Divergent thermal expansion and Grüneisen ratio in a quadrupolar Kondo metal

A. Wörl,1,* M. Garst,2,3 Y. Yamane,4,† S. Bachus,1 T. Onimaru,4 and P. Gegenwart1,‡

1Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
2Institute for Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
3Institute for Quantum Materials and Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
4Department of Quantum Matter, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

(Received 28 July 2021; revised 21 April 2022; accepted 26 April 2022; published 6 June 2022)

We report on the low-temperature thermal expansion and magnetostriction of the single-impurity quadrupolar Kondo candidate Y1−xPrxIr2Zn20. In the dilute limit, we find a quadrupolar strain that possesses a singular dependence on temperature T, $\varepsilon_u \sim H^2 \log(1/T)$, for a small but finite magnetic field H. Together with the previously reported anomalous specific heat C, this implies a quadrupolar Grüneisen ratio $\Gamma_u = \partial H / C \sim H^2 / [\Gamma_u^2 \log(1/T)]$ whose divergence for finite H is consistent with the scenario of a quadrupolar Kondo effect. In addition, we find a singular behavior of the isotropic strain ε_i in zero magnetic field resulting in a divergence of both the volume thermal expansion and the volume Grüneisen parameter. We speculate that this behavior might be also induced by putative Kondo correlations via elastic anharmonicities or static strain disorder.

DOI: 10.1103/PhysRevResearch.4.L022053

In solid state physics, non-Fermi liquid phases describe unconventional metallic states of matter. Such exotic phases have been extensively studied in the framework of heavy fermion (HF) quantum criticality [1]. A magnetic quantum critical point typically forms in Ce- and Yb-based intermetallic systems that are located in between a Kondo screened Fermi liquid and a long range antiferromagnetically ordered state. The divergence of the Grüneisen parameter, defined as the ratio of volume thermal expansion to specific heat, is a universal signature of pressure sensitive quantum critical points [2,3].

In addition, there has been a particular focus on exploring non-Fermi liquid states that are related to electric quadrupole moments and on identifying potential links between these states and magnetic HF quantum criticality [4–7]. Quadrupolar ground states form, for instance, in non-Kramers Pr- and U-based intermetallics, given that certain symmetry constraints are fulfilled. A possible cause for unconventional metallic behavior in these materials is the quadrupolar Kondo effect, which was postulated by Cox in 1987 [8]. Here, the simultaneous overscreening of a localized quadrupole moment by two channels of conduction electrons, which are related to their spin degree of freedom, leads to non-Fermi liquid behavior in specific heat $[C/T \sim \log(1/T)]$, electrical resistivity $(\rho / \rho_0 \sim 1 + A \sqrt{T})$, and quadrupole susceptibility $[\chi_2 \sim \log(1/T)]$ as well as an unconventional residual entropy of $S = R \log \sqrt{2}$ [9].

Cubic Pr-based 1-2-20 systems are prototypical to study such novel quadrupolar [10,11] as well as higher multipolar related correlation effects [12–14]. PrIr2Zn20, for instance, has a well defined quadrupolar non-Kramers $Γ_3$ ground state doublet (point group T_d) [15] and displays clear signatures of the quadrupolar Kondo lattice effect [4], which are cut off by antiferroquadrupolar order at 0.11 K [16]. Recent studies on highly diluted $Y_{1-x}Pr_xIr_2Zn_{20}$ provided direct evidence of the single-impurity quadrupolar Kondo effect, based on characteristic non-Fermi liquid behaviors found in the specific heat, electrical resistivity, and elastic constant [5,17]. Nevertheless, evidence for the residual entropy $S = R \log \sqrt{2}$ remains elusive so far [5].

The concept of the Grüneisen parameter can be generalized to all irreducible representations of elastic strains. Such a generalized Grüneisen parameter is expected to diverge close to a quantum critical point provided that the associated stress couples to a relevant operator of the critical fixed point [2,18]. For the single-impurity quadrupolar Kondo fixed point, this is the case for the quadrupolar stress σ_u, that breaks the cubic symmetry, and, as a consequence, destabilizes the non-Fermi liquid physics and quenches the residual entropy. This implies that the quadrupolar Grüneisen ratio $\Gamma_u = (\partial T / \varepsilon_u) / C$ diverges in a characteristic manner. Here, $\varepsilon_u = (2 \varepsilon_{xx} - \varepsilon_{yy} - \varepsilon_{yy}) / \sqrt{3}$ is the strain component of the $Γ_3$ doublet that is conjugate to σ_u with the corresponding thermal expansion $a_u = (\partial T / \sigma_u)$ and $C = C_m / V_m$ the specific heat with the molar volume V_m and the molar specific heat C_m. Using a thermodynamic identity, $\Gamma_u = -1 / (\partial T / \partial a_u) \gamma$ also quantifies the adiabatic change of temperature upon the variation of σ_u and thus describes an elastocaloric effect [19].

