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Abstract

We study transverse magnetic (vector valued) wave-packets in the time dependent Kerr nonlinear
Maxwell’s equations at the interface of two inhomogeneous dielectrics with an instantaneous material
response. The resulting model is quasilinear. The problem is solved on each side of the interface and
the fields are coupled via natural interface conditions. The wave-packet is localized at the interface
and propagates in the tangential direction. For a slowly modulated envelope approximation the nonlinear
Schrödinger equation is formally derived as an amplitude equation for the envelope. We rigorously justify
the approximation in a Sobolev space norm on the corresponding asymptotically large time intervals. The
well-posedness result for the quasilinear Maxwell problem builds on the local theory of [R. Schnaubelt
und M. Spitz, Local wellposedness of quasilinear Maxwell equations with conservative interface condi-
tions, Commun. Math. Sci., accepted, 2022] and extends this to asymptotically large time intervals for
small data using an involved bootstrapping argument.

2020 MSC: 35Q61, 35C07, 35L50.
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traveling pulse.

1 Introduction
Propagation of electromagnetic wave-packets at interfaces is of interest for applications in modern and
future optical components. A typical example are surface plasmons (SPs) at the interface of a conductor and
a dielectric. From an engineering point of view their advantage is mainly in the higher level of localization
compared to wave-packets in bulk media. If the involved media feature a nonlinear material response, new
phenomena and thus new functionality of SPs are produced [17]. Also interfaces of two dielectrics, e.g.
photonic crystal waveguides [14, 19, 29], are interesting from the applied point of view.
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We consider wave-packets at the interface of two generally inhomogeneous and Kerr nonlinear di-
electrics. The problem is modeled by time dependent quasilinear Maxwell’s equations in two spatial dimen-
sions (assuming homogeneity of the material in the third direction). We study spatio-temporal wave-packets
propagating in the direction tangential to the interface. They are broad in the propagation direction, have
a small amplitude and are slowly modulated in time. In particular, we analyze their approximation via a
slowly varying envelope. The equation governing the envelope dynamics is the one dimensional nonlinear
Schrödinger equation (NLS).

The NLS is well known to approximate the dynamics of wave-packets in dispersive problems with
a single carrier wave [15, 18]. The formal derivation of the NLS for spatio-temporal wave-packets in
quasilinear Maxwell’s equations exists for a number of scenarios ranging from pulses in optical fibers [1]
over photonic crystals [2] to surface plasmons, e.g. [21, 10]. Spatial (time harmonic) surface plasmon wave-
packets have been also formally approximated by the NLS (or more generally by the complex Ginzburg-
Landau equation), e.g. in [9, 22, 7], where one of the spatial variables plays the role of an evolution variable.

Formally derived asymptotic models for wave-packet envelopes can fail to produce a valid approxima-
tion of the original nonlinear problem, see e.g. [24, 25]. Hence, a rigorous justification analysis with an
error estimate must be performed. In the case of the semilinear wave equation with periodic coefficients
this justification was carried out in [5] for the one dimensional case and in [12] in d dimensions. The
time dependent Maxwell’s equations for nonlinear materials are quasilinear and the NLS approximation
has been justified only in the case of fields leading to a scalar equation. Examples are [20] and [26]. In [20]
wave-packets in 2D photonic crystal waveguides are described by a quasilinear wave equation. In [26] an
approximation via a complex Ginzburg-Landau equation is proved for the quasilinear wave equation in one
spatial dimension and with a time delayed material response (memory effect modeled by the coupling to an
ODE system).

We work with vector valued Maxwell’s equations for TM polarized fields and reduce the problem to
a system for the components E1, E2 and H3. We restrict here to the instantaneous material response (as
relevant for dielectrics) and avoid time delayed terms (relevant for metals). To our knowledge there are no
directly applicable results on long time existence in full quasilinear Maxwell’s equations with time delay
on unbounded domains. For the instantaneous case we use local well-posedness results from [23]. The
working function space for each component is G3(R2 × J) :=

⋂3
j=0 C

j(J,H3−j(R2)), where Hs(R2)
consists of functions which are Hs on each half-space defined by the interface and J is a time interval.
This high regularity is enforced by the quasilinear term. The two half-spaces are coupled by interface
conditions out of which only the continuity of E2 and H3 needs to be enforced in the time evolution. As
the approximation result needs to be proved on asymptotically large time intervals, we use a sophisticated
bootstrap argument to extend the local existence to such asymptotically long time scales for small data.
Here one estimates space-time differentiated solutions of the problem. If no normal derivatives occur, we
can apply higher-order energy inequalities. Otherwise, the boundary conditions are violated and we have
to use the equation itself and the divergence condition iteratively to bound the differentiated solutions in
Gronwall arguments, see Section 6.1.

Maxwell’s equations in the whole space in the absence of free currents read
∂tD = ∇×H,

µ0∂tH = −∇× E,
∇ ·D = %0,

∇ ·H = 0,

(1)

for x ∈ R3 and t > 0, where H = H (x, t) is the magnetic field, E = E (x, t) is the electric field,
%0 = %0(x) is the volume charge density and µ0 is the permeability of free space. We consider an electric
displacement fieldD = D(E) given by the instantaneous material law

D (x, t) = ε0E (x, t) +P (x, t) . (2)

Here ε0 is the permittivity of free space and P = P(E) is the electric polarization modeling an x1-
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Figure 1: Schematic of a pulse propagating in the direction v = (0, 1)>, i.e., along the interface.

dependent Kerr nonlinear material, i.e.,

P (x, t) = ε0 (χ1 (x1)E (x, t) + χ3 (x1) (E (x, t) · E (x, t))E (x, t)) (3)

with the linear and cubic susceptibilities χ1, χ3 : R → R. For simplicity, the susceptibilities are scalar
quantities, meaning that the material is isotropic.

In order to describe an interface, we allow χ1 and χ3 to have a jump at x1 = 0 and denote

χ1 (x1) =

{
χ−1 (x1), x1 < 0,

χ+
1 (x1), x1 > 0,

χ3 (x1) =

{
χ−3 (x1), x1 < 0,

χ+
3 (x1), x1 > 0,

for χ±1 , χ
±
3 : R± := {x1 ∈ R | ±x1 > 0} → R. We also define

ε1 := ε0(1 + χ1), ε3 := ε0χ3 and ε±1 := ε0

(
1 + χ±1

)
, ε±3 := ε0χ

±
3 .

We investigate a two dimensional setting with all fields independent of x3, i.e.,

(D,E,H,P) = (D,E,H,P) (x1, x2, t) .

Hence, the problem can be reduced to R2. From now on the variable x lies in R2. The two resulting half-
spaces are denoted by R2

− := {x ∈ R2 : x1 < 0} and R2
+ := {x ∈ R2 : x1 > 0} and the interface is

Γ := {x ∈ R2 : x1 = 0}. The aim of this paper is to describe the propagation of wave-packets localized
near the interface Γ and propagating in the x2-direction, see Figure 1.

We introduce also the (time independent) surface charge density %Γ : Γ → R. Using Maxwell’s
equations in integral form, one can formally derive the jump conditions for solutions

JD1K (x, t) = %Γ(x), JE2K (x, t) = JE3K (x, t) = 0, ∀x ∈ Γ, t ≥ 0,

JH1K (x, t) = JH2K (x, t) = JH3K (x, t) = 0, ∀x ∈ Γ, t ≥ 0,
(4)

in the absence of surface currents, see also Section I.4.2.4 of [8]. Here for f : R2 → R continuous on R2
−

and R2
+ and for each x ∈ Γ we define

JfK (x) := lim
y→x,y∈R2

+

f(y)− lim
y→x,y∈R2

−

f(y).

For %Γ = 0 conditions (4) hold in trace sense for any E(·, t) ∈ Hcurl(R2), D(·, t) ∈ Hdiv(R2) and
H(·, t) ∈ H1(R2), see e.g. an appendix in [4].

We study specific solutions satisfying the reduction

E3 ≡ H1 ≡ H2 ≡ 0. (5)

For the case that ε±1 is constant, all eigenfunctions of the linear eigenvalue problem for time harmonic fields
(namely (15)) have to satisfy (5), see e.g. [4]. We study this reduced type of solutions also in the nonlinear
case with non-constant ε±1 . Hence, we set

U := (E1, E2,H3)> (6)
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and further define
U± := U |x∈R2

±
.

Throughout this paper we will always use f± to indicate the restriction of a function f : Rn → R to Rn±
with n = 1, 2. We also write UE := (U1, U2, 0)

> to denote the part of U corresponding to the electric
field. With (6) the first two equations in (1) reduce to a system of three instead of six scalar equations. Note
that the problem is indeed compatible with this reduction since the form of the nonlinearity implies that
Dj ≡ 0 if Ej ≡ 0.

Regarding the interface conditions, note that for time-independent surface charges we have
JD1K(x, t) = %Γ(x) for all t > 0 if JD1K(x, 0) = %Γ(x). This can be derived from the first compo-
nent of the first equation in (1). Indeed, we get ∂tJD1K(x, t) = ∂x2JH3K(x, t) = 0 for all x ∈ Γ and
t > 0. Also the divergence condition ∇ ·D = %0 needs to be checked only at t = 0 as follows from the
first equation in (1). For our specific solutions ∇ ·H = 0 is always satisfied, since the only non-trivial
componentH3 is independent of x3. Therefore, the equations JD1K = %Γ,∇·D = %0, and∇·H = 0 play
no role in our analysis. Only the fact that ∇ ·D equals a time independent quantity, sufficiently smooth in
each half space, is used in the bootstrapping argument in Section 6.

Let T ∗ > 0. From now on we study the initial value problem on the interval (0, T ∗) with initial data
U (0) : R2 → R3. With the above reduction the Maxwell problem (1), (2), (3), and (4) becomesε±1 0 0

0 ε±1 0
0 0 µ0

 ∂tU
± + ε±3 ∂t


(
U±

2

1 + U±
2

2

)
U±1(

U±
2

1 + U±
2

2

)
U±2

0

+

 −∂x2U
±
3

∂x1
U±3

∂x1U
±
2 − ∂x2U

±
1

 = 0 (7)

on R2
± × (0, T ∗) with

U±(·, 0) = U (0),± on R2
±, (8)

and the interface conditions
JU2K = JU3K = 0 on Γ× [0, T ∗). (9)

System (7), (8), and (9) is the problem treated by our approximation result.
If, in addition, the sought solutions are to fit a prescribed volume charge density %0 and a prescribed

surface charge density %Γ, then the initial conditionU (0)
E must be chosen such that the divergence condition

∂x1D1

(
U

(0),±
E

)
+ ∂x2D2

(
U

(0),±
E

)
= ∂x1

(
ε±1 U

(0),±
1 + ε±3 (U

(0),±2

1 + U
(0),±2

2 )U
(0),±
1

)
+ ∂x2

(
ε±1 U

(0),±
2 + ε±3 (U

(0),±2

1 + U
(0),±2

2 )U
(0),±
2

)
= %0 on R2

±

(10)

and the interface condition
r
D1

(
U

(0)
E

)z
=

r
ε1U

(0)
1 + ε3

(
U

(0)2

1 + U
(0)2

2

)
U

(0)
1

z
= %Γ on Γ (11)

are satisfied.
We study wave-packets based on the carrier wave

m (x1) ei(k0x2−ν0t), (x, t) ∈ (R2 \ Γ)× [0,∞),

which solves the linear Maxwell equations corresponding to (7), i.e., with ε3 = 0, and with %0 ≡ 0 and
%Γ ≡ 0. Here k0 ∈ R is a fixed wave-number and m (x1) is a localized profile (an eigenfunction) of the
resulting eigenvalue problem in x1, and ν0 ∈ R \ {0} is the corresponding eigenvalue, see Section 2 for
details. We use the classical formal asymptotic ansatz of a wave-packet

Uans (x, t) =

 Eans,1 (x, t)
Eans,2 (x, t)
Hans,3 (x, t)

 := εA
(
ε (x2 − ν1t) , ε

2t
)
m (x1) ei(k0x2−ν0t) + c.c. (12)
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with the complex envelope A : R× [0,∞)→ C, a small parameter 0 < ε� 1, the group velocity ν1 ∈ R
at the wave-number k0 as defined in (20), and c.c. denoting the complex conjugate of the previous term.
The envelope travels with the velocity ν1, depends slowly on the moving frame variable x2 − ν1t and is
modulated in time on an even slower scale. If A(·, ε2t) is localized, then Uans describes a wave-packet
localized in both x1 and x2 and propagating in the x2 direction. As explained in Section 3, the ansatz
(after a suitable correction via higher-order terms) produces a small residual in the Maxwell system (7)
only if A satisfies a nonlinear Schrödinger equation. This NLS is an effective macroscopic description of
the wave-packet dynamics.

