries
[95, 31] or printed energy harvesters [2] may be employed in the context of these applications.
For these reasons, printed electronics is increasingly recognized as a key enabler for the IoT [24].

There are several processes for the fabrication of printed electronics. They can be broadly
categorized into replicate printing and digital printing techniques. Replicate printing techniques
(e.g., screen, flexography and gravure printing), similar to conventional electronics, require the
fabrication of a mask or masterplate which is usually expensive. However, after fabrication
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of the mask, replicate printing techniques are generally scalable and allow for an high volume
and high throughput production [33, Sec. 4.3]. Contrary to replicate printing, digital printing
technologies (e.g., inkjet or aerosol jet printing) require no mask. Here, devices are printed by
ejecting droplets of conductive ink through nozzles onto the substrate. Even though this makes
digital printing not as scalable as replicate printing processes, it allows for a custom fabrication
of each component and circuit without substantial setup costs [33, Sec. 4.2].

Especially the characteristics of digital printing are in stark contrast to conventional indus-
trial electronics manufacturing, where electronics are usually fabricated centralized and at large
scale. Similar to 3D printing for manufacturing, this unique characteristic of digital printing
technologies gives rise to the vision of "democratizing fabrication" [130]. A scenario in which
anyone can fabricate electronics at point-of-use [24]. In the context of IoT, this would allow the
cheap, on-demand fabrication of customized smart devices for home users in the future [130].

Challenges in modelling and designing printed circuitry

To realize this vision, many challenges must be overcome [24]. For example, unique chal-
lenges arise in circuit design for printed electronics and process design kits are still under-
developed [124, Ch. 2]. Additionally, the vast possibilities of combining substrates and ink
compositions require new models to be developed for simulations. However, since the underly-
ing physics is often not fully understood, mostly semi-empirical models for devices have been
developed so far, see [100]. Moreover, the variations of devices are generally much higher than
those of conventional electronics [24], and accurately modelling these variations is imperative
for designing functional circuits [124, Sec. 1.2.1].

In the future, near sensor processing applications can be expected to frequently arise in the
context of IoT applications. To effectively process such data, new and optimized computing
paradigms employing machine learning models may be required [154, Ch. 4]. Even though
classical digital design is theoretically feasible for such applications, it is often not very efficient
[14] and requires high device counts [110] [154, Sec. 6.2].

For this reason, bespoke (tailored) analog designs have been explored, allowing to realize
near sensor processing circuitry with lower footprint in area and power, while also offering
higher performance [154, Sec. 6.2]. Designs for these circuits could be devised on-demand
through appropriate learning algorithms. Since these algorithms need to respect the specialized
requirements and characteristics of the technology, such as the feasibility of certain device
types, specialized learning algorithms are required. Finding a circuit configuration through
these algorithms may be seen as an automatic design solution.

2.2 Automatic circuit design

The idea of automatic circuit design or automatic circuit synthesis is to find a design for a circuit
that satisfies a certain functionality. The functionality is thereby given through input-output
relationships or a behavioural description [141]. The two parts of a design usually relate to
finding a suitable topology and sizing of the component. Finding the topology refers to choosing
which components to connect, while sizing relates to finding a suitable parameterization, e.g.
widths for transistors or conductance values for resistors, of the components [86]. Further
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solutions may also include the derivation of the circuit layout, including component placement
and routing [62, 7].

The techniques for automatic circuit design have been broadly characterized into knowledge-
based and optimisation-based approaches [7, 136]. According to [7], knowledge-based ap-
proaches were the first to appear and leverage prebuilt design plans, see [76, 161]. Optimisation-
based approaches utilize optimisation techniques to obtain solutions to the design problem.
They can be further categorized into equation-based, simulation-based, and learning-based
approaches [136].

Equation-based approaches, see [104, 62, 116, 68, 35], perform the optimisation based on a
set of equations describing the circuit and the components. The equations are thereby derived
either analytically, automatically through symbolic analysis tools [7], or through the fitting
of circuit simulations, e.g. [35]. Through the use of these equations, evaluations tend to be
faster, and numerical solvers, such as interior point methods [68], are used to solve the design
problem.

Simulation-based approaches use circuit simulations to evaluate the performance of a configu-
ration. Such approaches often leverage evolutionary algorithms, see [86, 7, 148, 30, 59], or more
recently also Bayesian optimisation, see [97, 65, 72, 162]. The latter approaches thereby mostly
focus on component sizing. The ability to combine topology selection and component sizing is
one of the main advantages when using evolutionary approaches. Furthermore, they allow to
include various other design constraints and have few limitations [68]. To reduce the number
of costly circuit simulations that have to be performed, several simulations-based methods also
employ predictive models, such as SVMs [7] or neural networks [59], to rule out unfavourable
solutions. More recently, learning-based approaches leveraging reinforcement learning have
been promoted [150, 136, 160], and claim to be more sample efficient, i.e, requiring less circuit
simulations than evolutionary algorithm-based methods. Similar to evolutionary approaches,
reinforcement learning-based methods can also perform topology search and component sizing
jointly.

In contrast to these approaches, this work employs neuromorphic computing hardware prim-
itives (Section 2.6) instead of classical digital or analog components. The components will
be described through model equations referred to as printed neural networks (Section 3.2.1)
and learned similar to artificial neural networks. Hence, through the lens of classical auto-
matic circuit design, the approach in this work may be seen as an equation-based optimisation
approach, where circuit design becomes similar to neural network training (see Section 2.5).
After training, the components can be mapped to neuromorphic hardware primitives that will
be introduced in the following.

2.3 Neuromorphic circuits

The terms neuromorphic computing and neuromorphic circuits [107] refers to circuits that
utilize ideas of brain-like computing. Recently published works on neuromorphic computing
thereby share one or multiple of the following attributes: 1) non-von-Neumann architectures,
2) analog or mixed-signal computation and 3) spiking behaviour as in biological neurons [16].

The first aspect emphasizes the contrast of neuromorphic computing to classical von-Neuman
computing. In von-Neuman computing the data is read from the memory, computations are
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carried out in the (central) processing unit, and the result is written back. In neuromorphic
computing, computations are performed decentralized, in brain-inspired computation units
referred to as neurons. Through this, computations are directly performed in memory and are
inherently parallel, avoiding the so-called "memory-wall". These characteristics are often cited
as being better suited for high performance computing [71], increasing the speed of certain
computations and also lowering the power consumption [5].

The second aspect is analog computing. Here, instead of digitizing the signal and building it
out of basic AND and OR operations, different hardware primitives, i.e., "neurons" are used to
implement operations. Most notably, a zero-cost addition can be achieved through Kirchoff’s
law [107], and weighted sums are realized through resistor crossbars, see [71]. A further benefit
of analog computing is that analog input signals from sensors do not need to be converted to
digital signals through additional circuitry, but can be directly processed.

Thirdly, to follow the true, biological inspiration, neuromorphic circuits often try to incor-
porate a time dependent aspect, i.e., the accumulation of charges over time. This is considered
in so-called spiking neural networks.

In this work, NCs trying to mimic artificial neural networks (see Section 2.4) are discussed.
Hence, the aspect of time dependence and charge accumulation (as in spiking neural networks)
is not considered. The first and the second aspect however apply. Such NCs are easier to realize
and train, and surpass hardware realisations of spiking neural networks in almost all aspects,
offering better performance (delay), and requiring lower power and area [41]. Since printed
electronics already performs comparably weak regarding these aspects [24], neuromorphic cir-
cuits based on artificial neural networks, as discussed in the following, may be considered more
suitable for real-world applications.

2.4 Artificial neural networks

This section briefly introduces fully connected (feedforward) artificial neural networks. Con-
trary to spiking neural networks, which try to reflect the firing behaviour of biological neurons
as close as possible, artificial neural networks are only loosely inspired by biological neurons.
They can be best understood as directed computation graphs with weighted edges (see Fig-
ure 2.1) expressing a function fθ : Rn → R

m parameterized with θ.

The edges are referred to as connections, and the nodes are called neurons. Furthermore, all
neurons can be organized in so-called layers l. All neurons in the same layer share the same
inputs. The computation performed by a neuron j is a weighted sum of all incoming connections
i with weights wij plus some additional scalar value bj called bias. Finally, a nonlinear function
φ(·) called activation function is applied, leading to the neuron model equation

Neuronlj(x) = φ

(∑
i

xiw
l
ij + blj

)
,

where x = [x1, x2, · · · ]> is considered to be a vector of inputs xi. Various kinds of functions
can be employed as activation functions. Historically, sigmoidal-functions were widely used,
but are often replaced by rectifiers [77], such as ReLUs, for simplicity and speed [87] in modern
neural networks [56, Sec. 6.1]. However, other functions may perform just as well [56, Sec. 6.3.3].
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Figure 2.1: A fully connected artificial (feedforward) neural network mapping three inputs to two out-
puts. In the layer l, for each node j, all incoming connections i are multiplied with their
respective weights wl

ij and summed up with an additional bias blj (omitted in the figure).
Afterwards, a nonlinear activation function is applied to the result which forms the neuron
activation.

Altogether, the main requirement for an activation function is nonlinearity1 and differentiability
(almost everywhere). The differentiability is mainly required to successfully apply gradient-
based methods [56, Sec. 4.3] for finding the parameters of the neural network.

Viewing neural networks as connected neurons reveals the analogy to biological neurons,
however, this view is less useful for applications. Here, neural network are usually implemented
and discussed in terms of layers. A layer thereby denotes the combined computations of several
neurons with shared inputs and can be described by

Layerl(x) = φ(xWl + bl).

The weights of the neurons in the layer are summarized in the columns of the matrix Wl, the
biases are stacked in the vector bl, and the activation function should be seen as an element-wise
operation. Through composing multiple layers, a closed-form expression of a neural network
can be written as

fθ(x) =
(

LayerL ◦ · · · ◦ Layerl ◦ · · · ◦ Layer2 ◦Layer1
)

(x). (2.1)

Note that the activation function around the most outer layer is optional or could be defined
as linear. Additionally, each layer may have a different activation function. In the following,
the parameters of the network are summarized in the set/vector θ = {Wl, bl | l = 1, · · · , L}
for brevity and the network is simply denoted as the function fθ(x).

The network given by (2.1) is called a fully connected (feedforward) neural network. Neu-
ral networks of this type are able to approximate a wide range of functions (details see [56,
Sec. 6.4.1]) with arbitrary precision. Note that there are also other networks such as recurrent
networks, see [56, Ch. 10], which cannot be described as easily. However, these types of net-
works are not considered in this work. Therefore, all neural networks in the following explicitly
denote artificial feedforward neural networks and are simply referred to as neural networks.

Given a dataset D = {(xn,yn) | xn ∈ X,yn ∈ Y, n = 1, · · · , N} of inputs xn and desired
outputs yn, a loss function l(x,y,θ) can be defined. The loss function measures a distance

1With linear activation functions the neural network can only express linear functions [56, Sec. 6.1].
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of the output of the network fθ(xn) for a training instance xn to the desired output yn [56,
Sec. 6.2]. Typical choices for the loss function are, e.g., the mean squared error (MSE) for
regression, or the cross-entropy (CE) for classification tasks. In a classification setting, which
is exclusively considered in this work, yn refer to class labels and are usually mapped to natural
numbers, i.e. Y ⊆ N, and X ⊆ Rm with m = dim(x). The neural network is then build to
have as many outputs as there are classes.2 Consequently, each class can then be associated
with an index of the neural network output (vector). Formally, fθ(x)i denotes the i-th output.
Most commonly, the loss function is used to define the loss L(θ) over all training instances of
D for a given parameterization θ as

L(θ) =
∑

(x,y) ∈ D

l(x,y,θ).

Analogously, the loss L(θ) can also be defined as the average of the l(x,y,θ) for all D.

Aside from a low mismatch between the actual and the intended output of the network,
additional criteria regarding the parameterization θ of the network fθ(x) are desired some-
times. Such preferences can be expressed through so-called penalty functions. For example,
the generalisation3 of the network can often be improved by decreasing the magnitude of unim-
portant weights. This can be achieved through weight decay [56, Sec. 5.2.2], which penalizes
the euclidean norm of the weight vectors. Although penalty functions are mostly employed for
regularisation and improving the generalisation error, they can also be used to express more
general constraints or preferences.

Having defined a loss L(θ) [and possibly a penalty function P (θ)], the neural network fθ(x)

can be trained/learned. Training a neural network can be understood as trying to find a (good
enough) solution for the optimisation problem

θ? = argmin
θ

L(θ) + λ · P (θ), (2.2)

where λ ∈ R+ is a hyper-parameter to scale the influence of the penalty P (θ). After a parame-
ter vector θ? is found, the neural network fθ?(x) should yield good results when predicting yn
from inputs xn. However, since (2.2) cannot be solved analytically and the loss L(θ) is usually
nonconvex, one may only hope to find good solutions through iterative procedures. One such
iterative procedure is gradient descent [56, Sec. 4.3] which will be discussed in the next section.

2Sometimes only k−1 outputs are chosen to encode k classes. This is especially common in two class settings,
where only one output is required as the intended output class can be decided based on a threshold value.
Besides having less output neurons, there are also other advantages of the k − 1 encoding such as less
correlated outputs. However, in this work, the k outputs for k classes encoding is used. The reasons for
this is that the k output encoding allows to obtain the intended output class via a simple argmax on the
network output which should be easier to realize in hardware.

3The generalisation refers to the predictive performance of the neural network on unseen data.
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2.5 Gradient-based learning

2.5 Gradient-based learning

Gradient descent is an optimisation algorithm for unconstrained optimisation problems with
differentiable objective functions. For the application of training neural networks, it is assumed
in the following that only the loss L(θ) should be minimized. However, adding a penalty term
does not hurt the generality.

The intuition behind gradient descent can be derived from the Taylor expansion of L(θ) at
a point θ(t) in a direction d, i.e.,

L(θ(t) + α · d) = L(θ(t)) + α · d>∇θL(θ(t)) +O(α2).

For some α ∈ R+ small enough, (certainly for α → 0) the O(α2) part can be neglected and
the expression reveals a characterisation of a descent direction for d. If d is chosen such that
d>∇θL(θ(t)) ≤ 0, then L(θ(t) + α · d) ≤ L(θ(t)) (see [11, Sec. 1.2]). In other words, the value
of the function L(θ) can be decreased when moving from θ(t) in the direction d.

A straightforward choice for a descent direction is d = −∇θL(θ(t)), which leads to the
gradient descent update rule for θ with

θ(t+1) ← θ(t) − α(t)∇θL(θ(t)). (2.3)

The parameter α(t) ∈ R+ is referred to as learning rate or step size at iteration t, and is chosen
through one of various heuristics (often simply as a small and constant value) in practice.
Also, more modern methods were developed on the basis of gradient descent which leverage
information of previous gradients in the update rule such as Momentum (see [56, Sec. 8.3.2]) or
Adam [84]. Applying such techniques for learning neural networks is often summarized under
the term gradient-based learning [56, Sec. 6.2]. More generically, these procedures can be seen
as updating the parameters of the neural network in each step t through some small, weighted
modification ∆θ(t), i.e.,

θ(t+1) ← θ(t) + α(t)∆θ(t).

The update ∆θ(t) is thereby chosen to decrease the loss function l(x, y,θ) (at least in expec-
tation) in each iteration t for an appropriate choice of α(t). In the context of neural network
learning, the procedure can either be stopped after a fixed number of iterations, or if the loss
L(θ(t)) does not improve anymore over several updates. The improvement of the loss L(θ(t))

can thereby be measured either on the training data or on a separate validation dataset.

What remains to be chosen is the starting points θ(0). Especially when applying gradient-
based learning to optimize neural networks, the initially chosen θ(0) (initialization) can greatly
influence the success of learning [55]. One reason for this is that unsuitable initializations may
lead to unfavourable propagation dynamics which hinder the learning process. For example, if
the initialisation procedure leads to a layer mapping almost all inputs to a saturation region
of the activation function, θ(0) can lie on a plateau with ∇θL(θ(0)) ≈ 0 (vanishing gradients).
Here, update rules like (2.3) only decrease the loss L(θ) very slowly.

To deal with such effects, multiple strategies have been developed to find good heuristics for
parameter initialisation. In these schemes, the weights are usually drawn uniformly or normally
distributed around zero [56, Sec. 8.4], where the scale is related to the number of inputs and/or
output connections [55]. Additionally, schemes may vary based on the activation function [66],
as it influences the standard deviation of the layer outputs.
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Since the computation of the gradient is an integral part of gradient-based methods, it needs
to be computed efficiently. For computational graphs such as neural networks, this can be done
through the backpropagation algorithm [132] in conjunction with automatic differentiation
techniques, see [117].

To summarize, through gradient-based learning, parameterized models can be optimized to
behave in a way specified by the training objective, i.e., the loss function. Gradient-based
learning is thereby not limited to neural networks with weights and biases as described in
Section 2.4. Also, models for printed neuromorphic circuitry, if expressed appropriately, may
qualify for gradient-based learning. The main requirement is for the models to be composed of
parameterized, modular components, which express differentiable computations.

Finally, it should be noted that gradient descent may also be used for problems that tech-
nically do not permit its application, e.g., if the function is not differentiable (everywhere).
However, in these cases, the use of the method may be seen as a heuristic, and success cannot
be guaranteed.

2.6 Hardware primitives for neuromorphic computing

Since the NCs considered in this work draw inspiration from artificial neural networks (see
Section 2.4), their fundamental buildings blocks reflect the same core components, i.e., neurons
constructed from an activation function φ(·) and the weighted sum operation

∑
i xiwi+b. From

these neurons, arbitrary sized NCs can be built by stacking and connecting layers of neurons
as seen before. Depending on the technology and availability of certain components, such as
analog-to-digital converters and sense amplifiers, different implementations have been proposed
for the activation function and the weighted sum operation. The components described in
the following can be understood as analog, inverter-based NCs similar to [5] and have been
previously described in detail in [154, Sec. 4.1].

2.6.1 Realizing weighted sums through resistance crossbars

The first fundamental operation to implement is the weighted sum. For this purpose, most
works utilize resistance crossbars, see [71, 5, 157], where the input and output signals are
represented by voltages (see Figure 2.2). The connections thereby form a classical "Y" or
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Figure 2.2: A weighted sum operation of a neuron realized through a resistor crossbar.
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"star" circuit with a resistor in each branch.

Through Kirchhoff’s law and Ohm’s law, the (output) voltage Vout can be calculated as

∑
i

Ii = 0 ⇐⇒

(Vb − Vout) · gb +
∑
i

(Vi − Vout) · gi = 0 ⇐⇒

Vb · gb +
∑
i

Vi · gi − Vout

(
gb +

∑
i

gi

)
= 0 ⇐⇒

Vout = Vb ·
gb

gb +
∑

j gj︸ ︷︷ ︸
b

+
∑
i

Vi ·
gi

gb +
∑

j gj︸ ︷︷ ︸
xi·wi

.

For simplicity and brevity of notation, everything is expressed in terms of conductance values
gi instead of resistance values (gi = R−1i ). The analogy to the weighted sum operation can be
readily seen by interpreting xi as Vi. In this case, a weight wi is a function of all conductances
of the crossbar resistors (see also [154, Appendix B]) and given by

wi =
gi

gb +
∑

i gi
. (2.4)

The bias b is realized by the product of Vb and the fraction of gb of the sum of all conductances
of the crossbar (voltage divider). For simplicity of the resulting circuit, Vb will be chosen as a
fixed value (assuming 1V in the following). Through this, the bias b behaves like a weight wb
with a fixed input Vb = 1V.

Evidently, the parameters expressed through the crossbar are not as flexible as the general
weights and biases in the artificial neural network. Most notably, the values of the parameters
wi and b are bound to the range of [0, 1] and are coupled through the denominator gb+

∑
i gi in

(2.4) which leads to b+
∑

iwi = 1. Since this coupling would reduce the effective number of free
parameters of the neuron by one, it is relaxed through an additional pseudo-input connection
V0 = 0V (ground) with a conductance g0 (see Figure 2.2). Through this additional input,
the other weights and the bias only have to satisfy the inequality b +

∑
i>0wi ≤ 1 instead

of the more strict equality in absence of g0. Aside from the constraints of the crossbar, also
technological limitations have to be considered. These are mainly concerned with the range of
feasible conductance values gi ∈ [gmin, gmax] in the technology.

For brevity of notation, all conductances of a neuron are summarized in the vector g and its
entries will be referred to as gi. Consequently, the input vector x to each neuron is augmented
with two additional entries x ← [x, 0, 1]>. The conductances connected to these inputs then
represent g0 and gb respectively. For a given neuron, the entries of the weight vector w are
then given by

wi =
gi∑
j gj

=
gi
g>1

. (2.5)

Note that due to the input augmentation, w also contains the bias b as an entry. Analogously to
neural networks, the computations of multiple neurons can be summarized in layers computing
multiple weighted sums xW with weight matrices given by

W = G diag(G>1)−1.
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Here, the matrix G summarizes the conductance vectors of each printed neuron in its columns,
and diag(·) extends its input vector to a diagonal matrix.

2.6.2 Representing negative weights through inverted inputs

Since conductances gi can only be nonnegative, the weights wi formed through ratios of con-
ductance values in (2.5) are also restricted to nonnegative values. However, to be able to solve
tasks relevant for applications, a notion of negative weights is required.

As this cannot be implemented through conductances, the idea is to instead invert the re-
spective input xi to wi. Hence, the product of xi with a negative weight is expressed through
xi(−wi) = (−xi)wi. Unfortunately, −xi cannot be directly generated and may only be approx-
imately implemented by inverting the signal xi through an appropriate circuit, see [5]. One
such circuit has been realized in printed electronics (see Figure 2.3a). Measured outputs of the
respective circuit can be seen in Figure 2.3b. Hence, the notion of negative weights is expressed
through xi(−wi) = (−xi)wi ≈ inv(xi)wi.
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Figure 2.3: Figure (a) displays the circuit for the input inverter. Figure (b) shows measurements of the
output voltage. Figure (a) was created by Dennis D. Weller and adopted with permission.

To summarize, in case of a positive weight wi, the input xi can be directly used, while negative
weight wi require additional circuitry. The circuitry thereby approximates −xi through inv(xi).
However, since inv(xi) only represents an approximation to −xi, the characteristic of inv(x)

has to be accounted for when modelling and training printed NCs (see Section 3.2.2).

2.6.3 Activation functions for printed neuromorphic circuits

Besides the weighted sum operation, the activation function represents the second fundamental
component of a neural network. As the main requirements for the activation function are
smoothness and nonlinearity, various nonlinear circuits could be used to represent activation
functions. Nevertheless, existing solutions often try to approximate classical functions such as
tanh or ReLU. For example, the pPLU [157] represents a ReLU-like activation function, while
[5] describes an inverter-based activation function of sigmoidal shape. The latter was similarly
realized in printed electronics and referred to as ptanh [156].
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Figure 2.4: The printed linear unit activation function [157]. Figure (a) shows the circuit for a neuron
with a pPLU activation function. Figure (b) shows measurement data of the pPLU circuit.
Figure (a) was adopted from [157].
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Figure 2.5: The inverter-based tanh activation function circuit. Figure (a) shows the ptanh circuit.
Figure (b) shows measurements from the circuit. Figure (a) was provided by Dennis D.
Weller and adopted with permission.

Among the activation functions realized in printed electronics, the ptanh can be seen as more
favourable. The reason for this is the modelling of the pPLU, as pPLU(x) = max{0.2x, 0.75x}
in [157]. As can be seen, the magnitude of the signal decreases in both, the positive and the
negative region due to the multiplication with coefficients smaller than one. Consequently,
| pPLU(x)| < |x| for all x. This is critical since the weights formed by the resistor crossbar in
(2.5) are also smaller than one. Hence, the signal successively shrinks through the computations
in each layer. This may not allow for a sufficient (measurable) signal separation at the output
of the network.

