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ABSTRACT 

The design methods for gradient coils are mostly based on discrete extrinsic methods (e.g., the 

Biot–Savart integration calculation), for which the surface normal vector strongly influences any 

numerical calculation of the discretized surface. Previous studies are mostly based on regular or 

analytical surfaces, which allow normal vectors to be expressed analytically. For certain applications, 

design methods for extending current-carrying surfaces from developable or analytic geometries to 

arbitrary surfaces generated from a scanned point cloud are required. The key task is to correctly 

express the discretized normal vectors to ensure geometrical accuracy of the designed coils. 

Mathematically, it has been proven that applying a Delaunay triangulation to approximate a smooth 

surface can result in the discrete elemental normal vectors converging to those of the original surface. 

Accordingly, this article uses Delaunay triangulation to expand upon previous design methods so 

that they encompass arbitrary piecewise continuous surfaces. Two design methods, the stream 

function and the so-called solid isotropic material with penalization (SIMP) method, are used to 

design circumvolute and noncircumvolute gradient coils on general surfaces. 

 

Keywords: gradient coils, Delaunay triangulation, stream function, SIMP method 

1. Introduction 

As one of the most popular medical imaging and diagnosis methods, magnetic 

resonance imaging (MRI) can reveal the physiological hierarchy of an organism, as 

well as biochemical features at the molecular level, thereby providing detailed and 
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accurate images of various sections. Compared with other medical imaging methods 

(e.g., computed tomography, X-ray, B-scan ultrasonography), MRI is more 

discriminatory and does not emit ionizing radiation.  

One of the main components in an MRI system is gradient coil,which is used to form 

orthogonal magnetic field gradients within the imaging volume, enabling the frequency 

and phase encoding of a magnetization that is linearly proportional to the magnetic field 

strength. The main design goals for gradient coils are the gradient field uniformity, and 

the strength of the field gradient. Usually, the uniformity of the gradient magnetic field 

enables an undistorted MRI image, and stronger gradients allow for higher resolution 

of the resulting MRI images.The ideal z-direction component of gradient magnetic field 

𝐵𝑧 in the imaging volume satisfies a linear distribution. Most existing MRI gradient 

coils use developable surfaces (e.g., cylinders) to carry the electric current. The 

efficiency of these coils can be improved by placing an irregular current-carrying 

surface close to the object under inspection. In practical applications, the magnetization  

deviations over a uniform phantom are used to measure the actual quality of gradient 

magnetic fields. Typically, the maximum inaccuracy must be less than 5% to prevent 

excessive imaging distortion. 

The gradient coil design defines an inverse mathematical problem. For MRI systems, 

the current is usually confined to a current-carrying surface, and its required distribution 

is inversely determined by the magnetic field gradient preset at the region of interest 

(ROI). Inverse design methods mainly include the target field [1-6], the stream function 
[7-10] methods, and the solid isotropic material based on the penalization (SIMP) method 

especially for microscale gradient coils [11]. 

  At present, most MRI gradient coil designs are based on smooth developable surfaces 

whose normals can be accurately calculated. For example, on a biplane (or cylinder), 

the coils spread out into the coordinate plane (Fig. 1). But dedicated MRI systems (e.g., 

a system dedicated to imaging the human head, or a spherical surface for imaging cells) 

require coils to be placed on more complex surfaces. On curved surfaces, the tangential 

gradient operator must be used, the accuracy in calculating the current density and 

gradient on a surface depends on the normal vectors. The accuracy of the normal for a 

discrete surface ultimately affects the imaging quality. At the same time, irregular 

smooth surfaces often require densely sampled point clouds and triangular meshes to 

construct computer models. In these models, numerous redundant sampling points and 

poor-quality triangulations may present. When these surfaces are used as the calculation 

models, it is necessary to select a valid subset of nodes and reconstruct good 

triangulations. Therefore, a mesh simplification algorithm is needed for a given 3D 

structure. A general case in which a surface without analytic expression (i.e., normal 

vectors on the irregular surface cannot be described analytically) is constructed using 

dense cloud points is considered in this study.  
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Fig. 1. Cylindrical and biplanar current-carrying surfaces 

 

Calculation errors in magnetic induction can arise when existing gradient coil 

designs are directly applied to arbitrary surfaces. This can result in further imaging 

distortions. Therefore, it is important to ensure that the magnetic induction is accurately 

calculated from the normal. This article introduces methods for designing gradient coils 

on arbitrary surfaces. We achieved this by extending the stream function and SIMP 

method for gradient coils on these surfaces. Furthermore, we show that the gradient 

coils are accurate and satisfy the design requirements. Moreover, the key factors 

affecting the accuracy of the designed gradient coils are investigated, and we discuss 

the necessary methodology. 

2. Discretization of irregular design surface 

The magnetic induction intensity at any point in space can be calculated using the 

Biot–Savart formula: 

 𝑩(𝒓) =
𝜇

4𝜋
∫

𝑱(𝒓′) × |𝒓 − 𝒓′|

|𝒓 − 𝒓′|3
d𝑆

 

𝑆

                               (1) 

Here, 𝑱 is the current density, 𝒓′ is the position vector of the current density, 𝒓 is the 

position vector of the objective point, 𝑩  is magnetic induction, 𝑆  is current carry 

surface and 𝜇 is the vacuum permeability. Fig. 2 shows a schematic of the gradient 

coil setup, indicating the ROI and conductor surface. 
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Fig. 2. Schematic of a gradient coil arrangement, showing the conductor surface with a coil pattern, and the region 

of interest (ROI). 

