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ABSTRACT:

The evaluation of reliability is not only of high importance for safety-critical deep learning applications but for object pose estim-
ation as well. The uncertainty of the result is one way to express its reliability. In order to better understand existing uncertainty
quantification (UQ) methods and their performance on image-based regression tasks, we use a small CNN and various scenarios
to evaluate the estimated uncertainties. The evaluation is done on different simplistic synthetic datasets, consisting of gray-scale
images of squares on a darker background. We train the CNN to predict the square center position of the square in the image. We
compare how different UQ methods perform under dataset shift, rotation, occlusion, noise changes in the images.

1. INTRODUCTION

The increasing exploitation of deep-learning-based methods in
real world applications requires the evaluation of the reliabil-
ity of the model prediction results. For applications such as
autonomous driving (McAllister et al., 2017) or the analysis of
medical imaging results (Leibig et al., 2017) where the predic-
tions are relevant for the safety of road users or the patient, un-
certainty estimates are essential. In a more industrial setting,
the knowledge of the uncertainty, for example, can be used for
anomaly detection or the manipulation of a robot arm and is an
important feature of human-robot collaboration (Huber, 2020).
Furthermore, uncertainty estimates can be used in active learn-
ing (Gal et al., 2017) and for the detection of adversarial attacks.
To localize and grasp an object successfully, a robot relies on
the object pose. This entails estimating the translational and ro-
tational parameters of the object in the robot coordinate system.
The object pose for vision-guided robots is estimated from im-
ages. Aside from identifying a certain object in an image, the
estimation of object poses with deep learning entails the regres-
sion of the object pose either in image coordinates or in camera
coordinates. Recent computer-vision-based 6D object pose es-
timation approaches, which achieve state-of-the-art results on
benchmark datasets, use deep learning models such as convolu-
tional neural networks (CNN) to obtain the object pose (Hodan
et al., 2020). However, it was observed that these models do
not perform well for changes in the input data and are therefore
difficult to use in mission-critical applications (Shi et al., 2021,
Amodei et al., 2016, Loquercio et al., 2020). This motivates the
desire to use uncertainty quantification (UQ) methods for image
based regression tasks with convolutional neural networks.

The so-called predictive uncertainty of the predictions of a deep
learning model is divided into the aleatoric uncertainty caused
by noise in the input data and the epistemic uncertainty caused
by the model weight parameters themselves due to a lack of
knowledge (Abdar et al., 2021). Hence, the aleatoric uncer-
tainty is also known as data uncertainty while the epistemic
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uncertainty is sometimes called model uncertainty. The aleat-
oric uncertainty follows the usual definition of statistical un-
certainty and describes the random effects that affect the pre-
dictions of a model (Hiillermeier and Waegeman, 2021). Ac-
cording to whether the noise is constant over the input data or
varies from data point to data point, the aleatoric uncertainty is
further divided into homoscedastic or heteroscedastic (Kendall
and Gal, 2017). While the aleatoric uncertainty describes the in-
fluence of the stochastic input data noise, and therefore cannot
be reduced with more training data, the epistemic uncertainty
increases for new input data not seen in the training process
(Kendall and Gal, 2017). Therefore, the epistemic uncertainty
is a systematic uncertainty that results from a lack of know-
ledge (Hiillermeier and Waegeman, 2021). Thus, epistemic un-
certainty plays an important role for safety-critical applications
where it is crucial to identify unknown situations.

In this paper, we compare different UQ methods for CNN-based
regression. Previous contributions have evaluated such methods
on small neural networks or on existing deep models and large
datasets. We aim to achieve a better understanding of existing
uncertainty quantification approaches when applied to image-
based deep learning regression tasks with CNNs by evaluating
them independently of large image datasets and complex deep
model architectures. To reduce complexity, and hence to assess
the effects of various influences, we use a simplistic synthetic
image dataset and a straightforward architecture with relatively
few weights.

After a brief describtion of some existing UQ methods in Sec-
tion 2, the evaluation strategy of these methods is described in
Section 3. The results of the evaluation are discussed in Section
4, before we draw a conclusion in Section 5.