Contrary to the pPLU, the inverter-based ptanh activation function (see [154, Sec. 4.1.3])
exhibits regions where the absolute value of the strength is increased through the activation,
i.e., there are x such that | ptanh(x)| > |x|. These regions allow to preserve or possibly increase
the signal magnitude and improve the signal separation. Since the signal separation is essential
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to measure, differentiate and compare the signal strengths at the different outputs of the NCs,
only the inverter-based ptanh activation function is considered in the following.

2.7 Conventional versus inkjet-printed neuromorphic circuits

Although the overall designs of the NC components can be used for both, printed and conven-
tional silicon-based technology4, the fabrication process, and therefore the choice of the devices
differs. Due to the subtractive fabrication process, silicon-based technologies have to be fab-
ricated in multiple process steps including the fabrication of masks, which makes low-batch
fabrication costly and time consuming. On the other hand, in inkjet-printed electronics, all
components can be fabricated on the same printer, on-demand, and with little setup costs.
Unfortunately, printed circuits generally also exhibit considerably lower performance and in-
tegration density [24]. Naturally, the envisioned applications for printed and silicon-based
NCs also differ greatly. NCs fabricated in silicon-based technologies may provide acceleration
and power savings for deep learning applications [5, 52]. Contrary to that, printed classifiers
[110] and printed NCs aim to realize customized circuitry for near sensor processing in IoT
applications [154, Sec. 2.5], that can be designed and fabricated on-demand and at point of
use.

Aside from the envisioned applications, the components used for the hardware primitives of
printed NCs and silicon-based NCs also differ. Most notably, in silicon-based NCs, the resistor
crossbar is generally realized using some form of voltage-programmable resistors, see [71, 5].
On the other hand, in printed electronics, resistors are realized through printing different
patterns/geometries of conductive ink. See Figure 2.6 for an example of a printed resistor.
While it is possible to tune the conductance of a resistor after fabrication, the conductance value
can only be decreased through this procedure. Hence, post-fabrication tuning capabilities of the
conductance values (see Chapter 6 for details) are not nearly as flexible as for reprogrammable
devices.

Figure 2.6: A single printed PEDOT:PSS resistor of 200 kΩ printed with two layers of width 200 µm and
length 800 µm. The picture was taken by Dennis D. Weller and adopted with permission.

Due to the reprogrammability of silicon-based NCs, the task to be solved does not need to
be known before the fabrication of the circuit. However, this also means that a silicon-based
NC has to support all inverted and noninverted input connections allowing to program positive
and negative weights. This may even become infeasible when possible skip-connections5 should
be considered. Furthermore, since different tasks may require networks of vastly different size,
the predetermined network size may often be inadequate for a given task.

4The designs in silicon-based technologies may be adapted as inverters could for example be implemented more
efficiently through the use of complementary devices, i.e., n-type and p-type transistors.

5A skip-connection is a connection from one layer to multiple other layers aside from its immediate successor.
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In contrast to silicon components, printed components can be fabricated cheaply, on-demand
and task-specific [110]. Through this, the network can be first designed and trained according
to the task. Then, the exact number of neurons required for the task can be fabricated.
Additionally, since the weights are already known at the time of production, depending on the
sign of the weight, only either the inverted or the noninverted connection of each input needs
to be fabricated. Thus, only half of the crossbar resistances are required. However, algorithms
for training classical silicon-based NCs, such as [5], do not leverage this potential (details see
Section 3.1). This calls for the development of training algorithms tailored to harness these
savings and address the unique characteristics of printed NCs.
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Alongside low-cost fabrication on various substrates, affordable, on-demand fabrication is one
of the big promises made by printed electronics. The on-demand fabrication is thereby enabled
through digital printing technologies such as inkjet printing. Similar to classical 3D printing
for manufacturing, digital printing technologies allow custom circuitry to be fabricated at the
point of use. This does not only benefit decentralized, industrial fabrication in small lot sizes,
but may also allow for an on-demand realisation of customized smart devices in the future [130].

Unfortunately, the design of printed circuits is challenging and requires substantial effort.
Classical, digital designs in printed electronics are often not very efficient. This is due to their
large feature sizes (up to three orders of magnitude larger compared to silicon technologies),
high latencies, and low device counts [67]. Hence, the implementation of conventional, digi-
tal architectures in printed electronics has extremely high hardware overheads. Since analog
designs display considerable lower footprints [154, Ch. 6.1], they may offer a promising solution.

However, analog design is usually substantially more challenging, and to truly fulfill the
promise of a personalized and customized fabrication [130], a simple and fast design approach
is imperative. In line with the vision of cheap, on-demand fabrication, the effort of designing
circuits should be similar to fabricating them. This requires design solutions to be lean, and
ideally able to generate a readily printable design from a specification of its desired functionality.
With respect to the applications in the context of the IoT, many tasks may consist of near
sensor processing or simple control. Such tasks can be naturally targeted using machine learning
models directly implemented analog and in hardware, see [110].

Following this idea, this chapter describes an automatic design (training) approach for printed
neuromorphic circuitry. Here, the desired functionality of a design can be expressed as training
data for a (printed) neural network model serving as a blueprint for a (printed) neuromorphic
circuit. By training the neural network model, a design for a printed NC can be obtained
without substantial manual design effort. The learned printed Neural Network (pNN) can
then be mapped to respective hardware primitives of printed NCs, see [156]. Since the circuits
designed this way should be readily printable, this concept paves the way to the on-demand
realisation of customized smart devices. What is more, the use of the neuromorphic computing
paradigm may also offer compelling solutions to other design challenges in printed electronics.
For example, the slow processing speeds of printed components may be compensated by the
inherent parallelism of neuromorphic computations [154, Sec. 4.1].

The rest of the chapter is outlined as follows: First, the related work on training similar
neuromorphic circuitry is reviewed. Afterwards, the pNN, providing the model equations for
learning printed NC, is derived. Then, the training procedure for pNNs is described. Finally,
the training procedure is evaluated by training several pNNs on a set of benchmark datasets.
The chapter closes with a discussion of the results and possible directions for future work. The
results and methods discussed in this chapter are based on collaborative work that led to [156],
and have also partially been reported in [154, Sec. 4.1].
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3.1 Related work on training neuromorphic circuits

Due to the characteristics of the components described in Section 2.6, such as limited ranges
of realizable conductances or the limitation to only realize negative weights approximately, it
is not possible to simply map arbitrary artificial neural networks to NC components. Hence,
an adapted training procedure is required.

In general, the process of training a NCs can be seen as finding the circuit or circuit con-
figuration that approximates a desired functionality. For example, for a given programmable
silicon-based NC, the target is to find a set of conductances values to which the crossbar resis-
tors should be programmed, see [159, 5, 52, 51, 63, 6]. For printed NCs, where the circuit is not
fixed beforehand, training can additionally involve choosing an architecture, i.e., the number
of neurons and layers to print, as well as their connectivity.

In programmable, silicon-based NCs, training can often be tackled through on-device meth-
ods, e.g. [63, 6]. In on-device training, the true system response is directly used as a signal
to adjust the conductances of the NC. However, this is not possible for printed NCs. Here,
after initial fabrication, the conductances can only be changed in a limited fashion.1 Hence,
only model-based off-device training methods, that try to find circuit configurations based on
a model of the circuit, can be employed.

The challenges of off-device training can be divided into two parts. Firstly, an accurate model
for the NC behaviour is required. Secondly, based on the model, a training algorithm needs
to be devised. The training algorithm should thereby find a configuration of (technologically)
feasible conductances, for which the model exhibits the desired behaviour. Only a few works
addressed the training of NCs with components similar to the ones described in Section 2.6.

In [157], a printed NC was proposed alongside a training algorithm. The NC is thereby mod-
elled as a classical artificial neural network with a pPLU activation function (see Figure 2.4).
However, the training approach is not limited to this activation function. To ensure feasibility
of the design, the approach tries to respect the crossbar constraints, i.e.,

∑
iwi ≤ 1. First, the

classic backpropagation [132] algorithm is used to obtain updates for the weights and biases.
Then, the parameter vectors (weights and bias) of each neuron are projected to feasible values
by solving an optimization problem.

Although the crossbar constraints can be guaranteed through this procedure, the technolog-
ical feasibility of the full weight range of [0, 1] is not taken into account. In other words, not
all weights in the range of [0, 1] may be realizable through conductance value configurations.
Furthermore, the work focuses explicitly on NCs with positive weights. This greatly limits
the applicability. Finally, from the computation point of view, the training approach is rather
expensive, as an optimization problem has to be solved for every neuron in every update step.

The training approach developed in [5] is also similarly used by [52, 51, 145] and was de-
veloped for inverter-based NC (with memristor crossbars). It incorporates both, normal and
inverted inputs (expressing negative weights). The weighted sum operation is thereby expressed
through ∑

i

xi · wpi + inv(xi) · wni .

1It is possible to adjust the weights after the initial fabrication by printing on top of the previously printed
resistor. However, this procedure only allows to increase the conductivity and is therefore not suitable for the
initial training. For further details on the post-fabrication tuning capabilities of printed NC see Chapter 6.
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Here, the wp and wn denote positive and negative weights connected to the noninverted and
inverted input respectively.

To accurately model the NC behaviour, both, the positive and negative weights are formed
through the conductances of separate resistor crossbars and can be calculated using (2.5).
In training, the technology constraints, such as limited ranges of feasible conductance val-
ues, are expressed through appropriate transformations of learnable parameters. For exam-
ple, gi ∈ [gmin, gmax] are realized through learnable parameters θi ∈ R that are mapped to
(gmin, gmax) using an appropriately shifted and scaled sigmoid function, e.g.,

gi = (gmax − gmin) · sigmoid(θi) + gmin

The parameters θi forming the conductances gi can then be learned using the classic backprop-
agation algorithm.

Generally, this method is also applicable to train printed inverter-based NCs as discussed in
this work. However, since the approach was developed for programmable (memristor) crossbars,
it assumes a given NC with both inverted and noninverted inputs connected and the presence
of the respective resistors in both paths. It is reasonable to assume that only a subset of
these components and connections is required. For example, having either the inverted or the
noninverted connection and the associated resistor of each input should be sufficient. Then,
the on-demand fabrication capabilities of inkjet printing can be exploited to only fabricate the
required components and connections.

Unfortunately, it is usually not possible to subsume the sum of the noninverted component
x · wp and the inverted component inv(xi) · wn of an input x into a single connection. More
specifically, there exists no w such that for all values of x and arbitrary wn and wp, either
x ·w = x ·wp + inv(x) ·wn or inv(x) ·w = x ·wp + inv(x) ·wn. Only in the special case where
either wn of wp is zero such a solution can be found. This indicates that there exists no simple
way to map the parameters obtained by [5] to a design that only uses either connection. In
other words, training printed NCs using [5] does not permit to leverage the savings associated
with on-demand printing. Consequently, using this approach for training printed NCs would
lead to wasteful designs, where at least half of the resistors and connections could be omitted.

To conclude, on-device training is not possible for printed NCs since they do not offer re-
programmability. Hence, only model-based off-device training can be employed. Off-device
training requires an accurate model of the NC and a training algorithm that is able to respect
technology constraints. Training printed NCs is similar to the training silicon-based NCs with
programmable crossbars since they share common types of constraints. However, printed cir-
cuits can be fabricated customized and on-demand. This allows to fabricate only the required
components, which saves material, production time, as well as area and power. Unfortunately,
these saving cannot be harnessed when printed NCs are trained through training algorithms for
programmable NCs. Thus, modified training algorithms and models are required that, aside
from finding technologically feasible conductance values, allow to express the connectivity to
inverted and noninverted inputs.
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3.2 A model for learning printed neuromorphic circuits

As the first step towards an off-device method for training printed NCs, a suitable model of the
circuit (components) is required. The model should be able to reflect the response of a printed
NC to inputs and allow to derive a configuration of feasible conductances through training.
The feasibility thereby relates to the technology constraints which permit only conductance
values g ∈ [gmin, gmax] ∪ {0} to be printed. Here, the conductance value of g = 0 relates to not
printing the respective resistor. Note that being able to effectively realize g = 0 (through not
printing) also represents a fundamental difference between programmable and printed NCs.
Additionally, the model has to be able to reflect the decision between using either the inverted
or the noninverted version of each input.

The development of the model is discussed in several steps. First, the model assumptions are
stated. Then, data-driven models for the circuits of the activation function and the inverter
function are developed. Based on the models for these components, model equations for the
printed neuron and printed Neural Network (pNN) layer are devised. These then form the
fundamental blocks of pNNs, which serve as models for training printed NCs.

3.2.1 Modelling assumptions

For developing the equations of the pNN model, the following assumptions are made.

1. The inputs xi are in the range of [0, 1].

2. All conductance values gi ∈ [gmin, gmax] ∪ {0} can be fabricated.

3. The outputs of the pNN can be considered distinguishable (measurable) if one output
displays an activation exceeding a threshold T and all other outputs return values below 0.

4. The behaviour of the inverter and activation function circuit can be modelled accurately
through a closed-form expression.

5. The behaviour of the printed NC can be modelled by combining the model equations for
its components.

The first assumption relates to the input voltage range which is assumed to be [0, 1]. This is
motivated by the operating voltage ranges of printed Electrolyte-Gated Transistors (EGTs) [100],
and also represents a suitable choice for printed IoT devices. Furthermore, the circuits for the
printed activation and inverter functions (see Section 2.6) have also been realized using printed
EGTs, see [154, Ch. 4.1] [156]. Hence, all components operate on a similar range of inputs.

The second assumption essentially states the technologically feasible range of conductances.
Note that even though any possible conductance in the specified range may theoretically be
achievable, printed electronics exhibit substantial variations [24]. These variations usually do
not permit realizing desired conductance values exactly. However, the procedure proposed in
this chapter should first be evaluated by its ability to find suitable ideal conductances. Dealing
with variations will be addressed in Chapter 5.

The third assumption is motivated by the requirement to properly assess the correct output
of the NC. For this, a clearly measurable difference between the correct and the incorrect
outputs of the NC is required. This is expressed through the threshold T (e.g., 100 mV). It is
assumed that if the output surpasses T and all other outputs are below 0, the signals can be
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3.2 A model for learning printed neuromorphic circuits

distinguished.

The fourth assumption states that sufficiently accurate, closed-form models of the behaviour
of the nonlinear circuit components, i.e., the activation function and the inverter circuit, can
be obtained. This assumption is similarly made in [5], where the outputs of these circuits are
fitted based on simulation data. The capabilities of modelling these circuit components are
investigated in the following section.

Finally, the fifth assumption relates to how the pNN is constructed from the models of the
components. Note that when connected, the individual circuits may behave differently than in
isolation. For example, when connecting the activation function circuit to the crossbar as in
Figure 2.4a, an additional current passing from the crossbar to the activation function circuit
would need to be considered. However, this current is assumed to be negligible due to high
input impedances at EGT gates, see [154, Sec. 4.1].

3.2.2 Modelling the nonlinear circuit components

Besides resistance crossbars, the core components of printed NC are the inverter and activation
functions circuits. Ideally, their behaviour should be modelled through differentiable, closed-
form expressions that can be directly used for gradient-based learning (see Section 2.5). To
achieve this, a data-driven approach is taken, where models for the behaviour of the respective
circuits are derived from measurement (or simulation) data.

Looking at Figure 2.5b and Figure 2.3b, it can be seen that the measured circuit outputs
closely resemble classical sigmoidal shapes. This observation suggests using appropriately pa-
rameterized tanh functions to model the behaviour of the respective circuits, see [5]. For this
purpose, let D = {(xn, yn)}Nn=1 be the measurement data, and let η? = [η1, η2, η3, η4]

> be a
vector of parameters for the model

ψη(x) = η1 + η2 · tanh((x− η3) · η4).

Then, a suitable parametrization η? for which ψη(x) closely approximates the data D may be
found as

η? = argmin
η

N∑
n=1

(
yn − ψη

(
xn
))2

.

To find the solution η?, any optimization algorithm for nonlinear least squares problems [115,
Sec. 10.3] can be used. The fitting results for the ptanh model and inv model functions can be
seen in Figure 3.1.

Due to the close match between the fitted shape and the measurement data, the respectively
parameterized tanh functions are directly used as models for the circuit behaviour in the
following. Note that this approach may be simply adapted for other (printed) technologies, as
long as the data exhibits a similar, sigmoidal characteristic.
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Figure 3.1: The fits for the ptanh(x) (a) and the inv(x) (b) function based on parameterized tanh-
functions.

3.2.3 Printed neural networks

After obtaining the models for the nonlinear circuit components, the equation for a printed
neuron can be devised. To accurately reflect the behavior of the crossbar (Section 2.6.1), a
concept similar to [5] can be adapted. Here, learning is performed on surrogate parameters from
which the value of the respective conductances can be inferred. Through this, no additional
treatment is required to satisfy the crossbar constraints (

∑
iwi + b ≤ 1) from Kirchhoff’s

law. However, as already discussed in Section 3.1, the approach in [5] was developed for
programmable NC and thus considers both, the inverted and noninverted inputs to be present.
Since this is undesirable for printed NCs, a selection of only one of the connections should be
supported.

To express this selection, learnable parameters called surrogate conductances are introduced.
A surrogate conductance θi encodes the value of a respective conductance through their absolute
value gi = |θi|, while the sign of θi expresses if the associated input should be inverted.2 More
specifically, if θi ≥ 0, xi is directly used as an input, while in case of θi < 0, the inverted input
inv(xi) is used. Consequently, the weighted sum operation can be expressed as

∑
i

wi
(
xi · 1{θi≥0} + inv(xi) · 1{θi<0}

)
with wi =

|θi|∑
i |θi|

,

where 1{·} denotes an indicator function returning 1 if the respective condition is true, else
0. By additionally applying the ptanh activation function, the complete model for the printed
neuron is obtained. See Figure 3.2 for a graph of the output of a single weighted input and the
respective printed neuron function. For given surrogate conductances θ, the printed neuron is
smooth in the input x. However, with respect to the learnable parameters θ, the function is
not smooth at points where θi = 0 due to the indicator function. Nevertheless, the function is
still continuous at those points as wi → 0 if |θi| → 0.

From the equation of a printed neuron, layers and eventually networks can be constructed
analogous to artificial neural networks (see Section 2.4). The equations for a printed layer are

2The surrogate conductance θ0 encoding g0 may always be considered positive as an inversion of V0 (ground)
is not necessary.
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Figure 3.2: The output of the weighted sum operation (left) and the activated weighted sum operation
(right) for a printed neuron with one surrogate conductance θ (with fixed θb = 0 and θ0 = 1).
The colored lines display the output for different values of θ ∈ [−1, 1] indicated through a
color range from blue (-1) to red (+1). This leads to the corresponding weight range of
w ∈ [−0.5, 0.5]. The crossing point between the lines lies at the root of inv at x ≈ 0.046.
Note that the y-axis scaling of the two plots is different.

then given by

ptanh
(
x
(
W � 1{S≥0}

)
+ inv(x)

(
W � 1{S<0}

))
with W = G diag

(
G>1

)−1
,

where S denotes the matrix of surrogate conductances encoding if the respective input is
inverted or not. The matrix G, as before, consists of the conductance vectors of each printed
neuron (stacked column-wise) and is obtained from S by taking the element-wise absolute
value of the entries. Additionally, the ptanh(·), inv(·) and 1{·} function should be understood
as element-wise operations and � denotes and element-wise multiplication. Analogous to an
artificial neural network, a pNN can be constructed by composition of printed layers as in (2.1).
Note that this layer-wise definition is only accurate if all neurons use the same ptanh activation
function. Later, when the activation functions are assumed to vary (see Chapter 5), it may be
better to stick to the underlying neuron-level equations. For brevity, the pNN is referred to as
fθ(x) in the following and θ denotes all learnable parameters, i.e., the surrogate conductances
θi of all layers.

Using these model equations, the crossbar constraints regarding the weights hold by de-
sign. However, the technology constraints regarding the ranges for feasible conductance values
gi ∈ [gmin, gmax] ∪ {0} only hold if the values for the surrogate conductances are chosen appro-
priately. To find a set of feasible (surrogate) conductance values, the next section introduces a
tailored training procedure for pNNs.
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3 Printed Neural Networks

3.3 Training printed neural networks

For artificial neural networks, training relates to finding a parameterization for which the
network expresses a certain desired behaviour. Usually, the desired behaviour is characterized
by a dataset D = {(xn, yn)}Nn=0 of pairs of input-output relationships. After training, i.e.,
finding suitable parameters, the network should be able to identify the correct yn for a given
input xn. Hence, the network approximates the data in some sense while also exhibiting a
certain degree of generalisation to correctly predict unseen instances.

This can be achieved by minimizing the loss function with respect to the parameters of the
network. However, in contrast to artificial neural networks, the parameters of the pNN have
to respect the technology constraints. Hence, these constraints have to be considered in the
training procedure. More specifically, according to the modelling assumptions, the fabrication
of the respective NC is only possible if the conductances gi of the pNN satisfy gi ∈ [gmin, gmax]∪
{0}. Since the surrogate conductances encode the value of the conductances through their
absolute value, |θ| must lie in [gmin, gmax] ∪ {0}. Unfortunately, this leads to a disconnected
domain of θi ∈ [−gmax,−gmin] ∪ {0} ∪ [gmin, gmax] which complicates the training.

To deal with this, the constraints are addressed in two steps. Initially, the training is per-
formed on a connected superset θi ∈ [−gmax, gmax] of the domain through classical gradient-
based learning with projections. Solutions in the infeasible region θi ∈ [−gmin, gmin] are thereby
discouraged through a penalty function. After training, all infeasible values are projected to
zero. All steps are discussed in detail in the following alongside an initialisation strategy for
training. Furthermore, a loss function is introduced to encourage sufficiently distinguishable
outputs. An overview of the main components involved in training pNNs can be seen in Fig-
ure 3.3.

Update rule (Section 3.3.2)

𝜽(𝑡+1) ← 𝐏𝐫𝐨𝐣[ 𝜽 𝑡 + 𝛼(𝑡) ⋅ Δ 𝜽(𝑡)]

Training objective 

min
𝜽

𝐿 𝜽 +
𝜆

dim 𝜽
⋅෍

𝜽
𝑃 𝜃

Initialization of 𝜽(0)

(Section 3.3.4)

Training data Test data

Printed neural network  trainingSetup Evaluation

Evaluation metric (MaA)
(Section 3.4.1)

Loss function 𝐿(𝜽)
(Section 3.3.1)

Penalty function P(𝜃)
(Section 3.3.3)

Hyper-parameters
𝛼,𝑚, 𝜆

Figure 3.3: An overview for the main components of training printed neural networks.
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Figure 3.4: An illustration of the components of the loss function for the different outputs fθ(x)y
and fθ(x)j 6=y. There contribution grows linearly and is bounded below by zero. The loss
function returns zero if the correct output fθ(x)y ≥ T and the other outputs return values
fθ(x)j 6=y ≤ 0. By choosing a nonzero margin m > 0, outputs lying further from 0 and T
can be encouraged to achieve an increased signal separation (shaded lines).

3.3.1 The loss function

In neural network training, the loss function guides the learning process and expresses the
favourability of a set of parameters θ. As discussed earlier in the modelling assumptions
(see Section 3.2.1), a sufficient signal separation should be encouraged to be able to clearly
measure and distinguish different outputs. More specifically, the value of the correct output of
the network fθ(x)y should exceed T and all other outputs should return values below 0. To
express these conditions, a loss function inspired by a multi-class-hinge-loss [32] is constructed
where

L(θ) =
1

|D|
∑

(x,y)∈D

l(x, y,θ),

with

l(x, y,θ) = (m+ T − fθ(x)y)
+ + (m+ max

i 6=y
fθ(x)i)

+.

