
Journal of Physics Communications

PAPER • OPEN ACCESS

Integer and fractionalized vortex lattices and off-
diagonal long-range order
To cite this article: Michael A Rampp and Jörg Schmalian 2022 J. Phys. Commun. 6 055013

 

View the article online for updates and enhancements.

You may also like
Ground state, collective mode, phase
soliton and vortex in multiband
superconductors
Shi-Zeng Lin

-

Collective modes of vortex lattices in two-
component Bose–Einstein condensates
under synthetic gauge fields
Takumi Yoshino, Shunsuke Furukawa,
Sho Higashikawa et al.

-

Hydrodynamic theory of rotating ultracold
Bose–Einstein condensates in supersolid
phase
Rashi Sachdeva and Sankalpa Ghosh

-

This content was downloaded from IP address 141.52.248.4 on 08/06/2022 at 08:42

https://doi.org/10.1088/2399-6528/ac7033
/article/10.1088/0953-8984/26/49/493202
/article/10.1088/0953-8984/26/49/493202
/article/10.1088/0953-8984/26/49/493202
/article/10.1088/1367-2630/aaf373
/article/10.1088/1367-2630/aaf373
/article/10.1088/1367-2630/aaf373
/article/10.1088/0953-4075/48/10/105301
/article/10.1088/0953-4075/48/10/105301
/article/10.1088/0953-4075/48/10/105301


J. Phys. Commun. 6 (2022) 055013 https://doi.org/10.1088/2399-6528/ac7033

PAPER

Integer and fractionalized vortex lattices and off-diagonal long-range
order

Michael ARampp1 and Jörg Schmalian1,2

1 Institut für Theorie derKondensiertenMaterie, Karlsruher Institut für Technologie, 76131Karlsruhe, Germany
2 Institut fürQuantenMaterialien undTechnologien, Karlsruher Institut für Technologie, 76344Karlsruhe, Germany

E-mail:mrampp@pks.mpg.de

Keywords:multicomponent superconductivity, vortex lattice, fractional vortices, off-diagonal long range order

Abstract
Weanalyze the implication of off-diagonal long-range order (ODLRO) for inhomogeneous periodic
field configurations andmulti-component order parameters. For single component order parameters
we show that the only static, periodic field configuration consistent withODLRO is a vortex lattice
with integerflux in units of theflux quantum in each unit cell. For a superconductor with g degenerate
components, fractional vortices are allowed.Depending on the precise order-parametermanifold,
they tend to occur in units of 1/g of the flux quantum. These results arewell known to emerge from
theGinzburg-Landau or BCS theories of superconductivity. Our results imply that they are valid even
if these theories no-longer apply. Integer and fractional vortex lattices are transparently seen to emerge
as a consequence of themacroscopic coherence and single valuedness of the condensate.

1. Introduction

TheMeissner effect [1] and the quantization of themagnetic flux inmultiply connected samples [2, 3] belong to
themost fundamental aspects of superconductivity. These phenomena follow from the phenomenological
Ginzburg-Landau theory [4] and from themicroscopy theory of superconductivity developed by Bardeen,
Cooper, and Schrieffer (BCS) [5, 6]. They are, however, phenomena that occur beyond the regime of
applicability of the BCS theory. This was anticipated by London, based on the concept ofmacroscopic coherence
[7]. The formal framework to demonstrate that these phenomena are caused by a coherent condensate and are
validmore generally was provided byC.N. Yang [8]who analyzed the two-particle densitymatrix

r r r r r r r r, ; , 12
1 2 3 4 1 2 3 4( ) ( ) ( ) ( ) ( ) ( )( ) † †r y y y y= á ñabgd a b g d

of amany-fermion system.Here r( )†ya and r( )ya are fermion creation and annihilation operators at position r
andwith spinα, respectively. Yang generalized the concept of off-diagonal long-range order (ODLRO), initially
proposed for interacting bosons by Penrose andOnsager [9, 10], to fermionic systems and demonstrated that
ODLRO implies flux quantizationwith elementaryflux hc

e0 2
F = . The beauty of the result is that it can bemade

without reference to theHamiltonian andmerely relies of the presence of amacroscopic pair condensate.More
recently, it was shown in [11, 12] that a homogeneousmagnetic field cannot exist in the bulk of a charged system,
i.e.B= 0 if it is spatially constant and if we ignore surface effects. This amounts to theMeissner effect as it occurs
in type-I superconductors. In [13] the argumentationwas then generalized to inhomogeneous fields with
cylindrical symmetry and fields that are slowly varying in space.