*andreas.woerl@physik.uni-augsburg.de
†Present address: Department of Material Science, Graduate School of Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan.
‡philipp.gegenwart@physik.uni-augsburg.de

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The application of a magnetic field \(H \) will split the non-Kramers \(\Gamma_2 \) doublet resulting in a finite quadrupole moment \(\langle Q \rangle \sim x_0 H^2 \) of each Pr\(^{3+}\) ion, that is proportional to \(H^2 \) for small fields due to time-reversal symmetry. This induces a local quadrupolar strain via the elastic coupling \(g_{tt} \), and after averaging over Pr disorder results in a homogeneous strain \(\varepsilon_u \sim g_{tt} H^2 / c_u \) where \(c_u \) is the Pr\(^{3+}\) density and \(c_u = (\varepsilon_{11} - \varepsilon_{12})/2 \) the corresponding elastic constant. The quadrupolar Kondo effect predicts \(\chi \sim \log(1/T) \) resulting in a singular temperature dependence of the quadrupolar strain \(\varepsilon_u \sim n_{Pr} H^2 \log(1/T) \). Finally, using that the specific heat at low temperatures is dominated by the contribution of the Pr\(^{3+}\) ions, \(C_m \sim n_{Pr} T \log(1/T) \) for small magnetic fields \([5] \), one expects for the quadrupolar Grüneisen parameter \(\Gamma_u \sim H^2 / [T^2 \log(1/T)] \). Consequently, thermal expansion and magnetostriction experiments are ideally suited for the investigation of the non-Fermi liquid behavior associated with the quadrupolar Kondo effect.

In this work, we perform such measurements on highly diluted single crystalline \(Y_{1-x} \text{Pr}_x \text{Ir}_2 \text{Zn}_{20} \). As our key finding, we confirm experimentally that the temperature dependence for the quadrupolar strain \(\varepsilon_u \) and the associated quadrupolar Grüneisen parameter \(\Gamma_u \) is indeed consistent with the suggested quadrupolar Kondo scenario \([5,17]\). Remarkably, we also find that the volume strain \(\varepsilon_T \) shows a similar singular behavior in zero magnetic field although isotropic stress does not directly couple to a relevant operator of the quadrupolar Kondo fixed point. We speculate that an indirect coupling might be generated either by elastic anharmonicities or by static strain disorder accounting for the experimentally observed divergence in the volume thermal expansion.

Ultrahigh-resolution thermal expansion and magnetostriction measurements were carried out in a dilution refrigerator using a miniaturized capacitive dilatometer \([20]\). Central to this study is a highly diluted \(Y_{1-x} \text{Pr}_x \text{Ir}_2 \text{Zn}_{20} \) single crystal with \(x = 0.036 \), for which relative length changes were measured along a cubic \((100)\) direction, with magnetic fields applied either parallel or perpendicular to the measurement direction. The magnetic field direction is defined as \([001]\) in the following, so that \(\varepsilon_{zz} \) and \(\varepsilon_{xy} \) correspond to longitudinal \(\varepsilon_1 \) and transverse strain \(\varepsilon_\perp \), respectively. As the applied field does not break the symmetry within the \((x, y)\) plane, we can assume that \(\varepsilon_{xx} = \varepsilon_{yy} \). The measurement of longitudinal and transverse strain in magnetic field then allows one to infer the values of the isotropic strain \(\varepsilon_B = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} \) and the quadrupolar strain \(\varepsilon_u \), as detailed in the Supplemental Material (SM) \([21]\). An unavoidable side effect of the experimental technique is a small force of approximately 4 N \([20]\) acting on the sample along the measurement direction, which corresponds to a tiny uniaxial stress of a few MPa. To clarify whether this effect has an impact on the deduced relative length changes, we performed complementary measurements on a \([111]\) oriented single crystal with a comparable Pr concentration of \(x = 0.033 \). For further characterization, a special uniaxial stress capacitive dilatometer \([27]\), that exerts a roughly 15 times larger force on the sample than the miniaturized dilatometer, was employed. For details on the single crystalline samples examined in this study, see SM \([21]\).

