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Abstract—Retrieving objects from clutters is a complex task,
which requires multiple interactions with the environment until
the target object can be extracted. These interactions involve
executing action primitives like grasping or pushing as well as
setting priorities for the objects to manipulate and the actions
to execute. Mechanical Search (MS) [1] is a framework for
object retrieval, which uses a heuristic algorithm for pushing
and rule-based algorithms for high-level planning. While rule-
based policies profit from human intuition in how they work, they
usually perform sub-optimally in many cases. Deep reinforcement
learning (RL) has shown great performance in complex tasks
such as taking decisions through evaluating pixels, which makes
it suitable for training policies in the context of object-retrieval.
In this work, we first formulate the MS problem in a principled
formulation as a hierarchical POMDP. Based on this formulation,
we propose a hierarchical policy learning approach for the MS
problem. For demonstration, we present two main parameterized
sub-policies: a push policy and an action selection policy. When
integrated into the hierarchical POMDP’s policy, our proposed
sub-policies increase the success rate of retrieving the target
object from less than 32% to nearly 80%, while reducing the
computation time for push actions from multiple seconds to less
than 10 milliseconds.

Video: youtu.be/cioawhgFiLU
Index Terms—Mechanical search, action planner, push policy,

hierarchical policy.

I. INTRODUCTION

In recent years, the use of robots in various fields has seen
an unprecedented increase. The use cases of robots, however,
remained almost unchanged. This is due to the limitation
of robots being designed to mainly operate in structured
environments. Instead of robots adapting to their environments,
work environments are usually adapted to robots. These in-
conveniences increase their procurement costs and limit their
fields of application. In an unstructured environment, such as
warehouses or homes, simple actions like grasping objects
present a very demanding task for robots, which fails in
many cases [2]. Although robots are much faster, much more
precise, and much stronger than humans, they are significantly
outperformed by humans when it comes to manipulation tasks.
Humans show this superior performance thanks to the disposal
of a nearly endless repertoire of motion primitives that they
can easily perform, as well as the ability to safely predict the
outcome of any motion primitive [3], which robots lack.

In this paper, we want to learn how to grasp a specific object
from a heap of cluttered objects. The target object might not
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be visible in the beginning and other objects might need to be
removed or pushed away to make the target object visible and
reachable. We will base our work on an existing framework
from a recent work called Mechanical Search [1], where the
authors combine different algorithms for object recognition
and learning grasp points. For object recognition, SD Mask-
RCNN [4] and a Siamese network [5] are used, while Dex-Net
[6] is used for selecting the grasp point. In this approach, the
objects to be removed are currently selected via heuristics.

In this work, we first formulate the MS problem in a
principled formulation as a hierarchical POMDP. Based on
this formulation, we propose a hierarchical policy learning
approach. Policies higher in the hierarchy, e.g. action selection
policies, will be optimized through the use of hierarchical
dynamic programming which carries Bellman updates based
on the value functions of policies lower in the hierarchy
(called sub-policies), e.g. push and grasp policies. Policies at
each layer in the hierarchy can be optimized in bottom-up
fashion [7] or jointly [8]. For demonstration, we present two
main parameterized sub-policies: a push policy and an action
selection policy. We propose to use reinforcement learning
to optimize these policies. When integrated into the global
hierarchical policy to do MS, our proposed solution increases
the success rate of retrieving the target object in a clutter of
20 objects from less than 32% to nearly 80%.

II. RELATED WORK

Many research projects, which deal with developing the cog-
nitive abilities of robots have made significant improvements
in the fields of perception, planning, and control. However,
less progress has been made on more complex tasks, which
require a combination of these fields, like retrieving objects in
unstructured environments, such as warehouses or offices.

An early work by Li et al. [9] demonstrates how modelling
the problem of object search in clutter as a POMDP improves
action planning and thus reduces the number of required steps
to retrieve a target object. However, this work mainly deals
with the problem of partial occlusion.

Danielczuk et al. [1] propose mechanical search that can
deal with extracting objects from clutter. Mechanical search
uses SD Mask R-CNN [4], a depth-based category-agnostic
segmentation algorithm, to distinguish objects and a Siamese
network [5] to identify the target object. It uses Dex-Net [6],
[10] to plan grasps and a heuristic policy to plan pushes [11].
All action policies produce a quality value for the action they
plan. Which action is to apply on which object is also decided
heuristically. The target object, if found, has always the highest

ar
X

iv
:2

20
2.