In this paperwe generalize previous conclusions that follow fromODLROwith regards to two aspects. On
the one hand, we consider periodicmagnetic fields without the restriction of slow variation in space.We show
that the only static, periodic field configuration consistent with superconductivity is a vortex lattice with integer
flux in each unit cell. On the other hand, we considermulti-component superconducting states and find that for

a superconductor with g-component order parameter the elementary flux quantum changes to
g

hc

e0
1

2
F  .

Hence, fractional vortices and fractional vortex lattices become possible. Both results are knownwithin the
regime of validity of theGinzburg-Landau andBCS approaches. The former corresponds, of course, to
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Abrikosov’s vortex lattice of themixed state [14–17], while fractional vortices were discussed in the context of
superfluid 3He [18], two-gap superconductors [19–21], px± ipy triplet superconductors [22–28], or spin-orbit-
coupled Bose–Einstein condensates [28]. The composite of a half-flux vortex and theMajorana fermions bound
at its core led to significant interest given the resulting non-Abelian fractional statistics [29–32]. Experimentally,
Abrikosov vortex lattices were observed via small-angle neutron diffraction [33] and the Bitter decoration
technique [34] in the 1960s. Evidence for fractional vortices ismuch sparser. In superfluid 3He in a porous
mediumvortices with half the quantumunit offluid flowhave indeed been generated in the laboratory [35] and
single fractional vortices have been observed in two-gap superconductors [36–38] inwhich a latticemight be
stabilized by a periodic pinning array [39]. The extreme vortex pinning in the non-centrosymmetric
superconductor CePt3Si was also interpreted in terms of fractionalized vortices [40], but unambiguous evidence
for a fractionalized vortex lattice does not exist thus far, even though there are strong arguments to expect such a
state in triplet superconductors at highmagnetic field [26].Moreover, fractional vorticesmay also form a vortex
lattice with a non-trivial unit cell consisting ofmultiple fractional defects that add up to an integerflux [41].

OurODLROanalysis shows that these established results do not rely on the validity of theGinzburg-Landau
andBCS theories. They reveal, using rather straightforward reasoning, that integer and fractional vortex lattices
are tied tomacroscopic coherence and the single valuedness of the condensate. On the other hand, we can only
make statements aboutwhat is quantummechanically allowed, not what is energeticallymost stable.

2. Summary of off-diagonal long-range order

Wefirst summarize some of themain aspects ofODLRO for fermionic systems. This brief summary follows
closely [8, 11, 12].We analyze the densitymatrix 2( )r of equation (1) and consider the combined two-particle
coordinates r r, , ,1 2( )a b and r r, , ,3 4( )g d . Thematrix structure of interest should be understoodwith respect to
these combined indices.We then expand 2( )r with respect to its eigenfunctions r r,p, 1 2( )f ab :

r r r r r r r rn, ; , , , 2
p

p p p
2

1 2 3 4 , 1 2 , 3 4( ) ( ) ( ) ( )( ) år f f= ¢
abgd ab gd*

with eigenvalues np. ODLRO is a state where the largest eigenvalue n0 is of the order of the particle numberN. In
this case holds

r r r r r r r rn, ; , , , 32
1 2 3 4 0 0, 1 2 0, 3 4( ) ( ) ( ) ( )( )r f fabgd ab gd*

in the limit where r r1,2 3,4∣ ∣-  ¥while r r1 2∣ ∣- and r r3 4∣ ∣- remain finite.Hence, the long-distance physics
of two-particle correlations are dominated by the condensate with condensate wave function r r,0, 1 2( )f ab (see
figure 1). If one analyses the BCS ground-state wave functionwith gapΔ and density of states at the Fermi level
ρF, it follows that n NF0 ∣ ∣r~ D [42], as expected. ODLROwas also shown rigorously to occur in the negative-U
Hubbardmodel [43], including in its ground state [44], and in closely relatedmodels [45, 46].

