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Abstract

Risk managers of asset management companies monitor portfolio risk metrics such as the Value at Risk in order to analyze
and to communicate the risks timely to portfolio managers, and to ensure regulatory compliance. They must investigate the
possible causes if a portfolio risk significantly increases or breaches a regulatory limit. However, monitoring can quickly
become overwhelming, time and labor-intensive as each risk manager has to deal with over a hundred portfolios, numerous
daily market data, and hundreds of risk factors of the supervised portfolios and of their securities. Particularly, understanding
the interrelations between incidents in different portfolios beyond high level indicators is important. However, analyzing
these interrelations manually is one of the most difficult tasks. In this paper, we describe and demonstrate how automatically
generating causal graphs can address the capacity problem of practitioners in risk management, who are facing more and more
capital markets based risk data daily on the portfolio level alone. Based on a proof of concept implementation, we compare a
pairwise causal-inference-based approach with a clustering-based construction approach. We discuss the advantages and
disadvantages of both approaches, both computationally and based on the resulting structure. Based on our initial findings,

we outline further challenges and research topics.
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1. Introduction

Despite the fact that the financial risk management do-
main is already matured with regard to employed econo-
metric models, is well regulated and requires high trans-
parency, we believe that it can benefit from machine
learning to improve daily portfolio risk management. A
risk manager in an asset management company must
maintain an overview of 100 to 250 portfolios daily. Each
of these portfolios includes an aggregate of over 160 risk
factors. The most important risk factors are equity risk
factors for stocks, interest rates and yield-curve risk fac-
tors for fixed-income securities, and foreign exchange
risk factors. Without modern risk management software
and aggregate risk measures like the Value-at-Risk (VaR)
that is required by the European and recently US regu-
lation, it would be impossible for one risk manager to
manage and analyze over 16,000 portfolio risk factors
manually on a daily basis. Nonetheless, if there is a regu-
latory risk limit breach, a deep causal analysis into port-
folios is necessary to mitigate risk and potential losses.
Such analyses are time intensive and requires manually
examining on average 98 securities, each having over 160
risk factors. An intelligent automation of the analyses is
thus needed to enable more efficient root cause analyses.
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When allocating a part of the portfolio to assets with a
lower risk profile, e.g. German government bonds, port-
folio managers take care that these assets are minimally
correlated to those assets in the portfolio with high risks,
e.g. emerging market stocks and bonds. Yet a causal rela-
tionship, undetected by traditional methods or unaware
of by risk and portfolio managers, between underlying as-
sets can unexpectedly lead to a high correlation between
several portfolios of different types during a small crisis.
In one instance the VaR ratio of an energy portfolio and a
South East Asian (SEA) small-market-capitalization port-
folio increased significantly. To trace the possible causes,
a risk manager examined the marginal losses of assets in
both portfolios. The stocks of the state-own Venezuelan
oil company were found to be the cause for the increased
VaR ratio of the energy portfolio. Only through examin-
ing model parameters, it was found out two days after
the incident that nine SEA companies supplied machines
to the Venezuelan oil company. Both portfolios indirectly
suffered from the US-embargo on the Venezuelan gov-
ernment. Any technology that helps to uncover such a
“causal mechanism” will significantly reduce the immense
time needed to complete the analysis.

Such root cause analysis of a change in risk profile
or limit breach, can be addressed by employing causal
graph, graph visualization, and graph anomaly detection.
If causal relationships between assets and market factors
can be reliably derived, we can monitor their dynamics
and anomalous development using network analysis and
visualization to obtain an overview across all portfolios,
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even though the network may only suggest the causal
chains.

Within an exploratory research project with a Ger-
man asset management company, we applied existing
methods to derive a causal graph of securities based on a
pairwise analysis of a subset of portfolios. Our prelimi-
nary results, however, did not meet the user requirements.
Consequently, we employed agglomerative hierarchical
clustering (AHC) of portfolio risk profiles with network
visualization as a simpler and more practical alterna-
tive. In this paper, we describe application requirements,
our approaches to the technical as well as requirement
challenges, and demonstrate the use of AHC and net-
work visualization to support investment portfolio risk
management in practice. We discuss the advantages and
shortcomings of the approaches, and finally outline our
perspective on further research topics for the presented
application.

