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Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization
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We propose a method, based on matrix product states, for studying the time evolution of many-body
quantum lattice systems under continuous and site-resolved measurement. Both the frequency and the strength of
generalized measurements can be varied within our scheme, thus allowing us to explore the corresponding two-
dimensional phase diagram. The method is applied to one-dimensional chains of nearest-neighbor interacting
hard-core bosons. A transition from an entangling to a disentangling (area-law) phase is found. However, by
resolving time-dependent density correlations in the monitored system, we find important differences between
different regions at the phase boundary. In particular, we observe a peculiar phenomenon of measurement-
induced particle clusterization that takes place only for frequent moderately strong measurements, but not for
strong infrequent measurements.
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I. INTRODUCTION

Open quantum systems [1,2] form the bridge between the
world of unitary, deterministic evolution of closed quantum
systems [3] and the familiar experience of our macro-
scopic world. Recently, open quantum systems have received
renewed interest in the context of quantum information
processing and quantum circuits. The coupling to the environ-
ment can lead to decoherence in arrays of qubits, which limits
the fidelity of quantum operations. A sufficiently high fidelity
is essential for the performance of programmable quantum
devices, in particular for “quantum supremacy,” which was
reported to have been achieved recently [4].

Quantum measurements, via their back-action on the mea-
sured system, can mimic the effect of an environment. In
a sense, the environment also “measures” the system, but
without “recording” the extracted information. To that effect,
coupling to the environment is a special type of “blind mea-
surement” [5]. Designing specific measurement protocols can
be considered as engineering of the environment to which
the quantum system is coupled. Improving our understanding
of quantum measurement processes is therefore of immedi-
ate practical importance. At the same time, controlling the
decoherence induced by the coupling to the environment may
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also help to advance our fundamental understanding of quan-
tum measurements [6,7].

This important role of measurements in the quantum-
information context, as well as their relation to decoherence
and entanglement spreading [8–10], has led to a flurry of
activity on the subject, especially with regard to entangle-
ment transitions using a quantum circuit description [11–28].
The effect of local quantum measurements on entanglement
has also been considered for systems described by a lattice
Hamiltonian, in particular, for many-body localized systems
[29], the quantum Ising chain [30–33], noninteracting spinless
fermionic models [34–36], Hubbard-type interacting chains
with short-range [37] and long-range [38] interactions, and
ultracold gases [39]. The question as to whether the effect of
measurements on quantum circuits is qualitatively the same
for real many-body systems is a subject of ongoing studies, as
we detail below.

A key feature that has emerged in the pioneering studies
of monitored systems is the interplay between the entan-
gling effect of time evolution and the disentangling effect
of the measurement, leading to an entanglement phase tran-
sition [11–14]. Various types of measurements have been
considered: local projective measurements, local weak mea-
surements that only slightly perturb the system (for their
recent applications in other contexts, see, e.g., Refs. [5,40–
49]), nonlocal measurements of several sites of the sys-
tem, and global measurements that act on the many-body
system as a whole. The main diagnostic tool for the
measurement-induced entanglement transition is the behavior
of the entanglement entropy averaged over the measurement
runs, but other indicators, such as mutual information or
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entanglement negativity, have also been used to explore the
phenomenon. However, manifestations of the entanglement
phase transition in more conventional density correlations are
not yet sufficiently explored.

The entanglement transition was discussed for
measurement-only dynamics, where nonlocal measurements
produce both entangling (by nonlocality) and disentangling
(by projection) trends [26,50]. The measurement-induced
transition was argued to be related to the “purification
transition” [18], which can be employed for quantum-state
preparation, control, and manipulation by means of quantum
measurements. In addition, the properties of the entanglement
transition have been linked to the theory of error corrections
in quantum information processing [21,22,26,28,51–53].
In the presence of additional symmetries and constraints, a
more sophisticated phase diagram may emerge, where the
entanglement transition is accompanied by other types of
phase transitions; see, e.g., Refs. [24,54].

A key open question concerns the degree of universality
between the various types of measurement protocols, applied
to various different types of systems. In particular, it has
been argued [16,17] that the effect of continuous (weak, or
“generalized”) quantum measurements on quantum circuits is,
by and large, analogous to the effect of rare projective mea-
surements. A generalized phase diagram of hybrid quantum
circuits in the plane of frequency versus strength of mea-
surements was analyzed in Refs. [15,16], where a transition
between entangling (for weak or infrequent measurements)
and disentangling (strong or frequent) phases was established.
At the same time, indications of a possible essential difference
between the transitions at strong and weak measurements
were reported in Ref. [15]. Thus, it remains a challenging task
to explore the universality of the entanglement transition for
various measurement setups.

Another important—and still open—question concerns
the properties of different phases around the transition. On
the entangling side of the transition, volume-law scaling of the
entanglement entropy was found in various hybrid unitary cir-
cuits, whereas in continuously monitored fermionic and spin
systems both volume-law and logarithmic-law [33,35–37,55]
types of entangling scaling were reported. Logarithmic scal-
ing, familiar from models described by conformal field theory
[8,10,56], corresponds to the emergence of a critical entangled
steady state in the thermodynamic limit. Volume-law behavior
in this picture corresponds to the properties of small systems
[35,36]. A critical phase characterized by the conformal scal-
ing of observables was also found in free models subject to
nonunitary evolution governed by a non-Hermitian Hamilto-
nian [23,57]. Concurrently, however, entangled phases were
argued [34] to be unstable to arbitrarily weak measurements in
the case of continuously monitored noninteracting fermionic
chains that are measured at all sites.

One difficulty in determining the degree of universality
in this large array of different systems, however, is that nu-
merical studies thus far have mostly focused on fine-tuned
models and not generic many-body systems. This means
that, for instance, the role of interactions between particles,

integrability of the model, as well as the interplay between
many-body and the measurement-induced effects are largely
unclear. Another common drawback of numerical studies of
the measurement-induced transitions in correlated many-body
systems is a limited accessibility of large system sizes, which
is especially crucial for exploring the predicted change of
behavior [35] with increasing system size in the entangling
phase.

A particularly promising direction, therefore, is to use the
versatile approach of matrix product states (MPS) [58,59]
to simulate the dynamics, as applied recently to quantum
measurements [39,50,60]. Specifically, MPS are a class of
variational ansatz that approximate the exponential complex-
ity of generic many-body states through a polynomial number
of parameters, restricted to low- to moderately entangled
states.

In the present paper, we propose an MPS-based approach
that describes quantum measurements in a continuous way.
The dynamics of the monitored system is represented by the
combination of unitary (governed by a many-body Hamil-
tonian) and stochastic nonunitary (effective non-Hermitian
Hamiltonian) evolution. The latter models a local coupling
to external degrees of freedom, thus bridging the concepts
of environment-induced decoherence and quantum measure-
ments. The advantage of the protocol we will formulate here is
that it can be applied to any problem that permits an MPS de-
scription and hence includes interacting models. Importantly,
the MPS approach can be controllably used for interacting
many-body models with system sizes considerably larger than
those accessible to exact methods, which are restricted to ≈20
lattice sites.

The model we consider here is an interacting many-body
system of hard-core bosons on a lattice, which constitutes a
Luttinger liquid in the low-energy, continuum limit. We study
the measurement-induced dynamics starting from the (mod-
erately entangled) ground state of the system. Depending on
the strength and frequency (probability) of the measurement
process, the dynamics is either entangling or disentangling,
in agreement with recent predictions based on the afore-
mentioned quantum circuit descriptions. However, we also
uncover a distinct feature of the system under study: in a
certain parameter range near the transition between the entan-
gling and disentangling phases, a clustering of particles occurs
such that extended regions of particles and holes emerge over
time. This signifies that, while the overall phase diagram
breaks down into two distinct phases according to the entan-
glement scaling, the properties of the phases and the transition
between them, quantified in other observables, depend on the
measurement implementation.

The paper is organized as follows. In Sec. II, we specify
the system Hamiltonian and introduce the local measurements
through a stochastic nonunitary evolution. We also com-
pare our implementation of measurements with the existing
approaches. In Sec. III, we introduce the observables that
we numerically calculate using the MPS and describe the
simulation results. The obtained results for the entanglement
entropy and density correlations are discussed in terms of
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phase diagrams in Sec. IV. Finally, we summarize our findings
in Sec. V.

II. MODEL AND METHOD

A. System

We consider a hard-core boson model on a lattice of
length L (sites x = 1, 2, . . . , L) characterized by the following
Hamiltonian:

H0 =
L−1∑
x=1

[
−J

2
(b̂†

xb̂x+1 + H.c.) + � n̂xn̂x+1

]
. (1)

Here b̂†
x, b̂x are the bosonic creation and annihilation operators

and n̂x ≡ b̂†
xb̂x on the {0, 1}-manifold of local occupation.

We set J = 1 and h̄ = 1. For |�| � 1, the ground state is a
Luttinger liquid (otherwise, it is ferro- or antiferromagnetic).
Below, we focus on this range of interaction, choosing (for
the most part of the paper, except for a brief discussion of
other values of � in Sec. IV B 2) attractive interaction with
� = −0.5. The model (1) is known as the t − V model in the
spinless fermion language and the XXZ Heisenberg chain in
the spin-1/2 language. Throughout the paper, we consider the
case of half-filling; namely, we take L to be even and fix the
number of particles to be L/2.

B. Measurement

The Hamiltonian Eq. (1) defines the deterministic unitary
dynamics of the quantum state. At the same time, measure-
ments induce a nonunitary stochastic dynamics (quantum
trajectory). In line with this, we model the measurement-
induced dynamics of a pure state by a non-Hermitian
stochastic Hamiltonian, with the stochasticity controlled by
random outcomes.

We break the time axis into measurement intervals of the
same duration T , i.e., the jth measurement occurs between the
times t j and t j+1 = t j + T . The measurement in the jth inter-
val is implemented as a two-component process: (i) a quantum
quench by adding at time t j and removing at time t j+1 a ran-
dom purely imaginary (anti-Hermitian) onsite potential H j

meas

to the Hamiltonian H0 and (ii) a continuous—between t j and
t j+1—restoration of the wave function norm through a global
renormalization of the MPS. Specifically, H j

meas is of the form

H j
meas = iM

∑
x

pj
x sgn

(
nx − m j

x

)
n̂x, (2)

where nx ≡ 〈n̂x〉 is the expectation value of the onsite density,
pj

x = {0, 1} is a binary random variable with values 0 and 1,
and m j

x ∈ (0, 1) is a random variable uniformly distributed
between 0 and 1. The constant M is real and positive.

The quantity pj
x indicates whether the measurement is per-

formed at the site x within the jth time interval. Its stochastic
distribution is characterized by the probability P j

x that the

site x is measured at the jth time step (which corresponds
to pj

x = 1). In this paper, we take P j
x to be time independent

and the same over all lattice sites, with P j
x ≡ P. The value

of P thus parameterizes the measurement rate, with P = 1
describing the limit of frequent measurements at each time
step.

The probabilistic character of quantum-measurement out-
comes is enforced by the randomness of the quantity m j

x .
The stochastic behavior of the factor sgn(nx − m j

x ), which
depends on nx, is then akin to the Born rule. In the limiting
cases of nx = 1 and 0 at a given time, the sign function is
equal to 1 in the former case and −1 in the latter, irrespec-
tive of m j

x , which corresponds to deterministically measuring
the presence (nx = 1) or absence (nx = 0) of a particle.
For intermediate values of nx, the measurement outcome
is probabilistic, depending on both nx and the random choice
of m j

x .
The quantity M in Eq. (2) characterizes the measurement

strength. The limit of MT � 1 describes a projective mea-
surement of the particle density, whereas the opposite limit
corresponds to a weak measurement. Indeed, our implemen-
tation of the measurement can be formalized in terms of
a sequence of imaginary-time evolution events governed by
H j

meas, superimposed onto the real-time evolution induced by
H0. The two types of dynamics compete with each other
as far as the density distribution in space is concerned. The
unitary dynamics drives the system toward a spatially homo-
geneous state with a local occupancy of 1/2. By contrast, a
fast, corresponding to large M, imaginary-time dynamics at a
given site drives the local occupancy to either fully occupied
or fully empty, thus embodying the notion of a projective
measurement.