Here, T ∈ R+ denotes an implementation-specific measuring threshold, m ∈ R+ is a user-
defined parameter called margin and (·)+ = max{0, ·}. Using this loss function, a positive
loss is incurred if the output activation of the neuron associated with the correct class fθ(x)y
does not surpass m+ T (margin and threshold), or the activation of any other network output
fθ(x)j 6=y is bigger than −m. The parameter T should be set to a value above which a signal
is measurable and can be clearly distinguished from 0. The margin m represents a hyper-
parameter and can be used to further improve the separation. A conceptual illustration of the
components of the loss function can be seen in Figure 3.4.

3.3.2 Gradient-based learning with projections

For a given loss function, a pNN can be trained using the classical, gradient-based learning as
described in Section 2.5. The surrogate conductances θi ∈ R thereby represent the learnable
parameters. However, this does not necessarily result in a set of parameters θ respecting
the constraints |θi| ∈ [gmin, gmax] ∪ {0}, which have to hold to ensure the feasibility of the
conductance values.

Thus, the training procedure has to be modified, and after each step t, the elements of the
iterates θ(t) are projected on the interval [−gmax, gmax]. More specifically, a parameter update
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at iteration t is realized by

θ(t+1) ← Proj
[
θ(t) + α(t)∆θ(t)

]
,

where α(t) ∈ R+ denotes the learning rate in interation t and Proj[θ] denotes an element-wise
projection of the entries θ of θ, i.e.,

Proj[θ] =


−gmax θ < −gmax
θ θ ∈ [−gmax, gmax]

gmax θ > gmax.

Such operations are also commonly referred to as clipping, see [56, Sec. 10.11.1]. A conceptual
illustration of the projection can be seen in Figure 3.5.

gmax 0 gmax

gmax

0

gmax

(t)

(t + 1)

Figure 3.5: A conceptual illustration of an update step with projection to ensure the constraints
θi ∈ [−gmax, gmax]. The dashed arrow pointing outside of the region displays the update
α(t)∆θ(t) that is projected back to the closest point in the feasible domain.

Overall, the procedure can be understood as an instance of a gradient projection method [11,
Sec. 2.3.1]. The update direction ∆θ(t) in each iteration can either be obtained as the negative
gradient or through any appropriate optimization algorithm such as Adam [84]. It should be
noted, that the loss function from Section 3.3.1 is not differentiable and the pNN model is not
smooth due to the use of the indicator function 1{·}. Hence, the application of gradient-based
learning may be seen as an heuristic approach.

Through the projection step, all iterates θ(t) (most importantly the final one) exhibit values
lower or equal to the maximum feasible conductance. However, only conductances in the
range of [gmin, gmax] ∪ {0} can be fabricated. To guarantee that the values of all surrogate
conductances are eventually fabricable, surrogate conductances that still have infeasible values
after training, i.e. |θ| ∈ (0, gmin), are projected to 0. After this step, all |θ| ∈ [gmin, gmax]∪{0}
and can be mapped to fabricable conductances in a printed NC. Alternatively, infeasible θ
could also be mapped to either 0 or gmin, depending on which value is closer to |θ|. However,
zero-valued surrogate conductances are generally preferred, since they do not need to be printed
and therefore decrease the required area, material and production time.

Unfortunately, projecting infeasible conductances to zero may likely also decrease the predic-
tive quality of the pNN. To mitigate an eventual degradation, the learning procedure should be
encouraged to avoid the region (0, gmin). This can be realized through an appropriate penalty
function.
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3.3.3 A penalty function to encourage feasibility

Penalty functions are commonly used to express (soft) constraints in optimization problems
[115, Ch. 17]. The idea behind them is to increase the value of the objective function for
infeasible or undesired regions and therefore discourage the optimisation procedure to find
solutions there. In theory, a penalty function would be ideal if all infeasible or undesired
regions exhibit objective function values higher than the objective function value of the worst
feasible point. However, this is often not helpful in practice as the choice of the penalty function
also influences the numerical procedure and thereby the success of finding good solutions.

Therefore, the infeasible regions, as well as the optimisation algorithm used, should be con-
sidered when designing a penalty function. Ideally, the penalty function not only penalizes
objective function values in the infeasible region, but also helps to guide the optimization al-
gorithm back into the feasible region when infeasible iterates are obtained. For gradient-based
optimization, this may be realized by a penalty function which has gradients pointing into
the infeasible set.3 Through this, the iterates θ(t) are pushed away from the infeasible region,
as long as the gradient of the loss function does not overwhelm the gradient of the penalty.
Since the impact of the latter effect is difficult to assess, penalty functions usually receive an
additional scaling factor to tune their contribution to the overall training objective.

In case of the infeasible domain of |θ| ∈ (0, gmin), a penalty function can be constructed
out of two hat functions.4 The hat function are thereby placed in the middle of the infeasible
domain with an appropriate width to cover the region [−gmin, gmin] leading to

P (θ) =

(
1− |2θ − gmin|

gmin

)+

+

(
1− |2θ + gmin|

gmin

)+

. (3.1)

The smoothness at the boundary of the feasible domain can additionally increased by squaring
the hat functions. An illustration of the resulting penalty functions can be seen in Figure 3.6.

gmin 0 gmin

0

1

gmin 0 gmin

0

1

Figure 3.6: Penalty functions for avoiding the region |θ| ∈ (0, gmin). The left displays (3.1), i.e. P (θ),
while the right displays P (θ)2 for increased smoothness at −gmin, 0 and gmin.

By adding the sum of a penalty function for each surrogate conductance to the loss function,
a combined training objective can be constructed, i.e.,

min
θ

L(θ) +
λ

dim(θ)

∑
∀θ ∈ θ

P (θ),

3Note that this is only the case for minimization tasks as the objective function decreases in the direction of
the negative gradient. For maximization tasks, the gradient of the objective function should point into the
feasible set.

4This construction is loosely inspired by penalty methods for weight quantization, see [152].
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where λ ∈ R+ denotes a scaling parameter for the contribution of the penalty term. The length
dim(θ) of θ is used to normalize the influence of a different number of parameters for different
models. Ideally, the contribution of the penalty function should be scaled such that it does not
influence the learning too much at the beginning, but encourages feasibility towards the end of
the training when the loss function values become low. For this reason, λ should be considered
a hyper-parameter that has to be tuned.

To conclude, by optimizing the combined objective under an appropriate choice of λ, the
gradient-based learning procedure should avoid iterates θ(t) with entries in (0, gmin) while
training. If this is successful, projecting infeasible values to zero should not significantly impact
the final performance of the pNN.

3.3.4 Parameter initialisation for learning

As discussed in Section 2.5, the initialisation of the parameters can greatly influence the suc-
cess of gradient-based learning. While initialisation close to optimal parameter vectors may
trivially lead to a faster convergence, careful initialisation can also avoid unfavourable learning
dynamics [55]. Such effects are common when the objective function contains sigmoidal-shaped
components as they have saturation regions where gradients are close to zero. To avoid such
regions in the initialisation, the weights are usually initialized at random and rescaled such that
the weighted sum does not saturate the activation function at the beginning of the learning
procedure [55]. Note that in modern artificial neural networks, such problems may also be
addressed through normalisation operations such as batch normalisation [75]. However, since
implementing eventual shifts from normalisation operations in printed NC would require ad-
ditional circuitry, it should be avoided. To nevertheless improve the training dynamics, an
initialisation strategy for the parameters of pNNs is proposed.

According to the crossbar constraints (see Section 2.6), the weights of a neuron sum up to a
value smaller or equal to one. Hence, the weights formed through the surrogate conductances
are always scaled down if more inputs are present. Through this, a weight-scaling similar to
[55, Eq. (1)] is achieved naturally. The values of the surrogate conductances gi can therefore
simply be initialized uniformly around zero with a constant deviation. Since printed NCs can be
expected to contain only a few neurons in each layer (e.g., ten), the mean of the conductances
may not reflect the expected value of the distribution well and lie too far from zero. To
address this, the values can be centered after initialisation by subtracting the empirical mean.
Furthermore, since the surrogate conductance θ0 (representing g0) is mainly used for decoupling
the weights (see Section 2.6), it should be initially set to the highest possible value θ0 = gmax
in order to allow for maximum decoupling.

Finally, the initialisation of the surrogate conductance for the bias gb plays an important role
due to the characteristics of the ptanh activation function. It can be seen that ptanh(0) ≈ −0.4,
and ptanh(ptanh(0)) ≈ −0.95 (see Figure 3.7). This means that for the initially small weights
around zero, the activations of neurons in subsequent layers will quickly drift into the saturation
region of the activation function. However, this region is unfavourable for gradient-based
learning, as all inputs produce similar outputs and the calculated gradients may be small (see
[56, Sec. 8.4]). Hence, gradient-based learning may progress very slowly.

To mitigate this effect for the initial training steps, the input independent bias b can be set
to the root of ptanh initially. Here, the derivative of ptanh is the highest, and the distance to

30



3.3 Training printed neural networks

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0
pt

an
h(

x)

ptanh(0)

ptanh(ptanh(0))

1.0 0.5 0.0 0.5 1.0
x

0

2

4

6

8

10

pt
an

h'
(x

)

Figure 3.7: The ptanh activation function (left) and its derivative (right). It can be seen that for
an activation close to zero, the activations of subsequent layers strongly drift towards the
negative region. Here, gradient-based learning may progress slowly since the gradients will
be close to zero.

the saturation region is maximized due to the point-symmetry of the tanh. Since the bias b
cannot be chosen directly but depends on all conductances of the respective neuron, θb must
be set accordingly instead. Assuming that the other θi have been initialized already, this can
be achieved by first reformulating the equation of b as a function of θb through

b =
|θb|∑

i |θi|+ |θb|
⇐⇒ |θb| = b

∑
i

|θi|+ b|θb|

⇐⇒ |θb| − b|θb| = b
∑
i

|θi|

⇐⇒ (1− b) · |θb| = b
∑
i

|θi|

⇐⇒ |θb| =
b

1− b
∑
i

|θi|.

Since b !
= ptanh−1(0) > 0, θb must be positive. The initialisation of the surrogate conductance

is thus given by

θb =
ptanh−1(0)

1− ptanh−1(0)

∑
i

|θi|.

Through this choice of θb in conjunctions with θ0 = gmax and θi initialized small and uniformly
around zero, the initial neuron activations should be closely distributed around zero and benefit
the training dynamics at the beginning of the training process.
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3.4 Experiments

To evaluate the learning performance and expressiveness of the pNN models, they are trained
on several small classification tasks from the UCI machine learning repository [42]. In total,
nine datasets (eleven classification tasks) are considered. Namely Acute inflammation [34],
Breast Cancer Wisconsin, Energy efficiency [144] (two tasks), Iris [4, 54], Balance Scale, Seeds
and Vertebral Column (two tasks). All tasks are learnable with small models and may be com-
parable in difficulty to simple processing tasks. Since not all tasks can be solved with 100%

accuracy, the results of the learned pNNs are compared to a random guess baseline (most fre-
quent training data class) and a standard (hardware-agnostic) neural network implementation
of the same architecture. This network is referred to as reference NN. For the reference NN, a
standard tanh activation function is used instead of the ptanh activation function. Note that
for the reference NN, as well as for the pNN, activation functions are applied to the output.

For all datasets, the processed versions of the data provided in [53] were used and the features
were normalized to a range of [0, 1]. Furthermore, train-test-splits with 66% of the data for
training and 33% for testing were performed.

3.4.1 The evaluation metric

Generally, classification tasks are most naturally evaluated using the accuracy metric, i.e., the
fraction of correctly classified instances. However, due to the assumed measuring limitations,
the aspect of signal discrimination also needs to be taken into account. The trained models
are therefore evaluated with a more strict version of the accuracy called the Measuring-aware
Accuracy (MaA) in the following. Assuming the class variable y is encoded as natural numbers
y ∈ N, the MaA is defined as

MaA(fθ(·),D) =
1

|D|
∑

(x,y)∈D

1{i==y} · 1{fθ(x)y ≥ T} · 1{∀j 6=i | fθ(x)j ≤ 0},

where i = argmaxj fθ(x)j and D denotes the evaluation data.

The first component, 1{i==y}, expresses if the output that represents the label y returns
the highest value and relates to the standard accuracy. Besides the correct classification, the
MaA also requires the correct output of the network to exceed the measuring threshold T

through 1{fθ(x)i ≥ T}, and all other outputs have to return values below zero which is expressed
by 1{∀j 6=i | fθ(x)j ≤ 0}. The proposed evaluation metric is thus more strict than the standard
accuracy and takes the output signal strength and separation into account. Consequently, the
achieved accuracy of a neural network may be higher than its MaA.

Note that the MaA, just like the accuracy, can provide misleading results about the model
performance when it comes to strongly imbalanced datasets. For example, on a dataset with
two classes and a 9 : 1 ratio, a 90 % accuracy can already be achieved by always guessing the
majority class. It is thus important to always consider the accuracy (or the MaA) in relation
to the accuracy achieved by such simple strategies. Nevertheless, while accuracy values of
zero would be extremely uncommon by random chance, MaA values of zero may be frequently
observed due to an insufficient signal separation. Beating the accuracy of a random guess
baseline is therefore usually simple and expected, while beating such a baseline on the MaA
should happen less frequently by random chance.
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3.4.2 Hyper-parameter configurations and learning

To find good networks for each task, a grid-search over the initial learning rate α, the penalty
coefficient λ and several seeds is performed. All networks are trained for 200 (full-batch) steps
and the learning rate is halved every 50 epochs. For all experiments, the same architecture
#inputs− 4− 3−#classes neurons with activation functions after each layer (including the
output) is used.

Training runs are canceled if the training MaA did not exceed the baseline of the dataset
after 50 epochs, or the training MaA did not improve over 20 consecutive updates (see early
stopping [56, Alg. 7.1]). After training all models, the best model is selected based on the
maximum training MaA after projecting the parameters to feasible values. As the penalty
function, (3.1) is chosen. The initial learning rate α, penalty coefficient λ and margin m

are chosen as one of α = {0.01, 0.1, 1}, λ = {0, 0.001, 0.01, 0.1} and m = {0.0, 0.1, · · · , 0.9, 1.0}
respectively. Additionally, all experiments are run with 10 different random seeds leading to a
total of 3 × 4 × 11 × 10 = 1320 configurations for each dataset. Since the reference network
does not have any infeasible regions and thus has no need for the penalty function of (3.1), λ
is used as a parameter for weight decay (see [56, Sec. 5.2.2]) instead.

For the pNNs, the surrogate conductances θi, are drawn uniformly from U [−0.01, 0.01] and
θ0 and θb are initialized as described in Section 3.3.4. The surrogate conductance θ0 is fixed
to θ0 = gmax during training to allow for maximum decoupling of the weights throughout the
entire training process. The parameters of the reference network are initialized according to
the pytorch [117] default for linear layers.

For better numerical stability, the values of the surrogate conductances are normalized to
a range of [0.01, 1] representing a range of feasible resistances from, e.g., 10MΩ to 100kΩ.
Additionally, the measuring threshold is set to T = 0.1 relating to 100mV. For the parameter
updates (optimizer) Adam [84] is used with the parameter configuration recommended by the
authors (β1 = 0.9, β2 = 0.999 and ε = 10−8). All neural networks are implemented using the
pytorch [117] framework.

3.4.3 Benchmark results

The MaA results for all datasets can be seen in Table 3.1, and the hyper-parameter configura-
tions of the best models can be found in Table 3.2.

The first, main observation is that all pNNs surpass the baseline result. Secondly, almost
all pNNs reach an overall comparable performance to the reference networks or even surpass
them on some tasks. Furthermore, projecting infeasibly small conductances does only lead to a
mild degradation in the MaA [see pNN versus pNN (feasible)]. Especially for printed networks
trained with a higher values of λ ≥ 0.1, the projection leaves the results almost unchanged, see
Seeds, Tic-Tac-Toe Endgame and Mammographic Mass. The only exception to this is Energy
efficiency (y1). However, not all best performing networks chose high penalty terms. This
indicates that the penalty term may also hinder the learning process in some cases and not
lead to the overall best fabricable (after projecting infeasibly small g to zero) results. The
penalty coefficient λ should therefore always be chosen through a grid-search routine. The
same is true for the parameter m for which an overall wide range of values was chosen by the
best networks (see Table 3.2).
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Finally, note that overall better results might be achievable through training for more epochs
or choosing the network architecture on a per dataset basis. Also, a more careful hyper-
parameter tuning procedure may lead to better results, as some of the best networks chose
hyper-parameter settings on the boundary of the provided ranges, such as α = 1 and λ = 0.
This is even more prominent for the reference network, where 8 of the 11 networks chose a
learning rate of 1. Hence, choosing an extended range for the learning rate may improve the
results.

Dataset Architecture pNN pNN (feasible) reference NN random guess

neurons/layer Train Test Train Test Train Test

Acute Inflammations 6-4-3-2 1 1 1 1 1 1 0.475
Balance Scale 4-4-3-3 0.9354 0.8986 0.9354 0.9034 0.9163 0.8889 0.4396

Breast Cancer Wisconsin 9-4-3-2 0.9765 0.9697 0.9808 0.9697 0.9765 0.9697 0.6667
Energy efficiency (y1) 8-4-3-3 0.8794 0.878 0.8813 0.874 0.8696 0.8583 0.4331
Energy efficiency (y2) 8-4-3-3 0.9047 0.9094 0.9163 0.9094 0.9105 0.9055 0.4646

Iris 4-4-3-3 0.97 0.96 0.98 0.94 0.97 0.98 0.28
Mammographic Mass 5-4-3-2 0.8351 0.8365 0.8351 0.8365 0.818 0.8113 0.5503

Seeds 7-4-3-3 0.95 0.9429 0.95 0.9429 0.9571 0.9571 0.2714
Tic-Tac-Toe Endgame 9-4-3-2 0.9938 0.9716 0.9938 0.9716 0.9922 0.9716 0.6404

Vertebral Column (2 classes) 6-4-3-2 0.8599 0.8738 0.8599 0.8738 0.8551 0.8835 0.6893
Vertebral Column (3 classes) 6-4-3-3 0.7874 0.8447 0.7874 0.835 0.7681 0.7864 0.5146

Table 3.1: The benchmark results of several trained pNNs. For each dataset, a grid-search was per-
formed over different initial learning rates α, seeds, penalty function coefficients λ and mar-
gins m. Note that only the projected pNNs could be fabricated.

Models pNN reference NN

Parameters α m λ α m λ

Acute Inflammations 1.00 0.7 0.000 1.0 0.1 0.000
Balance Scale 0.10 0.4 0.010 1.0 0.7 0.000
Breast Cancer Wisconsin 0.10 0.5 0.001 1.0 0.6 0.000
Energy efficiency (y1) 0.10 0.5 0.100 1.0 0.4 0.001
Energy efficiency (y2) 0.01 0.3 0.010 1.0 0.7 0.001
Iris 0.01 0.9 0.001 1.0 0.7 0.010
Mammographic Mass 0.10 0.9 0.100 1.0 1.0 0.001
Seeds 0.01 0.5 0.100 1.0 0.5 0.001
Tic-Tac-Toe Endgame 0.10 0.7 0.100 0.1 0.7 0.000
Vertebral Column (2 classes) 0.10 0.7 0.100 0.1 0.7 0.000
Vertebral Column (3 classes) 0.01 0.1 0.001 0.1 0.9 0.000

Table 3.2: The parameter configurations of the best neural networks.

To conclude, the proposed training procedure allows to find pNNs that achieve similar perfor-
mances to classical neural networks on a set of small benchmark datasets. Hence, also simple,
near-sensor processing tasks, as they may come up in IoT applications, could be performed
using printed NCs based on pNNs.
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3.5 Conclusion and directions for future work

The unique feature of on-demand fabrication of printed circuits allows to fabricate them at
point-of-use. However, designing circuitry in printed electronics is still challenging. To tackle
this problem, this chapter proposes the use of printed NCs to obtain on-demand designs of
printed circuits through an automatic design approach. For this purpose, pNNs were devel-
oped as a model for printed NCs. A pNN model can then be used to learn designs of printed
NCs through gradient-based optimisation. After learning, the obtained design can be mapped
to the respective hardware primitives of printed NCs and readily printed. Through this proce-
dure, a lean, on-demand design solution for printed circuits is realized. Aside from the benefits
of lean design, neuromorphic computing offers other, additional benefits such as native analog
computing. Furthermore, the inherent parallelism of the computation may help to mitigate
problems of slow processing speeds in printed electronics. The proposed learning algorithm
for printed NCs was evaluated by training pNNs on several small benchmark datasets of clas-
sification tasks. The trained models achieved comparable performance to hardware-agnostic
networks of similar architecture.

Several aspects of the proposed procedure may hold potential for improvements. One of these
would be to directly consider the projection of infeasibly small conductance values (to zero) at
training time. Through this, the penalty term and the tuning of its associated hyper-parameter
could be omitted. In turn, this could encourage more zero-valued conductances in training,
which would save production time and material when fabricating the respective printed NC.
Unfortunately, gradient-based learning cannot be directly applied in such cases, as there is a
whole region for which no useful gradient information could be obtained (the gradient would be
zero in the entire region). To address this issue, heuristics like the straight-through estimator [9]
could be employed. Here, the network is subjected to the projection in the forward pass, while
the backward pass for the parameter update ignores the projection and treats it as an identity.
Even though this estimator provides biased information of the gradient, it has been shown to
work well in practice, see [146].

In summary, the proposed learning procedure finds a set of conductance values with which
the desired functionality can be realized. Regarding automatic circuit design, this could be seen
as component sizing with only limited aspects of topology selection, i.e., to connect inverted or
noninverted inputs. However, the choice of a suitable neural network architecture for a given
task was left to the designer for now. Unfortunately, this choice is seldom straightforward and
influences the achievable accuracy and success of training. Additionally, in the case of printed
NCs, the network architecture directly influences the required production time, material and
area requirements. Hence, finding suitable network architectures is even more important for
printed NCs and should be addressed in the future. A promising approach for this may be
to adopt techniques from the field of neural architecture search, see [45]. Here, a wide range
of techniques have been proposed to find good topologies for classical neural networks and
some may only require little modification to be applied to pNNs. Furthermore, other desired
properties of the pNNs (and/or the printed NCs) may be additionally used to guide the network
architecture search. For example, trying to find the smallest and most energy-efficient topology
that achieves a certain accuracy on a given task.

Beyond that, the on-demand fabrication capabilities of inkjet printing could allow even more
flexibility in the design of the printed NC. Since all devices in the NC can be fabricated
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independently, also the design space of the devices (resistors and transistors) of the activation
and inverter function could be included in the training process. This would allow customized
and learnable activation and inverter functions for each neuron. For this purpose, the pNN
model equations would have to be extended with parameterized models for these circuits, i.e.,
models of the output given the parameterization of the components (resistors and transistors)
and the input.

Aspects such as the power consumption may also be considered, either directly in training by
encouraging low conductance values, or in a post-training step. Here, the fact could be leveraged
that the weights of the pNNs only depend on the ratio of the conductances. Hence, scaling
down all conductances leaves the weights unchanged. For example, the smallest conductances
of a neuron could be directly scaled down to the minimum feasible value. This approach
would be most effective if all nonzero conductances have similar values. The occurrence of such
configurations should thus be encouraged through appropriate penalty terms.