 

The design and optimization of gradient coils is a mathematical problem. When the 

linear gradient magnetic field in the ROI corresponds to an ideal field distribution, the 

current density distribution (conductor configuration) that produces the target magnetic 

field will be found on a specified current-carrying surface. The main numerical analysis 

and calculation methods used to solve the inverse problem of finding the 

electromagnetic field values are the stream function and SIMP method. These are based 

upon the idea of discretizing a surface model via triangular or quadrilateral elements. 

Therefore, approximation errors for the numerical solutions of the two gradient coil 

design methods primarily depend upon the quality of the surface mesh. The accuracy 

of a surface mesh depends on whether the discrete normal vectors and area of the 

polyhedral mesh converge to the original surface. Hence, we first discuss the effects of 

discrete surfaces and the effectiveness using a Delaunay triangulation method of 

meshing a current-carrying surface to obtain accurate simulation results. 

2.1 Discrete normal vectors of piecewise continuous surface 

Each point on the continuous surface has its corresponding normal vector. On 

discrete surfaces, because the tangential gradients on the nodes are required, the normal 

vectors on the nodes must be calculated. The normal vector on a node represents the 

average of the normal vectors of all elements connected to that node. 

2.2 Approximation of discrete surface mesh 

The present article focuses on surface triangulations, which can be used to discretize 

a wide variety of complex surfaces. Essentially, surfaces embedded in Euclidean space 

are triangulated to approximate smooth surfaces using a discrete triangular mesh. This 

problem can be divided into two parts: 

(I) Select the appropriate mesh nodes on the smooth surface. 

(II) Appropriately triangulate the selected nodes. 

During triangulation of a smooth surface, the use of more discretized nodes and 

elements will not always guarantee that the discrete surface approximates the smooth 

surface. The famous lampion de Schwarz is a typical example [17] (see Fig. 3). Let C be 

a cylinder of finite height H and radius R. Let P(n, N) denote the triangulated mesh 

whose nodes 𝑆𝑖𝑗 belong to C and are defined as (n, N are the positive integers) 

∀ 𝑖 ∈ {0, … , 𝑛}, ∀ 𝑗 ∈ {0, … , 𝑁}, 

𝑆𝑖,𝑗 = (𝑅 cos 𝑖𝛼, 𝑅 sin 𝑖𝛼, 𝑗ℎ) if j is even, 

𝑆𝑖,𝑗 = (𝑅 cos(𝑖𝛼 + 𝛼 2⁄ ) , 𝑅 sin(𝑖𝛼 + 𝛼 2⁄ ) , 𝑗ℎ) if j is odd, 

and whose faces are 

𝑆𝑖,𝑗𝑆𝑖+1,𝑗𝑆𝑖,𝑗+1, and 
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𝑆𝑖,𝑗𝑆𝑖−1,𝑗+1𝑆𝑖,𝑗+1 

whe re 𝛼 = 2𝜋/𝑛  and h = H/N. For example, when n tends to infinity, the area 

𝒜(𝑃(𝑛, 𝑛3)) of 𝑃(𝑛, 𝑛3) tends to infinity and the normals of 𝑃(𝑛, 𝑛3) tend to be 

orthogonal to the normals of surface C. The Hausdorff distance of the lampion de 

Schwarz surface to the smooth surface C is zero in this limit. Furthermore, the area of 

the discrete surface, its discrete Gaussian curvature, and its discrete mean curvature, do 

not converge to those of the original smooth surface. In a scenario where this type of 

mesh is applied to numerical calculations of physical problems, the discretization errors 

in the normals and triangle areas will result in unacceptable numerical errors. 

 

 

Fig. 3. Lampion de Schwarz: (a) 𝑛 = 5, discretion of the cylindrical surface; (b) 𝑛 = 8, discretion of the cylindrical 

surface. 

 

To approximate a smooth surface using the discretization, the surface triangulation 

must satisfy two conditions [18]: 

(a) Discrete surface normals converge to the smooth surface’s normal field. 

(b) The Hausdorff distance converges to zero. 

These two conditions guarantee that the area and curvature of the discrete surface 

converge to the smooth surface. Therefore, to obtain a good surface mesh, it is 

necessary to make some restrictions in the form of the triangulation: when the number 

of nodes tends to infinity, the maximum edge length of all triangles tends to zero, and 

the minimum angle of all triangles exceeds a threshold [19]. 

2.3 Delaunay triangulation 

For a set of nodes on a surface, there exists only one unique triangulation such that 

the sum of minimum angles for all triangular elements is the largest among all 

triangulations. This is called the Delaunay triangulation. This triangular mesh satisfies 

conditions (a) and (b) mentioned above.  

The surface constructed by cloud points should first be meshed with Delaunay 

triangles. To increase the smoothness of the solution, higher-order elements or splines 

can be used. Numerous methods can be used to obtain a Delaunay triangulation. Here, 

we use a method called the farthest point sampling method, which is based on the fast 

marching method [20]. 

The associated Voronoi diagrams are fundamental data structures. They have been 
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extensively studied in the field of computational geometry. Given a finite set of points 

in a plane, the triangulation whose angular vector is maximal for the lexicographical 

order forms a Delaunay triangulation, which is defined as the dual of the Voronoi 

diagram (Fig. 4) [21]. The Voronoi diagram is generated using the fast marching method, 

and it can determine how nodes are linkede. Each node in a Voronoi cell is linked to 

nodes in an adjacent cell such that each node always links to several nodes with shorter 

Euclidean distances; furthermore, if the diagonals of the convex quadrilaterals formed 

by any four adjacent nodes are interchanged, the smallest of the six angles of the two 

triangles is reduced (Fig. 5). 