First, we discuss the quadrupolar thermal expansion coefficient \(\alpha_u = \partial T \varepsilon_u \) of \(Y_{1-x} \text{Pr}_x \text{Ir}_2 \text{Zn}_{20} \) with \(x = 0.036 \). The respective data is derived from the measurement of the longitudinal \(\alpha_l \) and the volume thermal expansion \(\beta \) for \(H \parallel [001] \) via the relation \(\alpha_u = \sqrt{3}(\alpha_l - \beta/3) \). A detailed derivation of this relation and an overview of the data of \(\alpha_l \) and \(\beta \) is provided in the SM \([21]\). The quadrupolar thermal expansion coefficient \(\alpha_u \) is shown in Fig. 1(a) on a logarithmic temperature scale ranging from 0.05 to 4 K for various magnetic fields up to 10 T. For small fields, \(\alpha_u \) increases down to lowest temperatures. At around 1.5 T a maximum develops whose position shifts to higher temperatures as a function of increasing field. At the same time, the height of the maximum continuously decreases with \(H \). For \(\mu_0 H \gtrsim 8 \) T, this peak is quantitatively captured by crystal electric field (CEF) calculations \([21]\) as indicated by the dashed lines.

The ratio \(\alpha_u / (\mu_0 H)^2 \) is shown in the inset of Fig. 1(b). For temperatures \(k_B T \gg \mu_0 \mu_0 H \), the data collapses onto a single curve that exhibits a crossover from a \(\alpha_u / H^2 \sim \partial_T \chi_0 \sim 1/T \) behavior at low temperature, consistent with the quadrupolar Kondo effect, to a \(1/T^2 \) dependence at high temperature as...
expected for a Curie susceptibility $\chi_Q \sim 1/T$ of a fully localized Γ_3 doublet [21]. The crossover temperature of ~ 0.6 K is consistent with previous studies [5,17]. By using the molar μ_0 concentration of $x = 0.044$, we evaluate the quadrupolar Grüneisen parameter that follows from the universal singularity quadrupole Kondo behavior. The inset displays T^* as a function of magnetic field, with the red solid line indicating a H^2 field dependence.

Within the framework of the quadrupolar Kondo model, the deviation from the characteristic quadrupole Kondo behavior for larger magnetic fields can be attributed to both a channel and a quadrupolar asymmetry, induced in linear and quadratic order in H, respectively. At small fields, the first effect is expected to dominate and results in a crossover $T^* \sim H^2$ (see Ref. [9]), separating non-Fermi and Fermi liquid behavior. In order to specify the origin of the magnetic field induced crossover in highly diluted $Y_{1-x}\text{Pr}_x\text{Ir}_2\text{Zn}_{20}$, Fig. 2 displays the data of $\alpha_u/(\mu_0 H)^2$ on a logarithmic temperature scale at small magnetic fields up to 2.5 T. The crossover temperature T^*, which is determined as the temperature at which deviations from the universal single-impurity quadrupole Kondo behavior arise, is indicated by an arrow for each magnetic field. The inset displays the characteristic temperature T^* as a function of magnetic field, whereby the red solid line indicates a quadratic magnetic field dependence. Indeed, the characteristic temperature T^* estimated from the quadrupolar thermal expansion data can be well scaled with $T^* \sim H^2$. This indicates that the field induced channel asymmetry is the dominating perturbation at low magnetic field leading to the experimentally found deviations from the quadrupole Kondo behavior at low temperature, which is in very good agreement with the theoretical expectation.