We make the assumptions

ε±1 ∈ C3(R±) ∩W 3,∞(R±), ε±1 ≥ ε
±
1,m ∈ (0,∞), (A1)

ε±1 (x1)→ ε±∞1 ∈
[
ε±1,m,∞

)
as x1 → ±∞, (A2)

ε±3 ∈ C3(R±) ∩W 3,∞(R±), ε±3,m ≤ ε
±
3 ≤ ε

±
3,M with ε±3,m, ε

±
3,M ∈ R. (A3)

Our main result shows that the asymptotic wave-packet ansatz (12) is close to a true solution on a time
interval of length O(ε−2).

Theorem 1.1 (Approximation Theorem)
Let T0 > 0. Assume (A1), (A2), (A3), and the conditions (A4), (A5), and (A6) stated in Section 2 and
let A ∈

⋂4
k=0 C

4−k([0, T0], H3+k(R)) be a solution of the effective nonlinear Schrödinger equation (38).
Assume that the initial value U (0) := U(·, 0) ∈ H3(R2)3 satisfies the nonlinear compatibility conditions
of order 3, see Definition 5.9. There exist constants ε0 > 0 and C > 0 such that if ε ∈ (0, ε0) and if
U (0) := U(·, 0) fulfills ∥∥∥U (0) −Uans(·, 0)

∥∥∥
H3(R2)3

≤ cε 3
2 , (13)

with c > 0, then there exists a solution U ∈ G3(R2 × (0, T0ε
−2))3 of (7), (8) and (9) such that

‖U −Uans‖G3(R2×(0,T0ε−2))3 ≤ Cε
3
2−δ (14)

for all δ > 0. (The space G3 is introduced below.) If, in addition,U (0)
E satisfies (10) and (11), then we have

∇ ·D(UE) = %0 on (R2 \ Γ)× (0, T0ε
−2) and JD1(UE)K = %Γ on Γ× (0, T0ε

−2).

Remark 1.2
1. The existence of initial data U (0) which satisfy (13) and the nonlinear compatibility conditions of order
3 is an open problem. Similarly, the existence of initial data U (0) which satisfy (13) as well as (10) and
(11) for given %0 and %Γ is an open problem.

For the case %0 = 0 and %Γ = 0 this problem was considered in [11], where initial data were found in
the form U (0) = Uans + ∇φ with a correction function φ, such that (13) holds with an exponent a < 1
instead of 3

2 . Note that our ansatz Uans naturally fits the choice %0 = 0 and %Γ = 0 because ε1meik0x2 is
divergence free on R2

± and ε1m1 is continuous at x1 = 0, see Remark 2.1. As a result one can easily show
that ‖∇ ·D(Uans)‖L2(R2) ≤ cε3/2 and JD1 (Uans(·, 0))K ≤ cε3 for any bounded continuous A.

2. Due to their high regularity the components E := (U1, U2, 0)> andH := (0, 0, U3)> of the solution
U of Theorem 1.1 satisfy (1), (2), (3), and (4) on (R2 \ Γ)× (0, T0ε

−2) in the classical sense.
3. In the case %Γ = 0 the regularity of U produced by Theorem 1.1 guarantees that we have E ∈

Hcurl(R2), D ∈ Hdiv(R2) and H ∈ H1(R2) at each point in time. This is because functions f with
f |R2

±
∈ Hcurl(R2

±) and with the tangential trace being continuous across the interface, are in Hcurl(R2).
An analogous statement holds for Hdiv and the continuity of the normal trace, see [4].

For m,n ∈ N, p ∈ [1,∞] and an interval J ⊂ R we define

Wm,p(Rn) :=
{
u ∈ Lp(Rn)

∣∣u− ∈Wm,p(Rn−), u+ ∈Wm,p(Rn+)
}
,

‖u‖Wm,p(Rn) :=
∥∥u−∥∥

Wm,p(Rn−)
+
∥∥u+

∥∥
Wm,p(Rn+)

,
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Wm,p(Rn × J) :=
{
u ∈ Lp(Rn × J)

∣∣u− ∈Wm,p(Rn− × J), u+ ∈Wm,p(Rn+ × J)
}
,

‖u‖Wm,p(Rn×J) :=
∥∥u−∥∥

Wm,p(Rn−×J)
+
∥∥u+

∥∥
Wm,p(Rn+×J)

with the usual Lebesgue spaces Lp and Sobolev spaces Wm,p. ForHm :=Wm,2 we also set

Gm(Rn × J) :=

m⋂
j=0

Cj(J,Hm−j(Rn)), ‖u‖Gm(Rn×J) := max
0≤j≤m

∥∥∥∂jt u∥∥∥
L∞(J,Hm−j(Rn))

.

The norm ‖ · ‖G3 in Theorem 1.1 thus contains spatial and temporal derivatives of total degree three.

Remark 1.3
We will often extend functions f with f± ∈ Lp(Rn±) to a function in Lp(Rn). In general, a function
g ∈ H1(Rn) does not belong to H1(Rn) as the weak partial derivatives only exist in the half-spaces, e.g.,
∂x1g

+ ∈ L2(Rn+) and ∂x1g
− ∈ L2(Rn−). Nevertheless, we will often write ∂x1g ∈ L2(Rn) because the

weak derivatives can be extended to a function defined on Rn by an arbitrary extension on Rn \(Rn+∪Rn−).

The rest of the paper is organized as follows. In Section 2 the linear spatial eigenvalue problem is
studied in order to construct a carrier wave for the wave-packet. Section 3 provides a formal derivation of
the NLS as an amplitude equation. In Section 4 we estimate the residual of the asymptotic approximation.
In Section 5 we rewrite the reduced quasilinear Maxwell system (7), (8), (9) in the form of a hyperbolic
system and adapt the local existence results of [23] to this problem. The proof of the main approximation
result (Theorem 1.1) is provided in Sec. 6. The proof is based on a bootstrapping argument which extends
the local existence from [23] to the existence on time intervals of length O(ε−2) for initial data close to
the (small) asymptotic ansatz. The bootstrapping simultaneously provides the error bound (14). Finally
in Appendix A we describe the numerical method for computing eigenvalues (and eigenfunctions) of the
linear interface problem. In Appendix B the highest order residual terms are provided explicitly. Appendix
C contains estimates on products of functions in the used function spaces.

2 Linear time-harmonic eigenvalue problem

2.1 Linear eigenvalue problem
We first study the linear part of equation (7) and (9), i.e., with ε3 = 0, assuming that ε1 satisfies (A1) and
(A2). Using the reduction (5), (6) and the ansatz

U(x, t) = ei(kx2−ωt)w(x1) + c.c., (x, t) ∈ (R2 \ Γ)× [0,∞),

where k, ω ∈ R and w : R→ C3, one arrives at the eigenvalue problem

L (k)w(x1) + ωΛw(x1) = 0, x1 ∈ R \ {0} (15)

for the profile w. Here for each k ∈ R the operators L(k) : D(L(k))→ L2(R)3 and Λ : D(Λ)→ L2(R)3

are given by

L (k)w :=

 kw3

i∂x1w3

kw1 + i∂x1
w2

 , Λw :=

ε1(x1)w1

ε1(x1)w2

µ0w3

 , (16)

with the domains D(Λ) := L2(R)3 and

D(L(k)) :=
{
w : R→ C3

∣∣w1 ∈ L2(R), w2, w3 ∈ H1(R)
}
.

We call ω = ω(k) ∈ R an eigenvalue of (15) if there exists a function w = w(k) ∈ D(L(k)) \ {0} such
that (15) holds. For the eigenfunctions we choose the normalization

‖Λw‖2L2(R)3 =

3∑
j=1

‖(Λw)j‖2L2(R) = 1. (17)
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Because the operator L(k) is self-adjoint and Λ is real and diagonal, all eigenvalues ω (in fact the whole
spectrum) are indeed real. The interface conditions for w corresponding to (9) are

Jw2K1D = Jw3K1D = 0, (18)

where we define JfK1D := limx1→0+ f(x1) − limx1→0− f(x1) for f : R → R. Solutions w of (15) fulfil
these conditions, since w2, w3 ∈ H1(R).

Remark 2.1
Let us, in addition, discuss the (linear) divergence condition and the interface condition (11). Solutions w
of (15) with ω 6= 0 satisfy (11) since w3 ∈ H1(R) and so ε1w1 is continuous because of kw3 +ωε1w1 = 0,
i.e., the first line in (15). The (linear) divergence condition with %0 = 0, i.e., ∂x1D1(UE)+∂x2D2(UE) = 0
on (R2 \ Γ)× [0,∞) with ε3 = 0 is also automatically satisfied. Indeed, we have (for ε3 = 0)

∂x1
D1(UE) + ∂x2

D2(UE) = (∂x1
(ε1w1) + ikε1w2) ei(kx2−ωt) + c.c.

and due to (15)

∂x1 (ε1w1) + ikε1w2 = − k
ω
∂x1w3 − i

k

ω
ε1

(
i∂x1

w3

ε1

)
= 0. (19)

Remark 2.2
Note that the second assumption in (A1) eliminates the pathological case where each ω ∈ C is an eigen-
value of infinite multiplicity, which is caused by the fact that gradient fields belong in the kernel of the curl
operator. Indeed, if e.g. ε+1 = 0, then (∂x1

f, ikf, 0)> is an eigenfunction of (15) for any f ∈ C∞c (R+).
Here, the electric field part (∂x1

f, ikf)> corresponds to a gradient field (in the selected ansatz).

For the construction of the wave-packet we need that near k0 there is a unique smooth eigenvalue curve
k 7→ ω(k) and we set

ν0 := ω(k0), ν1 := ∂kω(k0), ν2 := ∂2
kω(k0). (20)

This eigenvalue curve defines the so-called dispersion relation. In addition, let us assume that the eigenvalue
ν0 is simple and denote the (normalized) eigenfunction by

m := w(k0).

In other words, an eigenfunction exists (near (k0, ν0)) if and only if the dispersion relation is satisfied.
Hence, we impose the following assumptions for Theorem 1.1.

ν0 = ω(k0) is a simple eigenvalue of (15) isolated from all other eigenvalues at k = k0. (A4)

In order to control the essential spectrum corresponding to (15), we also require

ω(k0)ε1 6= 0, ω(3k0)ε1 6= 0 and k2
0 > ω(k0)2µ0ε

±∞
1 . (A5)

In view of (A1) and (A2), the first two conditions in (A5) just say that ω(k0) and ω(3k0) do not vanish. As
noted in Corollary 2.5, the above assumptions also guarantee that the eigenvalue ω(k) and the eigenfunction
w(k) depend smoothly on k near k0, which is needed below.

Given a solution w(k), also w̃ := (w1,−w2, w3)
> solves (15). We can thus choose the eigenfunction

w with real valued w1, w3 and imaginary valued w2, which we do throughout the rest of the paper. With
this choice the normalization (17) means that∫

R

(
ε1
(
m2

1 −m2
2

)
+ µ0m

2
3

)
dx1 = 1. (21)

For the proof of Theorem 1.1, i.e., the justification of (12) as an asymptotic approximation of a solution
of the cubically nonlinear problem, it will be necessary to assume the non-resonance condition

3ν0 6= ω(3k0), i.e., 3ν0 is not an eigenvalue of (15) at k = 3k0, (A6)

see (34) and the following arguments in Section 3.
Since ε1 depends on x1 it is in general not possible to solve (15) explicitly. We therefore have to

calculate solutions numerically and check if the Assumptions (A4), (A5) and (A6) are satisfied.
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Figure 2: (for Example 2.3) (a) The eigenfunction m of the linear problem (15) for k0 = 0.5. (We plot
ε1m1 to show that the linear interface conditions are satisfied.) (b) Numerical convergence test for the
eigenvalue ω = ν0 ≈ 0.494 of Tk0,ω := L(k0) +ωΛ for k0 = 0.5 in dependence on the computational box
size d.

