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Abstract
Fusion systems codes (SCs) are deployed to produce the baseline of the European fusion
power reactor (DEMO) within its conceptual design. A DEMO baseline is mostly defined by a
radial/vertical reactor sketch and major reactor parameters, such as fusion and net electric
power, magnetic fields, and plasma burn time. A baseline shall also meet a set of prescribed
reactor requirements, constraints, and architectural features. According to the conceptual
design workflow implemented within the EU-DEMO programme, the output from the SC is
transferred to the detailed physics and engineering design codes. Presently-available fusion
SCs rely on rather basic physics and engineering models (mostly at zero or one-dimensional
level). The design codes, instead, are very detailed but run on much longer computing times.
To fill the gap between systems and design codes, the multi-fidelity systems/design tool
modular integrated reactor analysis (MIRA)—has been recently developed. MIRA
incorporates the physics and the engineering insights of the utmost domains of tokamak
reactors and relies on a higher spatial resolution, spanning from 1D up to 3D modelling
frames. The MIRA approach has been applied to the DEMO 2017 baseline, generated by the
EU reference SC PROCESS and used as input to MIRA. In the paper, the architectural and
mathematical insights of the MIRA package are described, along with an EU-DEMO 2017
baseline analysis.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The development of the demonstration power plant DEMO is
foreseen after ITER towards the realization of a commercial
fusion power plant (FPP). DEMO is required to feature all
key systems and components of an FPP and to comply with
a set of general goals [1]. These goals include a few hun-
dred megawatts of electric power generation, a closed fuel
cycle, and a long pulse (or steady-state) plasma operation.

∗ Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

The conceptual design of DEMO begins with the quantitative
definition of these main goals and shall proceed by select-
ing the major reactor parameters. The approach adopted in
the EU-DEMO programme [2] follows different steps, iter-
atively repeated until a certain grade of satisfaction, consis-
tency and attractiveness are met. Hence, the beginning of the
actual engineering design hinges upon the verification of these
conditions.

Dedicated computational tools, referred to as systems codes
(SCs), are deployed to produce a DEMO baseline, relying on
the definition of reactor requirements, constraints, and archi-
tectural features. The key function of SCs is to model the
interactions between plant systems and the trade-offs that nec-
essarily occur between them, allowing an integrated solution
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Figure 1. Conceptual design process in the EU-DEMO programme: without and with MIRA reactor analysis (black solid line path and red
dashed line path, respectively).

to be found, and to do it fast enough that different reactor con-
figurations can be explored. The SC output is then transferred
to the detailed plasma transport and engineering design codes,
normally in the form of a 2D reactor sketch and major reactor
parameters (e.g. radial build, fusion power, major radius, and
magnetic field).

Different fusion systems are presently available in the EU
and worldwide to support the design of fusion reactors, each
characterized by different features, architectures and scopes.
The key presently-available fusion SCs are PROCESS [3, 4],
SYCOMORE [5–7], ARIES systems code [8], KAERI sys-
tem code [9] and JAERI system code [10]. These tools aim
to explore one (or more) reactor configurations that simultane-
ously fulfil the plasma physics operational limits, the engineer-
ing constraints, and the plant requirements. In general, SCs
rely on rather basic physics and engineering models (mostly
at zero or one-dimensional level). While being very fast, SCs
are currently deployed to optimise the DEMO reactor design
based on specified figures of merit (e.g. minimizing the reactor
sizes or the cost of electricity), and subject to engineering and
physics requirements and constraints (R & C).

The physics and engineering design codes, instead, are
very sophisticated and run on much longer computing times.
The workflow of the current EU-DEMO conceptual design is
depicted by the black solid line path in figure 1.

Due to the complexity of the design process, it is rather
challenging to maintain data consistency and to keep an expe-
dited design flow. In turn, wide modelling gaps between SCs
(0D/1D, steady-state) and design codes (3D, time-dependent)

might slow down and hinder the workflow, thereby increas-
ing the number of iterations. To this end, the connections
between the system and design codes can be consolidated by
complementing the SCs with a more refined and intermedi-
ate system analysis tool, denoted as systems/design code (see
figure 1, red-dashed line path), which can impose more consis-
tency. The modular integrated reactor analysis code (MIRA)
has been developed at KIT [11–13] and it is proposed as
a new concept of advanced fusion reactors’ systems/design
analysis tool for the conceptual design process of DEMO. To
this new category of fusion reactors’ design codes belongs
also BLUEPRINT [14–16], which features similar architec-
tural and mathematical aspects and engages in the same set
of goals. MIRA engages in a high modelling granularity,
with reactor systems analyses up to three-dimensional sophis-
tication. Such an approach allows scoping and parametriz-
ing multiple reactor configurations with a more consolidated
physics and engineering modelling representation at a compo-
nent level, but still keeping a holistic view of the entire fusion
plant. Thus, providing margins for design improvements to a
higher degree.

The paper describes the systems/design code MIRA. The
code architecture is presented in section 2, including a
definition of the MIRA workflow. Section 3 outlines the key
physics and engineering modelling features implemented in
the code. Section 4 presents the results of the MIRA analy-
sis carried out to assess the EU-DEMO 2017 baseline gener-
ated by the PROCESS code with a code-to-code comparison
of the key physics and engineering parameters. The symbols
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Figure 2. Organizational structure of the MIRA package.

and acronyms are given in dedicated sections at the end of the
manuscript.

2. Architecture of the MIRA package

MIRA is a reactor design tool that relies on a modular struc-
ture. The workflow of a MIRA simulation is depicted in the
flowchart of figure 2.

The calculation begins with a preprocessing phase, where
physics and engineering R & C are first established and
then the independent variables associated with each prede-
fined reactor component are initialized. Requirements refer
to specific values (or bounds) to meet the key design
parameters (e.g. required net electric power), whereas con-
straints relate to the operational or technological limits of the
defined components (e.g., minimum plasma safety factor to
prevent magnetohydrodynamics(MHD) instabilities). Moving
towards the data flow, the actual MIRA analysis takes place
within two different modules ‘containers’, defined by com-
ponent and plant physics/engineering modules. In component
modules, all the physical components addressed by MIRA
are initialized in terms of geometry, materials, R & C and any
component-specific features (e.g. volume and mass calcula-
tion). Plant modules incorporate the analyses and methodolo-
gies established for systems or fields, where more than a single
plant component is involved.

Upon each plant and component module execution, the
R & Cs are scanned. If any of them is not met, the iteration
variables associated with the definition of the component are
properly adjusted. Currently, the parameters adjustment is per-
formed manually through parametric scans, where the inde-
pendent variables affecting the different R & Cs are identified
and properly modified (e.g., with Newton–Raphson solving
techniques). A MIRA run terminates successfully when all
R & C are met.

3. Description of the MIRA modules

In this section, the main MIRA physics and engineering tools
are outlined. A more detailed description of most of the
models’ implementation, verification and validation (V & V)
is reported in [13].

3.1. MIRA geometric design

A MIRA analysis relies on the initialization of the radial and
vertical space reservation of each physical component, i.e.,
plasma, breeding blanket (BB), vacuum vessel (VV), diver-
tor, toroidal field (TF) and poloidal field (PF) coils, central
solenoid (CS), as well as upper, equatorial and lower VV
ports. For each of the outlined components, a set of geomet-
ric primitives is predefined to draw the 2D sketch from the
plasma major radius R0, aspect ratio A, upper and lower plasma
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Figure 3. 2D sketch of the DEMO 2015 tokamak reactor, as per the
MIRA geometry module. Reproduced with permission from [13].

edge elongation (κX,u, κX,l), plasma upper and lower triangu-
larity (δX,u, δX,l) and the radial inboard/outboard and the ver-
tical top/bottom thicknesses of all components. The reactor
is built as visualized in figure 3. This sketch represents the
2D reactor build of the EU-DEMO 2015 baseline [17, 18], as
per MIRA’s geometric design module [13]. Additionally, each
component is configured in terms of material composition and
technological features.

The geometric module in MIRA acts on specific demands
from the physics and engineering solvers to adapt the 2D
shape of the reactor physical component according to speci-
fied physics and engineering constraints. For instance, the pro-
file of the divertor geometry is adapted to the plasma separa-
trix determined by the free-boundary equilibrium (FBE) solver
(section 3.2), to match the geometric design parameters (see
figure 4), given by:

• inboard and outboard tilt angles, β i and βo,
• inboard and outboard distances (dS,i and dS,o) from the

strike points Si and So to the plasma X-point Xl,
• targets vertical lengths, lt,i and lt,o,
• baffle radius ρb,
• minimum cassette thickness dc,
• inboard and outboard angles (αw,i and αw,o) between the

divertor segments facing the BB bottom terminations and
the r-axis

• curvature radius of the cassette curve facing the private
region, ρd.

The poloidal profile of the BB is constructed around the
plasma separatrix and divertor shape. The FW profile is built
specifying the inboard, outboard and top thickness of the
scrape-off layer (SOL) region, which are defined on the mid-
equatorial and vertical planes, as visualized in figure 3. The
lower parts of the BB adjacent to the divertor profile are
drawn from the tangency angles derived from αw,i and αw,o

and imposing a gap orthogonally from the geometric points
Di,4 and Do,4, defined on the divertor profile. The outer BB
shape is obtained by offsetting outward the inner curve seg-
ments based on the inboard, outboard and top BB thickness.
On top of the BB and divertor shapes, the VV ports for remote
maintenance operation (upper, lower and equatorial) are also
placed and sized poloidally. The upper and lower ports are
inherited from the BB segment and divertor poloidal overall
widths, respectively. The equatorial port is vertically centred
on the mid-equatorial plane and its poloidal extension is spec-
ified as an input parameter. The radial and vertical extensions
of the VV ports are used in the geometry module simply to
identify space regions where the PF coils are not allowed to be
placed.

The VV inner shape is a simple envelope of the outer
BB and divertor bottom profiles, accounting for the void
gaps between BB and VV and divertor and BB (user-
defined). The outer VV shape and the inner TFC shape
follow the same geometric rules (relying on the associated
inboard/outboard/top/bottom widths), as well as the outer TFC
shape, which includes a straight line to represent the inboard
TFC leg.

Finally, for each PF coil i, the size and position are given as
inputs, i.e. indicating the radial and vertical coordinates of the
mass centre, rm,i and zm,i, and their radial and vertical widths,
Δri and Δzi. Also, a feature in the geometry module allows
moving the coils radially and/or poloidally, based on a spec-
ified minimum offset from the outer TF coil shape and the
presence of the VV ports.

3.2. Plasma free-boundary equilibrium

MIRA incorporates a 2D FBE problem, for as a static mag-
netic equilibrium configuration between pressure gradients
and Lorentz forces is sought in terms of toroidal current den-
sities in plasma and coils regions. In axisymmetric radial, ver-
tical and toroidal coordinates (r, z,φ) and in SI units such a
problem is outlined by the Grad–Shafranov equation (GSE)
and reads as (reference [19], p 25):⎧⎨

⎩r2∇ ·
(
∇Ψ

r2

)
= −2πrμ0Jφ (r,Ψ)

Ψ|∂D = 0
, (1)

whereΨ is the poloidal magnetic flux, μ0 = 4π × 10−7 H m−1

is the vacuum magnetic permeability and Jφ indicates the
toroidal current density field in the (r, z) space. ∂D is the
boundary enclosing the domain D, defined by the union of
plasma Dp, coils Dc and vacuum D0 regions.

The weak formulation of equation (1) is solved through
the finite-element method (FEM) to allow for a solution of
curved domains characterizing tokamak plasma. Accordingly,
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Figure 4. EU-DEMO 2015 divertor poloidal profile as per MIRA geometry module, with construction points and geometric input
parameters in evidence. Reproduced with permission from [13].

it is defined as [20]

⎧⎨
⎩
∫
Dp

1
r
∇Ψ · ∇v dr dz = 2πμ0

∫
D

Jφ (r,Ψ) v dr dz

Ψ|∂D = Ψb

, (2)

where v is the basis element function of the functional
subspace V =

{
v ∈ H1 (D) |v|∂D = 0

}
of the Sobolev space

H1 (D). Equation (2) is solved using the FreeFEM++
open-source partial differential equation solver [21], which
is interfaced with MIRA. Since Jφ depends nonlinearly
on Ψ in the plasma region Dp (section 3.2.1), the solution is
addressed via Picard iterations until a converging solution of
Ψ is obtained.

The toroidal current density, Jφ is prescribed in each region
of D as:

Jφ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, ∀ (r, z) ∈ D0

Jφ,c ∀ (r, z) ∈ Dc

Jφ,p = 2πrp′ +
μ0

2πr
FF′ ∀ (r, z) ∈ Dp

, (3)

with Jφ,c indicating the current density in each coil’s conduc-
tor, p′ = dp/dΨ, with p indicating the plasma pressure and
F′ = dF/dΨ, where F(Ψ) = rBφ denotes the covariant com-
ponent of the toroidal magnetic field Bφ. At the plasma bound-
ary Fb = rBt, where Bt is the magnetic field at the plasma
centre, i.e., at r = R0 and z = 0.

Henceforth, the goal of the FBE solver is to calculate Jφ,c

and Jφ,p that fulfil equation (1) and produce a stable magnetic

equilibrium for a plasma with a prescribed set of shape param-
eters. The resolution of the problem takes place in two iterating
steps:

(a) Resolution of the fixed-boundary equilibrium/transport
problem, where the plasma separatrix ∂Dp is known and
denotes the boundary of the resolution domain of the
GSE, i.e., D ≡ Dp. Here, p′ and FF′ are calculated from
the plasma pressure p and safety factor q computed in the
core physics module (section 3.3).

(b) Calculation of the PF coils and CS currents Ic required to
fulfil the plasma shape requirements, the two-hour burn
time limit (long-pulse plasma operation [1]), and the coils
technological constraints [22].

3.2.1. 2D fixed-boundary equilibrium. The variables p′ and
FF′ entering in Jφ,p are prescribed in the form 1D profiles along
a normalized flux coordinate x ∈ [0, 1], spanning from zeros
on the plasma magnetic axis to one on the plasma boundary
(see figure 5). In MIRA, x is derived from the poloidal flux Ψ
to outline p′ and FF′ in equation (1). Accordingly, x reads as
(reference [19], p 33):

x =

√
Ψax −Ψ

Ψax −Ψb
, (4)

where, Ψax and Ψb denote the poloidal flux at the plasma
magnetic axis and plasma boundary, respectively.

The fixed-boundary equilibrium model calculates the pro-
files of p′ and FF′ to use in equation (1), based on the following
parameters:
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Figure 5. Schematic view of the plasma confining region and flux
surface topology. Reproduced with permission from [13].

• plasma separatrix profile ∂Dp(r, z),
• vacuum toroidal field at the plasma centre Bt,
• pressure profile p(x),
• safety factor profile q(x),

where x relates to the normalized flux coordinate reported
in equation (4). The plasma boundary is calculated in the
geometry module relying on a set of pre-built primitives which
draw the poloidal contour as a function of R0, A, κX,u, κX,l, δX,u

and δX,l. The geometric parametrization proposed by Johner
[23] is adopted in MIRA to determine the poloidal profiles
of elongated plasmas. Alternatively, it can be prescribed as
a set of (r, z) pairs for a given number of separatrix points
Nb. The latter setting is enabled when solving the whole equi-
librium problem in the FBE mode (section 3.2), where the
plasma shape is extracted from a global poloidal flux configu-
ration. The plasma pressure and safety factor are obtained from
the mass, energy and poloidal flux conservation laws, resolved
in the MHD transport code PLASMOD [24], fully integrated
into MIRA as a core physics block (section 3.3). Bt can be
either set as input or calculated from the constraining condi-
tion imposed by the maximum magnetic field in the TF coil
conductor Bmax,TFC such that

Bt � Bmax,TFC
rWP,ib

R0
, (5)

where, rWP,ib is the innermost radial coordinate of the TF coil’s
winding pack (WP) on the inboard leg. The inequality con-
straint implies that pure equality would neglect the effects of
the TF ripple (equation (37)) which are fully accounted for in
the 3D magnetostatic module (section 3.6).

The mathematical approach adopted to compute p′ and
FF′ is derived from [25] and slightly readapted to the MIRA
structure for solving the fixed-boundary equilibrium problem.
The method consists of solving the 2D GSE and its 1D flux-
surface-averaged form iteratively. For fluid readability, the full
derivation of p′ and FF′ from p and q (denoting the key cou-
pling between plasma equilibrium and transport) is reported in

appendix A.1, along with the aforementioned iteration scheme.
Here, we report only their final expressions. Accordingly,
FF′reads as:

FF′ = −μ0

g3
p′ +

1
4π2g3

∂

∂V

(
g2

H
q

)
, (6)

where V (Ψ) indicates the plasma volume profile,
H = ∂Φ/∂V, Φ (Ψ) is the toroidal magnetic flux,

g2 (Ψ) =
〈
|∇V|2/r2

〉
and g3 (Ψ) =

〈
1/r2
〉

are metric

coefficients of the poloidal flux configuration Ψ(r, z), and 〈·〉
indicates the flux-surface averaging operator. p′ is calculated
as p′ = ∂p/∂Ψ, where Ψ(x) is the radial poloidal flux profile
calculated from the 1D GSE (equation (A.6)).

Some key plasma integral parameters are normally repre-
sentative of confinement and stability plasma properties. These
are computed in the fixed-boundary equilibrium model and are
outlined as:

• Poloidal beta βp = 2μ0 〈p〉 /
〈
B2

p

〉
l
, with p indicating the

volume-averaged plasma pressure and
〈
B2

p

〉
l
= μ0Ip/lp is

the line-averaged poloidal field, lp is the plasma perimeter.
• Toroidal beta βt = 2μ0 〈p〉 /B2

t .
• Plasma internal inductance li = 2/μ0I2

prax
∫
Dp

B2
p dV [26],

where rax is the location of the axis defined by the axis
magnetic null given by Bp = (Br, Bz) = (0, 0), with Br

and Bz denoting the radial and vertical magnetic field
components.