13
68

0v
1 

 [
cs

.R
O

] 
 2

8 
Fe

b 
20

22

https://youtu.be/cioawhgFiLU


priority for manipulation. If not found or impossible to apply
actions on the target object, the other detected objects are
sorted in descendent order according to their visible area. In a
second work, Danielczuk et al. [12] propose a follow-up idea
to improve the search by estimating the occupancy distribution
of the target object, which is often occluded from the scene.
A further follow-up work from the same authors tries to
train a push policy [13] via learning from demonstration
and RL, which shares a similar direction to our proposed
approach. However, we resort to motion primitives with task
parameterization to achieve sample efficiency instead of using
teacher guidance that is not always available.

Sarantopoulos et al. [14] introduce a framework for sin-
gulating objects through pushing. It incorporates two push
primitives, which evaluate a latent representation of the visual
state to generate push candidates for the target object and
the obstacles. The high-level policy decides which push to
apply. While singulation can speed up object retrieval, this
approach is only beneficial in scenes with enough free space.
Another related work by Dogar et al. [3] which also deals
with extracting objects from clutter presents a very similar
approach. It uses a repertoire of human-inspired primitives like
pushing, grasping, end effector motions, and combinations.
Novkovic et al. [15] introduces a framework for uncovering
objects in cluttered scenes through interactive perception. The
used policy processes an encoded volumetric truncated signed
distance field (TSDF) representation of the RGB-D observa-
tion to generate some end effector displacement. Pan et al. [16]
introduce a bi-level motion planner, which deals with making
optimal decisions in a joint push-grasp action space for object
sorting. Zeng et al. [17] present a new method for planning
pushes and grasps using two end-to-end deep networks to cap-
ture complementary pushing and grasping policies that benefit
from each other via reinforcement learning. Another work by
Deng et al. [18] propose a deep RL approach for pushing
and picking in clutter. The RGB-D observation is transformed
into an affordance map, which is used to determine if a grasp
is possible and where to perform it. The agent disturbs the
scene by performing a push action if grasping fails or if no
grasping is possible. Berscheid et al. [19] and Feldman et. al.
[20] present a vision-based algorithm for learning the most
rewarding pose for applying object manipulation primitives.
These algorithms are targeted to learn a policy that chooses
between shifting and grasping actions in a bin-picking setting.
However these methods are not designed for searching for a
target object.

III. PROBLEM FORMULATION

Different from the original formulation from Danielczuk
et al. [1], we formulate the object search problem as a
hierarchical POMDP [7], [21]. Similar to a standard POMDP
as defined by Danielczuk et al. [1], a hierarchical POMDP is
defined as a tuple (S,A, T ,O,R,Y).
• State s ∈ S: a set of ground-truth information of the

environment, i.e. all object’s geometry and pose, robot’s
states, all sensor’s states.

• Action a ∈ A: a set of robot commands, e.g. a next end
effector (EE) pose.

• Observation y ∈ Y: a set of sensor data, which is an
RGB-D image in our setting.

• Transition T : defines a state transition given action a,
i.e. T : S×S×A 7→ [0, 1] where T (s′, s, a) = p(s′|s, a).
s′ denotes the following state of s.

• Observation function O: defines an observation distri-
bution given ground-truth state s, i.e. O(y, s) = p(y|s).

• Reward function R: defines a reward given state s and
action a, i.e. R(s, a).

Finding a global policy for the above POMDP problem is
hard [7]. In literature, there has been much work attempting
to reduce problem complexity by proposing hierarchical ap-
proaches or action decomposition.

In principle, a hierarchical POMDP can be decomposed as
a hierarchy of partially observable semi-MDPs (POSMDPs)
[22]. In particular, assuming a hierarchical POMDP can be
solved with a hierarchical policy π = {π0, π1, . . . , πk}, where
π0, π1, . . . , πk are called sub-policy, macro action, param-
eterized motion primitives, etc. in different contexts. Each
sub-policy is targeted to solve a sub-POMDP problem (sub-
task) which has much lower complexity than the global task.
This principled policy decomposition can result in hierarchical
Bellman updates, hence hint a principled way to optimize a
hierarchically or recursively optimal policy (the type of opti-
mality would depend on how each sub-task’s reward function
is defined), i.e. via hierarchical dynamic programming.