Example 2.3
For ε1(x1) = 1χR− + (1 + e−x1)χR+

and µ0 = 1, we compute a numerical solution of (15) with the
method described in Appendix A. We study the generalized eigenvalue problem L(k)w = −ωΛw for
k = k0 on the interval [−d, d] and compute all eigenvalues in a neighborhood of ω = ν0. Fo k0 = 0.5,
step size h = 0.01 and interval length d = 5 · 104 we get the eigenvalue ω(k0) = ν0 ≈ 0.494 and no other
eigenvalue in a neighborhood of ν0.

To check the effects of the boundary, we repeated the calculation for different intervals [−d, d] and get
the eigenvalue ω(d) closest to ν0 in dependence on d . In Figure 2 (a) we see the calculated eigenfunction
w and Figure 2 (b) shows that the error in the calculation of ω(d) converges to zero for increasing d.

Note that for this example we have ε±1,m = ε±∞1 = 1 and one can numerically calculate that the
eigenvalue closest to 3ν0 ≈ 1.481 is given by ω(3k0) ≈ 1.404. Therefore, Assumptions (A1), (A2), (A4),
(A5), and (A6) appear to be satisfied.

2.2 Solution of the inhomogeneous problem
In Section 3 we also have to solve the inhomogeneous version of the eigenvalue problem

Tk,ωv := (L(k) + ωΛ)v =

ωε1 0 k
0 ωε1 i∂x1

k i∂x1 ωµ0

v = f , (22)

with f ∈ N(Tk,ω)⊥, where N(Tk,ω) ⊂ D(Tk,ω) :=
{
v ∈ L2(R)3

∣∣ v2, v3 ∈ H1(R)
}

.

Lemma 2.4
Let ε1 ∈ W1,∞(R) satisfy (A2) and let k, ω ∈ R be such that k2 > ω2ε±∞1 µ0 and ωε1 6= 0. Assume that
we are in one of the cases

i) 0 is a simple eigenvalue of Tk,ω isolated from all other eigenvalues;

ii) 0 is not an eigenvalue of Tk,ω .

If f ∈ N(Tk,ω)⊥ ⊂ L2(R)3 (f ∈ L2(R)3 if N(Tk,ω) = {0}), then (22) has a solution v ∈ D(Tk,ω).

PROOF: Equation (22) splits for ωε1 6= 0 into the scalar equation

v1 =
1

ωε1
(f1 − kv3)
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and the reduced problem
T̃k,ωṽ = f̃

with

T̃k,ω :=

(
ωε1 i∂x1

i∂x1
ωµ0 − k2

ωε1

)
, D(T̃k,ω) := H1(R)2, ṽ :=

(
v2

v3

)
, f̃ :=

(
f2

f3 − k
ωε1

f1

)
.

Note that

(v2, v3)> ∈ N(T̃k,ω) ⇐⇒
(
− k

ωε1
v3, v2, v3

)>
∈ N(Tk,ω)

and hence
f̃ ∈ N(T̃k,ω)⊥ ⇐⇒ f ∈ N(Tk,ω)⊥.

We also obtain that 0 ∈ σ(T̃k,ω) if and only if 0 ∈ σ (Tk,ω).
Since T̃k,ω is self-adjoint, the result will follow from the closedness of the range of T̃k,ω . We check the

closedness by showing that T̃k,ω is Fredholm. To this aim, we rewrite the problem as the linear ordinary
differential equation

∂x1
ṽ = A(x1)ṽ + g

with

g := −i

(
f3 − k

ωε1
f1

f2

)
, A(x1) :=

(
0 i

(
ωµ0 − k2

ωε1(x1)

)
iωε1(x1) 0

)
=:

{
A−(x1), x1 < 0,

A+(x1), x1 > 0.

Theorem 1.2 in [3] says that T̃k,ω is Fredholm if and only if the ODEs

∂x1
ṽ− = A−(x1)ṽ−, x1 < 0, (23)

∂x1 ṽ
+ = A+(x1)ṽ+, x1 > 0, (24)

have exponential dichotomies. We only show the dichotomy for (24) as (23) can be treated analogously.
First, the problem

∂x1w = A+∞w

with the constant coefficient matrix

A+∞ := A(x1 →∞) =

(
0 iωµ0 − ik2

ωε+∞1

iωε+∞1 0

)
has an exponential dichotomy since the eigenvalues

λ1,2 = ±
√
k2 − ω2ε+∞1 µ0

ofA+∞ are real with different signs for k2 > ω2ε+∞1 µ0. Then Proposition 1 in Chapter 4 and the discussion
starting on page 13 of [6] imply that also

∂x1
ṽ+ = A+(x1)ṽ+ = (A+∞ + (A+(x1)−A+∞)) ṽ+

has an exponential dichotomy, because A+(x1)−A+∞ tends to 0 as x1 →∞.
Using the spectral information obtained above, we next show that the eigenvalues ω(k) and the corre-

sponding eigenfunctions w(k) are smooth in k.

Corollary 2.5
Let (A1), (A2), (A4) and (A5) be true. Then for some δ > 0 the eigenvalues and the corresponding
eigenfunctions of problem (15) satisfy

ω ∈ C∞ ((k0 − δ, k0 + δ),R) and w ∈ C∞
(
(k0 − δ, k0 + δ), L2(R)×H1(R)×H1(R)

)
.
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PROOF: We translate our problem into standard perturbation theory of spectra, as discussed in [16].
By the assumptions, ω0 is a simple eigenvalue of Λ−1L(k0) with eigenfunction w(k0), and there are no
other eigenvalues nearby. As shown in the proof of Lemma 2.4, ω belongs to the resolvent set of Λ−1L(k0)

if and only if T̃k0,ω is invertible. For ω ≈ ω0 we can write T̃k0,ω = T̃k0,ω0
+ R with a perturbation

R : L2(R)→ L2(R), whose norm is bounded by c |ω − ω0|. In the proof of Lemma 2.4 we have seen that
T̃k0,ω0 is a Fredholm operator, hence 0 /∈ σess(T̃k0,ω0) and the same is true for T̃k0,ω if ω is close to ω0. If 0
was an eigenvalue of T̃k0,ω , the number ω 6= ω0 would be an eigenvalue of Λ−1L(k0) which is impossible
in a small enough neighborhood of ω0 by assumption (A4). As a result, 0 is contained in ρ(T̃k0,ω) and thus
ω0 is an isolated simple eigenvalue of Λ−1L(k0).

For k ≈ k0, Theorem 1.8 in §VII.1 of [16] now shows that Λ−1L(k) has a simple eigenvalue ω(k)
smoothly depending on k. Also the projection P (k) onto the eigenspace is smooth in k. Hence, the
mapping k 7→ P (k)w(k0) is a smooth family of eigenfunctions of (15) if k is close to k0.

The next lemma improves the regularity of solutions to (22) if the right-hand side is smooth enough.

Lemma 2.6
Assume (A1) and (A5). Let k, ω ∈ R, f := (f1, f2, f3)

> with f1 ∈ H3(R) and f2, f3 ∈ H2(R). If
v ∈ L2(R)3 is a solution of (22), then v ∈ H3(R)3.

PROOF: We start by showing that v ∈ H1(R). From (22) we know that{
i∂x1

v2 = f3 − kv1 − µ0ωv3,

i∂x1v3 = f2 − ε1ωv2.
(25)

The right-hand sides in (25) belong to L2(R) and therefore v2, v3 ∈ H1(R). The assumptions on ε1 imply
that ∂x1

(
ε−1
1

)
= −ε−2

1 ∂x1ε1 ∈ L∞(R±). Now v1 ∈ H1(R) is a direct consequence of

v1 =
1

ε1ω
(f1 − kv3) . (26)

We can now iterate this process since ε−1
1 ∈ W3,∞(R). Equations (25) and (26) yield that v ∈ H2(R)3 if

one knows that v ∈ H1(R)3. This fact then implies that v ∈ H3(R)3.

3 Envelope approximation of wave-packets; amplitude equation
The aim of this section is to make the residual

Res(Uans) :=

 ∂tD1(Uans)− ∂x2
Uans,3

∂tD2(Uans) + ∂x1
Uans,3

−∂x2
Uans,1 + ∂x1

Uans,2 + µ0∂tUans,3

 (27)

of (12) in the Maxwell problem (7) small enough for the subsequent justification of the asymptotics, i.e., for
the proof of Theorem 1.1. As we will see, this requires an extension of the ansatz (12). In the propagation
direction x2 we mostly work in Fourier variables applying the Fourier transform

f̂(k) = F(f)(k) := (2π)−1/2

∫
R
f(x)e−ikx dx.

The corresponding inverse transform is given by

F−1(f)(x) := (2π)−1/2

∫
R
f(k)eikx dk.

Indeed, it is F ◦ F−1 = F−1 ◦ F = Id : L2(R) → L2(R) after the standard extension of the transforms
from L1(R) to L2(R).
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For the wave-packet Uans we compute

Ûans (x1, k, t) :=

 Êans,1 (x1, k, t)

Êans,2 (x1, k, t)

Ĥans,3 (x1, k, t)

 := Â

(
k − k0

ε
, ε2t

)
m (x1) e−i(ν0+(k−k0)ν1)t + ĉ.c., (28)

where ĉ.c.(f̂) = ĉ.c.(f). Maxwell’s equations with the reduction (5) transform to
∂tD̂1 − ikĤ3 = 0,

∂tD̂2 + ∂x1
Ĥ3 = 0,

−ikÊ1 + ∂x1
Ê2 + µ0∂tĤ3 = 0,

(29)

with
D̂(E) = ε1Ê + ε3 ((E · E)E)

∧.

In what follows we use the notations E1 := e−i(ν0+(k−k0)ν1)t, F1 := ei(k0x2−ν0t), K := k−k0
ε , T := ε2t

and X2 := ε (x2 − ν1t), and we will suppress the arguments of m = m(x1) and Â = Â(K,T ) and their
derivatives if they are obvious.

We start our formal asymptotic analysis by writing out the nonlinear term, where we employ the notation
D = Dlin +Dnl with

Dlin := ε1E, Dnl := ε3(E · E)E.

In the physical variables we get

∂tDnl,1(Uans) = −ε33iε3ν0F
3
1A

3
(
m3

1 +m1m
2
2

)
−ε3iε3ν0F1|A|2A

(
3m3

1 −m2
2m1

)
+O(ε4) + c.c. (ε→ 0),

using that m1,3 are real and m2 is imaginary. As one easily checks,∫
R

ei(k0x2−ν0t)|A (X2, T ) |2A (X2, T ) e−ikx2 dx2 = (2π)−1/2ε−1E1

(
Â ∗ Â ∗ Â

)
(K,T ) ,∫

R
e3i(k0x2−ν0t)A3(X2, T )e−ikx2 dx2 = (2π)−1/2ε−1E3

(
Â ∗ Â ∗ Â

)(
K̃, T

)
,

with K̃ := k−3k0
ε , E3 := e−i(3ν0+(k−3k0)ν1)t, and the convolution

(f ∗ g)(K) =

∫
R
f(K − s)g(s) ds.

Hence, as ε→ 0 we have

∂tD̂nl,1(Uans) = −ε2(2π)−1iε3ν0E1

(
3m3

1 −m2
2m1

) (
Â ∗ Â ∗ Â

)
(K,T ) (30)

−ε23(2π)−1iε3ν0E3

(
m3

1 +m1m
2
2

) (
Â ∗ Â ∗ Â

)
(K̃, T ) +O(ε3) + ĉ.c..

The second component ∂tD̂nl,2(Uans) is obtained from ∂tD̂nl,1(Uans) by simply switching the indices 1

and 2 and the third component D̂nl,3(Uans) obviously vanishes.
Below we use the Taylor expansion of ω(k), of the corresponding eigenfunction w(k), see Corol-

lary 2.5, and of the operator L(k). Recalling (20) and k = k0 + εK, we obtain

ω (k) = ω (k0 + εK) = ν0 + εKν1 +
1

2
ε2K2ν2 +O(ε3),

w (k) = w (k0 + εK) = m+ εK∂kw(k0) +
1

2
ε2K2∂2

kw(k0) +O(ε3),
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L (k) = L (k0 + εK) = L(k0) + εK∂kL(k0) = L0 + εKL1

as ε→ 0, where

L1m := (∂kL(k0))m =

m3

0
m1


and all higher derivatives in k of L vanish since it is linear in k. Differentiation of the linear eigenvalue
problem (15) then produces the equations

(L0 + ν0Λ)m = 0, (31)
(L1 + ν1Λ)m+ (L0 + ν0Λ) ∂kw(k0) = 0, (32)

K2ν2Λm+ 2K2 (L1 + ν1Λ) ∂kw(k0) +K2(L0 + ν0Λ)∂2
kw(k0) = 0. (33)

The residual is obtained by inserting (28) in the left-hand side of (29). We obtain atO(ε0) the expression
−iÂE1(L0 + ν0Λ)m which vanishes due to (31). AtO(ε1) we obtain −iKÂE1(L1m+ ν1Λm). In order
to annihilate the residual also at O(ε1), equation (32) dictates that we need to extend the ansatz Ûans by
the term εÂK∂kw(k0)E1.