From the antisymmetry under the exchange of the operators r r1 2( ) ( )† †y y«a b and r r3 4( ) ( )y y«g d in 2( )r
follows that r r r r, ,0, 1 2 0, 2 1( ) ( )f f= -ab ba . It has the properties of a two-particle fermionwave function. In full
analogy to the usual classification of anomalous expectation values, see e.g. [47], one can now expand

r r r r r ri i, , , 4s
y

t
y

0, 1 2 0, 1 2 0, 1 2( ) ( ) ( ) · ( ) ( )j sf j s s= +ab ab ab

in terms of singlet and triplet contributions in spin space. Hereσ l stand for the Paulimatrices in spin space.
Hence, all our conclusions apply equally to singlet or triplet superconductors or to combinations thereof as they
occur in inversion symmetry breaking systems.

Important insights about themagnetic field behavior of superconductors, such as theMeissner effect and
flux quantization follow fromODLRObecause of a gauge argument. To see this wefirst consider a spatially
homogeneousmagnetic field B const.= [11, 12] and couple it to the charged fermions viaminimal
substitution. In particular this implies that themany-bodywave function has to transform covariantly under
local gauge transformations. The vector potential can bewritten as

A r A r r , 50( ) ( ) ( ) ( )j= + 

where A r B r0
1

2
( ) = ´ and r( )j is an arbitrary function. A spatial translation r→ r− a can be understood as a

gauge transformation since the vector potential transforms as

A r A r a A r r , 6a( ) ( ) ( ) ( ) ( )c + = + 

with

r a r r a rA . 7a 0( ) · ( ) ( ) ( ) ( )c j j= + - -

Since fermionic operators have to transform covariantly under local gauge transformations it follows
r r ae ri a

e
c( ) ( )( )y y= -a
c

a . If the system is translation symmetric, it follows from expressing the two-particle
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densitymatrix as an expectation value of fermion operators (equation (1)) that

r r r r

r a r a r a r a

e, ; ,

, ; , . 8

r r r ri2
1 2 3 4

2
1 2 3 4

a a a a
e
c 1 2 3 4( )

( ) ( )

( ) ( ( ) ( ) ( ) ( ))

( )

r

r

=

´ - - - -
abgd

c c c c

abgd

- + - -

WithoutODLRO this behavior of 2( )r under gauge transformations or translations does not allow tomake strong
statements about the eigenfunctions r r,p, 3 4( )f gd .Weperformnow two consecutive displacements by twonon-
collinear vectorsa1 and a2 in alternate order. For a general two-particle densitymatrix this leads to the condition

r r r a r a r

r r a r a

r r r a r a r

r r a r a

i
e

c

. 9

a a a a a

a a a

a a a a a

a a a

1 3 1 1 3 1 1

3 1 2 3 2

2 4 2 1 4 1 2

4 2 2 4 2

1 1 2 2 2

2 1 1

1 1 2 2 2

2 1 1

( ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )) ( )


c c c c c

c c c
c c c c c

c c c

- + - - - -

+ - - + -
- + - - - -
+ - - + - Î

This condition is automatically fulfilled, since the left-hand side is identically zero.However, oncewe have a
macroscopic condensate and can use equation (3) it follows

r r r a r af e, , , 10a
r ri

0, 1 2 0, 1 2a a
e
c 1 2( ) ( ) ( )( ( ) ( ))f f= - -ab
c c

ab
+

where fa is an r-independent but displacement dependent phase factor f 1a∣ ∣ = . And requiring successive
displacements to commute yields a condition on the phases

r r a r r a
hc

e
n 11a a a a2 12 1 1 2

( ) ( ) ( ) ( ) ( )c c c c+ - - - - =

with integer n. Abstractly speaking, this condition is equivalent to the requirement that the projective
representation of the group of translations equation (10) preserves the commutativity of translations. The
expression equation (7) allows towrite condition equation (11) as:

B a a n . 121 2 0· ( ) ( )´ = F

In the continuum,where any displacement ai is allowed, we can continuously change the left hand side of this
equation. Since the right hand side cannot be changed continuously, the only solution isB= 0, which yields the
Meissner effect for homogeneous fields. In a periodic solid, the aimust be integermultiples of the primitive
lattice vectors. The smallest non-zero field allowedwould then have to place aflux quantum in the unit cell of the
system as discussed in [48, 49].While this excludes currently achievable fields for ordinary solids, this regime
becomes relevant formoirématerials, where the unit cells can bemuch larger. For a recent discussion of the
relatedHofstadter superconductors, see [50].

