KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning Parameters and Topology in Unbalanced Distribution Grids

Jongh, Steven de 1; Gielnik, Frederik 1; Mueller, Felicitas 1; Schneider, Anna 1; Suriyah, Michael R. 1; Leibfried, Thomas 1
1 Institut für Elektroenergiesysteme und Hochspannungstechnik (IEH), Karlsruher Institut für Technologie (KIT)


The methods proposed in this paper aim at learning the parameters and topology of a distribution grid by making use of available system measurements. The methods that are used rely on the formulation of the underlying physical equations as linear systems and use the resulting problem as a regression problem by applying the ordinary least squares method. Modelling of distribution grids is done by taking assymetrical behaviour caused by single phased loads such as electric vehicles, photovoltaics and heatpumps into account. The developed methods are applied to one medium voltage and one low voltage benchmark distribution grid from the CIGRE networks. Effects of noise on the recovery task are investigated. It can be shown, that given a sufficient amount of measurements, the original system can be recovered. An outlook regarding extensions of the methodology to systems with lower observability is given.

Zugehörige Institution(en) am KIT Institut für Elektroenergiesysteme und Hochspannungstechnik (IEH)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 02.06.2022
Sprache Englisch
Identifikator KITopen-ID: 1000147802
Erschienen in CIRED workshop on E-mobility and power distribution systems, Porto, P, 2-3 June 2022
Veranstaltung Congrès international des réseaux électriques de distribution workshop on "E-mobility and power distribution systems" (CIRED 2022), Porto, Portugal, 02.06.2022 – 03.06.2022
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page