Consecutive measurements describe a stochastic process,
with H j+1

meas at step j + 1 characterized by a randomly chosen
set of pj+1

x and m j+1
x , which is independent of pj

x and m j
x , and

the running value of the expectation value nx. As already men-
tioned above, the latter evolves in time under the action of both
the Hermitian and anti-Hermitian parts of the Hamiltonian.
Crucially, we complement the nonunitary dynamics of nx by
a constraint that maintains wave-function normalization at
each point in time (note that, without the constraint, the wave
function norm may both decrease and increase depending on
the sign of Im H j

meas). The measurement in our formalism is
thus the combined effect of the generalized (unitary + nonuni-
tary) Hamiltonian dynamics complemented by restoration of
the norm of the state. A detailed discussion of the physical
justification of the measurement Hamiltonian Eq. (2), as well
as a comparison with a more conventional implementation of
measurements is provided in Appendix B.

By construction, our formalism describes the evolu-
tion of the wave function conditioned on the measurement
record [a particular sequence of “readouts”—random num-
bers sgn(nx − m j

x ) = ±1], and as such is suitable for the
calculation of quantities like the entanglement entropy, which
are not describable in terms of the Lindblad equation for
the density matrix averaged over quantum trajectories. The
fully “Hamiltonian” theoretical framework complements that
of quantum circuits. Our model provides a conceptually
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particularly effective (and efficient) formalism to study the
effect of measurement in the plane of two variables: the mea-
surement rate (P) and the measurement strength (M), both
encoded in Eq. (2).

It is worth noting that the measurement procedure induces
correlations throughout the system, which travel with a ve-
locity that is bounded from above. This is similar to the
Lieb-Robinson bound; however, the maximum velocity in
the presence of strong measurements is limited by M rather
than by J . We thus require the discretization time step of
the numerical integrator δt to satisfy δt � min{M−1, T }. This
also clarifies the meaning of the term “continuous” when we
refer above to the continuous restoration of the wave function
norm—the restoration is discretized with the time step δt ,
which is the smallest timescale in the system.

Before we proceed in Sec. II C to describe the measure-
ment protocol from the numerical perspective in more detail,
let us comment on our choice of the initial state, which we
take to be the ground state. As a starting point, we compute,
using the density matrix renormalization group (DMRG), the
ground state of the Hamiltonian Eq. (1). Time evolution is then
implemented using the time-dependent variational principle
(TDVP) [61], where we use the same hybrid approach as in
Ref. [62], combining the one-site and two-site implementa-
tion of the TDVP. These methods are of the MPS class of
algorithms, which are restricted to a variational subspace of
the full Hilbert space, targeting low-entanglement states.

As a matter of principle, the MPS framework outlined
above allows for a simulation of the crossover from weak to
strong measurements for arbitrary interacting lattice Hamilto-
nians and arbitrary initial states. We opt to start the dynamics
not from an unentangled product state, as is conventional, but
from the ground state of the Hamiltonian Eq. (1). This has
the following key advantage. The ground state is only mod-
erately entangled, with a characteristic logarithmic scaling of
entanglement entropy [10]. In the absence of measurements,
the system remains in the ground state under unitary time
evolution. Thus, any increase or reduction in entanglement
is solely due to the measurement (and its interplay with
H0). This should be contrasted with the case of an initial
high-energy product state that rapidly entangles, reaching a
volume-law entangled phase under the dynamics of H0 in the
absence of any measurement. From a technical perspective,
our choice of the initial condition speeds up the simulation of
the dynamics, since a relatively modest size of the variational
manifold suffices. However, the MPS ansatz is restricted to
moderate entanglement. This ansatz captures the weakly en-
tangled ground state, with only logarithmic growth of the
entanglement with system size, very well, even with a mod-
est bond dimension. As mentioned, absent any measurement,
we can then of course capture the dynamics quasiexactly up
to late times. Likewise, any disentangling dynamics can be
captured accurately. Conversely, if the measurement protocol
leads to increased entanglement over time, then the numerical
simulations are only quantitatively accurate up to a limited
time. In practice, for our choice of parameters this means that
the numerical results shown below are quantitatively accurate
up to values of the bipartite von Neumann entropy S � 3. It

should be emphasized that in this regime the consequence of
the truncation of the entanglement spectrum, for the problem
at hand (see Fig. 7), is a reduction of the entropy. This im-
plies we can correctly capture the regime where entangling
dynamics occurs, as increasing the bond dimension will only
increase the entropy.

C. Protocol

We simulate the dynamics of the monitored chain gov-
erned by H0 + Hmeas, using various choices of measurement
strength M, probability of measuring each site P, and sys-
tem size L, in a time window t ∈ [0, 50]. We start from the
ground state of H0 with � = −1/2. We choose the mea-
surement interval T = 1 and the time step δt = 0.005 for the
TDVP integrator. At t = 50, we switch off the measurement
Hamiltonian Eq. (2) and continue evolving according to the
Hamiltonian Eq. (1) in a small time interval t ∈ [50, 60]. The
size of the variational manifold is controlled by a numerical
parameter called the bond dimension χ [58]. For finding the
ground state we use χ = 500, and for the dynamics we mainly
use χ = 64 (but for some values of L, P and M we benchmark
our results using larger bond dimensions, see below). For each
set of parameters, we repeat the procedure at least R = 40
times.

At each of the measurement steps t = j = 0, 1, . . ., we
generate new measurement outcomes through the evolution
of nx(t ) and by taking new random numbers m( j)

x . Hence, it is
possible, depending on the dynamics and random chance, for
one particular site to be measured as having a particle present,
a hole present, or not being measured, and these outcomes
can change during the time evolution. The dynamics under
H0 alone tends to “delocalize” the system (a random product
state will evolve toward a volume-law entangled state that is
homogeneous in density), while the dynamics governed by
Hmeas rather tends to localize particles at the measured sites.
We therefore expect a competition between both mechanisms
that can potentially lead to a transition between delocalized
(entangling) and localized (disentangling) types of behavior.

D. Comparison to existing approaches

Our protocol is aimed at mimicking the coupling to
a measurement apparatus. This can be described by the
quantum trajectory approach with matrix product states (cf.
Refs. [39,60]). As an essential ingredient of this approach,
one frequently uses the Lindblad master equation (for more
details, see the review [63]):

˙̄ρ = − i

h̄
[H, ρ̄] − 1

2

∑
m

γm[L†
mLmρ̄ + ρ̄L†

mLm − 2Lmρ̄L†
m],

(3)
where ρ̄ is the averaged-over-trajectories density matrix, H
is the Hamiltonian of the system, and the operators L†

m and
Lm are the jump operators with a corresponding coupling
strength γm in a Markovian approximation of the coupling to
the environment. It should be emphasized that the Lindblad
equation describes the evoluton of the density matrix averaged
over measurement outcomes. Such an averaged density matrix
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is not sufficient for evaluation of the entanglement entropy
(or other characteristics of the entanglement), since the en-
tropy is a nonlinear function of the density matrix. To study
measurement-induced evolution of the entanglement (and, in
particular, entanglement phase transitions), one should fol-
low individual quantum trajectories (preserving purity of the
state), then calculate the entanglement, and only then perform
the averaging. The Lindblad equation is not suitable for these
purposes: systems characterized by the same ρ̄ may have
totally different entanglement.

The emergence of an effective non-Hermitian Hamilto-
nian to describe the measurement process in conjunction
with quantum jumps is an inherent part of the quantum
trajectory approach [63,64], with recent examples being
Refs. [32–35,37,39] for various choices of the effective
Hamiltonians and jump operators. In particular, the quantum
trajectory approach was applied for numerical simulations
of monitored noninteracting systems in Refs. [34,35], where
unraveling is employed to obtain a stochastic Schrödinger
equation from the Lindblad equation. This procedure makes
use of the formal equivalence of the term L†

mLmρ̄ + ρ̄L†
mLm

in the Lindblad equation (3) to an anticommutator of the
density matrix and an effective anti-Hermitian Hamiltonian
∝ iL†

mLm. For interacting systems, this approach was used in,
e.g., Ref. [37], where exact diagonalization was employed,
which is restricted to relatively small systems of L ≈ 20. A
continuous approach applied to random quantum circuits was
also recently proposed in Ref. [16] where it was implemented
for system sizes L � 20.

The MPS implementation of the quantum-trajectory ap-
proach can be viewed as a continuum (in the time domain)
analog of discrete quantum circuit models that have been
studied recently (see Sec. I). Similarly, we are capable of
following individual quantum trajectories without averaging
over the measurement outcomes encoded in the sequence
of random variables m( j)

x . A key difference between the ap-
proach based on quantum jumps is that we now replace the
instantaneous jumps by continuous ones. In our protocol the
“measurement” and the time evolution therefore occur simul-
taneously. Hence, there is a direct interplay between them in
the continuum time domain, in contrast to the approaches of
Refs. [39,60].

In contrast to random hybrid circuits, the unitary part of
the evolution in our scheme is governed by the physical
Hamiltonian of the system, and, hence, the “unitaries” ap-
plied to the site at consecutive time steps are not random but
rather are determined by the same fixed (time-independent)
Hamiltonian H0. In addition, at each time step, we maintain
half-filling, which provides a global constraint on the hybrid
evolution of the system. The advantage of our approach is
that it permits the investigation of generic many-body systems
on a lattice for an arbitrary strength of measurements. Note
that our approach differs from that based on the unravelling
of the Lindblad equation in that the non-Hermiticity in our
case is not emergent but is introduced at the fundamental
level of the original stochastic Hamiltonian (modeling wave-
function collapse). In this regard, our approach bears a certain
similarity to that of Ref. [23], where stochastic nonunitary

dynamics of free fermions was addressed by introducing a
random anti-Hermitian part of the Hamiltonian. However, in
contrast to that work, random fluctuations between different
realizations of the stochastic Hamiltonian emerge in our for-
malism because of the application of the Born-like rule for
density measurements, and hence the update rules depend on
the system state.

A detailed analysis of similarities and differences be-
tween our method and previous approaches is presented in
Appendix B. In particular, we explain there the origin of
non-Hermiticity of the effective measurement Hamiltonians.
For comparison with other approaches, we derive there a
Lindblad-type master equation for ρ̄ corresponding to our
protocol. This equation is nonlinear, at variance with the con-
ventional Lindblad equation (3) and in similarity with a master
equation obtained in Ref. [65], where the wave-function col-
lapse for a single strong measurement was modelled in terms
of multiple weak measurements. As we point out in Ap-
pendix B, the nonlinearity is in fact a general property of
the master equation for ρ̄ in the case of protocols with a
post-selection. Furthermore, the nonlinearity is generic also
for master-equations describing the evolution of averaged mo-
ments of the density matrix in monitored systems [36], which
are needed to characterize the entanglement.

III. NUMERICAL RESULTS

In this section, we introduce the physical observables and
present our numerical results used to probe the entanglement
transition and dynamics of a monitored correlated system.

A. Signatures of measurement-induced transition

1. Entanglement entropy

A measure that is useful as a diagnostic tool is the von Neu-
mann entanglement entropy S [10]. An ergodic, thermalizing
system is characterized by the volume-law growth of entan-
glement, whereas a localized system shows area-law growth
of entanglement. In the case of a one-dimensional system,
the volume law corresponds to a scaling ∝ L, and the area
law corresponds to just a constant. The von Neumann entropy
of entanglement for a bipartition into subsystems A and B is
given by

S = −Tr(ρA ln ρA), ρA ≡ TrB|�〉〈�|, (4)

where ρA is the reduced density matrix of subsystem A.
The initial state we consider here—the ground state of a

Luttinger liquid—has the feature that S is neither volume-
law-entangled nor area-law-entangled, with S showing an
intermediate behavior: a logarithmic growth with system size.
This allows us to distinguish the entangling phase from the
disentangling one by comparing the entropy after a suffi-
ciently long time to the initial entropy. (Of course, strictly
speaking, this requires the L → ∞ limit, whereas in practice
we are limited to large but finite L. The large-L requirement
becomes particularly stringent close to the transition.) Below
we calculate the time evolution of the entanglement entropy
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for individual quantum trajectories, as well as the entropy
averaged over R runs.

Throughout this work, we measure the entropy S in units of
ln 2, which corresponds to a replacement ln → log2 in Eq. (4).

2. Particle density and clustering

Another useful—and experimentally accessible—measure
is the particle density. In the limit of M � 1, “chokepoints”
of high or low density (particles and holes) are generated that
serve as blockades to correlations. It turns out to be instructive
to consider the cluster size, which is a commonly used diag-
nostic tool in percolation transitions. Here we define a cluster
as a set of consecutive sites with a density at most 0.2 from
the extreme values (0 and 1). We then compute the maximum
cluster length for each realization.

B. Simulations

1. Strong frequent measurement: M � 1, P = 1

First, we consider the case where measurement is strong,
M = 10, and each site is always measured, P = 1. The results
for the entanglement entropy and particle density are shown
in Fig. 1. The entropy approaches zero on a timescale of order
unity and remains very close to zero for the whole duration of
the measurement run, with occasional spikes in the entropy
representing rare fluctuations (“glitches”). The small, time-
independent value of entropy clearly indicates that the system
is characterized by the area-law scaling of entanglement, cor-
responding to the disentangling phase.

