
IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received March 14, 2022, accepted May 10, 2022, date of publication May 23, 2022, date of current version June 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176879

Lifecycle Management of Automotive
Safety-Critical Over the Air Updates:
A Systems Approach
HOUSSEM GUISSOUMA 1, (Member, IEEE), CARL PHILIPP HOHL2, FABIAN LESNIAK 1,
MARC SCHINDEWOLF 1, JÜRGEN BECKER 1, (Senior Member, IEEE), AND ERIC SAX1
1Institute of Information Processing Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
2FZI, 76131 Karlsruhe, Germany

Corresponding author: Houssem Guissouma (houssem.guissouma@kit.edu)

This work was supported by the German Federal Ministry of Education and Research through the German Federal Ministry of Education
and Research (BMBF) in the Project Step-Up!CPS (Förderkennzeichen) under Grant 01IS18080D.

ABSTRACT With the increasing importance of Over The Air (OTA) updates in the automotive field,
maintaining safety standards becomes more challenging as frequent incremental changes of embedded
software are regularly integrated into a wide range of vehicle variants. This necessitates new processes
and methodologies with a holistic view on the backend, where the updates are developed and released,
and the frontend (vehicle), to which the updates are deployed. In this paper, we introduce an approach,
including a process and a methodology, for continuous contract-based design, validation and deployment
of modular updates for variant-rich automotive systems. The approach considers the vehicle as part of its
connected environment enclosing a backend and concentrates on safety-critical applications. In addition,
we present the UPDateable Automotive Test dEmonstratoR (UPDATER), which is a mock-up for modern
Electric/Electronic architectures including a backend and a frontend part. It serves as a prototype for
developing, deploying and monitoring automotive OTA updates. In a case study based on UPDATER,
we apply the approach to three exemplary updates of a variable AdvancedDriver Assistance System (ADAS).
We show how the updates development and management may be achieved in an efficient and agile way.

INDEX TERMS OTA updates, contract-based design, variant and configuration management, safety-critical
systems, middleware, DevOps, advanced driver assistance systems, monitoring.

I. INTRODUCTION
The automotive industry is experiencing substantial changes
through the fast growing digitization of its functions to
achieve more safety, automation, comfort and energy effi-
ciency. The number of electronic control units (ECUs) has
increased from about 20 to over 150 in the last 20 years [1],
[2], and the amount of Line of Code (LoC) to 100 million [2].
This results in a growing level of complexity in terms of num-
ber of elements in the architecture and their interconnections.
For example, there are about three million functions in the
entire source code of the Volvo company according to a recent
study [3]. These functions are called at about 30 million
different places in the source code. In addition, there are

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Quan.

about 45.000 signals in a modern Mercedes-Benz premium
car [4]. Maintaining safety requirements is becoming more
crucial than ever with the continuous increase of the level of
vehicles autonomy on themarket (see Figure 1). To keep these
extensive software parts up-to-date as well as safe and secure,
software updates are developed in shortening life cycles
and deployed to the vehicles being in use in the field [6].
Up to now, most of these updates have been conducted in
workshops during regular visits or as part of recall campaigns
to fix safety-related bugs [6]. However, in recent years,
Original Equipment Manufacturers (OEMs) started to deploy
them Over The Air (OTA) instead of manual installation by a
professional technician in the workshop. These are referred
to as OTA updates. They result in a better satisfaction of
customers since they save the time and effort required for
the trip to the workshop [7]. Furthermore, they offer several

57696 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-8033-9439
https://orcid.org/0000-0001-8302-6086
https://orcid.org/0000-0002-2638-4861
https://orcid.org/0000-0002-5082-5487


H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

advantages for the OEM,whomay deploy the updates as soon
as they are available and save the costs needed to manage the
installation process with the workshops [7].

To handle the changes described above, the processes
and methods established for automotive development so far,
mainly based on the Waterfall and V-model, need to adapt
towards more agility [8]. This involves using new agile
process models such as Scrum for software development [9],
as well as a stronger link between the development and
the operational phase. This stronger link resulted in models
such as DevOps, where small incremental changes are
regularly built and tested in an automated way before being
deployed to the system in operation. However, this involves
in most cases only very specific unit tests, which might
not be sufficient for automotive functions with high safety
standards.

To achieve an agile development and deployment of OTA
updates, special care must be taken to deal with various
challenges. On the one hand, maintaining the security of the
target vehicle is a fundamental requirement for conducting
OTA updates. Remote updating adds new entry points which
may be used by potential hackers to tamper with the vehicle’s
software. It also removes the trained technician in the
workshop from the update process [7]. On the other hand,
the safety of the system must be maintained and proven after
each new software release in order to get a valid update
certification for safety-critical functions. The UNECE R156
regulation,1 which will take effect in the EU starting from
2023, requires a new type approval each time an update
has an influence on a safety criteria of the system or one
of its subsystems [10]. Furthermore, the high variability
of the automotive systems arising from the wide range of
product configuration possibilities needs to be efficiently
managed [6]. In other words, each developed update must be
verified and validated for compatibility and safety for each
affected variant, and the evolution of the variants must be
continuously tracked and modeled. Although the focus of this
paper lies on the safety and variability aspects, security issues
and methods will be shortly covered.
Contribution:We introduce a reference systems approach

for the lifecycle management of updates for safety-critical
functions (see Figure 2). It is based on a novel methodology
relying on formal specification of modular updates in a
contract-based design environment together with incremental
verification using delta-based modeling. The application of
the methodology is shown within the phases of an update
lifecycle management process including the phases of pre-
deployment, deployment and post-deployment. We show
how the introduced methodology may be applied for
modern electric/electronic architectures (E/E architectures)
by introducing the generic prototypeUPDateable Automotive
Test dEmonstratoR (UPDATER). Based on UPDATER,

1‘‘Proposal for a New UN Regulation on Uniform Provisions Concerning
the Approval of Vehicles with Regards to Software Update and Software
Updates Management System.’’

FIGURE 1. Expected evolution of portions of automated driving functions
(SAE levels) of the total vehicle sales according to [5].

the development of three different updates is shown and
evaluated.

The rest of the paper is structured as follows: In
section II, the state of the art of automotive E/E architectures,
release and configuration management, security and relevant
standards of OTA updates as well as contract-based design
is presented. Section III gives an overview on related works.
Thereafter, we introduce in section IV our process for update
lifecycle management and highlight our methodology for
incremental update design and verification for variant-rich
vehicle fleets. Then, in section V, we introduce the envi-
ronment required for developing, deploying and monitoring
modular updates as described in section IV. This includes
parts of the backend, where the incremental design and
verification take place, and the frontend which represents
the updatable E/E architecture of the vehicle. Furthermore,
we describe the concept of the frontend middleware required
to receive, check, install and monitor the updates. The
implementation of this backend-frontend environment is
shown by presenting our prototype UPDATER in section VI.
Section VII shows the application of our process-oriented
methodology by investigating three updates of an Advanced
Driver Assistance System (ADAS) consisting of a safety-
enhanced Adaptive Cruise Control (ACC). The presented
approach is then evaluated in section VIII based on the results
of the case study. Finally, we discuss some threats to validity
(section IX) and conclude the paper in section X.

II. STATE OF THE ART
A. AUTOMOTIVE ELECTRIC/ELECTRONIC ARCHITECTURES
Jiang defines the vehicle E/E architecture as ‘‘the fun-
damental organization of vehicle electrical and electronic
components, including ECUs, sensors, actuators, wiring,
power distribution, onboard andwireless communication etc.,
to realize the desired function and performance goals, with
emphasis on the interactions and interdependencies among
the components and with the environment.’’ [11]

Driven by the recent megatrends in the automotive
industry, such as automated driving and connectivity, the
E/E architecture is undergoing a transformation toward
a software-defined car (cf. section I). To deal with

VOLUME 10, 2022 57697



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

FIGURE 2. Structure of the suggested systems approach for managing
OTA updates.

these increasing electronic and software portions, the
E/E architecture has evolved from a distributed to a domain-
centralized architecture. Figure 3 shows how a domain cen-
tralized architecture of amodern car looks like. Here, the indi-
vidual domains are separated and connected though domain
controllers via an Ethernet backbone. This reduces the total
amount of wiring harness since inter domain-communication
is realized centrally over one single Ethernet backbone
with high bandwidth. The future trend of next generation
E/E architectures is moving toward a zonal architecture.
Here, the individual ECUs will no longer be grouped by
domain, but by physical zone of the vehicle [13]. This
will lead to a further optimization of the wiring harness by
profiting from the physical proximity of hardware platforms
and integrating a central vehicle computing module between
the zones.

The Adaptive Platform of the AUTomotive Open System
ARchitecture (AUTOSAR) is currently accepted as the de
facto standard for the development of automotive ECUs.
Its basic idea is to extend the former AUTOSAR Classic
Platform to a more dynamic architecture by enabling
service-oriented communication between software compo-
nents.2 The Adaptive Platform is based on the AUTOSAR
Runtime for Adaptive Applications (ARA). The latter is
composed of application programming interfaces (APIs)
provided by functional clusters and is associated to a (virtual)
machine. The APIs are either linked to the Adaptive Platform
Foundation, which provides essential features, such as
execution management and logging, or to the Adaptive
Platform Services providing amongst others services for
diagnostics, updates and configuration. [14]

B. RELEASE AND CONFIGURATION MANAGEMENT
A release is the collection of one or more, new or changed,
configuration items deployed into the live environment of

2In AUTOSAR adaptive, software components are realized as services
according to the service-oriented architecture (SOA) principle.

FIGURE 3. Schematic of a domain-centralized E/E architecture of a
modern vehicle, according to [12].

a system [15]. In the automotive industry, releases are
implemented on a regular basis, usually every three months
during development, and every six months after start of
production (SOP) [6]. Release management describes all
activities related to the definition, development, publishing
and distribution of the releases.

Configuration management is a more general term. It is
defined as the planning of a product, a process or a document
before, during and beyond its life cycle [16]. In the software
engineering field, configuration management sums up all
activities needed to manage the software parts of a product
along its life cycle [17]. These activitiesmay be classified into
the four categories: configuration identification (or baseline),
status control, change control and status account [18]. The
elements constituting the baseline of the product are called
configuration items.

System configurations are usually developed and main-
tained using so-called codeline diagrams (see Figure 4).
In this diagram, introduced new features are marked by
rectangles and release states by a circle with a version number
inside, e.g., version 1.0 and 2.0. Codeline diagrams allow
also for parallel development by defining different branches.
The branches are opened for a specific purpose, for example
fixing a bug, and may then be merged again with the main
branch. The composition of different codelines to build the
product defines the baseline.

Version management has the goal of managing and
tracking the versions of software components. In addition,
it ensures that developers working on multiple versions in
parallel do not overwrite each other’s changes [19]. Codeline
diagrams are also used for version management such as by
the widespread tool Git which is based on the notion of
repositories [20]. In the automotive field, version numbers
are usually given according to the semantic versioning3

scheme [21]. To enhance the consistency and compatibility of
software components, the concept of hierarchical versioning
building on the existing hierarchy of ECUs within the
E/E architecture is proposed in [4].

3structures the version ID as MAJOR.MINOR.PATCH.

57698 VOLUME 10, 2022



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

FIGURE 4. Examplary codeline diagram.