 

Fig. 4. Voronoi diagram (red) and its corresponding Delaunay triangulation (blue). 

 

Fig. 5. Voronoi diagrams determine how nodes are connected to produce a Delaunay triangulation: (a) Arbitrary 

connections between nodes, which can cause poor triangulation; (b) A Voronoi diagram, which determines how 

nodes are connected. 

 

In the Riemannian manifold, the shortest distance between two points is called the 

geodesic distance. Similar to the 2D plane scenario, the fast marching method for a 

surface is used to obtain the geodesic distance between nodes and to determine how 

they are linked. This method is used to answer Question II proposed in Section 2.2. It 

indicates that an edge is present between two nodes.  

Many methods are available to answer Question I (proposed in Section 2.2). This 

article uses the farthest point sampling method proposed by G. Peyré et al. [22], for which 

an open-source MATLAB code has been published online. The nodes chosen in this 

method have a more even global distribution. The basic algorithmic steps for generating 

the mesh are shown in Fig. 6. The algorithm is used in this article for the surface 

meshing of subsequent gradient coil designs. 
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Fig. 6. The process of the farthest point sampling algorithm for generating a mesh: First, a set of dense sample 

vertexes are chosen to express a closed surface in the computer representation. Then, a vertex is randomly chosen as 

the first node for the mesh, and the fast marching algorithm is used to obtain a geodesic distance map on the surface. 

Next, a second node is chosen as the longest geodesic distance vertex. A third node is chosen along the longest 

geodesic distance to the other two nodes. This step is then repeated until the number of nodes satisfies the 

requirements or the minimum geodesic distances between nodes are less than a given value. Finally, the fast 

marching algorithm is applied again to obtain the Voronoi diagram, and the Delaunay triangulation is obtained. (a) 

The first node (red node) and its geodesic distance map. (b) The first two nodes (another node on the back) and their 

shortest geodesic distance map. (c), (d) More nodes are chosen. (e) Voronoi diagram. (f) Delaunay triangulation. 

2.4 Spherical surface mesh example 

An example of a spherical current-carrying surface is considered as a benchmark to 

verify the accuracy of the numerical calculations using the Delaunay triangular mesh. 

The center of the sphere is located at the origin O. Let 𝜓 = 𝛼𝑧 on the surface (z is the 

z-direction coordinate), where 𝛼 is a constant. The magnetic induction 𝐵𝑧 at point O 

can then be derived, this is a constant equal to 
2

3
𝛼𝜇0 [See Appendix A], where 𝜇0 is 

the vacuum permeability. 

The accuracy of the Biot–Savart numerical integration process that uses normal 

vectors on a discrete spherical surface will converge to its true value when the number 

of nodes increases. Fig. 7 shows the Delaunay triangulation for the spherical surface. 

The horizontal axis of Fig. 8 represents the number of nodes on the spherical surface. 

The vertical axis of Fig. 8(a) denotes the error rate between the numerical integration 

of the spherical area and the theoretical value. The vertical axis of Fig. 8(b) denotes the 

error between the numerical integration of the magnetic induction intensity and the 

theoretical value, both evaluated at the center of the sphere. This shows that, when the 

number of nodes increases, the numerical integral of the discrete surface gradually 

approaches its theoretical value. The vertical axis of Fig. 8(c) is the angular error of the 
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direction of the discrete normal, which lies between the element normal and the mean 

normal of its corresponding surface triangle. 

 

 

Fig. 7. Delaunay triangulation for the spherical surface. 

 

Fig. 8. When the number of nodes increases, the numerical results converge to their theoretical value. Here, we show 

the remaining errors for (a) area, (b) magnetic induction, and (c) normal angle. 

3. Design methods 

Rather than using an electrical current as the design variable, it is simpler to choose 

a scalar field quantity during the optimization of gradient coils. The current density 

inside an electrostatic field is irrotational and solenoidal. Therefore, two scalar 

functions 𝜓  and 𝜑  can be derived as variables, where 𝜓  is defined as the stream 

function and 𝜑 is the potential function (electrical potential). In this study, the stream 

function and SIMP method are primarily used, where the design variables are 𝜓 and 

𝜑 , respectively. For both of the stream function method and the SIMP method, the 

tangential gradient operator ∇𝛤 is defined to calculate the gradient of a scalar field on 

a surface 𝛤  [15-16] or manifold. For a 2D curved surface  𝛤 ∈ ℝ2  embedded in 
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Euclidean space ℝ3 , the variable tangential derivative represents the Cartesian 

components of the tangential projection of the variable gradient, and the components in 

three directions are calculated as 

∇𝛤𝓊 = ∇𝓊 − ∇𝓊 ∙ 𝒏𝑻𝒏 = (𝓊𝑡𝑥, 𝓊𝑡𝑦, 𝓊𝑡𝑧)            (2) 

where 𝓊 represents a certain scalar quantity, ∇𝓊 = (𝜕𝓊 𝜕𝑥⁄ , 𝜕𝓊 𝜕𝑦⁄ , 𝜕𝓊 𝜕𝑧⁄ ), and 

𝒏 is normal to the surface, components of the tangential gradient in three directions of 

the Euclidean space will be represented in the form of (𝓊𝑡𝑥 , 𝓊𝑡𝑦, 𝓊𝑡𝑧). 