At O(ε2) terms proportional to E1 and those proportional to E3 (as obtained in (30)) appear in the
residual. The latter terms can be removed by introducing a further correction term to Ûans, namely
ε2(2π)−1

(
Â ∗ Â ∗ Â

)
h(x1)E3, where h solves

(L(3k0) + 3ν0Λ)h =

−3ν0ε3(m3
1 +m1m

2
2)

−3ν0ε3(m3
2 +m2m

2
1)

0

 . (34)

The non-resonance assumption (A6) guarantees that a solution h exists. Indeed, L(3k0) + 3ν0Λ is injective
by (A6) and hence the closed range theorem impliesR(L(3k0)+3ν0Λ) = N(L(3k0)+3ν0Λ)⊥ = L2(R)3,
thanks to Lemma 2.4 (case ii)) with k = 3k0 and ω = 3ν0. Here Assumption (A5) is used.

In summary, the residual is in O(ε2) and contains only terms proportional to E1 (and their complex
conjugates) if we modify Ûans to

Ûmod (x1, k, t) := Â

(
k − k0

ε
, ε2t

)
(m (x1) + εK∂kw (x1, k0)) e−i(ν0+(k−k0)ν1)t

+ ε2(2π)−1
(
Â ∗ Â ∗ Â

)(k − 3k0

ε
, ε2t

)
h(x1)e−i(3ν0+(k−3k0)ν1)t + ĉ.c..

(35)

As a result, the O(ε2)-terms in the residual of Ûmod are

ε2R̂es
(2,E1)

E1 + ĉ.c.,

where
R̂es

(2,E1)
:= −i

[
K2Â(L1 + ν1Λ)∂kw(·, k0) + i∂T ÂΛm

+ν0ε3(2π)−1(Â ∗ Â ∗ Â)

 3m3
1 −m1m

2
2

−3m3
2 +m2

1m2

0

 , (36)

again recalling that m1,3 are real and m2 is imaginary.

It will be sufficient that the L2-projection Pm of R̂es
(2,E1)

onto the kernel of L0 +ν0Λ vanishes, where

Pmf (x1) := 〈f ,m〉L2(R)3m (x1) =

∫
R
f (ξ1) ·m (ξ1) dξ1 m (x1) .

12



This is equivalent to the condition that the envelope A satisfies a certain nonlinear Schrödinger equation, as
we show now. First, we use (33) and replace K2(L1 + ν1Λ)∂kw(k0) in (36) by

− 1
2K

2ν2Λm− 1
2K

2(L0 + ν0Λ)∂2
kw(k0).

The self-adjointness of L0 + ν0Λ implies

Pm

(
−1

2
K2ν2Λm− 1

2
K2(L0 + ν0Λ)∂2

kw(k0)

)
= −1

2
K2ν2Pm(Λm) = −1

2
K2ν2m

due to the normalization ofm. Altogether, Pm of (36) is zero if Â satisfies

0 =

∫
R

(
ε1
(
m2

1 −m2
2

)
+ µ0m

2
3

)
dx1

(
i∂T Â−

1

2
K2ν2Â

)
+ (2π)−1ν0

∫
R
ε3
(
3m4

1 − 2m2
1m

2
2 + 3m4

2

)
dx1

(
Â ∗ Â ∗ Â

)
.

(37)

In other words, A has to solve the nonlinear Schrödinger equation

i∂TA = −1

2
ν2∂

2
X2
A+ κ|A|2A (38)

with
κ := −ν0

∫
R
ε3
(
3m4

1 − 2m2
1m

2
2 + 3m4

2

)
dx1.

Here (21) has been used. Equation (38) is the so-called effective amplitude equation. Note that for Theorem
1.1 we need smooth solutions A ∈

⋂4
k=0 C

4−k([0, T0], H3+k(R)) of (38). Such solutions are provided by
Proposition 3.8 and Remark 3.9 in [28].

4 Estimation of the residual
In this section we estimate the residual in theH3(R2)3-norm rigorously under the assumption that A solves
(38). Here Res is obtained from R̂es by applying the inverse Fourier transformation. The modified wave-

packet Umod from (35) has the residual R̂es(Ûmod) = ε2(I − Pm)R̂es
(2,E1)

E1 + O(ε3) as shown in

Section 3. Since R̂es
(2,E1)

only depends on K = ε−1(k − k0) (and not directly on k), we have formally
Res(2,E1) = O(ε). The L2-norm is bounded by

‖Res(Umod)(·, ·, t)‖L2(R2)3 ≤ Cε
5
2

due to the presence of functions depending on X2 = ε(x2 − ν1t).
It turns out that for the error analysis the residual has to be bounded in theH3(R2)3-norm by Cε7/2 for

all t ∈ [0, T0ε
−2]. This requires a further extension of the ansatz. We introduce the final modification of

the wave-packet by

Û ext (x1, k, t) := Â

(
k − k0

ε
, ε2t

)
(m (x1) + εK∂kw (x1, k0)) e−i(ν0+(k−k0)ν1)t

+ ε2(2π)−1
(
Â ∗ Â ∗ Â

)(k − 3k0

ε
, ε2t

)
h(x1)e−i(3ν0+(k−3k0)ν1)t

+ ε2Â

(
k − k0

ε
, ε2t

)
1

2
K2∂2

kw (x1, k0) e−i(ν0+(k−k0)ν1)t

+ ε2(2π)−1
(
Â ∗ Â ∗ Â

)(k − k0

ε
, ε2t

)
p(x1)e−i(ν0+(k−k0)ν1)t + ĉ.c.,
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where p will be chosen such that formally R̂es(Û ext) = O(ε3). To determine p, we calculate

R̂es(Û ext) = ε2E1(I − Pm)R̂es
(2,E1)

− 1

2
iε2E1K

2(L0 + ν0Λ)∂2
kw(x1, k0)Â

− i(2π)−1ε2E1 (L0 + ν0Λ)p
(
Â ∗ Â ∗ Â

)
+ ĉ.c.+O(ε3).

Since Â solves (37), we know that

(I − Pm)R̂es
(2,E1)

=
1

2
iK2(L0 + ν0Λ)∂2

kw(x1, k0)Â

− i(2π)−1

κ
ε1m1

ε1m2

µ0m3

+ ε3ν0

 3m3
1 −m1m

2
2

−3m3
2 +m2

1m2

0

(Â ∗ Â ∗ Â) ,
where (33) was used again. Therefore the terms of order ε2 in R̂es(Û ext) vanish if p solves

(L0 + ν0Λ)p = −κ

ε1m1

ε1m2

µ0m3

− ε3ν0

 3m3
1 −m1m

2
2

−3m3
2 +m2

1m2

0

 . (39)

Such a function p exists since the right-hand side in (39) is orthogonal to m by the choice of κ and it
therefore lies in the range of L0 + ν0Λ due to the closed range theorem. Here we use Lemma 2.4 (case
i)) with k = k0 and ω = ν0. Here Assumption (A5) is employed. We now apply the inverse Fourier
transformation to obtain

U ext (x1, x2, t) = εA (X2, T )m (x1) ei(k0x2−ν0t)

− ε2i∂X2
A(X2, T )∂kw (x1, k0) ei(k0x2−ν0t)

− ε3 1

2
∂2
X2
A(X2, T )∂2

kw (x1, k0) ei(k0x2−ν0t)

+ ε3|A(X2, T )|2A(X2, T )p(x1)ei(k0x2−ν0t)

+ ε3A3(X2, T )h(x1)e3i(k0x2−ν0t) + c.c.,

(40)

recalling that X2 = ε(x2 − ν1t) and T = ε2t. Since R̂es(Û ext) is of order ε3 after transformation
Res(U ext) is of order ε4 formally. The terms of order ε4 of Res(U ext) can be found in Appendix B.

Remark 4.1
Note that our residual incorporates neither the divergence condition on D nor the interface conditions.
This is because these quantities do not directly appear in the G3-norm which we use to estimate the error.

Nevertheless, for Eext := (Uext,1, Uext,2, 0)
> one can show that∇ ·D(Eext) = O(ε2). Indeed, for the

divergence condition we have

∂x1
D1(Eext) + ∂x2

D2(Eext) = εF1(∂x1
(ε1m1) + ε1ik0m2)A+ c.c.+O(ε2) = O(ε2)

because ∂x1(ε1m1) + ε1ik0m2 = 0, see (19) at k = k0.
Regarding the interface conditions, Uans and U ext fulfill (9) exactly since the second and third compo-

nents of m, ∂kw(k0), ∂2
kw(k0), h and p belong to H1(R) and are therefore continuous at the interface.

Moreover, the jumps of D1(Eans) and D1(Eext) at x1 = 0 are of order O(ε3), respectively O(ε4). Indeed,
at O(ε) condition (11) holds exactly for Uans and U ext because m satisfies the interface conditions (18).
At O(ε2) there are no contributions for Uans. For U ext only a linear term involving ∂kw(·, k0) appears.
As (18) holds for each k, we have Jε1∂kw1(·, k0)K1D = 0 and also Jε1∂2

kw1(·, k0)K1D = 0, and hence
U ext satisfies (11) at O(ε2). Finally, (11) holds for U ext also at O(ε3) since h ∈ D(L(3k0, 3ν0)) and
p ∈ D(L(k0, ν0)) solve (34) and (39), respectively. This fact and the continuity of p1 and h1 imply the
jump equations

Jε1p1K1D = −Jε3
(
3m3

1 −m1m
2
2

)
K1D and Jε1h1K1D = −

q
ε3
(
m3

1 +m1m
2
2

)y
1D ,

implying that the first nonlinear contribution in (11) for U ext is cancelled.
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As we explain next, Res(U ext)(·, ·, t) lies in L2(R2)3 for all t ∈ [0, T0ε
−2] if, e.g.,

A ∈
1⋂
k=0

C1−k([0, T0], H2+k(R)) and m, ∂kw(·, k0), ∂2
kw(·, k0),h,p ∈ L2(R)3 ∩ L∞(R)3. (41)

So far we have used the ε-orders in a formal sense, i.e., without specifying the norm. To determine the
asymptotic order of the L2(R2)3-norm of the residual, we note that the summands of Res(U ext)(·, ·, t) of
(the smallest) order ε4 have the form g(x) := f1(x1)f2(εx2)f3(x2) with f1, f2 ∈ L2(R) and f3 ∈ L∞(R).
Such products can be estimated by

‖g‖L2(R2) ≤ ε−
1
2 ‖f1‖L2(R)‖f2‖L2(R)‖f3‖L∞(R).

Terms of higher order in ε are of a similar form. The x1-derivatives do not appear in the residual, since
they only occur at low orders of ε and were canceled in the construction. Hence, in (41) we have to use
Sobolev spaces only for A. In the residual the derivatives of highest order are ∂3

X2
A and ∂T∂2

X2
A which

are bounded in L2(R)3 uniformly in time according to (41). Due the embedding H1(R) ↪→ L∞(R) the
lower-order factors are bounded. The products appearing in nonlinear terms are estimated by (suppressing
the time dependence)

‖|A|2∂X2
A‖L2(R) ≤ ‖A‖2L∞(R)‖∂X2

A‖L2(R) ≤ C‖A‖3H1(R),

‖|∂2
X2
A|2∂2

X2
A‖L2(R) ≤ ‖∂2

X2
A‖2L∞(R)‖∂

2
X2
A‖L2(R) ≤ C‖A‖3H3(R),

‖|∂2
X2
A|2∂T∂2

X2
A‖L2(R) ≤ ‖∂2

X2
A‖2L∞(R)‖∂T∂

2
X2
A‖L2(R) ≤ C‖A‖2H3(R)‖∂TA‖H2(R),

for instance. Using these principles, we easily deduce

‖Res(U ext)(·, ·, t)‖L2(R2)3 = ‖R̂es(Û ext)(·, ·, t)‖L2(R2)3 ≤ Cε
7
2 (42)

under condition (41). The constant C depends on the norms of A, m, ∂kw(·, k0), ∂2
kw(·, k0), h, and p

appearing in (41).
For the error analysis in Section 6 we have to estimate the residual in G3(R2× [0, T0ε

−2])3 and not only
in L2(R2)3 for all t ∈ [0, T0ε

−2]. To do this, we impose the stricter conditions

A ∈
4⋂
k=0

C4−k([0, T0], H2+k(R)) and m, ∂kw(·, k0), ∂2
kw(·, k0),h,p ∈ H3(R)3. (43)

Since we want to estimate the derivatives up to order three of the residual, it is clear that the regularity of
the envelope A has also to increase by three orders in space and time. Since no x1-derivative appears in the
residual we can use the algebra property ofH3(R) to control the appearing nonlinear terms. With the same
arguments as before it is now possible to bound the residual by

‖Res(U ext)‖G3(R2×(0,T0ε−2))3 ≤ Cε
7
2 (44)

under the above conditions (43). The constant C depends on the norms of A,m, ∂kw(·, k0), ∂2
kw(·, k0),

h, and p appearing in (43). Furthermore, under condition (43) we have

U ext ∈
4⋂
k=0

C4−k([0, T0ε
−2],Hmin{3;k}(R2))3.