In regard to the approach of Danielczuk et al. [1], the
authors have also come up with a hierarchical policy design.
The global policy π is decomposed into a search policy π0
whose only child action is the object selection policy π1. Pol-
icy π1’s child actions are segmented objects {π2, . . . , πN+2}
(assuming there are N objects in the scene at a particular
time t). Each policy πi (2 ≤ i ≤ N + 2) has the same
action policy that contains a set of two actions: grasp action
policy πN+3 and push action policy πN+4. Each of the grasp
or push action policies are parameterized motion primitives
that would use low-level action a ∈ A as primitive actions.
However, Danielczuk et al. [1] have not yet discussed if each
sub-policy πi is derived from solving a well-defined sub-
POMDP problem. Among them, grasp action policy πN+3

is a pretrained Dex-Net policy network [6] which was shown
to come from a POMDP grasping problem. The other sub-
policies are heuristic and hard-coded, therefore not designed
as a solution to a well-defined sub-POMDP problem. Thus,
this approach could have a great practical benefit but might
lack the flexibility of extension to more powerful solutions,
e.g. using hierarchical RL.

Based on our above hierarchical POMDP formulation and
action decomposition, we propose two extensions that trans-
form i) the action selection problem to a POMDP problem
with a trainable action selection policy (depending on its child
actions), and ii) the push action to a POMDP problem with a
trainable push policy. Our following proposals assume separate



training for simplicity, however, it can also be trained in an
end-to-end hierarchical POMDP RL fashion [8].

IV. PUSH POLICY

Danielczuk et al. [1] use the free space policy (FSP) [11],
as a push primitive in the MS pipeline. The FSP aims to push
the target object (TO) to the freest space in the bin. This
would increase the free space around the TO and consequently
increases the probability of a successful grasp. Danielczuk
et al. conjuncture that this policy performs suboptimal and
suggest replacing it with more effective push primitives, which
can learn from simulation. Our observations validate this
assumption. While the FSP performs well in small heaps, it
shows poor performance in cluttered scenes where increasing
the free space around an object is difficult. Moreover, the
FSP fails at inferring a push action for many observations
and takes multiple seconds to compute one push action. These
drawbacks motivate us to develop a new push policy, which
learns pushing from simulation. First, we introduce a problem
statement for the linear pushing, then we introduce our method
for solving the push problem.

A. Problem Statement

We formulate the general linear push problem as a sub-
POMDP defined by (S,A, T ,R,Y), where it shares the state
space S of the main problem defined in Section III. For this
problem we precisely define the observations, the action set,
and the reward function. All other aspects of the problem
formulation are sufficiently captured by the main POMDP.

• Observation y ∈ Y: a downscaled crop from the depth
image centered around the target object. The crop is sized
220× 220 (px) and downscaled to 40× 40 (px).

• Action a ∈ A: a six-dimensional continuous action
defined by xrel, yrel, sinαPush, cosαPush, sinφ, cosφ ∈
[−1, 1]. The action encodes the relative position of the EE
at push start (xrel, yrel), the push direction αPush and the
yaw angle of the EE φ. Values xrel and yrel are relative
to the observation image. The absolute coordinates in
the depth image (u, v) can be deduced from the size
and coordinates of the crop. The first four variables of
the action space are visualized in Fig. 1. The push start
position pStart is obtained through deprojecting u, v and
the estimated depth z. The push distance is 10 cm. The
push end point pEnd is inferred from pStart and αPush.

• Reward r ∈ R: a value quantifying the change in free
space around the OOI. The reward function is defined as
the weighted sum of changes in free space around each
object present in the bin:

rt =
10 ·∆FS,OI

(t) + 1
N−1 ·

∑N
i=1,i6=I ∆FS,Oi(t)

11
(1)

where, N denotes the number of objects in the bin. OI
denotes the OOI. ∆FS,Oi

denotes the change in free space
(FS) around object Oi after executing the push action as

𝒙𝒓𝒆𝒍

𝒚 𝒓
𝒆𝒍 𝜶𝑷𝒖𝒔𝒉

1-1

1

Fig. 1: Visualization of the action space variables for the push
policy. The position of EE at push start (xrel, yrel) is shown
as a white cross. The push direction is defined by αPush. The
EE-yaw angle φ is not represented in this figure.

denoted in Eq. 2. We reward the increase of free space
around all objects, while focusing on the OOI.

∆FS,Oi
(t) = FSOi

(t)− FSOi
(t− 1). (2)

Here, FSOi
(t) denotes the free space around Oi at time t

and is computed as the sum of the masked distance trans-
form of the bin free space for Oi (Fig. 2d), normalized
by the area of Oi

FSOi(t) =

∑
(MOi

(t)�DTBFS,Oi
(t))∑

MOi
(t)

(3)

where, DTBFS,Oi
denotes the result of the distance trans-

form of the bin free space (BFS) mask for object Oi (Fig.
2c).