3.1 Stream function method on surfaces  

The stream function method[8] solves the inverse problem by changing the vector 

variables to scalar ones, which greatly simplifies the current density optimization. The 

electrical current on the current-carrying surface satisfies the continuity equation for 

the electrostatic field: 

∇𝛤 ∙ 𝑱 = 0                           (3) 

Here, 𝑱 is the current density on surface 𝛤. According to Eq. (3), the stream function 

𝜓 is defined by 

𝑱 = ∇𝛤𝜓 × 𝒏                         (4) 

where 𝒏 is the normal of the current-carrying surface. 

3.1.1 Calculation of basic physical quantities 

After the surface is discretized, each element can be approximated as a plane whose 

local normal vector is 

𝒏𝒆  = (𝑛𝑥𝑒 , 𝑛𝑦𝑒 , 𝑛𝑧𝑒)                                               (5) 

By substituting Eq. (5) into Eq. (4), one obtains 

𝑱 = ∇𝛤𝜓 × 𝒏𝒆  

= |

𝒊 𝒋 𝒌
𝜓𝑡𝑥 𝜓𝑡𝑦 𝜓𝑡𝑧

𝑛𝑥𝑒 𝑛𝑦𝑒 𝑛𝑧𝑒

| 

= (𝑛𝑧𝑒𝜓𝑡𝑦 − 𝑛𝑦𝑒𝜓𝑡𝑧)𝒊 + (𝑛𝑥𝑒𝜓𝑡𝑧 − 𝑛𝑧𝑒𝜓𝑡𝑥)𝒋

+ (𝑛𝑦𝑒𝜓𝑡𝑥 − 𝑛𝑥𝑒𝜓𝑡𝑦)𝒌                     (6) 

Typically, we take the magnetic induction 𝐵0  to be in the z-direction (i.e., 𝐵𝑧 ). 

According to the Biot–Savart integral, the magnetic induction intensity in the z direction 

is generated by an electrical current on a curved surface in space, according to 

𝐵𝑧 =
𝜇0

4𝜋
∫

𝐽𝑦(𝑥 − 𝑥0) − 𝐽𝑥(𝑦 − 𝑦0)

((𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2)
3

2⁄
d𝑆

 

𝑆

                (7) 
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where 𝐽𝑥  and 𝐽𝑦  are the components of current density in the x and y directions, 

respectively; (𝑥0, 𝑦0, 𝑧0) is the coordinate of the magnetic field point; and S is the 

current-carrying surface. Using Eqs. (6) and (7) and calculating the z-direction magnetic 

induction, 𝐵𝑧𝑘 is generated using the current density on each element surface 𝑆𝑒: 

𝐵𝑧𝑘 =
𝜇0

4𝜋
∫

(𝑛𝑥𝑒𝜓𝑡𝑧 − 𝑛𝑧𝑒𝜓𝑡𝑥)(𝑥𝑘 − 𝑥0) − (𝑛𝑧𝑒𝜓𝑡𝑦 − 𝑛𝑦𝑒𝜓𝑡𝑧)(𝑦𝑘 − 𝑦0)

((𝑥𝑘 − 𝑥0)2 + (𝑦𝑘 − 𝑦0)2 + (𝑧𝑘 − 𝑧0)2)
3

2⁄
d𝑆𝑒

 

𝑆𝑒

    (8) 

Thus, the z-direction magnetic induction at a point in space represents the scalar sum 

of all element contributions, expressed as 

𝐵𝑧,𝑠 = ∑ 𝐵𝑧𝑘

𝑛

𝑘=1

                                                   (9) 

where n is the number of elements. 

3.1.2 Optimization model and calculation 

The smooth surface is discretized into several triangular elements, and Lagrange 

linear interpolation is performed on the stream function values of m nodes on the 

surface: 

𝜓 = ∑ 𝜓𝑖𝑁𝑖

𝑚

𝑖=1

                                                   (10) 

Here, the shape function 𝑁𝑖 varies along with a set of interpolation coefficients. 

When uniform sampling is conducted on points in the gradient magnetic field of the 

ROI, each of the number of samples p has an ideal value. The least-squares 

approximation of the ideal value (and the actual value) is made to minimize the residual; 

this is used as the objective function of the optimization: 

min：𝐹0 = ∑
1

2
(𝐵𝑧,𝑠 − 𝐵𝑧,𝑠

∗ )
2

𝑝

𝑠=1

                                  (11) 

Here, 𝐵𝑧,𝑠
∗  is the ideal magnetic induction of the sampling points.  

To find the local minimum value of the residual, the first-order partial derivative of 

the objective function is set to zero, where (𝜓1, 𝜓2, … , 𝜓𝑚)  satisfies the following 

equation: 

𝜕𝐹0

𝜕𝜓𝑖
= ∑(𝐵𝑧,𝑠 − 𝐵𝑧,𝑠

∗ )
𝜕𝐵𝑧,𝑠

𝜕𝜓𝑖
= 0

𝑝

𝑠=1

                            (12) 

Using Eq. (8), (9), and (10): 
𝜕𝐵𝑧,𝑠

𝜕𝜓𝑖

= ∑
𝜇0

4𝜋
∫

(𝑛𝑥𝑒
𝜕𝑁𝑖,𝑡𝑧

𝜕𝜓𝑖
− 𝑛𝑧𝑒

𝜕𝑁𝑖,𝑡𝑥

𝜕𝜓𝑖
) (𝑥𝑘 − 𝑥0) − (𝑛𝑧𝑒

𝜕𝑁𝑖,𝑡𝑦

𝜕𝜓𝑖
− 𝑛𝑦𝑒

𝜕𝑁𝑖,𝑡𝑧

𝜕𝜓𝑖
) (𝑦𝑘 − 𝑦0)

((𝑥𝑘 − 𝑥0)2 + (𝑦𝑘 − 𝑦0)2 + (𝑧𝑘 − 𝑧0)2)
3

2⁄
d𝑆𝑒

 

𝑆𝑒

𝑛

𝑘=1

(13) 
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By solving the above linear equations, the value of the variable 𝜓 at each node can be 

obtained. This is an ill-posed problem; hence, it needs to be supplemented by a 

regularized auxiliary objective function to improve the smoothness of the coil 

configuration [23]. 