The results on the quadrupolar thermal expansion coefficient α_u and the quadrupolar Grüneisen parameter Γ_u, which are indicative of the single-impurity quadrupole Kondo effect, are further corroborated by the quadrupolar magnetostriction e_u displayed in Fig. 3. The quadrupolar magnetostriction coefficient e_u is derived from the measurement of the longitudinal e_l and the volume magnetostriction coefficient e_B by using the relation $e_u = \sqrt{3}(e_l - e_B/3)$ for $H \parallel [001]$. The data of e_l and e_B used for the calculation of e_u is provided in the SM [21]. By analyzing the initial magnetic field dependence of $e_u \sim n_{\text{Pr}} \chi_Q H^2$ [21], we extract the quadrupolar susceptibility χ_Q that is shown for various Pr doping x in the inset of Fig. 3. The CEF calculation, which predicts a Curie-like $1/T$ temperature dependence on top of a constant Van Vleck contribution, can only capture the behavior of χ_Q at elevated temperatures. At low T and for the lowest doping concentration $x = 0.036$ our results are consistent with a logarithmic temperature dependence of χ_Q. For higher doping, the susceptibility is suppressed at low temperatures indicating a quenching of the quadrupolar Kondo effect, likely induced by interactions between Pr^{3+} ions.
by the application of a field and, for \(\mu_B H \gtrsim 6 \) T, the volume thermal expansion practically vanishes. Similarly, \(\beta \) is also suppressed by larger doping as shown in the inset for zero field. The continuous increase of \(\beta \) on cooling at zero field and low doping is unexpected at first sight as the influence of the quadrupolar moments should in lowest order average and low doping is unexpected at first sight as the influence of the bulk Grüneisen parameter \(\Gamma_B \) take from Ref. [5]. The blue solid line is a fit to \(\alpha_{[111]} \) as a function of temperature similar to \(\Gamma_B \). The inset displays the temperature dependence of \(\alpha_{[111]} \) with the miniaturized (closed circles) and the uniaxial stress dilatometer (open circles). The thermal expansion is well described by a fit \(\alpha_{[111]} = \gamma C_m + b/T \) (blue line) that assumes two contributions. The first obeys Grüneisen scaling with a constant \(\gamma \) and the second contribution diverges like \(1/T \), which is reminiscent of the behavior of \(\alpha_{[111]}/H^3 \) shown in the inset of Fig. 1(b). Consequently, the bulk Grüneisen ratio \(\Gamma_B = V_m 3\alpha_{[111]}/C_m \approx 3V_m \gamma + 3V_m b/(TC_m) \) exhibits a divergence as a function of temperature similar to \(\Gamma_B \).

In the following, we speculate on the origin of this surprising finding of an intrinsic bulk thermal expansion that increases down to lowest temperatures. The elastic coupling \(g_{\Gamma_1} \) to the non-Kramers \(\Gamma_1 \) doublet leads in second order perturbation theory to the following correction to the elastic Hamiltonian:

\[
\delta \mathcal{H} = -\frac{g_{\Gamma_1}^2 \chi_0}{2} \sum_{\alpha} \left[\varepsilon_{\alpha}^2 (\tilde{r}_\alpha) + \varepsilon_{\alpha}^2 (\tilde{r}_\alpha) \right].
\]

Figure 4(d) displays the temperature dependence of \(\alpha_{[111]} \) measured with both the miniaturized and the uniaxial stress dilatometer at zero magnetic field. As there is no notable difference between the two data sets, we conclude that the divergent temperature dependence of \(\alpha_{[111]} \) is in fact an intrinsic volume effect and not artificially induced by the uniaxial stress applied externally along the measurement direction. This result is striking as it is markedly different from the molar specific heat of the \(4f \) electrons \(C_m \) as shown by the red symbols. The thermal expansion is well described by a fit \(\alpha_{[111]} = \gamma C_m + b/T \) (blue line) that assumes two contributions. The first obeys Grüneisen scaling with a constant \(\gamma \) and the second contribution diverges like \(1/T \), which is reminiscent of the behavior of \(\alpha_{[111]}/H^3 \) shown in the inset of Fig. 1(b). Consequently, the bulk Grüneisen ratio \(\Gamma_B = V_m 3\alpha_{[111]}/C_m \approx 3V_m \gamma + 3V_m b/(TC_m) \) exhibits a divergence as a function of temperature similar to \(\Gamma_B \).

In the following, we speculate on the origin of this surprising finding of an intrinsic bulk thermal expansion that increases down to lowest temperatures. The elastic coupling \(g_{\Gamma_1} \) to the non-Kramers \(\Gamma_1 \) doublet leads in second order perturbation theory to the following correction to the elastic Hamiltonian:

\[
\delta \mathcal{H} = -\frac{g_{\Gamma_1}^2 \chi_0}{2} \sum_{\alpha} \left[\varepsilon_{\alpha}^2 (\tilde{r}_\alpha) + \varepsilon_{\alpha}^2 (\tilde{r}_\alpha) \right].
\]

Here, \(\varepsilon_{\alpha}(\tilde{r}_\alpha) \) are the two components of the local quadrupolar strain doublet at the position \(\tilde{r}_\alpha \) of the \(Pr^{3+} \) ion with index \(\alpha \). After averaging over \(Pr \) disorder this Hamiltonian recovers the renormalization of the quadrupolar elastic constant \(\delta \varepsilon_{\alpha} = -nm_\alpha g_{\alpha}^2 \chi_0 \) whose temperature dependence was confirmed by elastic constant measurements [17]. Treating the Hamiltonian of Eq. (1) in perturbation theory, one obtains a correction to the free energy density of the form \(\delta f \sim \frac{d}{dT} \langle \varepsilon_{\alpha}(\tilde{r}_\alpha) \rangle \). Here, a finite expectation value \(\langle \varepsilon_{\alpha}(\tilde{r}_\alpha) \rangle \) might arise either from dynamic zero-point fluctuations of the quadrupolar strain or from static strain disorder [21]. This results in a contribution to the bulk thermal expansion \(\delta \beta = \beta_{\text{eff}} + \beta_{\text{ana}} + \beta_{\text{ext}} \approx -\frac{1}{2} \left(\partial_{\mu} m_{\alpha} g_{\alpha}^2 \right) \langle \varepsilon_{\alpha}(\tilde{r}_\alpha) \rangle \partial_{\mu} T \chi_0.\)
The divergence $\delta \beta \sim 1/T$ originating from $\chi_0 \sim \log(1/T)$ is consistent with the observations in Fig. 4(d).