2. RELATED WORK

Existing UQ methods are based on Bayesian modelling where
a deterministic model is transformed into a stochastic one in or-
der to achieve probabilistic predictions. In a stochastic neural
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network, probability distributions are placed over either the
model parameters or the layer activations (Jospin et al., 2022).
Stochastic model weights lead to epistemic uncertainty estima-
tion (Loquercio et al., 2020). The deterministic weights w are
replaced by the prior probability distribution p(w). Given a
dataset X, Y, with the training inputs X = {x1,...,xn} and
the corresponding output targets Y = {yi,...,y~}, the pos-
terior weights distribution after the training can be modelled
with Bayes’ theorem (Gal, 2016):

p(Y|X,w)p(w)

PR =T V)

(D

The probabilistic prediction result y* of a new input data point
x* can be obtained by Bayesian inference (Gal, 2016):

Py X, X, Y) = / Py Ix" @) p @|X, V) dw. ()

The analytical solution of Equation (2) as well as the Bayesian
inference of the model evidence

p(Y|X) = / p(YIX,w) p (w) dw 3)

in Equation (1) are intractable due to the high dimensionality
of the integration over the weights space (Gal, 2016, Kend-
all and Gal, 2017, Loquercio et al., 2020). This leads to ap-
proximation approaches known as variational inference meth-
ods sampling from either the posterior weights distribution,
like Bayes-by-Backprop (Blundell et al., 2015) or the distri-
bution of the predictions, like Monte-Carlo Dropout (Gal and
Ghahramani, 2016), to compute the epistemic uncertainty. Vari-
ational inference is built on the idea of approximating the un-
known posterior weights distribution by a simpler distribution
g (w). Bayes-by-Backprop (Blundell et al., 2015) does vari-
ational inference by assuming Gaussian weight distributions
and updating both the weights as well as their variances in the
backpropagation during the model training. This leads to the
doubled amount of memory needed for loading the obtained
Bayesian network, a draw-back that motivates the approach of
(Gal and Ghahramani, 2016) to exploit a common regulariz-
ation technique in deep learning to sample directly from the
predictive distribution in Equation (2).

Monte-Carlo Dropout (Gal and Ghahramani, 2016) can be used
for epistemic uncertainty estimation. It uses dropout regular-
ization (Srivastava et al., 2014) commonly used during train-
ing in deep learning. By inserting a dropout layer after each
weight layer (e.g., convolutional layer) of the model and activ-
ating dropout at inference time, the model outputs varying pre-
diction results for the same input data. Multiple forward passes
of the same input data are used to get 7" samples of predictions.
These samples can be used to get the final prediction result by
computing the mean value of the 7" sampled predictions as well
as the uncertainty by estimating the standard deviation of the
sample. The estimated uncertainty depends on the size of the
sampled set of predictions and the dropout rate. As the method
requires multiple passes through the model, the computational
cost of the inference time is multiplied. This has to be taken into
account while choosing a sample size T for real-time applica-
tions. Other methods that estimate the predictive uncertainty

use Monte-Carlo Dropout for epistemic uncertainty estimation
and combine this with aleatoric uncertainty estimation methods
like assumed density filtering (Gast and Roth, 2018, Loquer-
cio et al., 2020) or training with a log-likelihood loss function
(Kendall and Gal, 2017).

A similar approach to Monte-Carlo Dropout is Deep Ensembles
(Lakshminarayanan et al., 2017), but it looks at uncertainty es-
timation from perspective of a frequentist. Deep Ensembles
train a set of models with the same underlying network archi-
tecture and the same prediction target and data set. Each of
these models is used simultaneously to obtain a prediction for
the same input data. Estimating the mean and standard devi-
ation of the obtained prediction yields the final prediction result
and model uncertainty. In (Lakshminarayanan et al., 2017), the
best results were obtained with a negative log-likelihood loss
function and virtual adversarial training. With regard to the un-
certainty estimation in deep learning 6D object pose estimation,
(Shi et al., 2021) used a small ensemble of pose estimation mod-
els to get the uncertainty of the predicted object poses.

Both Monte-Carlo Dropout and Deep Ensembles have addi-
tional computational cost. Due to sampling multiple predic-
tions, the former approach leads to a multiple of the inference
time of a single forward pass. Deep Ensembles however, uses a
multiple of the memory of a single model to load the whole en-
semble simultaneously. To reduce the computational cost and
still achieve the high quality uncertainty estimates of Deep En-
sembles, (Durasov et al., 2021) proposes fixed dropout masks
to simulate multiple models while requiring one forward pass
only.