In the bootstrapping argument of Section 6.1 we need somewhat stronger regularity properties of U ext.
They follow from the structure of U ext, which is a sum of products of functions in (x2, t) and in x1,
where the latter only appear linearly. So we can use the Sobolev embedingH1(R) ↪→ L∞(R) in both space
dimensions separately, thus avoiding the less favorable embeddingH2(R2) ↪→ L∞(R2). Take multi-indices
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α = (α1, α2, αt)
> with |α| ≤ 3 and α1 ≤ 2, as well as |β| = 3 with β1 ∈ {1, 2}. For ∂α := ∂α1

x1
∂α2
x2
∂αtt

condition (43) implies that

‖∂αU ext‖L∞(R2×(0,T0ε−2))3 , ‖∂β∂tU ext‖L∞(R2×(0,T0ε−2))3 ≤ Cε, (45)

and ∫
R

sup
x2∈R

|∂3
x1
∂kt U ext(x1, x2, t)|2 dx1 ≤ Cε2, k ∈ {0, 1}, (46)

for all t ∈ [0, T0ε
−2]. For |γ| = 3 with γ1 = 0 we have ∂γ∂tU ext = A+ B with

A(x1, x2, t) := εA (X2, T )m (x1) ∂γ∂t

(
ei(k0x2−ν0t)

)
,

B(x1, x2, t) := ∂γ∂tU ext(x1, x2, t)−A(x1, x2, t),

and one derives the estimates

‖A‖L∞(R2×(0,T0ε−2))3 ≤ Cε,
∫
R

sup
x1∈R

|B(x1, x2, t)|2 dx2 ≤ Cε2. (47)

An application of Lemma 2.6 gives us the necessary regularity of m, ∂kw(·, k0), ∂2
kw(·, k0), h, and p

under our assumptions on ε1 and ε3.

Lemma 4.2
Let m, ∂kw (k0) , ∂2

kw (k0) ,h,p ∈ L2(R)3 be defined as before. Assume that ε1, ε3 ∈ W3,∞(R). Then
m, ∂kw (k0) , ∂2

kw (k0) ,p,h ∈ H3(R)3.

PROOF: Since (L(k0) + ν0Λ)m = 0, Lemma 2.6 with f = 0 shows that m ∈ H3(R)3. Next,
differentiating (L(k) + ωΛ)w = 0 in k, we see that ∂kw (k0) and ∂2

kw (k0) solve

(L(k0) + ν0Λ) ∂kw (k0) = − (∂kL(k0) + ∂kω(k0)Λ)m,

(L(k0) + ν0Λ) ∂2
kw (k0) = −2 (∂kL(k0) + ∂kω(k0)Λ) ∂kw (k0)−

(
∂2
kL(k0) + ∂2

kω(k0)Λ
)
m.

Asm ∈ H3(R)3, the functions

(∂kL(k0) + ∂kω(k0)Λ)m =

ε1ν1m1 +m3

ε1ν1m2

m1 + µ0ν1m3

 ,
(
∂2
kL(k0) + ∂2

kω(k0)Λ
)
m =

ε1ν2m1

ε1ν2m2

µ0ν2m3


belong toH3(R)3. Therefore from Lemma 2.6 we infer ∂kw (k0) ∈ H3(R)3. This fact implies ∂2

kw (k0) ∈
H3(R)3 in the same way. To treat h and p from (34) and (39), we note that the right-hand sides in

(L(k0) + ν0Λ)p = −κ

ε1m1

ε1m2

µ0m3

−
 ε3ν0

(
3m3

1 −m1m
2
2

)
ε3ν0

(
−3m3

2 +m2
1m2

)
0

 ,

(L(3k0) + 3ν0Λ)h =

−iε3(m3
1 +m1m

2
2)

−iε3(m3
2 +m2m

2
1)

0


are also contained inH3(R)3 sincem ∈ H3(R)3. Hence, the statement follows as before.

5 Local existence theory
We employ local existence results of [23] for linear and quasilinear hyperbolic problems. We first define
some additional function spaces. For any open Ω ⊂ R2 and J ⊂ R we use

Fm,n(Ω× J) :=
{
A ∈W 1,∞(Ω× J)n×n

∣∣∣ ∂αA ∈ L∞(J,Hm−|α|(Ω))n×n+Wm−|α|,∞(Ω× J)n×n
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:=
{

for all α ∈ N3
0 with 1 ≤ |α| ≤ m

}
,

‖A‖Fm,n(Ω×J) := max

{
‖A‖W 1,∞(Ω×J)n×n , max

1≤|α|≤m
‖∂αA‖L∞(J,Hm−|α|(Ω))n×n+Wm−|α|,∞(Ω×J)n×n

}
,

Fm,n(R2 × J) :=
{
A ∈ W1,∞(R2 × J)n×n

∣∣A− ∈ Fm,n(R2
− × J), A+ ∈ Fm,n(R2

+ × J)
}
,

‖A‖Fm,n(R2×J) := max
{∥∥A−∥∥

Fm,n(R2
−×J)

,
∥∥A+

∥∥
Fm,n(R2

+×J)

}
,

with the usual definition

‖A‖L∞(J,Hm−|α|(Ω))+Wm−|α|,∞(Ω×J) := inf
{
‖B‖L∞(J,Hm−|α|(Ω))+ ‖C‖Wm−|α|,∞(Ω×J)

∣∣∣A = B + C,

:= inf{B ∈ L∞(J,Hm−|α|(Ω)), C ∈Wm−|α|,∞(Ω× J)
}
.

For a fixed time instant we use the spaces

Fm,n0 (Ω) :=
{
A ∈ L∞(Ω)n×n

∣∣∣ ∂αA ∈ Hm−|α|(Ω)n×n +Wm−|α|,∞(Ω)n×n

:=
{

for all α ∈ N2
0 with 1 ≤ |α| ≤ m

}
,

‖A‖Fm,n0 (Ω) := max

{
‖A‖L∞(Ω)n×n , max

1≤|α|≤m
‖∂αA‖Hm−|α|(Ω)n×n+Wm−|α|,∞(Ω)n×n

}
,

Fm,n0 (R2) :=
{
A ∈ L∞(R2)n×n

∣∣A− ∈ Fm,n0 (R2
−), A+ ∈ Fm,n0 (R2

+)
}
,

‖A‖Fm,n0 (R2) := max
{∥∥A−∥∥

Fm,n(R2
−)
,
∥∥A+

∥∥
Fm,n(R2

+)

}
.

Finally, we define subspaces of Fm,n with the properties of positive definiteness, or convergence to a
constant matrix for |(x, t)| → ∞. For η > 0 we set

Fm,nη (R2 × J) :=
{
A ∈ Fm,n(R2 × J)

∣∣A = A>,v>Av ≥ η|v|2 for all v ∈ Rn
}
,

Fm,ncv (R2 × J) :=

{
A ∈ Fm,n(R2 × J)

∣∣∣∣∃Ã ∈ Rn×n : lim
|(x,t)|→∞

A(x, t) = Ã

}
,

Fm,nη,cv (R2 × J) := Fm,nη (R2 × J) ∩ Fm,ncv (R2 × J).

In the linear setting, as in (4.1) of [23] we rewrite our system as

At(x, t)∂tU
± +

2∑
j=1

Aj∂xjU
± +M(x, t)U± = f±, x ∈ R2

±, t ∈ J,

BΓ

(
U+

U−

)
= 0, x ∈ Γ, t ∈ J,

U(0) = U (0), x ∈ R2

(48)

on the interval J := (0, T ′) with some T ′ > 0, whereM : R2×J → R3×3,At : R2×J → R3×3,At(x, t)
is symmetric for all (x, t), and

A1 :=

0 0 0
0 0 1
0 1 0

 , A2 :=

 0 0 −1
0 0 0
−1 0 0

 , BΓ :=

(
0 1 0 0 −1 0
0 0 1 0 0 −1

)
,

Clearly, BΓ(U+,U−)> encodes the interface conditions JU2K = JU3K = 0 on Γ. Note that we are not
going to use (48) in order to study the linear part of (7) but rather to study a fixed point problem in the
bootstrapping argument for the nonlinear system in Section 6.1. Hence, we need the inhomogeneous term
f as well as the linear term MU in (48).
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Definition 5.1 (Weak Solution of the Linear Hyperbolic Problem)
Under a weak solution of (48) we understand a function U ∈ C(J, L2(R2))3 that satisfies∫

J

∫
R2

f ·ϕ dx dt = −
∫
J

∫
R2

(
U · ∂t(Atϕ) +U · ∂x1

(A1ϕ) +U · ∂x2
(A2ϕ)−U ·M>ϕ

)
dx dt

for all test functions

ϕ ∈ D(R2 × J)3 :=
{
φ
∣∣ϕ+ ∈ C∞(R2

+ × J)3, φ− ∈ C∞(R2
− × J)3

∣∣ suppϕ ⊂ R2 × J compact
}
,

TrΓ×J

(
BΓ

(
U+,U−

)>)
= 0, and U(0) = U (0).

For the trace in the above definition, note that for a weak solution ϕ of (48) the space-time divergence
of (A1ϕ1, A2ϕ2, Atϕt) belongs to L2(R2

± × J)3 and thus has traces in H−1/2(∂(R2
± × J))3. This fact

and the properties of Aj allow us to define the initial and interface conditions in H−1/2(R2 × {0}) and
H−1/2(Γ× J)3, respectively. See Chapter 2.1 in [27] for an in depth discussion of this trace.

The following existence result is a consequence of Theorem 3.1 in [23].

Theorem 5.2 (Existence result for the linear system (48))
Let η, T ′, r > 0, m ∈ {0, 1, 2, 3}, and J = (0, T ′). Take coefficients At ∈ F3,3

η,cv(R2 × J) and M ∈
F3,3

cv (R2 × J) with

‖At‖F3,3(R2×J) , ‖At(·, 0)‖F2,3
0 (R2) ,

∥∥∥∂jtAt(·, 0)
∥∥∥
H2−j(R2)3×3

≤ r,

‖M‖F3,3(R2×J) , ‖M(·, 0)‖F2,3
0 (R2) ,

∥∥∥∂jtM(·, 0)
∥∥∥
H2−j(R2)3×3

≤ r,

for all j ∈ {1, 2}. Choose f ∈ Hm(R2 × J)3 and U (0) ∈ Hm(R2)3 such that the linear compatibility
conditions of order m are satisfied, see Definition 5.9.

Then there is a unique weak solutionU of (48) in Gm(R2×J)3 and a constantCm = Cm(η, r, T ′) ≥ 1
such that

‖U‖2Gm(R2×J)3 ≤ Cm
(∥∥∥U (0)

∥∥∥2

Hm(R2)3
+ ‖f‖2Hm(R2×J)3 +

m−1∑
j=0

∥∥∥∂jt f(·, 0)
∥∥∥2

Hm−1−j(R2)3

)
(49)

where, as usual, the sum is empty if m = 0.

Remark 5.3
Theorem 3.1 of [23] deals with spatial domains in R3 instead of R2 and the solution vector takes values
in R6 instead of R3, but the above case can be treated in an analoguous and simpler way. We do not need
the lengthy localization process discussed in [23]. As in this paper, one reduces the interface problem on
R2 \ Γ to a boundary value problem on R2

+ and the latter can again be solved in L2 by means of general
results from [13]. To obtain solutions in Gm for appropriate data, one first needs a priori estimates. These
can be shown as in Section 6.1 below which uses ideas from [23]. The regularity of solutions can then be
shown by approximation arguments which are simplified versions of those in [23].