• Edge safety factor q95, that is calculated at 95% poloidal

flux surface, i.e., q95 = q
(

x =
√

0.95
)

. An operational

limit is normally prescribed on q95 � 3. This limit is to
prevent kink and sawtooth MHD instabilities [27].

The numerical solution of equation (2) could be eas-
ily verified against analytical solutions of the Biot–Savart
equation (or Green’s functions solution). Furthermore, the
fixed-boundary equilibrium solver has been benchmarked
against the Solov’ev equilibrium solution, for which analytical
formulas can be found in the literature (e.g. [28]). A detailed
description of the verification studies for the fixed-boundary
equilibrium model is reported in [13].

3.2.2. A numerical solver for the PF coils and CS currents
configuration. Based on the target plasma shape ∂Dt

p [either
calculated in the geometric module or set as input (r, z) vec-
tors], and a given set of coils’ sizes and positions, the toroidal
current densities Jφ,c shall meet the plasma shaping require-
ments and the coils technological limits. The shaping require-
ments are posed on a prescribed value of plasma elongation
κ95, triangularity δ95 and volume Vp, where κ95 and δ95 denote
the elongation and triangularity calculated at 95% flux surface
(x =

√
0.95), andVp ≡ V (x = 1). For DEMO coils scenario

analysis, the PF coils/CS technological limits are prescribed
in terms of:

• maximum current density Jc,max = 12.5 MA m−2 [22],
• magnetic field Bmax ∼6 T for the PF coils [29] and

Bmax ∼13 T for the CS [30],
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• max vertical forces on single PF coils FPF
z,max = 450 MN

[22],

• maximum vertical force and maximum separation force
on the CS stack, i.e., FCS

z,max = 300 and FCS,sep
z,max = 350 MN

[22], respectively.

The Nc toroidal currents Ic =
[
Ic,1, . . . Ic,Nc

]
carried by the

Nc PF coils and the CS elements are to be calculated based on
such R & C. The total current in the coil i relates to current den-
sity Ji

φ,c in domainDc,i of coil i, such that Ic,i = Ji
φ,c ·Δri ·Δzi,

with Δri and Δzi being the radial and vertical width of the
current-carrying cross-section. If ∂Dt

p is discretized into Nb

points, Ic must be such that the poloidal flux Ψk = Ψ (rk, zk)
on each kth point (rk, zk) is required to be constant and equal
to a prescribed value Ψt

b. If Nb > Nc (and that is normally
the case to closely replicate ∂Dt

p), the problem becomes over-
constrained (or ill-posed) and finding the solution Ic becomes
an optimization problem, where a linear least-square solu-
tion method has been implemented. Accordingly, the shaping
problem becomes a constrained optimization one, defined as:

min
Ic

L(∂Dt
p, Ic, Jφ,p) s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΨX(Ic, Jφ,p) = Ψt
b

B j,X(Ic, Jφ,p) = 0

|Ic,i| � Ic,max j = r, z

|Bpeak,i(Ic, Jφ,p)| � Bmax,i i = 1, . . , Nc∣∣FPF
z,g(Ic, Jφ,p)

∣∣ � FPF
z,max i = 1, . . , Nc∣∣∣∣∣

NCS∑
g

FCS
z,g (Ic, Jφ,p)

∣∣∣∣∣ � FCS
z,max g = 1, . . . , NPF

g∑
i=1

FCS
z,i (Ic, Jφ,p) � FCS,sep

z,max

g∑
i=1

FCS
z,NCS−i+1(Ic, Jφ,p) � −FCS,sep

z,max g = 1, . . . , NCS

(7)

with L defining the Euclidean norm of the residual error
function (being the objective function of the constrained opti-
mization problem) calculated on the Nb target separatrix point
and given by:

L (Ic) =
1

2Nb

(
Nb∑
k

∣∣Ψk
(
Ic, Jφ,p

)
−Ψt

b

∣∣2)+
∥∥∥Γ̂ · Ic

2
∥∥∥ . (8)

The term
∥∥∥Γ̂ · Ic

2
∥∥∥ relates to the Tikhonov regularization

term [31], which can be enabled for any suitably defined
Tikhonov matrix Γ̂. As in other equilibrium solvers [16], Γ̂
is defined as a multiple of the identity matrix Γ̂ = γI, with
γ being a small user-defined constant (∼10−7) used to give
preference to solutions of Ic with smaller norms.

ΨX, Br,X and Bz,X indicate the flux Ψ and the radial and ver-
tical field components Br and Bz calculated at the fixed target
X-points (one lower X-point for single-null divertor config-
urations). Bpeak,i is the peak magnetic field calculated at the
edge of each PF and CS coil, FPF

z,g and FCS
z,g the vertical force

acting on the gth PF or CS coil, and NPF and NCS the total
number of PF and CS coils. All the coils’ limits are calculated
in MIRA according to the formalism reported in [22]. Note
that because of the linearity of the magnetostatic problem out-
lined in equation (1), the poloidal flux and fields at any given
poloidal location can be expressed as a linear combination of

the flux and field contributions from each coil current Ic,i and
from the plasma current Ip, such that

Ψk ≡ Ψ (rk, zk) =
Nc∑

i=1

GΨ,k,i · Ic,i + GΨ,k,p · Ip (9)

and

B j,k ≡ B j (rk, zk)

=

Nc∑
i=1

GB j,k,i · Ic,i + GB j,k,p · Ip, with j = r, z. (10)

The coefficients GΨ,k,i and GΨ,k,p are the Green’s functions
of the elliptic operator of the GSE. These are calculated at
the poloidal location k = (rk, zk) and they are associated with
the coil i and plasma currents, respectively. GB j,k,i and GB j,k,p

are similarly defined to evaluate the radial and the vertical
fields Br and Bz. Equations (9) and (10) are used to apply in
equation (7) the equality constraints on the ΨX and B j,X and
to calculate in equation (8) the poloidal flux on the Nb target
boundary points for shaping purposes Furthermore, recalling
the definition of the volumetric Lorentz force’s vertical com-
ponent fz (r, z) = −Jφ (r, z) · Br(r, z), the same concept can be
applied to calculate the vertical force Fz,i acting on the coil i
as a nonlinear combination of the coils’ currents. Accordingly,

7
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Fz,i can be expressed as

Fz,i = Ic,i ·

⎛
⎝ Nc∑

j�=i

GFz , j→iIc, j + GFz ,p→iIp

⎞
⎠ , (11)

where GFz , j→i and GFz ,p→i are the coefficients relating the
mutual vertical forces between the coil pairs (i, j) and (i, p),
and ‘p’ refers to the plasma. Thus, based upon a pre-built set
of mutual force coefficients, equation (11) is used for apply-
ing the nonlinear vertical force constraints of equation (7).
The full derivation of all Green’s functions for the calcula-
tion of the poloidal flux, field and vertical force is reported
in appendix A.2.

The constrained optimization problem related to the coils’
current resolution is solved in MIRA using the interior point
algorithm [32]. The fixed-boundary equilibrium and coils cur-
rents calculation are iteratively executed over the plasma shape
and the plasma current density, until all coil currents, δ95, κ95

and Vp converge to a constant value. Within the mth itera-
tion step, the plasma separatrix is known from the previous
iteration ∂D(m−1)

p , as well as the target separatrix
(
∂Dt

p

)(m−1)
.

The plasma separatrix needed in the first step (m = 1) is set to
the initial target separatrix

(
∂Dt

p

)(0)
, which is calculated from

the reference values of R0 and A and from an initial guess of
upper and lower edge elongations (κ(0)

X,u, κ(0)
X,l) and triangularity

(δ(0)
X,u, δ(0)

X,l). Edge elongations and triangularities are used to
control κ95 and δ95, by adjusting the target separatrix shape
to use in equation (7), whereas R0 is used to match the shap-
ing requirement posed on Vp. In summary, the following steps
outline the overall iteration scheme implemented in MIRA for
the FBE solver:

(a) Calculate the Green’s functions G(m)
Ψ,k,p,G(m)

Br ,k,p,G(m)
Bz,k,p, the

mutual force coefficients and G(m)
Fz ,p→i from Jφ,p calculated

in the previous iteration
(

J(m−1)
φ,p

)
.

(b) Compute the PF/CS coils current configuration I(m)
c

(equation (7)).
(c) Solve equation (2) to get Ψ(m) with Jφ calculated from the

new PF coils currents I(m)
c and plasma current density from

the previous iteration J(m−1)
φ,p .

(d) If the κ95, δ95 and Vp plasma shape requirements are
enabled, calculate κ(m)

95 , δ(m)
95 and V (m)

p from Ψ(m) and adjust
κX,u,κX,l, δX,u, δX,l and R0 to match the prescribed values
of κt

95, δt
95 and V t

p and recalculate new profile of target sep-

aratrix
(
∂Dt

p

)(m)
. Between each iteration, the adjustment

of such parameters is performed with a simple propor-
tional control scheme and employing under-relaxation.

(e) Find the new plasma separatrix profile
∂D(m)

p = {r, z} |Ψ(m) = Ψt
b.

(f ) Solve 2D fixed-boundary equilibrium + 1D transport as
per the iteration scheme outlined in section 3.3.5 and get
the new plasma boundary ∂D(m)

p to update ∂D(m−1)
p ←

∂D(m)
p and new plasma profiles p(m) and q(m).

(g) From p(m) and q(m) get the new plasma current density
profile J(m)

φ,p to update J(m−1)
φ,p ← J(m)

φ,p .

(h) Repeat all steps from (a) to (g) until the iteration error,
calculated on each value of Ic, and on κ95, δ95and
Vp, is below a certain upper limit, normally fixed to
∼10−4–10−5.

Currently, the FBE solver does not optimize the PF coils’
size, position and number to maximize the plasma shaping
capabilities or any other figures of merit. Nevertheless, the PF
coils and CS elements are adapted to the TF coils outer profile
and VV ports. Hence, the reactor configurations coming from
a full MIRA analysis are normally rather close to those found
in detailed DEMO scenario analyses [22], in terms of sizes and
positions.

The FBE implemented in MIRA calculates the PF coils’
currents based on two-dimensional plasma shaping crite-
ria applied to realistic elongated plasmas, and with the
plasma current density obtained from p′ and FF′ profiles
fully consistent with MHD plasma transport. In several
equilibrium solvers (e.g. [33]), instead, the equilibrium solu-
tion is obtained prescribing some pre-defined polynomial
expressions of Jφ,p whose coefficients are computed constrain-
ing certain key plasma integral parameters, such as Ip, βp, li
and q95 to a target value. Also, the PF coils’ current, field, and
vertical forces technological constraints are fully constrained.
Overall, this modelling sophistication helps significantly to
characterize a reactor pulse and provides two-dimensional
insights that enhance the design of the reactor physical com-
ponents considerably.

3.3. Core and SOL physics

SCs often attempt to tackle the key core physics processes
with a simplified 0D approach, where prescribed profiles
parametrizations are set to reproduce some expected elec-
tron and ions density and temperatures, and scaling laws are
used to have crude predictions on the energy confinement
(e.g., ITER Physics Basis IPB98 scaling law [34]). Formerly,
such an approach has been part of the MIRA core physics
modelling, too [13]. Recently, this approach has been fully
replaced by a plasma transport solver. The core physics mod-
ule currently implemented in MIRA incorporates the 1D MHD
transport and equilibrium code PLASMOD [24, 35], inherited
from the transport code ASTRA [36].

A one-dimensional approach is vital to assess reactor
designs, as the profiles effects play a key role in the eval-
uation of the integral plasma parameters, such as fusion
and radiation power. Also, the core and pedestal physics
are very different and cannot be properly captured by global
scaling laws. Finally, reliable predictions of the bootstrap cur-
rent are needed to fully characterize the demands of induc-
tive fractions and depict the capabilities to operate plasma
with long pulses. These can be computed properly only by
calculating the plasma profiles from MHD transport solutions.

In PLASMOD, four major blocks are incorporated and
appropriately coupled to produce a consistent plasma configu-
ration. These are:

• A 1D transport solver for the radial profiles of the ion
temperature Ti (ρ), electron temperature Te (ρ), and elec-
tron density ne (ρ) along the normalized flux coordinate

8
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ρ =
√
Φ/Φb, with Φ (ρ) denoting the toroidal flux profile

and Φb the toroidal flux at plasma boundary.
• A 1D current diffusion equation (CDE) solver, for the

conservation law of the poloidal flux Ψ.

• A 2D equilibrium solver for the resolution of the GSE in
Ψ and the calculation of the metric coefficients g2 and g3

and volume V to use in the transport and CDEs.
• A 0D model to compute the power load to the divertor

due to advective/conductive transport losses across the
separatrix.

In this section, the four models are outlined, along with an
integration scheme proposed for integrating PLASMOD into
the MIRA framework.

3.3.1. 1D transport solver. In the 1D transport solver, the flux-
surface-averaged steady-state conservation laws for electron
density ne, electrons temperature Te and ions temperature T i

are solved in the following one-dimensional form [25]:

1
V ′

∂
(
V ′ΓY

)
∂ρ

= SY (ρ, Y) , (12)

where, V ′ = ∂V/∂ρ, Y(ρ)can be ne, Te or T i, ΓY is the trans-
port flux of Y and SY denotes the sum of sinks and sources
of Y. ΓY is the transport flux and is calculated as the sum
of advection and conduction contributions [35], such that
ΓY = −χY∂Y/∂ρ+ vY Y, where χY is the diffusivity and vY

is the convective velocity.
The core transport processes, such as turbulence, colli-

sions, ideal and resistive MHD modes, determine the steady-
state temperature and density profiles from the magnetic axis
(ρ = 0) to the pedestal top position

(
ρ = ρped). The transport

coefficients are calculated employing a simple gyro-Bohm
scaling (e.g., χY ∼ T3/2

e /B2 [37, 38]), and they are re-scaled
to match the temperature and the density profiles obtained in
previous theoretical studies [24, 39, 40]. The pedestal top at
ρ = ρped acts as a boundary for equation (12). The electron
density at the pedestal top ne,ped, can be either set as a fraction
fGW,ped of the Greenwald density with nGW = Ip/πa2 [41] set
as an input. In the former case, fGW,ped = ne,ped/nGW, where
fGW,ped � 1 represents a key plasma operational limit to pre-
vent thermal instabilities [42]. The electrons and ions temper-
atures at pedestal height Te,ped and T i,ped are assumed equal
and can be either set as inputs or calculated using the scal-
ing law reported in [43], derived from a large set of runs per-
formed with the MHD pedestal code EPED [44]. The plasma
density at the plasma separatrix (ρ = 1) is also prescribed in
terms of Greenwald fraction fGW,sep, and the temperature Tsep

is again fixed as input parameter and assumed equal for both
ions and electrons. Furthermore, an upper limit is normally
posed in the normalized beta limit βN = βt/

(
Ip/aBt

)
, such

that βN < 4li to avoid pressure-driven MHD instability modes
[45, 46].

Fueling and auxiliary heating sources are modelled in
PLASMOD specifying their radial profiles and the integral
deposition (power or injection rate). In particular, a Gaussian
distribution along ρ outlines the radial behaviour, where the
mean deposition location ρ and the standard deviation σρ are

user-defined parameters. In addition, PLASMOD allows spec-
ifying NBI power deposition, which is deployed for fueling,
auxiliary heating and current drive purposes. Pellet injection
and electron cyclotron heating can be also readily enabled.

The steady-state power density source terms q̇e and q̇i for
electrons and ions are computed as

q̇e = q̇α,e + q̇add,e + q̇oh − q̇rad − q̇e,i

q̇i = q̇α,i + q̇add,i + q̇e,i
, (13)

where, q̇α,e and q̇α,i are the shares of fusion alpha power density
absorbed by electrons and ions, q̇add,e and q̇add,i are the addi-
tional heating powers deposited to electrons and ions, q̇oh is
the ohmic heating power density, q̇rad is the radiation power
density and q̇e,i is the classical equipartition power from elec-
trons to ions. The alpha fusion power q̇α = q̇fus/5 is calculated
from the total fusion power q̇fus defined as:

q̇fus = Efus,DTnDnT〈σv (Ti)〉DT, (14)

where nD and nT are the deuterium and tritium density pro-
files, Efus,DT being the fusion reaction energy, and 〈σv〉DT
is the velocity-averaged DT fusion cross-section (e.g., scal-
ing laws from [47, 48]). For the sake of simplicity, it is
assumed that a fuel composition includes only deuterium and
tritium and that the fusion energy is uniquely produced via DT
fusion reactions. Nevertheless, PLASMOD accounts for DD
contributions, too. The repartition between ions and electrons
of q̇α is computed in PLASMOD taking into account the alphas
slowing downtime and the collisionality, similarly to ASTRA
[36].

The auxiliary heating power density q̇add is modelled
through the total additional heating power Padd and the
profile’s mean value and standard deviation. The ion/electron
repartition of the total auxiliary heating power density q̇aux is
assumed to be distributed in a 60/40 ratio [49]. The ohmic heat-
ing power q̇oh is found as qoh = Ip · f ind · Uloop/Vp, with f ind

being the inductive fraction of the plasma current, and Uloop

the loop voltage (equation (22)).
The equipartition power q̇e,i ∝ ne (Te − Ti) /τeq relates to

the net energy exchange between electrons and ions due
to Coulomb collisions, where τ ei ∼ 1/νei is associated with
the electron/ion’s collision frequency νeq ∝ ni/T3/2

e (reference
[50], p 132).

The radiation loss term q̇rad is defined as

q̇rad (ρ) = q̇brem (ρ) + q̇line (ρ) + q̇sync (ρ) , (15)

and incorporates the power losses associated with the follow-
ing contributions:

• Bremsstrahlung radiation q̇brem ∝ Zeffn2
e

√
Te due to

Coulomb collisions, with Zeff =

〈∑
j

n jZ2
j/ne

〉
being the

plasma effective charge.
• Line radiation q̇line = ne

∑
j

n j · LZ, j (Te) due to all j plasma

impurities, with LZ, j being the radiative power loss func-
tion (or luminosity). In PLASMOD, the radiation loss

9
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functions are inherited from [51], but they are also avail-
able from the ADAS database [52].