In addition to managing the evolution of systems in time
(versions), one must take account of the existing variability
in space (variants). This engineering field is known as variant
management. Variants are parallel existing configurations of
the system. To manage the components of variable systems
and achieve efficient reuse strategies, the approach of product
line engineering, or in the software domain, software product
lines, is themethod of choice [22]. Here, feature modeling is a
widespread method to model the variant space of the product
line. Features describe the variability points in a product line
as well as their inter-dependencies [23]. Besides that, the
mapping between features and implementation artifacts, such
as ECUs or software components, is important for building
system variants and maintaining traceability [22].

C. SECURITY OF AUTOMOTIVE OTA UPDATES
Security is an essential property for vehicles equipped with
the technology of OTA updates because of the new risks it
adds to the classical E/E architectures [6], [24]–[26]. Opening
the vehicle to the outside by means of external over-the-air
communication increases the risk of cyber attacks leading
to possible intrusion into the internal vehicle network, e.g.,
Man-in-The-Middle attacks. Further, by adding the capability
of remote updating of ECU software or firmware,4 threats of
installing malicious software arise, e.g., changing a firmware
that disables the brakes or unlocks the door in unexpected
situations [24]. Therefore, security mechanisms need to be
integrated as a central part of the process for lifecycle
management of OTA updates. These need to protect all kinds
of interchanged data from potential malicious third parties
on both frontend and backend sides. The data comprises
software code, messages between server and client as well
as further configuration and diagnostics information.

As described by Nilsson et al. in [24], the properties
required to secure OTA updates are: data integrity, authentica-
tion and confidentiality. Kim et al. [26] differentiate between
data and service integrity. Data integritymeans that no change
to the update data (software packages and configuration
files) was introduced by an unauthorized party. This may
be achieved by checking the validity of the data using a
hash function [26]. Integrity checks are usually combined
with data authentication based on digital signatures. Further,

4Firmware is a special category of software for low-level control tasks.

service integrity denotes that the service process, i.e., update
access, download and installation, hasn’t been modified by
any malware [26]. This may be guaranteed by emergent
blockchain methods including a data and network layer [27].
The second property, authentication, verifies whether the
received data origins from the claimed sender. By using
digital signatures added to the transmitted data, the receiver is
able to check the authenticity of the data and at the same time
its integrity [24]. Confidentiality represents the secrecy of the
transmitted data, which shall not be revealed to unauthorized
parties. Symmetric key encryption is an establishedmethod to
guarantee this property [24]. For server-client communication
on the Internet, the Hypertext Transfer Protocol Secure
(HTTPS) protocol is a widely used standard based on
certificates which provides all three properties of integrity,
authentication and confidentiality [28]. Since most of the
security methods are based on pre-programmed keys, and
seen the high number of vehicles in OEM fleets, an efficient
key management should be integrated on the backend side
of an update management system. Also, the keys must be
updated on a regular basis to reach an acceptable privacy level
of users [25].

D. STANDARDS, NORMS AND FRAMEWORKS FOR
AUTOMOTIVE UPDATES
When considering updating safety-critical systems like
cars, several standards and norms need to be taken into
consideration. The work of the UNECE Working Group
in WP29 [29] proposes methods for addressing security
concerns during over-the-air updates. It describes threats
posed to safety-critical functions that manufacturers need
to deal with during and after the update process. This
resulted in the R156 specifications which will become
standardized in the upcoming few years and need to
be considered while developing, deploying, installing and
operating updateable software in vehicles. Similarly, the
Society of Automotive Engineers (SAE) provides guidance
for developing systems in a secure way by introducing a
framework to implement cybersecurity practices [30]. This
is extended by the ISO/SAE 21434 which proposes security
requirements applicable to processes and systems. It aims to
give a guidance in managing and dealing with security risks
during concept, production and maintenance of automotive
systems [31]. In order to ensure that systems are safe as
well as secure, ISO 26262 needs to be taken into account.
It provides a number of methods to evaluate functional
safety within a vehicle and ways to deal with potential
hazards. Development according to ISO 26262 has been an
industry practice for some years and will continue to be
so alongside, especially for highly automated vehicles. The
standard ISO/PAS 21448 introduces a concept called Safety
of the Intended Functionality (SOTIF) that improves upon
known concepts of ISO 26262 by integrating the notion of
operational design domain.

AUTOSAR (cf. section II-A) provides recommendations,
requirements and technical specifications for updating the

VOLUME 10, 2022 57699



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

vehicle’s firmware and software over-the-air. The document
Nr. 945 of the release R19-11 [32] gives a detailed description
of a Firmware Over The Air (FOTA) process and the required
technical parts within the E/E architecture. These are a FOTA
Target ECU which receives the software and forwards it to
the low level memory stack instance (flashing), the FOTA
Master ECU which caches all new ECU software artifacts,
and a backend server for updates delivery. In addition to
the specification of the three FOTA parts, the document
specifies the rollback process5 and the communication
protocol between the modules. Furthermore, the AUTOSAR
adaptive community works on standardizing a so-called
Update and ConfigurationManagement (UCM)module [33].
This module is a service within the middleware of a service-
oriented architecture responsible for updating, installing
and removing software with special consideration of safety
and security aspects [33]. It uses the Crypto Interface
of the Adaptive Platform to verify the package integrity
and authenticity and to decrypt the update packages and
communicates through the standardized ara::com interface.
In addition to the standards described above, differ-

ent frameworks for automotive OTA updates have been
introduced in industry and research. One of them is
UPTANE [34]: an open source framework for the data
security and configurability of automotive software updates.
It distinguishes between two types of ECUs: primary ECUs,
which communicate directly over-the-air with the server and
perform complete security checks, and secondary ECUs,
which check the metadata of the primary ECUs as a second
level of verification. In UPTANE, there is an image and a
director repository on the server side. The image repository
contains all versions of the ECU software components of
the OEM and the corresponding necessary metadata for
their authentication. The director repository is responsible
for identifying the software images that are required for an
ECU network of a vehicle configuration. Another framework
is built by the consortium of automotive companies eSync
Alliance [35]. Its goal is the development and establishment
of a uniform and standardized data pipeline for OTA updates.
For that, the consortium developed a software development
kit (SDK) for a fast realization of OTA updating and
diagnosis. The central part of the eSync architecture is
an orchestrator module communicating with a server and
delivering the updates to distributed eSync Agents running on
each updatable ECU.

E. CONTRACT-BASED DESIGN
The idea of using contracts to improve software development
has first been introduced in the 1970s in the context of the
formal verification theory by the IBM Laboratory Vienna.
Later, towards the end of the 1980s, BertrandMeyer proposed
the concept of ‘‘Design by Contract’’ for sequential program-
ming [36], which is the foundation of the object-oriented

5rollback: switching back to the old software or firmware version in case
of a detected error during installation.

programming language Eiffel. Meyer defines contracts as
a set of pre- and post-conditions that must be met before
entering and after leaving one method. The preconditions
represent the specification of the environment of the method,
whereas the postconditions specify its guaranteed behavior
under the specified environment. In addition, contracts may
include static statements called invariants, which must hold
at every state of the system. The basic idea of contracts
is similar to distributed automotive development processes
where an OEM must agree with its suppliers (tier-1, tier-
2) on the subsystem or component to be delivered [37].
By formally specifying the interfaces of these components
and designing them in a modular way, contract-based design
facilitates the verification and validation of the developed
systems. Besides, contracts are a useful way to maintain
requirements traceability and to enable formal proofs for their
fulfillment, which is crucial for safety-critical systems.

In the 2010s, contract-based design has been gaining more
attention for application in the fields of embedded and Cyber
Physical Systems (CPSs). This resulted in the introduction
of the theory of contracts by Benveniste et al. in [38].
In this theory, a contract is defined intuitively as a pair of
assumptions and guarantees:

C = (A,G) of {Assumptions, Guarantees}, (1)

where A are properties formally describing under which
context the design is assumed to operate, andG are properties
describing its obligations [38], i.e. requirements assigned to
its behavior and output. Contracts are intended to be inten-
tionally abstract and theymust distinguish the responsibilities
of a component from those of its environment [38]. A more
formal definition of a contract C is given by equation 2, where
MC is the set of implementations6 of C and EC the set of its
legal environments [38].

C = (MC, EC) (2)

Contracts may be directly derived from requirements associ-
ated to the system components by different formalisms. These
include automata modeling, temporal logic constructs (e.g.,
for safety requirements), probabilistic constraints (e.g., for
reliability requirements) and linear/nonlinear constraints on
real numbers [39].

There are different mathematical properties helping to
reason about a system architecture based on contracts and
their associated component interfaces. On the one hand,
several contracts may be used to construct a composite
contract. The composition of two contracts C1 and C2, denoted
as C1 ⊗ C2, is defined by the following A/G pair [38]:{

A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2)
G = (G1 ∩ G2)

(3)

On the other hand, to specify the vertical contracts asso-
ciations within the system’s hierarchy, the refinement (�)
relation is defined. A contract C′ refines � another contract
C if and only if 1) any implementation of C′ is an

6One component M implements one contract C if it fulfills its A/G pair.

57700 VOLUME 10, 2022



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

implementation of C, and any environment of C is an
environment of C′.

Contracts do not only enable formal verification, such as
using model checking methods, but also are an efficient way
to monitor safety specification at runtime, in simulation as
well as in the real-world system [40].

In this paper, we formalize requirements into A/G contracts
using temporal logic constructs, which were first introduced
by Pnueli in 1977 to reason about propositions in time [39].
For this purpose, the two well-established formal languages
Linear Temporal Logic (LTL) [41] and Signal Temporal Logi
(STL) [42] are accepted as suitable specification means. LTL
combines so-called atomic propositions AP using different
logical operations, such as negation (¬) or disjunction (∨),
and two basic temporal modalities, next (©) and until (U).
STL is an extension of LTL to cover timing properties
of dense-time real signals and signals with continuous
dynamics.

III. RELATED WORKS
In [43], Wang et al. introduce a concept for integrating
model checking with unified system modeling in SysML for
the purpose of system safety analysis and verification. For
that, they specify transformation rules to convert semi-formal
SysML models (BDDs, STMs) into formal models which
may be verified by symbolic model checkers, here the
NuSMV tool. Based on the results of the model verification,
the functional model of the system is incrementally refined
before processing to the implementation. The application of
this approach is shown for a case study of integrated modular
avionics. In the same context, Xie et al. propose in [44]
a compositional verification concept of SysML models of
safety-critical CPSs. They use Assume/Guarantee contracts
instead of generic safety properties to enable for modular
refinement verification and translate a safety profile into a
Fault Tree Analysis (FTA) to conduct the safety analysis.
The modeling environment relies on a transformation of
the SysML models into OCRA7 models for conducting the
virtual integration. However, no incremental verification of
small changes to the system architecture, which are necessary
in update cases, is considered in the two mentioned works.