In the bootstrapping argument in Section 6.1 we need the next approximation result, involving the space

D(R2)3 :=
{
ϕ
∣∣ϕ+ ∈ C∞(R2

+)3, ϕ− ∈ C∞(R2
−)3, suppϕ ⊂ R2 compact

}
.

Lemma 5.4
Let T ′ > 0, J = (0, T ′),U (0) ∈ L2(R2)3,At ∈ F3,3

η,cv(R2×J),M ∈ F3,3
cv (R2×J) and f ∈ G0(R2×J)3.

Take a weak solution U ∈ G0(R2 × J)3 of (48) for the data
(
f ,U (0)

)
. Then the following statements are

true.
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i) There are sequences
(
U (0)
n

)
n
⊂ D(R2)3 and (fn)n ⊂ H1(R2 × J)3 such that U (0)

n → U (0) in
L2(R2)3 and fn → f in L2(R2 × J)3 for n → ∞ and the linear compatibility conditions of order
1 are satisfied, i.e., BΓU

(0)
n = 0.

ii) There exists a sequence (Un)n ⊂ G1(R2 × J)3 such that for all n ∈ N the function Un solves (48)
for the data

(
fn,U

(0)
n

)
and Un → U in G0(R2 × J)3 for n→∞.

PROOF: For i) we use that C∞c (Ω) and H1(Ω) are dense in L2(Ω) for any domain Ω. Therefore
we can choose sequences (wn)n ⊂ D(R2)3 and (fn)n ⊂ H1(R2 × J)3 with wn → U (0) in L2(R2)3

and fn → f in L2(R2 × J)3 for n → ∞. To guarantee the compatibility condition, we introduce the
characteristic function χMn

with Mn := R2 \
{
x ∈ R2

∣∣x1 ∈
[
− 1
n ,

1
n

]}
. By dominated convergence, one

easily sees that wnχMn → U (0) in L2(R2)3. Since Γ ∩Mn = ∅ we also get that TrΓ (BΓwnχMn) = 0.
Now we mollify wnχMn to produce functions U (0)

n ∈ D(R2)3 with the stated properties.
The existence of (Un)n in assertion ii) is a direct consequence of Theorem 5.2. To show the conver-

gence we use that (48) is a linear problem, consequently Un − U is a weak solution of (48) for the data(
fn − f ,U

(0)
n −U

(0)
)
. Estimate (49) thus yields

‖Un −U‖G0(R2×J)3 ≤ C
(∥∥∥U (0)

n −U
(0)
∥∥∥
L2(R2)3

+ ‖fn − f‖L2(R2×J)3

)
.

The convergence properties of (fn)n and
(
U (0)
n

)
n

complete the proof.
For the quasilinear case we have to define spaces for functions whose range is not the full R3, namely

MLm,k
(
R2,Ω±

)
:=
{
S :
(
R2

+ × Ω+

)
∪
(
R2
− × Ω−

)
→ Rk×k

∣∣∣S± ∈ Cm (R2
± × Ω±,Rk×k

)
,

sup
(x,u)∈R2

±×U±
|∂αS(x,u)| <∞ for all compact U± ⊂ Ω± and α ∈ N5

0 with |α| ≤ m
}
,

where Ω± ⊂ R3 are open and S+ and S− are the restrictions of S to R2
+×Ω+ and R2

−×Ω−, respectively.
As for the spaces F we use the subscripts η and cv to denote the additional conditions that the matrices in
MLm,k are symmetric and positive definite respectively convergent.

The reduced nonlinear Maxwell system (7), (8), (9) is a special case of equation (1.7) in [23] and can
be written as 

S̃(x,U±)∂tU
± +

2∑
j=1

Aj∂xjU
± = 0, x ∈ R2

±, t ∈ J,

BΓ

(
U+

U−

)
= 0, x ∈ Γ, t ∈ J,

U(0) = U (0), x ∈ R2,

(50)

where for v ∈ Rn we set

S̃(x,v) := Λ(x1) + ε3(x1)θ(v), (51)

Λ(x1) =

ε1(x1) 0 0
0 ε1(x1) 0
0 0 µ0

 , θ(v) :=

3v2
1 + v2

2 2v1v2 0
2v1v2 v2

1 + 3v2
2 0

0 0 0

 .

Definition 5.5 (Solution of the Nonlinear Hyperbolic Problem)
Under a solution of (50) we understand a function U ∈ G1(R2 × J)3 ∩ L∞(R2 × J)3 with imU± ⊂ Ω±
that satisfies

S̃(x,U)∂tU +

2∑
j=1

Aj∂xjU = 0,

for almost all x ∈ R2 \ Γ and for all t ∈ J , TrΓ×J

(
BΓ

(
U+,U−

)>)
= 0, and U(0) = U (0).

19



Remark 5.6
Note that a solution U of (50) in G3(R2 × J)3 is a classical solution of (50) because of the Sobolev
embedding H3(R2

±) ↪→ C1(R2
±).

The following local existence result for (50) follows from Proposition 7.1 and Theorem 7.1 of [23].

Theorem 5.7 (Nonlinear Existence Result)
Let η > 0, Ω± ⊂ R3, and S̃ ∈ ML3,3

η,cv(R2,Ω±). Assume that U (0) ∈ H3(R2)3 satisfies the nonlinear
compatibility conditions of order 3, see (56), and imU (0),± ⊂ Ω± with

dist
(

imU (0),±, ∂Ω±

)
> κ (52)

for some κ > 0. Then the following statements are true.

i) There exists a unique solution U ∈ G3(R2 × (0, tM ))3 of (50), where tM > 0 is the maximal
existence time.

ii) If tM <∞, then limt↗tM ‖U(·, t)‖H3(R2)3 =∞ or lim inft↗tM dist
(

imU±(t), ∂Ω±

)
= 0.

iii) Let t∗ ∈ (0, tM ). Then there is a constant C > 0 such that

‖U‖G3(R2×(0,t∗))3 ≤ C
∥∥∥U (0)

∥∥∥
H3(R2)3

.

Remark 5.8
As already explained in Remark 5.3, the results of [23] treat a somewhat different but more difficult situation.
Moreover, the above result does not contain the full local well-posedness and a refined blow-up condition
shown in [23]. So Theorem 5.7 follows from Theorem 5.2 by rather standard arguments, compare the proof
of Theorem 6.1 of [23].

Compatibility conditions
For a smooth solution U ∈ G3(R2 × J)3 of (50) with J := (0, tM ) we can differentiate (50) two times in
time and get new equations that are still satisfied for all t ∈ J . By continuity these new equations have to
be satisfied at t = 0. This gives us necessary conditions on the initial values for U ∈ G3(R2 × J)3.

If S̃(U) is positive definite, then S̃(U) is invertible and system (50) implies

∂tU = −S̃(U)−1
2∑
j=1

Aj∂xjU =: Ṽ
(1)

(U), (53)

JU2K = JU3K = 0.

Differentiation in time gives us the following new equations:

∂2
tU = −S̃(U)−1

( 2∑
j=1

Aj∂xj∂tU + ∂tS̃(U)∂tU

)
=: Ṽ

(2)
(U , ∂tU), (54)

J∂tU2K = J∂tU3K = 0,

∂3
tU = −S̃(U)−1

( 2∑
j=1

Aj∂xj∂
2
tU + 2∂tS̃(U)∂2

tU + ∂2
t S̃(U)∂tU

)
=: Ṽ

(3)
(U , ∂tU , ∂

2
tU), (55)

J∂2
tU2K = J∂2

tU3K = 0.
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We can now iteratively define V (1)(U) := Ṽ
(1)

(U), V (2)(U) := Ṽ
(2)
(
U ,V (1)(U)

)
and V (3)(U) :=

Ṽ
(3)
(
U ,V (1)(U),V (2)(U)

)
to get operators V (j) that only contain space derivatives and no time deriva-

tives. For the sake of completeness we also define V (0)(U) := U . The equations above imply that

∂jtU(·, 0) = V (j)(U(·, 0)) and
r
V

(j−1)
2 (U(·, 0))

z
=

r
V

(j−1)
3 (U(·, 0))

z
= 0

for j ∈ {1, 2, 3}. Hence, the initial values U (0) have to satisfy the necessary conditions
r
V

(j)
2

(
U (0)

)z
=

r
V

(j)
3

(
U (0)

)z
= 0 (56)

for j ∈ {0, 1, 2}. Note that for higher regularity additional compatibility conditions are necessary, but we
will focus our analysis on solutions in G3(R2 × J)3.

Definition 5.9 (Nonlinear Compatibility Conditions)
Let m ∈ {1, 2, 3}. We say that an initial value U (0) ∈ Hm

(
R2
)3

satisfies the nonlinear compatibility
conditions of order m for (50) if (56) is true for j ∈ {0, . . . ,m− 1}.

Remark 5.10
The compatibility conditions for the linear problem (48) can be derived analogously. In comparison to (53),
(54) and (55) we have to replace S̃(U) by At and include the additional terms M(x, t)U , f and their time
derivatives:

Ṽ
(1)

lin (U) = −A−1
t

( 2∑
j=1

Aj∂xjU +MU − f
)
,

Ṽ
(2)

lin (U , ∂tU) = −A−1
t

( 2∑
j=1

Aj∂xj∂tU + ∂tAt∂tU + ∂t (MU)− ∂tf
)
,

Ṽ
(3)

lin (U , ∂tU , ∂
2
tU) = −A−1

t

( 2∑
j=1

Aj∂xj∂
2
tU + ∂2

tAt∂tU + 2∂tAt∂
2
tU + ∂2

t (MU)− ∂2
t f

)
.

6 Proof of Theorem 1.1.
Let a > 1. We start by expressing the equation for the error εaR := U −U ext. Substituting

U = U ext + εaR (57)

in (50), one obtains

S(x, t,R±)∂tR
± +

2∑
j=1

Aj∂xjR
± +W (x, t,R±)R± = −ε−aRes, x ∈ R2

±, t ∈ J,

BΓ

(
R+

R−

)
= 0, x ∈ Γ, t ∈ J,

R(0) = R(0), x ∈ R2,

(58)

where we setR(0) := ε−a(U (0) −U ext(·, 0)) and, recalling (51),

Res := Res(U ext) = S̃(·,U ext)∂tU ext +

2∑
j=1

Aj∂xjU ext,
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S(x, t,R) := S̃(x,U ext(x, t) + εaR) = Λ(x) + ε3(x1)ε2aθ(R) + ϕ(R),

ϕ(R) := ε3(x1)εa

6Uext,1R1 + 2Uext,2R2 2Uext,1R2 + 2Uext,2R1 0
2Uext,1R2 + 2Uext,2R1 2Uext,1R1 + 6Uext,2R2 0

0 0 0

+ ε3(x1)θ(U ext),

W (x, t,R)R := ε−a
(
S(x, t,R)− S̃(x,U ext(x, t))

)
∂tU ext(x, t).

One can check that the entries of the 3× 3 matrix W are

W1,1 = ε3
(
∂t(3U

2
ext,1 + U2

ext,2) + 3εaR1∂tUext,1 + 2εaR2∂tUext,2

)
,

W1,2 = ε3(εaR2∂tUext,1 + 2∂t(Uext,1Uext,2)), W2,1 = ε3(εaR1∂tUext,2 + 2∂t(Uext,1Uext,2)),

W2,2 = ε3
(
∂t(U

2
ext,1 + 3U2

ext,2) + 3εaR2∂tUext,2 + 2εaR1∂tUext,1

)
,

W1,3 = W2,3 = W3,1 = W3,2 = W3,3 = 0.

The interface condition of (58) is a consequence of BΓ(U+
ext,U

−
ext)
> = 0, as explained in Remark 4.1.

For a fixed U ext, systems (50) and (58) are, of course, equivalent provided (57) holds. Our rough
strategy is to use the local existence Theorem 5.7 for (50) in order to get the existence of R on the time
interval (0, tM ) and then apply a bootstrapping argument on (58) to show that tM = O(ε−2) and that the
desired estimate onR holds for all small enough ε > 0.

For the application of Theorem 5.7 to (50) we need to find Ω± ⊂ R3 such that S̃ ∈ ML3,3
η,cv(R2,Ω±).