• Synchrotron radiation q̇sync (see [49] for the complete for-
mulation) due to particle motion in the magnetic field,
and ruled by ne, Te, Bt and plasma geometry figures
(κ95, A, R0).

In the plasma edge, delimited by ρedge � ρ � 1 (with ρedge

being a prescribed edge location), the radiation losses are pre-
dominantly characterized by line radiation, whereas in the
core region (0 � ρ < ρedge) bremsstrahlung and synchrotron
radiations represent the main contributions.

Finally, taking the total power Px as the volume integral of
the power density term q̇x (with x = α, add, rad, oh) outlined
in equation (13), and summing the ions and electrons powers,
the following integral power balance in the core plasma region
is obtained:

Pα + Padd + Poh = Psep + Prad, (16)

where

Psep =

∫
Dp

(q̇e + q̇i) dV (17)

identifies the net power crossing the separatrix through advec-
tive and conductive transport losses. Combining the plasma
thermal energy Wth ∝

∫
(neTe + niTi) dV and the definition

of the global energy confinement time τE = W th/Psep, the
H factor is calculated as H = τE/τ

IPB98(y,2)
E , with τ IPB98(y,2)

E
being the IPB98(y, 2) scaling law with the radiation-corrected
power term to account for a high radiation power [49].
Taking fP2E = τ p/τE, as a given particle-to-energy-
confinement ratio ∼5 [24], with τ p being the particle
confinement time, the overall helium inventory in the con-
fining region NHe =

Pα
Eα
τp is obtained from the steady-state

integral helium mass balance, where Eα is the kinetic energy
associated with the alpha particles. Defining the helium
fraction cHe = NHe/

∫
ne dV, the helium density profile nHe is

approximated as a fraction of ne, such that, nHe (ρ) = cHene (ρ).
Finally, bearing in mind the plasma quasi neutrality, the fuel
density profile nfuel reads as

nfuel = ne − 2 · nHe −
∑

j

Z jn j, (18)

where nj is the density profile of the impurity j with a
charge number Z j. nj is modelled in PLASMOD through the
definition of fractions c j such that nj = c j · ne, with c j being
either calculated or fixed, depending on the purposes. Hydro-
gen, argon, xenon and tungsten, along with deuterium, tritium,
4He and 3He represent the entirety of atomic species currently
included in the PLASMOD’s atomic database, consisting of
charge number and radiative loss functions LZ . Based upon
the definition of a fuel mix factor fD, denoting the fraction
of deuterium in the fuel composition (normally it is assumed
a 50/50% D/T fuel mix), the deuterium and tritium density
profiles to use in equation (14), are readily calculated as
nD = fD · nfuel and nT = (1 − fD) nfuel.

Finally, the plasma pressure profile p(ρ), used in
equations (3) and (6) to solve the fixed-boundary equilibrium

problem, reads as:

p = neTe + niTi + pα, (19)

where, ni = nfuel + nHe +
∑

j
n j is the total ion density and pα

is the pressure of fast alpha particles.
The strong nonlinearities affecting especially the radiation

losses and the transport coefficients make the system of par-
tial differential equation (12) rather challenging in terms of its
numerical resolution, thus requiring a robust iteration scheme.
More details on these aspects are reported in [35].

3.3.2. 1D solver for the current diffusion equation. The 1D
CDE is the conservation law of the poloidal flux Ψ(ρ), derived
from the longitudinal Ohm’s law [36], reading as:

j‖ = σ‖E‖ + jBS + jCD, (20)

where E‖ ≡ 〈E · B〉 /Bt is the parallel electric field, j‖ ≡
〈J · B〉 /Bt the parallel current density, σ‖ the neoclassical
plasma electric conductivity [53, 54], jBS the parallel bootstrap
current density, and jCD the longitudinal CD current density.
j‖, and similarly, jBS and jCD, is combined with the flux surface
definition of the toroidal current Itor (ρ) [36], such that

Itor (ρ) =
∫

Stor

J · dS =
Bt

2π
F (ρ)

∫ V(ρ)

0

j‖ (ρ)
F2 (ρ)

dV , (21)

which, for ρ = 1, yields the total plasma current Ip. Analo-
gously, replacing j‖ in equation (21) with jCD and jBS would
return the total CD current ICD and bootstrap current IBS,
respectively Assuming that the vacuum toroidal field Bt is
time-independent, the plasma loop voltage Uloop, used to
describe the irreversible diffusive flux of Ψ through the flux
surfaces ρ, is given by [36]:

Uloop = −∂Ψ

∂t

∣∣∣∣
ρb

= 2πBt
E‖

Fbg3,b
, (22)

where E‖ (usually constant over ρ [36]) can be evaluated
recasting equation (20) and using the integral definitions of Ip,
ICD and IBS from equation (21), such that

E‖ =
Ip − IBS − ICD
FbBt
2π

∫ Vp
0

σ‖
F2 dV

. (23)

The neoclassical plasma conductivity σ‖ and the boot-
strap current density jBS ∝

√
r/R0∇p/Bp (reference [19],

p 189) are calculated from the transport profiles using
Sauter’s formulas [53, 54], whereas the total CD cur-
rent ICD scales with the injected CD power density q̇CD

such that jCD = γCD/ 〈ne〉 q̇CD, where γCD defines the global
normalized current drive efficiency. In the case of NBI fuelling,
a scaling law reported by Johner [23] relates γCD with the
volume-averaged electron temperature 〈Te〉, yielding values
around 0.3–0.4 (1020 A W−1 m−2) for DEMO temperature
profiles.

10
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Finally, based upon the calculation of j‖ from E‖, jBS and
jCD in equation (20), the safety factor profile can readily be
computed as:

q (ρ) =
g2 (ρ) g3 (ρ) F (ρ)

8π3μ0Itor (ρ)
, (24)

with q being used in the fixed-boundary equilibrium model
(equation (6)).

3.3.3. 2D equilibrium solver. PLASMOD incorporates a 2D
GSE solver implemented in the EMEQ equilibrium code [55]
that is based on a three-moment approach (3M) [56]. Accord-
ingly, the plasma configuration is assumed to be up-down
symmetric and each magnetic surface can be parameterized
as a function of the Grad–Shafranov shift Δ(ρ), elongation
κ(ρ) and triangularity δ(ρ). Accordingly, the boundary condi-
tions are specified prescribing R0, a,ΔE,κE and δE, where the
subscript ‘E’ refers to the plasma boundary, i.e., ρ = ρb = 1.

3.3.4. 0D SOL/divertor model. The model in [49] is used to
calculate the divertor heat flux qdiv based on Psep and nsep from
the 1D transport solver and some engineering assumptions on
the divertor geometry and on flux the expansion from the mid-
equatorial plane to the divertor targets. These aspects affect
the wetted area in the calculation of the heat flux and depend
both on the magnetic field configuration (namely on the ratio
between poloidal and toroidal components) and the divertor
geometry. In general, the peak heat flux qdiv scales with the
upstream parallel heat flux, such that:

q‖,up ∝ Psep

R0λq

(
Bp
BT

)
m

, (25)

where λq is the power decay length (calculated employing
the Eich scaling [57]) and

(
Bp/Bφ

)
m

is the ratio between
the poloidal and toroidal component of the magnetic field at
the separatrix on the equatorial mid-plane, evaluated at (r =
R0 + a, z = 0) for the outboard side and (r = R0 − a, z = 0)
for the inboard side.

(
Bp/Bφ

)
m

is calculated in the equilibrium
module. See [49, 58] for details and references therein.

In PLASMOD, the SOL and the core regions are connected
through their mass and energy flows. If a maximum heat flux
qdiv,max is set as input, in argon gas is seeded in the plasma
edge to protect the targets by dissipating such power through
radiation. In turn, this affects the impurity contents in the core,
too, and influences the power output via fuel dilution.

3.3.5. Integration of PLASMOD into MIRA. The 2D equilib-
rium solver and the 1D core/SOL transport solvers are coupled
and run iteratively in PLASMOD. From the equilibrium reso-
lution, the 1D solver inherits the metric coefficients V ′, g2, g3
and the radial profiles ρ. The equilibrium solver gets from the
transport solvers the kinetic profiles p, jBS, jCD, and q. Conver-
gence criteria are placed on the iteration errors calculated for
the kinetic profiles (ne, Te and T i) and on the safety factor to
complete the iteration loop.

Apart from a set of required numerical settings (e.g., itera-
tion errors, max number of iterations, etc), the following key

input parameters are required to run a PLASMOD configura-
tion:

• Plasma geometry: R0, A,κ95, δ95, Bt, q95.

• Plasma composition: fD, fP2E, cH, cW, cAr, cXe.
• Plasma profile properties at separatrix and pedestal:
ρped, fGW,ped, fGW,sep, Tsep.

• Mean location ρ and standard deviation σρ to describe the
Gaussian distribution of fueling and heating sources.

• Fixed additional heating power Pheat that is not modified
by any of the additional constraints on Paux as described
below.

Additional input parameters can be set by the user to allow
PLASMOD to constrain a set of plasma targets and opera-
tional limits. Some of them are fixed, whereas some others
are enabled on demand. In turn, based on these specifications,
PLASMOD tunes certain control parameters during the trans-
port/equilibrium iterations to match the required conditions.
These are summarized as follows:

• calculate Ip to match qt
95, where the superscript ‘t’ refers

to a target value (fixed)

• calculate δE and κE to constrain δt
95 and κt

95 (fixed)

• adjust a to constrain the plasma volume to a target value
V t

p (optional)

• tune Padd (in form of CD power) to fix the loop voltage to
a target value Ut

loop (optional)

• increase cXe and Padd to constrain the ratio fLH =
Psep
PLH

within a prescribed interval given by an upper and a lower
limit, fLH,max and fLH,min, normally around 1.1–1.2 [24,
42] to ensure H-mode operation. PLH is the L–H transi-
tion power (Martin’s scaling law [59] employed). Accord-
ingly, Padd is turned on if fLH < 1.1, while cXe is puffed if
fLH > 1.2 ( fLH,max and fLH,min are optional inputs)

• control cXe to observe the limits posed on the divertor

challenging criteria expressed as Psep
R0

<
Psep
R0

∣∣∣
max

∼

17 MW m−1 [18] and/or PsepBt
q95AR0

� PsepBt
q95AR0

∣∣∣
max

∼
9.2 MW T m−1 [43]. The given limits are represen-
tative values for a 2 GW fusion power machine operating
in H-mode (optional)

• control Padd to constrain a target fusion power Pt
fus

(optional)
• increase cAr to constrain qdiv � qdiv,max, where qdiv,max can

be set as an optional input parameter.

The integration of PLASMOD into MIRA is done by pass-
ing to the pre-compiled PLASMOD routine the input files from
the MIRA data structure, running PLASMOD during a MIRA
run and reading the calculated scalar parameters and profiles.

The connection point between the MIRA and PLASMOD
framework lies within the 2D fixed boundary equilibrium,
where p (x) and q(x) are obtained from the 1D transport res-
olution. The built-in PLASMOD equilibrium solver relies
on a fully analytical resolution method, hence much faster
than the 2D equilibrium model based on the FEM approach.
This makes it very adequate for multiple iterations with the
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transport solution and that is the reason why the FEM equi-
librium is not used for such purposes. On the other hand,
the EMEQ solver cannot handle the asymmetric shapes of
elongated plasma, unlike the 2D FEM model. Therefore,
the disparities between the plasma geometries modelled by
MIRA’s and PLASMOD’s fixed-boundary equilibrium mod-
els might lead to small (though non-negligible) inconsisten-
cies in the integral plasma parameters. For instance, when cal-
culating the integral power terms by integrating the kinetic
profiles calculated in the PLASMOD transport solver over
the 1D volume profiles calculated in the 2D FEM equilib-
rium solver, mismatches around 5%–10% in the integral pow-
ers have been found, for plasmas having the same value
R0, A,κ95, δ95. Hence, to enhance the consistency between the
elongated asymmetric plasmas modelled in the FEM equilib-
rium and EMEQ solvers, the constraint on the plasma volume
V t

p has been recently added to PLASMOD, and used in the fol-
lowing iteration scheme, which depicts the integration scheme
of PLASMOD into MIRA. At each iteration step, the edge
elongation and triangularities are known from the previous

iteration
(
κ(k−1)

X,u ,κ(k−1)
X,l , δ(k−1)

X,u , δ(k−1)
X,l ), as well as the pressure

and safety factor profiles (p(k−1), q(k−1)
)
. Accordingly, the fol-

lowing iterations are performed to integrate PLASMOD into
MIRA:

(a) Solve 2D FEM fixed-boundary for the plasma shape and
the plasma profiles from the previous iteration, ∂D(k−1)

p

and (p(k−1), q(k−1)), following all the steps in the iteration
scheme reported in appendix A.1.

(b) Get κ(k)
95 , δ(k)

95 and V (k)
p from the 2D FEM equilibrium

solution.
(c) Run PLASMOD with inputs parameters

(
κt

95

)(k)
= κ(k)

95 ,(
δt

95

)(k)
= δ(k)

95 and
(
V t

p

)(k)
= V (k)

p to solve 1D transport +
2D equilibrium (3M) and obtain the new pressure and
safety factor profiles, p(k) and q(k).

(d) Recalculate new values of κ(k)
X,u,κ(k)

X,l, δ
(k)
X,u, δ(k)

X,l to constrain

κ(k)
95 and δ(k)

95 to their absolute target values κt
95 and δt

95.
(e) Update the plasma shape ∂D(k−1)

p ← ∂D(k)
p , the pressure

p(k−1) ← p(k) and the safety factor profile q(k−1) ← q(k).
(f ) Repeat all steps above until convergence on κ(k)

95 , δ(k)
95 and

Vk
p is found.

Note that the coupled 2D fixed-boundary equilibrium +
PLASMOD package is a built-in step of a whole FBE/transport
problem, as outlined in step (f) of the iteration scheme reported
in section 3.2.2, denoting the holistic view of the whole
physics/engineering solution. The flowchart of figure 6 resem-
bles the entirety of the fully coupled transport and FBE
problem.

3.4. Plasma scenario

A FPP operating in pulsed mode relies on distinct phases, each
characterized by a specific functional role. The design of the
PF/CS coil systems is primarily focused on three main time
frames during the pulse: plasma breakdown (BD), start of flat-
top (SOF) and end of flat-top (EOF). The time evolution of the

currents in the coils defines a plasma scenario [60]. Over the
different scenario time frames, the PF/CS coils system shall
cope with rather diverse operational demands, expressed as
flux and field on radial poloidal prescribed spots.

At the plasma BD the poloidal flux on a prescribed BD
point XBD = (rBD, zBD) is maximized and a max stray field area
∂Dt

BD around XBD is targeted with the same set of current,
force and field technological constraints. Every point within
∂Dt

BD is required to have a poloidal field Bp below the maxi-
mum stray field Bmax

stray (∼3 mT [12]). In more practical terms,
the PF/CS coil configuration is found resolving the optimiza-
tion problem of equation (7) without the flux and field con-
tributions from the plasma, and modifying the objective func-
tionL such that L (Ic) = −ΨBD(Ic), where ΨBD is the poloidal
field calculated at XBD. Note that minimizing the negative part
of a function is equivalent to its maximization. Additionally,
the equality constraints on the X-point are removed and the
inequality constraints on a selected number of points NBD on
∂Dt

BD (considered to be circular around XBD with a BD area
radius ρBD ∼ 2–3 m), such that the poloidal field on each point
k is lower than the max stray field, i.e. Bp,k (Ic) < Bmax

stray , for
k = 1, . . . , NBD.

At SOF and EOF the complete FBE problem is solved
for two prescribed plasma boundary fluxes: Ψb,SOF and
Ψb,EOF, respectively. Both are set as target values Ψt

b in
equation (8). Ψb,SOF is computed from the peak poloidal flux
ΨBD achieved during the plasma BD and the flux consumed
during the plasma ramp-up, composed of an inductive and a
resistive component, Ψind and Ψres. Ψres = cEjimaμ0IpR0 and
Ψind = 1

2μ0liIprax are calculated as per Ejima scaling [61], as a
function of the Ejima coefficient cEjima ∼ 0.3–0.4 (input), li, Ip

and radial location of the plasma magnetic axis rax, calculated
from the FBE. Finally, Ψb,SOF reads as:

Ψb,SOF = ΨBD − cEjimaμ0IpR0 −
1
2
μ0liraxIp. (26)

The boundary flux at EOF Ψb,EOF is manually mini-
mized from Ψb,SOF to a feasibly achievable value in line
with the imposed operational plasma shaping requirements
(δt

95,κt
95, R0, A, Vp

)
and coils technology constraints.

Once Ψb,SOF and Ψb,EOF are known, Uloop is used to deter-
mine the maximum flat-top length τmax

flat , i.e., the maximum
time duration where a constant plasma current Ip can be main-
tained within a plasma pulse with a given set of PF/CS tech-
nological limits. As a first approximation τmax

flat is equal to the
max burn time τmax

burn , i.e., the timeframe where a constant fusion
power Pfus is established. τmax

flat is computed from the definition
of Uloop of equation (22), such that:

τmax
burn ≈ τmax

flat =
Ψb,SOF −Ψb,EOF

Uloop
. (27)

Note the overlapping of physics and engineering depen-
dencies on τmax

burn coming from core plasma transport and equi-
librium properties (Ip, li, ne, Te, T i, IBS) and technological fea-
tures (PCD, coil sizes, positions and limits). Most importantly,
a DEMO top-level requirement is indeed posed on long-pulse
DEMO devices, such that τ burn � 2 h [17].
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Figure 6. Flowchart for the coupling of fixed-boundary equilibrium, 1D MHD transport physics and PF/CS coil current solvers, denoting
the fully coupled transport-FBE solver of MIRA. Each block is characterized by its shape: ovals relate to start and stop nodes, sharp-corner
rectangles indicate inputs, round-corner-rectangles denote process steps and diamonds refer to process decisions.