Aside from sizing and topology optimization, layout generation, i.e., placement and routing
of the circuit components is also an aspect that should be considered for the on-demand reali-
sation of printed NCs. Since pNNs are based on densely connected artificial neural networks,
they display a homogeneous structure and exhibit high connectivity. As the circuits can only
be routed on a single plane [127], printing wire cross-overs is necessary and many overlapping
connections can be expected. Unfortunately, these wire cross-overs influence the conductances
of the connections. While general approaches for routing and placement of inkjet-printed cir-
cuits with cross-overs have been proposed, see [127, 128], the homogeneity of the components
and the layer-wise connectivity of neural networks could be exploited to develop a simpler,
knowledge-based solution for printed NCs. For example, the conductances that can be antici-
pated from cross-overs could be attributed to the conductances of the crossbar resistors. These
may then be sized down appropriately.

Finally, one of the major problems of printed electronics is its high variations [24]. These
variations may also strongly influence the accuracy achieved by printed NCs. A classic way to
deal with variations is to consider a quantization to somewhat reliably fabricable values (as in
digital computing). This however also decreases the expressiveness of the design and usually
requires a higher device count to achieve similar functionality. As an alternative, Chapter 5
investigates techniques to improve the robustness of pNNs to variations of the conductances and
circuit components. However, first, a framework for modelling variation in printed components
such as the activation function and the inverter function is required. The development of such
a framework is the topic of the next chapter.
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Modelling

One of the major problems of fabricating printed circuits is their large variations [24]. It is
therefore imperative to consider these variation when designing printed circuitry. As a first step,
variation models for printed devices need to be developed to simulate and validate designs. The
common practice for developing such variation models is to collect a set of devices or circuits, for
example transistors, and extract their parameters using a device model. Then, the data of the
extracted parameters of the different devices is approximated through a normal distribution,
see [133]. Even though this is often sufficient for silicon-based technologies, where variations
can be attributed to specific effects based on the underlying physics, it may fail to capture
aspects of variations in other technologies such as printed electronics [126].

In printed electronics, the fabrication process, and therefore the sources of variations [139],
are fundamentally different. The interactions between these unique sources of variation may
manifest in complicated correlation structures and non-classical distribution shapes in the de-
vice model parameters [126]. Furthermore, models of printed devices, e.g. [100, 125, 58],
frequently contain fitting parameters whose relationships to the other device model parameters
are often not understood. Their variations can thus only be expressed on a purely empirical,
data-driven basis.

To address these challenges, this chapter proposes a flexible modelling framework for devel-
oping a variation model based on device measurements. The described framework extends the
classical modelling flow, see [133], by a procedure for dealing with fitting parameters through
regression models and providing a data-driven approach for the derivation of a variation model.
Through this added flexibility, the framework is able to model various distribution shapes and
correlation structures that may be observable in emerging technologies such as printed elec-
tronics.

The remainder of this chapter is organized as follows: First, a background on classical
variation modelling and the additional challenges for modelling variation for printed electronics
are discussed. The discussion is followed by a brief review of the core methodological concepts
of variation modelling. Then, the proposed framework is introduced. It consists of three
steps relating to data transformations, parameter reduction via regression and distribution
modelling using Gaussian mixture models. To evaluate the methodology, a variation model of
an inkjet-printed transistor is derived. The extracted model is then evaluated by comparing
the distribution of key performance parameters to those of fabricated and measured devices.
To evaluate the usefulness of the model on the circuit level, measurements of printed physically
unclonable function circuits are compared to their simulation results.

The results and methods discussed in this chapter are based on collaborative work that led
to [126] and have also partially been reported in [124, Sec. 3.4].
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4.1 Preliminaries and background

Modelling and assessing variations is integral for optimizing designs and increasing manufac-
turing yields. However, simulating the effects of process variation and closely reflecting them
in design automation tools is challenging [15, 133]. This is not only true for modern VLSI
technologies [88, 89, 122], but even more so for less mature, emerging technologies such as
inkjet-printed electronics [24]. In silicon-based technologies, process variations are divided into
local and global variations [119]. All variations from lot-to-lot, wafer-to-wafer or chip-to-chip
apply to all transistors and are therefore referred to as global variations. The with-in chip
variations are referred to as local variations [79, 92]. Many modelling and design approaches
therefore directly address these specific characteristics, see [129, 134, 96].

In inkjet-printed electronics, sources of variations cannot be easily divided into local and
global variations. This is due to the characteristics of the manufacturing process. Here, all
devices are manufactured (printed) individually in multiple additive process steps. In each of
these steps, random variations may originate from variations in the ink, substrate or manu-
facturing tools influencing the dispersion of the ink on the substrate. Additional sources of
variations include droplet jetting oddness, satellite drops, wetting and missing droplets (details
see [139]). These unique characteristics severely limit the applicability of classical variation
modelling approaches that specifically target silicon-based manufacturing characteristics [126].

Another aspect that complicates variation modelling for such emerging technologies is the
lack of understanding of the device physics. This often only permits semi-empirical models
employing fitting parameters, see [100, 125]. Since the fitting parameters are derived through
a deterministic procedure (fitting) given the other parameters, it is often reasonable to assume
that variations may be attributed to variations in the other (physical) parameters. However,
the concrete relationship may be complicated.

Furthermore, depending on the requirements for their specific envisioned application domain
and environment, e.g. IoT [130, 24] or biomedical applications [39], printed electronics may be
fabricated using a wide range of different ink compositions and substrates. Hence, methodolo-
gies for variation modelling of printed electronics need to be general enough to address various
correlation structures induced by the interaction of different materials.

Altogether, these characteristics suggest the use of an empirical variation modelling proce-
dure. The procedure should be flexible enough to address various distribution characteristics
and correlation structures among the device parameters. Furthermore, it should be able to
adequately deal with fitting parameters present in semi-empirical device models.

4.1.1 Related work on variation modelling

There are two main types of variation models used to assess the robustness and yield of designs,
namely corner models and Monte Carlo models [133].

Corner models characterize typical, best-case and worst-case behaviour (corner-cases). These
corners may thereby be extracted through, e.g., computing extreme values of for performance
parameters or using fixed-sigma variations [22]. Unfortunately, especially fixed corner models
are often not very accurate and make overpessimistic predictions. In turn, these inaccuracies,
in combination with simplifying assumptions, often lead to unnecessarily pessimistic design-
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choices [105]. Nevertheless, due to corner models being quick to evaluate, they are often
employed in practice.

On the other hand, Monte Carlo models try to estimate the probability distribution of
the device model parameters. These estimated distributions can then be used to directly
approximate the distribution of performance metrics or estimate the failure rate of designs.
Note that a Monte Carlo model can be used to estimate any performance metric of interest.
This makes them more flexible and more general than corner models. In fact, Monte Carlo
models can be used to generate corner models by characterising the respective corners through
the probability distribution, e.g., their 3-σ behaviour. However, performing a Monte Carlo
analysis is generally more involved than using corner models.

A typical approach to the development of a Monte Carlo model is carried out as follows:
Initially, a set of device model parameters sensitive to process variation are determined [134].
Then, the empirical distribution of these sensitive parameters is obtained by measuring the
current-voltage (or capacitance-voltage) characteristics of several fabricated devices. Based on
the measurements, a distribution is fitted for each parameter [133]. Common choices to model
the device model parameters are thereby uniform or normal distributions [122, Sec. 1.2], see
[112, 134]. However, these distributions may not always reflect the characteristics of the param-
eters well, and [135] also used the exponential, log-normal and Lorenz (Cauchy) distribution to
model parameters extracted from organic thin film transistors. Using different distributions,
e.g., normal and log-normal for characteristics at different voltage regions was also suggested
[138]. In [129], multivariate normal distributions, along with data transformations such as the
logarithm or Box-Cox transformations, were employed. Whether to apply a transformation
was decided based on a test for normality.

Since often only a few device model parameters are sensitive to variations [134], efforts
were made to automatically reduce the number of parameters needed to express the observed
variations through parameter reduction techniques. Here, approaches like principal compo-
nent analysis [142, 26] or step-wise backward selection techniques [122, Sec. 4.2] have been
employed. These methods eliminate parameters that do not contribute significantly to the
observed variations.

To address the aforementioned challenges in variation modelling for printed electronics, the
use of simple distribution models may not be sufficient [126]. Hence, an overall more flexible
modelling procedure is required. The procedure should be able to deal with fitting parameters
in semi-physical models and allow to model sufficiently complex distribution shapes.
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4.2 A generalized variability modeling framework

In this section, a generalized, three-step variability modelling approach is described. Starting
with a dataset of measured current-voltage characteristics of devices or components, device
model parameters are extracted, see [125]. Then, in the first step, an appropriate transforma-
tion for the model parameters is chosen in order to prevent infeasible values. Furthermore, the
data is standardized to achieve unitless quantities. In the second step, the set of device parame-
ters are divided into two disjoint subsets representing the independent parameters (that induce
variation) and the dependent parameters (empirical fitting parameters). Variations observed in
the dependent parameters are then directly attributed to variations in the independent param-
eters via a regression model. In the third step, a joint probability density of the independent
device parameters is estimated. For a flowchart of the complete methodology see Figure 4.1.
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Figure 4.1: The complete flow of model development and Monte Carlo simulation.

After these three steps, the model development process is completed and the model can be
used for data generation and simulation. For data generation, samples of the independent
parameters can be drawn by sampling from the Gaussian Mixture Model (GMM). The drawn
samples can then be used to predict the dependent parameters. The transformations applies in
the first step, e.g. standardisation, are inverted to obtain samples from the original distribution.
These samples can then be used to approximate various device characteristics such as statistical
moments or probabilities for the violation of specifications (e.g., failure rate estimation) through
Monte Carlo methods.

4.2.1 Parameter transformations

Many of the device model parameters reflect physical quantities which have a naturally bounded
value range. For example, while threshold voltages of transistors can be positive or negative,
conductance values can only be nonnegative. To respect such constraints in modelling, one of
two approaches can be used.

The first approach would be to model the distribution of each device model parameter by
an appropriate distribution that respects its value range, see [135]. Even though the individual
choice of distribution can often be motivated by physical knowledge, deriving a joint, nonfactor-
izing1 probability distribution can be challenging. However, jointly modelling the parameters

1A joint probability density p(a, b) factorizes if the individual random variables are statistically independent,
i.e., p(a, b) = p(a) · p(b).
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is necessary to express possible correlations between them.

Alternatively, the parameters can be transformed through suitable (invertible) functions
before modelling their joint distribution, see [129]. In this case, the applied transformations are
inverted after sampling a set of parameters. The restricted inverse images of the transformation
should then guarantee valid value ranges. The expressiveness of this approach is limited by the
complexity of the applied transformations and the distributions used. In this work, only basic
transformations will be employed, while a flexible GMM (see Section 4.2.3) approximates the
joint density of the transformed variables.

To give an example of a commonly used transformation, consider a positive valued param-
eter z. By modelling ln(z) ∼ N (µ, σ2) and then inverting the ln(·) transformation for the
sampled values through exp(ln(z)), only positive samples will be generated. Another useful
transformation, that is however not used in this work, is the sigmoid function (1+exp(−x))−1.
It can be used to achieve values in the range of (0, 1) or any other bounded interval by shifting
and scaling the range appropriately. Hence, choosing appropriate transformations allows to
express bounds on the sampled values.

When the probability distribution of multiple physical quantities of different units should
be estimated jointly, it is generally beneficial to standardize (or normalize) each individual
variable. To standardize a variable z, the (empirical) mean µz of the variable is subtracted
from z and the result is divided by its (empirical) standard deviation σz, i.e.,

zstandardized =
z − µz
σz

.

Standardisation removes the unit or scale of a variable and improves the stability2 of the
numerical operations applied in the following. Note that the standardisation can be readily
inverted by multiplying the result by the standard deviation σz and adding the mean µz.
Through this, the original scale/unit of the variable can be restored.

4.2.2 Reducing the number of variation parameters through regression

Generally, all device model parameters are required for a complete variation model. However,
it is usually assumed that only a smaller number of parameters/effects cause the observed
variations [134]. Furthermore, purely empirical fitting parameters in device models should
usually not be considered for variation modelling as their values are deterministically calculated
given the values of the other parameters (in the fitting procedure).

To limit the parameters responsible for the variation and avoid having to model fitting pa-
rameters, the device model parameters are divided into two disjoint subsets. On the one hand,
the (independent) variation parameters denoted by X , and on the other hand the dependent
parameters Y. The set X denotes the parameter for which variations should be modelled, while
the variations in Y (dependent parameters) should be explained by variations in X . In other
words, only the variables X are considered to be responsible for the observed variations. The
assignment of the device model parameters to these two sets depends on the specific device

2Consider two variables that should be modeled in a multivariate normal distribution. If the scales of the
variables are vastly different, a high condition number [143, Sec. 12] of the covariance matrix can be expected.
This can lead to numerical problems when the matrix has to be inverted, for example, when evaluating the
probability density function of a multivariate normal distribution.
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and should be left to the user. However, pure fitting parameters would be classical candidates
for dependent variables Y.

To obtain the values for the variables Y given the variables X , a regression model for each
parameter in Y can be fitted. Since the regression model should be expressible in common
simulation languages (e.g., Verilog-A or SPICE), a linear regression model, see [13, Ch. 3], can
be used for simplicity.

Assuming a given dataset D = {(xn, yn)}Nn=1 of (possibly transformed) device model pa-
rameters with vectors xn (from X ) of independent device model parameters and a dependent
parameter yn (from Y), linear regression tries to approximate the values of yn by a linear combi-
nation of basis function ψi(x) of xn. Given a set of basis functions ψ(x) = [ψ1(x), ψ2(x), · · · ]>
and a vector of coefficients w = [w1, w2, · · · ]>, the linear regression model can be expressed
by ψ(x)>w. Note that even though the function ψ(x)>w is linear in w, it is not necessarily
linear in x. To see this, consider the following simple example. Let x = [x1, x2]

> and let
ψ(x) be the function generating all monomial combinations of the arguments x up to degree
two. Then, ψ(x) generates the basis functions ψ(x) = [1, x1, x2, x1x2, x

2
1, x

2
2]
>. In this case,

the linear regression model is able to express all polynomials of the inputs x1 and x2 up to
degree two.

To find the optimal vector of coefficients w?, the sum of squared errors between the linear
regression model ψ(xn)>w and the respective yn is minimized with respect to the parameters
w for all data points D = {(xn, yn)}Nn=1, i.e.,

w? = argmin
w

N∑
n=1

(
ψ(xn)>w − yn

)2
.

By using more basis function ψi(x), the expressiveness of the model can be increased. However,
this also requires more coefficients wi. Often, not all basis functions provided to the model are
required, and using too many basis functions can quickly lead to over-fitting [13, Sec. 1.1]. It is
therefore beneficial to select only a relevant subset of the basis functions. This can be achieved
through adding an additional penalty term to the optimization problem and solving

w? = argmin
w

N∑
n=1

(
ψ(xn)>w − yn

)2
+ λ‖w‖1,

where λ ∈ R+ is a user defined parameter adjusting the strength of the penalty. By penalizing
the absolute values of the coefficients, finding sparse solutions w? with zero-valued coefficients
for less important basis functions is encouraged. This allows the number of basis functions to
be chosen less conservatively, since basis functions that do not contribute significantly to the
model quality will obtain zero-valued coefficients. The latter formulation of linear regression is
also known as lasso (least absolute shrinkage and selection operator) regression [64, Sec. 3.4.2].
Note that the independent variables X should be standardized before using lasso regression,
otherwise, variables with overall smaller values will naturally require higher coefficients wi

compared to variables with higher values. This would in turn lead to them getting penalized
stronger irrespective of their predictive power for Y.

To find a set of suitable basis functions ψ(x) and a penalty parameter λ, a grid-search3

3Grid-search refers to an exhaustive search over all combinations of a given set of options. In case of the
lasso regression model, this could for example include trying out all combinations of a set of different basis
functions ψ(x) and penalty parameter values λ.
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procedure in combination with cross-validation [64, Sec. 7.10] can be used. While the original
linear regression problem can be solved analytically through the normal equations, solving
the lasso problem is not straightforward. Fortunately, software packages, such as [118], offer
efficient solvers.

Through regression models, all dependent variables can be expressed as functions of the
independent variables X . Hence, all variations in the final model will only be induced by
variations in the independent variables X .

4.2.3 Variation modelling using Gaussian mixtures models

Emerging technologies may display various types of correlations between their device param-
eters. Accurately modelling such effects thus calls for a model that is able to support a wide
range of possible correlation structures and distribution shapes [126]. Additionally, to support
the integration into simulation frameworks, the implementation of the variation model should
require only basic building blocks supported by commonly used simulation languages such as
Verilog-A or SPICE.

To achieve this, a GMM [13, Sec. 9.2] is used to represent the joint probability density func-
tion of the (transformed) independent variation parameters X . A GMM consists of multiple
normal distributions (components) that are combined to a joint distribution in a convex com-
bination. By combining a sufficient number of such components, almost any smooth density
can be approximated with arbitrary accuracy [13, p. 111].

Formally, the probability density function of a GMM with K components is given by

p(x) =

K∑
k=1

π(k)N (x;µ(k),Σ(k)) with
K∑
k=1

π(k) = 1 and π(k) ≥ 0 ∀k = 1, · · · ,K, (4.1)

where {µ(k)}Kk=1 is the set of all mean vectors, {π(k)}Kk=1 is the set of mixing coefficients and
{Σ(k)}Kk=1 is the set of covariance matrices of the components. It can be readily verified that
p(x) is a valid probability distribution as all components π(k)N (x;µ(k),Σ(k)) are nonnegative
and integrate to π(k). Consequently, as the π(k) are also nonnegative and sum to one, p(x)

integrates to one.

To obtain a GMM that models a desired dataset D = {xn}Nn=1 of variables X , an appropriate
set of parameters θ = {π(k),µ(k),Σ(k) | k = 1, · · · ,K} needs to be found (estimated).

Maximum likelihood estimation for Gaussian mixture models

A classical way to estimate the parameters of a probability density function is the maximum
likelihood approach. In maximum likelihood estimation, the set of distribution parameters θ
is chosen such that the probability of observing the data D given θ is maximized. A common
assumption is thereby that the data is independent and identically distributed given the param-
eters θ. Furthermore, instead of maximizing p(D;θ), ln p(D;θ) is maximized for computational
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4 A Framework for Data-driven Variation Modelling

reasons.4 Thus, the optimal parameters are chosen as

θ? = argmax
θ

∑
n

ln p(xn;θ). (4.2)

While an analytical maximum likelihood estimate can be found for some distributions, e.g., the
normal distribution, (4.2) cannot be readily solved for a GMM [13, p. 440]. This is because for
each data point, only the location, but not its respective assignment to one of theK components
is known. Since this information is required in order to estimate θ, it represents a latent variable
in the estimation procedure and has to be estimated alongside the other parameters.

One approach to solve maximum likelihood estimation problems with latent variables is to
use the expectation maximization algorithm, see [13, Sec. 9.3]. The algorithm consists of two
main steps, namely the expectation (E) and the maximization (M) step, that are iteratively
repeated until convergence. In the E-step, the latent variable, expressing the assignment of each
data point to a corresponding component, is estimated. Based on the estimated assignment,
the parameters θ = {π(k),µ(k),Σ(k) | k = 1, · · · ,K} are updated in the M-step.

For GMMs, the E and M step are given by the following equations [13, pp. 438-439]:

• E-step: Calculate the responsibilities c(k)n for each of the data points xn , n = 1, · · · , N
given the current parameters π(k), µ(k) and Σ(k) as

c(k)n ←
π(k)N (xn;µ(k),Σ(k))∑
k′ π

(k′)N (xn;µ(k′),Σ(k′))
.

• M-step: Estimate the parameters π(k), µ(k) and Σ(k) based on the responsibilities c(k)n
(and Nk =

∑
n c

(k)
n ) as

π(k) ← Nk

N

µ(k) ← 1

Nk

N∑
n=1

c(k)n xn

Σ(k) ← 1

Nk

N∑
n=1

c(k)n (xn − µ(k))(xn − µ(k))>.

Given initial guesses for the parameters π(k), µ(k) and Σ(k), iterating these two steps increases
the likelihood of the data in each step [13, p. 437]. The procedure can be terminated if the
value of the likelihood p(D;θ) does not change significantly anymore.

For a given number of K components, the distribution of the independent variation pa-
rameters X can be approximated using a Gaussian mixture model, where the parameters are
found through the expectation maximisation algorithm. In fact, as already noted before, a
GMM with enough components can approximate almost any continuous density with arbi-
trary accuracy [13, p. 111]. While this certainly allows the approximation of a wide range of
possible distribution characteristics, it may also encourage choosing an unnecessarily complex
model over simpler ones in favour of a better fit. The problem of choosing the correct/suitable
model (complexity) is usually not straightforward and is referred to as model selection in the
literature [13, Sec. 1.3].

4Note that p(D;θ) =
∏

n p(xn;θ) by assumption of conditional independence of xn given θ. The individual
factors p(xn;θ) are often smaller than one, hence, the product gets very small which can lead to numerical
problems. Additionally, ln p(D;θ) may be concave which simplifies the optimisation.
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Model selection

Several ways have been proposed to assess the correct model complexity. The first, and often
preferred way is to choose the model through a cross-validation procedure, see [13, Sec. 1.3][64,
Sec. 7.10]. Here, the data to be modelled is partitioned into subsets of equal size (usually three,
five or ten). The model is then estimated on all but one of the subsets (test set) and its quality
is recorded. The process is repeated and every subset is selected as a test set once. Finally, the
best model is chosen based on its average test set quality (cross-validation performance). Al-
though cross-validation is generally more time-consuming, it offers a principled way to estimate
the generalisation error of the model from the training data.

An alternative approach to tackle the model selection problem is through so-called informa-
tion criteria such as the Akaike Information Criterion (AIC) (see [13, Sec. 1.3]) or the Bayesian
Information Criterion (BIC) (see [13, Sec. 4.4.1]). The AIC is given by subtracting the number
of model parameters from the maximum log-likelihood, i.e., ln p(D;θ) − dim(θ). Its interpre-
tation is simple. The more parameters a model has (denoted by dim(θ) here), the better its fit
has to be. An alternative to the AIC is the BIC. The BIC is motivated by a Laplace approx-
imation [13, Sec. 4.4] of the (usually hard to compute) marginal likelihood or model evidence
in Bayesian model comparison [13, Sec. 3.4]. It expresses how likely the observed data D was
generated by the model. Compared to the AIC, the BIC generally penalizes model complexity
more heavily [13, p. 217].

Similar to the cross-validation performance, these information criteria can be used to evaluate
and compare configurations of different GMMs, e.g., with a different number of components K.
Generally, all selection criteria prefer simple models which capture the essential aspects of the
data.

4.2.4 Drawing samples from a Gaussian mixture model

To successfully employ a variation model in circuit simulations, generating samples should be
simple and fast. Fortunately, despite their flexibility, GMMs allow for an efficient sampling
process. Sampling from a GMM only requires the ability to obtain samples from a standard
normal distribution N (0, 1) and a uniform distribution U [0, 1], which should be included in
most simulation environments.

As preparation, the interval of [0, 1] is divided into K regions with sizes equal to the π(k)

(note that
∑

k π
(k) = 1). Additionally, let L(k) denote the matrix obtained by the Cholesky

decomposition [143, Sec. 23] of Σ(k), i.e., L(k)(L(k))> = Σ(k). Finally, note that random vectors
r ∼ N (0, I) can be constructed by stacking dim(x) samples ri ∼ N (0, 1) in a vector r. Based
on these preparations, a sample xn of a GMM can be obtained through the following two steps:

1. Sample un ∼ U [0, 1] and select the distribution (component) k based on in which region
of [0, 1] the sample un falls into.