In the context of automated driving, a method for runtime
verification of STL specifications in the CARLA simulator is
presented in [45]. It uses the RTAMT library, also employed
in our work, to monitor requirements for an experimental
ACC system at simulation runtime. This enable early veri-
fication of different driving scenarios as well as systematic
design space exploration, e.g., through property falsification.
The monitor calculates a robustness metric for the fulfillment
of the specification. It is used to optimize the PID controller
of the ACC in a design-space exploration approach. Similar
to this work,Watanabe et al. [40] rely on runtime verification
of STL specifications for safety verification during the
design of intelligent vehicles. They use the tool Breach

7tool for checking the refinement of temporal contracts.

to preform a case study for the integration of two ADAS
features: Cooperation Pile-up Mitigation System (CPMS)
and False-Start Prevention System (FPS). The specifications
are formulated as Assume/Guarantee contracts. The authors
explain the required checks of assumptions and guarantees
at the design and runtime phase which must be managed
by OEMs. Both of the described works focus on runtime
monitoring of contract specifications for automated driving.
However, none of them considers the challenge of dealing
with the high number of system variants. Also, they do not
show how the validation of the contracts can be guaranteed
at the system level by combining the monitoring results at
component level.

Finally, Ayres et al. introduce in [46] an approach for
deployment of automotive ECU software updates based on
lightweight virtualization known as containers. This leads to
more efficiency in download site and times through layer
sharing. Although we don’t explicitly use containers in
this work, but update packages to be deployed as virtual
machines, we regard containers as an efficient alternative
technology. This is especially a suitable approach for smaller
ECUs with limited resources, as well as for scalable
deployment strategies using theKubernetes system [47], [48].

IV. PROCESS AND METHODOLOGY FOR LIFECYCLE
MANAGEMENT OF UPDATES
A. PROCESS OVERVIEW
1) REQUIREMENTS FOR PROCESS DEFINITION
To maintain an automotive system using updates, there need
to be mechanisms in place that enable and facilitate their
development, deployment and operation. A lifecycle model
for update development must therefore incorporate phases
and steps for the incremental specification, implementation
and distribution of software components.

The development must start with well formulated require-
ments that can be interpreted and used in system verification
and validation. These requirements must be based on the
initial development phase (before SOP) and continuously
updated through, e.g., analyzing collected diagnostics data
about the vehicles’ functionality and performance. Another
reason for changing or extending the requirements after
SOP may be legal regulations set by a governing body.
Third is the introduction of new functionality driven by
evolving customer needs. The resulting set of requirements
must lead to a potentially updated system design that
is capable of meeting the safety standards. The latter is
then incrementally transformed into a specification for an
implementation, which can be virtually integrated into the
existing system environment. If there is confidence that
the system design fulfills the set of requirements, it can
be implemented and individual components can be verified
and validated using various techniques such as Software-
in-the-Loop (SiL) or Hardware-in-the-Loop (HiL). After
validation, the updated software components need to be
stored and prepared for deployment. During deployment,

VOLUME 10, 2022 57701



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

security aspects with regards to the data transmission need
to be considered (cf. section II-C). Once transferred to the
system, the software components must be installed and taken
into operation without disrupting the systems integrity.

2) PROCESS PHASES
We propose a process that covers all the requirements stated
in section IV-A1, and, at the same time, provides flexibility
to designers and developers. It is split into three distinct
phases: the pre-deployment phase, which includes planning,
modeling, implementation, verification and validation of an
update, the deployment phase, in which the update packages
are securely transferred to the target vehicle and the post-
deployment phase, in which the update is running on the
vehicle and being continuously monitored to ensure its safe
operation. The advantage of this order is twofold. On the one
hand, the three phases can be viewed in their own way and
their work products serve as handovers between them. On the
other hand, this structure allows for one phase to be altered
and tailored to a specific domain or context. The process is
further divided into the following six steps:
• Design
• Virtual Integration
• Implementation and Build
• Verification
• Deployment
• Runtime and Monitoring

These steps and the respective phases that they are executed
in are shown in Figure 5.

In the pre-deployment phase, all the steps are incremental,
which means that only changed or affected components
within the system architecture need to be re-designed and re-
verified. These steps are also iterative, meaning that going
back to the previous phase is allowed whenever it is required
to (see dashed upward arrows in Figure 5). Furthermore, the
first two steps (design and virtual integration) are conditional.
In other words, one or both may be left out if the required
update does not affect them. Although the process model in
the pre-deployment phase is similar to the Waterfall model,
its included methodology may be applied in different other
models.

A detailed description of the methodology used in the three
phases is given in the following sections.

B. PRE-DEPLOYMENT
We consider update lifecycles to be continuous, meaning
that a new update cycle is started whenever a trigger for an
update decision is detected or introduced. Update Triggers
can be of many types, but the most common ones addressed
in this paper are: regulatory changes, marketing demands
or feature additions, error corrections and performance
improvements. These triggers are partly based on collected
feedback data from the post-deployment phase (cf. upward
arrow in Figure 5).

The type of trigger has an influence on the necessary devel-
opment steps during the pre-deployment phase. According

FIGURE 5. Process overview.

to ISO/IEC/IEEE 14764 [49], there are four main categories
for software maintenance after delivery: ‘‘corrective’’ to
fix discovered problems, ‘‘adaptive’’ to keep the product
usable in changing environments, ‘‘perfective’’ to provide
enhancements for users and ‘‘preventive’’ to prevent errors
before they occur in live system. In the automotive field,
we may regard preventive software changes as a special
kind of corrective ones, with the only difference that
they are triggered by predictive maintenance analysis or
by collected monitoring reports in ‘‘shadow mode’’8 tests.
After tailoring the ISO/IEC/IEEE 14764 categories to the
automotive context, we define the following three types of
updates:
• Corrective update: corrects bug(s) encountered during
operation. It doesn’t require any requirements change,9

since it is only a correction of the system in order to
comply with existing specifications.

• Adaptive update: adapts software to keep it usable
in changed environments, if possible, within the same
requirement framework. An example is adjusting the
interfaces of a software component after changing a
hardware module or an operating system. The environ-
ment may be external such as a new legal regulation.

• Perfective update: serves the purpose of enhancing
the system’s functionality and performance to improve
the user’s experience and respond to its new demands.
Thus, this update type adds functionality to the system
resulting in additional requirements.

To apply contract-based design, it is necessary to divide the
system architecture into a set of components. This is known
as functional decomposition as described in [50]. The first
abstraction consists of one top-level or system component
which is refined by at least two subcomponents. Each of them
may be further refined until reaching the lowest granularity

8a system running passively in the background of an automated driving
function during usage.

9We assume, following the ISO/IEC/IEEE 14764, that the initial set
of requirements is correct and complete with regards to the safety-related
properties of interest.

57702 VOLUME 10, 2022



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

TABLE 1. Types of updates and their impact on the component under
update.

level which we define as module’s level. So, a module is
the smallest updatable component which will be released as
a software package and may be deployed to the system’s
frontend. The update design starts at one of the granularity
levels by specifying the change of one specific component,
which we call component under update (CUU). Table 1
shows a comparison of the three considered update types
with respect to their triggers and their respective needed
modular changes to the affected CUU. As we are relying
on contract-based design as an enabler for modularity and
hierarchy, we differentiate between changes of interfaces,
of contracts and of implementation. The latter is common to
all types of updates, since every updatemust result in a change
of the software code. In order to achieve an incremental
model-based development for all three kinds of updates,
we rely on the concept of delta-based design as described
in [51]. This concept models a system’s update U as a matrix
of so-called time deltas 1:

U =


11,1 11,2 · · · 11,L

12,1
. . .

. . .
...

...
...

. . .
...

1N ,1 · · · · · · 1N ,L

 , with

1 =

 1I
1C

1Imp

 (4)

where L is the number of granularity levels in the system
architecture and N the maximum number of components
within one granularity level. As expressed by equation 4,
a delta is a vector of three delta transformations applying
to one component M . The are 1I for adding or removing
interfaces (inputs/outputs), 1C for contract changes and
1Imp for implementation changes (see example in Figure 6).

To deal with the high variability of the maintained
vehicle configurations and increase the reuse of components,

FIGURE 6. Delta categories as unit of change for modular updates.

OEMs usually adopt a product line approach. Here, the
product variants are developed within an overarching basis
platform by identifying the common and variable parts of
the requirements, architecture and implementation. Based on
the update trigger, which is translated by, e.g., the product
manager(s) into a change request, the affected CUU as
well as the affected system variants within the product line
need to be identified. For this, we use a feature tree and a
variable architecture model, called 150% model; both will
be introduced in section V-A. This step is called, according
to [23], impact analysis. It results in a reduced variant model,
named variant-representative model. This model represents
a reduced set of the system architecture, as the system of
interest for a specific update is only a part of thewhole vehicle
system. The resulting deltas are then verified virtually in an
incremental way (see virtual integration in Figure 5). This
includes the verification of the consistency and refinement
relations of the contracts from the smallest updatablemodules
up to the system component.

After completing the implementation and build process
of the modules under updates (MUUs),10 these are verified
with regards to the validated contract specifications. This
is achieved by dedicated monitoring programs, which are
able to read the contract specifications and compare them
with the relevant inputs and outputs of the MUUs in the
test environment. The monitoring may be executed online
(during simulation or hardware-tests) or offline by checking
collected execution traces. The monitors may need to be
re-generated each time the interfaces or contracts of the
updated modules are changed. We propose to conduct most
of the monitoring-based verification virtually within flexible
digital twin models. However, and depending on the quality
of the used digital twin models, at least parts of the tests
still need to be conducted on hardware-in-the-loop setups and
physical vehicles for final update validation.

C. DEPLOYMENT
Deployment is defined according to Dearle in [52] as
a post-production activity between the acquisition and

10One CUU leads, after finishing the update’s implementation, to a set of
n updated software modules called MUUs.

VOLUME 10, 2022 57703



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

FIGURE 7. Overview of the deployment process phase.

execution of software. It is conducted by a software deployer
which is in our OTA updates environment an update client
installed on the frontend and communicating with a remote
server on the backend side. An overview of the deployment
phase in our process is depicted in Figure 7. It is divided into
the following sequential stages:
• Update initiation: From the server perspective, the
deployment of updates is initiated by the client in a
‘‘pull’’ approach. A ‘‘push’’ approach from the server
to the client is also feasible, but requires modification
of the deployment workflow as well as the database
infrastructure. After successful authentication using
certificates, the client sends a request to the server
to check for updates. For this, it sends the relevant
configuration data of the vehicle in a pre-defined format.

• Deployment pipeline: The configuration data, which
defines the vehicle’s fingerprint, is received by the
server over-the-air through a securely encrypted com-
munication channel. This fingerprint of the requesting
vehicle is then compared to the configuration data
of the released software/firmware modules saved in
the release database. Here, especially the configuration
constraints for variant compatibility validated in the
pre-deployment phase must be checked. If compatible
new module versions are found, they are packaged
(including encryption) into a so-called deployment
package. After that, the download job begins.

• Software/firmware update: The download is executed
by the client on the frontend side. After finishing it,
the updates are first decrypted and unpacked, then
distributed to the corresponding ECUs of the vehicle.
The affected modules are then substituted with the new
versions by the update service of the ECU middleware.
Finally, the status of the installation is reported back
to the server through the update client of the vehicle.
The communication with the server uses the same
bi-directional secure channel both for download and
reporting.

D. POST-DEPLOYMENT
After completing the deployment, the updates transition into
the last step of the lifecycle process, the post-deployment
phase. As the update is now in-place and running, it is

subject to runtime monitoring: The behavior of the updated
software components is continuously verified against their
contract specification, which has been installed as part
of the deployment package. Monitoring is performed by
dedicated modules that are able to detect violations of the
applications’ contracts. Once such a violation is detected,
the gathered information is returned to the developer using
an encrypted over-the-air channel. This closes the loop of
the development process, triggering a new update cycle.
In addition to reporting, further actions can be performed
optionally: Depending on the criticality of the violation, it can
be necessary to perform a rollback to a last known-good
version or transition into a state of degraded functionality.