3.5. Reactor neutronics

A neutron-gamma radiation transport model for tokamak con-
figurations has been implemented in MIRA for a fast calcu-
lation of tritium breeding, nuclear heating, neutron shielding
capabilities of the physical reactor components. The trans-
port problem is addressed by solving the steady-state Boltz-
mann transport equation (BTE), where the distribution of the
angular flux density ψ(r,Ω, E) in the space (r), angle (Ω) and
energy (E) phase space is the unknown function. In MIRA, the
BTE is solved numerically discretizing E and Ω as per multi-
energy group and discrete ordinate approximations (reference
[62], pp 61 and 117). Accordingly, the transport problem is
solved along a selected number N of angular directionsΩn (SN

discrete ordinate approximation), and a number G of energy
groups g =

[
Eg, Eg−1

]
. As a result, the solution ψ is sought

for all angular flux density scalar functions ψg
n defined for

all n = 1, . . . , N and g = 1, 2, . . . , G. Finally, the set of BTEs
reads as:
⎧⎨
⎩
(

Ĥg
n (Ωn) +Σg

t

)
ψg

n (r, z) = q̇g
ext (r, z) + L̂g

n

(
Ωn,Σg′→g

s,l

)
ψg

n (r, z)

ψg
n|∂D_ = 0

(28)
where Ĥg

n and L̂g
n are the streaming first-order differential

operator and the integral scattering operator of the BTE
in 2D curvilinear geometry, under discrete ordinate and
multi-group approximation (reference [62], pp 79 and 176).
∂D− {r, z ∈ ∂D|Ωn · n < 0} is the inflow boundary (with
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related vacuum boundary condition), and n is the unit outward
normal field on the boundary ∂D. Σg

t (r, z) is the total macro-
scopic nuclear cross-section and Σg′→g

s,l is the angular moment
of the differential scattering macroscopic cross-section from
all groups g′ �= g to the group g. q̇g

ext is the external neu-
tron (or photon) source (assumed isotropic in the angular
direction). Σg

t and Σg′→g
s,l depend on the atomic densities and

the isotope compositions of the materials characterizing the
reactor components, i.e., the volumetric fraction of each mate-
rial mixture (e.g., EUROFER, coolant, breeder, etc). In gen-
eral, the macroscopic cross-sectionΣx associated with the neu-
tron interaction x is obtained by multiplying the microscopic
cross-section σx,i of the isotope i to the atomic density ni such
that

Σx (r, E,Ω) =
∑

ni (r) · σx,i (E,Ω) . (29)

The fusion-evaluated nuclear data library [63] are recom-
mended for fusion neutronics [64] and are deployed in MIRA
for neutron transport analyses.

The neutron and photon sources are calculated in the core
plasma physics module from 1D transport solution as radial
profiles along the normalized radial coordinate x and are
mapped onto the 2D normalized flux distribution x (r, z) from
the 2D magnetic configuration. Hence, q̇ext ≡ q̇neut = 4/5q̇fus

for neutrons (equation (14)) and q̇ext = q̇rad for photon radi-
ations (equation (15)). The ordinates Ωn are associated with
the quadrature formula used to integrate ψg

n over Ω, such that∫
ψ dΩ ≈

∑
wnψn. The level-symmetric quadrature set has

been chosen for the resolution tokamak neutronics problem in
MIRA systems analyses.

Based on the resolution of equation (28), the tritium breed-
ing, nuclear power deposition, neutron shielding and atomic
displacement damage features are calculated from reaction
rates and other integral and local parameters, listed below:

• Scalar flux φ (r, z, E) =
∫
ψ(r, z, E,Ω)dΩ.

• Net current jn =
∫

n ·Ωψ (r, z, E,Ω) dΩ.
• Fast neutron flux Φfast (r, z) =

∫ +∞
0.1MeVφ (r, z, E) dE and

total neutron flux Φfast (r, z) =
∫ +∞

0 φ (r, z, E) dE.
• Local volumetric reaction rate Rx (r, z) =∫ +∞

0 Σx (r, z, E)φ (r, z, E) dE.

The whole neutronic model splits into two submodules:

• a two-dimensional neutron/gamma transport resolution
for a plasma + SOL void domain, and

• a one-dimensional model for the radial streaming of neu-
tron and gamma rays across the core reactor components.

3.5.1. A 2D model for the radiation transport across the torus
chamber. In the 2D model, the union of plasma and SOL
domains Dp and DSOL, obtained from the geometry module, is

addressed as void computing domain, with Σg
t = Σg′→g

s,l = 0.
The domain D = Dp ∪ DSOL is enclosed by the boundary
∂D = ∂DFW ∪ ∂DDIV, where ∂DFW and ∂DDIV denote the
FW and the divertor contours facing the plasma (see figure 7).

The 2D BTE is solved both for q̇neut (r, z) and q̇rad(r, z).
For its numerical solution, the FEM discontinuous Galerkin
method (DGM) has been deployed with a dedicated model

Figure 7. Graphical representation of plasma + SOL void domain
used for the 2D neutron and photon radiation transport model
implemented in MIRA. Reproduced with permission from [13].

implemented in FreeFEM++ and integrated into MIRA.
Accordingly, the neutron and photon wall loads onto blanket
first wall and divertor structures are mapped with the imposed
BB and divertor geometric poloidal profiles. From the res-
olution of all ψn(r, z) (group superscript omitted), and from
the calculation of the net current jn, the power load from the
neutron or photon source k onto the boundary portion j (with
j = FW, DIV) is calculated as

Pk
j =

∫
∂D j

jkn (r, z) 2πr dl, (30)

with k = n, γ and j = FW, DIV. Here, dl is the infinitesimal
length along ∂D j. Similarly, the poloidal distribution Γk

⊥ (αw)
of the neutron and photon power loads on a poloidal coordinate
αw can be defined. αw is oriented counter-clockwise along the
boundary ∂D and indicates the poloidal angular position of
the infinitesimal wall area δDw on FW and divertor surfaces.
Accordingly, Γk

⊥ is given by:

Γk
⊥ (αw) =

∫
δDw

jkn (r, z) 2πr dl∫
δDw

2πr dl
, (31)

with 0 � αw � 2π. An upper limit of 1 MW m−2 [65] is set
for Γγ

⊥ on the FW (Γγ
⊥,FW), since the heat flux from the plasma

radiation represents a localized power surface deposition that
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can compromise the structural integrity and cooling of the
plasma-facing components.

A V & V study has been addressed to outline the major
errors introduced by the model (see [13] for technical details
and references therein). In short, the verification part included
a comparison of a flux density distribution against some ana-
lytical solutions (e.g., for a square domain), while a sepa-
rate validation study has been conducted against Monte Carlo
(MC) solutions. Therein, deterministic and stochastic analy-
ses have been carried out comparing the poloidal distribution
of Γn

⊥ (αw) calculated for a solution domain with the plasma
shape parameters and volumetric sources inherited from the
EU-DEMO 2015 baseline [18] and a surrounding FW/divertor
shape assumed for simplicity up-down symmetric and taking
a SOL radial thickness equal to 22.5 cm, and a vertical thick-
ness equal to 50 cm. The major goal was mainly to quantify the
error arising from the spatial and angular discretization. The
verification study resulted in a set of guidelines to build the
2D mesh, with a mesh refinement ensuring a numerical error
(in the integral L2 norm definition) below a certain threshold
value (∼0.1%). The validation study yielded the local relative
error onΓn

⊥ (αw) against the MC solution, leading to peak local
deviations below 1% for αw ∈ [0, 2π]. Also, a major conclu-
sion of such a study is that at least an S14 approximation is
necessary to have a local relative error below 1% across the
αw domain.

Furthermore, to prove the versatility of the model for its
application to tokamak geometry configurations far from the
EU-DEMO 2015 baseline, a wider range of values of R0

(7.5–10.5 m) and A (2.6–3.6) were addressed using the same
MC model. The analyses yielded numerical errors very close
to those obtained for the EU-DEMO 2015 baseline. A detailed
description of the whole validation study is reported in [13].

3.5.2. A 1D model for the radiation transport across the phys-
ical reactor components. In the 1D neutronics model, the
neutron and photon streaming across the reactor components,
including their material composition, is solved along the
radial direction r. Accordingly, a one-dimensional cylindrical
approximation is made. The solution of the BTE ψg

n(r) is then
found for all ordinates N and energy groups G. The ANISN
deterministic code [66] has been interfaced with MIRA to ful-
fil this task. ANISN calculates the space/energy/angle neutron
and photon flux density spectrum for any arbitrary radial and
material composition of the core physical reactor components,
including BB, VV, gaps and TF coils. The neutronic model
calculates the reaction rates needed for the nuclear design of
the reactor. These are inherited from the in-group scalar neu-
tron flux φg(r) =

∑
wnψ

g
n(r), where wn indicate the weights

of the discrete ordinates quadrature formula. The radial pro-
files of φg(r) are properly mapped onto a 2D radial/vertical
grid, such that φ1D

g (r) → φ2D
g (r, z). From φ2D

g (r, z), all relevant
reaction rates are calculated. In particular, the following key
parameters are calculated in the MIRA’s neutronics module.

The tritium breeding ratio (TBR) is a key reactor design
parameter and is defined as:

TBR =
1
Bp

∫
DBZ

Rnt(r, z)2πr dr dz, (32)

with Rnt =
∑

g
Σg

n→Tφg indicating the local tritium production

rate, Σg
n→T the macroscopic tritium breeding reactions from

neutron captures of 6Li and 7Li atoms, DBZ the breeding zone
(BZ) domain and Bp ∝ Pfus the tritium burn-up in the plasma.
A key DEMO requirement is posed on the TBR for DEMO
[67], for as the so-called target TBR TBRt � 1.15 needs to be
achieved to attain tritium self-sufficiency. This value includes
a design margin from the required TBR TBRr, i.e., the TBR at
the interface between the T extraction systems and the tritium
plant. Such a design margin accounts for non-breeding compo-
nents which deplete the T breeding, such as limiters, auxiliary
heating systems and diagnostics.

The nuclear heating deposition Rm
heat into the materials of

the reactor component reads as:

Rm
heat =

∫
Dm

Rm
heat2πr dr dz, (33)

with Rm
heat (r, z) =

∑
kg

heat (r)φg(r, z) being the nuclear power
density, kg

heat the KERMA factor (kinetic energy released in
materials), and Dm the domain of the component m.

Neutron shielding requirements are observed to protect the
superconducting coils and to limit the neutron irradiation dam-
age to structural and functional materials. The shielding limits
associated with the TF coils operation [68] are posed on the
peak volumetric heatingRTFC

heat,peak � 50 W m−3 and on the peak
fast neutron flux φTFC

fast,peak � 109 cm−2 s−1, defined as:

φTFC
fast,peak =

g14∑
g0.1

φg

(
rIB

TFC

)
, (34)

where rib
TFC indicates the innermost radial location of the TF

coil’s conducting region, and g0.1 and g14 the group indexes
envelop the energy interval between 0.1 MeV and 14.1 MeV,
identifying the fast neutron spectrum [69].

A V & V study has been conducted to quantify the major
error arising from the approximations taken in the 1D model,
as well (see [13] for implementation details and references).
These are:

• numerical error associated with the radial nodalization,
discrete ordinates quadrature formula and multi-group
energy approximation,

• cylindrical geometry against actual toroidal tokamak
topology and,

• material mixture homogenization.

In actual 3D tokamak reactor configurations, the neu-
tron/gamma streaming is affected by radial, poloidal and
toroidal heterogeneities, which in a homogenized model can-
not depict. There are also neutron streaming effects through
void gaps in the toroidal direction which have to be accounted
for by the actual three-dimensional geometry. To assess each
error contribution dedicated simulation campaigns have been
carried out. However, of key importance are the overall uncer-
tainties affecting the TBR and the nuclear heating in BB, VV
and TFC, as well as the peak nuclear power density and fast
neutron fluence in the inboard TFC for shielding purposes. The
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Table 1. Top-level requirements and major design features of the EU-DEMO 2017 baseline.

EU-DEMO top-level requirements

Net electric power Ẇnet ∼ 300–500 MW [1, 79]
Tritium self-sufficiency, TBRt � 1.15 [67]
Inductive long pulse operation mode, τ burn � 2 h [1, 79]

EU-DEMO major design features

Single-null divertor configuration and 16 TF coils/reactor sectors [2]
Plasma major radius R0 = 8.94 m, aspect ratio A = 3.1 [2]
Fusion power Pfus ∼ 2000 MW and additional heating power Padd ∼ 50 MW
Two driving blanket designs [80]: helium-cooled pebble beds (HCPB) [81, 82] and water-cooled lithium lead (WCLL) [83, 84]
Two BoP/PCS for the two aforementioned BB designs, with ηgross ∼ 37.7% for HCPB [77] and ηgross ∼ 35% for WCLL [77]
Low-temperature TF and PF coils’ superconductors, with Nb3Sn superconducting material in TF coils and CS elements, and NbTi in the
PF coils. For such a coil technology, Bmax = 12.23 T for the TF coils [85], Bmax = 13.7 T for the CS [85, 86]) and Bmax = 5.7 T for PF
coils [29]
Wall plug efficiency ηadd = 40% [18, 79]

V & V study for the 1D model has been conducted against MC
solution, consisting of three major parts:

• Comparison against a dedicated 1D MC solution on a
radial and material mix inherited from the EU-DEMO
2015 baseline [70] (HCPB blanket concept), to measure
the error associated with the numerical approximation.

• Comparison against a dedicated 2D MC model to evaluate
the uncertainties introduced by the cylindrical approxima-
tion (against toroidal) for the same reactor configuration.

• Comparison against the 3D heterogeneous MC neutronics
model of the same EU-DEMO baseline [69, 71].

The V & V study showed a global error of around +8% for
the TBR (‘+’ denotes an overestimation from the reference
MC solution), while the nuclear power density at the inner
interface of the TF coil WP yields peak local errors around +
38%. Generally, the one-dimensionality yields the deviation
of the solution to progressively increasing moving from the
plasma centre outward. As a result, both local and integral
parameters are more accurate in the vicinity of the plasma
domain. The integral and local parameters in the BB are
therefore affected by smaller errors. The largest share of the
overall nuclear heat deposition derives from that in FW and
BZ, where the gap between approximated and exact solutions
is approximately +3%–4%. Moving towards the outer BB
regions (e.g., manifolds), the error goes up to +20%–30%.
In the VV and TFC regions, deviations up to 50%–70% are
found. As a result, moving further from the BB, the limita-
tions of the cylindrical approximation become more relevant
for toroidal geometry. Accordingly, a full 2D reactor model
would be needed if more accurate estimates on the heat depo-
sition to VV and TFC are needed for design purposes. On the
other hand, the power contribution of such components to the
overall plant power balance is rather small (∼30 MW), hence
do not play a crucial role for DEMO plant integral design
purposes.

3.6. Toroidal magnetic field configuration

The toroidal magnetic field generated by the TF coils is char-
acterized in MIRA in terms of peak toroidal field ripple on

Figure 8. 2D sketch of the EU-DEMO 2017 reactor, as per MIRA
geometry module.

the plasma separatrix, static in-plane and out-of-plane Lorentz
force acting on the TF coils and the stored magnetic energy.
From integral Ampere’s law, assuming that the toroidal field
Bφ ∼ 1/r in the plasma region, for a given number of TF coils
NTFC, the current to operate in each coil to obtain Bφ = Bt at
r = R0 can be expressed as:

Ic,TFC =
1

NTFC

2πR0

μ0
Bt. (35)

From the TF coil current and a given superconducting cable
design (subject to current and field limits), the total number of
turns can be calculated. Hence, the cross-sectional area of the
coil’s WP, too. The WP cable layout and the radial-poloidal TF
shape determine the three-dimensional magnetic field distri-
bution. For a prescribed radial/poloidal and radial/toroidal TF
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Table 2. Calculated plasma geometry and magnetic equilibrium parameters of the EU-DEMO 2017 baseline: comparison between MIRA
and PROCESS.

Parameter variable (unit) MIRA PROCESS Deviation (%) Type

Major radius R0 (m) 8.938 8.938 0 I
Aspect ratio A (—) 3.1 3.1 0 I
Minor radius a (m) 2.883 2.883 0 O
Elongation at 95% flux κ95 (—) 1.6501 1.6500 +0.004 DT ≈ 1.65
Triangularity at 95% flux δ95 (—) 0.333 04 0.333 00 +0.013 DT ≈ 0.333
Plasma volume Vp (m3) 2380 2466 −3.5 O
Plasma cross-sectional area Ap (m2) 43.81 44.85 −2.3 O
Plasma toroidal surface At (m2) 1352 1419 −4.7 O
Plasma perimeter lp (m) 24.55 26.02 −5.7 O
Toroidal field at plasma centre Bt (T) 5.31 4.89 +8.6 O
Safety factor at 95% flux q95 (—) 3.22 3.00 +7.3 OL � 3.0
Safety factor on the axis q0 (—) 1.0 1.0 +0.0 OL � 1.0
Plasma current Ip (MA) 19.33 19.08 +1.3 O
Average poloidal field Bp (T) 1.22 0.92 +32.0 O
Poloidal plasma beta βp (%) 92.7 114.1 −18.7 O
Toroidal plasma beta βt (%) 3.38 4.05 −16.5 O
Normalized beta βN (%) 2.66 2.89 −8.1 OL � 3.51
Plasma internal inductance li (—) 0.88 1.10 −19.9 O

coil geometric and current density configuration J, the mag-
netic field B at any spatial location in r(x, y, z) is calculated in
MIRA via Biot–Savart equation, reading as:

B(r) =
μ0

4π

∫
D j

J
(
r′
)
×
(
r − r′

)
|r − r′|3

dr′, (36)

with dr′ denoting the differential volume of any current-
carrying element and D j the volume domain where J is
defined. The Biot–Savart solver EFFI [72] has been integrated
into MIRA and is deployed for 3D magnetostatic analysis.
EFFI computes the three-dimensional electromagnetic field
distribution for any arbitrary toroidal and poloidal coils sys-
tem, based on the resolution of equation (36). Also, it allows
for the calculation of the Lorentz static forces and mutual
inductances.