Hence, dynamic as well as static strain fluctuations can in principle explain the observed singular behavior in β. However, both scenarios also imply a contribution to the specific heat $\delta C_m \sim 1/T$, which so far has not been successfully identified. A possible reason is a small prefactor of δC_m, or, equivalently, a large effective Grüneisen parameter $\delta \Gamma_{\beta} = \delta \beta / \delta C_m$ characterizing the hydrostatic pressure dependence of $n_p g_\uparrow^2 \langle \varepsilon_{2/3}^2 \rangle$. This dependence can arise from elastic anharmonicities, e.g., via the elastic coupling $g_\uparrow(p)$ or, in the case of strain disorder, from a response of $np_c \langle \varepsilon_{2/3}^2 \rangle$ to pressure changes. From Fig. 4(d) we can estimate a lower bound $\Gamma_{\beta} > 2.15 \text{ GPa}^{-1}$, and with the isothermal compressibility $\kappa_T \approx 0.01 \text{ GPa}^{-1}$, estimated from elastic constant measurements on PrIr$_2$Zn$_20$ [28], this implies a dimensionless Grüneisen parameter $\delta \Gamma_{\beta} = \delta \beta / \delta C_m$ of at least of the order of 200 to be compared with a typical value of 1 for metals [29]. As elastic anharmonicities are in general unlikely to account for such large values, this suggests static strain disorder to be at its origin. Hydrostatic pressure will influence the local strain distribution and might thus affect sensitively the quadrupolar environment of each Pr ions resulting in a large response. Local strain fields were also invoked to explain the temperature and field dependence of the specific heat [5] and the elastic constant [17], respectively. Future nuclear quadrupolar resonance measurements might help clarify this issue.

In this work, we established the symmetrized quadrupolar expansivity, i.e., thermal expansion and magnetostriction, as well as the quadrupolar Grüneisen parameter as a highly sensitive probe to uncover quadrupolar fluctuations. For the example of highly diluted Y$_{1-\delta}$Pr$_\delta$Ir$_2$Zn$_{20}$ we demonstrated that it gives access to the quadrupolar susceptibility. Our experimental results are in excellent agreement with expectations for the single-impurity quadrupolar Kondo effect and corroborate its emergence in this material. On a more general note, we anticipate the quadrupolar expansivity and quadrupolar Grüneisen parameter to become an important tool also for the investigation of other materials with pronounced quadrupolar correlations; in particular, for materials close to a nematic quantum critical point as discussed for certain cuprate and iron pnictide superconductors [30,31].

Long-term collaboration with R. Küchler as well as helpful discussions with Y. Tokiwa, R. Yamamoto, T. Yanagisawa, and H. Kusunose are gratefully acknowledged. The work in Augsburg was supported by the German Research Foundation (DFG) via Project No. 107745057 (TRR80). The work in Hiroshima was supported by the Center for Emergent Condensed-Matter Physics (ECMP), Hiroshima University and financially supported by Grants-in-Aid from MEXT/JSPS of Japan [Grants No. JP26707017, No. JP15H05886 (J-Physics), No. JP15KK0169, No. JP18H01182, and No. JP18KK0078]. M.G. is supported by the DFG via Project No. 422213477 (TRR 288, A11).

[10] T. Onimaru and H. Kusunose, Exotic quadrupolar phenomena in non-Kramers doublet systems—The cases of PrTi$_2$Zn$_{20}$ ($T = \text{Ir, Rh}$) and PrTi$_2$Al$_{20}$ ($T = \text{V, Ti}$) —, J. Phys. Soc. Jpn. 85, 082002 (2016).

[21] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevResearch.4.L022053 for details on the experimental methods; crystal electric field calculations; theory on the volume thermal expansion; data of the longitudinal, transverse, and volume thermal expansion and magnetostriction; and the quadrupole field susceptibility analysis, which includes Refs. [22–26].