V. ENVIRONMENT FOR LIFECYCLE MANAGEMENT OF
UPDATES
To realize the process and methods described in the previous
section, an appropriate environment for update lifecycle
management is necessary. This involves different design
and testing artifacts in the backend, as well as specific
components and services of the E/E architecture in the
frontend. The systems approach is defined as the combination
of this environment with the process (cf. Figure 2).

A. BACKEND
1) MODELING ENVIRONMENT
As described in section IV, model-based design is used to
facilitate the incremental design, verification and validation
of automotive updates. Besides, to optimize the level
of reuse during the development of highly configurable
automotive systems, the approach of product line engineering
is adopted [53]. By integrating contract-based specifications
within the product line, the safety assessment of the system
may be achieved in a more efficient way by increasing the
reuse of components, as shown by Nesic in [54]. An overview
of our suggested modeling environment is represented in
Figure 8.
Product line engineering separates the problem space from

the solution space. On the one hand, the user goals and
objectives, the usage contexts and the quality attributes of
the system are modeled in the problem space [53]. A feature
model (cf. section II-B) is used to model the variability in
this space. Constraints, such as inclusion or exclusion, may
be added to allow cross-tree relationships [55]. An example
is ‘‘feature 1.1 requires f 2.1.1’’ as depicted in Figure 8.
Additionally, a logical view of the 150% architecture model
incorporating all components, their refinement relations and
their contract specifications is included as part of the problem
space. We differentiate between parametric and concrete
components. Parametric components are an abstraction of
one or more similar alternative components. By setting
parameters of a specific configuration in the paramet-
ric component, the corresponding concrete component is
derived. Mapping relations between the feature model and
the components define the association between them. In this

57704 VOLUME 10, 2022



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

way, it is easily possible to derive the logical architecture
of any variant selection. Furthermore, we define a feature as
concrete if and only if: it is a leaf of the feature tree or it is
mapped to at least one concrete component.

The solution space, on the other hand, models andmanages
the variability of the concrete functional units, the operating
environment and the domain technologies [53]. We extend
the feature model of the problem space with further features
defining the exact solution configuration, e.g., version of
a deployable software module or a specific ECU type.
Subsequently, similar to the feature composition concept
in [55], each feature in the solution space is implemented
by a distinct module or component, and the system variant
is synthesized by composing feature modules. These features
are mapped to implementation models, software module
versions and ECU configurations within the technical view
of the 150% architecture model. These parts of the technical
architecture are implementations of the concrete components
in the logical architecture, and subsequently must fulfill their
contracts.

2) DIGITAL TWIN
To check the functional and non-functional requirements of
the updated components, as well as their integration into the
system architecture, we rely at the backend side on a digital-
twin. It consists of simulation models (virtual space) of the
vehicles in the field (real space) which are reconfigurable
in order to allow for testing all existing system variants.
This virtual testing is essential because not all hardware
variants, i.e., sensors, actuators and ECUs, can be available
in form of physical systems in the lab. Based on the digital
twin, different scenarios and test cases may be run in a
simulated environment while taking into account changing
environmental conditions. In this way, the updated model
or software may be checked with regards to the specified
contracts within every relevant system variant. So the digital
twin is the basis for conducting the steps of the process
phases Implementation and Build as well as Verification (cf.
Figure 5).

We propose the digital twin concept depicted in Figure 9.
It is defined as the combination of a simulation setup,
including dynamic models of the system under test and a
virtual driving environment, with an oracle of scenarios and
test case catalogs saved in a database. The dynamic models or
binary code are directly retrieved from the 150% architecture
model of the product line, which is associated to the feature
model throughmapping relations (cf. section V-A1). Through
variant selection based on the feature model, the simulation
model may be configured to build up a specific variant
configuration. The architecture model is kept up-to-date by
synchronizing it with the systems in use by feeding different
kinds of data from the real space. The field data includes
update feedback informing about the status of running update
processes, monitoring reports describing eventual contract
violations at runtime and other diagnostics data such as
system health monitoring or context information.We propose

to conduct the verification by means of monitoring formal
system specifications, i.e., contracts. The monitoring may
be conducted either online (at simulation time) or offline
by analyzing logged simulation traces. Besides that, the
behaviors of the components may be observed on different
granularities (system, sub-system, component, module) and
abstraction levels (Matlab/Simulink model, C/C++ code on
host machine, virtualized ECU).

After testing the models used for implementation based on
the digital twin, the software of the modules under updates
can be built using continuous integration (CI)/Continuous
Delivery (CD) pipelines which may be integrated in the
version management system of the company. CI/CD is
currently the state of the art for agile software development
in most industrial areas. To allow easier deployment, the
modules can be released as container applications.

3) DEPLOYMENT SERVER
The server is an abstraction of a possibly network of
numerous server computers building a whole cloud infras-
tructure. It represents the interface between the three
phases pre-deployment, deployment and post-deployment
(cf. section IV-A). On the one side, it integrates the results of
the implemented and validated updates, which are released
and saved in the database of the server. On the other
hand, it communicates with the update client to deploy new
software versions over-the-air (cf. section IV-C). In addition,
it collects all feedback data and processes them to support
the continuous improvement of the vehicles being used in the
field.

The release database is the central repository of released
module versions. Those are ready to be deployed onto
the vehicles both during production and throughout the
after-sales phase in form of OTA updates. Figure 10 shows
an entity-relationship diagram visualizing the main objects
(dark gray boxes) of this database, their relations (light
gray diamonds) and their associated data (white ellipses).
The deployment package is assembled dynamically by the
server after processing an update request from a specific
frontend configuration. It may contain from one to n different
update packages. Each update package characterizes one
module and has a list of configuration constraints. This
list is one of the results of the pre-deployment phase and
defines the conditions to ensure variant compatibility of an
update, e.g., that the vehicle must include a specific ECU
with a constrained software version. The constituting parts
of the update package are the binary code, information
about the module configuration and the contracts specifying
its behavior and safety properties. Both the update and
deployment packages should be prepared in a compressed
format to save memory and transmission time.

Another important task of the deployment server is the
security verification and management. This is essential
to maintain the properties of data integrity, authenticity,
confidentiality (cf. section II-C).

VOLUME 10, 2022 57705



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

FIGURE 8. Overview of the modeling environment covering the problem and solution space for incremental update design and verification.

FIGURE 9. Structure of the digital twin, elements of the modeling
environment are colored in green and additional digital twin elements
are depicted in blue.

FIGURE 10. Entity-relationship diagram (Chen) of the release database.

B. FRONTEND
1) E/E ARCHITECTURE
As described in section II-A, the E/E architecture includes
all hardware components (electric and electronic) of the
vehicle with the numerous software components and services
running on them. A flexible and modular E/E architecture

is one of the central cornerstones for the realization of the
update process. To perform an update as specified by the
deployment process of Figure 7, the vehicle must include
an update client that communicates with the deployment
server on the backend. This client should be installed on
a central hardware component which has direct access
to wireless communication channels, e.g., using WLAN
or 4G/5G. In the E/E architecture example presented in
section II-A (see Figure 3), this could be the telematics
unit if it has enough processing resources or one of the
domain controllers/gateways. Another important requirement
for this unit is that it must have an extended memory
storage for locally saving the deployment package before
distributing the software to the target ECUs. Furthermore,
all updatable ECUs must have a dedicated update service
which orchestrates the internal update process. To allow for
a modular exchange of software components and to enable
flexible runtime monitoring, a suitable middleware needs to
be installed on each updatable ECU.

2) MIDDLEWARE FOR MODULAR UPDATES
The middleware provides functionality for running applica-
tions on the hardware platform as well as features necessary
for lifecycle management of OTA updates within the vehicle.
It is important to support software functions of mixed critical-
ity, e.g. running safety-critical driving applications alongside
with infotainment functions, while keeping cross-application
effects to a minimum. Therefore we propose a hypervisor as
central component of the middleware architecture. It allows
for fine-grained isolation between guest domains11 and yields
extensive control over the execution schedule [56].

11Software of any kind running under control of the hypervisor.

57706 VOLUME 10, 2022



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

FIGURE 11. Generic middleware concept showing multiple functions
connected via inter-domain communication.

To support modular updates, we leverage the ability of
splitting large applications across several virtualized domains
on a hypervisor-based platform. This results in multiple
advantages:
• Resource constraints (e.g. CPU cores, memory) can be
defined for each domain.

• Isolation between unrelated applications is enforced.
• Communication between guests can be supervised.
• Guests can be started, stopped and replaced dynamically
during runtime.

These additional control mechanisms lead to improved
safety and security of the overall systemwhile also enhancing
modularity and observability of each deployed software
function [57]. These advantages are not free, as the hypervisor
causes some overhead in terms of processing time and
additional management tasks. The high processing power of
modern Systems on Chips (SoCs) combined with suitable
resource management and scheduling can however compen-
sate for this loss of performance. This paper demonstrates
how to fulfill the demanding requirements for updatable
automotive functions using a hypervisor-based platform.

While the update verification and checks can be executed
within an unprivileged domain, the central update procedure
is carried out on a privileged hypervisor domain (see
Figure 11). The update procedure primarily consists of
replacing a domain with the updated version. In addition,
the updated domain can be run in parallel to the old version
while its behavior is being verified. This allows to realize a
‘‘shadow mode’’ testing or a hot-standby configuration with
the ability to quickly return to the previous version in case of
errors.

Some requirements are imposed on applications and the
update process. Applications need to be partitioned by the
developer in advance, resulting in the individual units to be
updated, which are defined as MUUs (see section IV-B).
To allow individual domains to interact with low latency and
high performance, a fast and reliable inter-domain communi-
cation mechanism is required. A possible implementation of
such a mechanism is described in section VI-B introducing
the UPDATER prototype. The communication mechanism is
extended by monitoring capabilities realized by a monitoring
component or service installed within the middleware. The
latter is able to verify the status of software components
according to their contract specification.

3) CONTRACTS MONITORING
As introduced in section II-E, contracts can be used to
formally describe valid working conditions of a component.

While some contracts can be checked entirely before runtime,
such as compatibility to installed hardware and software
components, others, such as precise timing and resource
performance, can only be verified during runtime. This task
of contracts monitoring is carried out by a service called
monitor. The monitor is generated as part of the development
process (IV-B) according to the contract specification.
Another possibility is to realize a generic monitor which
automatically reads syntactically unified contract files on the
frontend side. As contract specification language, we use STL
which extends LTL with real-time constraints (cf. section II-
E). When set up in parallel to the respective software
module, the monitor observes its input and output data and
continuously checks whether this data matches the contract
specification. This operation has to be transparent to the
function, i.e. the application (module) may be able to detect if
it is being monitored, but its execution shall not be influenced
when it is in the ‘‘monitored’’ state.

During normal operation, the monitor does not detect any
contract violations. Otherwise, if a violation is found, the
monitor creates an alert. As a consequence of this alert,
information about the violated contract is communicated to
the developer by the update client. If necessary, the alert can
also be picked up by other services in the frontend, e.g.,
to trigger a rollback mechanism (section IV-D).