3.2 SIMP method on surfaces 

The SIMP method is a numerical optimization algorithm, which was first utilized in 

solid mechanics to design lightweight stressed components [12-13]. It was subsequently 

used to design the fluid flow path of flexible materials [14]. The SIMP method has also 

been used to design and optimize gradient coils on a cylindrical surface (developable 

surface) [11]. 

Compared to the stream function method, patterned gradient coils designed using the 

SIMP method do not contain multiturn wire windings. Thus, it is possible to effectively 

reduce the required length of the gradient coils and reduce the size of the magnetic 

resonance system. Moreover, this makes these systems easier to manufacture and more 

suitable for microscale MRI systems. 

The purpose of the SIMP method is to identify the optimal material distribution that 

maximizes or minimizes the objective function within the design domain. Using finite 

element methods (FEMs), the distribution of conductive material on a current-carrying 

surface can be found by considering the gradient coil configuration. The fundamental 

equation of the SIMP method applied to an electrostatic field is the Laplace equation: 

∇𝛤 ∙ (𝜎∇𝛤𝜑) = 0                        (14) 

Here, σ is the conductivity of the current-carrying material. According to finite element 

theory, when designing gradient coils using the SIMP method, the weak form of 

Laplace equation for the electrostatic field [Eq. (14)] on the surface 𝛤 is 

∫ 𝜎∇𝛤 
𝜑 ∙ ∇𝛤𝑣dΩ −

 

Ω𝛤

∫ 𝑣
𝜕𝜑

𝜕𝒏ℓ
dℓ

 

ℓ𝑁

= 0                              (15) 

where 𝜎  is the conductivity, 𝜑  is the scalar electric potential function, 𝑣  is the 

weight function of the potential function 𝜑, Ω indicates the design domain (solution 

domain), ℓ𝑁 denotes the Neumann boundary, ℓ is the boundary with the Neumann 

condition and 𝒏ℓ denotes the normal of the boundary curve. 

This study extends the SIMP method from developable to nondevelopable surfaces. 

This will enable us to consider gradient coils targeting the outer surface of a biological 

cell, which is mostly nondevelopable. Certain cells have shapes similar to a spherical 

or closed surface; hence, we will consider this simpler case. 

3.2.1 Surface electrostatic field 

The resistive electrostatic field on a surface satisfies the Laplace equation in Eq.(14). 

The boundary conditions of Eq.(14) are as follows: the insulation boundary ℓ𝑁 : 

𝜕𝜑 𝜕𝒏ℓ⁄ = 0; the potential input boundary ℓ𝑖𝑛: 𝜑 = 𝜑0; the grounding boundary ℓ𝑔: 
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𝜑 = 0. 

The z-direction component of the magnetic induction for a point (𝑥0, 𝑦0, 𝑧0) in the 

ROI is expressed by the current density in Eq. (7). The SIMP method yields a solution 

to the optimization problem. This optimization problem is ill-conditioned. The Laplace 

equation, as a constraint condition, ensures the continuity of the electric current in the 

electrostatic field. In the solution of regular problems, 𝜎 is a constant, and 𝜑 is a definite 

numerical solution. However, in the optimization procedure, the value of 𝜎 is dependent 

on an optimization variable 𝜌; each iteration step determines a value of 𝜎 [through 

optimization algorithms such as the method of moving asymptotes (MMA) or 

optimality criterion (OC)] and then solves the Laplace equation to obtain the numerical 

solution of 𝜑. Thus, for the electrostatic field, the presence or absence (conductivity) of 

conductive material is represented by the value of 𝜌. If the value of 𝜌 on a node is 

equal to 1, a conductor is present. If the value of 𝜌 on a node is equal to 0, no conductor 

is present. To make the value of 𝜌  maximally satisfy the 0–1 distribution (without 

expressing an intermediate value), the conductivity of the conductive material is 

expressed via the SIMP interpolation method [24,25]: 

𝜎(𝜌) = 𝜎𝐴 + (𝜎𝐶 − 𝜎𝐴)(𝜌(𝑥))
𝑝

                                    (16) 

In Eq. (16), 𝜎𝐶 = 5.99 × 107  S/m is the conductivity of the copper material, 𝜎𝐴 =

5 × 10−15 S/m is the conductivity of air (insulation), p is a penalty factor (whose value 

range is 1–5), which is typically set equal to 3 in this problem in order to obtain a 

useable result [11]. 