2. Background and Related Work

A causal graph or a causal diagram is a directed graph
that visualizes causal relationships between variables. A
node represents a variable. A directed edge A — B
means that A is the direct cause of B, i.e. changing A
will result in the change in B, all else being equal [1]. To
understand the interaction between market actors and
risk factors, the information reflecting the real activity of
companies (e.g. net cash-flow) should be used to derive
the causal graph'. Since it is infeasible to acquire and
curate structured data of such information, trade data
are usually used as a proxy, assuming that those infor-
mation are reflected in security prices according to the
efficient market hypotheses [2]. Typically, a 1-day return
e = pf’ﬁl — 1is used, which is the percentage change of
today’s (closing) price from the previous trading day. In
this case, a node in the resulting causal graph presents a
security or an economic factor, such as the interest rate or
the oil price. An edge A — B can be viewed generally
as the Granger causal direction, i.e. A contains informa-
tion to forecast B [3]. Risk managers can trace the paths
of the information flow to the security in question and
use them as a basis to determine the actual causation.
The choice of an algorithm to derive a causal graph
from time series depends on the assumptions’ that can
be made about the underlying causal structure: linear
vs. non-linear dependency, acyclicity, causal sufficiency
(no unmeasured confounder [5]), and contemporaneous
relationship. Although risk models typically assume lin-

!The graph is also known as a financial network.

2Since we assume the structural causal model exists in our case,
we also assume Markov condition. Additionally, we also assume
faithfulness, allowing us to infer dependencies from the resulting
graph [4].

ear statistical dependency, the presence of non-linear
dependency has also been detected [6][7]. A cyclical rela-
tionship or a direction switch due to structural changes,
between economic factors has also been documented [8].
The securities that are not publicly traded, also known
as over-the-counter (OTCs), can be viewed as potential
unmeasured confounders in the data. Yet, information
on the current condition of unobserved companies may
be reflected in the market data and the prices of publicly
traded securities; because portfolio managers incorporate
them in their the asset allocation strategies and trading
behavior [2]. Assuming at least semi-strong market ef-
ficiency thus allow us to assume causal sufficiency to a
certain extent. We do not take contemporaneous rela-
tionship into account yet, in order to avoid noises cre-
ated by hyper-traders and short-live panic trade-behavior.
Keeping these conditions in mind, the suitable causal
discovery methods must be capable of deriving causal
relationships from a large number of time series, are
non-parametric and do not strictly impose acyclicity.

Considering the above assumptions together with the
technical requirements from the risk management, exist-
ing causal inference methods’ that are readily applica-
ble, satisfy the majority of the conditions, and theoreti-
cally scalable are Effective Transfer Entropy (ETE) [10]
and Peter-Clark Momentary Conditional Independence
(PCMCI) method [11].

3. Data and Requirements

The choice of approaches depends not only on the avail-
able data but also on the technical and user requirements.
The available data for our study are the internal portfolio
risk data and the Deutsche Borse Public Dataset (PDS).
The internal data consist of portfolio metadata, such as
the ISIN, class of the assets, and their aggregate portfolio
risk measures (e.g. UCITS gross exposure, present val-
ues) and risk factors (e.g. change in oil prices, interest
rates). The portfolio risk measures data is longitudinal.
Each portfolio has several time series of risk measures
and factors. Since portfolios contain different asset types,
like only stocks or bonds, or a mixture of them, some
risk measures do not exist for all portfolios, resulting
in missing values. The PDS consists of the initial price,
lowest price, highest price, final price, and volume of all
securities traded on the Eurex and Xetra trading systems
aggregated in minute-interval [12]. The internal data set
can be linked with the PDS using the asset ISIN. How-
ever, the investigated portfolios also consist of currency,

$We initially also considered Temporal Causal Discovery Frame-
work (TCDF) [9] because of its ability to detect the presence of hidden
variables (which is beneficial yet not strictly necessary). However,
the method was rejected due to its use of a complex black-box At-
tentive Convolutional Neural Network.