VI. UPDATER-PROTOTYPE IMPLEMENTATION
In the following, we describe the hardware components, tools
and technologies used to implement the backend and frontend
parts of our environment for lifecycle management of OTA
updates; both constituting the UPDATER prototype. Based
on this implementation, we analyze later in section VII the
case study of the ADAS system.

A. BACKEND IMPLEMENTATION
As described in section IV-B, the variant management is
an important part of the lifecycle management process of
safety-critical automotive functions since the compatibility
of the changed software modules must be guaranteed for all
affected system variants. That is why we use a product line
model to optimise the reuse of components (cf. section V-
A1).

We implement the feature model covering both problem
and solution space in the Eclipse-based tool FeatureIDE
which supports all phases of feature-oriented software devel-
opment [58]. In this tool, we are able to graphically model the
features of the product line, to maintain their dependencies
and to export specific or all variant configurations in XML
format. To build the logical architecture of the 150% model
(see Figure 8) and enrich it with the contract specifications
of each component, we use standard architecture modeling
according to SysML, including the following diagram types:
Requirement diagram, Block Definition Diagram (BDD) and
Internal Block Diagram (IBD). The virtual integration is
done by checking the consistency and refinement relations
of contracts with the help of the OCRA tool [59]. This

VOLUME 10, 2022 57707



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

FIGURE 12. E/E architecture of the UPDATER.

tool uses the semi-formal, LTL-based language Othello
to write the contracts, and checks their validity within
the system architecture based on the model checking tool
NuSMV. The SysML logical architecture is associated to
a textual architecture description in Othello, called OCRA
System Specification (OSS). By means of this textual
description, we realize the concept of parametric components
as introduced in section IV-B. The mappings between the
feature model and the logical architecture are achieved by
using the feature names in FeatureIDE as parameters within
the parametric component models. Finally, we automate the
incremental verification process for updates by implementing
Python scripts to identify the consistency and refinement
relations to be checked based on delta transformation
functions.

In the solution space, the implementation models are
available in the tool Simulink of Mathworks, and associated
to the components in the logical architecture by mapping
them to the product line features. The variability of the
Simulink dynamic blocks is managed by the Matlab Variant
Manager [60]. By using the embedded coder of Simulink,
software code in C programming language is generated
for each of the update modules. Then, small modifications
are needed to integrate this code into the service-oriented
architecture of the middleware. Through a CI/CD pipeline,
binary code for each module is then generated.

The released software modules are then saved within the
storage of the deployment server. The latter is implemented
as a web server in JavaScript including a MySQL database
structured as introduced in Figure 10. Certificates are added
both on client and server side to allow an HTTPS-based
communication.

B. FRONTEND IMPLEMENTATION
The UPDATER E/E architecture consists of multiple ECUs
and is attached to a simulated driving environment to provide
stimuli for the virtual sensors in the system (see Figure 12).
The control loop consists of the following parts:

Main control unit: The SoCXilinx ZCU102 is used as the
main hardware platform on which the middleware, including
the update client, is implemented and all computationally
intensive application modules run. So, it may be regarded

as one of the central domain controller within a modern car.
It is connected with every device used in the UPDATER
E/E architecture and is able to communicate remotely with
the deployment server through a Wifi router.

TI Launch XL2: To fulfill the requirements of safety-
critical real-time applications, two TI Launch XL2 RM57L
are acting as brake and motor ECU and build the actuation
interface to the simulated driving environment. They run with
ARM Cortex-R computing cores. They are connected via
a Controller Area Network (CAN) bus to the main control
unit. The outputs of the TI Launch XL2 are converted into
simulator compatible signals using an interpreter running on
a Raspberry Pi, which builds a gateway to the simulation
environment.

Simulated driving environment: Since the UPDATER
does not represent a real car, a simulation environment is
needed. For this, CARLA, an open-source, high-performance
autonomous driving simulator [61], is used. This is the same
simulator used in the digital twin during the verification
phase (cf. Figure 9). It is running on a conventional PC
with extended graphics processing unit (GPU) resources. The
PC is connected to the gateway Raspberry Pi via Ethernet.
For this purpose, we establish a TCP socket communication
between the Raspberry Pi and the simulation environment,
and a CAN/I2C communication between the Raspberry
Pi and the rest of the demonstrator. Via this connection,
simulated sensor signals may be transmitted to the main
control unit. The throttle and brake values provided by the
TI Launch XL2 are used for the longitudinal control of the
simulated car.

Infotainment system: To visualize the current vehicle
status, a second Raspberry Pi is connected to the main
control unit via Ethernet (see Figure 12). It receives the
current ego vehicle speed, the engine speed (rpm) and the
information whether a lead car has been detected or not and
displays them on a Human Machine Interface (HMI) screen.
This function is called instrument cluster in the automotive
field. Furthermore, the same Raspberry Pi is used to enable
interaction with the user by setting the parameters of ADAS
functions or checking for OTA updates. If a new compatible
update is available, it can be installed. Updates are checked
and installed through the middleware service update client
implemented in Python. In addition, it allows to display
the current software versions of the embedded modules.
We summarize all the described features under the category
infotainment which motivates the name of the system.

With this setup in place, different ADAS functions for
longitudinal control may be deployed, monitored and updated
by applying the process and methodology described in
section IV. By extending the interface to the simulation
environment with a steering signal, other ADAS functions,
including lateral control, may be investigated.

We implemented the middleware based on the Xen
hypervisor, allowing to run multiple operating systems
in parallel [62]. Supported guests include Linux-based
systems, real-time operating systems (RTOS) and bare-metal

57708 VOLUME 10, 2022



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

FIGURE 13. Overview of application modules and middleware services of
UPDATER.

applications. We propose to use Yocto [63] to build a custom
Linux distribution for both privileged and unprivileged guest
domains.

Several services are provided by the middleware system
(see Figure 13). The update client and monitoring are the
most important services for the update life cycle. Following
the principle of least privilege, services with critical influence
on memory and platform configuration, such as the update
client, are only run on the privileged domain (calledDom0 on
Xen platforms) if such privileges are required. Other services,
as the monitoring system, may run in an unprivileged
domain to improve security. For simplicity within this proof
of concept implementation, we also install the monitoring
service within Dom0 (see Figure 13).

VII. CASE STUDY
A. SYSTEM UNDER UPDATE
The system that is being updated is an extended ACC
system.12 It is based on the speed and distance information of
a radar sensor installed on the front of an ego car. There are
two different modes in which the standard ACC can operate:
cruise and follow. In the first mode, there is no lead car in the
lane, or the distance is greater than the desired safe distance
(d > dsafe). dsafe is calculated based on the time headway
parameter h given by the driver and the current ego velocity
v according to the following equation:

dsafe = h ∗ v+ ddefault , (5)

where ddefault is the standstill default spacing, usually set to
10m by regulations. In the cruise mode, the system regulates
to the desired speed set by the driver, so the control goal is:
v = vset (cf. velocity control in Figure 14). In the follow
mode, a leading car in the lane is driving at the same speed
or slower than the set desired speed. In this case, the ACC
regulates to the desired safe distance and the control goal is:
d = dsafe (cf. Space Control in Figure 14). Further, we extend
the ACC with a Collision Avoidance (CA) feature which
is realized by an Autonomous Emergency Brake (AEB) as
specified in [64]. This adds a third mode to the system

12extended: stands for the extension with a safety mode allowing
emergency brake in critical situations.

FIGURE 14. How does an ACC system work.

(safety_critical) which is triggered when the distance to the
lead car is below a critical threshold.

In ourACC system, only the longitudinal control is realized
by theUPDATER frontend. Thismeans that the lateral control
is out of scope of the system of interest and is realized within
the simulated driving environment. For the implementation
of the described ACC system, we use a standard control loop
based on a PID controller for each of the modes cruise and
follow, and a state machine to realise the CA feature, i.e., the
safety-critical mode.

B. FUNCTIONAL DECOMPOSITION
The logical architecture realizing the system under update
described in section VII-A is derived based on the functional
decomposition principle (cf. section IV-B). The components
definition starts at the top-level system and ends at the level of
modules (cf. section IV-B). Each component Mj,i within the
architecture is specified by a list of contracts constraining its
safe behavior in different environments or operation modes.
Formally, this means that the conjunction of the contracts of
each component must hold at each time.

Since we aim at updating only the ACC function, our
variant representative model is not the whole vehicle, but
only the ACC network consisting of the relevant perception,
planning and control loop. This network is modeled for the
basic variant by the component ACC_Net at granularity level
1 (see the SysML BDD in Figure 15). This component takes
as input the radar data (radar_points, radar_t), the curvature
of the road curvature, the inputs from the driver (set velocity
v_set , time headway h and activation signal acc_activate) as
well as the current longitudinal velocity of the car v_long.
After doing all required calculations and control tasks, the
system gives two output signals to control the throttle and
brake of the vehicle (throttle_cmd , brake_cmd).
The ACC_Net component is specified by a unique contract

Csr ,13 which is modeled by an associated SysML constraint
block (cf. Figure 15). The exact dependency between the
inputs and outputs at this high level of abstraction is not
exactly known. For this reason, the contract formulates only
that each time radar points are fed in and the ACC is activated,
a reaction in form of an active brake or throttlemust take place

13sr is an abbreviation of ‘‘system reaction’’.

VOLUME 10, 2022 57709



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

TABLE 2. Contract Csr of the top-level (system) component of the basic
variant in semi-formal LTL language (OCRA tool).

TABLE 3. Components in the architecture of the extended ACC system in
its basic variant.

FIGURE 15. Block definition diagram of the top-level system of the basic
variant including its contract specification.

in the future after a certain delay time. Formally, this contract
is written in a semi-formal version of Linear Temporal Logic
in Table 2.
ACC_Net is composed out of the three components

ACCwSP,MC1 and BC1 (see Figure 15). The specification of
the other components throughout all four granularity levels is
done in the sameway. This results in the component hierarchy
listed in Table 3.

C. VARIANTS AND CONFIGURATIONS
To build a product line, we define exemplary features of the
ACC system for the following two variability categories: 1)
sensors/actuators and 2) functional scope of ECU software.

Different models of sensors and actuators, e.g., different
types of radar systems or variable vehicle dynamics, should

FIGURE 16. Feature model of the considered product line in the
investigated ACC use case.

be made configurable in the modeling environment. Here,
we choose, as an example, two alternative realizations of the
radar sensor (Radar1 and Radar2). These lead directly to two
associated alternatives of the Sensor Processing (SP) of the
radar input data, identified by the features SP1 and SP2 in
the feature tree model (see Figure 16). In addition, we cover
the possibility of adding extra sensors to the basic ACC
configuration such as using the input of a camera to upgrade
to a Predictive Adaptive Cruise Control (pACC) variant.
For simplification, we assume that a signal speed_limit is
provided by a corresponding component SL, and add a feature
with_SL to the ACC feature (see Figure 16).

For the ECU software, we consider the configuration
of the ECU network of UPDATER with different software
versions. This applies to each software module in the direct
environment of the ACC component, namely the brake ECU,
the motor ECU, and the switching logic,14 as well as for the
ACC itself which may exist with a safety-related extension
with a Collision Avoidance (CA) component and/or as a
pACC variant as described above.