For this, firstly, ε±1 , ε
±
3 ∈ C3(R±) ∩W 3,∞(R±) is needed and ε1, ε3 have to converge for |x1| → ∞, as

we have assumed in (A1)–(A3). Secondly, the symmetric matrix S̃(x,v) has to be positive definite for
all x ∈ R2

± and v ∈ Ω±, respectively. It is easy to verify that S̃(v) has the three eigenvalues λ1 = µ0,
λ2 = ε1 + ε3

(
v2

1 + v2
2

)
, and λ3 = ε1 + 3ε3

(
v2

1 + v2
2

)
. We now have to check when λ1,2,3 ≥ η > 0.

Recall the bounds on ε1 and ε3 in (A1) and (A3). If ε±3,m ≥ 0, then clearly λ2,3 > ε±1,m and the choice
η := min{µ0, ε

+
1,m, ε

−
1,m} and Ω± := R3 is possible (and (52) trivially holds). If ε±3,m < 0, we impose

ε±1,m + 3ε±3,m(v2
1 + v2

2) > η > 0 for all v ∈ Ω±.

Choosing η ∈
(
0,min{µ0, ε

+
1,m, ε

−
1,m}

)
and

Ω± :=


{
v ∈ R3

∣∣∣∣ v2
1 + v2

2 <
η−ε±1,m
3ε±3,m

}
, ε±3,m < 0,

R3, ε±3,m ≥ 0,

we infer S̃(·, t, ·) ∈ML3,3
η,cv(R2,Ω±) for all t ∈ [0, T0ε

−2].
We now take a solution A ∈

⋂4
k=0 C

4−k([0, T0], H2+k(R)) of the effective nonlinear Schrödinger
equation (38) for some T0 > 0. Choose R(0) ∈ H3(R2)3 and ε∗ > 0 small enough such that

U (0) := U ext(·, 0) + εa∗R
(0) satisfies imU (0),± ⊂ Ω± (which implies (52)) and the nonlinear com-

patibility conditions of order 3, see Definition 5.9. Then the local existence Theorem 5.7 yields a maximal
existence time tM > 0 and a solution U ∈ G3(R2 × (0, tM ))3 of (50). For t ∈ [0, tM ) we set

z(t) :=

3∑
k=0

‖∂ktR(·, t)‖2H3−k(R2)3 .

We have ‖R(·, t)‖L∞(R2)3 ≤ cSz(t)1/2 for a constant cS ≥ 1. Take $ > 0 with

$2 <
1

c2S
min

{
η − ε−1,m

3 min{ε−3,m, 0}
,

η − ε+1,m
3 min{ε+3,m, 0}

}
, (59)
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where c
0 := +∞. The major part of the rest of the proof of Theorem 1.1 is a bootstrapping argument to

prove the statement{
∃ 1 ≥ ρ > ρ0 > 0 ∃ ε0 = ε0(ρ) ∈ (0, ε∗) ∃ t∗ ∈ (0, tM ) such that for all ε ∈ (0, ε0) we have

εaρ+ ‖U ext‖L∞(R2×[0,t∗]) ≤ $ and if z(0) ≤ ρ2
0 and t∗ ≤ T0ε

−2, then z(t) ≤ ρ2 for all t ∈ [0, t∗].
(60)

Note that the first condition in (60), i.e., the smallness of εaρ + ‖U ext‖L∞(R2×[0,T0ε−2))3 , can be
achieved by simply choosing ε0 = ε0(ρ) small enough.

To establish (60), we define for 1 ≥ ρ > ρ0 > 0

Tρ0,ε0 := sup
{
t∗ ≥ 0

∣∣εaρ+ ‖U ext‖L∞(R2×[0,t∗]) ≤ $, ∀ t ∈ [0, t∗) : z(t) ≤ ρ2, z(0) = ρ2
0

}
, (61)

Jρ0,ε0 := [0, Tρ0,ε0).

On the time interval Jρ0,ε0 the conditions

∀ t ∈ Jρ0,ε0 : dist
(

imU±(·, t), ∂Ω±

)
> κ > 0, ‖U(·, t)‖H3(R2)3 ≤ C <∞

are guaranteed.
We will prove in Section 6.1 that z(t) ≤ ρ2/2 for t ∈ Jρ0,ε0 and suitable ε0 and ρ0 and hence Tρ0,ε0 =

T0ε
−2 and (60) is true. This yields the estimate

‖U −U ext‖G3(R2×(0,T0ε−2))3 ≤ ρε
a. (62)

Finally, to obtain (14), it will only remain to show ‖Uans −U ext‖G3(R2×(0,T0ε−2))3 ≤ Cεa, which is
straightforward, see Section 6.2.

6.1 Bootstrapping argument (proof of (60))
We use the multi-index β := (β1, β2, βt)

> ∈ N3
0, |β| ≤ 3, and the abbreviation rβ := ∂βR. Applying

∂β = ∂β1
x1
∂β2
x2
∂βtt to (58) yields

S(x, t,R)∂trβ +

2∑
j=1

Aj∂xjrβ

= sβ(x, t,R) +wβ(x, t,R)− ε−a∂βRes(x, t), x ∈ R2 \ Γ, t ∈ Jρ0,ε0 ,

rβ(x, 0) = r
(0)
β (x) := ∂βR(x, 0), x ∈ R2

(63)

with

sβ(x, t,R) := −
∑

0<γ≤β

(
β

γ

)
∂γS(x, t,R)∂β−γ∂tR,

wβ(x, t,R) := −∂β (W (x, t,R)R) .

Note that the interface conditions cannot be simply differentiated for all β1 6= 0, therefore we will discuss
them separately. The time derivatives ∂ktR(·, 0) have to be interpreted as right-sided derivatives that satisfy

∂jtR(·, 0) = V (j)(R(·, 0)) = V (j)
(
R(0)

)
, (64)

with V (j) as defined in Section 5. Testing (63) with rβ produces∫ t

0

∫
R2

(
S(R)∂trβ · rβ +

2∑
j=1

Aj∂xjrβ · rβ
)

dx ds

=

∫ t

0

∫
R2

(wβ(R) · rβ + sβ(R) · rβ) dx ds− ε−a
∫ t

0

∫
R2

∂βRes · rβ dx ds.

(65)
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The main steps of our bootstrapping argument are:

I. Employ (64) to estimate
∥∥∥r(0)
β

∥∥∥
L2(R2)3

for all β ∈ N3
0 with |β| ≤ 3.

II. Based on (65), estimate
∑
|γ|≤3,γ1=0 ‖∂γR(·, t)‖2L2(R2)3 using that

∫
R2

∑2
j=1Aj∂xjrβ · rβ dx = 0

if β1 = 0.

III. Rewrite (63) to analyze ∂βR2 and ∂βR3 for β1 = 1, and then iterate the process for β1 = 2 and
β1 = 3.

IV. Use ∇ · ∂tD(U) = 0 to estimate ∂βR1 for β1 = 1, where we start with β = (1, 0, 0)> and then
iterate to increase βt and β2. Finally we have to iterate the process again for β1 = 2 and β1 = 3.

Our basic strategy follows the proof of the local a priori estimates in [23]. The main difference is that, using
the structure of our ansatz, we can derive the estimates on a large time interval [0, T0ε

−2) with the desired
dependence on ε. We let t ∈ Jρ0,ε0 .

Step I: Estimates of the initial values

In this section we estimate ‖rβ(·, 0)‖L2(R2)3 for all β ∈ N3
0 with |β| ≤ 3. For βt = 0 we already have by

assumption that
‖R(·, 0)‖H3(R2)3 =

∥∥∥R(0)
∥∥∥
H3(R2)3

< ρ0.

If βt 6= 0 we will use (64) to estimate ∂ptR(·, 0) inH3−p(R2)3 for p ∈ {1, 2, 3}.
Since U (0) satisfies the nonlinear compatibility conditions of order 3 we know from Section 5 that

(suppressing the x-dependence)
∂jtU(t) = V (j) (U(t))

for all t ∈ [0, tM ) and j ∈ {0, 1, 2}. With U = εaR+U ext, as in (58) we rewrite these three equations as

∂tR = −S̃(U)−1

 2∑
j=1

Aj∂xjR+ ε−aRes + ε−a
(
S̃(U)− S̃(U ext)

)
∂tU ext

 ,

∂2
tR = −S̃(U)−1

 2∑
j=1

Aj∂xj∂tR+ ∂tS̃(U)∂tR+ ε−a∂tRes


− ε−aS̃(U)−1

(
∂t

(
S̃(U)− S̃(U ext)

)
∂tU ext +

(
S̃(U)− S̃(U ext)

)
∂2
tU ext

)
,

∂3
tR = −S̃(U)−1

 2∑
j=1

Aj∂xj∂
2
tR+ 2∂t

(
S̃(U)

)
∂2
tR+ ∂2

t

(
S̃(U)

)
∂tR+ ε−a∂2

tRes


−ε−aS̃(U)−1

(
∂2
t

(
S̃(U)− S̃(U ext)

)
∂tU ext + 2∂t

(
S̃(U)− S̃(U ext)

)
∂2
tU ext

+
(
S̃(U)− S̃(U ext)

)
∂3
tU ext

)
.

(66)

The following lemma collects some properties of the matrix function S̃. It can be shown as Lemma 2.23,
Lemma 7.1 and Corollary 7.2 in [27].

Lemma 6.1
Let T ′, η0, R > 0, Ω± ⊂ R3 and S̃ ∈ML3,3

η0,cv(R2,Ω±). Then for allU ,V ∈ BR(0) ⊂ G3(R2×[0, T ′])3

with imU±, imV ± ⊂ Ω± there exists C > 0 such that

i)
∥∥∥S̃(U(t))−1

∥∥∥
W2,∞(R2)3×3+H2(R2)3×3

≤ C,
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ii)
∥∥∥∂kt S̃(U(t))

∥∥∥
W3−k,∞(R2)3×3+H3−k(R2)3×3

≤ C,

iii)
∥∥∥∂kt (S̃(U(t))− S̃(V (t))

)∥∥∥
H2−k(R2)3×3

≤ C
∑k
j=0

∥∥∥∂jtU(t)− ∂jtV (t)
∥∥∥
H2−k(R2)3

for all k ∈ {0, 1, 2} and t ∈ [0, T ′].

We can now go back to equations (66) and use Lemma C.1, Lemma 6.1 and εaR = U −U ext to show

‖∂tR(·, 0)‖H2(R2)3

≤ C
∥∥∥S̃(U(0))−1

∥∥∥
W2,∞(R2)3×3+H2(R2)3×3

(
‖R(·, 0)‖H3(R2)3 + ε−a ‖Res(·, 0)‖H2(R2)3

)
+ Cε−a ‖εaR(·, 0)‖H2(R2)3 ‖∂tU ext(·, 0)‖H2(R2)3

≤ C
(∥∥∥R(0)

∥∥∥
H3(R2)3

+ ε−a ‖Res(·, 0)‖H2(R2)3

)
.

The remaining two estimates follow analogously:∥∥∂2
tR(·, 0)

∥∥
H1(R2)3

≤ C
(
‖R(·, 0)‖H3(R2)3 + ‖∂tR(·, 0)‖H2(R2)3 + ε−a ‖∂tRes(·, 0)‖H1(R2)3

)
,∥∥∂3

tR(·, 0)
∥∥
L2(R2)3

≤ C
(
‖R(·, 0)‖H3(R2)3 + ‖∂tR(·, 0)‖H2(R2)3 +

∥∥∂2
tR(·, 0)

∥∥
H1(R2)3

+ε−a
∥∥∂2

tRes(·, 0)
∥∥
L2(R2)3

)
.

Finally we use the recursive structure of the estimates and obtain

‖∂ptR(·, 0)‖H3−p(R2)3 ≤ C
(∥∥∥R(0)

∥∥∥
H3(R2)3

+ ε−a
p−1∑
j=0

∥∥∥∂jtRes(·, 0)
∥∥∥
H2−j(R2)3

)
for all p ∈ {1, 2, 3}. With our estimate for the residual, see (44), we infer∥∥∥r(0)

β

∥∥∥
L2(R2)3

≤ C
(
ρ0 + ε

7
2−a
)

(67)

for all β ∈ N3
0 with |β| ≤ 3.

Step II: Estimates of the β-derivatives ofR(·, t) with β1 = 0, |β| ≤ 3

We first show an energy estimate for the t- and x2-derivatives ofR.