In terms of the density, a random configuration of particles
and holes is chosen at the very beginning of each run, t ∼ 1,
and we observe the quantum Zeno effect [11]. The density
profile in the x − t plane forms stripes of occupied and un-
occupied states. Whether a given site is occupied or not is
essentially determined by the random variable m( j=1)

x at the
first step (so that there are no correlations between different
sites). The pattern established at t ∼ 1 remains almost un-
changed at later times.

However, the particles are not exactly frozen: since M is
finite, the dynamics driven by H0 slightly perturbs the product
state, leading to a nonzero probability of a flip in the sign of
Hmeas, as can be seen to occur in the Fig. 1. Nonetheless, long-
range correlations are strongly suppressed and we observe
an area-law state with essentially zero entanglement between
distant parts of the system. A substantial entanglement ap-
pears only between neighboring sites and only during the rare
processes of particle hopping. When such flips occur close to
the center of the system, where the bipartition is taken, they
affect the entropy. This leads to rare peaks in the individual
traces of S(t ) that lead to a finite value of entropy in the
averages. Only in the limit M → ∞, which corresponds to a
projective measurement, does the quantum Zeno state become
fully robust (i.e., strictly time-independent).

After switching off the measurement Hamiltonian, the den-
sity quickly settles to a homogeneous state (see the density
plot above the dashed line in the lower panel of Fig. 1). The
striped density pattern (appearing as an exact product state)
at time t = 50 induces light-cone structures in the density
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FIG. 1. Time evolution of the entropy S (top panel), showing the
average over R = 40 realizations for L = 50, in the limit of strong
frequent (M = 10, P = 1) measurement, for � = −1/2. The dashed
red line corresponds to the entropy for an arbitrarily chosen single
realization, with the corresponding density evolution in the bottom
panel. The shaded area indicates a 1σ error, estimated through
the standard deviation of S(t ) across the different realizations. The
dashed line in the bottom panel indicates the time at which the
measurement Hamiltonian Eq. (2) is switched off.

evolution for t > 50. Since the energy of the measurement-
stabilized striped phase is high, the entropy for t > 50 (not
shown in Fig. 1) grows toward a volume-law value that
is much higher than the initial one (that corresponded to
a weakly entangled ground state of the Luttinger liquid,
S ∝ ln L).

2. Strong infrequent measurement: M � 1, P � 1

Next, we consider the case where measurement is strong,
as in the previous case, but the probability of measurement
is much lower than unity. The result is shown in Fig. 2 for
M = 10 and P = 0.1. In this case, the rare measurements
do create locally polarized sites but they are not sufficient
to suppress entanglement across the system. On the contrary,
the entanglement, while noisy, rapidly grows, reaching values
substantially larger than the initial one. The system is thus
in the entangling phase. The entanglement growth stems from
quenching the system by the measurements that distort the ini-
tial homogeneous ground state by introducing rare polarized
regions. These regions then develop in time according to the
unitary dynamics governed by the many-body Hamiltonian
Eq. (1).
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FIG. 2. Same as described in the caption of Fig. 1, but for a
strong infrequent (M = 10, P = 0.1) measurement. The initial den-
sity profile (local half-filling represented by the white color) develops
into a random red-blue pattern on the timescale t ∼ 5. Bond dimen-
sion cutoff effects become important for t � 20 due to the fast growth
of entanglement, see also Sec. II B and Fig. 7.

As a result of this dynamics, the density becomes strongly
inhomogeneous at later times; the inhomogeneity is further
enhanced by subsequent rare strong measurements. Note that
through the maintaining of global half-filling, local strong
measurements affect neighboring sites: this can be clearly
seen, e.g., at t ∼ 1 around x = 10 and x = 37 in the lower
panel of Fig. 2, where the projection on the globally-half-filled
state induces an excess (reddish) density at the neighboring
sites. We thus see that, under the global constraint in a realistic
system, a local strong measurement can induce correlations,
similar to nonlocal measurements [5,26].

The zigzag fluctuation pattern in the average entropy on the
scale of a single time step corresponds to the decrease in the
entropy caused by the strong measurement in the vicinity of
the bipartition cut. Eventually, the average entropy saturates,
as occasional decreases induced by the measurement and the
entangling dynamics of the unitary Hamiltonian balance out;
see Fig. 2.

3. Weak frequent measurement: M � 1, P = 1

We now consider the case where measurement is frequent
but weak, see Fig. 3, where P = 1 and M = 0.1. In this case,
the characteristic timescale for projecting onto a particle or
hole state under the dynamics of Hmeas is substantially larger
than the timescale T = 1 associated with the duration of the
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FIG. 3. Same as described in the caption of Fig. 1, but for
a weak frequent (M = 0.1, P = 1) measurement. Measurement-
induced perturbations of the density propagate ballistically through
the system and are reflected at the boundaries.

measurement. This leads to a situation where the initial state,
which has homogeneous density (except close to the edges
of the system, in view of open boundary conditions) is only
weakly perturbed by the measurement. As a result, we observe
particle and hole fluctuations induced by the measurement,
which traverse the system ballistically.

As seen in the upper panel of Fig. 3, the entanglement
entropy rapidly grows with time and becomes considerably
larger than its initial value, which is a signature of the entan-
gling phase (see Sec. IV A 4). The physics of the entanglement
growth can be understood as follows. The process of weak
measurement continuously heats the system—the imaginary-
time propagation does not conserve energy—and the system
trends toward a highly entangled state at high energy, in
qualitative similarity to the case of strong infrequent mea-
surements depicted in Fig. 2. In the latter case, however,
the heating (quenching) process is strongly inhomogeneous
in space, whereas it is fairly uniform for a frequent, weak
measurement. Consequently, the entropy curve shows a much
smoother behavior.

4. Weak infrequent measurement: M � 1, P � 1

Finally, we consider the case where the measurement is
both weak, M = 0.1, and infrequent, P = 0.1, see Fig. 4.
This case is rather similar to the preceding one (M � 1 and
P = 1, Sec. III B 3), except that the less frequent measurement
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FIG. 4. Same as described in the caption of Fig. 1, but for a weak
infrequent (M = 0.1, P = 0.1) measurement.

naturally leads to less heating, so that the growth of the
entropy is slower than in the case of frequent measurement.
Nevertheless, the entanglement exhibits a clear growing trend,
and the system is expected to eventually reach qualitatively
the same, highly entangled high-energy state. Thus, at ar-
bitrarily small values of M and P the entanglement will
eventually grow to large values as the initial state at zero
temperature is gradually heated by the (effective) coupling
to the environment. Clearly, the time that is required for the
entanglement to reach the saturation value becomes progres-
sively longer when M and P are reduced.

The density pattern (lower panel of Fig. 4) is distorted
already by a weak infrequent measurement, forming a struc-
ture of overlapping light-cone rays. Interestingly, the contrast
appears to increase with time, which can be regarded as a
result of the interplay between the unitary and measurement-
induced dynamics: the measurements have a tendency to
magnify density fluctuations.

IV. PHASE DIAGRAM

A. Entanglement entropy

We are now in a position to carry out a characterization of
the dynamics of our monitored system in the parameter plane
spanned by the measurement strength M and the measure-
ment probability P. In Sec. III B, we considered four limiting
regimes corresponding to “corners” of this phase diagram,
for the choices of the Hamiltonian parameters considered in
this work. In the limit of large M and P, entanglement in the
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FIG. 5. (a) Average entropy S(t ) as a function of time for various
measurement strengths M and fixed P = 1. The solid (dashed) lines
show L = 50 (L = 16). Inset: S(t = 50) as a function of system
size for M = 0.2, where exact results are shown for L = 12, 14, 16
and the colors indicate bond dimension for L = 32, 50, with χ = 64
(green), χ = 96 (red), χ = 128 (blue). (b) As in panel (a), but for
fixed M = 10 and varying P. The inset shows results for P = 0.1.
Bond dimension cutoff effects are relevant for the L = 50 curves
reaching S � 3.

system is destroyed and an area-law phase appears. In the
other three regimes, we found that entanglement grows with
respect to the initial zero-temperature state because of the
addition of energy to the system by measurements. Hence,
we expect to find a transition between the two phases (dis-
entangling and entangling) in the M–P plane. For hybrid
quantum circuits, the phase diagram of this type was ana-
lyzed in Ref. [15], where the transition line connected two
points, one located on the axis of weak constant measurement
(P = 1) and the other corresponding to the limit of rare pro-
jective measurements (M = ∞).

1. Continuous measurements of all sites: Constant P = 1

In Fig. 5(a), we show the average entropy S(t ) for P = 1
and various choices of M from very weak (M = 0.1) to strong,
nearly projective (M = 10) measurements. To probe the
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dependence of the entropy on the system size L, we compare
in this plot the data for L = 50 and L = 16. For L = 16 we
choose χ = 256, so that the dynamics is simulated exactly
(the exact simulation with MPS requires χ = 2L/2).

For large M, we see that the entropy decreases over time
as was discussed in Sec. III B 1, which is consistent with the
disentangling (area-law) phase. This is also confirmed by the
fact that the long-time saturation value of S is independent on
L (within the uncertainty that results from fluctuations of the
average in our finite ensemble). Conversely, for small M, we
see an increase of S with respect to its initial value as was
discussed in Sec. III B 3. Furthermore, the entropy S increases
with increasing system size L. These are hallmarks of the
entangling phase. Our data indicate that the system is in the
disentangling (area-law) phase for M = 10, 3, 1, and 0.5, and
in the entangling phase for M = 0.1, 0.2, and 0.3. We thus
estimate the position of the transition point on the P = 1 axis
as Mc ≈ 0.4.

Interestingly, for a certain range of values of M [see the
curves for M = 0.2, 0.3, 0.5 in Fig. 5(a)], the entropy as a
function of time exhibits a maximum before saturation. A
similar effect was observed in Ref. [39] where, however, a
very different initial condition was chosen (a high-energy,
strongly inhomogeneous state, as opposed to the low-energy,
homogeneous one considered here).

2. Strong measurements with varying measurement frequency:
Constant M = 10

In Fig. 5(b), the time dependence of the average entropy
S(t ) is shown for strong measurements. Specifically, in this
figure we fixed M = 10, while the measurement frequency
P was varied from P = 0.1 to P = 1. Qualitatively, the evo-
lution is quite similar to that shown in Fig. 5(a). For small
P, we find entangling behavior (Sec. III B 2), while for large
P it is disentangling (Sec. III B 1). As in Fig. 5(a), we have
two complementary criteria for identification of the entan-
gling phase: (i) the long-time value of the entropy is higher
than its initial value; (ii) the entropy increases with system
size (L = 50 versus L = 16). Both criteria yield consistent
results, allowing us to identify the points P = 1, 0.8, 0.5, and
0.3 as belonging to the disentangling phase, and the points
P = 0.1, 0.15, and 0.2 as belonging to the entangling phase,
with the critical value being close to the latter point,
Pc ≈ 0.2–0.25.

A comment on the criterion (i) is in order here. The en-
tanglement entropy at t = 0 is that of the ground state of a
Luttinger liquid, S(t = 0; L) ≈ (1/6) ln L [10]. In the disen-
tangling phase, S tends to an L-independent value at large t ,
i.e., S(L) ≡ S(t → ∞; L) < S(t = 0; L), at least for large L.
At the same time, one cannot a priori exclude a possibility that
there is a part of the disentangling phase where S(L) grows
with L more slowly than (1/6) ln L (e.g., logarithmically with
a smaller coefficient). Our data do not support such a possi-
bility (although of course we cannot rule it out completely on
the basis of finite-L and finite-t simulations). Indeed, the fact
that the criteria (i) and (ii) agree implies that, whenever S(L)
increases with L, it is larger than S(t = 0; L), i.e., the increase
of S(L) with L in the disentangling phase is faster than for
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FIG. 6. Phase diagram, showing the averaged entropy S for t ∈
[40, 50] for R = 40 realizations, with � = −1/2 and L = 50. The
black squares indicate data points and the background color depicts
interpolated values between the data points. The estimated phase
boundary, corresponding to an approximate contour of constant en-
tropy equal to the initial value, is shown as dashed red line.

the initial entanglement. In fact, as we argue in Sec. IV A 4,
the observed increase of S(L) in the disentangling phase is
of volume-law character, at least within the range of L and t
accessible to our simulations.