In (Gast and Roth, 2018), the aleatoric uncertainty is estimated
by propagating the noise of the input data through the model
with assumed density filtering (ADF). In contrast to the aleat-
oric uncertainty estimation in (Kendall and Gal, 2017) where
only the last layer considers stochastic activations, ADF as-
sumes all intermediate layer outputs as stochastic values.

3. EVALUATION STRATEGY

To evaluate the UQ methods described in Section 2, we gener-
ate various synthetic simplistic datasets of gray-scale images.
Each image depicts a square at a specific position in the image.
The models are trained to predict the square center positions
in the images. For the evaluation of the epistemic uncertainty
estimation, we consider different evaluation scenarios that are
summarized in Figure 1. Three of the evaluation scenarios are
designed to evaluate three cases of new, unseen data that lead to
a shift of the evaluation data compared to the training data:

1. images with squares that are far from the central region
and thus outside the position distribution of the training
data

2. images with different gray values than the training data,
which are outside the gray value distribution of the training
data

3. images with squares that are rotated or occluded and thus
outside the training data distribution.

In (Candela et al., 2009), the dataset shifting of only the dis-
tribution of the targets Y in case 1 is referred to as prior prob-
ability shift, while the shifted distribution of the inputs X in
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case 2 is called covariate shift. These cases describe scenarios
that may have an influence on the epistemic uncertainty estim-
ation. The aleatoric uncertainty estimation is done by chan-
ging the noise in the input images. With regard to industrial
application settings and 6D object pose estimation in particular,
where usually the same camera for image aquisition is used,
we only consider homoscedastic noise, meaning constant input
noise throughout all images, in our evaluation scenario.

The datasets shown in Figure 1 that are used to evaluate the
the three scenarios and the aleatoric uncertainty estimation are
described in Section 3.1. The architecture of the base CNN is
modified if necessary and trained accordingly (section 3.2) on
the training datasets and evaluated on the corresponding eval-
uation dataset. Different evaluation metrics are used (Section
3.3) as well as the visualization of the results.

Training Evaluation

prior probability shift (case 1)

interpolation:

prior probability shift dataset

- evaluation grid dataset
extrapolation:

basic dataset

covariate shift (case 2)

interpolation:

covariate shift dataset covariate shift evaluation

dataset

extrapolation:

basic dataset

rotation and occlusion (case 3)

occlusion dataset

basic dataset

rotation dataset

basic dataset noise dataset

Figure 1. Evaluation strategy. We define three different
evaluation scenarios for epistemic uncertainty estimation: Case
1 refers to a dataset shift only of the target square center
positions, case 2 considers a dataset shift of the gray value
distribution of the input data, and case 3 evaluates the epistemic
uncertainty estimation in case of rotated and occluded squares in
the evaluation images. The aleatoric uncertainty estimation is
evaluated by increasing the input data noise in the evaluation
images.

3.1 Datasets

As shown in Figure 1, we generate different datasets for train-
ing the models and the evaluation of UQ methods. All data-
sets consist of gray-scale images of 200 x 200 pixels, each de-
picting one square of constant gray value and size on a darker
background at varying positions. Some examples of the basic
dataset are shown in Figure 2(a). The overall goal of the trained
models is the prediction of the square center position in image
coordinates. To balance the target space, the origin of the image
coordinate system is moved to the image center which corres-
ponds to normalizing the square center positions. Additionally,
we add zero-mean Gaussian noise with a standard deviation of
two gray values to all images for homoscedastic noise and more
realistic input images.

3.1.1 Basic Dataset All models are trained on the basic
dataset. The square center positions of the images used for
model training are sampled randomly from a given distribution.
Figure 2(b) shows the training dataset with square center pos-
itions sampled from a Gaussian distribution. The red and blue
dots represent the split between training and validation data.
The basic dataset has 700 training images, 300 validation im-
ages, and 300 test images. By choosing a mean of 0px and
a standard deviation of 18 px?, the square center positions are
mostly restricted to the central region of the image, as shown in
Figure 2(b).