After adding constraints, the above described feature tree
leads to a total of 48 system variants. The concrete features of
the product line are mapped to the components in the 150%
architecture model listed in Table 4. To enable the modeling
of deltas in the alternative components (cf. Figure 8),
a parametric component model is used. This means that
similar components, such as ACC_Net and ACC_Net_SL for
the system variant with the speed limit feature, are modeled
within one parameterizable component. The parameterization
is done based on mapping rules to the features.

D. UPDATES UNDER DEVELOPMENT
We specify different updates under developments (UUDs)
for the considered case study system. Each update is an
example for one of the three update types: corrective, adaptive
and perfective. In the following, we introduce the functional
description of these UUD.

14interface component between the high level (ACC, CA) and low-level
(throttle, brake) control.

57710 VOLUME 10, 2022



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

TABLE 4. Components in the ACC 150% model, bold: basic variant.

• Corrective update Uc: In certain situations, the vehicle
brakes with an acceleration a < amin (negative value)
or accelerates with an acceleration a > amax (positive
value) leading to a contract violation. The reason for this
are too large output values of ACC controller. The update
corrects this behavior by changing the control algorithm
of the ACC.

• Adaptive update Ua: We assume in this update the
fictitious scenario of introducing a new regulation for the
permitted highway speed in a specific country or region.
This would lead to limiting the highest speed of the
ACC to 120 kmh−1. So this update ‘‘adapts’’ the ACC
system to this new regulation by limiting the system to
this speed threshold even when the driver is sending a
higher set velocity.

• Perfective update Up: Before the update, the car may
switch quite often between throttle and break in the
follow mode when the relative velocity to the lead car
is near zero. This results in an uncomfortable driving
behavior and shall be avoided by this perfective update.

E. INCREMENTAL DESIGN VERIFICATION
The incremental verification is done both in time (evolution
within the basic variant) and in space (evolution within the
rest of variants in the product line). In the following, we show
for each of the three UUDs described in section VII-D
which deltas and verification steps are needed for the
formally specified modular components. We start from
the configuration of the basic variant as described by the
functional decomposition in section VII-B, denoted by the
version 1.0.

1) Uc : VERSION 1.0→ VERSION 1.1
The first update Uc is a corrective one and is triggered by a
contract violation detected during the operation phase based
on the monitoring system. We assume that this violation is
detected at granularity level l = 4 for the ACC component in
both its variations: ACC and ACC_SL. Based on the feature
model in FeatureIDE, wemay, by selecting the corresponding
features, easily identify that this update is required for all
48 variants in the product line.

Since the contracts stay the same, no new virtual integra-
tion is needed and the consistency and refinement relations
of the contracts are still valid. We assume that the error

is triggered due to the ACC controller, realizing the ACC
component, calculating too small (a < amin) or too high
acceleration values (a > amax) in certain situations of the
follow mode. To correct this behavior, we incrementally add
a simple saturation block in the Simulink implementation
model. This change is verified subsequently by means of the
digital twin simulation by monitoring the contracts of the
ACC component in a scenario reproducing the errors detected
at runtime.

2) Ua: VERSION 1.1→ VERSION 2.0
This update requires a change of the contracts of the ACC
component, respectively of the alternative concrete compo-
nent ACC_SL. Both components are modeled on a common
basis by using the parametric component ACC_param. Since
the change targets the curise mode of the system, it is applied
to the contract CACC_cruise. This is expressed by the following
time delta:

11,4 =

 0
change_C(CACC_cruise)

1Imp

 (6)

Consequently, the conjuncted contract of all three modes
CACC_conjuncted is also automatically updated. For the incre-
mental verification of this delta, the refinement relations of
this contract at higher granularity levels are verified using
the tool OCRA. The verification starts for the basic variant
by checking the following two refinement relations directly
affected by the change:

CACC_cruise ⊗ CCA_fb1 ⊗ Cswitching
� Csyscontract_cruise_CA

CACC_conjuncted ⊗ CCA_fb1 ⊗ Cswitching
� Csyscontract_sc

Since the refinement check is passed at granularity level
three. The rest of the system hierarchies do not need to be
checked. After validating the basic variant, the rest of the
model configurations in the variant representative model are
verified iteratively. Hereby, the space deltas between each
of the variants and the basic variant as well as the already
validated refinement relations are taken into account. For the
variants with the feature with_SL (speed limit extension),
the same initial delta is applied to the alternative concrete
component ACC_SL. Finally, after conducting the virtual
integration of the changed contracts for all variants, the
update results in the following update matrix describing the
validated deltas for the whole product line:

Ua =



0 0 0 11,4
0 0 0 0
0 0 0 0
0 0 0 14,4
0 0 0 0
0 0 0 0
0 0 0 0


(7)

VOLUME 10, 2022 57711



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

TABLE 5. Changed contract Csa of the switching component; changed
parts are in red and added ones in green.

FIGURE 17. Simulink model of the extended ACC system; the ACCwCA
component is further decomposed into the components ACC, CA and
Switching.

3) Up: VERSION 2.0→ VERSION 2.1
Although there are different possibilities to realize the update
Up, we decide to implement it by extending the behavior
of the switching component. Similarly to the adaptive
update, this needs a change of the contract of components
Switching1 and Switching2, both modeled by the parametric
component Switching_param. The delta applied to the
contract of Csa15 of component Switching1 is represented in
Table 5. This delta is incrementally verified by checking the
affected refinement relations in the upper level granularity for
the different involved modes of the system. The verification
starts by checking the basic variant and then the rest of the
variants in the product line. Since the changed contracts still
refine the old upper level contracts, no changes are applied
to the neighboring or parent components and the update is
accepted. The update matrix looks consequently similar to
the one of equation 7 with the difference that the deltas are
associated to the third and sixth components in the fourth
column.

15sa: abbreviation for switching_all.

FIGURE 18. Simulation results before and after the corrective update.

F. DIGITAL TWIN TESTING
We implemented a digital twin test system in order to perform
incremental variant-aware tests during the verification phase
of our process. The digital twin is built by combining the
updated implementation models in Matlab/Simulink with
simulated driving scenarios in CARLA as described in
section V-A2. The Simulink model is depicted in Figure 17.
The contract verification is realized based on the RTAMT tool
for online monitoring of STL specifications [65].

The achieved simulation results of the digital-twin envi-
ronment before and after implementing the corrective update
Uc are depicted in Figure 18. The simulation is conducted
for a scenario starting by following a lead car, with vset =
120 kmh−1, and then switching to the cruisemode by setting
vset to the lower speed of 50 kmh−1. Although almost no
visible differences in the course of the ego velocity can be
observed between the two figures, the ACC controller in
its version 1.0 is generating acceleration commands outside
of the contractually accepted range [−3.5m s−2, 2m s−2].
This is corrected after changing the parameters of the ACC
controller adequately.

The adaptive update is implemented in Simulink by
limiting the input signal v_set of the ACC block to the
maximum value of 120/3.6 = 33.33m s−1. The updated
behavior is tested in the simulation environment by running
a scenario where the ego vehicle is in the cruise mode
and setting the driver speed command to higher values than
120 kmh−1. The correct behavior could be observed and
validated by the fulfillment of the updated module’s contract.

The perfective update is implemented by extending the
switching module by a block assessing the acceleration
command of the ACC with regards to its previous value.
If the last acceleration is positive and the new command has
a small negative value, the Switching module just deactivates

57712 VOLUME 10, 2022



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

FIGURE 19. Simulation results before and after the perfective update for
a driving scenario with a lead car.

the throttle instead of applying the brake. In this way,
frequent switches between brake and throttle are avoided (see
Figure 19).

VIII. EVALUATION
A. EVALUATION OF VARIANT MANAGEMENT
The proposed approach for variant management based on a
feature model and an associated 150% architecture model
allows for a high level of reuse of components and a
clear traceability of requirements and/or contracts. For the
presented simplified example of this case study, we needed
a total of 21 concrete components and 23 features to model
and manage the product line. By introducing the concept of
parametric components, the number of maintained compo-
nents is further reduced to only nine. For modeling the safety
specifications, these components are associated to a total of
13 variable contracts, where each component is specified by
only one ‘‘strong’’ contract and/or multiple mode-dependent
contracts. After applying the deltas to instantiate specific
variants, 22 concrete contracts are derived. The mapping
between features and components is achieved by using
the features themselves as parameters for configuring the
parametric components.

Additionally, by using the Variant Manager of Simulink,
we achieved a consistent mapping between the deployable
concrete components, called modules, and the implemen-
tation models, which are subsequently realized as software
services.

B. EVALUATION OF INCREMENTAL VERIFICATION
By using the commonalities of components and contracts
in a product line approach, the effort for integration testing
is reduced considerably. Checking the refinement for all
contracts of the ACC case study in a brute force approach
requires an average of 46.81 s per single variant and a total

TABLE 6. Results of the incremental contract-based integration for the
presented three updates.

TABLE 7. Measurement of duration of deployment steps for an update of
the ACC module (based on 10 measurement repetitions).

of 37 min for all considered variants. By using the concept
of parametric reusable components, only the deltas between
the variants are tested. For the presented adaptive update,
only 10 refinement checks with a duration of 12.81 s were
needed to validate the updated contracts. Similarly for the
perfective update, 16 refinement checks with a duration of
17.14 s were necessary (see Table 6). For the corrective
update, no refinement checks are required at all since the
contracts remain the same.

C. EVALUATION OF DEPLOYMENT SYSTEM
The deployment system is evaluated by conducting different
updates developed according to the presented approach.
Table 7 shows the time required for the deployment of an
update of the ACC module. The deployment package (zip
file) has a size of 173 kB. The measurements show that, for
only one small update package, the time duration of the first
four steps is short (less than one second per step). However,
by increasing size of deployment packages and the number
of updated modules, the duration of steps 3 and 4 increases.
Since the current implementation of the middleware requires
a reboot of the system, the longest deployment time is spent
for this task (cf. step 5 in Table 7). Subsequently, re-starting
the guest domains with their potentially updated software
takes about 3.6 s. However, the duration of steps 5 and 6
is not dependent on the size and number of update
packages. Nevertheless, in this period the vehicle cannot
be used.

D. EVALUATION OF MONITORING SYSTEM
As mentioned in section VII-F, we use the RTAMT
monitor [65] by installing it on dom0 to check the contracts
during system runtime. This library calculates a robustness
metric to assess the fulfillment of contracts expressed as
STL specification. Positive values mean that the contracts
are fulfilled and negative ones that there is some contract
violation.

VOLUME 10, 2022 57713



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

TABLE 8. Summary of pros and cons/challenges of the presented methods and approaches.

In order to automatically monitor the updated components,
the contracts, deployed as JSON file, are read by a Python
script which initializes then the RTAMT monitor. For our
simplified E/E architecture, we didn’t notice any limiting
constraints on the platform resources due to the monitoring
overhead. For further enhancement, due to e.g., resource
limitations, the Python implementation should be translated
into a compiled language implementation, such as C/C++.

IX. THREATS TO VALIDITY
Despite the validation of the methodology introduced in this
paper for the described ADAS case study, some limitations
may constitute potential threats to validity in future OTA
updates management systems.