3. Overall phase diagram

In Fig. 6 we summarize the results for the entropy S,
averaged over the time interval [40,50] and over R = 40 re-
alizations, in the whole P–M parameter plane. In analogy
with the above estimates of critical points on the P = 1 and
M = 10 lines, we have estimated the transition line in the
P–M plane, which is also shown in the figure.

It is worth commenting on the bottom left corner of the
phase diagram (rare weak measurements), where the entropy
is above its initial value but smaller than in the most of
the entangling phase. The reason for this was discussed in
Sec. III B 4: the entropy grows, but it takes a time much longer
than the duration of the protocol to saturate (corresponding to
a strongly entangled state).

In the bright yellow region in Fig. 6 we have indicated
the region where the entropy reaches values S � 3. As dis-
cussed in Sec. II B, the results for these data points should
be interpreted in a qualitative sense; strong growth of the en-
tanglement is observed, and the MPS ansatz does not capture
the exact dynamics over the latter part of the time window
simulated. We hence extrapolate this growth to longer times.
The precise value of the entanglement deep in the entangling
regime is not relevant for the position of the phase boundary.

4. Entropy scaling in the entangling phase

An important question is the dependence of the large-t sat-
uration value of the entanglement entropy S(L) on the system
size L in the entangling phase. Most of works on entanglement
transitions in quantum circuits indicate a volume-law scaling,
S(L) ∝ L, with a prefactor L depending on the measurement
strength.
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In the insets of Fig. 5 we show the behavior of the entropy
at t = 50 as a function of system size, for two particular
choices of parameters in the entangling phase (M = 0.2, P =
1 and M = 10, P = 0.1), which correspond to the largest val-
ues of S in the upper and lower panels of Fig. 5, respectively.
For both these points in the parameter plane, saturation of
the entropy as a function of time is reasonably reached by
our largest time t = 50. In order to better quantify the rate
of the entanglement growth, we have calculated the values
of S(t = 50) for these choices of P and M also for larger
values of the bond dimension, χ = 96 and 128. For L = 32
the obtained values of the entropy for χ = 64 and χ = 128 are
close in value (within statistical error bars that are related to
a finite size of realizations and are of the order of the symbol
size), which is a signature of saturation of S(t ) with χ . At
the same time, for L = 50 (where the entropy is larger), the
obtained value of S for χ = 128 is substantially above than
that for χ = 64. This drift indicates that, for these points in the
P–M plane, the actual values of S(t = 50) are still somewhat
above the χ = 128 results (shown by blue color in the insets);
presumably by an amount of the order of a distance between
the χ = 128 and χ = 64 points. (To find more accurately the
saturated value, one would need a calculation with χ ≈ 256,
which is in principle possible but requires very substantial
computational time.) Keeping this in mind, we see that the
values of the entanglement entropy at L = 50 are broadly
consistent with volume-law trends based on the data for
L = 16 and L = 32. We cannot exclude, however, a different
type of scaling might emerge for larger system sizes or
timescales.

It is worth noticing that the slopes of the S(L) dependencies
that can be estimated in this way are somewhat smaller than
those that would be found based only on the data for small
systems (accessible to exact diagonalization). This indicates
that finite-size effects are sizable, so that supplementing exact-
diagonalization numerical studies by approximate approaches
(such as the MPS method used in this work) that can be
applied to larger systems is crucial.

The volume-law behavior of the entanglement entropy S
in the entangling phase is also supported by the time de-
pendence S(t ). In Fig. 7 we show the dependence S(t ) at
P = 1, M = 0.2 for several system sizes (and for two values
of the bond dimension χ for the largest sizes L = 32 and 50).
We see that, for lengths L � 24, a linear increase S(t ) ∝ t
is found, with an L-independent slope. This is expected in
the volume-law phase [13]: the entanglement increases as
S(t )  svSt until it saturates at a time t  L/2vS at a value
S(L)  sL/2, where vS is the entanglement propagation ve-
locity. When the bond dimension is insufficient, it leads to
a cutoff of the linear increase of S(t ) and to the saturation
before system-size effects kick in. The slope in Fig. 7 yields
svs  0.14 for this point in the phase diagram. At the same
time, the L-dependence of S(L) in the inset of Fig. 5 a yields
an estimate s = 2(dS/dL)  0.15–0.2 for the same values of
the parameters P and M. From these data, we estimate the
entanglement propagation velocity, vS ≡ (svS )/s  0.7–1.0.
This velocity is close (or possibly identical) to the velocity
of ballistic propagation of density fluctuations as observed,
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FIG. 7. Time dependence of the entanglement entropy S(t ) at at
P = 1, M = 0.2 for system sizes from L = 18 to L = 50. For the two
largest system sizes, the data with bond dimensions χ = 64 and 128
are shown, where χ = 64 is indicated by a dashed line. The straight
black dashed line is a guide to the eye obtained through a linear fit of
the L = 50, χ = 128 data in the linear regime t ∈ [15, 25], yielding
a slope ≈0.14. Truncation effects due to the finite bond dimension
start to become apparent at t ≈ 25 for L = {32, 50}.

e.g., in Fig. 3, which is consistent with predictions from
Refs. [8,66].

It was proposed in Refs. [35,36] that the volume-law scal-
ing of S(L) is only of transient character and crosses over
to a ln L behavior for large L at the transition. The system
sizes that we can access are not sufficient to rigorously test
the validity of this conjecture.

B. Clusterization

1. Clusterization at � = −0.5

We discuss the clustering of particles (and holes), see
Sec. III A 2. Interestingly, we observe, close to the transition
from the disentangling to the entangling phase, the emer-
gence of large domains resulting from the interplay of H0

and the measurement protocol. As an illustration, we show
in Fig. 8 the dynamics for a single realization with M = 0.5
and P = 1. As discussed above, this point is on the area-law
side of the transition, close to the phase boundary. For the
single realization plotted in the lower panel—the one with
the largest maximum cluster length—we observe formation
of large polarized domains at time t ≈ 35. As the dotted line
in the upper panel shows, the entanglement entropy for this
realization practically vanishes at t � 40. Hence, the large
polarized regions effectively block transport, analogous to
what is observed in models with local constraints [67].

To characterize the clustering quantitatively, we consider
for every realization the maximum cluster length and then
average it over all realizations. The resulting averaged max-
imum cluster length is denoted C(t ). In the inset of Fig. 8,
we show the system-size dependence of C(t = 50) for the
same parameters M = 0.5, P = 1. A clear increase of C with
system size L is observed. The data suggests sublinear growth
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FIG. 8. As described in the caption of Fig. 1, but for M = 0.5,
P = 1. In the bottom panel, the realization with the largest maximum
cluster size is chosen. Inset: average maximum cluster length C at
t = 50 as a function of system size. Error bars indicate a 1σ -interval.

C ∼ Ly, with y ≈ 0.5. The results for C(t = 50) for various
values of P and M are shown in Fig. 9. They exhibit a peak—
which reveals the clusterization phenomenon—on the right
side of the diagram, around the phase boundary between the
entangling and disentangling phases. It should be emphasized
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FIG. 9. Average maximum cluster length as a function of mea-
surement probability P and measurement strength M, evaluated at
t = 50, with � = −1/2 and L = 50. Note that the region with high
cluster size is located around a section of the phase boundary be-
tween entangling and disentangling phases (Fig. 6), which is also
shown in this plot.

that this clusterization is observed only near the portion of the
phase boundary that corresponds to frequent measurements
(P close to unity). No such peak is observed in the opposite
corner of the phase diagram. This indicates that at least some
important aspects of the entanglement transition are not fully
universal and, in particular, differ qualitatively between the
regimes of weak and strong measurements.

Clusterization can be viewed as a result of an enhancement
of the attractive interaction by coupling of the system to the
environment via the measurements, cf. Ref. [36]). As shown
in the following section, the clusterization effect exists (in a
weaker form) also in a noninteracting system (� = 0), where
the measurements create an effective attractive interaction.
One can also note a certain similarity between the clustering
and the dynamical quantum Zeno transition [32,68]. Indeed,
the rapid emergence of clusterization in the lower panel of
Fig. 8 at t ≈ 35 suggests a kind of dynamical phase transition
induced by constantly monitoring the system at moderately
weak measurement strength.

Qualitatively, one can understand the clusterization phe-
nomenon as follows. Upon measuring a certain spatial region,
an extended fluctuation may emerge, where the density is, e.g.,
increased compared to the background (the overall half-filling
condition is then maintained at the expense of distant regions).
The unitary dynamics leads to a spreading of this density seed
to neighboring sites, which are then more likely to have a
higher density in the subsequent time evolution. For not too
weak measurements, the “contrast” of the density fluctuation
is enhanced by the measurement back-action. Over time, this
leads to clusters of particles (or holes) with similar density.
This can be dubbed a “dynamical quantum Zeno effect.”

It is no surprise that this phenomenon requires the measure-
ment and unitary parts of the Hamiltonian to be of roughly
equal importance, as is the case near the crossover from the
disentangling to entangling regime. After all, for M � 1 the
unitary dynamics plays almost no role and sites are effectively
locked at a fixed filling (a static quantum Zeno effect), with
only occasional “jumps.” This results in freezing the striped
structure of the density with a random distribution of the stripe
sizes determined by the outcome of the first measurements, cf.
Fig. 1, without any preference to increased clusters. The mea-
surement also needs to be sufficiently frequent, otherwise the
density correlations will be lost during the unitary time evolu-
tion. In the limit M � 1 the measurement can be considered
only a weak perturbation that acts as a local heating process.
Similarly, if P � 1, then it is unlikely that neighboring sites
are measured. Since the spreading of the density fluctuations
to neighboring sites is driven by the hopping term J , we expect
only a modest effect of interactions on clusterization, which is
confirmed in the following section.

2. Role of interactions

We proceed by discussing the role of interaction in the clus-
terization phenomenon. In the vicinity of the entanglement-
transition phase boundary (in the regime of frequent,
intermediate-strength measurements), the measurement effec-
tively enhances the ferromagnetic interaction, which shows up
in the clusterization, as discussed above. A natural question
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FIG. 10. As described in the caption of Fig. 1, but for M = 0.5,
P = 1, and � = 0, such that the system is noninteracting.

to ask is what the role of interaction is in this phenomenon.
If the measurement can effectively enhance the interaction,
then perhaps it can also create an effective interaction in
an otherwise noninteracting system? To test this hypothesis,
we have performed the analysis for a noninteracting system
(� = 0) that has otherwise the same parameters as in Fig. 8,
i.e., M = 0.5, P = 1 (which are close to the point where the
maximum degree of clusterization for the interacting system is
observed). The results shown in Fig. 10 illustrate an enhanced
clusterization that is indeed observed also for a noninteracting
system. At the same time, the average maximum cluster size
over R = 40 realizations, C = 7.15 ± 0.28, turns out to be
lower than for the interacting system (see inset of Fig. 8), as
expected.

For values of the interaction |�| > 1, the ground state
of the system is ferromagnetic (for � < −1) or anti-
ferromagnetic (for � > 1). A typical simulation for the
antiferromagnetic case is shown in Fig. 11 for � = 1.5. One
sees that the system still develops clusters, counteracting the
antiferromagnetic correlations. The inset in Fig. 11 shows
C as a function of interaction strength for L = 50, confirm-
ing that clusterization is enhanced by attractive interactions.
Within the regime |�| < 1, we find a modest but statistically
significant growth of the cluster size for attractive interac-
tions, while C is constant within error bars in the repulsive
regime 0 < � < 1. In the ferrogmagnetic regime (not shown
in the figure), the initial state already has a cluster of L/2
particles, which is maintained during time evolution, yielding
C = 24.85 ± 0.06 using � = −1.5.
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FIG. 11. As described in the caption of Fig. 1, but for M = 0.5,
P = 1, and � = 1.5, such that the dynamics starts from an antiferro-
magnetic ground state. Inset: average maximum cluster length C as
a function of interaction strength � for L = 50, evaluated at t = 50.
Error bars are 1σ -intervals.

V. SUMMARY AND DISCUSSION

In conclusion, we have proposed an MPS-based method
for simulation of the dynamics of quantum many-body sys-
tems under continuous monitoring. The monitoring process is
modelled as a site- and time-dependent non-Hermitian term
in the Hamiltonian. The measurement protocol is controlled
by two key parameters: the probability P that a given site
is measured at a given time interval (with 0 < P � 1) and
the measurement strength M (with M � 1 corresponding to
weak measurement and M � 1 to strong, nearly projective
measurement). In contrast to recent approaches, our protocol
starts from the ground state of the original Hamiltonian, so
that the observed evolution of the initial state is entirely due
to the effect of the measurements (including, of course, the
interplay with the unitary dynamics).