2. Sample rn ∼ N (0, I) and obtain xn as xn = µ(k) +L(k)rn.

The two-step procedure of sampling is commonly referred to as ancestral sampling [13, p. 432].
Naturally, the matrix computations can also be executed entry-wise and do not necessarily
require linear algebra software. Through this procedure, samples from a variation model can
be generated efficiently.

45



4 A Framework for Data-driven Variation Modelling

4.3 A variation model for an inkjet-printed transistor

In this section, the proposed framework is used to develop a Monte Carlo model for an inkjet-
printed EGT presented in [100]. To validate the derived model, it is used to predict the
distribution of the saturation current Isat, an important performance metric for EGTs. Addi-
tionally, simulations for a printed physical unclonable function circuit from [48] are performed
and the predicted output voltage is compared to output voltages of fabricated and measured
circuits.

To establish familiarity with the measurement data, the EGT model and its parameters are
briefly introduced. However, the overall framework is not dependent on this specific device or
technology.

4.3.1 The dataset

The dataset used for the experiments consists of current-voltage measurements of 86 printed
EGTs with a length of L = 100µm and different widths of W = 200, 400, 600, 800µm. Note
that due to the fabrication being a laboratory process, only a small number of devices could be
produced and characterized.5 To account for the different transistor widths, a linear dependence
of the current onW/L is assumed and the measured currents are scaled by the channel geometry
(L/W ) of the respective transistor. After that, the device parameters can be extracted using
the device model described in the following.

4.3.2 An EGT device model

To model the current-voltage characteristics of the EGTs, the model of [125], which is based
on the EKV model for sub-micrometer MOSFETS [47], is used. Contrary to [125], two of the
fitting parameters (f3 and f4) are replaced with values more closely reflecting the original EKV
model. This leads to the following drain current equation

IDS = I0

(
ln

(
1 + exp

(
vp − vs

2

)γ)
− ln

(
1 + exp

(
vp − vd

2

)γ))
, (4.3)

where I0 = 2 · n · f1 ·
W

L
· φ2t , vp ≈

VGS − Vth
n
f2
· φt

and n =
1

SS · φt · ln(10)
.

The parameters W and L denote channel width and length respectively, and n denotes the
slope factor. Furthermore, vp, vd, and vs represent the channel, drain, and source potentials
normalized by the thermal voltage φt. In total, the model has five parameters, among which
the threshold voltage Vth and the sub-threshold slope SS are extracted by extrapolation of
the linear regions of the measured characteristics curve. Furthermore, the so-called power-law
parameter γ is extracted empirically through the Curtice model as described in [100].

The parameters denoted by f1 and f2 are fitting parameters, and are determined by minimiz-
ing the relative error between the modelled and the measured transistor characteristics (details

5The devices were fabricated and characterized by Gabriel C. Marques.
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Figure 4.2: The standardized distribution of the device model parameters. The p-value indicates the
probability of the data being normally distributed according to the test of D’Agostino and
Pearson [36].

see [125]). However, note that f1 is directly influenced by material properties such as mobility
and gate capacitance [126] and cannot have negative values, while f2 does not directly relate
to physical effects.

As the main purpose of the model is to accurately reflect the current at different voltage
levels, the quantities of interest in the EGT are the parameter Vth (threshold voltage) and the
performance metric Isat (saturation current). The threshold voltage Vth defines the (On/Off)
switching behaviour of the transistor and Isat expresses the strength of the transistor in the
form of the current that can flow through the device. While Vth can be directly treated as a
variation parameter, Isat is a function of all device model parameters and has to be extracted
from the resulting model as described in [100].

4.3.3 Applying data transformations

To avoid negative values for f1, the aforementioned log-transformation (see Section 4.2.1) is
used. Then, all parameters are standardized to achieve similar value ranges. The resulting
distribution can be seen in Figure 4.2.

To get an idea about the possible complexity of the distribution, a test for normality [36] is
performed for each variable (see Figure 4.2). For most parameters, including the transformed
parameter ln(f1), the assumption of a normal distribution cannot be rejected, while the dis-
tribution of the power-law parameter γ can likely not be approximated well with a normal
distribution (as p < 0.01). Furthermore, the (Pearson) correlation coefficient (see Table 4.1)
reveals high correlations between certain parameters, see ln(f1) and γ.

To conclude, a suitable model of the variations in the device model parameters has to consider
the parameters jointly and needs to be expressive enough to model distribution shapes beyond
a simple normal distribution.
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Vth SS γ ln(f1) f2

Vth 1 0.58 -0.33 0.38 -0.58
SS · 1 -0.22 0.48 -0.85
γ · · 1 -0.71 0.25

ln(f1) · · · 1 -0.53
f2 · · · · 1

Table 4.1: The (Pearson) correlation between the transformed device model parameters of the printed
EGTs. The high correlation between the variables confirms the assumption that the device
model parameters should be modelled jointly.

4.3.4 Parameter selection and reduction

For the parameter reduction step (Section 4.2.2), the two sets of parameters, namely the
independent variation parameters X and the dependent parameters Y, need to be selected.
Since the parameters {Vth, SS, γ} directly represent current-voltage-curve characteristics, they
are declared independent variation parameters. Furthermore, as f1 [respectively ln(f1)] partly
represents material properties, it is also declared an independent variation parameter and is
jointly modelled with {Vth, SS, γ}. This leaves the fitting parameter f2 as the only dependent
variable in the case of the EGT.

From looking at a scatter plot of the variables {Vth, SS, γ, ln(f1)} with f2 (see Figure 4.3), it
is evident that a great portion of the variation in f2 can already be explained through a function
of SS. This is also to be expected from the high correlation of f2 with SS (see Table 4.1).
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Figure 4.3: The scatter plots of the fitting parameter f2 with the individual variation parameters. All
variables are standardized.

To model f2 through the other parameters, a lasso regression model as described in Sec-
tion 4.2.2 is used. Since the dependency in Figure 4.3 seems to be nonlinear, all monomials of
the variables up to degree two (15 in total) are provided to the model. The selection of the
relevant components is left to the lasso. The penalty term λ is found by employing grid-search
and cross-validation. The resulting model uses eight basis functions and shows a mean squared
error of 0.128 (r2 = 0.73) on a random held-out test set of 25% of the original data.
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Figure 4.4: The marginal distributions of the variations parameters modeled through a Gaussian mix-
ture model with two components. To display the measurement data of 86 values, 20

histogram-bins were used.

4.3.5 The distribution model

As a last step, the distribution of the (transformed and standardized) variation parameters
X = {Vth, SS, γ, ln(f1)} is jointly estimated using a GMM. To select the number of components,
the BIC is employed as a model selection criterion and suggests the use of two components for
the given dataset.6 The resulting marginal distributions of the respective parameters can be
seen in Figure 4.4. The GMMs can now be used to sample parameter sets of X as described
in Section 4.2.4.

4.3.6 Evaluation

After all steps have been carried out, the Monte Carlo model is complete. To get a first idea
of the quality of the model, 1000 samples are drawn from the GMM. Then, the parameter f2
is predicted using the respective regression model for all samples. After inverting the initial
transformations, i.e., standardisation and applying the exp(·) function to the sample entries
of ln(f1), the parameters can be plugged in the current equation (4.3). From the resulting
curve, the saturation current Isat can be calculated as in [100]. Figure 4.5, shows the resulting
distribution of Isat for the sampled devices compared to the Isat distribution of the initial
dataset. It can be seen the main characteristics of the curve are closely reflected and no
unphysical values are observed. To obtain a quantitative estimate about the difference between
the distributions, the test statistic of the (two sample) Kolmogorov-Smirnov test [153, p. 245]
can be used. It compares distributions of two samples based on the maximum difference between
their empirical cumulative distribution functions. For the samples from the Isat distributions,
it gives a value of 0.1039 (p-value of 0.3127).

6From one to five components were evaluated with giving BIC values of 912, 904, 928, 967 and 1008 respectively.
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To validate the accuracy of the model on the circuit level, a simulation for a printed physical
unclonable function circuit proposed in [48] (see Figure 4.6a) is set up. The circuit has two
outputs (Out and Out) for which variations can be observed. For circuit simulation, the cadence
virtuoso design environment in combination with the design kit from [102] is used.

The histogram of 1000 (×2 Outputs) simulations is displayed alongside 36 (18 × 2) output
voltage measurements of the respective circuit.7 By visual comparison, the simulation captures
the main characteristics of the distribution (see Figure 4.6b).
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Figure 4.5: The distribution of the saturation current Isat based on 1000 sampled sets of parameters.
To display the measurement data of 86 values, 20 histogram-bins were used.

R1 R2

T1 T2

T3

V
DD

CTRL

Q1 Q2 OUTOUT

V
SS

(a)

0.2 0.4 0.6 0.8 1.0
Output Voltage [V]

0

2

4

6

8

10

De
ns

ity

PUF output Voltages

measurements
simulation

(b)

Figure 4.6: Figure (a) shows the schematic of the physical unclonable function circuit from [48] and was
adopted from [126]. Figure (b) shows the comparison between the Monte Carlo simulation
and measured output responses of the circuit for 36 (18×2) measurements of output voltages.
The circuit simulation was performed by Farhan Rasheed and similar evaluation has been
reported in [124, Sec. 3.5.3].

7Note that due the fabrication being a laboratory process, only a small number of samples could be obtained.
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4.4 Conclusion and directions for future work

In emerging technologies such as inkjet-printed electronics, devices and circuits suffer from
high variations. These variations originate from the unique features of the production process
and can lead to various distribution shapes and correlation structures among the device model
parameters. Additionally, the common presence of fitting parameters in these semi-empirical
models has to be considered when modelling variations.

To address these challenges, a general, data-driven framework for developing a variation
model based on a given device model was proposed. It specifically addresses empirical fitting
parameters often present in device models of novel technologies. The fitting parameters are
thereby approximated through a regression model and do not need to be considered when mod-
elling variations. Additionally, the framework is able to model various distribution shapes and
correlation structures in the physical parameters by approximating their distribution through a
GMM. The number of components of the GMM is thereby automatically selected through the
BIC. The proposed approach is very flexible and subsumes classical variation modelling flows.
The framework was used to develop a variation model of a printed EGT and the distribution
of simulated saturation currents closely matched that of measured devices. To further test the
model, Monte Carlo simulations for a printed physical unclonable function circuit were per-
formed. Here, the simulation results displayed a close proximity to actually measured output
voltages of fabricated circuits.

Even though the framework is purely data-driven and therefore technology independent,
it still relies on a specified device model. However, developing such a device model can be
challenging and often requires substantial expert knowledge. A logical next step would be to
combine the framework with a data-driven modelling procedure that directly extracts a de-
vice model from measurement data. Unfortunately, the development of a data-driven model
compatible with the proposed framework is not straightforward. This is due to implicit re-
quirements on the device model that have not been explicitly stated yet. First, physically
plausible behaviour, such as monotonicity of the current with respect to the voltage, needs to
be satisfiable through relatively simple conditions. For example, a positivity constraint on the
parameter f1 in the EGT model guarantees an increasing current for increasing input voltages.
Due to the simplicity of this condition, it can be easily enforced though transformations of the
respective parameter. Secondly, the model needs to be identifiable (see [131]), in other words,
there must exist no two sets of model parameters yielding the same result. Both of these con-
ditions are common in physics-based models, as candidate parameters for variation modellings,
such as Vth, represent well-defined effects. However, many data-driven modelling approaches,
like approximations of the current-voltage characteristics with neural networks (see [57]), will
not be compatible with the framework since they lack the aforementioned identifiability.8

To conclude, the presented framework allows to derive variation models based on given device
models. Due to the high flexibility in modelling the joint distribution of the parameters, it is
especially suitable for modelling variation in emerging technologies such as printed electronics.
Furthermore, the generality of the approach allows designers to quickly generate new variation
models for new devices or adapted technologies, e.g., devices printed on new substrates or with
novel ink compositions.

8A neural network is generally not identifiable as the labeling of the neurons is arbitrary. For a brief introduc-
tion to neural networks see Section 2.4.
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5 Variation-aware Training for Printed
Neural Networks

In Chapter 3, pNNs were introduced as a model to design (train) printed NCs. Unfortunately,
as seen in the last chapter, one aspect that makes the design of printed circuits challenging are
the high variations in printed structures [24, 139, 126]. These variations influence the electrical
properties of printed devices and thus the circuit outputs. If not considered, the printed
NCs may display much lower accuracies than initially expected. To address this problem,
this chapter introduces a variation-aware training method for pNNs. As a first step, variation
models are developed for the core components of printed NC, namely the resistance crossbar and
the inverter and activation function circuits. The latter models are thereby developed using
the techniques described in the last chapter. Based on these variation models, the training
problem is modified to minimize the expected loss under variation. The training procedure is
adapted accordingly. The main components and steps of the modified procedure can be seen
in Figure 5.1.

Update rule (Section 3.3.2)

𝝎(𝑡+1) ← 𝐏𝐫𝐨𝐣[ 𝝎 𝑡 + 𝛼(𝑡) ⋅ Δ 𝝎(𝑡)]

Training objective 

min
𝝎

∫ 𝐿 𝜽, 𝜼 𝒑 𝜽, 𝜼;𝝎 𝒅𝜽𝒅𝜼 +
𝜆

dim(𝝎)
⋅෍

𝝎
𝑃 𝜔

Initialization of 𝝎(0)

(Section 3.3.4)

Training data Test data

Variation-aware trainingSetup Evaluation

Evaluation metric (MaA)
(Section 3.4.1)

Loss function 𝐿(𝜽, 𝜼)
(Section 3.3.1 and 5.2)

Penalty function P(𝜔)
(Section 3.3.3)

Hyper-parameters
𝛼,𝑚, 𝜆, 𝑣

Monte Carlo gradient estimation (Section 5.2) 
through  

E𝑝 𝒓 𝑝 𝜼 𝛻𝝎𝐿 ℎ 𝒓,𝝎 , 𝜼

Variation model p 𝜽,𝜼; 𝝎
(Section 5.1.2 and 5.1.3)

Figure 5.1: The main steps of the variation-aware training procedure for printed neural networks.

The rest of the chapter is outlined as follows. First, related work on training methods for
dealing with variations and faults in the context of NCs is reviewed. Then, the variation
models for the core components of printed NCs are developed, followed by a derivation of the
variation-aware training procedure. The effectiveness of the approach is then demonstrated in
various experiments. The chapter closes with a discussion of the results and possible directions
for future work.
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5.1 Preliminaries and background

To give context to the proposed approach in this chapter, the following section reviews related
work on increasing the tolerance of hardware implementations of neural networks and NCs
to variations and faults. Then, variation models for the core components of printed NC (see
Section 2.6), namely the resistance crossbars and the inverter and activation function circuits,
are developed. The model for the conductance of printed resistors is based on theoretical
considerations, and the models for the circuit components are developed using the data-driven
modelling approach described in Chapter 4.

5.1.1 Related work

Various approaches have been proposed to increase the robustness of neural networks and NCs
against different kinds of variations and faults. The main body of research focuses on perturba-
tion of the neural network parameters through either additive or multiplicative variation/noise,
see [91, 17, 137, 10, 43, 44, 93], as well as digital stuck-at-0/1 faults, see [91, 17, 163, 158].
More recently, also timing faults have been considered [37]. The application of such parameter
perturbations was not always directly motivated by achieving robustness with respect to the
simulated variations, but also with respect to other, undesired effects. Most prominently, var-
ious kinds of integration and fabrication errors [43, 44], as well as value perturbations through
round-offs [91].

Mitigating the impact of such variations is thereby addressed through either off-device or
on-device methods. On-device methods directly optimize the model parameters based on the
measured responses of a circuit [98, 93]. Through this, the true device characteristics and
variation are directly observed and can be dealt with accordingly. On the other side, off-
device methods derive the model parameters based on models of the circuit behaviour [94, 93].
The obtained parameters, i.e., conductance values of crossbars, can then be mapped to the
respective hardware. Additionally, the devices can be tested before performing the mapping.
Through this, mapping sensitive weights to devices that exhibit high variations (see [93]) may
be prevented, and weights of highly varying devices may be mapped to zero, see [78]. The
sensitivity of a weight can thereby be assessed through its gradient with respect to the loss.
Since on-device approaches can leverage the specific characteristics of the given circuit and
its devices, they provide more accurate solutions than off-device methods. In turn, off-device
training is generally faster since it does not depend on the time-intensive feedback loop or
assessment of the individual circuit characteristics [93].

However, as already discussed in Section 3.1, printed NCs only permit off-device training,
as on-device training is not applicable due to the limited adjustment capabilities of printed
resistors after fabrication.1 Also, methods based on pretesting cannot be applied as the vari-
ation happens in the mapping/fabrication step and cannot be assessed beforehand. For these
reasons, the following focuses solely on model-based off-device training methods.

Several different off-device approaches for reducing the effects of variations have been pro-
posed. One branch of these methods focuses on fault tolerance via adding regularisation terms
to the loss function, e.g. [18, 44, 10, 93, 91], to encourage the finding of "flat minima" [70]. Here,
the motivation is that in flat regions of the loss function, the loss of the network should be less

1Details on the possibilities of tuning the printed resistances after fabrication are discussed in Chapter 6.
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sensitive to small perturbations of the parameters. Hence, this should lead to improved robust-
ness with respect to parameter variations. Furthermore, some works try to achieve "maximally
fault-tolerance" through the formulation of a min-max optimization problem against adversar-
ial node-deletion [114, 38]. This idea is similar to approaches aiming at unifying the magnitude
of the weights (see [137]) to equalize their importance. The notion of enforcing (small) and
similar weight magnitudes can also be seen in [17, 18] and is closely linked to the classical
method for regularizing neural networks through weight decay, see [56, Sec. 5.2.2].

Aside from penalty terms, a common strategy to robustify neural networks is the injection of
faults and parameter variations in training, see [17, 18, 111, 43, 37]. Although their motivation
is slightly different, these approaches are similar to noise injection methods such as [103, 3,
60, 1, 140], which aim to improve the training speed or generalisation of neural networks [69].
This relationship between generalisation and fault and variation tolerance was also noted and
discussed in [111, 21].

Besides off-device approaches, which encourage the neural networks to exhibit robustness
by themselves, several works [29, 46, 27, 17, 18, 40, 120] try to identify important neurons
which are then split or replicated to generate explicit redundancies. In order to leave the
network output unchanged, the outputs for the replicated neurons are scaled accordingly [44].
Through these explicit redundancies, certain variations are expected to average out and the
joint sensitivity of the respective nodes is lower.

To conclude, to robustify pNNs against variations, some concepts from the related work may
be adapted. First of all, methods utilizing node replications for redundancy could theoretically
be employed, however, they are unfavourable for printed NCs as this would directly increase
the size of the circuit.

Weight-decay-like penalty function techniques, such as [18], may present a promising direc-
tion to investigate. Out of all the discussed approaches, employing penalty functions is rather
simple and cheap from the perspective of training. However, an adaptation is not straightfor-
ward as it may encourage solutions conflicting with the technology constraints. More specifi-
cally, the coupling of the weights needs to be taken into account and, e.g., simply encouraging
overall smaller conductances may lead to infeasible solutions. Finally, it is not clear how com-
ponent variations, such as variations of the activation function, could be considered through
penalty terms.

Hence, especially methods considering variation in training can be seen as promising due
to their generality. With respect to the types of variations, stuck-at-faults should be largely
irrelevant for the type of printed NCs under consideration. In the context of printed electronics,
stuck-at-faults would relate to missing prints that could simply be repeated. More relevant on
the other hand would be variations that the components, i.e., the crossbar resistors, activation
function, and inverter circuits, may experience. To this end, variation models for these compo-
nents are developed in the following. The developed models can then be used to consider the
respective variations in training.

55



5 Variation-aware Training for Printed Neural Networks

5.1.2 A simple variation model for printed resistors

The resistor crossbars perform the weighted sum operation in the printed NC. Their desired
conductance values are realized by printing certain geometries with droplets of conductive ink.
Based on the geometry and material properties, different conductances may be obtained (see
Section 2.6). Assuming that the sizes of the droplets forming the conductive structure exhibit a
constant, independent variation, the total variation depends on the number of droplets printed.
Naturally, larger structures exhibit higher conductivity2 and also require more droplets. This
leads to a relative conductance variation with

g = g + r · g = (1 + r) · g with r ∼ p(r),

where g denotes the target conductance that should be printed and r is a random variable
with the probability density function p(r). By choosing different target conductances g, the
distribution of the observed conductances g changes. Most notably, trying to print higher
conductance values leads to more variation.3 Alternatively, this variation model could also be
motivated through variations of the material-related properties influencing the conductivity as
in [156].

Depending on the choice of p(r), different types of relative variation can be expressed, e.g.,

p(r) = N (µ, σ) ⇒ g ∼ N (µ+ g, σ · g)

p(r) = U(a, b) ⇒ g ∼ U((1 + a) · g, (1 + b) · g).

However, note that not all choices p(r) lead to a valid model for conductance variations. For
example, choosing p(r) = N (0, σ) may yield samples of r for which g is negative. To avoid
such implausible values, a symmetrical uniform distribution p(r) = U [−ε, ε] with ε ∈ [0, 1] is
selected. Hence,

p(g ; g, ε) = U [(1− ε) · g, (1 + ε) · g]. (5.1)

Here, ε denotes the maximum variation that is observed and will be referred to as variation
level in the following. As an example, consider ε = 0.1. In this case, g ∼ U [0.9 g, 1.1 g], so the
observed conductance values vary up to 10% from the intended target conductance g.

Depending on the perspective taken, the choice of a uniform distribution may be seen as
either a weak or a strong assumption. On the one hand, the uniform distribution has heavy
tails, where extreme values are just as likely as realisations of the target value g. On the
other hand, the maximum variation is always bounded through ε and therefore offers little
"surprise" with respect to outliers. Nevertheless, since the focus in the following will mainly be
on expected behaviour rather than on rare events and outliers, this should not be a problem.
Additionally, the choice of the uniform distribution offers a convenient way to avoid implausible
values in the form of negative conductances.

If the variation for a whole set (vector) of fabricated conductances g is assumed independent,
the joint density of g is given by

p(g ; g, ε) =
∏
i

p(gi ; gi, ε). (5.2)

2Assuming a constant channel length.
3This form is also often used to model multiplicative weights variation for neural networks, see [43, 93].
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Note that the assumption of independence can surely be questioned. For example, a nozzle
defect would influence a whole range of subsequently printed resistors. Hence, their variation
would not be independent but tied together through the occurrence of this event. However,
assuming a healthy production process, the independence assumption should be justified.

5.1.3 Variation models for the activation and inverter circuits

Aside from variations in the conductances of the crossbar resistors, printed NCs may also ex-
perience variations in the circuits for the activation and the inverter function. These variations
are induced by variations of the components (transistors and resistors). Since a closed-form
variation model for these components cannot be easily derived, a data-driven approach may be
taken.