First, the investigated case study is rather limited in its
complexity in terms of the considered variant space (only
48 system variants) and it does not represent real-world
fleet data. Also the considered function of the extended
ACC has only autonomy level 1-2 according to the SAE
classification [66], whereas SAE 3+ functions require
for their realization significantly larger amount of sensor
and software components. However, despite the simplified
example, we may assume that the presented framework
is representative of larger functional networks with higher
automation levels since it includes the three main functional
parts: perception, planning and control. Still, a validation for
a more realistic product line needs to be conducted.

Furthermore, we did not focus on security aspects in
UPDATER and limited its scope to the use of a secure
communication channel using Transport Layer Security
(TLS)/HTTPS. So, neither the integration of an efficient key

management system for the fleet, nor security mechanisms
within the internal vehicular network, e.g. using hardware
security modules, have been considered.

Another threat to validity is the set of used Assume/Guar-
antee contracts. Since the contracts focus on safety properties,
they are not complete, and applying our approach guarantees
only the fulfillment of the specified safety requirements.
Subsequently, classical unit, integration and regression tests
are still needed after each update to ensure that the rest
of the non-safety-relevant requirements is not affected.
In theory, it is possible to ‘‘contractify’’ all functional and
non-functional requirements of the system, however, this
requires a very high effort for generating and maintaining
the contracts throughout the lifecycle of the product lines.
Novel methods based on artificial intelligence could support
in making this vision a reality by automatically generating the
contracts from existing validated implementations.

X. CONCLUSION
This paper outlined a systems approach for the design,
implementation, verification and deployment of over-the-air
updates of vehicles. The approach is centered on a process
designed in accordance with known standards and which
can be tailored to the needs of different manufacturers.
It provides mechanisms for dealing with incremental and
variant-aware verification, early integration, cyber security
risks and monitoring during operation. The different steps
of the process allow efficient development of software that
can be deployed securely over-the-air to a safety-critical
automotive system. The concept of contract-based design
was implemented to facilitate the handling of integration

57714 VOLUME 10, 2022



H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

issues while maintaining the system integrity and safety. This
paper also proposes ways to test updated components in
such a way that minimal effort needs to be taken in order
to ensure the safety of the system under consideration as
well as its variants. The prerequisites for the approach rely
on a well maintained system model, the use of contracts
and incremental verification of updates. We evaluated our
approach using the demonstrator ‘‘UPDATER’’ and showed
that is in fact applicable to real world systems. A summary
of the pros and cons, or rather challenges, of the introduced
methods and approaches is given in Table 8. Our work
may serve as a guideline for automotive companies planning
to introduce OTA updates for safety-critical functions.
It can also support the development of future standards for
safety-critical automotive updates.

In future work, we will evaluate the applicability of
the approach for different kinds of update triggers as well
as the influence of update priorities (critical/urgent, non-
critical) on the process. Additionally, the scalability of the
approach and the UPDATER prototype needs to be studied
by considering a larger product line with more variants.
Finally, although the presented middleware is based on
service-oriented communication between the deployment
modules, a thorough study of the process applicability
for microservices and event-driven architectures should be
conducted.

ACKNOWLEDGMENT
The authors thank Nadir Khan for his continuous support
with regards to the security aspects of UPDATER as well as
the student Yao Xiao for his strong engagement during the
implementation and testing phase.

REFERENCES
[1] P. Mallozzi, P. Pelliccione, A. Knauss, C. Berger, and N. Mohammadiha,

Autonomous Vehicles: State of the Art, Future Trends, and Challenges.
Cham, Switzerland: Springer, 2019, pp. 347–367.

[2] M. Staron, Automotive Software Architectures. Cham, Switzerland:
Springer, 2017.

[3] V. Antinyan, ‘‘Revealing the complexity of automotive software,’’ in Proc.
28th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
P. Devanbu, M. Cohen, and T. Zimmermann, Eds. New York, NY, USA:
ACM, Nov. 2020, pp. 1525–1528.

[4] A. Vetter and E. Sax, ‘‘Hierarchical versioning to increase compatibility
in signal-oriented vehicle networks,’’ in Proc. 27th Int. Conf. Syst. Eng.
(ICSEng), H. Selvaraj, G. Chmaj, and D. Zydek, Eds. Cham, Switzerland:
Springer, 2021, pp. 435–444.

[5] Private Autonomous Vehicles: The Other Side of the Robo-Taxi
Story. Accessed: Jan. 18, 2022. [Online]. Available: https://www.
mckinsey.com/industries/automotive-and-assembly/our-insights/private-
autonomous-vehicles-the-other-side-of-the-robo-taxi-story

[6] H. Guissouma, H. Klare, E. Sax, and E. Burger, ‘‘An empirical study
on the current and future challenges of automotive software release and
configuration management,’’ in Proc. 44th Euromicro Conf. Softw. Eng.
Adv. Appl. (SEAA), Aug. 2018, pp. 298–305.

[7] T. Chowdhury, E. Lesiuta, K. Rikley, C.-W. Lin, E. Kang, B. Kim,
S. Shiraishi, M. Lawford, and A. Wassyng, ‘‘Safe and secure automotive
over-the-air updates,’’ in Developments in Language Theory (Lecture
Notes in Computer Science), vol. 11088,M. Hoshi and S. Seki, Eds. Cham,
Switzerland: Springer, 2018, pp. 172–187.

[8] M. Traub, H.-J. Vogel, E. Sax, T. Streichert, and J. Harri, ‘‘Digitalization
in automotive and industrial systems,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Mar. 2018, pp. 1203–1204.

[9] K. Schwaber and J. Sutherland, ‘‘The scrum guide,’’ Scrum Alliance,
vol. 21, no. 1, pp. 1–38, Jul. 2011.

[10] T. Brandt and T. Tamisier, ‘‘The future connected car-safely developed
thanks to UNECE WP. 29?’’ in Proc. 21st Internationales Stuttgarter
Symp., M. Bargende, H.-C. Reuss, and A. Wagner, Eds. Wiesbaden,
Germany: Springer, 2021, pp. 461–473.

[11] S. Jiang, ‘‘Vehicle E/E architecture and its adaptation to new technical
trends,’’ SAE Tech. Paper 2019-01-0862, 2019.

[12] D. Scheer, O. Glodd, H. Günther, Y. Duhr, and A. Schmid, ‘‘STAR3—Eine
neue generation der E/E-architektur,’’ Sonderprojekte ATZ/MTZ, vol. 25,
no. S1, pp. 72–79, Dec. 2020, doi: 10.1007/s41491-020-0056-5.

[13] M. Maul, G. Becker, and U. Bernhard, ‘‘Service-oriented EE zone
architecture key elements for new market segments,’’ ATZelektronik
Worldwide, vol. 13, no. 1, pp. 36–41, Feb. 2018.

[14] Explanation of Adaptive Platform Design, document Release R19-11,
AUTOSAR, Nov. 2019. Accessed: Feb. 18, 2022. [Online]. Available:
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/19-11/
AUTOSAR_EXP_PlatformDesign.pdf

[15] G. Schuh, S. Aleksic, and S. Rudolf, ‘‘Module-based release management
for technical changes,’’ in Progress in Systems Engineering, H. Selvaraj,
D. Zydek, and G. Chmaj, Eds. Cham, Switzerland: Springer, 2015,
pp. 293–298.

[16] J. M. Quigley and K. L. Robertson, Configuration Management: Theory
and Application for Engineers, Managers, and Practitioners. Boca Raton,
FL, USA: CRC Press, 2019.

[17] S. P. Berczuk, S. Berczuk, and B. Appleton, Software Configuration Man-
agement Patterns: Effective Teamwork, Practical Integration. Reading,
MA, USA: Addison-Wesley, 2003.

[18] B.-J. Madauss, Dokumentations-und Konfigurationsmanagement im Pro-
jekt. Berlin, Germany: Springer, 2020, pp. 457–484.

[19] I. Sommerville, Software Engineering, vol. 137035152, 9th ed. London,
U.K.: Pearson, 2011.

[20] D. Spinellis, ‘‘Git,’’ IEEE Softw., vol. 29, no. 3, pp. 100–101, Apr. 2012.
[21] M. Bellanger and E. Marmounier, ‘‘Service oriented architecture:

Impacts and challenges of an architecture paradigm change,’’ in Proc.
10th Eur. Congr. Embedded Real Time Softw. Syst. (ERTS), Toulouse,
France, Jan. 2020. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-02457046/

[22] H. Holdschick, ‘‘Challenges in the evolution of model-based software
product lines in the automotive domain,’’ in Proc. 4th Int. Workshop
Feature-Oriented Softw. Develop. (FOSD), New York, NY, USA, 2012,
pp. 70–73, doi: 10.1145/2377816.2377826.

[23] H. Guissouma, C. P. Hohl, H. Stoll, and E. Sax, ‘‘Variability-aware process
extension for updating cyber physical systems over the air,’’ in Proc. 9th
Medit. Conf. Embedded Comput. (MECO), Jun. 2020, pp. 1–8.

[24] D. K. Nilsson, L. Sun, and T. Nakajima, ‘‘A framework for self-verification
of firmware updates over the air in vehicle ECUs,’’ in Proc. IEEE
Globecom Workshops, Nov. 2008, pp. 1–5.

[25] S. Halder, A. Ghosal, and M. Conti, ‘‘Secure over-the-air software updates
in connected vehicles: A survey,’’ Comput. Netw., vol. 178, Sep. 2020,
Art. no. 107343. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1389128619314963

[26] G. Kim and I. Y. Jung, ‘‘Integrity assurance of OTA software update in
smart vehicles,’’ Int. J. Smart Sens. Intell. Syst., vol. 12, no. 1, pp. 1–8,
2019.

[27] W. Gao, W. G. Hatcher, and W. Yu, ‘‘A survey of blockchain: Techniques,
applications, and challenges,’’ in Proc. 27th Int. Conf. Comput. Commun.
Netw. (ICCCN), Jul. 2018, pp. 1–11.

[28] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, ‘‘Anal-
ysis of the HTTPS certificate ecosystem,’’ in Proc. Conf. Internet
Meas. Conf., New York, NY, USA, Oct. 2013, pp. 291–304, doi:
10.1145/2504730.2504755.

[29] WP UNECE. (2018). GRVA, ‘Draft Recommendation on Cyber Secu-
rity of the Task Force on Cyber Security and Over-the-Air Issues
of Unece WP. 29 GRVA’. [Online]. Available: https://unece.org/fileadmin/
DAM/trans/doc/2018/wp29grva/GRVA-01-18.pdf

[30] Vehicle Cybersecurity Systems Engineering Committee, ‘‘Cybersecurity
guidebook for cyber-physical vehicle systems,’’ SAE Int. J3061, 2016.

[31] International Standard Electrical, Electronic Components, and Gen-
eral SystemAspects,RoadVehicles—Cybersecurity Engineering, Standard
ISO/SAE 21434:2021, International Organization for Standardization,
2021.

VOLUME 10, 2022 57715

http://dx.doi.org/10.1007/s41491-020-0056-5
http://dx.doi.org/10.1145/2377816.2377826
http://dx.doi.org/10.1145/2504730.2504755


H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

[32] Explanation of Firmware Over-the-Air, document Release R19-11,
AUTOSAR, Nov. 2019. Accessed: Feb. 18, 2022. [Online]. Available:
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-
11/AUTOSAR_EXP_FirmwareOverTheAir.pdf

[33] Specification of Update and Configuration Management, document
Release R19-11, AUTOSAR, Nov. 2019. Accessed: Feb. 18, 2022.
[Online]. Available: https://www.autosar.org/fileadmin/user_
upload/standards/adaptive/19-11/AUTOSAR_SWS_UpdateAndConfig
Management.pdf

[34] T. K. Kuppusamy, L. A. DeLong, and J. Cappos, ‘‘Uptane: Security and
customizability of software updates for vehicles,’’ IEEE Veh. Technol.
Mag., vol. 13, no. 1, pp. 66–73, Mar. 2018.