3.1.2 Evaluation Grid Dataset To evaluate the UQ meth-
ods on the whole image, we generate a dataset where the target
square center positions are evenly distributed over the image
plane. This lead to an evaluation grid. Hence, we call this data-
set the evaluation grid dataset. More specificly, we choose a
grid where each pixel of the image plane has a corresponding
square center position. This means, for every pixel there is an
image depicting a square centered at that pixel. With an image
size of 200 x 200 pixels, this leads to an evaluation grid data-
set with 40000 evaluation examples. Note that the gray-scale
distribution is the same as in the basic dataset.

3.1.3 Dataset Shift Training and Evaluation Datasets
Both cases can be interpreted as a lack of knowledge and there-
fore cause an increasing epistemic uncertainty. Case 1 as well
as the evaluation of the uncertainty estimation on the basic
datasets covered by the evaluation grid dataset. In case 2, the
squares of the evaluation images are placed at identical posi-
tions in the image center but with varying gray values. These
images are generated by adding various gray values to the entire
original image. Therefore, the gray value distributions of these
images have little to no overlap with the original distribution.
This evaluation dataset is called the covariate shift evaluation
dataset. The training data distribution depicted in Figure 2(b)
(red dots) is used to evaluate UQ methods with respect to ex-
trapolation. The square center positions of the training dataset
of the prior probability shift dataset of case 1 and interpolation
are composed of a cluster at the central region of the image
and a ring of positions. Figure 3 shows the distributions of the
training and validation data. As shown in Figure 3(a), for test-
ing interpolation with the covariate shift dataset of case 2, we
train the models on both darker and lighter images compared
to the basic training data images depicted in Figure 2(a) and
evaluate them on the covariate shift evaluation dataset, like we
do in case of extrapolation. This is possible due to the range
of the gray value shifts covered in the evaluation dataset. The
training dataset for interpolation of case 2 is called the covari-
ate shift dataset. As the dataset has large differences in the input
data, the dataset consists of 7000 training images, 3000 valida-
tion images and test images. In principle, deep learning models
are known to be able to generalize or interpolate but not to be
able to extrapolate to unseen data. Consequently, we expect the
trained models to show better prediction performance in case of
interpolation compared to extrapolation. Therefore, we expect
higher epistemic uncertainty estimates outside the training data
in both cases.

3.14 Rotation Dataset To evaluate how the models and
UQ methods cope with rotated squares in the images, the ro-
tation dataset is generated. It consists of 360 images of squares
rotated with increasing integer angles in the interval of [0, 360)
degrees. It is used for the evaluation of models that were trained
an the basic dataset.
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3.1.5 Occlusion Dataset Similar to the rotation dataset and
the covariate shift evaluation dataset, examples to test the un-
certainty estimation in case of partially occluded squares are
generated. The images contain squares with various degrees of
occlusion.

3.1.6 Noise Dataset In contrast to the other evaluation data-
sets, this dataset is used for evaluating the aleatoric uncertainty
estimates. The dataset contains images of various gray-scale
levels of Gaussian noise. The evaluated models are trained on
the basic training dataset.

o

(b)

Figure 2. (a) Examples from the training dataset. (b)
Distributions of the square center positions in the training (red)
and validation (blue) dataset.

—~
o

(b)

Figure 3. (a) Examples from the training dataset. (b)
Distributions of the square center positions in the training (red)
and validation (blue) dataset used for model training.

3.2 Models and Methods

The generated datasets are used to evaluate the UQ meth-
ods described in Section 2: Monte-Carlo Dropout (Gal and
Ghahramani, 2016), Deep Ensembles (Lakshminarayanan et
al., 2017) and the combined method of (Kendall and Gal, 2017)
which we refer to as MCDONLL in the following. MCDONLL
also uses Monte-Carlo Dropout for epistemic uncertainty estim-
ation but trains a single model with the negative log-likelihood
(NLL) loss function. Following the visualization of the dif-
ferent training and evaluation datasets in Figure 1, a CNN is
trained for each method and each training dataset accordingly.
The overall performance of the models is measured on an eval-
uation dataset of the same distributions as the training datasets.

The CNN with Monte-Carlo Dropout is referred to as MCDO,
the Deep Ensemble as Ensemble, where five models are trained
using the NLL loss function, and the approach of (Kendall and
Gal, 2017) as MCDONLL. The model ADF uses the method
proposed in (Gast and Roth, 2018) for aleatoric uncertainty es-
timation. Accordingly to (Loquercio et al., 2020), we use the
trained weights of MCDO for MCDOADF.