We have applied the method to a 1D interacting many-
body system, the ground state of which is a Luttinger
liquid with a moderate entanglement (S ∝ ln L). The local
measurement induces two competing processes: sufficiently
strong measurements tend to disentangle the system through
quasiprojections. At the same time, the measurement also
leads to effective local heating of the initial zero-temperature
ground state, which can lead to stronger entanglement. If the
measurement leads to an area-law (disentangling) phase, then
it reduces the entanglement entropy with respect to the initial
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state (in the limit of large L). However, if the measurement
drives the system to the volume-law (entangling) phase, then
it enhances the entanglement entropy compared to the ini-
tial state. Note that the competing effects of measurement
reported in Ref. [26] involve nonlocal measurements, as op-
posed to our protocol.

Exploring systems with a length up to L = 50, we have
determined the phase diagram of the entanglement transition
in the P–M plane (Fig. 6). For sufficiently strong and at the
same time sufficiently frequent measurement (as in Fig. 1),
we find a disentangling phase: the entanglement entropy gets
suppressed by measurement down to an L-independent value
(area law). However, if the measurement is sufficiently weak
and/or sufficiently rare (as in Figs. 2–4), then the system is in
the entangling phase. Our results for the entanglement entropy
in this phase are consistent, for the system sizes studied,
with a volume law (S ∝ L), though we cannot strictly exclude
sublinear or logarithmic scaling in the thermodynamic limit.
The obtained phase diagram of the entanglement transition
for the Hamiltonian system is qualitatively similar to earlier
results for quantum circuits. Our findings thus indicate that
such entangling-to-disentangling transitions occur generically
in quantum many-body systems, though the position of the
transition will depend on the microscopic parameters of the
Hamiltonian.

Furthermore, we find that, close to the phase boundary in
the range of frequent measurements (P ≈ 1), the entangle-
ment transition is accompanied by an increase of the size of
clusters of particles and holes (Figs. 8 and 9). We interpret
this phenomenon as an enhancement of the attractive interac-
tion by the measurements. A similar phenomenon, although
in a somewhat weaker form, is found also for a noninter-
acting system. The divergence of cluster size close to the
entanglement transition may be a useful experimental probe,
since particle densities are generally easier to measure than
the entanglement entropy. Indeed, a setup similar to the one
described in this work may be readily prepared in experiments
on ultracold atoms or trapped ions, as the local particle density
can be measured using quantum microscopy [69]. It is an
intriguing possibility that the divergence of cluster size we
observe could be a signature of a transition to a dynamical
quantum Zeno phase (cf. Ref. [32]). At the same time, the
precise connection between the clusterization effect and the
measurement transition remains to be clarified.

Future work may focus on applying the method outlined
here to various models of experimental relevance, such as
the Hubbard model. An experimental implementation of the
open quantum Ising chain on IBM’s quantum hardware was
realized very recently [70].
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APPENDIX A: NUMERICAL DETAILS
AND CONVERGENCE

The numerical method outlined in the main text employs
MPS [58] to simulate pure states. The key numerical con-
vergence parameter is the bond dimension, which controls
the size of the variational manifold. Deep in the entangling
regime, we have shown that the entanglement grows rapidly,
as expected, leading to eventual cutoff effects due to bond
dimension truncation (see Fig. 7). The results depicted in
Fig. 7, deep into the entangling regime, exhibit the fastest
growth of entanglement within our parameter range; near the
transition region and deep into the disentangling phase bond
dimension cutoff effects are not relevant.

Let us consider the situation around the border between the
observed disentangling and entangling regimes, in the region
where we observe a peak in clusterization. We therefore take
L = 50, P = 1 and M = 0.5. The results are shown in Fig. 12.
As estimated for the maximum cluster size at t = 50 we
obtain C = 8.43 ± 0.29 for χ = 64 and C = 8.18 ± 0.28 for
χ = 128 (with 1σ error bars), so that the results converged
with bond dimension. Moreover, we can see that the curves
for the average entropy match within error bars. Note that,
since the measurement Hamiltonian Eq. (2) explicitly depends
on the many-body wave function itself and has a stochastic
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FIG. 12. As described in the caption of Fig. 8, but for χ = 128.
In the bottom panel, the realization with the largest cluster size is
chosen.

023146-13



ELMER V. H. DOGGEN et al. PHYSICAL REVIEW RESEARCH 4, 023146 (2022)

character, it is not possible to simulate exactly the same mea-
surement outcomes. Thus, some small differences related to
these random fluctuations remain even though convergence
with the bond dimension is reached.

APPENDIX B: MEASUREMENT PROTOCOL BASED
ON A NON-HERMITIAN HAMILTONIAN

In this Appendix, we compare the non-Hermitian measure-
ment protocol (avoiding introduction of the detectors) with
a more conventional measurement description. In particular,
we explain the emergence of non-Hermiticity in the effec-
tive Hamiltonian. Further, we derive the master equation for
the evolution of the averaged density matrix within the non-
Hermitian protocol, and discuss its similarity and difference
with respect to the corresponding Lindblad equation for con-
ventional weak measurements.

In Appendix B 1 we recap previous results for general-
ized measurements acting on a spin-1/2-chain, leading to a
master equation of Lindblad type for the averaged density
matrix ρ̄ discussed in Appendix B 2. Further, we discuss in
Appendix B 2 the associated stochastic Schrödinger equa-
tion (which can be used to study the entanglement transition)
and the emergence of non-Hermiticity. We also point out
in Appendix B 2 that the master equation for ρ̄ essentially
depends on the possible post-selection protocol. We then
proceed to compare these results to our approach. In Ap-
pendix B 3 we discuss the stochastic time evolution of pure
states under our non-Hermitian protocol. In Appendix B 4 we
derive the corresponding master equation for ρ̄.

1. Generalized measurements: Spin-1/2 detector for a single site

a. Basics of a standard measurement protocol

Consider a single site with possible occupations n = 0 or
n = 1 that will be the subject of measurement (this system
can be equivalently represented as a single spin-1/2 with
the z-projection being measured). A pure initial state of the
system is a superposition of n = 0 and n = 1 states; note
that, for a single site, we do not fix the filling (zero or one),
otherwise there is nothing to measure. In the simplest mea-
surement setting, the site is coupled to an ancillary system (or
“detector”), represented as a spin-1/2 [5,7,33,72]. Projective
measurements of the detector along a certain direction are
made at discrete times; the detector state is then initialized
anew in a certain state (assumed, for simplicity, to be the same
pure state for all time intervals).

We denote the basis states of the system (s) and the detector
(d) as |n〉 and |σ 〉, respectively, with the quantum numbers
n = 0, 1 (occupation) and σ = ± (sign of the z component
of the detector’s spin; sometimes we will use σ = ±1). The
measurement protocol comprises the following steps:

(i) Initialization of the system and detector at time t = 0
in a product state

ρ(t = 0) = ρs(t = 0) ⊗ |−〉〈−|, (B1)

where we choose, for definiteness, σ = − for the initial de-
tector state at each step. The initial state of the system will be

assumed to be pure:

ρs(t = 0) = |ψs〉〈ψs|, (B2)

where

|ψs〉 = α|1〉 + β|0〉, |α|2 + |β|2 = 1. (B3)

(ii) Unitary time evolution of the composite system gov-
erned by Hamiltonian

Htotal = Hs + Hd + Hsd (B4)

up to time T . In what follows, we set the detector’s own
Hamiltonian Hd to zero. Furthermore, for illustrative pur-
poses, we will focus on the case when Hs is also zero, so that
the only nonzero part in Htotal is the one that coupes the system
and the detector, Hsd . Note that, during this time, the system
is, in general, in a mixed state (entangled with the detector)
and, hence, is not described by a wave function.

(iii) Instantaneous projective measurement of the detector
with outcome σ , which results in

ρ(T ) → ρ (σ )
s (T ) ⊗ |σ 〉〈σ |. (B5)

The normalized system density matrix, conditioned to the
outcome σ , is given by

ρ (σ )
s (T ) = Kσ ρs(0)K†

σ

trs(Kσ ρs(0)K†
σ )

, (B6)

where

Kσ = 〈σ |U (T )|−〉 (B7)

is the measurement (Kraus) operator acting on the states of the
system, ∑

σ=±
K†

σ Kσ = 1,

and U (T ) is the evolution operator at time T . The probability
Pσ to get the detector outcome σ is given by

Pσ = trs[Kσ ρs(0)K†
σ ], (B8)

which is just the normalization factor in Eq. (B6).
(iv) Repetition of the above steps starting with the state

ρ(t = T ) = ρ (σ )
s (T ) ⊗ |−〉〈−|, (B9)

where the detector is reinitialized.
The reinitialization of the detector is crucial for the Lind-

blad equation for the averaged (over readouts) density matrix,
as discussed below. We will also discuss the measurement
protocol without this reinitialization.

b. Measuring site occupation

In what follows, we consider the following Hamiltonian for
the unitary-evolution step of the protocol:

Htotal ≡ Hsd = M n̂σ̂x. (B10)

Here, n̂ is the particle-number operator for the system (which
is a projector: n̂2 = n̂), σ̂x is the Pauli matrix acting in
the detector’s space, and M quantifies the strength of the
system-detector coupling. The projective measurements of the
detector is performed for the Pauli operator σ̂z.
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The protocol using the system-detector coupling Eq. (B10)
can be realized with auxiliary particles (or, equivalently, spins)
as follows:

(I) Introduce two ancillary sites, 1 and 2, with creation
(annihilation) operators â†

1 (â1) and â†
2 (â2), respectively.

(II) Connect these two sites by a tunneling amplitude mul-
tiplied by the occupation operator n̂ of the main site:

Hsd = M n̂ â†
1â2 + H.c.

When the main site is unoccupied, there is no tunneling
between the auxiliary sites.

(III) Initialize the ancillary system by putting a particle in
site 1.

(IV) Evolve the whole system with Hsd for time T .
(V) Strongly measure the occupations of the ancillary

site 1;
(VI) Repeat the protocol starting with step (III).
In what follows, we continue using a spin as a detector.

The evolution operator for the Hamiltonian Eq. (B10) takes
the form

Ut = exp(−iHsdt ) = 1̂ − n̂[1 − cos(Mt ) + i sin(Mt )σ̂x].
(B11)

Starting at t = 0 with the initial pure state

|�(0)〉 = |ψs〉 ⊗ |−〉,
we get at time t = T (below λ = MT ):

|�(T )〉 = UT |�(0)〉
= α cos λ |1〉 ⊗ |−〉 + β |0〉 ⊗ |−〉

− iα sin λ |1〉 ⊗ |+〉. (B12)

A projective measurement of the detector’s σz results in
the outcome σ = ± (detector’s readout). A “click” of the
detector implies that the outcome σ = + has been measured
(the detector’s spin, initially pointing down, flips), whereas
σ = − corresponds to a “null-measurement” (no-click out-
come). Right after projecting the detector, the system is again
described by the wave function:

σ = −, no click:

|ψs(T )〉 = α cos λ√
1 − |α|2 sin2 λ

|1〉 + β√
1 − |α|2 sin2 λ

|0〉

= K−|ψs〉√
〈ψs|K†

−K−|ψs〉
, (B13)

σ = +, click:

|ψs(T )〉 = −i
α sin λ

|α sin λ| |1〉

= K+|ψs〉√
〈ψs|K†

+K+|ψs〉
. (B14)

The probabilities Pσ of the measurement outcomes are given
by

no click: P− = 1 − |α|2 sin2 λ, (B15)

click: P+ = |α|2 sin2 λ = 1 − P−. (B16)

These probabilities satisfy Eq. (B8) with

K+ = 〈+|UT |−〉 = −i sin λ n̂, (B17)

K− = 〈−|UT |−〉 = 1̂ − (1 − cos λ)n̂. (B18)

In the limit of weak measurements, MT � 1, which will be
used for the derivation of the Lindblad equation, we have

K+  −i MT n̂, (B19)

K−  1̂ − (MT )2

2
n̂. (B20)

One sees that a no-click measurement yields a modification
of the wave function through the measurement back-action.
The click outcome here drives the system’s wave function
directly to the state n = 1 (a particle is measured). The
projective-measurement limit is achieved in this setup by
setting λ = π/2, when also the no-click outcome yields a
definite occupation n = 0. In this case of projective measure-
ments, the measurement probabilities are given by the Born
rule:

no click: P− = 1 − |α|2 = 1 − 〈n̂〉, (B21)

click: P+ = |α|2 = 〈n̂〉. (B22)

For MT � 1, we have

no click: P− = 1 − |α|2M2T 2, (B23)

click: P+ = |α|2M2T 2, (B24)

which can be written through the system’s density matrix as

Pσ = 1
2 (1 − σ ) + σ tr(n̂ρ)M2T 2. (B25)

The measurement probabilities depend on both the system
state (through ρ) and the measurement strength M. Clearly,
the probability of no-click measurement is 1 in the absence of
coupling to the detector.