Discrete surfaces that use Lagrange linear elements for each node exhibit two degrees 

of freedom: the optimization variable 𝜌 and electric potential 𝜑. These two variables 

are expressed on the surface of an electrostatic field as 

𝜌(𝑥) = ∑ 𝑁𝑖𝜌𝑖

𝑛

𝑖=1

                                                  (17) 

𝜑(𝑥) = ∑ 𝑁𝑖𝜑𝑖

𝑛

𝑖=1

                                                  (18) 

where n is the total number of nodes used to discretize the surface. The two variables 

are taken into the discrete form of the finite element Poisson equation via a weighted 

residual approach, and the weight function 𝑣  is taken as a set of base functions 

(𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛) = (𝑁1, 𝑁2, 𝑁3, … , 𝑁𝑛), resulting in 

∑ 𝜑𝑖 ∫ 𝜎(𝜌)∇𝛤𝑁𝑖 ∙ ∇𝛤𝑁𝑗dΩ
 

Ω

𝑛

𝑖=1

= ∫ 𝑁𝑗

𝜕𝜑

𝜕𝒏𝓵
dℓ +

 

ℓ𝑁

∑ 𝜑𝑗 ∫ 𝜎(𝜌)∇𝛤𝑁𝑖 ∙ ∇𝛤𝑁𝑗dΩ
 

Ω

𝑛+𝜕𝑛

𝑗=𝑛+1

             (19) 

where (j = 1,2, 3…, n). Equation (19) is written in matrix form as 

𝑲𝚽 = 𝑷,                                                     (20) 

where 𝚽 = (𝜑1, 𝜑2, 𝜑3, … , 𝜑𝑛)𝑇;  𝑲  is the stiffness matrix, with 𝐾𝑖𝑗
𝑒 =

Jo
urn

al 
Pre-

pro
of



Magnetic Resonance Letters 

∫ 𝜎(𝜌)∇𝛤𝑁𝑖 ∙ ∇𝛤𝑁𝑗dΩ𝑒
 

Ω𝑒
 ; and 𝑷  is the voltage boundary condition vector of the 

electrostatic field on the surface. According to the electric potential 𝜑(𝑥)  and the 

equation −∇𝛤𝜑 = 𝑬 (electric field intensity), the electric current density 𝑱(𝒙) can be 

obtained as 

        𝑱(𝒙) = 𝜎(𝜌)∇𝛤𝜑(𝑥) = 𝜎(𝜌) ∑ ∇𝛤𝜑𝑗𝑁𝑗

𝑛

𝑖=𝑗

= (𝜎(𝜌) ∑ 𝜑𝑗𝑁𝑗,𝑡𝑥

𝑛

𝑖=𝑗

, 𝜎(𝜌) ∑ 𝜑𝑗𝑁𝑗,𝑡𝑦

𝑛

𝑖=𝑗

, 𝜎(𝜌) ∑ 𝜑𝑗𝑁𝑗,𝑡𝑦

𝑛

𝑖=𝑗

)

= (𝐽𝑥 , 𝐽𝑦, 𝐽𝑧).                                                      (21) 

Correspondingly, Eq. (21) is inserted into Eq. (7) to yield the z-direction component 

of the magnetic induction at a point (𝑥0, 𝑦0, 𝑧0) in the ROI: 

𝐵𝑧,𝑠 =
𝜇

4𝜋
𝜎(𝜌) ∫

∑ 𝜑𝑗𝑁𝑗,𝑡𝑦
𝑛
𝑖=𝑗 (𝑥 − 𝑥0) − ∑ 𝜑𝑗𝑁𝑗,𝑡𝑥

𝑛
𝑖=𝑗 (𝑦 − 𝑦0)

((𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2)
3

2⁄
dΩ

 

Ω

       (22) 

3.2.2 Optimization model and calculation 

The optimization objective function minimizes the gradient field inaccuracy. Thus, 

the difference between the ideal gradient magnetic field and the generated gradient 

magnetic field should vanish. The magnetic induction intensity of the m points in the 

ROI is 𝑩𝒛,𝒔(s = 1, 2, 3, …, m); in vector form, this is 𝑩𝒛 = (𝐵𝑧,1, 𝐵𝑧,2, 𝐵𝑧,3, … , 𝐵𝑧,𝑚)𝑇. 

The ideal magnetic induction at all sampling points is 𝑩𝒛
∗ = (𝐵𝑧,1

∗ , 𝐵𝑧,2
∗ , 𝐵𝑧,3

∗ , … , 𝐵𝑧,𝑚
∗ )𝑇; 

hence, the main objective function is expressed as 

min：𝐹0 =
1

2
∑(𝐵𝑧,𝑚

∗ − 𝐵𝑧,𝑚)2

𝑚

𝑠=1

                                 (23) 

When using only one objective function, non-convex least squares objective functions 

may suffer from bad optimization procedures. This makes it difficult to produce ideal 

results; hence, an auxiliary objective should be added to the objective function; for 

instance, that of minimizing the resistance 

min：𝐹1 =
1

𝐺
                                                   (24) 

where G represents the conductance. Finally, the combined expression for the SIMP 

method on a surface is: 

min：𝑓 = 𝐹0(𝜑, 𝜌) + 𝛽𝐹1 

𝑠. 𝑡.    𝑲𝚽 = 𝑷,  

∑ 𝜌𝑖Vol𝑖 ≤ VolΩ
∗ ,

𝑛

𝑖=1

                                             (25) 
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       0 ≤ 𝜌 ≤ 1, 

where ∑ 𝜌𝑖Vol𝑖 ≤ VolΩ
∗𝑛

𝑖=1   is the volume fraction constraint for the conductive 

material, Vol𝑖 = ∫ 𝑁𝑖𝑑Ω
 

Ω
 is the volume fraction of each node, VolΩ

∗
 is the upper limit 

of the sum of the volume fractions of all nodes, and 𝛽 is the weight coefficient of the 

auxiliary object. 

Before optimization, it is necessary to calculate the sensitivity of the objective 

function with respect to the design variables, because the SIMP method typically uses 

a gradient optimization algorithm. For multivariate sensitivity calculations, the adjoint 

method is applied. The specific calculation method is described in Ref. [11]. 