3.3 Evaluation Metrics

The performance of each trained CNN is evaluated with RMSE
metric. It should be mentioned that it is not the focus of this
submission to find the best architecture for predicting square
center positions. Instead, we aim to use simple architectures
that can predict the square center position with a RMSE of less
than 1.0 pixel.

Another suitable metric is the explained variance score (EVA)
(Loquercio et al., 2018, Loquercio et al., 2020):

EVA=1-

Var (ytrue - ypred)
4
Var (the) ( )

where y ;e are the targets and y,,.q the predicted square cen-
ter positions. Higher the EVA values indicate better results.
The metric describes essentially how well a model captures the
variance inherent in a dataset.

As it is usually impossible, to get ground truth uncertainty val-
ues, the NLL metric is often used to evaluate the quality of
the uncertainty estimates (Gal and Ghahramani, 2016, Gast and
Roth, 2018, Kendall and Gal, 2017, Loquercio et al., 2020):

1 2 1 2
NLL = 5 log (0%) + 55 (yerue = yprea)”  (5)

Here, o2 is the estimated variance to be evaluated. The lower
the NLL metric the better is the uncertainty estimation of a
method.

Due to the nature of the synthetic datasets and the prediction
goal of the square center positions, we are able to estimate a
ground truth variance or ground truth standard deviation of the
uncertainty estimates and use it as evaluation metric. The abso-
lute standard deviation is defined as

L
N

k3

STD = (ytrue - yp'red)2 . (6)

N
=1
In contrast to the standard deviation estimates of the UQ meth-
ods that are relative standard deviations, the STD is computed
with respect to the ground truth square center positions.

3.4 Implementation Details

We use the PyTorch framework for the implementation of the
CNNs s to get predictions. The model consists of three convolu-
tional layers and a fully connected output layer. The convolu-
tional layers have 16, 32, and 64 channels and kernel sizes of
9x 9,5 x5,and 3 x 3, respectively. To reduce the influence of
the weights in the fully connected output layer in comparison to
the filter kernels of the convolutional layers on the predictions,
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the size of the intermediate feature maps is reduced gradually
by global average pooling with kernel sizes of (2,2), (4,4),
and (5,5) in the convolutional layers. We use ReLU activa-
tion functions and batch normalization after each convolutional
layer. For MCDO, the CNN is modified by inserting dropout
layers after each convolutional layer. For MCDONLL using
the NLL metric as loss function, the CNN uses an additional
fully connected layer, trained to predict the logarithmic vari-
ance. Otherwise, the mean squared error loss function is used.
For ADF, we used the code provided by (Gast and Roth, 2018).
The models were trained using the Adam optimizer (Kingma
and Ba, 2015) and a constant learning rate. All models are
trained to achieve roughly similar predictive quality in terms of
RMSE on the evaluation dataset. We do not aim to achieve the
best possible prediction results and focus on the comparability
of the methods instead.

4. RESULTS AND DISCUSSION

The results on the basic dataset are summarized in Table 1. The
table shows that all models predict the square center positions
with a RMSE in subpixel range on the test data of the basic
training dataset. The very high EVA values confirm that the
models are able to adapt well to the variability in the simplistic
datasets. In terms of NLL, it can be observed that this metric
is higher for the epistemic uncertainty methods MCDO and En-
semble compared to the aleatoric uncertainty methods ADF and
NLL.

Model RMSE [px] | EVA [%] NLL
ADF 0.046 100.0 —0.85
NLL 0.028 100.0 —1.55
MCDO 0.266 99.9 0.79
Ensemble 0.004 100.0 —2.18
MCDOADF 0.260 99.9 0.15
MCDONLL 0.495 99.8 0.14

Table 1. Results on the test data of the basic dataset. Higher
values for RMSE and EVA and lower values for NLL indicate
better results.

In the following, we present the results of the evaluation scen-
arios described in Section 3. First, the results of the cases 1,
2, and 3 and their influence on UQ methods that estimate epi-
stemic uncertainty are shown in Section 4.1. In Section 4.2,
the influence of increased input noise on the UQ methods for
aleatoric uncertainty estimation are shown.