[35] eSync. A Multi-Company Initiative for OTA Updates and Diagnostics.
Accessed: Jan. 23, 2022. [Online]. Available: https://esyncalliance.org/

[36] B. Meyer, ‘‘Applying ‘design by contract,’’’ Computer, vol. 25, no. 10,
pp. 40–51, Oct. 1992.

[37] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, ‘‘Taming Dr.
Frankenstein: Contract-based design for cyber-physical systems,’’ Eur. J.
Control, vol. 18, no. 3, pp. 217–238, Jan. 2012.

[38] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and
K. G. Larsen, Contracts for System Design. Boston, MA, USA: Now,
2012.

[39] P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,
R. M. Murray, A. Donze, and S. A. Seshia, ‘‘A contract-based method-
ology for aircraft electric power system design,’’ IEEE Access, vol. 2,
pp. 1–25, 2014.

[40] K. Watanabe, E. Kang, C.-W. Lin, and S. Shiraishi, ‘‘Runtime monitoring
for safety of intelligent vehicles,’’ inProc. 55th Annu. Design Autom. Conf.,
New York, NY, USA, Jun. 2018, pp. 1–6, doi: 10.1145/3195970.3199856.

[41] A. Pnueli, ‘‘The temporal logic of programs,’’ in Proc. 18th Annu. Symp.
Found. Comput. Sci. (SFCS), Sep. 1977, pp. 46–57.

[42] A. Donzé and O. Maler, ‘‘Robust satisfaction of temporal logic over real-
valued signals,’’ in Formal Modeling and Analysis of Timed Systems,
K. Chatterjee and T. A. Henzinger, Eds. Berlin, Germany: Springer, 2010,
pp. 92–106.

[43] H. Wang, D. Zhong, T. Zhao, and F. Ren, ‘‘Integrating model checking
with SysML in complex system safety analysis,’’ IEEE Access, vol. 7,
pp. 16561–16571, 2019.

[44] J. Xie, W. Tan, Z. Yang, S. Li, L. Xing, and Z. Huang, ‘‘SysML-based
compositional verification and safety analysis for safety-critical cyber-
physical systems,’’ Connection Sci., vol. 34, no. 1, pp. 911–941, 2021, doi:
10.1080/09540091.2021.2017853.

[45] E. Zapridou, E. Bartocci, and P. Katsaros, ‘‘Runtime verification
of autonomous driving systems in Carla,’’ in Runtime Verification,
J. Deshmukh and D. Ničković, Eds. Cham, Switzerland: Springer, 2020,
pp. 172–183.

[46] N. Ayres, L. Deka, and D. Paluszczyszyn, ‘‘Continuous automotive soft-
ware updates through container image layers,’’ Electronics, vol. 10, no. 6,
p. 739, Mar. 2021. [Online]. Available: https://www.mdpi.com/2079-
9292/10/6/739

[47] Y. Wang and Q. Bao, ‘‘Adapting a container infrastructure for autonomous
vehicle development,’’ in Proc. 10th Annu. Comput. Commun. Workshop
Conf., 2020, pp. 182–187.

[48] H. F. Stoll, ‘‘Die (re-)konfigurierbare fahrzeugarchitektur,’’ Ph.D. disserta-
tion, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2021.

[49] Software Engineering—Software Life Cycle Processes—Maintenance,
Standard ISO/IEC/IEEE 14764:2022, 2022, vol. 14764.

[50] A. M. Phillips, ‘‘Functional decomposition in a vehicle control system,’’
in Proc. Amer. Control Conf., vol. 5, 2002, pp. 3713–3718.

[51] H. Guissouma, M. Schindewolf, and E. Sax, ‘‘ICARUS–incremental
design and verification of software updates in safety-critical product lines,’’
in Proc. 47th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Sep. 2021,
pp. 371–378.

[52] A. Dearle, ‘‘Software deployment, past, present and future,’’ in Proc.
Future Softw. Eng. (FOSE), 2007, pp. 269–284.

[53] K. C. Kang and H. Lee, ‘‘Variability modeling,’’ in Systems and Software
Variability Management, vol. 5, R. Capilla, J. Bosch, and K.-C. Kang, Eds.
Berlin, Germany: Springer, 2013, pp. 25–42.

[54] D. Nešić, M. Nyberg, and B. Gallina, ‘‘Constructing product-line safety
cases from contract-based specifications,’’ in Proc. 34th ACM/SIGAPP
Symp. Appl. Comput., C.-C. Hung andG.A. Papadopoulos, Eds. NewYork,
NY, USA, Apr. 2019, pp. 2022–2031.

[55] S. Thaker, D. Batory, D. Kitchin, and W. Cook, ‘‘Safe composi-
tion of product lines,’’ in Proc. 6th Int. Conf. Generative Program.
Compon. Eng. (GPCE), New York, NY, USA, 2007, pp. 95–104, doi:
10.1145/1289971.1289989.

[56] G. Heiser, ‘‘The role of virtualization in embedded systems,’’ in Proc. 1st
Workshop Isolation Integr. Embedded Syst. (IIES), New York, NY, USA,
2008, pp. 11–16, doi: 10.1145/1435458.1435461.

[57] O. Sander, T. Sandmann, V. V. Duy, S. Bahr, F. Bapp, J. Becker,
H. U. Michel, D. Kaule, D. Adam, E. Lubbers, J. Hairbucher, A. Richter,
C. Herber, and A. Herkersdorf, ‘‘Hardware virtualization support for
shared resources in mixed-criticality multicore systems,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), 2014, pp. 1–6.

[58] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and
T. Leich, ‘‘FeatureIDE: An extensible framework for feature-oriented
software development,’’ Sci. Comput. Programm., vol. 79, pp. 70–85,
Jan. 2014.

[59] A. Cimatti, M. Dorigatti, and S. Tonetta, ‘‘OCRA: A tool for checking
the refinement of temporal contracts,’’ in Proc. 28th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Nov. 2013, pp. 702–705.

[60] MathWorks. Variant Manager Overview. Accessed: Feb. 10, 2022.
[Online]. Available: https://www.mathworks.com/help/simulink/gui/
variant-manager-interface.html

[61] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
‘‘CARLA: An open urban driving simulator,’’ in Proc. 1st Annu. Conf.
Robot Learn., vol. 78, S. Levine, V. Vanhoucke, and K. Goldberg,
Eds., Nov. 2017, pp. 1–16. [Online]. Available: http://proceedings.
mlr.press/v78/dosovitskiy17a.html

[62] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, ‘‘Xen and the art of virtualiza-
tion,’’ in Proc. 19th ACM Symp. Operating Syst. Princ. (SOSP), New York,
NY, USA, 2003, pp. 164–177, doi: 10.1145/945445.945462.

[63] O. Salvador and D. Angolini, Embedded Linux Development With Yocto
Project. Birmingham, U.K.: Packt, 2014.

[64] UN-WP.29/GRVA. (Feb. 2019). Agreed Proposal Based on
ECE/Trans/WP.29/Grva/2019/5. [Online]. Available: https://unece.
org/fileadmin/DAM/trans/doc/2019/wp29grva/GRVA-02-39c1e.pdf

[65] D. Ničković and T. Yamaguchi, ‘‘RTAMT: Online robustness monitors
from STL,’’ in Automated Technology for Verification and Analysis,
D. V. Hung and O. Sokolsky, Eds. Cham, Switzerland: Springer, 2020,
pp. 564–571.

[66] Taxonomy and Definitions for Terms Related to Driving Automation
Systems for on-Road Motor Vehicles, Oceania-Regional Anti-Doping
Organizations Committee, Suva, Fiji, Jun. 2018.

[67] T. Strathmann, G. Hake, H. Guissouma, C. P. Hohl, Y. Bebawy,
S. V. Maelen, and A. Koerner, ‘‘Project overview for step-up! CPS–
process, methods and technologies for updating safety-critical cyber-
physical systems,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Feb. 2021, pp. 1326–1329.

HOUSSEM GUISSOUMA (Member, IEEE)
received the bachelor’s and master’s degrees in
electrical engineering and information technology
from the Karlsruhe Institute of Technology
(KIT), Karlsruhe, in 2014 and 2016, respectively,
where he is currently pursuing the Ph.D. degree
in automotive electronics systems engineering
with the Institute for Information Processing
Technologies. His research interest includes new
design and verification methods for over the

air (OTA) software updates in the automotive field.

CARL PHILIPP HOHL received the degree in
electrical engineering from the Karlsruhe Insti-
tute of Technology. He is currently pursuing
the Ph.D. degree with the FZI Forschungszen-
trum Informatik. He has participated in the For-
mula Student Competition. His research interests
include processes, methods, and tools working
with automotive E/E-architectures and similar
systems.

57716 VOLUME 10, 2022

http://dx.doi.org/10.1145/3195970.3199856
http://dx.doi.org/10.1080/09540091.2021.2017853
http://dx.doi.org/10.1145/1289971.1289989
http://dx.doi.org/10.1145/1435458.1435461
http://dx.doi.org/10.1145/945445.945462


H. Guissouma et al.: Lifecycle Management of Automotive Safety-Critical Over Air Updates: Systems Approach

FABIAN LESNIAK received the bachelor’s and
master’s degrees in electrical engineering from
the Karlsruhe Institute of Technology (KIT), in
2015 and 2018, respectively, where he is currently
pursuing the Ph.D. degree with the Institute
for Information Processing Technologies in the
field of mixed-critical embedded systems and
dynamically reconfigurable hardware.

MARC SCHINDEWOLF received the bachelor’s
and master’s degrees in electrical engineering
and information technology from the Karlsruhe
Institute of Technology, in 2016 and 2019,
respectively, where he is currently pursuing the
Ph.D. degree with the Institute for Information
Processing Technologies in the area of automotive
E/E architectures.

JÜRGEN BECKER (Senior Member, IEEE)
received the diploma and Ph.D. (Dr.-Ing.)
degrees from Technical University Kaiserslautern,
Germany. Since 2001, he has been a Full
Professor of embedded electronic systems and the
Head of the Institute for Information Processing
Technologies (ITIV), Karlsruhe Institute of
Technology (KIT). He has authored more than
400 peer-reviewed papers and he is active in
various committees of international conferences.

His research interests include hardware/software systems-on-chip (SoC),
cyber-physical systems (CPS), heterogeneous multicore architectures,
reconfigurable computing, embedded systems in automotive, industry 4.0,
avionics incl. HPC, and AI integration.

ERIC SAX is currently the Head of the Institute for
Information Processing Technology (itiv.kit.edu),
Karlsruhe Institute of Technology. A tight link to
industry derives from the fact that he was respon-
sible for E/E at Daimler Buses, from 2009 to 2014,
and before he was the Head of test engineering at
the MBtech Group. His research interests include
processes, methods, and tools in systems engineer-
ing, data driven, and service-oriented architectures
supported by the idea of machine learning.

VOLUME 10, 2022 57717