Using equation (10) and considering a continuumdescription, we can also perform an infinite sequence of
infinitesimal displacements along a path

r r r rf e, , . 13
r

A r r A r r

d

i d d

0, 1 2 0, 1 2
r

r r

r

r

r
e
c

1

2 1

1

2

2

( ) ( ) ( )
( )· ( )·⎛

⎝
⎜

⎞

⎠
⎟

ò
ò ò

f f¢ ¢ =ab ab

- +
¢ ¢

Here, the path that connects r1 with r1¢must be the same as the one that connects r2 with r2¢. In the case of a closed
loop follows

Figure 1.ODLROin the two-particle densitymatrix is defined as thepresenceof one (ormultiple) eigenvalues that scale linearlywith system
size. (a)Asa result, the amplitudeof creating anddestroying twopairs of electrons is non-zero even in the limit of infinite separationof the
pairs. (b)This canbeunderstood as thepresenceof amacroscopic two-particlewave functiondescribing the superconducting condensate.
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r r r re, , . 14A r ri d
0, 1 2 0, 1 2

e
c

2 ∮( ) ( ) ( )( )·f f=ab ab
-

The result for the quantization of the flux follows from the single-valuedness of thewave function and is

A r rd n . 150∮ ( ) · ( )F = = F

This analysis of [8, 11, 12] reveals very transparently thatmacroscopic coherence in fermionic systems, reflected
in a single large eigenvalue n0 of 2( )r of the order of the system sizeN, is the crucial ingredient that leads to the
Meissner effect and toflux quantization.

3.ODLROand integer and fractional vortex lattice states

3.1. Integerflux vortex lattices
In this sectionwe allow for periodicmagnetic fields subject to the following properties:B points in the
z− direction and is periodic in the xy-plane, i.e.

B r B r a , 16i( ) ( ) ( )= +

with i= 1, 2, where a1 and a2 that are both orthogonal to ez, the unit vector along the z-direction; see figure 2.
Moreover B r( ) shall be independent of the z-coordinate. The question is now,what restriction does the presence
ofODLROpose on themagnetic field configuration?Wehave already seen that for a homogeneous field that is
not too large, the only possible choice is a vanishing field and are now seeking tofind the corresponding
restriction for a periodicfield.

In the homogeneous case, a spatial translation of the systemwas recognizedwith equation (6) as a gauge
transformation. This is physically transparent, since themagnetic field configuration viewed from the displaced
position is identical and therefore the vector potentialA can differ atmost by a gauge transformation. For a
periodic field, this is only the case for a subset of translations, namely the discrete lattice translations. To show
this, let us calculate explicitly the gauge transformation associatedwith such a displacement. As themagnetic
field is periodic it can be expanded in a Fourier series using the reciprocal lattice vectorsK of the periodic field
configuration. Thenwe can perform the Fourier expansion

B r ee B . 17
K

K r
K

i
z( ) ( )·å=

Weassume that a1,2 aremultiples of the underlying crystalline lattice. One can now explicitly generate a general
expression for the vector potential

A r e r
K

K rB e
iB1

2
, 18

K

K r K
z

i
0

0

( )
∣ ∣

( ) ( )·å j= ´ + ¢ + 
¹

where K¢ is defined for every reciprocal lattice vectorK as the unique unit vector that satisfies K eK

K z∣ ∣
´ ¢ = - .