For this, a dataset of multiple ptanh and inv functions is required. Ideally, this dataset
would come from measurements of fabricated circuits. However, this would be costly and time
consuming since, as for now, the fabrication of inkjet-printed devices is only a laboratory pro-
cess. Therefore, a circuit simulation is used to generate the output data. The simulations were
carried out for multiple variations levels of ε ∈ {0, 5, 10, 15, 20, 25, 30} %. Here, voltage fluctu-
ations were assumed to be standard normal distributed. The transistor (EGT) variations were
modelled through the variation model developed in [126], and (5.2) was used for conductance
variations (see also [156]). In total, 1000 simulations were performed for each variation level ε.4

The datasets of each simulated ptanh and inv circuit can then be modelled through an
appropriately parameterized tanh function as described earlier in Section 3.2.2. Contrary to
before, the parameter η4 in

ψη(x) = η1 + η2 · tanh((x− η3) · η4)

should be restricted to η4 > 0 to guarantee identifiability. Otherwise, due to the point symmetry
of tanh(x), there could be two sets of parameters η that lead to the exact same shape of ψη(x).5

This is undesirable, as it would require the variation model to express a strict dependence
between the signs of η2 and η4. To preserve the orientation of the functions irrespective of the
variation, the parameters η2 and η4 are transformed accordingly. Hence, η4 is modelled through
ln(η4). Applying the inverse transformations exp(·) to samples then guarantees positivity
(details see Section 4.2.1). Similarly, since η2 is responsible for the orientation of ψη(x), it is
modelled as ln(η2) for ptanh and ln(−η2) for inv.

In the last step, the datasets of the transformed parameters are modelled through a GMM as
described in Section 4.2.3. The number of components for each GMM is selected based on the
highest average log-likelihood achieved in a 5-fold cross-validation. Through the fitted GMMs,
samples from the distributions of p(η; ε) can be obtained by sampling from the respective GMM
and inverting the transformations applied to η2 and η4. See Figure 5.2 for sampled inv and
ptanh functions of different variation levels ε.

4All circuit simulations were set up and carried out by Dennis D. Weller.
5As an example, consider η = [0, 1, 0,−1] and η = [0,−1, 0, 1].
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Figure 5.2: The modelled distributions of the ptanh and inv functions for different variation levels ε.

5.2 Variation-aware training of printed neural networks

In Chapter 3, the training of pNNs was described as minimizing the loss function L(θ) with
respect to the parameters θ of the network. After training, the achieved parameter vector
θ was assumed to be fabricable as long as it satisfied the technology constraints, i.e., gi =

|θi| ∈ [gmin, gmax] ∪ {0}. However, if the fabrication of the crossbar resistors is subject to
variations, the desired gi may not be realized exactly. To account for this uncertainty, the
optimisation problem for training is modified. Training with the modified objective is referred
to as variation-aware training in the following. For simplicity, the modification of the training
objective is first introduced only for conductance variations of the crossbar resistors and then
extended to consider variations of the activation and inverter functions. Finally, the general
concept of variation-aware training is reviewed.

5.2.1 Variation-aware training under conductance variation

To find configurations of conductances that is robust against variations, the respective varia-
tions should be directly considered in the training of the pNN. Due to the simple relationship
between the conductances g and the surrogate conductances θ, a variation model of |θ| can be
readily derived by considering that the sign of θ is unaffected by variations (it encodes connec-
tivity). Hence, given the variation model of (5.1) for conductances, the variation of surrogate
conductances θ may be modelled as

p(θ;ω, ε) = U [(1− ε) · ω, (1 + ε) · ω],

where ω denotes the target surrogate conductance (i.e., |ω| = g)6. It is easy to see that
p(|θ|; |ω|, ε) = p(g; g, ε), hence, choosing this variation model for θ induces the correct variation
for the conductances g. Also, note that the variation cannot lead to sign flips, as sign(θ) =

sign(ω). The joint density of the vector of surrogate conductances θ can be derived similarly
and is given by

p(θ;ω, ε) =
∏
i

p(θi;ωi, ε),

where ω summarizes the ωi. To keep the notation brief in the following, the dependence on
the variation level ε is mostly omitted.

6The choice of ω instead of θ is to improve the readability. Note that ω could generally be seen as parameters
of the distribution θ that are learnable, and can be influenced.
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5.2 Variation-aware training of printed neural networks

When training pNNs before, the parameters θ could be chosen directly. In contrast, the
surrogate conductances are now random variables with a distribution p(θ;ω). Hence, what
sets of network parameters θ are realized depends on ω, which represents the new decision
variables. Furthermore, since θ is random, the loss L(θ) is also random. Naturally, the new
training objective would be to minimize the expected loss, i.e., the average loss of the pNNs
under variation of θ. This results in a stochastic optimisation problem and can be formalized
by

min
ω

Ep(θ;ω)[L(θ)] =

∫
L(θ)p(θ;ω)dθ. (5.3)

Here, the optimization variables are the target surrogate conductances ω that determine the
distribution of the observed θ and L(θ). Unfortunately, L(θ) is nonlinear and there is generally
no closed-form expression for Ep(θ;ω)[L(θ)]. Hence, it can only be evaluated approximately
through, e.g., the Monte Carlo method [108]. Using Monte Carlo estimation, an estimate of
the expected value in (5.3) can be obtained for a given ω as

Ep(θ;ω)[L(θ)] ≈ 1

N

N∑
n=1

L(θn) with θn ∼ p(θ;ω).

This estimate is unbiased, and, assuming that the variance of the estimate is bounded, converges
(almost surely) to the expected value as N → ∞ [56, Sec. 17.1.2]. Furthermore, according
to the central limit theorem (see [153, Sec. 5.4]), the variance of the estimate is given by
N−1 · Vp(θ;ω)[L(θ)] [56, Sec. 17.1.2]. However, since the variance of L(θ) is hard to assess, the
main insight is that the estimate tends to get more accurate with more samples (higher N).

To employ gradient-based learning for (5.3), an estimate of the gradient of the objective
function with respect to ω is required. For this, techniques from the literature of Monte Carlo
gradient estimation can be used, see [109]. One way to estimate the gradient is thereby the
so-called pathwise gradient estimator7. It is applicable if samples from the distribution p(θ;ω)

can be obtained by transforming samples from a base distribution p(r) to samples of p(θ;ω)

through a differentiable deterministic transformation h(ω, r). The transformation h(ω, r) is
thereby referred to as a sampling path [109, Sec. 5.1].

Formally, this can be expressed by

θ ∼ p(θ;ω) ⇐⇒ θ = h(ω, r) with r ∼ p(r).

With the knowledge of the transformation h(ω, r), the law of the unconscious statistician (see
[153, Theorem 3.6]) can be used to rewrite the expected value Ep(θ;ω)[L(θ)] as Ep(r)[L(h(ω, r))].
In case of the variation model from Section 5.1.2, the transformation h(ω, r) can be readily
derived as

θ = h(ω, r) = diag(1 + r)ω with r = [r1, r2, · · · ]> and ri ∼ U [−ε, ε]. (5.4)

This allows to explicitly attribute the variation to the random vector r, and the function h(ω, r)

transforms samples from p(r) to samples from p(θ;ω). Thus, according to [109, Sec. 5.2], the

7The pathwise gradient estimator is also known as "reparameterization trick" [85] in machine learning.

59



5 Variation-aware Training for Printed Neural Networks

expression of the gradient can be rewritten as

∇ωEp(θ;ω)[L(θ)] = ∇ω
∫
L(θ)p(θ;ω)dθ

= ∇ω
∫
L
(
h(ω, r)

)
p(r)dr

=

∫
∇ωL

(
h(ω, r)

)
p(r)dr

= Ep(r)[∇ωL
(
h(ω, r)

)
]

Note that the integral in the second line does not depend on the parameters ω. Using this
transformation, the gradient of the objective function in (5.3) can be estimated by

∇ωEp(θ;ω)[L(θ)] = Ep(r)[∇ωL
(
h(ω, r)

)
] ≈ 1

N

N∑
n=1

∇ωL
(
h(ω, rn)

)
with rn ∼ p(r).

Through the pathwise gradient estimator, an estimate of the gradient can be obtained each
time a gradient is required by the optimization algorithm. However, as the loss L(θ) is not
differentiable everywhere, using these gradient estimates for learning pNNs should be seen as
a heuristic approach.

Since θ is subject to variation, the set of optimization parameters is ω. It represents the
target (surrogate) conductance values and determines the distribution of θ. The parameters ω
need to obey the same constraints as the surrogate conductances θ before, hence, the learning
rules from Section 3.3 should be used for training.

It should be noted that the construction of the gradient estimator through the pathwise
derivative did not make explicit use of the fact that a uniform distribution was chosen in the
variation model for the conductances. Choosing for example a normal distribution would have
only influenced the selection of the base distribution p(r). On the other hand, the assumption
of relative noise was directly used to derive the sampling path h(ω, r). Thus, if other variation
models should be used, the applicability of the pathwise gradient estimator has to be reassessed.

5.2.2 Variation-aware training with activation and inverter variations

Besides conductance variations, the variation-aware training procedure can also be extended
to consider variations of the circuit components. For this, the variation models p(η) developed
in Section 5.1.3 are used. Since the variation in η influences the output of the pNN, the loss
becomes also a function of η. Thus, the new training objective becomes

min
ω

Ep(θ,η;ω)[L(θ,η)] =

∫
L(θ,η)p(θ,η;ω)dθdη. (5.5)

The distributions of the surrogate conductances θ and the circuit model parameters η can be
assumed to be independent, as they would be fabricated independently. Furthermore, since
the circuit models do not contain learnable parameters that may be adjusted during training,
p(θ,η;ω) = p(θ;ω)p(η). The estimation of the objective in (5.5) is therefore simple, as long as
samples from p(η) can be drawn efficiently. Fortunately, this is the case when p(η) is a GMM
(see Section 4.2.4). Hence, given ω, the objective in (5.5) can be evaluated using Monte Carlo
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estimation, where

Ep(θ,η;ω)[L(θ,η)] ≈ 1

N

N∑
n=1

L(θn,ηn) with θn ∼ p(θ;ω), ηn ∼ p(η).

Estimates for the gradient can also be obtained in a similar manner by using the sampling
path of (5.4). The parameters η do not complicate the estimation of the gradient as their
distribution does not depend on ω. This allows the reformulation of

∇ωEp(θ,η;ω)[L(θ,η)] = ∇ω
∫
L(θ,η)p(θ,η;ω)dθdη

= ∇ω
∫
L(θ,η)p(θ;ω)p(η)dθdη

= ∇ω
∫
L
(
h(ω, r),η

)
p(r)p(η)drdη

=

∫
∇ωL

(
h(ω, r),η

)
p(r)p(η)drdη

= Ep(r)p(η)[∇ωL
(
h(ω, r),η

)
].

Hence, the gradients can be estimated through samples of p(r) and p(η) as

Ep(r)p(η)[∇ωL
(
h(ω, r),η

)
] ≈ 1

N

N∑
n=1

∇ωL
(
h(ω, rn),ηn

)
with rn ∼ p(r), ηn ∼ p(η).

As before, the estimated gradients can now be used in the learning procedure to (heuristically)
minimize the expected loss under the given variation.

5.2.3 Variation-aware training in general

Variation-aware training, as introduced here, mostly boils down to the use of Monte Carlo
gradient estimation (see [109]) to minimize the expected loss function under variations of the
circuit components. With respect to the treatment of these variations, two different cases can
be distinguished. Namely, variations that depend on the values of the learnable parameters
and variations that do not.

If the variations do not depend on the learnable parameters, such as p(η) in Section 5.2.2, an
estimate for the gradient can be obtained by averaging evaluations of the gradient of the loss
functions with sampled parameters from the distribution. If the variations depend on the values
of the learnable parameters, like in the case of the surrogate conductances with p(θ,ω), more
care needs to be taken. Here, the choice of the parameters influences the values sampled. In
this case, it is necessary to decouple the sampling process from the gradient computation. This
is done by finding a sampling path that allows to transform samples from a base distribution,
such as p(r), to samples from the desired distribution through differentiable transformations.
The transformation can be seen as a part of the model with its parameterization being learned,
and gradient estimation becomes similar to the first case. In other words, an estimate for the
gradient can be obtained by averaging evaluations of the gradient of the loss functions with
transformed samples from the base distribution.

Finally, it should be noted that also other approaches for gradient estimation besides the
pathwise gradient estimator exist. These may be applicable if a sampling path cannot be
derived. A review of different gradient estimators and their properties can be found in [109].
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5.3 Experiments

The following presents the evaluation of the variation-aware training approach. For ease of
terminology, inv and tanh are simply referred to as "circuit models" in the following. More
specifically, "measured inv/ptanh" refers to the models of the circuits extracted from mea-
surements (as in Section 5.1.3), while "simulated inv/ptanh" refers to the respective functions
extracted from data of circuit simulations. Additionally, the name of the dataset will often be
used to refer to the network trained on the data, e.g., "the results on iris" refers to the results
of the best pNN trained on the iris dataset.

The evaluation is split into several parts. First, only variations in the conductances of the
crossbar resistors are considered through p(g; ε). The experiments are thereby repeated twice,
once for the measured circuit models (as used for the results in Chapter 3) and once based
on the simulated circuit models (for ε = 0 %). These cases are treated separately due to the
strong mismatch between both models (see Figure 5.3). Additionally, performing experiments
for different curve shapes can help to assess if the curve characteristic influences the robustness
of pNNs.
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Figure 5.3: The circuit model functions for ptanh and inv extracted from data of measurements and
circuit simulations. For the ptanh activation function, the simulated circuit displays a
steeper behavior and is shifted further away from zero. The inv models display a similar
slope, but the roots have different signs.

After the experiments for conductance variation, both, conductance and circuit model vari-
ation is considered jointly. For this, only networks trained with the simulated circuit models
can be used, and the variations are obtained through the models of p(η; ε) developed in Sec-
tion 5.1.3. The variation level for all experiments is chosen as ε ∈ {0, 5, 10, 15, 20, 25, 30}%
for the pendigits dataset and ε ∈ {10, 20, 30}% for the other datasets. To distinguish between
the variation used for training and testing, the test variation level is denoted by ε for p(r; ε).
The variation level used for training is denoted by v for p(r; v). If the concrete variation is
unknown, v could be seen as a hyper-parameter, else, setting v = ε would be a natural choice.
An overview of the performed experiments can be seen in the following table.

p(g; ε) (Section 5.1.2) p(η; ε) (Section 5.1.3) hyper-parameters

measured ptanh/inv (Section 5.3.2) X X (no dataset) (Table 3.2)
simulated ptanh/inv (Section 5.3.3) X X (Table 5.3)

To obtain baseline results and select the hyper-parameters, each experiment is preceded by
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a grid-search. From the grid-search results, the networks achieving the best training MaA is
selected (as in Section 3.4). Since no variations are considered in the grid-search, the selected
hyper-parameters might not be optimal for the networks trained with variation. Thus, better
results may be achievable by tuning the hyper-parameters separately for each variation level.

The estimated gradients for learning are obtained as described in Section 5.2 using N = 100

samples of p(r; v) with the respective given training variation v. Contrary to the experiments
in Section 3.4, the surrogate conductances θ0 for g0 are updated in training now (before g0 was
fixed to gmax to allow for maximum decoupling). Finally, all mean and standard deviations
reported in the following are also estimated using 100 samples.

For the evaluation, datasets from the UCI database [42] are used. In addition to the datasets
already employed in Section 3.4, the pendigits (see Section 5.3.1) dataset is used for evaluation
and visualisation.

5.3.1 The pendigits dataset

To present a more challenging task, the pendigits (pen-based recognition of handwritten digits)
dataset from the UCI database [42] is used in the following evaluation. The dataset consists of
approximately 11000 data points with 16 input features from which one of 10 different classes
should be predicted. The distribution of the classes is well balanced. The input values range
from [0, 100] and are rescaled to [0, 1] in the following. The dataset is already split into test and
train data and consists of 7494 training and 3498 testing samples. Since the dataset requires
the search for a suitable architecture of the network, the training data is split into training
66% and validation 33% data which is used for finding the hyper-parameters and stopping the
training preemptively to prevent over-fitting.

Architecture selection for pendigits

Since the task is more challenging, the architecture of the network is selected via grid-search
similar to Section 3.4. The best model is thereby selected based on the validation error. The
details of architecture and hyper-parameter search are as follows.

From preliminary experiments, a two hidden-layer architecture was chosen with 15 to 20

neurons in the first and 10 to 15 neurons in the second hidden-layer. As in the previous
experiments, the values of λ = {0, 0.1, 0.01, 0.001}, a learning rate α = {1, 0.1, 0.01} and
margins m = {0, 0.1, · · · , 0.9, 1.0} are explored. Each network is trained for up to 2000 epochs
with the Adam [84] optimizer in standard configuration (β1 = 0.9, β2 = 0.999 and ε = 10−8)
using full-batch updates. The learning rate is halved every 100 epochs. To save training time
and improve generalisation, the learning procedure is stopped preemptively if the network
does not surpass the baseline MaA of about 0.1 after 100 epochs, or if the validation MaA
does not improve over 20 steps (see early stopping [56, Alg. 7.1]). Finally, as in the previous
experiments, the measuring threshold is set to T = 0.1 and the feasible conductance range is set
to g ∈ [0.01, 1]. Each configuration is run with a single seed only, to reduce the required time of
the experiment. In total, this leads to (5×5)×3×4×11 = 3300 (neurons×neurons×α×λ×m)
configurations. Only networks with feasible parameters are considered, and the evaluation is
done using the MaA (see Section 3.4.1).
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5.3.2 Experiments using measured circuit models

The networks considered in the following use the (nominal) models of inv and ptanh extracted
from measurement data (see Section 3.2.2). As stated earlier, this configuration only allows to
evaluate variation in the conductances of the crossbar resistors.

The best models for each dataset are found via the described grid-search procedure. For
pendigits, the best model uses a configuration of λ = 0.001, α = 0.01 and m = 0.5, with 19 and
14 neurons in the first and second hidden layer. After the projection of infeasible surrogate
conductances to zero, the network achieved a train, validation and test MaA of 0.9586, 0.9483

and 0.9085 respectively. For the other datasets, the grid-search results of Chapter 3 can be used.
The results and parameter configurations can be found in Table 3.1 and Table 3.2 respectively.

Conductance variation

The results for applying conductance variation on pendigits can be seen in Figure 5.4. Clearly,
the higher the variation, the stronger the observed degradation in MaA. Furthermore, the
standard deviation of the MaA results increases with the level of variation ε.
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Figure 5.4: The MaA degradation of the best model for the pendigits dataset over various levels of
variation ε. The solid line displays the mean MaA, and the shaded area represents the
standard deviation for 100 sampled sets of surrogate conductances.

When the same network is retrained with different levels of training variation v, a higher
robustness to the test variation ε can be observed (see Figure 5.5). Additionally, networks
trained with higher v also tend to exhibit lower MaAs when evaluated under lower ε. Most
notably ε = 0. This observation suggests that there might be a trade-off between the robustness
of the solution and high accuracy under ε = 0. However, this does not need to be the case and
would depend on the loss surface.

Overall, the results suggest that training with higher v leads to solutions that are more robust
and tend to degrade less from the ε = 0% performance. This can also be observed in Figure 5.6,
where the relative degradation with respect to the MaA at ε = 0 is displayed. Furthermore,
when training with higher levels of variation v, the standard deviation is generally lower (see
Figure 5.7), indicating that the found parameters ω tend to not only produce better results
under variation on average, but also lead to more stable results overall.

To summarize, on pendigits, training with variation may lead to a lower MaA at ε = 0%,
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but is able to produce better results for higher levels of test variation ε. Additionally, networks
trained with higher v tend to exhibit a lower standard deviation in the achieved MaAs.
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Figure 5.5: Mean and standard deviation of the MaA trained with different levels of conductance vari-
ation v.
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Figure 5.6: The relative degradation of the MaA trained with different levels of conductance variation
v. The results are reported with respect to the initial value at ε = 0%.
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Figure 5.7: The standard deviation of the MaA trained with different levels of conductance variation v.

To further test these hypotheses, variation-aware training is applied to the datasets from
Section 3.4. Each dataset is evaluated and tested for the variation level it is trained on, i.e.
v = ε. Hence, it is assumed that the true variation level is known. The results are compared
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with the respective results of the optimal network trained without variation. For this, each
network (trained with and without variation) is retrained 10 times for the respective variation
level ε using different seeds. The networks achieving the highest average training MaA for 100

sampled sets of parameters are reported in Table 5.1.

Trained with variation (v = ε) Trained without variation

Dataset 0 % 10 % 20 % 30 % 10 % 20 % 30 %

Acute Inflammations 1.00 1.00± 0.00 0.94± 0.08 0.91± 0.09 0.99± 0.04 0.93± 0.10 0.85± 0.15

Balance Scale 0.90 0.87± 0.01 0.86± 0.02 0.84± 0.03 0.88± 0.03 0.85± 0.04 0.82± 0.05

Breast Cancer Wisconsin 0.97 0.97± 0.00 0.97± 0.01 0.97± 0.01 0.98± 0.01 0.97± 0.01 0.96± 0.02

Energy efficiency (y1) 0.87 0.83± 0.02 0.81± 0.03 0.79± 0.04 0.86± 0.02 0.80± 0.09 0.73± 0.07

Energy efficiency (y2) 0.91 0.88± 0.03 0.84± 0.03 0.82± 0.02 0.88± 0.04 0.81± 0.05 0.77± 0.07

Iris 0.94 0.94± 0.04 0.88± 0.09 0.86± 0.11 0.90± 0.07 0.83± 0.12 0.74± 0.14

Mammographic Mass 0.84 0.80± 0.01 0.78± 0.03 0.77± 0.05 0.82± 0.03 0.76± 0.05 0.72± 0.11

Seeds 0.94 0.93± 0.03 0.91± 0.05 0.86± 0.07 0.92± 0.04 0.88± 0.07 0.82± 0.10

Tic-Tac-Toe Endgame 0.97 0.86± 0.02 0.80± 0.01 0.76± 0.03 0.90± 0.07 0.76± 0.04 0.70± 0.06

Vertebral Column (2 classes) 0.87 0.83± 0.03 0.80± 0.04 0.75± 0.03 0.83± 0.04 0.78± 0.07 0.74± 0.09

Vertebral Column (3 classes) 0.83 0.71± 0.03 0.61± 0.10 0.51± 0.14 0.66± 0.11 0.55± 0.18 0.45± 0.21

Table 5.1: The test mean and standard deviation of the MaA results under conductance variation. For
each configuration, the training was performed with 10 different seeds and the mean and
standard deviation of the test MaA of the network achieving the best average training MaA
over 100 samples is reported.

In line with the observations on pendigits, the average MaA degrades for higher levels of
variation. For lower variation levels of 10%, training under variation leads to worse results,
see Tic-Tac-Toe Endgame. However, for ε = 20%, training with variation produces similar or
better results. For ε = 30%, networks trained with variation achieve strictly better average
MaAs. Furthermore, irrespective of the achieved MaA, the results for training with variation
display lower standard deviations across all results compared to their counterparts trained
without variation. This further supports the hypothesis that more robust solutions are found
through variation-aware training.

5.3.3 Experiments using simulated circuit models

The networks considered in the following use the circuit models extracted from data of circuit
simulations ("simulated circuit models") as developed in Section 5.1.3. For the baseline, and
when only conductance variation is considered, the ε = 0% version of both functions is used.
Since these adapted circuit models may influence the training dynamics, the grid-search pro-
cedure for finding the hyper-parameters is repeated. The results can be seen in Table 5.2 and
the set of selected parameters is reported in Table 5.3.