OTCs, and derivatives. These assets cannot be matched
with the available trade data. Since the internal data are
aggregated on a daily basis, only the daily closing price
of the trade data is relevant.

Risk management requires a combination of high trans-
parency, explainability, and timely detection as well as
action. Transparency and explainability are required,
not only for external communication to institutional in-
vestors and the regulator, like the German BaFin, but also
for internal communication to portfolio managers. This
currently means that all the variables that enter a model
and the underlying assumptions (e.g. for proxy variables)
must be known, while the reasons they are used and their
effects on the models must be understood. Furthermore,
the selected methods must enable a risk manager to de-
rive and describe the mechanism of risk development to
stakeholders and regulators. Hence, black-box models
are rejected by default unless there is an acceptable justi-
fication while generated features must have economic or
statistical meanings.

Given that it usually takes 48 hours for senior risk man-
agers to manually find the root cause of a risk limit breach
and that the complex traditional risk model calculation
is finished overnight, the selected algorithm run-time
must ideally be within 12 hours on the available compute
resources (we assumed a workstation with 24 CPU cores
as a realistic price tag).

4. Deriving Causal Graph of
Underlying Assets

We initially chose Effective Transfer Entropy (ETE) to
build the graph in our experiments. Transfer entropy (TE)
is an information-theoretic measure that quantifies the
information flow between two time series, while ignoring
their static correlations due to common cause[13]. The
method is non-parametric and thus can detect both linear
and non-linear statistical dependencies. Moreover, it is
well researched and widely applied in causality learning
from financial data [6]{14] [15][16][17]. We use the Rényi
entropy as a basis for the TE because it uses a weighting
parameter, which allows us to focus on different areas
of distribution [10]. The ETE is the TE of the pair of
original time series adjusted by the TE of the shuffled
data. This enables the ETE method to be able to detect
small effects, as a consequence of limited data and many
variables, such is often the case of financial time series [6].
A significance test is performed on ETE of each security
pair in each direction. Only edges with positive ETE and
p-value less than a pre-defined threshold (e.g. 5%) are
kept. The result is a causal graph®.

#[4] cautions that the size of TE should not be viewed as quan-
titative causal strength. Therefore, it can be interpreted at best as
stronger or weaker dependencies, analogous to the interpretation of

The major drawback of the ETE is the number of hyper-
parameters to consider. This includes the number of lags,
the discretization method, the Rényi entropy weighting
parameter, the number of shuffles, and the number of
bootstraps for statistical inference. A sensitivity analysis
can be performed to get a robust result, but is computa-
tionally expensive. Also, it does not address the hidden
variable problem and eventually suffers from the curse of
dimensionality as the number of variables and lags gets
larger [18]. Nevertheless, the ETE is chosen because the
concept can be interpreted as a non-parametric Granger
causality and its application is accepted in the financial
domain.

The PCMCI is designed under the causal discovery
framework and with parallelization in mind. It uses the
PC algorithm to quickly first identify potential causes
of an interested variable and prunes them using a con-
ditional independence test. As a result, the algorithms
can detect small effects, given a significance level. It also
has fewer hyperparameters to consider. Apart from the
number of lags and the number of variable combinations
in the conditional independence test, users have only to
specify the significance level to limit the false positive
rates. By using the CMI non-parametric test, the method
can identify both linear and non-linear dependencies [11].
Despite the algorithm assumptions of no hidden variable,
acyclicity, and stationary time series, it is selected for our
preliminary study because it is based on conditional inde-
pendence test, a concept familiar in finance, can output
a temporal causal graph, and is parallelizable.

Figure 1: A subgraph of the causal graph identified by the
ETE. The nodes are the stocks of the companies. Their size
corresponds to market capitalization. The arrows represent
the information flow. Its width indicates the size of ETE.