The functionj ensures that the gauge choice is still arbitrary. Let us now show that a translation by a lattice
vector ai can be represented by a gauge transformation:

Figure 2.Renditions of a flux lattice with primitive lattice vectors a1 and a2. The quantization condition follows from requiring that
thewavefunction does not depend on the order of translations, and from a less stringent requirement in themulti-component case.
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A r a e r a
K

K r a

A r e a r a r

A r r

B e
iB

B

1

2
1

2
, 19

K
K r a K

a

i z i
i

i

z i i

0

0

0
i

i

( ) ( )
∣ ∣

( )

( ) ( ) ( )

( ) ( ) ( )

·( ) j

j j

c

- = ´ - + å ¢ +  -

= - ´ +  - - 

= + 

¹
-

with

r a e r r a rB
1

2
. 20a i z i0i

( ) · ( ) ( ) ( ) ( )c j j= ´ + - -

Wehave used that for a lattice vector aiholds that ai ·K= 2πkiwith ki Î . Aswas shown in the previous
section, the presence ofODLROgives rise to equation (10). Consider again subsequent lattice translations
around the unit cell spanned by a1 and a2. The condition that thewave function be single valued leads to

f f e f f e . 21a a
r a r

a a
r a ri ia a a a

e
c

e
c

1 2

2
2 1 1

1 2

2
1 2 2 ( )( ( ) ( )) ( ( ) ( )) =c c c c- + - +

Since the fa1
and fa2

are just complex numbers they can be cancelled andwe obtain

e 1. 22r a r r a ri a a a a
e
c

2
1 2 2 2 1 1 ( )( ( ) ( ) ( ) ( )) =c c c c- - + - - -

Using rai
( )c of equation (20)we obtain for the combined gauge functions in the exponent

r a r r a r e a aB . 23a a a a z02 1 1 21 2 2 1
( ) ( ) ( ) ( ) · ( ) ( )c c c c- + - - - = - ´

This last expression has a clear physicalmeaning asminus themagnetic flux that passes through the unit cell. To
show this we use B r( ) of equation (17) and determine

B r S

e a a e S

d

B B e d . 24K K
K r

z
i

z0 1 2 0

( ) ·

· ( ) · ( )·

ò
ò

F =

= ´ + å ¹

One easily sees that the second term vanishes since the integration is over the parallelogram spanned by lattice
vectors a1 and a2 with dS∝ a1× a2. Therefore we obtain

e 1, 25i e
c

2 ( ) =F

which implies that the flux through a unit cell of the lattice is quantized in integer units of the flux quantumΦ0.
In otherwords, a vortex lattice with integerflux in each unit cell is the only static, periodic field configuration of
the type discussed above that is consistent with off-diagonal long-range order.

3.2. Fractionalized vortex lattices
So far an implicit assumption forODLROhas been that the largest eigenvalue n0 of the two-particle density
matrix in equation (3) is unique. Next we address what happens when there are g degenerate eigenstates

r r,i
0, 1 2( )( )f ab with i= 1, L , g of the two-particle densitymatrix 2( )r . For the long distance behavior

r r1,2 3,4∣ ∣-  ¥with r r1 2∣ ∣- and r r3 4∣ ∣- finite, it follows now

r r r r r r r rn, ; , , , . 26
i

g
i i2

1 2 3 4 0
1

0, 1 2 0, 3 4( ) ( ) ( ) ( )( ) ( ) ( )år f fabgd ab gd
=

*

Wearrange these eigenstates in the g-component vector r r,0, 1 2( )f ab such that

r r r r r r r rn, ; , , , . 272
1 2 3 4 0 0, 1 2 0, 3 4( ) ( ) · ( ) ( )( ) f fr abgd ab gd*

The generic behavior equation (8) of 2( )r under gauge transformations is of course unchanged.Withmulti-
componentODLROwe then obtain the following transformation behavior of thewave function under
translations by a lattice vector ai

r r r a r ae f, , , 28r r
a

i
i i0, 1 2 0, 1 2a a

e
c i i

i
1 2( ) ˆ · ( ) ( )( ( ) ( ))f f= - -ab

c c
ab

+

whereweconsider againamagneticfieldperiodic in thexy-planeand independenton the z-coordinate. fâ,whichwas
formerlyaphase factor, isnowaunitary g× gmatrix. It expresses the fact that thechoiceofbasis at eachpoint in space is
arbitrary.Differentcomponentsof theorderparametermixundergauge transformationsand translations. Ifwenowuse
thegauge functionofequation (20) forperiodicfieldconfigurations, the single-valuednessof theeigenfunctions implies

f f f f e . 29a a a a
i e

c
1 2 2 1

2ˆ · ˆ ˆ · ˆ ( )= F

whereΦ is again theflux through the parallelogram spanned by a1,2. Taking the determinant of this expression
on both sides and using f f f fdet det deta a a ai j i j