2. Lindblad equation for a single site in the conventional
measurement setup

a. Derivation of the Lindblad equation

Since the system is almost always entangled with the de-
tector (except for discrete times t j = jT when the projection
of the detector is performed), the continuous evolution of the
system is described in terms of the density matrix ρs(t ) =
trd ρ(t ). For a given quantum trajectory specified by the se-
quence of detector’s readouts, σ1, . . . , σ j , where σ j = σ (t j ),
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the total density matrix evolves as follows:

t j < t � t j+1 :

ρ(t |σ1, . . . , σ j )

= e−i(t−t j )Hsd ρ(t j + 0|σ1, . . . , σ j )e
i(t−t j )Hsd

= e−i(t−t j )Hsd ρs(t j + 0|σ1, . . . , σ j ) ⊗ |−〉〈−|ei(t−t j )Hsd ,

(B26)

t = t j+1 + 0 :

ρ(t |σ1, . . . , σ j+1 = +)

= 〈+|ρ(t j+1|σ1, . . . , σ j )|+〉
P+(t j+1)

⊗ |−〉〈−|, (B27)

ρ(t |σ1, . . . , σ j+1 = −) = 〈−|ρ(t j+1|σ1, . . . , σ j )|−〉
P−(t j+1)

⊗ |−〉〈−|, (B28)

where

P±(t j+1) = trs[K
†
±(t j+1 − t j )K±(t j+1 − t j )ρs(t j )]. (B29)

The change of the total density matrix at t = t j+1, resulting
from the projection of the detector with the outcome σ j+1 = ±
and reinitialization of the detector in state |−〉〈−|, is referred
to as “quantum jump.”

Let us introduce a stochastic variable

χ (t ) = σ j + 1

2
, t j < t < t j+1, (B30)

such that χ = 0 for the no-click measurement and χ = 1 for
the click at time t j . This variable satisfies χ2 = χ . One can
now cast the evolution equation for the total density matrix
in the form of a stochastic differential equation with sources
describing quantum jumps:

dρ

dt
= −i[Hsd , ρ]

+
∑
j=1

δ(t − t j )[(1 − χ j )�−(t j ) + χ j�+(t j )], (B31)

where [A, B] is the commutator, χ j = χ (t j ), and

�±(t j ) = ρ(t j + 0|σ1, . . . , σ j = ±) − ρ(t j |σ1, . . . , σ j−1)

(B32)

describes the quantum jump in the total density matrix
at t = t j .

An ensemble average over all possible measurement
records χ̄ yields

χ̄ (t ) = P+(t j ), t j < t < t j+1. (B33)

This average is equivalent to tracing out the detector readouts,
which is known as blind measurement, at each step. The blind
measurement can be described by a discrete map, where at
the measurement time t j one averages the density matrix over
the two measurement readouts σ = ± with the respective
probabilities Pσ (t j ).

Consider a fixed sequence of readouts σ1, . . . , σ j up to time
t j . Then, at time t j+1 − 0, the total density matrix is given by

Eq. (B26). The blind measurement at time t j+1 then yields

ρ (b)
s (t j+1|σ1, . . . , σ j ) =

∑
σ

Pσ (t j+1)ρ (σ )
s (t j+1|σ1, . . . , σ j ).

(B34)
Here, ρ (σ )

s (t j+1|σ1, . . . , σ j ) is defined by Eq. (B6), and the
measurement probabilities are conditioned to the full set of
previous readouts through the dependence on the state at time
t j+1 − 0 given by Eq. (B8):

Pσ (t j+1) ≡ Pσ (t j+1|σ1, . . . , σ j ).

Using Eqs. (B6) and (B8), this can be written as

ρ (b)
s (t j+1|σ1, . . . , σ j ) =

∑
σ=±

Kσ (T )ρs(t j |σ1, . . . , σ j )K
†
σ (T ),

(B35)
where Kσ (T ) = Kσ (t j+1 − t j ). Indeed, for the unitary evo-
lution governed by the Hermitian Hamiltonian Hsd , the
probability of the measurement outcome Eq. (B8) exactly
cancels the normalization factor in the conditioned density
matrix Eq. (B6). As a result, the prehistory of the readouts
remains in Eq. (B35) only in the value of the density matrix
at time t j , and the averaging of ρ (b)

s (t j+1) over this prehistory
on the left-hand side of Eq. (B35) can be expressed through
the averaged density matrix at t = t j . Thus, one can write a
Markovian master equation for the averaged density matrix
ρ̄s,

ρ̄s(t j+1) =
∑

σ

Kσ (t j+1 − t j )ρ̄s(t j )K
†
σ (t j+1 − t j ). (B36)

This is equivalent to reinserting the measurement probabilities
and normalization factors that depend on ρ̄s in the equation for
the density matrix for blind measurements, Eq. (B34):

ρ̄s(t j+1) =
∑

σ

Pσ (t j+1)ρ̄ (σ )
s (t j+1). (B37)

Representation of the averaged density matrix Eq. (B36) is
known as a Kraus decomposition of the reduced density ma-
trix corresponding to the conventional quantum-mechanical
unitary evolution of the system, with the trace taken over
all of the subsystem’s (detector’s) states that are not distin-
guished by projection. The effect of measurements here is in
the reinitialization of the detector at each measurement step.
If no reinitialization is performed, then the evolution of the
averaged density matrix of the system would be described
by the conventional von Neumann equation with Hsd and not
by the Lindblad equation: the summation over the states of
the detector at intermediate steps in this case is equivalent to
the resolution of the unity operator. At the same time, any
particular sequence of the detector’s readouts still defines a
quantum trajectory of the system, and the full statistics of
such trajectories is a highly nontrivial object. This is a clear
demonstration of the fact that the Lindblad master equation for
the averaged density matrix is in general not sufficient for
describing measurement-induced dynamics of the entangle-
ment. Indeed, if the measurements are performed without any
reinitialization (as in various models of entanglement phase
transitions), the Lindblad equation does not carry any infor-
mation about the measurements at all.

The resulting equation for the averaged system density
matrix ρ̄s(t ) greatly simplifies in the weak-measurement limit
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MT � 1, yielding a well-known differential Lindblad equa-
tion. Using Kσ (T ) from Eqs. (B19) and (B20), we find

ρ̄s(t j + T ) = ρ̄s(t j ) + T 2(H+−ρ̄s(t j )H†
+−

− 1
2 {H†

+−H+−, ρ̄s(t j )}), (B38)

where {A, B} is the anticommutator and

Hσσ ′ = 〈σ |Hsd |σ ′〉, H−+ = Mn̂ = H†
+−. (B39)

In the continuous-time limit, we can infer the form of the jump
operator in the Lindblad equation for the averaged system
density matrix by taking the limit

d ρ̄s(t )

dt
= lim

T →0

ρ̄s(t + T ) − ρ̄s(t )

T
. (B40)

This yields the Lindblad equation [cf. Eq. (3) of the main text]

d ρ̄s(t )

dt
= Lρ̄s(t )L† − 1

2
{L†L, ρ̄s(t )}, (B41)

where, for our choice of the system-detector coupling
Eq. (B10), the Lindblad jump operator L is given by

L ≡ M
√

T n̂. (B42)

In more general cases, several jump operators can be involved
in the Lindblad equation, see below. The continuum limit is
realized by

T → 0, M → ∞, M
√

T = const., (B43)

while keeping M
√

T fixed. We see that the Lindblad jump
operator in the above conventional setting for continuous
measurements of the site density is proportional to the den-
sity operator. Using the explicit form of the Lindblad jump
operator, Eq. (B42), and its property L†L = M2T n̂, we cast
Eq. (B41) in the form

d ρ̄s

dt
= M2T

(
n̂ρ̄sn̂ − 1

2
{n̂, ρ̄s}

)
. (B44)

In the presence of the system’s own dynamics governed by
Hs �= 0, a standard von Neumann term −i[Hs, ρ] is added to
the right-hand side of Eq. (B44). Note that, for the measure-
ment protocol considered here, the system’s own dynamics
would prevent freezing of the system in the |1〉-state after the
first click-readout of the detector.

Above, we have considered the protocol when at each
measurement time step of duration T the system is coupled
to the reinitialized detector. This corresponds to “frequent
measurements” with the probability P = 1 that the site is
monitored. If we allow for time steps for which the detector
is not coupled to the system, P < 1, then the right-hand side
of the Lindblad equation, Eq. (B44), is simply multiplied by
P. Thus, at the level of the Lindblad equation, the measure-
ment frequency can be fully absorbed into the measurement
strength M2 → PM2 ≡ M̃2. However, this is generically not
so for the nonlinear-in-ρs quantities. It is also worth emphasiz-
ing that the probability of measuring P is not equivalent to the
no-click measurement probability P− for the system coupled
to the detector (a famous example is the Elitzur-Vaidman
setup [73]).

b. Analysis of the solution

Writing the 2×2 density matrix satisfying trρ̄ = 1 and
occupation operator n̂ in the basis of |1〉 and |0〉 states,

ρ̄ =
(

a b
b∗ 1 − a

)
, n̂ =

(
1 0
0 0

)
, (B45)

we obtain

n̂ ρ̄ n̂ =
(

a 0
0 0

)
= n̂ tr(n̂ρ̄ ), {n̂, ρ̄} =

(
2a b
b∗ 0

)
, (B46)

and

n̂ ρ̄ n̂ − 1

2
{n̂, ρ̄} = −1

2

(
0 b
b∗ 0

)
. (B47)

Equation (B44) then reduces to two independent equations for
diagonal and nondiagonal elements of the density matrix:

da

dt
= 0, (B48)

db

dt
= −M2T

2
b. (B49)

We see that the diagonal matrix elements of the averaged
density matrix do not change with time: the mean occupation

n̄ = tr (n̂ρ̄s) = a (B50)

remains constant. Multiple weak measurements of the single-
site occupation only destroy (on average) the coherence
between occupied and unoccupied states. This could have
been guessed without any calculation: indeed, we know that
measuring the n = 0 or n = 1 state with an arbitrary strength,
we do not modify the occupation |α|2, see Eqs. (B13) and
(B14) for α = 0 and α = 1, respectively. Therefore, the Lind-
blad equation possesses the two dark states a = 0 and a = 1 at
b = 0. Since the Lindblad equation is linear in the density ma-
trix, it cannot contain the nonlinear product a(a − 1) (which
would provide the emergence of these two dark states) on the
right-hand side. As a result, all states for b = 0 should belong
to the dark space of the Lindbladian.

It is also instructive to consider the averaged purity of
the system (ρ2 = ρ for pure states), as an example of the
nonlinear-in-ρ characteristics of the system. In analogy with
Eq. (B34), we write ρ2

s after the blind measurement at time
t j+1, given the sequence of previous readouts σ1, . . . , σ j :[

ρ2
s (t j+1|σ1, . . . , σ j )

](b)

=
∑
σ=±

Pσ (t j+1)
[
ρ (σ )

s (t j+1|σ1, . . . , σ j )
]2

. (B51)

Here, the measurement probability is again conditioned to all
previous readouts, as it is expressed through the exact state at
time t j+1. Importantly, for the blind measurement, the same
weight Pσ characterizes the update of all the moments of
the density matrix. Therefore, the measurement probability in
the numerator does not completely cancel the normalization
denominator in Eq. (B51), which now contains the square
of this probability through the squared normalized density
matrix ρ (σ )

s :

[
ρ2

s (t j+1)
](b) =

∑
σ=±

Kσ (T )ρ2
s (t j |σ1, . . . , σ j )K†

σ (T )

Pσ (t j+1|σ1, . . . , σ j )
. (B52)
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Importantly, the whole prehistory of readouts is involved
in the denominator on the right-hand side of Eq. (B52), which
is thus correlated with ρ2

s (t j ) in the numerator. Therefore, the
averaging of [ρ2

s (t j+1)](b) on the left-hand side of Eq. (B52)
over quantum trajectories does not decouple into the ratio of
the averaged density matrix ρ2

s (t j ) and averaged measurement
probability Pσ (t j+1). As a result, in contrast to the averaged
density matrix Eq. (B36), the discrete map for ρ2

s cannot
be, in general, written in terms of a Markovian equation for
ρ2

s . We also note the emergence of the density matrix in the
denominator of Eq. (B51) through Eq. (B29), which prevents
us from having a linear map for ρ2

s . However, starting with a
pure state at t = 0, we should have the pure state of the system
at all discrete times t j , so that ρ2

s (t j ) = ρs(t j ) should hold
(also for averages). This follows by induction from Eq. (B51)
combined with Eq. (B34). In general, however, in case of con-
tinuous monitoring of a large system that is always entangled
with detectors, the moments of the system’s density matrix
are not expressed through the density matrix itself, and their
averaging over the prehistory of readouts is highly nontrivial.

c. Stochastic Schrödinger equation and emergence
of non-Hermiticity

The conventional Lindblad equation (B41) contains the
two terms that are analogous to the ingoing and outgoing
terms in the Boltzmann equation. These terms directly corre-
spond to click and no-click events, respectively. The term with
the anticommutator {L†L, ρ̄s(t )} describes the contribution
of null measurements. Indeed, postselecting the sequences
of readouts with only σ = − outcomes kept (discarding all
σ = + readouts), we replace Eq. (B36) by

ρnull
s (t j+1) = K−(T )ρnull

s (t j )K
†
−(T ), (B53)

which describes the evolution of such a postselected density
matrix ρnull

s . Note that the norm of the density matrix is re-
duced in this way, which amounts to a reduction, with each
measurement step, of the probability of having a no-click-only
sequence of readouts.