We applied both ETE and PCMCI on the 1-day returns
of securities in the portfolios. Missing values due to non-
trading activity are filled with the last closing price for
simplicity. Seldom traded securities, whose data contain
mostly missing values, are removed. The results were of

correlation.



mixed success. First, we encountered a computational
challenge when applying both methods using their origi-
nal implementation. Although both methods have been
applied to financial data as a proof of concept, none of
the experiments involve over seven hundred time series.
Even though we managed to improve the parallelization
of ETE, it still took almost six hours on 24 CPUs and 72
GB RAM for analyzing roughly 700 time-series of over
two years daily returns of the investigated securities that
are part of the given sample of 50 portfolios. The long
run time for ETE was due to shuffling and bootstrap-
ping in combination with the pairwise test. The CMI,
which is a fully non-parametric test, in the second part
of PCMCI has a long run time and does not scale well for
a high number of time series. With the computational
resources, that could be realistically be made available
at the time, it could not be ensured that the run time
will not significantly exceed 12 hours when analyzing
additional thousands of assets and economic factors. As
the algorithm is subject to quadratic scaling, we saw it
as impractical given that we only had analyzed a rela-
tively small subset. Also, the resulting causal graph, in
which each asset is presented as a node, is complex to
interpret both manually and automatically. An accuracy
evaluation was infeasible without access to knowledge
of existing risk models.

5. Agglomerative Hierarchical
Clustering of Risk Profiles

Due to the complexities of asset-level causal inference as
a basis for identifying risk drivers and their interrelation-
ship, it makes sense to look for alternative approaches.
One major requirement should be that such an approach:
(i) intuitively shows the relationship to the monitored risk
indicators; (ii) can be efficiently calculated automatically
on a continuous basis; and (iii) creates structures that
expose causal relationships beyond already established
classification schemes.

In contrast to an eager bottom-up approach as pre-
sented above, an alternative might lie in a top-down
approach that examines the indicator in question. The
interrelationship between different portfolios should al-
ready be captured in the risk models, and thus be observ-
able at the indicator level. Indicators have the advantage
that they are already normalized and are designed for
comparison. However, they are typically not used to
structure information. This can be done by employing
clustering analysis on the time series created by those
indicators. While measuring distance between totally dif-
ferent kinds of portfolios in all market situations might
be of limited value, subspace clustering approaches have
the advantage that they can build hierarchies based on
local similarities within subgroups. Our assumption is

that the subgroups and their re-formation, given differ-
ent market situations, might expose common risk drivers,
without having to analyze the underlying assets.

For an exploratory study to uncover an alternative
grouping of portfolios, a suitable clustering method
must not require users to specify the number of clus-
ters. Among them, agglomerative hierarchical clustering
(AHC) is the most practical. The nearest-neighbor chain
algorithm, which is available in most statistical software,
is fast and always yields the same clustering if none of
the instance pairs have the same minimum distance.The
clustering result can be visualized as a dendrogram, re-
gardless of the number of features, showing the class
hierarchy. Due to these advantages, especially for the
exploration of new categorization, we select the AHC for
our application.
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Figure 2: Overview of applicable approaches to multivariate
time series clustering in risk management context.

The AHC method is originally developed for cross-
sectional data. The adaption for longitudinal data clus-
tering is a three-step decision process. First, one decides
if the clustering should be performed along the time axis
(whole time series clustering or rolling window cluster-
ing) or on all features, at each time point while ignoring
the time axis (over-time clustering). The second step is
to choose the similarity measure. Four approaches are
usually found in practice [19][20]: shape-based, feature-
based, model-based, and compression-based. In the
last step, one chooses the clustering algorithm (linkage
method). Since model-based and compression-based ap-
proaches generate complex features and transparency
plays a major role in our case, we are limited to shape-
based and feature-based similarity measures. Figure 2
summarizes the two main approaches for our use-case.
Each of them presents different views about risk similar-

ity.
5.1. Rolling window clustering

Rolling window clustering is a variation of whole time
series clustering, which groups a set of similar time se-