After the optimization model is established and the formula for calculating the 

sensitivity is derived, the optimization algorithm is used to evolve the variables. The 

OC method [26] or MMA [27] optimization algorithm can be used to design the gradient 

coils via the SIMP method. The entire optimization algorithm program applies the 

following steps when performing each iteration: 

1. Calculate the distribution of the electric potential according to a set of boundary 

conditions and the distribution of the conductive material. 

2. Calculate the objective function value according to the electrical potential 

distribution obtained in the previous step. 

3. Calculate the sensitivity of each objective function for the design variables. The 

sensitivity can be processed via filtering to prevent checkerboard responses [28]. 

4. Use the optimization algorithm (OC or MMA) to evolve the values of the design 

variables. Similarly, the optimized design variables can be filtered to smoothen their 

distribution. 

5. Check for convergence of the design; if it has converged, or a prespecified number 

of iteration steps have been executed, stop the iteration process. 

6. If not converged, replace the original design variable value with the optimized design 

variable value and repeat the iteration from Step 1. 

4. Numerical examples 

The two design methods have their own advantages and disadvantages, which make 

them suitable in different situations. As mentioned in Section 1, the SIMP method is 

more suitable for microscale imaging systems (which have limited space in which to 

locate the gradient coil). Macroscale-device head imaging suffers from almost no 

manufacturing difficulties for multiple round coils. Therefore, the stream function 

method is applied for the head imaging of MRI. As stated above, to improve the coil 

efficiency, the shape of the current-carrying surface should be selected as close as 

possible to the objective. Therefore, the SIMP method examples in this paper use a 

spherical surface that resembles the shape of the cell, and the stream function method 

examples use the human-head surface. 
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4.1 Stream function method 

4.1.1 Accuracy verification 

The stream function method (using the discrete normal vector) is applicable to both 

the developable analytic and general discretized surfaces. To compare the accuracy of 

the algorithm, this method was used to obtain x- and z-gradient coils on a cylindrical 

current-carrying surface with a diameter of 0.7 m and a height of 1.5 m. The ROI was 

a spherical domain with a diameter of 0.35 m (Fig. 9), and the gradient value was 0.05 

T/m. The design of the coils was essentially the same as that of x- and z-gradient coils, 

which were previously obtained using an unfolding plane method [29]. The maximum 

inaccuracy is used to represent the maximum error between the ideal and actual value 

of the magnetic induction intensity in ROI. Here, the maximum inaccuracy of the x-

gradient coils obtained by the new method was 1.6133%, whilst the previous method 

was 1.6183%. The maximum inaccuracy of the z-direction gradient coils obtained by 

the new method was 1.4942%, while the previous method was 1.4982%. The two x-

gradient coils were used to calculate the magnetic induction 𝐵𝑧 at the point (0,0,0), 

achieving 0.02691 and 0.02713, respectively. 

 
Fig. 9. Comparison of the wire configuration of gradient coils on a cylindrical surface: (a) Comparison of x-gradient 

coil results and (b) comparison of z-gradient coil results. (Left: the results obtained in this article; right: the results 

obtained in Ref. [29]) 
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4.1.2 Examples of human-head surface 

The stream function method can be used to design gradient coils for an MRI device 

confined to an arbitrary surface, such as that of a human head. The human-head surface 

(provided by COMSOL software) was first meshed using Delaunay triangles (Fig. 10). 

 
Fig. 10. Delaunay triangulation of a human-head surface. 

 

The ROI is a spherical domain with a 5 cm radius inside the head surface (Fig. 11). 

997 points were selected and evenly distributed inside the ROI as sampling points. We 

used the z-direction magnetic induction value 𝐵𝑧 = 𝐺𝑧 ∙ 𝑧0, the y-direction magnetic 

induction 𝐵𝑧 = 𝐺𝑦 ∙ 𝑦0, and the x-direction magnetic induction 𝐵𝑧 = 𝐺𝑥 ∙ 𝑥0, with a 

maximum gradient value of 0.05 T/m. 

 

 
Fig. 11. ROI position. 

 

The deviation from the target value was used to evaluate the accuracy of the magnetic 

fields for the generated gradient coils. For MRIs, the gradient magnetic field inaccuracy 

should be less than 5%. To generate a smooth continuous coil shape, a regular auxiliary 

objective term that minimizes the electrical current consumption of the objective 

function must be added. The three gradient coils along the x, y, and z configurations 

were obtained on a sample human-head surface, as shown in Fig. 12. All field 

inaccuracies were below 0.3% to meet the design requirements. Compared with the 

calculation results on a cylindrical surface, the coil distributions showed certain 

similarities, which also verified the design results. The efficiency (𝐵𝑧𝑚𝑎𝑥/|𝑰|) of the x, 
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y, and z-gradient coils were 8.248 × 10−5  T/A, 6.075 × 10−5  T/A, and 9.364 ×

10−5 T/A, whilst the efficiency of the cylindrical coils at the same scale were 3.499 ×

10−5 T/A, 3.499 × 10−5 T/A, and 5.522 × 10−5 T/A. In engineering applications, 

the current-carrying surfaces of coils can be determined according to actual needs. 

Flexible coil manufacturing can be used to solve the problem of manufacturing on 

surfaces. 

 
Fig. 12. Three gradient coils along the x- (a),  y- (b), and z- (c) configurations designed using the stream function 

method on a human-head surface. 

4.2 SIMP Method 

This method was applied to a spherical surface to obtain the conductive material 

distribution for microscale MRI gradient coils; these could potentially be used to 

observe cell or cell clusters, a common task in biological research. 