∑
MOi

is a scalar denoting the area of the binary
mask MOi

of object Oi (Fig. 2a). The operator � denotes
the element-wise multiplication. The BFS-mask (Fig. 2b)
results from the subtraction of all observed object masks
from the bin bottom (BB) mask except for the OOI:

MBFS,Oi
(t) = MBB −

N∑
i=1,i6=I

MOi
(t) (4)

(a) (b) (c) (d)

Fig. 2: Elements of the computation of the free space for object
Oi. (a) Binary mask of object Oi. (b) Bin free space mask.
(c) Distance transform of MBFS,Oi . (d) Masked DTBFS,Oi .

B. Push Policy Learning

For our push policy we use an actor-critic architecture,
which consists of two branches: an actor-network and a
critic-network. The actor takes a state observation as input
and returns an action according to a policy πθ. The critic
serves as an action-value function and returns a quality value
for the computed action given the observed state. These
two networks are optimized jointly during the training. Our
architecture also includes an encoder, which transforms the



input image of size 40 × 40 (px) to a feature vector of
size 98. This feature vector serves as the state observation
for the actor and the critic. We train the encoder jointly
with the other networks. The architecture of our push pol-
icy is shown in Fig. 3. The generated action vector at =
(xrel, t, yrel, t, sinαPush, t, cosαPush, t, sinφt, cosφt) is con-
catenated with the state observation and forwarded to the
critic-network. We optimize our policy using the soft actor-
critic (SAC) algorithm [23].
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Fig. 3: Architecture of our push policy. The network consists
of a CNN encoder for feature extraction, a fully connected
actor-network serving as policy, and a fully connected critic-
network, which serves as an action-value function.

V. ACTION SELECTION POLICY

The heuristic action selection policy (ASP), introduced in
[1] has a simple tree structure, which prioritizes grasping
over pushing. If neither actions are possible, then the current
object is skipped. The policy uses static threshold values
qGrasp,Thresh and qPush,Thresh to determine the priorities of
the actions, which can result in suboptimal decisions, espe-
cially in cases of wrong quality estimations. This suboptimal
behaviour can be observed in the physical rollouts introduced
in [1], where the heuristic policy is outperformed by humans,
who require less than three actions to succeed in more than
50% of the trials, while the introduced heuristic policy requires
at least five actions to reach the same success rate. The superior
human performance results i.a. from making better action
selection decisions as shown in Table I. The table shows a
remarkable difference in the proportions of executed actions.
This motivates us to develop a new ASP, which learns a
better action selection strategy from trial and error. First, we
formulate a problem statement for the action selection, then
we introduce our method for solving this problem.

TABLE I: Proportions of taken actions by the heuristic ASP
and humans.

Heuristic ASP∗ Human ASP∗

Parallel-Jaw Grasp 18.4% 15.9%
Suction Grasp 76% 58.2%
Push 5.6% 25.9%

*: the values result from 50 physical rollouts. Reported in [1]

A. Problem Statement

The objective of our ASP is to select one of the available
action primitives such that the number of required actions to
extract a TO is minimized. We formulate the problem of action
selection as a sub-POMDP problem that also shares the same
state space as the main POMDP problem defined in Section
III. For this sub-POMDP task (action selection), we specify
the observations, the action set and the reward function.
• Observations: the environment returns the following

observation set:
1) Depth Image: a 40 × 40 (px) rescaled crop of the

depth image centered around the OOI. The crop size
is 220× 220 (px), which captures sufficient context
from the original image of size 480× 640 (px).

2) OOI-Mask: a 40 × 40 (px) rescaled crop of the
OOI-mask centered around the OOI. The crop size
is 220× 220 (px).

3) Relative Coordinates: xrel, yrel ∈ [−1, 1] des-
ignate the relative coordinates of the TO in the
original depth image. The absolute position of the
TO is inferred from these values.

4) Action Qualities: qGrasp, qPush ∈ {−1, [0, 1]}
the quality metrics returned by the action policies.
While the policies return values in [0, 1], we set the
quality value to −1, if the policy could not compute
an action for the OOI. This signals the agent that
the corresponding action is infeasible. This behavior
is reinforced with the used reward function (Eq. 5).
Selected infeasible actions are changed to Skip.