ries together [19]. Since the risk and market indicators
are updated almost daily and their previous year values
should contribute little to their current trend, we only
need to cluster the recent values and update the cluster-
ing with rolling windows. Initially, both shaped-based
and feature-based approaches are under consideration.
Even though the feature-based approach is more robust
against missing values and is suitable for multivariate
time series, it was also found during the preliminary anal-
ysis that the generated features add more interpretation
difficulty and reduces quick communication. Fortunately,
we can avoid the multivariate time series conversion and
the missing value problems in the shape-based approach
by using the VaR exposure ratio. The VaR exposure ratio
is calculated from all relevant risk factors of a portfolio
and scaled by its reference portfolio. Due to the strict
regulatory requirements laid down in the German Deriva-
tive Regulation, it must be calculated for all regulated
portfolios and may not contain missing values. Hence,
the shape-based approach is preferred. The Ward’s link-
age method is selected for its ability to identify distinct
clusters. Consequently, we are limited to the Euclidean
distance.

2

Figure 3: The dendrogram shows the clusters of portfolios
in June 2017 based on the last 90-trading days VaR exposure
ratio. The deep green portfolios always remain within while
the deep red portfolios usually exceed the limit.

An example of the rolling window clustering of port-
folios based on their VaR exposure ratio of the last 90
trading days results in groups of portfolios as shown in
Figure 3. The network visualization is created by ap-
plying the minimum spanning tree (MST) algorithm to
the cophenetic distance matrix [20]. The force-based
Fruchterman-Rhiengold layout is the best suited for vi-
sualization as it put cluster members as to each other
while separating the clusters from one another as much
as possible. The traffic light color scheme corresponding
to risk limit breach frequency helps risk managers to
spot high-risk portfolios. A qualitative evaluation shows
that portfolios of the same theoretical type are correctly
grouped together, but with some exceptions. For exam-
ple, the German equity portfolios lied close together in a
cluster as expected. Yet, one of the portfolio manager’s
most important defensive multi-asset fund for retail in-

vestors and private wealth management was also among
the cluster members. Such a close association between
a defensive multi-asset fund (invested only 30% global
stocks and 70% in bonds) and several German equity flag-
ship funds (100% German stocks), was not obvious at first
glance. A look into their shared risk factors within their
cluster, which took a few minutes, showed the newly
listed stock of Siemens Healthineers was the common
cause; because it experienced an increase in volatility on
its first trading days and all the portfolios were heavily
invested in shares of the Siemens AG, the parent com-
pany. Such analysis that would have taken over an hour
or more, even though the IPO of the spin-off was well
known, became visible and obvious in a few minutes for
the risk managers using the AHC and network visualiza-
tion.

5.2. Over-time clustering

The result of the rolling window clustering is affected by
the window size. Besides, by using only one aggregated
indicator, the method ignores additional information that
may be contained in other risk measures. In order to take
into account multiple variables while keeping feature
engineering at a minimum, one can treat the data at each
time point as cross-sectional data and perform a cluster
analysis on them. The approach is known as over-time
clustering [21]. This means we make an assumption that
all the data at each time point already contain all informa-
tion from its lags, allowing us to ignore the time feature
in the clustering. By keeping a fixed set of variables to
be clustered, one can analyze the cluster dynamics over
time and thus identify anomalous development [21].
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Figure 4: The overall distance at each time point (top), its
daily percentage change (middle) and the VSTOXX and VIX
volatility indices (bottom).

We applied the overtime clustering using Euclidean
distance and Ward’s linkage on around 30 risk measures.



Since we are interested in the dynamics, only variables
that exist for all portfolios that seldom have missing val-
ues, excluding the VaR exposure ratio, are used. Figure
4 compares the final Ward’s linkage distance or overall
distance at each time point (top plot) to the VSTOXX and
VIX volatility indices (bottom plot). They measure the im-
plied volatility of the stocks in the EuroSTOXX50 index
and the S&P500 index. These indices are commonly used
as indicators of the overall stock market volatility, and
thus the implied risk. The lower overall distance reflects
the higher similarity between portfolio risk profiles, indi-
cating that some common risk factors are exerting their
influence across the board. A steep decrease in the overall
distance is found to coincide with high market volatility.
Our Granger causality test of information flow showed
that the overall distance sometimes leads the volatility
indices. However, since the quality of over-time cluster-
ing depends heavily on the set of selected variables, and
maintaining the data quality and delivering them timely
demands high effort, the overall distance is yet to be a
useful addition to the traditional early warning indicator
such as volatility indices.