Based on a 3D mapping of B, the toroidal field ripple mea-
sures the oscillations of the toroidal field along the toroidal
direction between two adjacent coils, and it is calculated
as:

δTF

(
pk

)
=

max
(
Bφ

(
pk;φ
))

− min
(
Bφ

(
pk;φ
))

max
(
Bφ

(
pk;φ
))

+ min
(
Bφ

(
pk;φ
)) , (37)

where pk = (rk, zk) indicates any the point k on the
radial/poloidal plane and φ is the toroidal coordinate defined

in the interval
[
0, 2π

NTFC

]
. Large toroidal field ripples have neg-

ative effects on the plasma stability, potentially causing losses
of fast alpha particles [3]. Therefore, an upper limit for the
peak TF ripple δTF,peak < 0.6% is currently set for DEMO [18],
with δTF,peak denoting the peak value of the set of points pk
taken on the plasma separatrix. Note that in DEMO this limit is

Figure 9. Safety factor profile q(x) of the EU-DEMO 2017 baseline,
as per MIRA/PLASMOD transport simulation.

predicated on the use of ferromagnetic inserts placed between
the inner and the outer VV shells to reduce it to a smaller value
of 0.3% [73]. Since these effects are not yet accounted for,
the former, more conservative value is taken as maximum TF
ripple on the plasma separatrix.

Large static Lorentz forces on the TF structures arise from
large fields and current densities. These, in turn, split into
the hoop (or in-plane) forces and bending (or out-of-plane)
forces. The hoop forces emerge from the interactions of the
TF coil current with its magnetic field, whereas the bend-
ing forces come from the magnetic coupling of TF currents
and the poloidal magnetic field from the PF coils. The vol-
umetric Lorentz forces fL = J × B is therefore decomposed
into radial and vertical in-plane components f x,L and fy,L and
toroidal/out-of-plane component fy,L, such that f L = n̂x f x,L +
n̂z fz,L + n̂y fy,L.

Three integral forces are calculated to depict the static
radial, vertical and toroidal loads exerted onto the TF coils.
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Table 3. Calculated plasma profiles and impurity parameters of the EU-DEMO 2017 baseline: comparison between MIRA and PROCESS.

Parameter variable (unit) MIRA PROCESS Deviation (%) Type

Electron density on axis ne,0 (1019 m−3) 10.1 10.4 −3.1 O
Greenwald fraction at pedestal fGW,ped (—) 0.85 0.85 +0.0 OL � 0.85
Electron density at pedestal ne,ped (1019 m−3) 6.40 6.21 +3.0 O
Greenwald fraction at separatrix fGW,sep (—) 0.5 0.5 +0.0 OL � 0.5
Density at separatrix ne,sep (1019 m−3) 3.76 3.65 +3.1 O
Volume-averaged electron density 〈ne〉 (1019 m−3) 7.62 7.91 −3.7 O
Electrons temperature on axis Te,0 (keV) 32.14 26.67 +20.5 O
Ions temperature on axis T i,0 (keV) 27.83 26.67 +4.4 O
Electron/ions temperature at pedestal nped (keV) 5.36 5.50 −2.5 O
Normalized coordinate of ne, Te, T i pedestal height ρped (—) 0.94 0.94 +0.0 I
Electrons/ions temperature at separatrix nsep (keV) 0.10 0.10 +0.0 O
Volume-averaged electrons temperature 〈Te〉 (keV) 12.40 12.82 −3.2 O
Volume-averaged ions temperature 〈Ti〉 (keV) 12.01 12.82 -6.3 O
Particle-to-energy confinement ratio fP2E (—) 5.000 7.106 −29.6 I
Plasma effective charge Zeff (—) 1.912 2.179 −12.2 O
Fuel concentration cfuel (—) 0.871 0.782 +11.7 O
He concentration cHe (—) 0.049 0.100 −50.4 O
Xe concentration cXe (—) 2.29 × 10−4 3.47 × 10−4 −34.0 O
Ar concentration cAr (—) 1.29 × 10−3 n.a. n.a. O
W concentration cW (—) 5.0 × 10−5 5.0 × 10−5 +0.0 I

Figure 10. Plasma profiles of the EU-DEMO 2017 baseline, as per MIRA/PLASMOD transport simulation: (a) electrons and ions densities,
(b) electrons/ions temperature, (c) total plasma pressure.

These are:

Fx,TFC =

∫
DTFC

f x,L dr,

Fv,TFC =

(
Fup

z,TFC +
∣∣Fdown

z,TFC

∣∣)
2

,

Fb,TFC =

(
Fup

y,TFC +
∣∣Fdown

y,TFC

∣∣)
2

·

(38)

The integral radial force Fx,TFC represents the net inward
centering force that pushes each TF coil towards the tokamak
axis, and denotes the predominant component. The vertical
force Fv,TFC is outlined as the averaged value between the two
vertical forces pulling the top and bottom half-coil up and
down, Fup

z,TFC and Fdown
z,TFC, and leads to an internal tensile load

which is mostly borne by the steel jacketing structure of the
coil conductor. The vertical force applied to the top or bottom

portion of the TF coil domain D j reads as F j
z,TFC =

∫
D j

fz,L dr,
where j = up, down refers to the top or bottom portion of the
coil. The same approach is adopted to evaluate the bending
force Fb,TFC, with F j

y,TFC =
∫
D j

fy,L dr, which produces a per-
pendicular force on the coil along the toroidal direction and
a torque about the mid-plane. This bending moment is to be
counteracted the outer inter-coil structures. Radial, vertical and
bending forces denote important inputs to the mechanical char-
acterization of the TF coils, still to be addressed in the MIRA
package.

Assuming that all NTFC coils are carried by the same current
Ic,TFC, the energy stored in the entire TF system is given by

Em,TFC =
1
2

I2
c,TFC

∑
j

∑
i

Mi, j, (39)
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Table 4. Calculated plasma power and confinement parameters of the EU-DEMO 2017 baseline: comparison between MIRA and
PROCESS.

Parameter variable (unit) MIRA PROCESS Deviation (%) Type

Total fusion power Pfus (MW) 2000.0 1998.0 +0.1 DT ≈ 2000
Neutron fusion power Pneut (MW) 1598.2 1597.0 +0.1 O
Alpha fusion power Pα (MW) 400.1 399.1 +0.3 O
Additional heating power Padd (MW) 49.9 50.0 +0.2 DT ≈ 50
Fusion gain Q (—) 39.8 39.3 +1.2 O
Normalized CD efficiency γCD (1020 A (W m2)−1) 0.3 0.3 +0.0 I
Ohmic heating power POH (MW) 0.2 0.8 −71.8 O
Power across separatrix Psep (MW) 124.7 156.4 −20.3 O
Total radiation power Prad (MW) 325.6 275.2 +18.3 O
Synchrotron radiation power Psyn (MW) 29.3 16.6 +76.3 O
Bremsstrahlung radiation power Pbrem (MW) 51.8 72.0 −28.1 O
Line radiation power Pline (MW) 244.5 186.5 +31.1 O
Divertor challenging criterion PsepBt/(q95AR0) (MW T m−1) 7.4 9.2 −19.3 OL � 9.2
Divertor challenging criterion Psep/R0 (MW m−1) 14.0 17.5 −20.3 OL � 17.5
Divertor heat flux qdiv (MW m−2) 10.0 n.a. n.a. OL � 10
LH transition power PLH (MW) 103.9 107.5 −3.3 O
Energy confinement time τE (s) 2.5 3.9 −34.6 O
H factor H (—) 0.9 1.1 −18.0 O
LH transition factor fLH (—) 1.2 1.5 −17.5 OL� 1.2
Helium particle-to-energy confinement time fP2E (—) 5.0 7.1 −29.6 I

Table 5. Calculated plasma current and flux balance parameters of the EU-DEMO 2017 baseline: comparison between MIRA and
PROCESS.

Parameter variable (unit) MIRA PROCESS Deviation (%) Type

Plasma resistance Rp (Ohm) 1.83 × 10−9 4.41 × 10−9 −58.4 O
Plasma self-inductance Lp (H) 1.77 × 10−5 1.55 × 10−5 +14.4 O
Plasma loop voltage Uloop (mV) 20.4 42.2 −51.7 O
Bootstrap current fraction fBS (—) 0.31 0.39 −19.4 O
CD current fraction fCD (—) 0.11 0.11 +0.6 O
Inductive current fraction f ind (—) 0.58 0.50 +14.8 O
Ejima coefficient cEjima (—) 0.3 0.3 +0.0 I
Resistive flux consumption at RU Ψres (Wb) 65.12 64.28 +1.31 O
Inductive flux consumption at RU Ψind (Wb) 95.3 117.4 −18.8 O
Poloidal flux at plasma BD on axis ΨBD (Wb) 307.2 347.6 −11.6 O
Poloidal flux swing at flat-top—SOF ΔΨb (Wb) 297.5 304.3 −2.3 O
Maximum plasma burn time τmax

burn (h) 4.02 2.21 +81.9 DT � 2

where Mi, j denote the (i, j ) element of the mutual induc-
tance matrix M̂ between all magnetically-coupled TF coils
i and j. Note that for j = i, Mi,i = Li, with Li being the
self-inductance of the coil i.

The stored energy is a key input to the design of the super-
conducting cable for quench protection criteria. Also, from a
3D spatial resolution of the magnetic quantities, precise esti-
mations of field, force and energy are obtained for the plasma,
PF/CS and TF coil system, which is a considerable upgrade
for fusion systems analysis tools. Further modelling aspects
related to spatial arrangement and the sizing of superconduct-
ing cables, coils casing and electrical insulators of TF and
PF coils are normally part of the engineering features tack-
led in SCs (e.g. [4, 74]). These have been cornered in the
MIRA frame, too, with a detailed description on this subject
outlined in [13]. However, these modelling insights have no

impact on the results here presented, as the focus is primar-
ily devoted to plasma physics, reactor neutronics and plant
integral modelling. Therefore, they are not reported in the
paper.

3.7. Plant integral power balance

MIRA includes a steady-state plant power balance model to
compute the key power flows, the fusion power generated in
the plasma domain to the net electric power. The total thermal
power Q̇th employed for conversion into electricity is defined
as:

Q̇th = Q̇BB + Q̇DIV + Q̇VV, (40)

where Q̇BB, Q̇DIV and Q̇VV indicate the total thermal power
deposited in BB, divertor and VV. Q̇BB results from the surface
heating of plasma radiation Pγ

FW (equation (30)) and nuclear
heating power RBB

heat (equation (33)), both calculated in the
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neutronic module. Hence,

Q̇BB = Pγ
FW + RBB

heat. (41)

The total radiation power Prad from the steady-state plasma
power balance (equation (16)), splits into a FW and a diver-
tor share, both evaluated in the 2D neutronic model, such that
Prad = Pγ

FW + Pγ
DIV. The divertor needs to recover the power

across the separatrix Psep (from charged particles), the nuclear
heating power from neutron radiation RDIV

heat and the power from
plasma radiation Pγ

DIV. Thus,

Q̇div = Pγ
DIV + Psep + RDIV

heat . (42)

Due to the one-dimensional approximation in the reac-
tor physical components, the neutronics module does not
compute the nuclear heating deposition in the divertor.
Therefore, an input energy multiplication factor EMFDIV,
derived from detailed 3D DEMO MC transport analyses, is
adopted to calculate RDIV

heat , from the total neutron power load
from the plasma core Pn

DIV, outlined in. equation (30). Accord-
ingly, RDIV

heat = EMFDIV · Pn
DIV. Finally, Q̇VV accounts only for

nuclear heating power deposition, i.e., Q̇VV ≡ RVV
heat.

The gross electric power reads as

Ẇgross = ηgross · Q̇th, (43)

where ηgross relates to the gross electric efficiency, being a
prescribed input to the model inherited from existing DEMO
plant layouts [75, 76], including primary heat transport system
(PHTS), energy storage system and power conversion system
(PCS). Finally, the net electric power Ẇnet is the remainder of
Ẇgross reduced by the total electric recirculating power Ẇ rec,
given by the sum of the following major electric consumptions.
Thus

Ẇnet = Ẇgross − Ẇ rec, (44)

where
Ẇ rec = Ẇpump + Ẇadd + Ẇcryo + Ẇaux. (45)

As a first approximation, these are linked to the total ther-
mal power Q̇th as follows:

• Ẇpump ∝ Q̇3
th is the coolant pumping power to carry

the high-pressure coolants through BB, divertor and
VV structures (∼110 MW in helium-cooled PHTS and
∼30 MW in water-cooled PHTS [77]).

• Ẇadd = ηadd · Padd as the additional heating power sup-
plied to the additional heating systems, with ηadd ∼ 0.4
being the wall-plug efficiency [18].

• Ẇcryo = fcryo · Q̇th, is the total cryogenic power (coils,
vacuum, etc), estimated approximately 20–30 MW for
a 2000 MW thermal power [18], where fcryo is a user-
defined input, typically around 0.8–1.3%.

• Ẇaux is the electric power for additional electricity
demands for other auxiliary plant systems, such as mag-
nets power supply, tritium handling, diagnostics and any
consumptions to operate buildings or other plant facili-
ties. Currently, only speculative assumptions can be done
on this specific term. In MIRA, a fraction faux is taken as
a user-defined parameter to scale linearly Ẇaux to Q̇th such

Figure 11. Plasma parallel current density profiles of the EU-DEMO
2017 baseline, as per MIRA/PLASMOD transport simulation.

that Ẇaux = faux · Q̇th. Here, faux is set to 3.7%, as adopted
in the PROCESS DEMO 2015 baseline [18].

A minimum net electric power of around 300–500 MW is
set as a top-level requirement for the EU-DEMO plant [1]. The
model is rather simplified in terms of mathematical sophistica-
tion (0D, steady-state integral energy balance). However, the
terms in the balance equations related to the thermal powers are
based on a consolidated modelling frame, where the radiation
power distribution between BB and divertor and the nuclear
heating in the reactor components are calculated from 2D/1D
neutron/gamma transport solutions.

4. MIRA analysis of the EU-DEMO 2017 baseline

Currently, MIRA is primarily suited to analyse fusion reactor
baselines that are generated by fast SC such as PROCESS and
SYCOMORE. The major target is to inherit such reactor base-
lines and verify the fulfilment of the top-level requirements,
plasma operational limits and technological constraints, as
shown in figure 1. Possibly, design optimization around a
DEMO baseline can be performed by parametrizing certain
reactor parameters. The MIRA approach has been first applied
to the EU-DEMO 2015 originating from the PROCESS SC
[13]. The study showed that by relying on more sophisticated
physics and engineering models, some of the key requirements
and operational limits were not satisfied, such as plasma burn
time and TF ripple. Also, nontrivial dependencies between flux
swing for pulsed operation, reactor neutronics, and magnets
engineering figures were highlighted. The goal of this section
is to repeat a similar study on the most up-to-date EU-DEMO
2017 baseline [2, 78], generated by the PROCESS SC and
referred hereafter to as ‘baseline’.

4.1. Input configuration of the EU-DEMO 2017 baseline

The MIRA baseline analysis has been carried out by inherit-
ing from the DEMO baseline the same plasma sizes, fusion
power and additional heating power, and relying on the same
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Table 6. Plasma BD and flat-top configurations of the EU-DEMO 2017 baseline. The parameters are reported for the plasma BD, SOF and
EOF.

Parameter variable (unit) BD SOF EOF Type

Poloidal flux at plasma BD ΨBD (Wb) 307.15 n.a. n.a. O
Peak stray field in the BD region Bmax

stray (mT) 2.99 n.a. n.a. OL � 3
Plasma BD point/r-coordinate rBD (XBD) (m) 8.938 n.a. n.a. DT ≈ 8.938
Plasma BD point/z-coordinate zBD (XBD) (m) 0.0 n.a. n.a. DT ≈ 0.0
Poloidal flux at plasma magnetic axis Ψax (Wb) n.a. 306.2 8.6 O
Poloidal flux at plasma boundary Ψb (Wb) n.a. +146.6 −150.9 O
Plasma magnetic axis/r-coordinate rax (A) (m) n.a. 9.339 9.343 O
Plasma magnetic axis/z-coordinate zax (A) (m) n.a. 0.230 0.238 O
Poloidal flux at plasma boundary Ψb (Wb) n.a. +146.55 −150.95 O
Plasma lower X-point/r-coordinate rXl (Xl) (m) n.a. 7.49 7.49 DT ≈ 7.49
Plasma lower X-point/z-coordinate zXl (Xl) (m) n.a. −5.32 −5.32 DT ≈−5.32
Plasma upper (inactive) X-point/r-coordinate rXu (Xu) (m) n.a. 7.02 7.02 O
Plasma upper (inactive) X-point/z-coordinate zXu (Xu) (m) n.a. 6.12 6.12 O
Plasma major radius R0 (m) n.a. 8.931 8.928 DT ≈ 8.938
Plasma minor radius a (m) n.a. 2.889 2.894 DT ≈ 2.883
Plasma volume Vp (m3) n.a. 2375.8 2394.6 DT ≈ 2383
Plasma triangularity δ95 (—) n.a. 0.332 0.328 DT ≈ 0.333
Plasma elongation κ95 (—) n.a. 1.652 1.659 DT ≈ 1.652
Peak current density in CS coils Jc,CS (MA m−2) 12.49 +8.59 −12.49 |TL| � 12.5
Peak current density in PF coils Jc,PFC (MA m−2) 9.50 +10.60 −9.12 |TL| � 12.5
Peak field in CS coils Bpeak,CS (T) 12.46 6.09 11.03 TL � 13.7
Peak field in PF coils Bpeak,PFC (T) 5.69 5.60 3.56 TL � 5.7
Peak field in TF coils Bpeak,TFC (T) 11.65 11.75 11.71 TL � 12.23
Peak vertical force in PF coils FPF

z,peak (MN) −430.8 −103.1 −233.3 |OL| � 450
Total vertical force in CS stack FCS

z (MN) +102.1 +4.94 +181.5 |OL| � 300
Peak separation force in CS stack FCS,sep

z,peak (MN) +102.02 +126.5 +181.5 |OL| � 350
Upper out-of-plane force on TF coil Fup

y,TFC +0.5 +28.8 +15.3 O
Lower out-of-plane force on TF coil Fdown

y,TFC −9.1 −81.4 −46.6 O
Average TF coil bending force Fb,TFC (MN) 4.8 55.2 30.9 O

technological and plant integration features. These assump-
tions allow for a consistent comparison by systems, includ-
ing the plasma and all the physical reactor components
and plant systems addressed in this study. In summary, the
main design requirements and key design features are listed
in table 1.