Using Eq. (B20), we obtain the map for its evolution,

ρnull
s (t j+1) =

(
1̂ − M2T 2

2
n̂

)
ρnull

s (t j )

(
1̂ − M2T 2

2
n̂

)
, (B54)

which, to leading order in MT � 1, yields

dρnull
s (t )

dt
= −M2T

{
n̂, ρnull

s (t )
}
. (B55)

This is a Lindblad equation corresponding to an anti-
Hermitian Hamiltonian. In general, this Hamiltonian, bilinear
in Lindblad jump operators [see Eq. (B38)],

Hnull = − i

2
L†L, (B56)

describes the loss of the probability in the null-measurement
sequence and is the one usually appearing in the context of
measurements (see, e.g., Ref. [37]).

Considering pure states at discrete times t j , the stochastic
evolution of the density matrix is equivalently represented
in the weak-measurement limit by a stochastic Schrödinger
equation for the system’s wave function. The exact dis-

crete map for the update of the wave function is given by
[cf. Eqs. (B27), (B28), and (B31)]

|ψs(t j+1)〉 = χ j+1
K+(T )|ψs(t j )〉√

P+(t j+1)

+ (1 − χ j+1)
K−(T )|ψs(t j )〉√

P−(t j+1)

= |ψs(t j )〉 + χ j+1

[
K+(T )|ψs(t j )〉√

P+(t j+1)
− |ψs(t j )〉

]

+ (1 − χ j+1)

[
K−(T )|ψs(t j )〉√

P−(t j+1)
− |ψs(t j )〉

]
,

(B57)

with normalization factors that can be written through the
norm of the updated wave function:√

P±(t j+1) = ||K±(T )|ψs(t j )〉||.
Similar to the derivation of the Lindblad equation,
Eqs. (B38)–(B41), we consider the continuous-time limit,
Eq. (B43). Using Eqs. (B19) and (B20) with

|α|2 → 〈ψs(t )|n̂|ψs(t )〉,
we write for T → 0

|ψs(t + T )〉  |ψs(t )〉+χ

[ −iMT n̂|ψs(t )〉
MT

√〈ψs(t )|n̂|ψs(t )〉 − |ψs(t )〉
]

+ (1 − χ )

[(
1 + M2T 2

2
〈ψs(t )|n̂|ψs(t )〉

)

×
(

1̂ − M2T 2

2
n̂

)
|ψs(t )〉 − |ψs(t )〉

]

 |ψs(t )〉 + χ

[ −in̂|ψs(t )〉√〈ψs(t )|n̂|ψs(t )〉 − |ψs(t )〉
]

+ M2T 2

2
(〈ψs(t )|n̂|ψs(t )〉|ψs(t )〉 − n̂|ψs(t )〉).

(B58)

Here, in the last term that corresponds to no-click mea-
surements, we approximate 1 − χ ≈ 1. After averaging over
trajectories, the term containing χ would produce a higher
power of T . Indeed, according to Eqs. (B33) and (B24), we
have in the limit Eq. (B43)

χ = 〈ψs(t )|n̂|ψs(t )〉M2T 2 ∝ T

(recall that χ2 = χ , so that any power of χ would produce on
average T ).

The no-click term in Eq. (B58) can be represented by
means of effective state-dependent anti-Hermitian Hamilto-
nian Hncl:

M2T

2
(〈ψs|n̂|ψs〉|ψs〉 − n̂|ψs〉) = −iHncl|ψs〉, (B59)

Hncl ≡ i

2
(||L|ψs〉||2 − L†L), (B60)

where we have used the definition of the Lindblad jump
operators for our model, Eq. (B42). The effective nonclick
Hamiltonian Eq. (B60) differs from Eq. (B56) by the presence
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of the first term, which is proportional to the unity operator
and depends on the state |ψs〉.

Neglecting the click term (postselecting the no-click trajec-
tories, χ → 0, but restoring the normalization at each step),
we obtain the following equation for the normalized no-click-
postselected density matrix ρncl

s instead of Eq. (B55):

d

dt
ρncl

s  1

T
(|ψs(t + T )〉〈ψs(t + T )| − |ψs(t )〉〈ψs(t )|)

 M2T

2
(|ψs〉〈ψs|n̂|ψs〉〈ψs| − |ψs〉〈ψs|n̂

+ 〈ψs|n̂|ψs〉|ψs〉〈ψs| − n̂|ψs〉〈ψs|)

= M2T

2

(
2 tr

(
n̂ρncl

s

)
ρncl

s − {
n̂, ρncl

s

})
. (B61)

It is easy to check that the normalization trρncl
s = 1 is pre-

served by Eq. (B61), as it should be by construction:

d

dt
trρncl

s = M2T

2

[
2 tr

(
n̂ρncl

s

)
trρncl

s − 2 tr
(
n̂ρncl

s

)] = 0.

(B62)

We thus see that postselection accompanied by maintaining
normalization gives rise to a nonlinear master equation for the
postselected density matrix, while not keeping normalization
we get a linear equation, Eq. (B55), corresponding to an
anti-Hermitian Hamiltonian, Eq. (B56). The nonlinearity of
the Lindblad-type master equation for the averaged density
matrix (with normalization maintained) is a generic property
of protocols with post-selection.

Now, restoring the click term in Eq. (B58) and proceeding
along the same lines as for the derivation of Eq. (B61), we
obtain

d

dt
ρs  1

T
[|ψs(t + T )〉〈ψs(t + T )| − |ψs(t )〉〈ψs(t )|]

 |ψs〉χ

T

(
i〈ψs|n̂√〈ψs|n̂|ψs〉

− 〈ψs|
)

+ χ

T

( −in̂|ψs〉√〈ψs|n̂|ψs〉
− |ψs〉

)
〈ψs|

+ χ2

T

( −in̂|ψs〉√〈ψs|n̂|ψs〉
− |ψs〉

)(
i〈ψs|n̂√〈ψs|n̂|ψs〉

− 〈ψs|
)

+ M2T

2
(|ψs〉〈ψs|n̂|ψs〉〈ψs| − |ψs〉〈ψs|n̂

+ 〈ψs|n̂|ψs〉|ψs〉〈ψs| − n̂|ψs〉〈ψs|)

= χ

T
(−2ρs) + χ2

T

[
n̂ρsn̂

tr(n̂ρs)
+ ρs

]

+ M2T

2
(2 tr(n̂ρs) ρs − {n̂, ρs}). (B63)

Using χ2 = χ , we arrive at

d

dt
ρs  χ

T

[
n̂ρsn̂

tr(n̂ρs)
− ρs

]

+ M2T

2
(2 tr(n̂ρs) ρs − {n̂, ρs}). (B64)

Averaging χ on the right-hand side of Eq. (B64) over quantum
trajectories independently of ρs, we replace

χ → tr(n̂ρ̄s) M2T 2. (B65)

In a similar manner, we also decouple the correlations be-
tween the density matrices appearing in the numerator and
denominator of the first term in Eq. (B64), which amounts to
the replacement ρs → ρ̄s everywhere. The above decoupling
of averages is justified in the limit of weak measurements,
MT � 1, which is simultaneously the limit of applicability
of the Lindblad equation. This decoupling is reminiscent of
the decoupling of disorder averages of the distribution func-
tions and the scattering probabilities in the collision integrals
of the kinetic equation for weakly disordered systems. It is
worth noting that, as the derivation of Eq. (B36) shows, the
decoupling approximation turns out to be exact, implying that
the contributions of the neglected correlations to the master
equation actually cancel each other.

The result of the decoupled average over the quantum
trajectories reads

d

dt
ρ̄s  tr(n̂ρ̄s) M2T 2

T

[
n̂ρ̄sn̂

tr(n̂ρ̄s)
− ρ̄s

]

+ M2T

2
(2 tr(n̂ρ̄s) ρ̄s − {n̂, ρ̄s})

= M2T

(
n̂ρ̄sn̂ − 1

2
{n̂, ρ̄s}

)
. (B66)

This equation reproduces the conventional (linear) Lind-
blad equation, Eq. (B44). The nonlinear (normalization-
maintaining) term tr(n̂ρ̄s) ρ̄s from the no-click part is com-
pletely canceled here by the term from the click (“ingoing”)
part. Importantly, the nonlinear terms would be present in
the effective master equation for any type of postselection
accompanied with maintaining the norm of the state, similarly
to Eq. (B61).

It is worth noticing that the χ2 term was crucially important
in Eq. (B63). Writing

d

dt
ρs = |ψs(t )〉 〈ψs(t )|

dt
+ |ψs(t )〉

dt
〈ψs(t )|, (B67)

and expressing

d|ψs〉
dt

 |ψs(t + T )〉 − |ψs(t )〉
T

, (B68)

through Eq. (B58), one would miss the χ2 contribution to the
master equation. This is related to the fact that Eq. (B67) is
only valid for “well-defined” differentiable functions, whereas
the stochastic measurement process yields the system’s wave
function only at discrete time steps. The proper way to
introduce the derivatives in the effective continuous (“coarse-
grained”) limit can be formulated in terms of It ô stochastic
calculus, as described for the case of measurements, e.g., in
Ref. [7].

3. Non-Hermitian measurement for a single site

Following the approach outlined in Sec. II B, we now im-
itate the conventional measurement protocol by introducing a
non-Hermitian Hamiltonian acting on a single site. As above,
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we set the “own” Hamiltonian of the system to zero. The
whole dynamics is then described by the nonunitary evolution
governed by the “measurement” Hamiltonian, which, for the
time interval t j < t < t j+1 = t j + T , is defined as

H = iM pj sgn(〈n̂〉 − mj ) n̂, (B69)

where M > 0 characterizes the strength of “measurement,”
p j = 0, 1 is a binary random variable telling whether the site
is measured or not for a given time interval (the probability
of measurement is P), and mj ∈ (0, 1) is a homogeneously
distributed random number. In what follows, we will consider
the case of frequent measurements, P = 1, so that pj = 1 for
all time intervals, as in the previous sections.

In analogy with the conventional measurement protocol
of Appendix B 1 and B 2, we introduce the “measurement
outcomes”

σ j = sgn(〈n̂〉 − mj ) = ±. (B70)

We will refer to the outcome σ j = + (or χ j = 1) as a click
event, and to σ j = − (equivalently, χ j = 0) as a no-click
event. The probabilities of the click and no-click measure-
ments are determined by the expectation value of the site
occupation:

P+ = 〈n̂〉, P− = 1 − 〈n̂〉. (B71)

These probabilities correspond to probabilities of having a
random number 0 < mj < 1 smaller or larger than 〈n̂〉, re-
spectively.

We stress that, in the limit of projective measurements, the
probabilities Eqs. (B21) and (B22) coincide with Eq. (B71).
However, in contrast to conventional measurement probabili-
ties Eqs. (B15) and (B16), the probabilities Eq. (B71) do not
depend on the measurement strength M; in particular, there is
a nonzero click probability (at finite 〈n̂〉) even for M = 0. At
the same time, in the case of generalized measurements, the
“backaction” induced by the non-Hermitian “measurement
Hamiltonian” Eq. (B69) still depends on M, as in the con-
ventional setting. As a result, the dynamics of the monitored
system governed by Hamiltonian Eq. (B69) does depend on
M and is qualitatively similar to the dynamics of the “truly
measured” system for MT � 1, even in the limit of weak
measurements MT � 1.