• Actions: the agent selects one of the following actions:
1) Skip: the robot does not apply any action on the

current object. Another object will be evaluated.
2) Grasp: the robot grasps the current object. If the

OOI is marked as TO, the object is dropped in a
dedicated spot. Otherwise, the robot drops the object
in a secondary bin. We assume the grasp policy is
a pretrained Dex-Net 2.0 policy network [6].

3) Push: the robot pushes the OOI according to the
plan returned by the push policy. This push action
is an optimized push policy discussed in Section IV.

• Reward: we define the reward function as

rt =

 20 , if the TO is successfully extracted,
−10 , if an infeasible is action selected,
−1 ,Otherwise.

(5)

B. Method

The objective of the ASP is to select the motion primitive
(grasp vs. push) to be executed, if applicable, which minimizes
the number of required actions to retrieve a TO. This task
has a finite discrete action space, which makes a Q-Learning
algorithm a simple and effective RL method to deal with it.
Thus, we use a deep Q-network (DQN) [24] architecture for
our policy. Due to the property of the observation, which



consists of a mixture of images and scalars, our network has
two input branches. The first one includes an encoder for
extracting features from the input images. The second branch
feeds the input scalars directly in the Q-network. The network
outputs an action-value for each of the possible actions {Skip,
Grasp, Push}. The action with the highest Q-value is selected
for execution. The architecture of our action selection agent is
shown in Fig. 4. The used encoder shares the same architecture
as the one in our push policy (sec. IV-B).
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Fig. 4: Architecture of our ASP. The encoder extracts features
from the depth image and the OOI-mask and outputs a feature
vector of size 98. The feature vector is concatenated with
the scalar input data and forwarded to the Q-network, which
outputs a quality value for each state-action pair.

VI. EXPERIMENTS

A. Environment
In our work, we use a simulated environment running on

the PyBullet physics engine [25] for training our agents and
benchmarking the different policies. The scene, shown in Fig.
5, consists of a simulated Franka Emika Panda robot equipped
with a parallel-jaw gripper. The robot is placed on top of a
table close to a bin, where the objects to manipulate are placed.
A secondary bin, for dropping secondary objects, is placed
beside the main bin. The used object models are a subset of the
YCB dataset [26]. The scene is perceived through a simulated
Intel RealSense D-435 RGB-D camera [27].

RGB-D Camera

Main Bin

Secondary Bin

Drop Region

Fig. 5: Overview of the work environment. The designated
drop region for the TO is marked in green.

B. Experiment Description
To evaluate our policies, we compare their performances to

the ones of the heuristic policies, which were introduced in the
original MS pipeline [1]. The trials are initialized as follows:

1) Randomly, select a TO from the list of available objects.
2) Randomly, select other objects from the remaining ob-

jects, until the benchmark heap size is reached.
3) Place the selected objects, collision free, at different

locations and heights above the bin.
4) Simultaneously, drop all objects in the bin.
5) Allow 5 seconds for the objects to settle before making

the first observation.
After initializing the scene, the agent is allowed to sequen-

tially apply pushes and parallel-jaw grasps to retrieve the TO.
The agent can push objects in the bin or extract objects,
different from the TO, and place them in the secondary bin.
The trial ends when one of the stopping criteria is met:
• The TO is dropped at the designated drop location.
• The TO is neither in the bin nor in the drop location.
• The number of executed actions exceeded 25.

C. Training

1) Push Policy: We train our push policy on clutters of ten
objects, which we place randomly at different locations in the
bin. We set the length of an episode to five push trials to speed
up training. The agent is trained for 12k episodes, i.e. a total
of 60k steps. The policy is updated five times after each step.
The policy converges after 10k episodes.

2) Action Selection Policy: We train our ASP on heaps of
size 20. An episode is automatically terminated after 25 steps.
Our agent is trained for 300 episodes. The agent is updated 20
times after each step. The policy converges after 100 episodes.

D. Evaluated Setups

We evaluate four different setups of the MS pipeline, which
contain the four possible combinations illustrated in Table II.
All setups retain the same components of the MS pipeline,
except for the push policy, and the ASP. Each setup is
evaluated on two different heap sizes: 10 and 20 objects.

TABLE II: Policy combinations of the evaluated setups

Heu. ASP Our ASP Heu. Push Pol.+ Our Push Pol.

Setup 1 × ×
Setup 2 × ×
Setup 3 × ×
Setup 4 × ×

+: free space policy (FSP).