The 2D reactor build generated in the geometry mod-
ule is displayed in figure 8. This reactor sketch has been
obtained from a set of geometry primitives implemented ad-
hoc to reproduce the 2D radial/poloidal cross-section of the
3D DEMO CAD model [87]. In such a way, the 2D geome-
tries used by the FBE, neutronics and TF engineering modules
are adherent to the realistic DEMO reactor configurations. The
poloidal field coils system is composed of six PF coils and five
CS elements. The CS stack, in turn, consists of two upper ele-
ments, two lower elements and one central element. The full
list of radial/vertical size and location of all the eleven PF/CS
coils is reported in [22]. Notice that these represent only the
initial guess used by the geometry module, as minor shifts
are applied based on the TF coil shape and VV ports space
allocation.

The space reservation of the BB system results from a
multi-layer composition of different BB subsystems, each
characterized by a given radial and vertical thickness and mate-
rial composition inherited from the specific HCPB [82] and

WCLL designs [84]. For both blanket concepts, these subsys-
tems are 2 mm tungsten armour layer, 25 mm FW, the BZ,
and the manifold region. Both BB systems share the same
space allocation, whose overall radial inboard and outboard
thicknesses are 80 and 100 cm, respectively.

In the HCPB blanket, the breeding material (∼20% vol
in the BZ region) is composed of a ceramic breeder mixture
of Li4SiO4 + 35 mol% Li2TiO3 (with 60% 6Li enrichment)
embedded in prismatic blocks of Be12Ti acting as neutron mul-
tiplier (∼55% vol). The low-activation Eurofer steel is used
as structural material and its volumetric composition in the
BZ is approximately 15% vol. The remainder (∼10% vol) is
attributed to high-pressure helium as cooling fluid (80 bar, 300
◦C–500 ◦C inlet/outlet temperatures). The BZ in the DEMO
2017 WCLL deploys a liquid metal lead-lithium eutectic alloy
(labelled PbLi) with a 90% 6Li enrichment as breeding and
neutron multiplying material (∼80% vol), Eurofer as structural
material (∼15% vol) and approximately 5% volume of high-
pressure cooling water (155 bar, 285 ◦C–325 ◦C inlet/outlet
temperature). This set of specifications is relevant to the char-
acterization of the neutron cross-section data and radial build
needed to execute the neutronic module (section 3.5).

The parameters associated with the divertor geometry are
initially set to match the 3D DEMO CAD configuration
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and adjusted by the geometry module based on the sepa-
ratrix profile from the FBE solution. The VV is a double-
shell stainless structure cooled in the inter-space by low-
pressure water, whose overall inboard and outboard widths are
60 and 80 cm, respectively, and a with a global steel/water
material composition of 60/40% vol [87]. The TF coil is
based on a radial/vertical space reservation replicating the
2D envelope from the 3D CAD model and incorporates a
rectangular current-carrying WP embedded in a stainless-steel
casing structure. The WP extends by 124 cm toroidally and
82 cm radially [86], and the TF coil’s overall inboard and
outboard thicknesses are 98 cm each [78]. A 2.4 m-wide gap
separates the outer TF coil leg from the VV in the outboard
region.

4.2. Output configuration of the EU-DEMO 2017 baseline

In this section, the results associated with the physics and
engineering parameters introduced in section 3 are reported
and analysed in terms of deviation from the PROCESS base-
line, outlining the major modelling differences between the
two approaches. Normally, a table is reported for each subsec-
tion and a column is devoted to the relative deviation between
MIRA and the baseline from PROCESS. When a direct com-
parison is not applicable, a mark ‘n.a.’ is reported, instead.
Also, the column ‘type’ indicates whether a parameter is an
input (I), design target (DT), operational limit (OL), techno-
logical limit (TL) or output (O). In the case of DT, OL or
TL, the value associated with its upper/lower limit or equality
constraint is reported therein.

4.2.1. MIRA core/SOL physics configuration of the EU-DEMO
2017 baseline. The core/SOL physics configuration has been
obtained by observing the plasma operational limits elucidated
in section 3.3, and imposing design targets on fusion and addi-
tional heating power listed in table 1. In summary, the plasma
operational limits selected for the EU-DEMO 2017 baseline
include: q95 � 3 to prevent kink and sawtooth MHD instabili-
ties, fGW,ped � 0.85 to prevent thermal instabilities, fLH � 1.2
to control the power exhaust necessary to operate in H-mode
regime, PsepBt/(q95AR0) � 9.2 MW T m−1 to limit the power
exhaust for divertor protection purposes, and βn � 4 · li to
prevent pressure-driven MHD instability modes. The primary
goal of this subsection is not benchmarking MIRA against
PROCESS, but rather highlighting the impact of the mod-
elling assumptions in the tokamak physics area when perform-
ing reactor systems analysis. Indeed, the 1D MHD transport
solver PLASMOD has been successfully integrated into PRO-
CESS [35]. Nevertheless, the EU-DEMO 2017 baseline has
been generated still relying on the ‘old’ 0D plasma physics
approach, which makes this comparative study in line with the
goals of this study.

The plasma geometry and equilibrium properties are listed
in table 2. All the imposed design targets and operational
limits are fulfilled for this configuration, with large accuracy
for plasma elongation and triangularity. The largest devia-
tions are found for li and the average poloidal field Bp, where
the two-dimensional effects from the equilibrium resolution
play a decisive role. Note that a reliable estimation of li is

Figure 12. Calculated spatial magnetic configurations of the
EU-DEMO 2017 baseline at plasma BD. The solid lines indicate
iso-flux contours within the flux interval defined by [ΨBD−1 Wb,
ΨBD]. The dashed line relates to the iso-field line at Bmax

stray and the
circle markers indicate the target max stray field area, such that
Bp � Bmax

stray.

essential to the calculation of the inductive flux consumption
at plasma ramp-up (equation (26)), hence, for the maximum
flat-top length τmax

flat (equation (27)).
The safety factor q95 has been identified in MIRA

as the maximum value matching the target fusion power
(Pfus ≈2000 MW) and allowing for a maximum additional
heating power (Padd � 50 MW). In the baseline, q95 has been
used as an iteration variable in the ITER plasma current scaling
formula [88]. In MIRA, instead, q95 is also set as an itera-
tion value but its value is matched from the 2D equilibrium
and 1D transport solutions (equations (1) and (12)). Further-
more, the gap on q95 is also influenced by the relative differ-
ence found for Bt. In PROCESS, Bt is an iteration variable
entering both in plasma physics and coils engineering con-
straining conditions, such as peak field and stress limit. In
MIRA, only the peak field at the inboard TF conductor (includ-
ing the ripple effects and the smaller field contribution from
the PF coils) is used to compute Bt (equation (5)), explaining
also the larger margin on the TF coil peak field in the base-
line (see table 9). A similar deviation of q95 and Bt justify the
very small offset found for Ip, such that they balance off one
another. The profile of q(x) is displayed in figure 9. The notice-
able flattening in the plasma core is driven by the continuous
sawtooth model implemented in PLASMOD which prevents it
from falling below one.

The properties related to the plasma profiles and impurity
are listed in table 3, while the electrons and ions densities,
temperatures and total plasma pressure profiles are displayed
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Figure 13. Calculated spatial magnetic configurations of the EU-DEMO 2017 baseline at start-of-flat-top (a) and end-of-flat-top (b). Both
plots include the iso-flux contours of the SOL region, i.e. defined within the interval [Ψb,Ψsol] with Ψsol = Ψ(r = R0 + a, z = 0), i.e. on the
FW outboard mid-equatorial plane.

in figure 10. The average density and temperature present
a deviation from the baseline below 4%, mostly because of
the constraining condition posed on the fusion power. The
baseline considers electrons and ions with the same temper-
ature, whereas a two-fluid transport model is adopted in the
1D PLASMOD transport solver. Therefore, apart from one-
dimensional effects arising from the transport problem itself
(e.g., radial and highly nonlinear dependencies affecting the
transport coefficients), a two-fluid approach accounting for the
electron–ion equipartition power (equation (13)) presents an
additional sophistication in the modelling framework which
lead to the reported deviations.

Considerable deviations (∼30%–50%) have been obtained
for the plasma dilution and impurity parameters, in particular
for the xenon and helium concentrations. The xenon concen-
tration at the pedestal is adjusted by PLASMOD to control the
power exhausted limits posed on Psep both from H-mode oper-
ation and divertor protection purposes (see calculated plasma
power properties of table 4).

In this case, the fLH limit drives the final value of cXe, with
fLH equating its lower bound, unlike PsepBt/q95AR0, rather
below its upper limit. The computed helium concentration
deviates because of the different values assumed for fP2E (input
in MIRA, iteration variable with a lower limit of five in PRO-
CESS) and because of the different τE emerging from the
1D transport resolution. The argon concentration is not given
in the baseline because the divertor challenging criterion is
uniquely observed to limit the power load to the divertor tar-
gets [3]. In MIRA (through PLASMOD), the implemented
SOL physics module has also retro-feedback to the plasma

dilution in the plasma core, affecting its overall mass and
charge configuration.

While a good agreement is found for Pfus and Padd (because
of their equality constraints), Psep is nearly 20% above and Prad

is 18% below the baseline. A combination of effects explains
such deviations, primarily including:

• density and temperature profiles (calculated from 1D
transport in PLASMOD, while in the baseline it is
obtained from a profile parametrization and 0D power
balance)

• confinement time τE (deduced from the transport solution
instead of the ITER IPB98(y, 2) scaling law),

• Pline, where a combination of deviations found in the
plasma impurity, in the profiles and (possibly) in the
different set of radiation power loss functions used to
calculate LZ jointly lead to a 31% overestimation.

The H-factor is found nearly 20% below the baseline. How-
ever, the substantial difference is that while in MIRA (through
PLASMOD) H is calculated, in the PROCESS baseline it is an
input and it is used as a global iteration variable.

The plasma current and poloidal flux properties are listed
in table 5. The major deviations are observed for the plasma
resistance Rp (∼60% smaller) and bootstrap current fraction
(∼20% smaller), mostly because of the gaps observed in the
profile figures and plasma dilution (Zeff). Also, fBS is calcu-
lated from actual 1D profiles, whereas in a 0D SC fashion is
usually computed via scaling formulas (e.g., Sauter’s [46] or
Wilson’s [88] scaling law).
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Table 7. Calculated core neutron/photon radiation parameters of the EU-DEMO 2017 baseline: comparison between MIRA and PROCESS.

Parameter variable (unit) MIRA HCPB/WCLL PROCESS HCPB Deviation (%) Type

Neutron radiation power to FW Pn
FW (MW) 1519 1413 +7.5 O

Neutron radiation power to divertor Pn
div (MW) 77 183 −57.9 O

Average neutron heat flux to FW Γn
FW,av (MW m−2) 1.03 1.01 +2.2 O

Average neutron heat flux to divertor Γn
div,av (MW m−2) 0.38 1.02 −62.7 O

Peak neutron heat flux to FW Γn
FW,peak (MW m−2) 1.48 n.a. n.a. O

Peak neutron heat flux to divertor Γn
div,peak (MW m−2) 0.70 n.a. n.a. O

Photon radiation power to FW Pγ
FW (MW) 304 243 +25.1 O

Photon radiation power to divertor Pγ
div (MW) 21.2 32 −33.8 O

Average photon heat flux to FW Γγ
FW,av (MW m−2) 0.21 0.17 +23.5 O

Average photon heat flux to divertor Γγ
div,av (MW m−2) 0.10 0.17 −41.2 O

Peak photon heat flux to FW Γγ
FW,peak (MW m−2) 0.24 0.59 −59.3 OL � 1

Peak photon heat flux to divertor Γγ
div,peak (MW m−2) 0.20 n.a. n.a. O

All these combined effects lead to a nearly twice smaller
V loop, and, considering also the deviation observed for li and
ΨBD (acting on the inductive flux consumption in Ψb,SOF of
equation (26)), this ultimately leads to a maximum burn time
τmax

burn that is almost twice as large as the baseline. This result
confirms again the impact of the physics and engineering mod-
elling assumptions on the systems design and the fulfilment
of the major design requirements and engineering constraints.
Furthermore, it shows the importance of having at disposal
inter-disciplinary systems/design tools that are based on 1D
and 2D physics and engineering modelling sophistication. A
deviation of nearly 11% observed for ΨBD is purely attributed
to two-dimensional interconnections between CS/PF coils and
maximum stray field constraints, depicted by two-dimensional
field shaping and control limits accounted in coil current
solver.

The current density profiles are displayed in figure 11. Note
the peak of jBS at pedestal height, confirming the benefits of
depicting the radial phenomena in the core transport physics
modelling.

4.2.2. MIRA engineering configuration of the EU-DEMO 2017
baseline. This subsection outlines the calculated engineer-
ing parameters associated with the plasma scenario analysis,
reactor neutronics, toroidal field configuration, and plant
power balance (sections 3.4–3.7).

The plasma scenario properties are listed in table 6. The
plasma shaping requirements and coils technological limits
are fully met for the identified pulse time frames. In particu-
lar, the plasma major and minor radii are constrained within
one-centimetre tolerance at the flat-top, and Vp, κ95and δ95

deviate from their design targets with less than 2% tolerance
from the target values. Also, all the radial and vertical coordi-
nates of the BD and flat-top magnetic nulls XBD and Xl match
the constrained values. Note also the positions of the mag-
netic axis A and the inactive magnetic null Xu which remain
steady between the SOF and EOF. This results from constrain-
ing at the EOF Br (Xu) = Bz (Xu) = 0, with rXu and zXu cal-
culated at the SOF such that Xu lays outside the BB region,
in the attempt of reducing large heat fluxes in the upper part
of the FW [65]. These two conditions are posed as additional

Figure 14. Calculated poloidal distribution of neutron and photon
radiation wall load Γ

n/γ
⊥ (αw) of the EU-DEMO 2017 baseline.

linear constraints in the EOF configuration for the coil current
solution of equation (7).

Only the peak current density, magnetic fields and verti-
cal forces are reported in table 6, while the full list of coil
current, field and vertical forces is reported in appendix B (see
table 11). The technological limits of the CS and the PF coils
influence the outcome of the coils current for the BD and the
EOF plasma configuration. At plasma BD, the maximum cur-
rent density is engaged in all CS elements but CS3L and the
maximum magnetic field is reached in PFC1. At plasma EOF,
the current density in the CS elements poses the limiting condi-
tions to the poloidal flux swing for maximizing τ flat. The lower
current limit is indeed carried by CS1 and CS2U and CS3L are
also close to reaching the saturation values.

The magnetic configurations at the plasma BD, SOF and
EOF are visualized in figures 12 and 13. The coils currents
and names are also displayed on top of each coil. Each plot
includes a set of circle markers indicating target contours,
depending on the analysed time frame. In the plasma BD,
the target BD region ∂Dt

BD is overlapped to the Bp = Bmax
stray

iso-field line, showing that the latter envelopes the former. A
similar approach is chosen to have a graphical comparison of
the target plasma separatrix ∂Dt

p (needed to meet the shaping
requirements onκ95, δ95, R0, a and Vp) and the iso-flux contour
of Ψ = Ψb.
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Table 8. Calculated core reactor neutronics parameters of the EU-DEMO 2017 baseline (HCPB and WCLL blanket designs): comparison
between MIRA and PROCESS.

Parameter variable (unit) MIRA HCPB/WCLL PROCESS HCPB Deviation (%) Type

Tritium breeding ratio TBR (—) 1.22/1.17 n.a. n.a. DT � 1.15
Peak fast neut. flux, TFC ΦTFC

fast,peak (cm−2 s−1) 6.2 × 108/7.8 × 107 2.2 × 108 181.8 TL � 109

Peak nuclear heating, TFC Rheat,peak (W m−3) 38.2/4.8 20.6 85.4 TL � 50
BB nuclear heating power RBB

heat (MW) 2037/1769 1826 11.6 O
Divertor nuclear heating power RDIV

heat (MW) 137.9 183 -24.6 O
VV nuclear heating power RVV

heat (MW) 53.1/7.2 4.1 1195.1 O

The peak magnetic fields and the toroidal bending forces
have been also reported in table 6 because they are both influ-
enced by the poloidal magnetic field; hence they are subject
to variations during a plasma pulse. The smallest value is
observed at BD, where the field contribution from the plasma
is not present. Overall, the PF coils and plasma contribute
approximately to 1% of the overall value of Bpeak,TFC. Note also
the variations of Fb,TFC and of the upper and lower out-of-plane
forces throughout the pulse frames, which, if not accounted for,
might lead to stress fatigue issues.