ˆ · ˆ ˆ ˆ= and e f e fdet deta a
i ig

i i
( ˆ ) ˆ=a a ,finally yields e 1ig e

c
2
 =F . This

leads to the quantization condition
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n

g
. 300 ( )F = F

Themagnetic flux through the unit cell of the vortex lattice is thus quantized in fractional values of the flux
quantum,where the denominator is given by the degree of degeneracy g.

Onehas tobe somewhat carefulwith this argument. Strictly speaking,wefind that such fractionalizedvortices
cannotbe excluded if oneonly considers thedeterminantof the above condition equation (30) and there couldbe
other,more stringent conditions in the full equation.Anexample,wherewe can confirmequation (30) is a g-
componentorderparametermanifold that transforms likeU(g)=U(1)× SU(g). The g eigenfunctionsof the two-
particle densitymatrix introducedabove in fact transformunder an irreducible representationof this group.The
presenceof stable linedefectswith aquantized integer index is guaranteedby the fundamental groupbeing isomorphic
to the integers U g1( ( )) p [51]. In a 1-component condensate these are vortices carrying an integermultiple of the
fluxquantum.Generally, the fundamental groupdoesnot carry any informationabout thephysicalmeaningof the
quantized index.The connectionof the index toobservable quantities has tobeprovidedby identifying theproperties
of the actual defects. In the caseoffluxquantizationweknow that only the global phase couples to the electromagnetic
field and that the trappedflux is proportional to thewindingnumber.Thus, by identifying the fundamental defect and
computing thewindingnumberof the global phase theunit offluxquantization canbe found.

Take as an example a two-fold degenerate state, i.e. f U 2â ( )Î . A general element f̂ ofU(2) can bewritten as

n nf e n n1 , 1. 31i
0 0

2 2ˆ ( · ) ( )s= + + =q

Parametrizing the defect byfä [0, 2π)we can construct

f e cos
2

1 sin
2

. 32i z2ˆ ( )⎛
⎝

⎞
⎠

f f
s= +f

This corresponds to a defect that carries one half of aflux quantum, because the global phase winds by 1/2.
Essentially, this is possible because (−1) ä SU(2).We can generalize this by noting that e SU g1i g 1g

2 ( )( ) Î-p
. The

fundamental defect can be constructed by connecting 1 and e 1i g 1g
2 ( )-p

in SU(g) and simultaneously connecting 1
and ei g

2p
inU(1). The former is always possible, because SU(g) is simply connected. The resulting loop cannot be

deformed to a point inU(g) and it carries a flux ofΦ0/g. This is fully consistent with equation (30). Notice, this
conclusion relies on our assumption that the order parameter of the problem transforms underU(g). Other
order-parametermanifolds require their own, but analogous analysis.

4. Summary

In summary,we generalized the implicationsof off-diagonal long-rangeorder in superconductors toperiodically
inhomogeneousmagneticfields. For single component superconductors onefinds that a condition for the existence
offinitefields is that thefluxper unit cell is amultiple of the elementaryfluxquantum.This is of course the established
Abrikosov vortex lattice. Still, ourderivationhas the appeal that it is valid for situationswhere theBCSorGinzburg-
Landau theories of superconductivitymaynot apply.Moreover, the rather simplenatureof theproofmaybeof some
appeal on its ownright.The generalization tomulti-component superconductors is relevantwhenever the order
parameter transforms according to ahigher-dimensional irreducible representationof the symmetry group. It shows
thatnow fractionalized vortex lattices becomegenerally allowed inhomogeneousmagneticfield states.
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