Overall, the networks achieve a similar performance to the reference networks (same as
before) and clearly surpass the baseline of a random guess. Additionally, their achieved results
are within about 3 % of the previously achieved results of the pNNs using the measured circuit
models (see Table 3.1). It is notable that almost all best performing networks choose a learning
rate of α = 0.01 on the low end of the search grid (see Table 5.3). Hence, exploring lower
learning rates may lead to improved results for pNNs using the simulated circuit models. One
reason for the preference towards these lower learning rates may be the increased steepness and
thus higher sensitivity of the activation function (see Figure 5.3).
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Dataset Architecture pNN pNN (feasible) reference NN random guess

neurons/layer Train Test Train Test Train Test

Acute Inflammations 6-4-3-2 1 1 1 1 1 1 0.475
Balance Scale 4-4-3-3 0.9258 0.913 0.9258 0.913 0.9163 0.8889 0.4396

Breast Cancer Wisconsin 9-4-3-2 0.9786 0.974 0.9786 0.974 0.9765 0.9697 0.6667
Energy efficiency (y1) 8-4-3-3 0.8541 0.8622 0.8658 0.8543 0.8696 0.8583 0.4331
Energy efficiency (y2) 8-4-3-3 0.9105 0.9055 0.9163 0.9016 0.9105 0.9055 0.4646

Iris 4-4-3-3 0.99 0.96 0.98 0.96 0.97 0.98 0.28
Mammographic Mass 5-4-3-2 0.818 0.8019 0.818 0.8019 0.818 0.8113 0.5503

Seeds 7-4-3-3 0.9643 0.9714 0.9643 0.9714 0.9571 0.9571 0.2714
Tic-Tac-Toe Endgame 9-4-3-2 0.9922 0.9748 0.9922 0.9748 0.9922 0.9716 0.6404

Vertebral Column (2 classes) 6-4-3-2 0.8502 0.8544 0.8357 0.8738 0.8551 0.8835 0.6893
Vertebral Column (3 classes) 6-4-3-3 0.8164 0.8155 0.8213 0.8155 0.7681 0.7864 0.5146

Table 5.2: The training results (test MaA) of the best pNNs when using the simulated circuit models.
The results of the reference network and the random guess baseline are identical to the results
in Table 3.1.

Models pNN reference NN

Parameters α m λ α m λ

Acute Inflammations 0.10 0.4 0.01 1.0 0.1 0.000
Balance Scale 0.01 0.7 0.01 1.0 0.7 0.000
Breast Cancer Wisconsin 0.01 0.3 0.01 1.0 0.6 0.000
Energy efficiency (y1) 0.01 0.1 0.10 1.0 0.4 0.001
Energy efficiency (y2) 0.01 0.7 0.10 1.0 0.7 0.001
Iris 0.01 0.5 0.01 1.0 0.7 0.010
Mammographic Mass 0.01 0.9 0.10 1.0 1.0 0.001
Seeds 0.01 1.0 0.10 1.0 0.5 0.001
Tic-Tac-Toe Endgame 0.01 0.6 0.10 0.1 0.7 0.000
Vertebral Column (2 classes) 0.01 0.6 0.00 0.1 0.7 0.000
Vertebral Column (3 classes) 0.01 1.0 0.10 0.1 0.9 0.000

Table 5.3: The parameter configurations of the best pNNs using the simulated circuit models.

Consequently, also the grid-search from Section 5.3.1 is repeated to find new hyper-parameters
for pendigits. Here, training, validation and test MaAs of 0.8789, 0.8763, 0.833 are achieved
respectively under a configuration of α = 0.01, λ = 0.001 and m = 0.2 with 15 and 13 neurons
in the hidden layers. Hence, the best network uses the same configuration for α and λ as for the
measured circuit models, but has fewer neurons in both hidden layers (previously 19 and 14).
Additionally, the training margin m is lower with 0.2 versus 0.5. With the achieved results,
the best found network reaches an about 7% points lower MaA than the best previously found
network with the measured circuit models. Note that this has nothing to do with either one
reflecting the reality better (they are both evaluated purely computational), but solely with
the suitability of their model for training. However, as always, better results may be achievable
by an extended hyper-parameter search.

The worse performance of the simulated circuit models may for example be explained by the
higher steepness of the ptanh function. Through this, the learning algorithm obtains mostly
small gradients which could hinder the learning. Additionally, its root is further from zero
requiring a higher bias for compensation (see Section 3.3.4). Since the weights and the bias
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must sum up to one, the increased bias may leave less freedom for the values of the weights.
Uncovering the exact mechanism would however require a detailed set of experiments that is
beyond what is intended in the chapter.

Conductance variation

As expected, subjecting the network of pendigits to conductance variations clearly leads to a
degradation in the average MaA (see Figure 5.8). However, compared to the previous results
for the measured circuit models (Figure 5.4), the performance of the network decreases more
drastically under variation.8 This effect may be attributed to either the use of the simulated
circuit models, or the selected set of hyper-parameters/architecture.
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Figure 5.8: The MaA degradation of the best model for pendigits under various levels of conductance
variation when the simulated circuit models are used. The solid line displays the mean
MaA, and the shaded area represents the standard deviation for 100 sampled sets of the
parameters.

While the effect of the circuit models on the robustness is hard to assess, assumptions can
be made about the influence of the hyper-parameters. For example, the choice of the margin
parameter m could have a robustifying effect and was chosen as 0.2 here compared to 0.5

before. For higher m, the network is encouraged to place the outputs further away from the
misclassification thresholds T and 0. Thus, small perturbations of the output induced by
variations may not lead to a misclassification immediately. However, training with higher m
might in turn also lead to solutions which exhibit a higher sensitivity with respect to parameter
perturbations. Such an increased sensitivity could then nullify eventual gains in robustness.

With respect to variation-aware training, the results for training prove less stable than under
the measured circuit models. The training for each variation level v (including v = 0) is thus
repeated with 10 different seeds. For each v, the network achieving the best average validation
MaA at ε = 0 is displayed in Figure 5.9.

Although the conductance variation has a severe effect on the initial network (v = 0%),
training with variations greatly improves the results for higher levels of ε. Most notably, some
networks trained with variation even achieve similar average MaAs at ε = 0 to the network
trained without variation. However, increasing v did not always lead to better results. This is

8The severity of this difference is revealed by noticing that the y-axis of the new results is displayed for an
MaA range from 0 to 1, while before, the minimum displayed value was 0.6.
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Figure 5.9: Mean and standard deviation of MaA trained with different levels of conductance variation.
All networks use the simulated circuit models.
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Figure 5.10: Degradation of the mean MaA trained with different levels of conductance variation. The
results are reported with respect to the initial value for ε = 0% variation. All networks
use the simulated circuit models.
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Figure 5.11: Standard deviation of the MaA trained with different levels of conductance variation. Note
that the standard deviations of networks with low average MaA values are likely decreased
due to the MaA being bounded at zero. All networks use the simulated circuit models.

evident by the fact that no network with an acceptable accuracy could be found for v = 30%

over 10 different seeds. On the other hand, consistent with previous observations, the relative
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Trained with variation (v = ε) Trained without variation

Dataset 0 % 10 % 20 % 30 % 10 % 20 % 30 %

Acute Inflammations 1.00 0.82± 0.00 0.85± 0.07 0.81± 0.03 0.98± 0.05 0.91± 0.15 0.74± 0.19

Balance Scale 0.91 0.84± 0.03 0.81± 0.04 0.77± 0.05 0.78± 0.08 0.66± 0.12 0.56± 0.14

Breast Cancer Wisconsin 0.97 0.97± 0.00 0.97± 0.01 0.97± 0.01 0.96± 0.02 0.83± 0.22 0.69± 0.27

Energy efficiency (y1) 0.85 0.71± 0.12 0.67± 0.18 0.72± 0.14 0.34± 0.23 0.23± 0.21 0.16± 0.18

Energy efficiency (y2) 0.90 0.85± 0.04 0.82± 0.02 0.82± 0.02 0.78± 0.11 0.62± 0.15 0.49± 0.20

Iris 0.96 0.92± 0.08 0.88± 0.10 0.81± 0.13 0.83± 0.15 0.60± 0.21 0.44± 0.24

Mammographic Mass 0.80 0.70± 0.10 0.55± 0.00 0.53± 0.09 0.61± 0.11 0.54± 0.10 0.52± 0.08

Seeds 0.97 0.91± 0.04 0.89± 0.05 0.83± 0.08 0.87± 0.08 0.70± 0.13 0.55± 0.18

Tic-Tac-Toe Endgame 0.97 0.91± 0.03 0.79± 0.04 0.73± 0.04 0.82± 0.15 0.66± 0.18 0.55± 0.19

Vertebral Column (2 classes) 0.87 0.77± 0.03 0.71± 0.05 0.68± 0.07 0.74± 0.07 0.66± 0.10 0.61± 0.14

Vertebral Column (3 classes) 0.82 0.68± 0.02 0.38± 0.07 0.36± 0.11 0.62± 0.12 0.54± 0.16 0.49± 0.16

Table 5.4: The test mean and standard deviation of the MaA results for variation-aware training.
Each entry displays the average test performance of the respective training configuration
initialized with 10 different seeds. The mean and the standard deviation are calculated using
100 samples. All networks use the simulated circuit models for the activation and the inverter
function.

MaA degradation is lower for networks trained with higher v (see Figure 5.10).9 Finally, the
standard deviation of the achieved MaA also (initially) decreases with the employed training
variation v (see Figure 5.11). In contrast to before (Figure 5.7), the standard deviation does not
increase monotonically with ε. A likely reason for this is that the MaA, as well as the accuracy,
can only take on values between zero and one. This possibly leads to smaller standard deviations
for poorly performing networks since they cannot achieve an accuracy below zero. The same
effect would obviously also occur for high performing configurations with a mean MaA close to
one.

Similar effects can also be observed for the other datasets (see Table 5.4). The results are
generated, as earlier, by retraining each model for each variation level and reporting the v = ε

results. For both, the networks trained with and without variation, the training is repeated
10 times (for 10 seeds), and the test MaA of the networks achieving the best average training
MaA for the given ε is reported.

It can be seen that employing variation-aware training almost universally leads to better
results for all reported variation levels. Most notably, for ε = 30%, the improvement is more
than 20% points in average MaA on about half of the datasets. However, Vertebral Column
(3 classes) (for ε ≥ 20%) and Acute Inflammations (for ε < 30%) form an exception. Since this
is inconsistent with the previous observation, it is likely either due to the use of the simulated
circuit models, the hyper-parameters, or unfortunate training dynamics.

When comparing the overall results for the simulated circuit models to the previous results
from the measured circuit models (Table 5.1), a clear pattern emerges. Training with the circuit
models extracted from the simulation data almost universally leads to a worse average MaA
under conductance variation. This is true for both, the networks trained with and without
variation. This suggests that the shape of the simulated circuit models may generally be less
suitable for training. Hence, circuits (or circuit models) exhibiting similar characteristics, e.g.,
steepness and strongly shifted root, should be avoided if possible. Nevertheless, variation-aware

9This does not mean anything for the bad performing networks at v = 30% though.
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training manages to greatly improve the average MaA under variation in both cases.

Conductance and circuit model variation

Finally, the networks are subjected to both, conductance and circuit model variation. The cir-
cuit model variations are thereby expressed through variations of the circuit model parameters
η for different variation levels ε (details see Section 5.1.3). In contrast to before, every neuron
now has its own activation and inverter function depending on the sampled parameters η. Con-
sequently, for variation-aware training, the gradient is also estimated based on both, variation
of the conductances, as well as variations of the parameters η (details see Section 5.2.2).

When applying the full variation to pendigits, the MaA already drops to around 0.4 at ε = 5%

(see Figure 5.12). Unsurprisingly, this is substantially lower than when only conductance
variation was applied (with about 0.7 at ε = 5%).
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Figure 5.12: The MaA results on pendigits under various levels of variation ε. The variation is applied
to the conductances of the crossbar resistors and the circuit model parameters η of inv

and ptanh. The solid line displays the mean MaA, and the shaded area represents the
standard deviation for 100 sampled sets of parameters.

For variation-aware training on pendigits, the training for each variation level v (including
v = 0) is repeated with 10 different seeds. As before, the networks achieving the best average
validation MaA at ε = 0 are displayed (see Figure 5.13). Evidently, also under the joint vari-
ation of conductances and the circuit models, variation-aware training manages to drastically
improve the average MaA. The improvement is especially notable in the range of ε = 5% to
ε = 15%. However, the achieved MaA are generally much lower compared to when only conduc-
tance variation was applied. For v ≥ 25%, none of the found networks displays an acceptable
accuracy. Hence, as already observed before, choosing v too high can lead to bad results.
Finally, consistent with the previous observations, networks trained with higher v exhibit less
relative degradation in MaA (see Figure 5.14) and display a lower standard deviation in their
results (see Figure 5.15). Note again that the unintuitive decrease in standard deviation with
respect to higher ε is likely due to the limited value range of the MaA.

To conclude the experiments, the procedure is applied to the other datasets. As before,
all networks are trained 10 times using different seeds and the best performing networks are
reported. The results can be seen in Table 5.5. Unsurprisingly, and in line with the observations
on pendigits, the combined variation almost universally leads to worse results for both training
with and without variation. The only exception to this is Acute Inflammations, for which
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Figure 5.13: Mean and standard deviation of the train, validation and test MaA trained with different
levels of variation v.
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Figure 5.14: Degradation of the MaA trained with different levels of variation v. The results are reported
with respect to the initial value for ε = 0% variation.
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Figure 5.15: Standard deviation of the MaA trained with different levels of variation v.

training under the combined variation performs better than under conductance variation only.
This is likely due to unfortunate training dynamics in the latter case. Consistent with previous
results, networks trained with variation almost always outperform networks trained without
variation for all variation levels ε ≥ 10%. The exceptions are Mammographic Mass, where both
perform comparable, and Vertebral Column (3 classes), where variation-aware training yields
worse results for ε = 15% and ε = 20%.

72



5.3 Experiments

Trained with Variation (v = ε) Trained without variation

Dataset 0 % 10 % 20 % 30 % 10 % 20 % 30 %

Acute Inflammations 1.00 1.00± 0.02 0.98± 0.05 0.88± 0.13 0.85± 0.10 0.75± 0.20 0.64± 0.24

Balance Scale 0.91 0.81± 0.04 0.75± 0.09 0.63± 0.13 0.71± 0.11 0.57± 0.15 0.41± 0.20

Breast Cancer Wisconsin 0.97 0.97± 0.01 0.95± 0.03 0.90± 0.15 0.92± 0.11 0.64± 0.28 0.46± 0.29

Energy efficiency (y1) 0.85 0.66± 0.16 0.70± 0.14 0.63± 0.18 0.28± 0.20 0.19± 0.19 0.12± 0.17

Energy efficiency (y2) 0.90 0.82± 0.04 0.54± 0.12 0.50± 0.13 0.72± 0.12 0.47± 0.15 0.31± 0.23

Iris 0.96 0.91± 0.08 0.56± 0.13 0.47± 0.17 0.68± 0.19 0.42± 0.19 0.28± 0.20

Mammographic Mass 0.80 0.55± 0.00 0.49± 0.17 0.42± 0.24 0.55± 0.10 0.51± 0.12 0.41± 0.20

Seeds 0.97 0.88± 0.06 0.58± 0.07 0.53± 0.12 0.72± 0.14 0.47± 0.15 0.34± 0.16

Tic-Tac-Toe Endgame 0.97 0.81± 0.03 0.71± 0.07 0.63± 0.09 0.73± 0.19 0.54± 0.19 0.47± 0.21

Vertebral Column (2 classes) 0.87 0.72± 0.06 0.68± 0.07 0.66± 0.13 0.69± 0.09 0.58± 0.15 0.49± 0.24

Vertebral Column (3 classes) 0.82 0.59± 0.07 0.28± 0.19 0.06± 0.15 0.56± 0.18 0.46± 0.16 0.37± 0.21

Table 5.5: The test mean and standard deviation of the MaA results for variation-aware training for
conductance and circuit model parameter variations of ptanh and inv. Each entry displays the
average test performance of the respective training configuration initialized with 10 different
seeds. The mean and the standard deviation are calculated through 100 sets of sampled
parameters.

5.3.4 Summary of experimental observations

To conclude, variation-aware training almost always increased the accuracy (MaA) under sim-
ulated conductance variations. Additionally, the achieved results generally exhibit a lower
standard deviation. This was found independent of using the circuit models for the ptanh and
inv function derived from measurement data or from data extracted through circuit simula-
tions. In the case of the latter, the achieved MaAs were generally worse compared to networks
trained with the circuit models extracted from measurement data. For some datasets, e.g.,
pendigits, this effect could also be partly explained through a lower training margin m, which
might also lead to more robust results. However, the effect was almost universally observed
on all datasets irrespective of the values of m. Hence, with respect to the design of activation
and inverter function circuits, circuits displaying characteristics similar to the simulated circuit
models should be avoided.

While finding ideal shapes would require a detailed analysis, it may be conjectured that very
steep functions with roots far from zero are unfavourable. This could be because activation
functions with steep slopes have larger regions with small gradients that lead to slow learning.
On the other hand, if the root of the activation function is far from zero in a pNN, a large bias
is required to keep the activation around zero where good gradient signals can be obtained.
However, due to the coupling of the weights and the bias, a large bias also limits the magnitude
of the weights and makes them less flexible overall.

By construction, training with a specified variation level v should lead to the best results
under ε = v. However, this is seldom the case in the experiments. For example, v = 15%

provides better results at ε = 10% than v = 10% in Figure 5.13. Such observations could be
explained by various factors. First of all, the quality of the achievable results depends on the
loss surface and the training dynamics. For example, the solution (parameters) for v = 15%

and v = 20% may have the same location and could be found by either value of v. However, one
of the choices may lead to a better training process, e.g., provide better (estimated) gradients.
Hence, the optimisation is guided more effectively and thus achieves better training results.
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The possibly high variance of the estimated gradients may also be a reason for training runs
to fail completely, e.g., for v ≥ 20% in Figure 5.13. A natural way to combat this would be to
use more samples for the estimation of the gradients. However, this also increases the training
time. Finally, it should be noted that since neural network training problems are generally
nonconvex, finding good, let alone optimal solutions cannot be guaranteed. Additionally, the
insufficient smoothness of the pNN model may hinder the progress of gradient-based learning
approaches.

5.4 Conclusion and directions for future work

This chapter introduced a variation-aware training procedure for pNNs. As a first step, vari-
ation models of the conductances of the crossbar resistors and the activation and inverter
functions were developed. The model for the conductance variation is based on relative, uni-
form variation, while the variation models of the circuit components were developed through
a data-driven approach using data generated by circuit simulations. Based on these variation
models, the training procedure for pNNs was modified to minimize the expected loss under the
modelled variations (variation-aware training). To find a solution to this stochastic optimisa-
tion problem, the gradients were estimated using Monte Carlo gradient estimation. With these
gradients, the techniques described in Chapter 3 can be employed for learning.

The method was evaluated experimentally by training and testing pNNs on a variety of
datasets. Each network was thereby trained and evaluated under several levels of variation.
From the experiments, it can be concluded that training with this objective often leads to an
increased expected accuracy (MaA) under variation. This is especially prominent when consid-
ering multiple sources of variation and higher variation levels. Training pNNs this way should
therefore lead to printed NCs that display better results after fabrication. It was also observed
that the choice of the circuit (models) for the activation and inverter function influences the
sensitivity of the networks. Hence, such effects should be considered when designing new circuit
components in the future.

Besides the proposed variation models, the general methodology may also be adapted for
more complex, physically motivated or data-driven variation models. For this, two main cases
should be distinguished. In short, if the variation, i.e., distribution of the varying quantity, can
be influenced by learnable parameters or not. If the choice of the learnable parameters does
not influence the variation, the derivation of gradient estimates is straightforward and simply
relates to averaging evaluations of the gradient for sampled sets of parameters. This was the
case of the component variation models for inv and ptanh. However, if the learnable parameters
influence the distribution, e.g., in the case of the relative variation of the conductances, the
applicability of the pathwise gradient has to be re-evaluated and an appropriate sampling path
needs to be found. Depending on the variation model, also other types of gradient estimators
may be required. Finally, note that also further sources of variations, such as input variations,
could be considered. As these variations cannot be influenced by the learnable parameters,
they simply represent training with noisy training data and do not fundamentally complicate
the procedure.

To improve the robustness of the found networks, it may not be required to train with the
exact variation model. Trying to minimize the expected loss under any variation may generally
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help to find "flat" regions in the loss surface that are robust against perturbations. However,
in this work, no experiments were carried out to support this hypothesis.

As a future direction of work, closed-form variation models for the circuit components based
on their conductances and transistor sizes could be developed. The transistor sizes and con-
ductances could then be considered as learnable parameters similar to the conductances of the
crossbar resistors. To efficiently learn those parameters, the models should ideally be devel-
oped such that they qualify for the use of the pathwise gradient estimator. Through this, the
network would be able to learn shapes of the respective activation and inverter functions that
not only benefit the learning dynamics, but also the robustness of the pNNs and should thus
lead to more robust NCs. Note that fabricating activation and inverter functions individually
for each neuron should not be a problem given the on-demand printing capabilities of inkjet
printing.

To speed up the learning process, the number of samples used for gradient estimation could
be adjusted dynamically. For example, in the early stages of learning, gradients estimates
based on a lower number of samples may be sufficient to decrease the loss. Then, towards the
end of learning, the number of samples could be increased to achieve lower variance estimates
and improve the convergence. Alternatively, in each gradient estimation step, samples could
be drawn until no significant changes in the estimate are observed over a certain number of
samples. Note however that the samples would not be independent in this case.

Aside from variations, other aspects that degrade the performance of printed NCs may
already be anticipated in training. One of these could be accuracy degradation due to aging
of the components. In a similar manner to variation models, aging models of the parameters
could be developed. These models could then be used to pose the training problem of pNNs
as minimizing the loss over its lifetime. This could for example be formulated as

∫
L (θ(t)) dt,

where θ(t) is given by an aging model. The integral could thereby be approximated via simple
uniform discretization, Monte Carlo methods or any other approach that uses differentiable
computations.

Even though the proposed approach of variation-aware training could strongly improve the
average performance, not all pNNs displayed acceptable results. In these cases, the feature of
additive manufacturing could be employed to partially reprint crossbar resistors of the printed
NC and create the intended behaviour. One such approach is described in the next chapter.
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Neuromorphic Circuits

Through the variation-aware training technique proposed in the last chapter, the average accu-
racy of the pNNs under variation could be increased notably. Unfortunately, not all fabricated
printed NCs may reach the desired quality. To improve the performance of these NCs and
increase the fabrication yield, this chapter proposes a post-fabrication tuning procedure. The
approach utilizes the unique feature of additive manufacturing to adjust the conductances of
the crossbar resistors. For this, inkjet printing can be used to selectively add additional mate-
rial on top of previously fabricated devices. Leveraging this capability, the procedure works as
follows.

Based on an assessment of the actually fabricated conductances, the method aims to improve
the accuracy of a pNN model for the printed NC. This is achieved by successively restoring
the initially desired weights of the neurons. For the restoration of each neuron, the post-
fabrication capabilities are limited by physical and technological constraints which have to
be respected when choosing new conductance values to fabricate. For example, as printing
additional material increases the conductive path, the value of the new conductances can only
be larger than the already fabricated ones. To reduce the material consumption and save time,
the approach aims to find the minimal adjustment required to restore the desired weights. The
method is evaluated on several pNNs and datasets from the previous chapters.

The rest of this chapter is organized as follows. First, the preliminaries for the method
are introduced. These relate primarily to the assessment of the conductance values of printed
resistors and the capabilities of adapting them after fabrication. The introduction is followed
by a discussion of modelling assumptions. After the preliminaries, the post-fabrication tuning
methodology is outlined. The methodology is then evaluated, and the chapter closes with a
discussion and possible directions for future work.

The results in this chapter are based on [67], which is accepted for publication by the time
of writing this thesis.
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6.1 Preliminaries and background

The following introduces preliminary concepts required for the post-fabrication procedure. The
main points are thereby the assessment of printed resistors and a discussion of the possibilities
to modify their conductance via additive manufacturing. For the procedure, only variations in
the conductances of the crossbar resistors are considered. The activation and inverter function
components are assumed to exhibit no variation (details see Section 6.1.3).