The calculated parameters associated with the core neu-
tron and photon wall loading figures (section 3.5.1) are listed
in table 7. The 2D radiation transport model allows for a
detailed poloidal mapping of the core neutron and photon
plasma powers among the plasma-facing components, with a
visible impact on the power repartition between divertor and
FW. For a total neutron fusion power Pneut, the calculated neu-
tron power to the divertor Pn

div is nearly 60% smaller than
the baseline. Similar conclusions can be drawn for the pho-
ton radiation power Prad, including also the differences found
in core physics results (table 4). These aspects have a direct
impact on the overall plant thermo-dynamic efficiency since
the thermal powers transferred to the divertor and the BB ulti-
mately have a different grade when converted into electricity
[77]. It also shows again the benefits from refining the spatial
sophistication of the engineering models at a systems analy-
sis level. Similarly, the calculated average and the peak heat
fluxes account for volumetric 2D profiles of q̇rad and q̇neut and
for the 2D shape of the FW and divertor. In a simplified 0D
approach, instead, these are obtained by fixing input peaking
factors, defined as the ratio between peak and average heat
fluxes. Figure 14 displays the poloidal distributions of plasma
core neutron and photon wall loads on FW along the poloidal
angle αw oriented counter-clockwise from the outboard mid-
equatorial plane. These aspects explain the differences from
the baseline obtained for the average and peak neutron and
photon heat fluxes.

The computed neutronic features from the core transport
model (section 3.5.2) are reported in table 8 for HCPB and the
WCLL BB designs. The PROCESS baseline, instead, refers
only to the HCPB design.

Large deviations have been found for the local peak val-
ues associated with the shielding limits (ΦTFC

fast,peak andRheat,peak)
and the total heat deposition in the VV (RVV

heat). Different mod-
elling sophistication (and most likely different input assump-
tions that could not be fully verified) explain such deviations.

Figure 15. Neutronics configuration of the DEMO 2017 baseline
(HCPB and WCLL blanket designs) as per MIRA analyses: fast
neutron flux density Φfast vs radial distance from inboard FW ΔFW,ib.

Nevertheless, the values calculated as per MIRA neutronic
analysis resemble the results emerging from the detailed 3D
MC simulations for EU-DEMO HCPB and WCLL designs
[71, 89]. Furthermore, in terms of global impact on the overall
plant performances, the power deposition to the VV represents
a smaller share of the overall thermal input to the PCS.

As shown by the reported values of TBR, ΦTFC
fast,peak and

Rheat,peak, the HCPB design solution features better tritium
breeding and energy multiplication performances, due to the
larger neutron multiplications in the beryllium multiplying
material. On the other hand, in terms of shielding the hier-
archies between the two BBs are inverted, with the WCLL
blanket yielding flux densities that are one order of magni-
tude lower. The WCLL blanket performs better shielding per-
formances because of a larger neutron moderation capacity
of water and elastic scattering of Pb compared to beryllium.
Figure 15 displays the radial profile of the fast neutron flux
Φfast on the inboard side from the reactor. The radial coordinate
is measured from the inboard FW towards the tokamak axis. In
both blankets, the prescribed design targets and limits are met.
However, in the case of the HCPB, the nuclear heating and fast
neutron fluence are relatively close to their technological limit.

Having at disposal a neutronic module with the possibil-
ity to arbitrarily prescribe the material composition and the
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Table 9. Calculated TF coil electromagnetic parameters of the EU-DEMO 2017 baseline: comparison between MIRA and PROCESS
results.

Parameter variable (unit) MIRA PROCESS Deviation (%) Type

Number of TF coils NTFC (—) 16 16 0.0 I
Total TF coil current Ic,TFC (MA) 14.79 13.65 +8.4 O
Peak field in TF coils Bpeak,TFC (T) 11.75 11.05 +6.3 TL �12.23
Peak TF ripple on separatrix δTF,peak (%) 0.69 0.60 +15.0 OL � 0.60
TF coil radial centering force Fx,TFC (MN) −892.3 n.a. n.a. O
TF coil vertical separating force Fv,TFC (MN) 553.1 448.2 +23.5 O
Peak average TF coil bending force Fb,TFC (MN) 55.2 n.a. n.a. O
Total stored energy in TF coils system Em,TFC (GJ) 121.4 125.0 −2.9 O

radial layout allows incorporating the two driver BB designs
in the baseline analysis. These can be compared not only
in terms of their breeding, heating and shielding responses
but also in terms of their holistic behaviour. For this base-
line analysis, the two blankets have been assigned with the
same space reservation, but the different breeding and shield-
ing capabilities of the HCPB and WCLL blankets could be
potentially exploited to optimize other global reactor figures of
merits. As previously addressed in the EU-DEMO 2015 base-
line analysis [13], a reactor configuration based on a reduced
inboard blanket thickness has been proposed to exploit the
breeding and shielding margins and maximize the plasma burn
time. In the EU-DEMO 2017 baseline analysed in this study,
in light of the large margin of τmax

burn (table 5), the inboard VV
thickness could be increased to enhance the shielding margin
for the HCPB.

The MIRA simulation results associated with the current,
field, force and energy operating conditions of the TF coils
system are reported in table 9.

The offset from the baseline on the TF coil current is pri-
marily driven by the deviation obtained for Bt (table 2), which,
in turn, explains the 6.3% overestimation in BTFC,peak. The
technological is fully met, including also the effects of the TF
ripple, which tend to increase the peak magnetic field in the
inboard leg.

The peak TF ripple on the plasma separatrix δTF,peak has
been found 15% larger than the baseline and does not fulfil the
imposed upper limit, set to 0.6% (0.3% if the ferromagnetic
inserts in the VV are included). In particular, the peak value
is identified slightly above the mid-plane on the outer region
of the plasma, since, around this area, the TF coils approach
the plasma, by reducing the poloidal distance from it (see red
square marker of figure 16). Simultaneously, moving along the
plasma separatrix, the TF coils tend to come closer among
themselves, reducing the effects of the TF ripple. The alter-
nating behaviour of the distance of the coil from the separatrix
and tightness of the coils determine the poloidal distribution
displayed in figure 16, showing the TF ripple amplitude for a
sufficiently large number of points selected in the plasma sep-
aratrix ∂Dp at plasma SOF (where the peak value has been
found).

The deviation from the baseline is attributed to differences
in the spatial representation of the magnetostatic model, where

Figure 16. TF ripple poloidal distribution on the plasma separatrix
calculated for the EU-DEMO 2017 baseline as per MIRA
magnetostatic analysis. The red square marker denotes the poloidal
location of the peak TF ripple.

both realistic elongated plasma shapes and detailed 3D mag-
netic field distribution are addressed in MIRA. A similar out-
come of peak TF ripple has also emerged from the EU-DEMO
2015 baseline analysis [13], with practically identical values
from MIRA and PROCESS. As previously demonstrated, a
convenient mitigating solution to meet the 0.6% operational
limit would be moving outwards the outboard TF coils. In the
MIRA analysis of the EU-DEMO 2015 baseline, it was shown
that a 22 cm outer expansion of the TF coil’s outboard leg
would guarantee achieving the tolerable value. However, the
2017 baseline operates with two TF coils less than the 2015s,
hence requiring even a large widening. Overall, a design modi-
fication to either number of TF coils or shape is required to sat-
isfy the limits. Possibly, by integrating within the same design
package an ad-hoc TF coil shape optimizer, similarly to the
BLUEPRINT design code [14]. Note that having at disposal a
three-dimensional mapping of the TF ripple can also provide
valuable insights for detailed transport codes designed to cal-
culate the fast particle losses (for instance by diffusion) in a
rippled toroidal field distribution (e.g. [90]).
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Table 10. Calculated parameters related to the main plant power balance features of the EU-DEMO 2017 baseline: comparison between
MIRA and PROCESS results.

Parameter variable (unit) MIRA HCPB/WCLL PROCESS HCPB Deviation (%) Type

Total thermal power Q̇th (MW) 2552/2238 2432.3 −4.9 O
Gross electric power Ẇgross (MW) 963.4/783.5 987.9 −2.4 O
Gross electric efficiency ηgross (%) 37.7/35.0 40.6 −7.1 I
Total electric pumping power Ẇpump (MW) 145.3/24.1 234.5 −37.8 O
Wall-plug efficiency ηadd (%) 40/40 40 +0.0 I
CD auxiliary heating power Ẇadd (MW) 125.0/125.0 125 +0.0 O
Cryogenic electric power Ẇcryo (MW) 33.2/29.1 40.4 −17.8 O
Electric power for plant auxiliary systems Ẇaux (MW) 94.4/82.7 88 +7.3 O
Recirculating power Ẇ rec (MW) 399.9/257.9 487.9 −17.8 O
Net electric power Ẇnet (MW) 565.4/522.6 500 +13.0 DT ∼ 300–500

The computed plant power balance specifications are listed
in table 10, both for HCPB and WCLL blanket configurations
The requirement on the net electric power Ẇnet is verified for
both BB concepts, with a good agreement between MIRA and
PROCESS for almost all power terms, with exception of the
coolant pumping power Ẇpump, primarily due to different input
assumptions (both MIRA and PROCESS scale Ẇpump from Q̇th

based on reference DEMO BoP design values). Regardless of
the input parameters, it is worth mentioning that a steady-state
power balance approach based on simple scaling laws of Q̇th

to calculate Ẇcryo, and Ẇpump, and the definition of a gross
electric efficiency ηgross to estimate Ẇgross is a rather simpli-
fied approach for crude estimations of the net electric power.
However, aiming to a higher fidelity in fusion reactors’ sys-
tems analysis tools, a time-dependent power flow modelling
approach shall be incorporated. Ideally, the energy flows dur-
ing all the plasma pulse phases shall be accounted for, as well
as a more elaborate engineering view of the key plant subsys-
tems devoted to the plant operation and electricity production
(e.g., auxiliary heating, PCSs, etc).

5. Conclusions and outlook

The inter-disciplinary, multi-fidelity reactor design tool MIRA
has been developed to fill the gaps between systems and
detailed design codes, used for the conceptual design of
DEMO and future FPPs. MIRA incorporates numerical mod-
els for the utmost physics and engineering tokamaks problems,
such as 2D free-boundary magnetic equilibrium, 1D MHD
plasma transport, quasi 2D neutron radiation transport and 3D
magnetostatic solvers.

The MIRA approach has been applied so far by perform-
ing full systems analyses to the EU-DEMO 2015 and 2017
baselines, generated by the PROCESS SC. The analyses
have illustrated that strong modelling simplifications influ-
ence the overall design of the reactor. In particular, a twice
smaller loop voltage has been found when replacing a 0D core
physics approach based on a fixed H-mode plasma profiles
parametrization with the 1.5D MHD transport/equilibrium
solver PLASMOD, successfully integrated into MIRA. Ulti-
mately, this has a major impact on the plasma burn time

(nearly twice larger than the baseline’s), where a two-hour top-
level requirement is set for DEMO. Also, the 0.6% TF ripple
operational limit is being exceeded when deploying a three-
dimensional magnetostatic Biot–Savart solver and realistic
plasma shapes.

Advanced reactor analyses have highlighted non-trivial
interdependencies between different reactor systems, where
component-specific features have deep implications on other
systems, too. The holistic and refined systems design approach
implemented in MIRA has great potential to improve the con-
ceptual design process of DEMO and FPPs. Accordingly, mul-
tiple design solutions already scanned and filtered by fast SCs
like PROCESS can be further validated and being fed as inputs
to systems/design codes based on a higher fidelity, such as
MIRA and BLUEPRINT.

Further modelling work is required to improve the fidelity
of the existing models and to implement some relevant missing
ones. In particular, the following key physics and engineering
areas require additional modelling efforts, as listed below:

• Optimization of TF and PF coils shape, position and num-
ber. A TF/PF coils solver that finds one or more optimal
configurations with respect to plasma shaping capabilities
and other coils engineering criteria (e.g. stored energy), is
currently under development.

• Dynamic fuel and power cycle models. A devoted model
is being developed to map, in a flexible and fully time-
dependent manner, the major fuel and plasma impurities
mass flows, as well as the energy distribution within the
entire FPP.

• Plant availability, to calculate the plant availability factor
in relation to the calculated components lifetime and the
consequent remote maintenance schemes.

• Fully 2D neutronics model, to refuse the cylindrical
approximation in the transport resolution and improve the
accuracy of TBR and nuclear heating deposition.

• Stress analysis in TF and PF coils structures. A complete
magnet module shall include as well a stress analysis tool
to verify the major stress criteria on the TF coil steel cas-
ing, on the TF and PF cable steel jacketing and the turn
insulation.
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• A fully automated solver to find feasible plant design solu-
tions minimizing or maximizing any given figure of merits
at reactor scales.

Most of the activities listed above are already part of the
ongoing EUROfusion theory, simulation, validation and ver-
ification task 14 (‘multi-fidelity SC for DEMO’), launched
in 2021. In this task, the reactor design codes MIRA and
BLUEPRINT are currently being merged into a reference EU
reactor design code, named BLUEMIRA.
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List of Symbols

Latin Symbols

a Plasma minor radius
A Plasma aspect ratio
Ap Plasma poloidal cross-section area
At Plasma toroidal surface
Bφ Toroidal magnetic field
Bmax,i Maximum allowed magnetic field in the coil i
Bp Poloidal magnetic field
Bpeak,i Peak magnetic field in coil i
Br Radial magnetic field
Bstray Magnetic stray field at plasma BD
Bmax

stray Maximum allowed magnetic stray field at plasma
BD

Bt Toroidal field at plasma centre
Bz Vertical magnetic field
cEjima Ejima coefficient
cAr Plasma argon concentration
cHe Plasma helium concentration
cXe Plasma xenon concentration
cW Plasma tungsten concentration
Dp Plasma domain in the (r, z) poloidal region
Dc PF/CS coils domain in the (r, z) poloidal region
D0 Vacuum domain in the (r, z) poloidal region
Em,TFC Total stored energy in TF coils system
faux Ratio of Ẇaux to Q̇th

fBD Bootstrap current fraction
fCD CD fraction
fcryo Ratio of Ẇcryo to Q̇th

fD Fraction of deuterium in the D/T fuel mix
fGW,ped Greenwald density fraction at pedestal top
fGW,sep Greenwald density fraction at separatrix
find Current inductive fraction

LH Psep/PLH ratio

fP2E Particle-to-energy confinement time ratio
FF′ Poloidal current gradient term in the GSE’s cur-

rent density formulation
Fb Covariant component of the toroidal magnetic

field Bφ at plasma boundary
Fb,TFC Bending out-of-plane force exerted on the TF coil
Fx,TFC Inward centering force exerted on the TF coil
Fv,TFC Vertical separation force exerted on the TF coil
Fz,i Vertical force in the PF/CS coil i
FPF

z,max Maximum allowed vertical forces on single PF
coils

FPF
z,peak Peak vertical force in all PF coils

FCS
z Total vertical force in the CS stack

FCS
z,max Maximum allowed total vertical force in the CS

stack
FCS,sep

z,max Maximum allowed separation force in the CS
stack

FCS,sep
z,peak Peak separation force in the CS stack

g2 Metric coefficient of the poloidal flux configura-

tion g2 =
〈
|∇V|2/r2

〉
g3 Metric coefficient of the poloidal flux configura-

tion g3 =
〈
1/r2
〉

H Plasma H-mode factor
IBS Plasma bootstrap current
Ic PF/CS coils currents
Ic,i Total current in coil i
ICD Plasma current drive
Ip Plasma current
j‖ Parallel current density
jBS Parallel bootstrap current density
jCD Parallel CD current density
Jc,max Maximum allowed current density in the PF/CS

coils
Jφ Toroidal current density
Jφ,c Toroidal current density in the PF/CS coils region
Jφ,p Toroidal current density in the plasma region
li Plasma internal inductance
lp Plasma perimeter
Lp Plasma self-inductance
ne Plasma electrons density profile
e,0 Plasma electrons density at axis
ne,ped Plasma electrons density at pedestal top
ne,sep Plasma electrons density at separatrix
nGW Greenwald density
n j Plasma density profile of the atom j ( j = He, D,

T, Xe, Ar)
ni Plasma ion density profile
NTFC Number of TF coils (and sectors)
p Total plasma pressure profile
p′ Pressure gradient term in the GSE’s current den-

sity formulation
Padd Additional heating power
Pα Alpha power
Pbrem Bremsstrahlung radiation power
Pγ

div Photon radiation power to divertor
Pn

div Neutron radiation power to divertor
Pγ

FW Photon radiation power to FW
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Pn
FW Neutron radiation power to FW

Pfus Total fusion power
Pline Line radiation power
PLH L–H threshold power
Pneut Neutron fusion power
Poh Ohmic heating power
Prad Total radiation power
Psep Power transported across the separatrix
PsepBt
q95AR0

Divertor challenging criterion
Psync Synchrotron radiation power
qdiv Heat flux to divertor plates
q̇fus Volumetric fusion power density profile
q̇neut Volumetric neutron fusion power density profile
q̇rad Volumetric radiation power density profile
q Plasma safety factor profile
qb Plasma safety factor at plasma boundary
q95 Plasma safety factor at 95% poloidal flux surface
Q Fusion gain
Q̇BB Total thermal power in breeding blanket
Q̇div Total thermal power in divertor
Q̇th Total thermal power for electricity conversion
Q̇VV Total thermal power in the vacuum vessel
r Radial coordinate in the curvilinear coordinate

system (r,φ, z)
rax Radial coordinate of the plasma magnetic axis
rBD Radial coordinate of the plasma breakdown point
rXl Radial coordinate of the plasma lower X-point
rXu Radial coordinate of the inactive plasma upper