4.2.1 Accuracy verification 

The SIMP method, while appropriate for a general surface, can also be applied to a 

developable surface. The results for a cylindrical surface were compared with the 

method that develops a cylindrical surface into a plane [11], mainly to verify the accuracy 

of the calculations. The chosen ROI, size of the current-carrying surface, boundary 

conditions, and mesh nodes were kept constant. The gradient value was 0.01 T/m. The 

results of the y-gradient coils were optimized via two methods, as shown in Fig. 13 (1/8 

cylindrical surface). After 25 iterations, the changes of objective function value [Eq. 

(23)] as shown in Fig. 13 (a) and (b), which finally were 0.67621 and 0.67605, 

respectively. The wire configuration was the same, and the accuracy for the surface 

gradient, as calculated using the tangential gradient operator, was thus verified. 
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Fig. 13. Comparison of surface and plane optimization results: (a) Optimization results on 1/8 cylindrical surface, 

obtained using the method described in this article. (b) 1/8 cylindrical surface from an unfolding plane optimization 

result, as reported in [11]. 

4.2.2 Spherical surface examples 

The optimized design domain for the spherical surface carrying a current was as 

follows: the spherical surface had a radius of 10 mm, the ROI region was a sphere with 

a radius of 5 mm, and the gradient value was 0.01 T/m. Because the design domain and 

ROI were fully symmetrical, the resulting coil shapes were also symmetrical. To 

improve the calculation iteration speed, the spherical design domain was divided into 

eight identical subdomains, and only one of the parts was optimized. This made it 

symmetrical to the other parts, producing a complete wire distribution. For the 1/8 

spherical surface, the initial boundary conditions of the x- and z-direction gradient coils 

are shown in Fig. 14. The y-gradient coil configuration was the same as the x-gradient 
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coil’s and only needed to be rotated by 90º. 

 
Fig. 14. One-eighth spherical boundary condition. 

The triangular mesh of the 1/8 spherical surface mesh was obtained via Delaunay 

triangulation, as shown in Fig 15. The objective function for the x-gradient coils (y-

gradient coils) and z-gradient coils combined the minimum field inaccuracy and 

maximum coil efficiency (the auxiliary optimization objective can be changed to suit 

requirements). 

 

Fig. 15. Delaunay triangulation of 1/8th of the sphere. 

The results of the x-gradient coil (y-gradient coil) configurations for a fully spherical 

surface are shown in Fig. 16. Fig. 16 (e) shows the gradient field inaccuracy contours 

for the x(y)–z section. The red region indicates an error exceeding 5%. The inaccuracy 

in the ROI was less than 3.41%, which satisfies the requirements. 
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Fig. 16. Optimization results for a spherical surface for x- and y-gradient coils (the main magnetic field 𝐵0,𝑧 is in 

the z direction): (a) x–z, (b) y–z, (c) x–y, and (d) perspectives of the upper hemispherical coils; (e) the corresponding 

gradient field inaccuracy contours of the x(y)-gradient coils in the x(y)-z section. 

 

The z-gradient coils on the fully spherical surface are shown in Fig. 17. Fig. 17 (e) 

shows the gradient field inaccuracy contours in the x–z section. The red region indicates 

an error of more than 5%. The inaccuracy of the gradient magnetic field in the ROI was 

less than 3.12%, which satisfies the requirements. 
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Fig. 17. Optimization results for a spherical surface for z-gradient coils (the main magnetic field 𝐵0,𝑧 is in the z 

direction): (a) x–z, (b) y–z, (c) x–y, and (d) stereo view of spherical coils; (e) the corresponding inaccuracy gradient 

field contours of z-gradient coils in x–z section. 

5. Conclusions 

Calculating the surface normal and electric current or potential for discrete surfaces 

is critical in gradient coil design methods. The normal vector on a discrete surface is 

used to calculate the tangential gradient operator. In this study, to achieve geometrical 

generality, we used a farthest point sampling algorithm to perform Delaunay 

triangulation on a cloud-point-type current-carrying surface to achieve a convergent 

geometrical discretization with respect to the mesh size. The numerical examples show 

that this method can be applied to the two-gradient-coil design methods to obtain an 

accurate gradient coil configuration on the discretized surface; the results satisfy the 

design requirements, with an inaccuracy of less than 5%. 
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Fig. S1. Magnetic induction on the central axis of a current-carrying ring. 

A current-carrying ring with electrical current I, and magnetic induction at a point P 

directly above its center O is (Fig. S1): 

𝐵𝑧

=
𝜇0𝑟2𝐼

2(𝑟2 + 𝑧2)3/2
.                                                    (Eq. S1) 

Here 𝐵𝑧 is the magnetic induction at a point P, r is the radius of the ring, z is the length 

of the line OP, and 𝜇0  is the permeability of vacuum. Accordingly, the magnetic 

induction at the center of the current-carrying sphere surface can be derived (see Fig. 

S2.). 
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Fig. S2. Magnetic induction at the center of the current-carrying spherical surface. 

 

Let 𝜓 = 𝛼𝑧  on the surface, 𝛼  being a constant. The magnetic induction 𝐵𝑧  is 

obtained at point O: 

𝐵𝑧 =
𝛼

3
∫ 𝜇0 sin

2 𝜃 ∙ 𝐽d𝜃
𝜋

0

=
𝛼

2
∫ 𝜇0 sin

3 𝜃 d𝜃
𝜋

0

=
2

3
𝛼𝜇0.                   (Eq. S2) 
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