4.1 Epistemic Uncertainty

4.1.1 Prior Probability Shift Figure 4 shows the uncer-
tainty results of the models MCDO, MCDONLL, and Ensemble
on the evaluation grid dataset for the prior probability shift in
case 1 and extrapolation. MCDOADEF is not depicted because
the results are essentially identical to the results of MCDO as
for both Monte-Carlo Dropout is used for epistemic uncertainty
estimation. It shows for each pixel position the epistemic stand-
ard deviation estimates in column and row direction in gray val-
ues. The red dotted polygon is the convex hull of the training
data, depicted in Figure 2(b). All three models show standard
deviations of the same magnitude, with the highest predicted
epistemic standard deviation for Ensemble, the lowest for MC-
DONLL. All three cases show similar patterns of high and low
standard deviation estimates. Low epistemic uncertainties are
obtained for evaluation images in which the squares are po-
sitioned inside the training data distribution. Starting with a

low epistemic uncertainty at the central region of the image and
inside the training data distribution, the standard deviation es-
timates increase for square center positions at the edges of the
training data and decrease again at the image borders and in
the corners. Outside but still near the training data distribution,
the computed standard deviation values reflect the increased un-
certainty of the model the further the evaluation data is shifted
away from the training data. However, in the evaluation images
with squares at the image borders and in the corners, where
the squares are truncated partially and therefore unknown to
the model, the model predicts the square center positions con-
fidently near the mean of the training distribution causing low
uncertainty estimates. Consequently, in this case, the estimated
epistemic uncertainty does not correspond to the actual reliab-
ility of the model.

Figure 4. Epistemic standard deviation in column (left) and row
(right) direction on the evaluation grid dataset in pixel units with
(a) MCDO (Gal and Ghahramani, 2016) , (b) MCDONLL
(Kendall and Gal, 2017) and (c) Ensemble (Lakshminarayanan
et al., 2017) in case of prior probability shift (case 1) and
extrapolation. The red dotted polygon represents the convex hull
of the square center positions of the training dataset.

Figure 5 shows the results of (a) MCDO, (b) MCDONLL, and
(c) Ensemble in case of interpolation. The models are trained
on the prior probability shift dataset. The results in this case are
similar to the ones shown in Figure 4 in case of extrapolation.
The results of MCDO show increasing standard deviation es-
timates in the central region of the image where no training data
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is available. MCDO and MCDONLL estimate standard devi-
ations of the same magnitude. However, in contrast to MCDO,
MCDONLL estimates lower standard deviations in the central
region of the image. This could be explained by the different
training loss functions that indirectly have an impact on the epi-
stemic uncertainty estimation. The results of Ensemble (Figure
(c)) show low standard deviation estimates inside the training
data distribution compared to the estimates outside of the train-
ing data, including the central region of the image.
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Figure 5. Epistemic standard deviation on column (left) and row

(right) direction on the evaluation grid dataset in pixel units with

(a) MCDO (Gal and Ghahramani, 2016) , (b) MCDONLL
(Kendall and Gal, 2017), and (c) Ensemble (Lakshminarayanan
et al., 2017) in case of case of prior probability shift (case 1) and
interpolation. The models are trained on the prior probability

shift dataset. The red dotted polygon represents the convex hull
of the square center positions of the training dataset.
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4.1.2 Covariate Shift The results of MCDO and Ensemble
for the covariate shift (case 2) are depicted in Figure 6. The
mean value of ten predictions is shown for each shifted data-
set example. The epistemic uncertainty increases the more the
gray value distribution is shifted from the original distribution.
The results of MCDONLL, shown in Figure 6(b), are similar
to the results of MCDO but differ more for column and row
and are generally higher. The results shown in Figure 6(a) are
in agreement with the experiments in (Gal and Ghahramani,
2016): With increasing distance of the input data from the train-
ing data distribution the uncertainty estimates increase as de-

sired. However, there is an offset between the reference values
of the absolute standard deviation and the estimates of the epi-
stemic standard deviation. This can be explained by the uncal-
ibrated nature of the estimates with Monte-Carlo Dropout (Gal
and Ghahramani, 2016). In contrast, the epistemic standard de-
viation estimates of Ensemble in Figure 6(c) are in good agree-
ment with the corresponding absolute standard deviation value.
It can be noted that the standard deviation of Ensemble does
not increase linearily with the gray value shift. Instead, En-
semble seems to be able to predict the square center positions
even for large covariate shifts and only shows increasing stand-
ard deviations starting around a gray value shift of 100 levels.
The predicted epistemic standard deviation seems to increase
slower than the absolute standard deviation which leads to an
underestimation of the epistemic uncertainty for large covariate
shifts.
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Figure 6. Epistemic standard deviation estimates in image
columns and rows in pixel units with (a) MCDO, (b)
MCDONLL, and (c) Ensemble under covariate shift in case of
extrapolation.