X-point
rWP,ib Innermost radial coordinate of the TF coil’s wind-

ing pack on the inboard leg
R0 Plasma major radius
Rm

heat Total nuclear heating power into component m
RTFC

heat,peak Peak volumetric heating in the TF coil’s winding
pack region

Rp Plasma resistance
Te Plasma electrons temperature profile
〈Te〉 Volume-averaged temperature of plasma electrons
Te,0 Plasma electrons temperature at axis
Ti Plasma ions temperature profile
〈Ti〉 Volume-averaged temperature of plasma ions
Ti,0 Plasma ions temperature at axis
Tped Plasma electrons/ions temperature at pedestal top
Tsep Electrons/ions temperature at separatrix
TBRt Target tritium breeding ratio
Uloop Plasma loop voltage
V Plasma volume profile
V′ Plasma volume gradient profile
Vp Plasma volume
Ẇadd Additional heating power supplied to the addi-

tional heating systems
Ẇaux Electric power for additional electricity demands

for other auxiliary plant systems
Ẇcryo Electric cryogenic power consumption
Ẇgross Gross electric power
Ẇnet Net electric power
Ẇpump Electric coolant pumping power
Ẇ rec Total recirculation electric power

Wth Plasma thermal energy
x Normalized poloidal flux coordinate
BD Breakdown point (rBD: radial coordinate, zBD: ver-

tical coordinate)
Xl Lower plasma X-point (rXl : radial coordinate, zXl :

vertical coordinate)
Xu Upper inactive plasma X-point (rXu : radial coordi-

nate, zXu : vertical coordinate)
z Vertical coordinate in the curvilinear coordinate

system (r,φ, z)
zax Vertical coordinate of the plasma magnetic axis
zBD Vertical coordinate of the plasma breakdown point
zXl Vertical coordinate of the plasma lower X-point
zXu Vertical coordinate of the inactive plasma upper

X-point
Zeff Plasma effective charge

Greek symbols

βp Poloidal plasma beta
βN Normalized plasma beta
βt Toroidal plasma beta
γCD Normalized CD efficiency
Γk
⊥ Poloidal distribution of the normal heat flux of the

radiation source k (with k = n, γ)
Γk

j,av Average heat flux of radiation k = n, γ onto
plasma-facing component j = FW, div

Γk
j,peak Peak heat flux of radiation k = n, γ onto plasma-

facing component j = FW, div
δX,l Lower plasma triangularity at separatrix
δX,u Upper plasma triangularity at separatrix
δTF Toroidal field ripple
δ95 Plasma triangularity at 95% flux surface
δTF,peak Peak toroidal field ripple on plasma separatrix
Δri Radial width of the PF/CS coil i
Δzi Vertical width of the PF/CS coil i
∂Dt

BD Boundary of the target stray field area
∂Dp Calculated plasma boundary
∂Dt

p Target plasma boundary
ηadd Wall-plug efficiency
ηgross Gross electric efficiency
κX,l Lower plasma elongation at separatrix
κX,u Upper plasma elongation at separatrix
95 Plasma elongation at 95% flux surface
μ0 Vacuum magnetic permeability
ρ Normalized toroidal flux coordinate
ρBD Radius of breakdown area
ρped Normalized flux coordinate at the pedestal top
τmax

burn Maximum available plasma burn time
τE Plasma energy confinement time
τ p Particle confinement time
φ Scalar flux density
φTFC

fast,peak Peak fast neutron flux in TF coil’s winding pack
region

Φ Toroidal magnetic flux
Φb Toroidal magnetic flux at plasma boundary
Φfast Fast scalar neutron flux
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ψ Neutron flux density
Ψ Poloidal magnetic flux
Ψb Poloidal magnetic flux at plasma boundary
Ψb,EOF Poloidal magnetic flux, plasma boundary, EOF
Ψb,SOF Poloidal magnetic flux, plasma boundary, SOF
ΨBD Poloidal magnetic flux at plasma breakdown
Ψres Resistive poloidal flux consumption at plasma

ramp-up
Ψind Inductive poloidal flux consumption at plasma

ramp-up

List of Acronyms

BB Breeding Bbanket
BD Breakdown
BoP Balance of plant
BTE Boltzmann transport equation
BZ Breeding zone
CD Current drive
CDE Current diffusion equation
CS Central solenoid
DGM Discontinuous Galerkin method
DT Design target
EOF End-of-flat-top
FBE Free-boundary equilibrium
FEM Finite element method
FPP Fusion power plant
GSE Grad–Shafranov equation
HCPB Helium-cooled pebble beds
I Input
MC Monte Carlo
MIRA Modular integrated reactor analysis
NBI Neutral beam injection
PCS Power conversion system
PF Poloidal field
PFC Poloidal field coil
PHTS Primary heat transfer system
O Output
OL Operational limit
R & C Requirements and constraints
RU Ramp-up
SC Systems code
SOF Start-of-flat-top
TBR Tritium breeding ratio
TF Toroidal field
TL Technological limit
VV Vacuum vessel
V & V Verification and validation
WCLL Water-cooled lithium-lead
WP Winding pack

Appendix A.

A.1. Resolution of the 1D flux surface-averaged
Grad–Shafranov equation

The mathematical approach adopted to compute p′ and FF′

is derived from [25] and slightly readapted to the MIRA

structure for solving the fixed-boundary equilibrium problem.
The method consists of solving the 2D GSE and its 1D
flux-surface-averaged iteratively. The flux-surface average of
equation (1) for Jφ ≡ Jφ,p reads as:

∂

∂V

(
g2

∂Ψ

∂V

)
= −4π2μ0

∂p
∂Ψ

− 4π2g3F
∂F
∂Ψ

, (A.1)

where V (Ψ) indicates the plasma volume profile, g2 (Ψ) =〈
|∇V|2/r2

〉
and g3 (Ψ) =

〈
1/r2
〉

are metric coefficients of

the poloidal flux configuration Ψ(r, z), and 〈·〉 indicates
the flux-surface averaging operator such that for any flux-
surface function f 〈 f 〉 = ∂

∂V

∫
f dV ≡

∮
f dl

Bp
/
∮

dl
Bp

, where the
line integral is performed on the poloidal contour enclosing a
flux surface. Bp =

|∇Ψ|
2πr outlines the poloidal magnetic field.

Both metric coefficients are calculated from the 2D profile of
Ψ, obtained from the 2D resolution of the GSE.

Recalling that q = −∂Φ/∂Ψ, the covariant F can be also
expressed as F = −2πH/g3 [25], with H = ∂Φ/∂V and Φ
being the toroidal magnetic flux. Then, assuming that p and
q are known from 1D MHD transport and CDEs, and that g2,
g3 and V are derived from a 2D poloidal flux profileΨ(r, z) (2D
GSE), the 1D flux-averaged GSE can be recast into the follow-
ing heterogeneous first-order ordinary differential equation in

the new variable y =
(

H
q

)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂y
∂x

(
g2

2
+ 8π4 q2

g3

)
+ y

(
∂g2

∂x
+ 8π4 ∂

∂x

(
q2

g2
3

))
= −4π2μ0

∂p
∂x

y (x = 1) = yb ≡
(

Hb

qb

)2

=

(
Fbg3,b

qb2π

)2 ,

(A.2)
where qb and g3,b indicate the values of q and g3 at the plasma
boundary (x = 1) and Fb = R0Bt. Equation (A.2) admits the
following analytical solution:

y (x) = e−
∫ x

1 A(u)du

(
yb +

∫ x

1
e
∫ x

1 A(u)duP (v) dv

)
, (A.3)

with

A (x) =

∂g2
∂x + 8π4 ∂

∂x

(
q2

g2
3

)
g2
2 + 8π4 q2

g3

and P (x) = − 4π2μ0
∂p
∂x

g2
2 + 8π4 q2

g3

.

(A.4)
H (x) = q(x)

√
y(x) and FF′ can be obtained by combining

equation (A.1) with the definition of q, leading to

FF′ = −μ0

g3

∂p
∂Ψ

+
1

4π2g3

∂

∂V

(
g2

H
q

)
. (A.5)

Finally, using the flux-surface averaged definition of the
poloidal flux Ψ(x)

Ψ (x) = −
∫ V(x)

0

H
q

dV , (A.6)

p′ is then calculated as p′ = ∂p/∂Ψ.
A proper iteration scheme is needed to iterate the resolution

of the 2D GSE (equation (1)) and 1D flux-surface averaged
(equation (A.1)). For the ith iteration step, the 2D poloidal
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flux distribution is known from the previous iteration (Ψi−1
)
.

For the first step (i = 1), Ψ0 is initialized imposing a flat cur-
rent density Jφ,p calculated from a given plasma current Ip,
which can be either set manually or initialized via ITER-based
scaling laws (e.g. [88]). Then, the following operations are
performed in the appearing order:

(a) calculate xi(Ψi−1) from equation (4)
(b) calculate Vi

(
Ψi−1
)
, gi

2

(
Ψi−1
)

and gi
3

(
Ψi−1
)

from the 2D
poloidal flux computed in the previous iteration (Ψi−i)

(c) use Vi, gi
2 and gi

3, p(x) and q(x) to calculate yi(x)
(equation (A.3)) and Hi (x),

(d) update Ψ(x) (equation (A.6))
(e) calculate

(
p′
)i

and
(
FF′)i

(f ) repeat steps (c)–(e) until convergence onΨax = Ψ(x = 0)
and the toroidal flux at plasma boundary Φb =

∫ Vp
0 H dV

is reached
(g) map the 1D profiles

(
p′
)i

and
(
FF′)i onto the 2D grid of

xi(Ψi−1) to calculate the new 2D distribution of Ji
φ,p

(h) solve the 2D GSE (equation (2)) with Jφ ≡ Ji
φ,p to update

Ψi−1 ←Ψi

(i) repeat all steps from (a) to (h) until convergence on the
valuesΨ(r, z) on all the 2D plasma mesh nodes is reached.

An under-relaxation on g2 and g3 between the outer iter-
ations (that is where V , g2 and g3 are updated on the pre-
vious flux profile) is recommended to ensure convergence
and to mitigate the diverging effects of g2 at the plasma bound-
ary [25]. Note that within this iteration level, the plasma cur-
rent Ip can be also used to constrain the equilibrium solution,
such that

Ip =

(
g2g3F

8π3μ0q

)
b

, (A.7)

where the subscript ‘b’ indicates that g2, g3 q, and F are all
computed at the plasma boundary.

The mathematical implementation of the model and the iter-
ation scheme has been verified through code-to-code compar-
isons with the PLASMOD transport solver for several DEMO
cases with varying major radius and aspect ratios. The results
yielded relative errors in the L2 norm sense of g2, g3, p′, FF′,
V , Ψ and Φ profiles always below 10−3.

A.2. Derivation of the Green’s functions of the
Grad–Shafranov elliptic operator

The coefficients GΨ,k,i and GΨ,k,p outlined in equation (9) are
the Green’s functions of the Grad–Shafranov elliptic operator
and are calculated at all locations k = (rk, zk) from the numer-
ical solution Ψ(i) (rk, zk) of equation (2). These are obtained by
‘enabling’ each coil i separately. As a result, the current density
J(i)
φ (r, z) is defined as:

J(i)
φ (r, z) =

⎧⎨
⎩

Ic,i

Ai
∀ (r, z) ∈ Dc,i

0 ∀ (r, z) /∈ Dc,i

, (A.8)

with Ai being the cross-section area of the coil i and Di the
enclosing space domain. Accordingly, the Green functions

GΨ,k,i is calculated normalizing Ψ(i) (rk, zk) on the ith coil’s
current Ii (for this specific purpose set to one), leading to:

GΨ,k,i (rk, zk) =
Ψ(i) (rk, zk)

Ic,i
. (A.9)

Note that, replacing the subscript ‘i’ with ‘p’ and set-
ting Jφ,i ≡ Jφ,p ∀ (r, z) ∈ Dp ad zero elsewhere, the Green’s
functions associated with the plasma current are automati-
cally obtained. The same logic can be applied to B(i)

r and
B(i)

z to derive the field’s Green’s functions constants GBr ,k,i,
GBz ,k,i, GBr ,k,p, andGBz,k,p, recalling that Br = − 1

2πr
∂Ψ
∂z and

Bz =
1

2πr
∂Ψ
∂r . In this case, the partial derivatives are calculated

numerically in the FEM solver from the 2D distribution of Ψ.
If all toroidal currents are approximated by a set of current

filaments (or loops), the Green’s functions can be also calcu-
lated analytically from the Biot–Savart equation. Accordingly,
GΨ,k,i =

1
Ic,i

·
∑Ni

n=1 GΨ,k,n (rk, zk, Rn, Zn) · In,i where Rn and Zn

are the radial and vertical coordinate of the current filament n
within the coil i, In,i is the current, GΨ,k,n is the Green’s func-
tion coefficient calculated at the poloidal location (rk, zk), and
Ni the total number of filaments of the coil i. The expressions
of GΨ,k,n,GBr ,k,n and GBz ,k,n can be found in [13, 16]. How-
ever, while the filamentary theory is valid for regions far from
the current filament, singularities are found for rk → Rn and
zk → Zn. The derivation of the Green’s function from the FEM
solution of the GSE avoids such a diverging behaviour and
is therefore preferred for the coils’ current resolution in the
implemented FBE model.

The coefficients GFz , j→i and GFz ,p→i (outlined in
equation (11) to compute the vertical force Fz,i acting
on the coil i) are calculated resolving equation (2) for every
coil pair (i, j) and (i, p). These read as:

GFz , j→i =
Fz, j→i

Ic,i · Ic, j
≡ − Fz,i→j

Ic,i · Ic, j

= − 1
Ic,i · Ic, j

∫
Di

J(i, j)
φ · B(i, j)

r · 2πr dr dz, (A.10)

with Fz, j→i being the vertical force exerted on the coil i from
the coil j, B(i, j)

r the radial magnetic field distribution from the
current density J(i, j)

φ operated in the coil pair (i, j), given by:

J(i, j)
φ (r, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ic,i

Ai
∀ (r, z) ∈ Dc,i

Ic, j

A j
∀ (r, z) ∈ Dc, j

0 ∀ (r, z) /∈ Dc,i ∧ ∀ (r, z) /∈ Dc, j

.

(A.11)

Appendix B. PFC/CS currents, peak magnetic
fields and vertical forces of the EU-DEMO 2017
baseline

Table 11 lists the full set of PF and CS coils currents, peak
magnetic fields and vertical forces at the plasma BD, start-
of-flat-top (SOF) and end-of-flat-top (EOF) calculated in the
MIRA FBE solver (section 3.2.2) for the EU-DEMO 2017
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Table 11. Evaluated BD, SOF and EOF PF/CS coils current, peak field and vertical forces configurations of the EU-DEMO
2017 baseline.

Parameter variable (unit) BD SOF EOF Type

Total current in coil CS3U Ic,CS3U (MA) +29.61 −3.41 −14.4 |TL| � 29.61
Total current in coil CS2U Ic,CS2U (MA) +29.61 +16.72 −29.0 |TL| � 29.61
Total current in coil CS1 Ic,CS1 (MA) +59.71 −13.29 −59.71 |TL| � 59.72
Total current in coil CS2L Ic,CS2L (MA) +29.60 +20.36 −22.3 |TL| � 29.6
Total current in coil CS3L Ic,CS3L (MA) +24.94 −9.13 −25.5 |TL| � 29.6
Total current in coil PF1 Ic,PF1 (MA) +13.68 +15.27 −0.6 |TL| � 18.0
Total current in coil PF2 Ic,PF2 (MA) +3.06 −2.78 −4.8 |TL| � 24.5
Total current in coil PF3 Ic,PF3 (MA) −1.75 −10.38 −9.1 |TL| � 12.5
Total current in coil PF4 Ic,PF4 (MA) +3.11 +1.26 −1.8 |TL| � 12.5
Total current in coil PF5 Ic,PF5 (MA) −1.88 −12.63 −11.5 TL �±24.5
Total current in coil PF6 Ic,PF6 (MA) +17.08 +25.64 +12.2 TL �±50.0
Peak magnetic field in coil CS3U Bpeak,CS3U (T) 12.04 3.92 8.2 TL �13.7
Peak magnetic field in coil CS2U Bpeak,CS2U (T) 12.35 5.31 10.6 TL �13.7
Peak magnetic field in coil CS1 Bpeak,CS1 (T) 12.46 4.87 11.1 TL �13.7
Peak magnetic field in coil CS2L Bpeak,CS2L (T) 12.22 6.10 9.5 TL �13.7
Peak magnetic field in coil CS3L Bpeak,CS3L (T) 10.95 5.08 8.7 TL �13.7
Peak magnetic field in coil PF1 Bpeak,PF1 (T) 5.70 5.60 1.1 TL �5.7
Peak magnetic field in coil PF2 Bpeak,PF2 (T) 0.86 1.22 1.70 TL �5.7
Peak magnetic field in coil PF3 Bpeak,PF3 (T) 0.69 4.06 3.56 TL �5.7
Peak magnetic field in coil PF4 Bpeak,PF4 (T) 1.09 0.70 0.91 TL �5.7
Peak magnetic field in coil PF5 Bpeak,PF5 (T) 0.60 3.83 3.48 TL �5.7
Peak magnetic field in coil PF6 Bpeak,PF6 (T) 4.20 5.51 2.54 TL �5.7
Vertical force in coil PF1 Fz,PF1 (MN) −430.82 −103.03 −11.09 |OL| �450
Vertical force in coil PF2 Fz,PF2 (MN) −24.80 −22.40 −80.52 |OL| �450
Vertical force in coil PF3 Fz,PF3 (MN) +14.53 +58.77 −43.28 |OL| �450
Vertical force in coil PF4 Fz,PF4 (MN) −1.47 −21.75 +30.95 |OL| �450
Vertical force in coil PF5 Fz,PF5 (MN) −16.43 +42.18 +155.81 |OL| �450
Vertical force in coil PF6 Fz,PF1 (MN) +356.97 +40.94 −233.28 |OL| �450
Vertical separation force in CS stack Fsep

z,CS (MN) +102.02 +128.96 +181.50 |OL| �350
Total vertical force in CS stack Ftot

z,CS (MN) +102.02 +4.94 +181.50 |OL| �300

baseline. The column ‘type’ indicates whether a parameter
is an operational limit (OL) or a technological limit (TL),
with the value associated with its upper/lower limit or equality
constraint reported therein.
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