6.1.1 Assessment of printed resistors

As a first step, an assessment of the circuit characteristics of the fabricated NC is required. In
particular, the conductances of the fabricated resistors must be obtained. This can be achieved
by measuring all devices. Since this can be time consuming, only a certain subset of resistors
may be measured. The subset could thereby be found by investigating resistors that display
high variations in their geometries. Since printed electronic components usually have sizes
>10µm, variations in the geometry could already be found via optical inspection through a
commercial microscope. See Figure 6.1, for an example of printed resistors of different quality.

Figure 6.1: Printed (PEDOT) resistors of different quality. The device on the left is well printed, the
middle resistor is misaligned, and the printing on the right shows a nonuniform pattern.
Depending on the quality of the printing, the target width and length of the conductance
is not achieved, influencing the conductive properties of the device. Image taken by Dennis
D. Weller and adopted with permission.

Alternatively, if the printer is equipped with a camera (see [74]), the optimal inspection could
be carried out while printing. The assessment of the nonuniformity of the printed geometries
may be aided by appropriate computer-vision methods for detecting printed components (see
[49]). The resistors found could then be measured after fabrication, while the other resistors
can be assumed to have the intended values.

6.1.2 Modifying printed resistors

After the conductance values of the printed resistors have been assessed, they can be modified
by selectively printing additional material on top of them. Such techniques have already been
employed for tuning resistances in printed random number generators [50, 155]. Here, the
amount of material that is added, i.e., the number of layers and their width, determines the
final conductance value (see Figure 6.2).

Since adding material increases the size of the conductive channel, the conductance of a given
device can only be increased through this procedure. This constraint, along with restrictions
on the minimal size of printable structures, has to be respected when developing methods for
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Figure 6.2: Printed (PEDOT) resistors of different geometries and conductance values. Through differ-
ent geometries and number of printed layers, different conductance values can be achieved.
Generally, the bigger the conductive channel, i.e., the more material is printed, the higher
the conductivity of the device. Figure a) and b) and c) represent conductances of different
values. Figure d) shows two combined printed geometries of different width and numbers
of layers. The figure was adopted from [67].

post-fabrication tuning in the following.

6.1.3 Modelling assumptions

In the following, the assumptions for the post-fabrication procedure are outlined. First of all, it
is assumed that only the crossbar resistors exhibit variation. The other circuit components, like
the activation and inverter function, exhibit no variation. This could for example be justified
in a split-manufacturing scenario, where the activation and inverter circuits were prefabricated
through an industrial replication printing process with comparably little variations. Then,
only the crossbar resistors are left to be fabricated to configure the circuit on-demand via
inkjet printing.

The conductances g are denoted by gold for the initially fabricated conductances and gnew

denotes the targeted conductances after employing the post-fabrication tuning procedure. As
before, individual conductances in the set/vector g are referred to as gi.

1. The conductances gold of the printed resistor crossbars can be accurately assessed.

2. A limited range of conductance gi ∈ [gmin, gmax] can be realized.

3. Reprinting increases the conductance of the resistor, hence gnewi ≥ goldi .

4. Reprinted resistors exhibit a lower variation εreprint.

The first assumption is essential, as without an accurate assessment of the characteristics of
the fabricated device, the results of the procedure may be erroneous.

The second assumption relates to the technology constraints and the feasible conductance
ranges. It was also already considered when training pNNs (see Section 3.2.1). The value of the
minimum conductance gmin is thereby determined by the printing resolution and the smallest
feasible conductive pattern. On the other hand, the maximum value gmax is realized through
the maximal width of the conductive channel printed with the maximum number of layers.

The third assumption states that the conductance can only be increased through reprint-
ing. As printing on top of an old resistor creates an additional conductive path, the overall
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conductivity is increased.1

From the second and third assumption follows that the adjustment made when reprinting
may not be lower than a minimal value T , hence gnewi ≥ goldi + T . The adjustment distance T
represents a technology constraint relating to the smallest printable conductive pattern of the
printer used for tuning. If the same printer is used for fabrication and tuning, T = gmin should
be a reasonable choice.

The fourth assumption directly relates to the expected improvement achievable through
reprinting. The variation introduced in reprinting should be lower than the initial fabrication
variations, i.e. εreprint < ε, and may be realized through slower printing speeds.

Based on these assumptions, the next section describes a procedure to find a new, feasible set
of conductances gnew, which aims to restore the initially intended weights of a printed neuron.

6.2 Post-fabrication tuning for printed neural networks

The following outlines the post-fabrication tuning procedure. For the procedure, it is assumed
that a pNN model was learned and mapped to a respective printed NC. After fabrication
of the NC, it did not reach satisfying results due to variations in the fabrication process.
This then triggers the post-fabrication procedure, where, as a first step, all conductances are
assessed through measurements.2 The pNN model is then updated with the actually measured
conductances and a maximum number of k neurons is chosen for reprinting.

The procedure then successively identifies candidate neurons to reprint. For these neurons,
adjustments of their resistances are calculated which allow for a restoration of their initially
intended weights. The neurons are thereby chosen greedily based on the expected accuracy
improvement for reprinting. After either k neurons have been identified for reprinting or no
improvement is expected from additional reprinting steps, the adjustments for the selected
neurons can be inkjet-printed. A flowchart for the full post-fabrication procedure can be seen
in Figure 6.3.

The core of the post-fabrication procedure, i.e., the method for finding and restoring the
intended behavior of a neuron, is described in the next subsection.

6.2.1 Restoring the weights of a printed neuron

For the training of the pNNs, the (surrogate) conductances are used as learnable parameters
(see Chapter 3.3). They are preferred over directly finding a set of weights w as they allow a
simpler treatment of the circuit and technology constraints. However, the weights w, which
are formed as a function of the conductances g through

wi(g) =
gi∑
j gj

,

still determine the behaviour of a neuron. As long as the conductances form the correct weights,
the pNN, and hence the printed NC, yield the correct output.

1Both resistors can be seen as connected in parallel, and their total conductances is given by the sum of the
individual conductances.

2Alternatively, only the conductances displaying a mismatch in their geometric shape may be measured. For
the other conductances, the intended values of the pNN model may be considered.
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Figure 6.3: A flowchart of the full post-fabrication procedure. The left part is done in software and
based on a printed neural network model. The right part relates to measurement and
fabrication of the printed NC. The figure was adopted from [67] with slight modifications.

Note that, while the conductances g uniquely determine the weights w(g), the reverse is not
true. In fact, the weights w(g) are scale-invariant with respect to the conductances g, as for
any scaling factor s ∈ R,

wi(s · g) =
(s · gi)∑
j(s · gj)

= �s · gi
�s ·
∑

j gj
=

gi∑
j gj

= wi(g). (6.1)

In other words, there is a whole (half-)space of possible vectors g yielding the same weights
w(g). This key observation forms the basis of the post-fabrication procedure.

In the following, for a given neuron, let g? be the conductances obtained from the training
algorithm, and let gold denote the actual conductance of the printed resistor after fabrication.
Due to (6.1), w(g?) = w(s · g?). Thus, by finding a scaling factor s for which gnew = s · g?
is feasible, the same, originally intended weights w(g?) are realized. Additionally, the newly
obtained conductances gnew suffer from less variation due to a slower, more careful fabrication.
More specifically, as εreprint < ε according to the assumptions.

In principle, any scaling factor s can be chosen for which the specified constraints hold, i.e.,
all new conductances gnewi 6= 0 must lie in the feasible domain and have at least distance T from
the initially fabricated goldi . Formally, this can be expressed through a system of inequalities

∀i with goldi 6= 0 : s · g?i ≥ T + goldi

s · g?i ≤ gmax

of the single variable s. All conductances gi with goldi = 0 do not require an adjustment and
directly imply gnewi = 0. Note that depending on the respective gold and gmax, such an s may
not exist.

To save time and material, the optimal scaling factor s? should be chosen such that an overall

81



6 Post-fabrication Tuning for Printed Neuromorphic Circuits

minimal adjustment for all conductances g is required. This can be formalized by

s? = argmin
s ∈ R+

∑
i

|s · g?i − goldi |

s.t

∀i with goldi 6= 0 :

s · g?i ≥ goldi + T

s · g?i ≤ gmax.

(6.2)

The formulation represents a one-dimensional optimization problem with two times as many
constraints as there are nonzero conductances in the neuron. A visual sketch of the problem
can be seen in Figure 6.4.

s g

gnew

g

gold

Feasible domain

Figure 6.4: A sketch of the post-fabrication tuning problem for a single neuron. The domain is defined
by the constraints. Here, g? denotes the intended conductances which are perturbed through
variation to gold. By solving (6.2), a new set of feasible gnew = s? · g? can be found.

To find a solution for (6.2), the problem is first reformulated. For this, note that the original
constraints can be summarized by

∀goldi 6= 0 : s · g?i ≥ T + goldi ⇐⇒ s ≥ max
i

{
T + goldi
g?i

}
s · g?i ≤ gmax ⇐⇒ s ≤ min

i

{
gmax
g?i

}
,

which provides an upper and a lower bound for s. The lower bound and the upper bound will be
referred to as s and s and in the following. Furthermore, by noting that the terms of the sum
are nonnegative according to the constraints, i.e., ∀i with goldi 6= 0 : (s · g?i − goldi ) ≥ T ≥ 0,
the problem can be stated equivalently as

s? = argmin
s ∈ R

∑
i

(s · g?i − goldi )

s.t. s ≤ s ≤ s,
(6.3)

where s and s can be computed as seen above. Since (6.3) is a linear optimization problem
on a compact domain, it always has a solution if the feasible set is not empty, i.e., if s ≤ s.
Additionally, the solution must lie on the boundary of the feasible set. The solution for the
problem is therefore given as either s or s depending on which of the two leads to the lower
value of the objective function.

After obtaining s?, the initially fabricated conductances gold of the neuron can be adjusted
to gnew = s? · g?. Then, according to (6.1), w(gnew) = w(g?). In the following, the process of
finding gnew is simply referred to as reprinting.
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6.2.2 Post-fabrication tuning for printed neural networks

Through the reprinting procedure presented in the last section, the weights of single neurons can
be restored. Trivially, all network conductances could be reprinted to benefit from the smaller
variation. However, since reprinting is time consuming, only a limited number of neurons, say
k, should be chosen for reprinting. This leads to the question of finding the best k neurons to
reprint.

For a given neuron, the expected accuracy (or MaA) improvement for reprinting can be
estimated by evaluating the pNN with the given weights w(gold) and the intended weights
w(g?). Based on this estimate, promising neurons to reprint can be identified. However, for N
neurons and k planned reprints, there are

(
N
k

)
different configurations to evaluate. This may

already be prohibitive for small networks and moderate values of k. As an example, consider
the pNN for pendigits with 43 neurons. Here, finding the best k = 10 neurons would already
result in more than 109 possible combinations which would have to be evaluated.

To reduce the required runtime, a greedy, sequential strategy can be pursued. Here, in each of
the k steps, the expected accuracy (or MaA) improvement is evaluated for all neurons and one
neuron is chosen for reprinting. The greedy strategy therefore only requires

∑k−1
0 N − k eval-

uations of the reprinting procedure. Finally, note that also less than k steps can be performed
if no improvement can be expected by reprinting an additional neuron.

6.3 Experiments

The proposed post-fabrication procedure is now evaluated on the datasets described earlier in
this work. Since printing the respective NC devices would be too expensive and time consuming,
the MaAs of reprinted pNNs are used for evaluation.

6.3.1 Experimental setup

All experiments are performed twice, once using the component models extracted from mea-
surements, and once using the component model extracted from simulation data (details see
Section 5.3). The networks to reprint are taken from the grid-search procedures in Section 3.4
and Section 5.3. Note that these networks are trained without variation. The circuit mod-
els, i.e., the inv and ptanh, are assumed to have no variations. The variation of the cross-
bar resistors is simulated according to the model from Section 5.1.2, for variation levels of
ε ∈ {0, 5, 10, 15, 20, 25, 30}% for pendigits and ε ∈ {0, 10, 20, 30}% for the other datasets. All
reported results are calculated using 100 simulated fabrication and post-fabrication cycles for
the respective pNNs.

The post-fabrication procedure requires an extended range of printable conductance values to
increase conductances that were set to gmax in training. As discussed before, the extended range
may be realized by printing multiple stacked layers of conductive material. For the experiments,
a conductance range of 1 : 600, numerically relating to gmin = 0.01 and gmax = 6 is selected.3

Note that the conductance range used for training was 1 : 100, relating to gmin = 0.01 and
gmax = 1.

3This range was suggested by Dennis D. Weller in a personal conversation.
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When reprinting the conductances of given neuron, the conductances gold of the old crossbar
resistors are given. Hence, only the size of the adjustment gnew − gold ≥ T is considered
to vary with the post-fabrication variation level of εreprint = 5%. The minimal adjustment
distance T is set to gmin. This choice can be justified by the assumption that gmin represents
the conductance of the smallest printable geometry and therefore also limits the resolution of
the adjustment.

Finally, in each of the k reprinting steps, the neuron to reprint is selected based on the best
train (validation for pendigits) MaA achieved after simulating one reprinting step (without
variation) for each neuron. All reported tables and figures in the following show average
test data performance results for 100 simulated fabrications4, followed by the post-fabrication
tuning processes.

6.3.2 Experiments with measured circuit models

First, the post-fabrication procedure is applied to the networks from Table 3.1. The fabrication
of the initial network is simulated 100 times under various levels of variation. Post-fabrication
tuning is then applied to each network and different percentages of the neurons of the network
are reprinted. The results for pendigits are displayed in Figure 6.5.

Evidently, the more neurons are reprinted, the better the achieved MaA. Moreover, the
higher the variation, the more neurons need to be reprinted to recover MaA levels close to the
initial accuracy. However, the effectiveness of reprinting saturates when reprinting more than
30% of the neurons (≈ 12 of 42). This is likely due to the post-fabrication variation εreprint,
which does not permit to recover the ε = 0% result. Reprinting may even decrease the results
slightly since the estimated improvement does not consider the post-fabrication variation.

0 5 10 15 20 25 30
% Variation ( )

0.70

0.75

0.80

0.85

0.90

M
ea

su
re

-a
wa

re
 a

cc
ur

ac
y

 0% reprinted neurons
10% reprinted neurons
20% reprinted neurons
30% reprinted neurons
40% reprinted neurons
50% reprinted neurons
60% reprinted neurons
no variation

Figure 6.5: The post-fabrication procedure applied to the pendigits dataset under different variation
levels ε (x-axis). The network uses the ptanh and inv function extracted from measured
data. The line denotes the mean average test MaA for the respective configuration for 100

samples.

To further investigate this effect, the procedure is applied to networks of the smaller datasets.
For each dataset/network, the test set results for different percentages of reprinted neurons are
reported. The results for each network are normalized with respect to their MaAs at ε = 0%

and can be found in Figure 6.6.
4Applying ε variation to the conductances of all crossbar resistors.
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As for pendigits, reprinting about 20− 30% of the neurons allows to restore 90− 95% of the
initial ε = 0% MaA for most datasets. Two exceptions are Vertebral Column with 3 classes
and Tic-Tac-Toe Endgame. Note that these networks have already been comparably sensitive
to conductance variation earlier (see Table 5.1).
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Figure 6.6: The post-fabrication procedure applied to the networks of Table 3.1 for different variation
levels ε. The x-axis displays the % of the total neurons that are reprinted (k). The y-axis
denotes the % of the ε = 0% MaA that could be recovered.

6.3.3 Experiments with simulated circuit models

The experiments are now repeated for the best pNNs using the simulated circuit component
models. In the previous experiments, the networks trained with these circuit models were
observed to be generally less robust to variation. Hence, it can be expected that a higher
percentage of neurons needs to be reprinted to restore a comparable performance. This is also
directly confirmed by the experimental results (see Figure 6.7 and 6.8).

For pendigits, about 40% of the neurons (compared to 20% under the measured circuit
models) need to be reprinted to recover about 90% of the ε = 0% MaA. Additionally, due to
the generally worse performance of the networks under variation, the initial network does not
only start off worse, but is likely also more impaired by the 5% post-fabrication variation.

For the other datasets, the observed effects are similar. For most datasets and variation
levels, about 80 − 90% of the ε = 0% MaA can be achieved after reprinting 20 − 30% of the
neurons. An exception to this is Energy efficiency (y1). However, the network for this dataset
has already been shown to be extremely sensitive to variation in Table 5.4. Thus, since post-
fabrication still introduces variation, even reprinting a high percentage of neurons may not
always permit achieving satisfying results.
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Figure 6.8: The post-fabrication procedure applied to the networks of Table 5.2 for different variation
levels ε. The x-axis displays the % of the total neurons that are reprinted (k). The y-axis
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6.4 Conclusion and directions for future work

In this chapter, a post-fabrication tuning procedure for increasing the performance of fabricated
printed NCs was proposed. The approach constructs a pNN model of the NC based on an
assessment of the circuit components and proposes a set of neurons to reprint. The reprinting
configuration for a neuron is chosen by solving an optimization problem. The method was
evaluated using multiple datasets and various parameter variation levels. Overall, even under
simulated variation of up to 30%, close to 80−90% of the expected accuracy could be achieved
by reprinting 20− 30% of the neurons for most datasets.

Contrary to variation-aware training proposed in Chapter 5, the post-fabrication procedure
does not require an explicit assumption about the variations. Hence, it can deal with any
perturbation of the conductance values. For example, the procedure could also be used to ad-
dress degradations such as aging. However, the assessment of the printed components through
measurements and the following reprinting step require substantially more effort than simply
using a modified training procedure.

Finally, reprinting 20 − 30% of the neurons of a network can mean greatly varying costs
depending on which neurons are chosen. Reprinting a neuron always requires the reprinting
of all its conductances. Thus, the proposed procedure can be costly for neurons with many
weights. This is a problem to be considered for future work. Ideally, a method should be able to
find a fixed-size subset of network conductances that should be reprinted. Although this could
be formulated as an optimization problem, finding a good solution would likely be challenging
due to its discrete nature and the technology constraints. One possible solution may be to
choose the conductances to reprint based on some heuristic beforehand and then optimize the
conductance values through classical optimisation procedures. Another approach could be to
explicitly enforce sparse solutions in the problem formulation. Consequently, many possible
approaches may be developed to recover the performances of printed NC in post-fabrication
steps.
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Printed electronics is an emerging technology with enormous potential for IoT applications.
One of its prospects is to enable the custom fabrication of smart devices through inkjet-printing.
However, the design of these printed components poses many challenges, e.g., through their
comparably high variations. This work proposed the adoption of neuromorphic computing for
printed circuitry to address some of these design challenges.

As a first topic, aspects of training printed neuromorphic circuits were described. Training
thereby represents an automatic circuit design solution by an optimisation routine. Through
these approaches, a wide range of near sensor processing tasks in the context of the IoT could
be addressed. This may be especially interesting for custom smart devices in the future.
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Figure 7.1: The proposed procedure allows for an on-demand design and fabrication of printed circuits
given a specification of a desired functionality. The on-demand design is realized through
training a pNN model according to the specification. The derived designs can be readily
fabricated through the on-demand fabrication capabilities of inkjet-printed electronics. This
figure is partly composed of figures from [156].

The resulting design flow of training, mapping and fabrication can be seen in flowchart
of Figure 7.1. The procedure can be summarized as follows: From an initial idea, the desired
functionality is described in the form of input-output relationships. These relationships are then
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converted into training data for a pNN model. Through the training procedure (Section 3.3
or Section 5), a pNN expressing the specified functionality is found. The circuit can then be
realized by mapping the learned pNN to the respective hardware primitives of printed NCs
(Section 2.6). In the last step, the printed NC can be fabricated using inkjet printing.

To address the comparably high variations of printed components in designs, a general, data-
driven variation modelling framework was proposed. The approach supports a fast development
of variation models based on nominal semi-empirical models. The parameters of such models
often exhibit complicated correlation structures and distribution shapes. To provide adequate
flexibility, the distributions are approximated through Gaussian mixture models with an adap-
tively chosen complexity. Hence, the framework automatically resorts to the classical choice
of simple uncorrelated Gaussian distributions for each parameter if adequate. The framework
was also used to develop a variation model for a printed transistor (EGT), that has been used
in multiple works, e.g. [50, 156]. A drawback of the framework is that it still requires a given
nominal model with identifiable parameters, which limits its applicability. These limitations
suggest further research toward fully data-driven approaches that allow the development of
variation models directly from measurement data.

To deal with the high variation of components in printed NCs, two approaches were described
in this work. The first relates to a variation-aware training procedure for pNN models. For
this, variation models for the core components of the printed NC, namely the crossbar resistors,
the activation function and the inverter circuit, were developed. The variation models were
then used to modify the training objective of pNNs to account for this variation. Finally, the
training problem was solved using Monte Carlo gradient estimates. The second approach relates
to a post-fabrication tuning procedure for printed NCs. Here, the unique feature of additive
manufacturing is employed to modify inaccurately printed resistors after their fabrication. For
this, the conductances of the crossbar resistors of each neuron are assessed. Then, a minimal
adjustment for the conductances is calculated for which the intended weights would be restored.

For now, all methods were evaluated using the proposed equations, and variations were
considered based on the proposed variation models. However, to thoroughly evaluate the
proposed concepts and ideas, real circuits should be fabricated and measured. Also, the method
may be evaluated on data of several, real use-cases for the design of smart devices, possibly
incorporating printed sensors. Unfortunately, the immaturity of the technology and production
processes does not permit extensive experiments yet. For now, the feasibility of small printed
NCs, as discussed in this work, was only demonstrated for a few components of a printed NC,
see [157, 156].

In this work, the perspective taken on the fabrication of printed NCs focuses mainly on
inkjet-printed circuitry that allows for full customization. While this aligns with the vision
of personalized fabrication [130], there may be high redundancies in the designs for NCs for
certain tasks. Hence, some designs could be reused with slight adaptations. Here, use-cases for
split manufacturing may arise, allowing for the combination of multiple printing techniques.
Commonly required parts, such as activation function and inverter circuits, or even entire
sub-networks of printed NC, could be fabricated in batches through high volume replication
printing techniques. A user can then inkjet-print the missing components on-demand to config-
ure and complete the circuit. The configuration could thereby be found through the techniques
described in this work, provided that a differentiable model of the pre-printed circuitry is avail-
able. Finding good candidates for pre-printable sub-networks could be a future research task.
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A promising direction for this could be to investigate techniques from multi-task-learning [19].

In general, the training of printed pNNs can be seen as an optimisation-based design approach
for printed NCs. The space of realizable circuits is thereby given through the functionality that
the pNN (and consequently the printed NC) can approximate. Conceptually, this offers many
benefits. For example, desirable properties like robustness to variations, as seen in Chapter 5,
can be addressed by modifying the optimisation objective. Further aspects, such as robustness
to aging effects, may be integrated in a similar fashion. For example, the training goal could
be to optimize for a high accuracy over the expected lifetime under consideration of an aging
model of the components. Furthermore, approximation trade-offs between circuit size or power
consumption could be considered by also searching for suitable pNN architectures. For this,
techniques from neural architecture search [45] could be adopted.

Especially in the light of growing computational resources, optimisation-based design ap-
proaches may hold great potential. However, as for now, their adoption is still limited [80].
Nevertheless, to deliver on the promise of custom fabrication and enable true, on-demand re-
alisation of printed devices, employing such design solutions is likely inevitable. Hopefully, the
ideas described in this work will inspire more research in this direction.
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