Further, in contrast to the conventional setup, where the
system is entangled with the detector and is, hence, not de-
scribed by a pure wave function (except for a discrete set of
times when the detector is projected), here we always have a
pure system state. This state is maintained normalized to unity,
by constantly renormalizing its norm. Although the evolution
of the system state governed by Hamiltonian Eq. (B69) can
be found exactly (see below), it is instructive to consider this
evolution for a small time interval δt � M−1, by expanding
the evolution operator to second order in Mδt . For the mea-
surement Hamiltonian Eq. (B69), we obtain

Ut = exp(−i t H ) = etMσ j n̂  1 + tMσ j n̂ + t2M2

2
n̂. (B72)

Acting with this operator on state |ψs〉 = α |1〉 + β |0〉, we
find the renormalized state

|ψs(δt )〉 = Uδt |ψs〉√〈ψs|UδtUδt |ψs〉
= α′ |1〉 + β ′ |0〉

 α[1 + δtMσ (1 − |α|2)

+ t2M2

2
(1 − |α|2)(1 − 3|α|2)]|1〉

+ β

[
1 − δtMσ |α|2 − t2M2

2
|α|2(2 − 3|α|2)

]
|0〉.

(B73)

Clearly, for |α| = 1 or α = 0 the “measurement” does not
affect the state. Note also that if |α|2 > m then also |α′|2 > m,
and the measurement outcome σ is guaranteed to be fixed
within the whole measurement step T . One can also explicitly
check that the normalized state obtained in one iteration of
length 2δt is equal to the state obtained in two consecutive
time steps of length δt . This implies that the renormalization
of the state evolved by the nonunitary evolution operator can
be performed at the end of the whole measurement step of
duration T .

For the whole measurement step, with an arbitrary value of
MT , we get

UT |ψs〉 = αeMT σ |1〉 + β|0〉, (B74)

and the normalized state takes the form:

|ψs(T )〉 = αeMT σ |1〉 + β|0〉√
|α|2(e2MT σ − 1) + 1

. (B75)

In the limit MT � 1, we recover the results above; in the
opposite limit of strong measurement, MT � 1, we obtain

for σ = +,

|ψs(T )〉  α

|α|
(

1 − |β|2
|α|2 e−2MT

)
|1〉 + β

|α|e−MT |0〉, (B76)

for σ = −,

|ψs(T )〉  α

|β|e−MT |1〉 + β

|β|
(

1 − |α|2
|β|2 e−2MT

)
|0〉. (B77)

This reproduces the Born rule for strong measurements:

α|1〉 + β|0〉 → α

|α| |1〉, with probability P+ = |α|2,
(B78)

and

α|1〉 + β|0〉 → β

|β| |0〉, with probability P− = |β|2.
(B79)

Thus, we see that, in the limit of strong measurement
MT → ∞, the non-Hermitian protocol effectively mimics
the conventional measurement implementation based on the
state projection (von Neumann’s wave-function collapse) and
the corresponding Born rule. The non-Hermitian modeling
of the projective measurement can be incorporated into the
traditional generalized-measurement protocol (described in
Appendix B 1) by replacing the detector’s projection with
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its stochastic non-Hermitian evolution. Our modeling of the
generalized measurement (“incomplete collapse” of the wave
function) as an evolution with a non-Hermitian Hamiltonian
is in spirit of the description of the measurement process
in terms of a continuous nonlinear stochastic process in
Ref. [65].

The stochastic discrete map for the system’s wave func-
tion for the non-Hermitian protocol takes the form with χ j =
(σ j + 1)/2 after jth step:

|ψs(t j+1)〉 = χ j
eMT n̂|ψs(t j )〉

||eMT n̂|ψs(t j )〉||

+ (1 − χ j )
e−MT n̂|ψs(t j )〉

||e−MT n̂|ψs(t j )〉|| . (B80)

4. Master equation for the non-Hermitian
measurement protocol

Let us now derive a master equation for the system’s den-
sity matrix averaged over the “measurement outcomes” σ j

in the limit of weak measurements, MT � 1. The evolved
nonnormalized density matrix for given readout σ is given by

ρ̃ (σ )(T ) = eMT σ n̂ρ(0)eMT σ n̂


(

1 + MT σ n̂ + M2T 2

2
n̂

)
ρ(0)

×
(

1 + MT σ n̂ + M2T 2

2
n̂

)

= ρ(0) + MT σ {n̂, ρ(0)} + M2T 2n̂ρ(0)n̂

+ M2T 2

2
{n̂, ρ(0)}. (B81)

In a general case of an anti-Hermitian Hamiltonian, one ob-
tains

ρ̃ (σ )(T ) = ρ(0) − i{H, ρ(0)}T

−
(

Hρ(0)H + 1

2
{H2, ρ(0)}

)
T 2, (B82)

and Eq. (B81) is an example of such an expansion with H
given by Eq. (B69).

The normalized conditioned density matrices are given by

ρ (+)(T ) = UT (σ = +)ρ(0)UT (σ = +)

tr[UT (σ = +)ρ(0)UT (σ = +)]
, (B83)

ρ (−)(T ) = UT (σ = −)ρ(0)UT (σ = −)

tr[UT (σ = −)ρ(0)UT (σ = −)]
. (B84)

The averaged density matrix (the one for blind measurement)
reads [cf. Eq. (B37)]

ρ̄(T ) =
∑
σ=±

Pσ ρ (σ )(T ) =
∑
σ=±

Pσ

UT (σ )ρ(0)UT (σ )

tr[UT (σ )ρ(0)UT (σ )]
,

(B85)
where Pσ are measurement probabilities:

P+ = 〈n̂〉 = tr[n̂ρ(0)], (B86)

P− = 1 − 〈n̂〉 = 1 − tr[n̂ρ(0)]. (B87)

Clearly, the averaged density matrix given by Eq. (B85) is
properly normalized: trρ̄(T ) = 1.

However, the crucial difference of Eq. (B85) compared to
Eq. (B36) is that the measurement probabilities are no longer
given by the normalization factors

Nσ ≡ tr[UT (σ )ρ(0)UT (σ )], (B88)

and, hence,

ρ̄(T ) �=
∑
σ=±

UT (σ )ρ(0)UT (σ ). (B89)

In other words, the right-hand side of Eq. (B85) is nonlinear
in ρ, in contrast to the conventional measurement implemen-
tation. Expanding Eq. (B85) to second order in MT , by using
Eq. (B81) and

Nσ  1 + 2MT (σ + MT ) tr[n̂ρ(0)], (B90)

we obtain the following Lindblad-type nonlinear master equa-
tion for the averaged density matrix:

d ρ̄

dt
= −M[1 − 2 tr(n̂ρ̄)]({n̂, ρ̄} − 2ρ̄ tr(n̂ρ̄))

+ M2T

2
[{n̂, ρ̄} + 2 n̂ρ̄n̂ − 4 tr(n̂ρ̄)(ρ̄ + {n̂, ρ̄}
− 2ρ̄ tr(n̂ρ̄ ))]. (B91)

Equation (B91) should be compared with the conventional
(linear) Lindblad equation, Eq. (B41), and with its nonlin-
ear counterpart for a protocol with post-selection, Eq. (B61).
Strictly speaking, since the probabilities P± do not cancel the
normalization denominators and both depend on the current
state of the system, one cannot, in general, replace the density
matrix there with the averaged one: the prehistory of readouts
matters. Equation (B91) was derived by decoupling such cor-
relations for MT � 1–in the spirit of conventional Boltzmann
equation, similarly to Eq. (B66).

For an alternative derivation of Eq. (B91), we use the
discrete map for the wave function (B80) and follow the steps
that led to Eq. (B66):

d

dt
ρ  1

T
(|ψs(t + T )〉〈ψs(t + T )| − |ψs(t )〉〈ψs(t )|)

 1

T

(
χ2

N+

[
1 + MT n̂ + (MT )2n̂

2

]
|ψs(t )〉

× 〈ψs(t )|
[

1 + MT n̂ + (MT )2n̂

2

]

+ (1 − χ2)

N−

[
1 − MT n̂ + (MT )2n̂

2

]
|ψs(t )〉

× 〈ψs(t )|
[

1 − MT n̂ + (MT )2n̂

2

]

− |ψs(t )〉〈ψs(t )|
)

. (B92)

Making use of

χ̄ = χ2 = tr(n̂ρ) (B93)

and again decoupling the averages of χ and ρ, we reproduce
Eq. (B91).
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Taking the trace of the left-hand side and right-hand side
of Eq. (B91), one can check explicitly that this equation is
trace-preserving with trρ̄ = 1:

d trρ̄

dt
= −M[1 − 2 tr(n̂ρ̄ )][2 tr(n̂ρ̄ ) − 2 trρ̄ tr(n̂ρ̄ )]

+ M2T

2
[2 tr(n̂ρ̄) + 2 tr(n̂ρ̄ )

− 4 tr(n̂ρ̄ )(trρ̄ + 2 tr(n̂ρ̄ ) − 2 trρ̄ tr(n̂ρ̄ ))]

= M2T

2
[2tr(n̂ρ̄ ) + 2tr(n̂ρ̄ ) − 4 tr(n̂ρ̄ )] = 0. (B94)

Using the explicit forms of the 2×2 density matrix and
occupation operator n̂, Eq. (B45), we get tr(n̂ρ̄) = a, 1 −
2 tr(n̂ρ̄) = 1 − 2a,

{n̂, ρ̄} =
(

2a b
b∗ 0

)
, {n̂, ρ̄} + 2 n̂ρ̄n̂ =

(
4a b
b∗ 0

)
, (B95)

{n̂, ρ̄} − 2ρ̄ tr(n̂ρ̄) =
(

2(1 − a)a −(1 − 2a)b
(1 − 2a)b∗ −2(1 − a)a

)
, (B96)

and

ρ̄ + {n̂, ρ̄} − 2ρ̄ tr(n̂ρ̄ ) =
(

a(3 − 2a) 2(1 − a)b
2(1 − a)b∗ 1 − a(3 − 2a)

)
.

(B97)

The resulting nonlinear equations for a and b, b∗

da

dt
= −2Ma(1 − a)(1 − 2a)(1 − MT ), (B98)

db

dt
= −Mb[(1 − 2a)2 + 4MT (a (1 − a) − 1/2)], (B99)

can be solved exactly. The nonlinearity of the equation sup-
ports existence of distinct dark states at b = 0. One sees that,
in addition to the natural dark states a = 0, 1 and b = 0, there
is an emergent dark state a = 1/2 and b = 0 that corresponds
to a maximally mixed state.

It is worth emphasizing that the stochastic anti-Hermitian
Hamiltonian used in this approach produces both outcomes
of the measurement step, σ = ±, in contrast to the effective

(and nonstochastic) Hamiltonian Eq. (B56) associated with
postselection of a no-click sequence, σ j = − for all j. The
fact that both are proportional to n̂ in the above consideration
is a coincidence resulting from n̂2 = n̂. In general, these are
very different operators.

This consideration can be directly generalized to the case
of many sites with inclusion of the system’s own Hamiltonian.
Note that, when starting from a half-filled pure state, the non-
Hermitian measurement protocol does not involve states of
other fillings at any step, so that no additional projection to
the half-filling manifold is required.

Thus, in the weak-measurement limit, the above non-
Hermitian measurement protocol produces a nonlinear
Lindblad-type master equation for the averaged density ma-
trix. The appearance of the nonlinearity stems from the
dependence of the normalization factors Nσ on the system
state; this dependence in canceled by the measurement prob-
abilities chosen for the protocol. This is analogous to the
origin of nonlinearity in the master equation for a stochastic

non-Hermitian Hamiltonian derived in Ref. [23], where the
stochastic variable in the anti-Hermitian part of the Hamilto-
nian was not directly related to the state at all. Nonlinearity of
the master equation thus appears to be a general property of
the non-Hermitian protocols.

Summarizing the content of this Appendix, the key points
are as follows. A non-Hermitian stochastic Hamiltonian is a
useful way to model the generalized measurement process.
The anti-Hermitian terms describe an evolution of the system
toward an eigenstate of the measurement Hamiltonian, thus
implementing an incomplete collapse of the wave function.
On the level of the averaged density matrix ρ̄ it leads to a
Lindblad-type master equation, which has a nonlinear form. A
similar nonlinearity of the master equation for ρ̄ appears also
for a conventional description of measurements, in the case
of protocols with a post-selection. Importantly, the averaged
density matrix ρ̄ does not in general carry information about
the entanglement; one needs knowledge of the averaged mo-
ments ρn. Master equations for such moments are generally
nonlinear [36].
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