VII. RESULTS

We conducted 100 simulated experiments for each policy
combination and heap size resulting in 800 rollouts. The four
different policy combinations are compared against each other
according to Section VI. The results of the experiments are
visualized in Fig. 6 and also illustrated in Table III.

Fig. 6a shows the average number of actions required by
each policy combination to retrieve the TO for heaps of size 10
and 20. The four combinations perform similarly on the small
heaps. In the larger heaps, Setup 1 performs the worst with a
mean of 10.06 actions. Setup 3 requires only 4.92 actions.



(a) (b) (c)

Fig. 6: Performance of our policies compared to the heuristic policies of the original MS pipeline. (a) Average number of
required actions for object retrieval for heaps of 10, and 20 objects. Successful extractions as function of the number of
executed actions for simulated heaps of (b) size 10, and (c) size 20. Substituting the FSP and the ASP with our policies results
in similar or better performance than swapping only one of them. This effect is more pronounced for larger heaps.

The success rates of the policy combinations as a function of
the number of executed actions for heaps of size 10 and 20 are
shown in Fig. 6b and Fig. 6c respectively. Both figures show
that substituting the FSP by our RL-based push policy (Setup
2) leads to higher success rates and fewer required actions
to retrieve the TO. Fig. 6b shows that, when our policies
are used (Setups 2, 3, and 4), the success rates exceed 40%
within five actions, while the success rate of the original MS
pipeline (Setup 1) remains below 20% for the same number of
actions. If our ASP is used (Setups 3 and 4), the success rate
reaches 80% within 17 actions, while the original MS pipeline
settles at 60%. For heaps of size 20, the success rate of the
original MS pipeline (Setup 1) settles below 32%. If the FSP
and ASP are swapped with our policies (Setup 4), the success
rate reaches 79% within 17 actions.

TABLE III: Means and standard deviations of required actions
for a successful object retrieval in heaps of size 10 and 20

Mean10 Std. Dev.10 Mean20 Std. Dev.20

Setup 1 6.86 4.22 10.06 3.84
Setup 2 6.59 6.24 8.22 5.46
Setup 3 6.42 4.22 4.92 3.71
Setup 4 6.03 5.27 6.73 4.72

The comparable performance of all setups for heaps of size
10 is due to the small size of the heap, which makes most of
the objects well exposed. Consequently, the TO can be found
easily. Setup 4 reaches higher success rates at higher numbers
of actions. This biases the mean number of required actions
towards higher values, thus making it appear worst than Setup
3. However figure 6c shows that Setup 4 outperforms all other
setups at the majority of the given number of actions.

TABLE IV: Proportions of executed actions for different ASPs

Original ASP Human ASP∗ Our ASP

Parallel-Jaw Grasp 86.3% 15.9% 67.9%
Suction Grasp - 58.2% -
Push 13.7% 25.9% 32.1%

*: the values result from 50 physical rollouts. Reported in [1].

Table IV compares the proportions of executed actions by

the original ASP, Humans, and our ASP. It shows that the
proportion of executed pushes by the heuristic ASP is much
lower than the proportion executed by humans as pointed out
by Danielczuk et al. [1]. While humans make more use of
pushing through selecting it more than 25% of the time, less
than 14% of the selected actions by the heuristic ASP are
pushes. Our ASP, however, shows more human-like action
choice through deciding for pushing in 32% of the time.

VIII. CONCLUSION AND FUTURE WORK

We propose a hierarchical POMDP formulation for the
mechanical search problem where each sub-policy can be
trainable and integrated to be optimized in a principled way.
For demonstration, we introduce a new push policy, which we
optimize using soft actor-critic. The aim of our push policy is
to maximize the free space around a target object. We also
introduce a new action selection policy, which makes use
of the deep Q-network architecture to select the best action
primitive to be applied for a given observation. Combined,
our two policies show a significant decrease in the number of
required actions to extract an object, compared to the heuristic
policies introduced in [1]. This effect is more pronounced for
large heaps. The success rate of object retrieval for a frame of
17 actions increases from less than 32% using the original MS
pipeline to nearly 80% when using our policies. Substituting
the heuristic free space policy introduced in [11] by our push
policy substantially reduces the inference time from multiple
seconds to less than 10 milliseconds. Our action selection
policy takes significantly more use of the push primitive than
the heuristic policy in [1] and shows similar action proportions
to the ones selected by humans.

The confirmation of these results on real-world experiments,
the introduction of a new learning object selection policy for
ranking the objects to manipulate, and the evaluation of a joint
end-to-end training of all hierarchical policies are subject of
future work.
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