6. Discussion

The applied research has shown that the use of AHC
and network visualization helps risk managers to quickly
get an overview over hundreds of portfolios. The most
important insight from a practical perspective was the
ability to see the effect of risk factors on portfolios across
traditional asset classes like equities, bonds, foreign cur-
rencies, etc.. The traditional set-up of equity, multi-asset,
and bonds portfolios, including overlay strategies using
more complicated derivative strategies, did not allow a
quick analysis of risk factors across asset classes and
thus across different portfolio types. Focusing on the
portfolio with the highest risk concentrations and the
(theoretically, unlikely) neighboring portfolios in its clus-
ter, allows risk managers to perform a more targeted root
cause analysis before risk limit breaches occur. An anal-
ysis that would have taken over an hour can be carried
out in a few minutes with the combination of AHC and
network visualization.

The combination of AHC analysis on VaR exposure
ratio and network visualization clearly supersedes the
use of a causal graph regarding the practicality and tech-
nical requirements. Yet, the method is not without short-
comings. The window size affects the clustering results.
Although sensitivity analysis can be performed and the
results qualitatively evaluated, the window size cannot
be systematically optimized; because we cannot quanti-
tatively measure which clustering results are more rea-
sonable in an exploratory analysis. Besides, the rolling
window AHC is based only on the VaR exposure ratio,

which is based on risk models that assume linear de-
pendency and are handcrafted from expert knowledge.
Thus the AHC only summarizes existing information and
presents them in a more structured way to risk and port-
folio managers. As such, it still misses signals that experts
are unaware of and little new knowledge is gained. Since
the resulting network is undirected, the AHC is unable
to suggest the possible causal paths that could further
reduce deep dive analysis effort should a risk limit breach
occur. It is also debatable how early the AHC can visu-
alize the weak effect of some common causes between
portfolios before the effect becomes apparent. The AHC
may be a promising and practical solution in the medium
term. But a practical causal graph is desirable in the long
term.

7. Conclusion and Outlook

If regulatory risk limit breaches or significant changes
in the risk profile occur, a risk manager must manually
analyze over ten thousand potential statistical sources,
in order to support portfolio managers and institutional
investors. In this paper we explored, how to extract sup-
portive graph structures for this task based on real data
provided to us by a large asset management company.

Our initial bottom up scheme to build such a causal
graph based on public trade and portfolio data using
ETE and PCMCI encountered a long run-time, and the
resulting network that is too complex for human under-
standing. The absence of a reliable evaluation scheme
prevented the approach to be readily used in practice.
The combination of AHC of portfolio risk profiles based
on their VaR exposure ratio and the network visualiza-
tion of clustering results, is an easier deployable method
and presents a more practical solution. While not being
able to identify the causal chains directly, it fulfills the
demand on transparency and gives risk managers a better
overview to numerous statistical sources beyond existing
categorization schemes and analysis strategies.

While we only present the results and experiences
from a very preliminary proof of concept implementa-
tion, we believe that in the future the value of machine
learning over manual analysis may increase if sources
other than numerical trade data can be included into
the analysis. Three challenges currently hinder practical
application of causal discovery in risk management: scal-
ability, visualization of a complex graph, and systematic
evaluation of the resulting knowledge graph with mini-
mal reliance on experts. We are currently investigating if
recent developments like the two-phase ensemble algo-
rithm that enables PCMCI to better utilize distributed sys-
tems [22] may address scalability. The problem of overly
complex visualization needs to be addressed with graph-
reduction techniques, showing to risk managers only



subgraphs with unusual development. We plan to extend
our work to use Causal NLP, a technique to learn causal
graphs from text. It may be used to evaluate the causal
graph derived from trade and economic data. Providing
human-readable annotations might also solve problems
of human oversight when dealing with a large data set.
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