Figure 7 shows the results of (a) MCDO, (b) MCDONLL, and
(c) Ensemble trained on the covariate shift dataset in case of
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interpolation. Both MCDO and MCDONLL are able to inter-
polate the gap in the gray value training distribution, as it is
shown by the continuous STD values. The epistemic standard
deviation estimates of Ensemble are smaller than STD, how-
ever, they are in best agreement with STD. Furthermore, the
uncertainties are higher for images with gray value distributions
outside the training data distribution. The gray value distribu-
tion of dark training images of the covariate shift dataset ranges
from around 50 to 100 and that of light images from 200 to
250 gray values. The influence of this can be seen in Figure
7(c), where the uncertainty estimates are low for covariate shift
which still overlap with the training data distribution. From an-
other perspective, the higher STD values outside of the training
data distribution also suggest inferior prediction quality and a
lower generalization of the trained Ensemble than in case of
MCDO and MCDONLL.
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Figure 7. Epistemic standard deviation estimates in image
columns and rows in pixel units with (a) MCDO, (b)
MCDONLL and (c) Ensemble under covariate shift in case of
interpolation.

4.1.3 Rotation and Occlusion The implemented UQ meth-
ods MCDO, MCDONLL, and Ensemble are evaluated on the
rotation and occlusion dataset. The best results in terms of the

agreement with the STD were obtained with Ensemble on the
rotation dataset and MCDONLL on the occlusion dataset. The
results are shown in Figure 8. In Figure 8(a), the systematic
influence of the four symmetrical axes of the square can clearly
be seen. Both estimated epistemic standard deviations and STD
are highest for rotation angles of a multiple of 45 degrees and
lowest for multiples of 90 degrees. Figure 8(b) shows increas-
ing epistemic standard deviation estimates with increasing de-
gree of occlusion of the square in the image. The uncertainty
only increases for the columns, as the squares in the dataset are
only occluded along the image columns.
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Figure 8. Epistemic standard deviation estimates and STD in
image columns and rows in pixel units with (a) Ensemble on the
rotation dataset and (b) MCDONLL on the occlusion dataset.

4.2 Aleatoric Uncertainty

The aleatoric uncertainty estimation of ADF and NLL is evalu-
ated on the noise dataset that consists of images with Gaussian
noise of various gray values. The mean estiamtes of ten stand-
ard deviation predictions are shown in Figure 9. The aleatoric
standard deviation estimates are relatively low as long as the
square is still recognizable despite the noise. For higher noise
levels, however, the uncertainty estimates of NLL increase ex-
ponentially, while the estimates of ADF increase only slightly.

5. CONCLUSIONS

We compared different UQ methods, namely Monte-Carlo Dro-
pout (Gal and Ghahramani, 2016), Deep Ensembles (Laksh-
minarayanan et al., 2017) and the combined approach of (Kend-
all and Gal, 2017) for epistemic uncertainty estimation as well
as (Gast and Roth, 2018) and (Kendall and Gal, 2017) for aleat-
oric epistemic uncertainty estimation on a simplistic dataset.
All methods show high epistemic uncertainties around the bor-
ders of the training data distribution and low uncertainty estim-
ates far outside the training data distribution. Both, models and
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Figure 9. Aleatoric standard deviation estimates of (a) ADF and
(b) NLL in pixel units on the noise dataset.

uncertainty estimates, handle interpolation under dataset shift
well but not in case of extrapolation. In the case of rotated or
occluded objects, the methods provide higher uncertainties in
determining the position of these objects, as desired. In com-
parison to the absolute standard deviation estimates, Deep En-
sembles achieve the best epistemic standard deviation results.

In the future, we would like to investigate the usage of UQ
methods on deep learning-based 6D object pose estimation
methods. In this regard, we find the Deep Ensemble approach
the most promising.
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