Lemma 6.2
LetR ∈ G3(R2×Jρ0,ε0)3 be a solution of (58) and let β ∈ N3

0, |β| ≤ 3, β1 = 0. Then rβ = ∂βR satisfies

η

2
‖rβ(·, t)‖2L2(R2)3 ≤ C

∥∥∥r(0)
β

∥∥∥2

L2(R2)3
+

∫ t

0

∫
R2

(
wβ(R) · rβ + sβ(R) · rβ

+
1

2
∂tS(R)rβ · rβ − ε−a∂βRes · rβ

)
dx ds

(68)

for every t ∈ Jρ0,ε0 .

PROOF: Step 1. Let us first study the case |β| < 3. Since R ∈ G3(R2 × Jρ0,ε0)3, we have rβ =
∂βR ∈ G1(R2 × Jρ0,ε0)3. To employ (65), we compute∫ t

0

∫
R2

S(R)∂trβ · rβ dx ds =
1

2

∫ t

0

∂t

(∫
R2

S(R)rβ · rβ dx

)
ds− 1

2

∫ t

0

∫
R2

∂tS(R)rβ · rβ dx ds.
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Using that S(R) is positive definite, we estimate
∫
R2 S(R)(t)rβ(t)·rβ(t) dx ≥ η ‖rβ(·, t)‖2L2(R2)3 . More-

over, we have
∫
R2 S(R)(0)rβ(0) · rβ(0) dx ≤

∥∥∥S (R(0)
)∥∥∥

L∞(R2)3×3

∥∥∥r(0)
β

∥∥∥2

L2(R2)3
. SinceR(0),U

(0)
ext ∈

L∞(R2)3, this leads to

η

2
‖rβ(·, t)‖2L2(R2)3 ≤ C

∥∥∥r(0)
β

∥∥∥2

L2(R2)3
+

∫ t

0

∫
R2

S(R)∂trβ ·rβ dx ds+
1

2

∫ t

0

∫
R2

∂tS(R)rβ ·rβ dx ds.

An integration by parts yields∫
R2

2∑
j=1

Aj∂xjrβ · rβ dx =

∫
R2

(−∂x2
rβ,3rβ,1 + ∂x1

rβ,3rβ,2 − ∂x2
rβ,1rβ,3 + ∂x1

rβ,2rβ,3) dx = 0,

employing differentiated interface conditions

Jrβ,2K = Jrβ,3K = 0

in the x1-integral. The interface conditions can be differentiated since β1 = 0. Now (68) is a consequence
of (65) and the above formulas.

Step 2. Next, we consider the remaining case |β| = 3, β1 = 0. Let f := sβ(R)+wβ(R)−ε−a∂βRes.
The differential equation in (63) becomes

S(R)∂trβ +

2∑
j=1

Aj∂xjrβ = f , x ∈ R2 \ Γ, t ∈ Jρ0,ε0 , (69)

Since S(R) ∈ F3,3
η,cv(R2 × Jρ0,ε0) and f ∈ G0(R2 × Jρ0,ε0)3 (which can easily be shown), we can

apply Lemma 5.4 to (69) (setting At := S(R) and M := 0). Because rβ is a weak solution of (69)

with the initial and interface conditions from (63), the lemma provides sequences
(
r

(0)
β,n

)
n
⊂ D(R2)3,

(fn)n ⊂ H1(R2 × Jρ0,ε0)3 and (rβ,n)n ⊂ G1(R2 × Jρ0,ε0)3 with r(0)
β,n → r

(0)
β in L2(R2)3, fn → f in

L2(R2 × Jρ0,ε0)3 and rβ,n → rβ in G0(R2 × Jρ0,ε0)3 for n → ∞, and rβ,n is a weak solution of (69)

with data
(
fn, r

(0)
β,n

)
for all n ∈ N. The same calculation as in Step 1 shows that

η

2
‖rβ,n(·, t)‖2L2(R2)3 ≤ C

∥∥∥r(0)
β,n

∥∥∥2

L2(R2)3
+

∫ t

0

∫
R2

(
fn · rβ,n +

1

2
∂tS(R)rβ,n · rβ,n dx

)
ds.

The Cauchy-Schwarz inequality then implies the statement.
We now have to estimate each part of the right-hand side in (68). Let

z̃(t) :=
∑
γ∈N30

|γ|≤3,γ1=0

‖∂γR(·, t)‖2L2(R2)3 .

From Step I we know that ∥∥∥r(0)
β

∥∥∥
L2(R2)3

≤ C
(
ρ+ ε

7
2−a
)
.

For
∫ t

0

∫
R2 ∂tS(R)rβ · rβ dx ds we first have

ε2aε3

∫ t

0

∫
R2

1

2
∂tθ(R)rβ · rβ dx ds ≤ Cε2a

∫ t

0

‖rβ(·, s)‖2L2(R2)3 ds ≤ Cε2a

∫ t

0

z̃(s) ds

sinceR, ∂tR ∈ L∞(R2 × Jρ0,ε0)3. Similarly, using also that

‖U ext‖L∞(R2×Jρ0,ε0 )3 , ‖∂tU ext‖L∞(R2×Jρ0,ε0 )3 ≤ Cε,
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cf. (45), we derive∫ t

0

∫
R2

1

2
∂tϕ(R)rβ · rβ dx ds ≤ C

(
ε2 + ε1+a

) ∫ t

0

‖rβ(·, s)‖2L2(R2)3 ds ≤ Cε2

∫ t

0

z̃(s) ds.

For the residual term, (44) yields
∥∥∂βRes(·, t)

∥∥
L2(R2)3

≤ Cε7/2. The Cauchy-Schwarz inequality and

‖rβ(·, t)‖2L2(R2)3 ≤ z(t) ≤ ρ ≤ 1 for t ∈ Jρ0,ε0 then give us∫ t

0

∫
R2

ε−a∂βRes · rβ dx ds ≤
∫ t

0

ε−a
∥∥∂βRes(·, s)

∥∥
L2(R2)3

‖rβ(·, s)‖L2(R2)3 ds ≤ Cε 3
2−a.

The remaining terms
∫ t

0

∫
R2 (wβ · rβ + sβ · rβ) dx ds mainly consist of integrals of the type

I1 :=

∫ t

0

∫
R2

∂af(x, s)∂bg(x, s)∂ch(x, s)k(x, s) dx ds, (70)

where f, g, h ∈ G3(R2×J), k ∈ G0(R2×J) and a, b, c ∈ N3
0 with |a|, |b|, |c| < 4 and s := |a|+|b|+|c| ≤

4. For s = 4 we only have integrals where at least one time-derivative is present, i.e., at = bt = ct = 0
is not possible. The case where four derivatives fall an a component of U ext also appears and will be
discussed separately. The following two classes of estimates are needed.

i) |a| ≤ 3, |b| ≤ 1, |c| ≤ 1: Here ∂af(·, t), k(·, t) ∈ L2(R2) and ∂bg(·, t), ∂ch(·, t) ∈ L∞(R2). With
the Cauchy-Schwarz inequality we obtain

I1 ≤ C
∫ t

0

‖∂af(·, s)‖L2(R2)

∥∥∂bg(·, s)
∥∥
L∞(R2)

‖∂ch(·, s)‖L∞(R2) ‖k(·, s)‖L2(R2) ds.

ii) |a| ≤ 2, |b| ≤ 2, |c| = 0: Now k(·, t) ∈ L2(R2), ∂ch(·, t) ∈ L∞(R2), and ∂af(·, t), ∂bg(·, t) ∈
Lp(R2) for all p ∈ [1,∞). This follows from the Sobolev embedding H1(R2

±) ↪→ Lp(R2
±) for all

1 ≤ p <∞. Hölder’s inequality then yields

I1 ≤ C
∫ t

0

‖∂af(·, s)‖L3(R2)

∥∥∂bg(·, s)
∥∥
L6(R2)

‖∂ch(·, s)‖L∞(R2) ‖k(·, s)‖L2(R2) ds.

The role of the function k in (70) will always be played by a component of rβ = ∂βR.
Recall that S(R) = Λ + ε3ε

2aθ(R) + ϕ(R). Hence, to estimate
∫ t

0

∫
R2 sβ · rβ dx ds, we first analyze

ε2aε3∂
γθ(R)∂β−γ∂tR · rβ where β1 = γ1 = 0. This sum consists of terms of the form

Cε2a∂γ
′
Ri∂

γ′′Rj∂
β−γ∂tRk∂

βRl

with γ = γ′ + γ′′, γ′1 = γ′′1 = 0, and i, j, k, l ∈ {1, 2}. The case i) above applies if |β− γ| = 0, where we
may take |γ′′| ≤ 1. We then estimate

Cε2a

∫ t

0

∫
R2

∂γ
′
Ri∂

γ′′Rj∂
β−γ∂tRk∂

βRl dxds ≤ Cε2a

∫ t

0

∥∥∂βRl(·, s)∥∥L2(R2)

∥∥∥∂γ′Ri(·, s)∥∥∥
L2(R2)

ds

≤ Cε2a

∫ t

0

z̃(s) ds.

A representative of type ii) is any term with |β − γ| = 1, |γ′| = 2 and |γ′′| = 0, which is estimated via

Cε2a

∫ t

0

∫
R2

∂γ
′
Ri∂

γ′′Rj∂
β−γ∂tRk∂

βRl dx ds

27



≤ Cε2a

∫ t

0

∥∥∂βRl(·, s)∥∥L2(R2)

∥∥∥∂γ′Ri(·, s)∥∥∥
L6(R2)

∥∥∂β−γ∂tRk(·, s)
∥∥
L3(R2)

ds

≤ Cε2a

∫ t

0

(∥∥∂βRl(·, s)∥∥2

L2(R2)
+
∥∥∥∂γ′Ri(·, s)∥∥∥2

L6(R2)

∥∥∂β−γ∂tRk(·, s)
∥∥2

L3(R2)

)
ds

≤ Cε2a

∫ t

0

(
z̃(s) + (z(s))

2
)

ds ≤ Cε2a

∫ t

0

z̃(s) ds+ Cρ2ε2at,

using again H1(R2
±) ↪→ Lp(R2

±) for 1 ≤ p <∞. The remaining cases can be treated similarly.
Next, we study ∂γϕ(R)∂β−γ∂tR · ∂βR with |β− γ| ≤ 2 and β1 = γ1 = 0. We again use (45) which

provides the inequality ‖∂αU ext‖L∞(R2×Jρ0,ε0 )3 ≤ Cε for all |α| ≤ 3 with α1 ≤ 2. For terms quadratic
in U ext case i) applies:∫ t

0

∫
R2

∂γ(Uext,iUext,j)∂
β−γ∂tRk∂

βRl dx ds ≤ Cε2

∫ t

0

∥∥∂βRl(·, s)∥∥L2(R2)

∥∥∂β−γ∂tRk(·, s)
∥∥
L2(R2)

ds

≤ Cε2

∫ t

0

z̃(s) ds.

For terms linear in U ext, i.e., I2 := εa
∫ t

0

∫
R2 ∂

γ′Uext,i∂
γ′′Rj∂

β−γ∂tRk∂
βRl dx ds, we destinguish the

three cases |β − γ| = 0, 1, and 2. For |β − γ| = 0 we compute

I2 ≤ Cε1+a

∫ t

0

∥∥∂βRl(·, s)∥∥L2(R2)

∥∥∥∂γ′′Rj(·, s)∥∥∥
L2(R2)

ds ≤ Cε2a

∫ t

0

z̃(s) ds

by means of the estimate type i) and the fact that ∂tRk ∈ L∞(R2 × Jρ0,ε0). For |β − γ| = 1 the estimate
of type ii) applies and we have

I2 ≤ Cε1+a

∫ t

0

∥∥∂βRl(·, s)∥∥L2(R2)

∥∥∥∂γ′′Rj(·, s)∥∥∥
L6(R2)

∥∥∂β−γ∂tRk(·, s)
∥∥
L3(R2)

ds

≤ Cε1+a

∫ t

0

z̃(s) ds+ Cε1+at

as ∂γ
′′
Rj , ∂

β−γ∂tRk ∈ L∞(Jρ0,ε0 ,H1(R2)). Finally, for |β − γ| = 2 case i) again yields

I2 ≤ Cε1+a

∫ t

0

∥∥∂β−γ∂tRk(·, s)
∥∥
L2(R2)

∥∥∂βRl(·, s)∥∥L2(R2)
ds ≤ Cε1+a

∫ t

0

z̃(s) ds

where we have used ∂γ
′′
Rj ∈ L∞(R2 × Jρ0,ε0) because |γ′′| ≤ 1.

At last, we treat ∂β (W (R)R) · ∂βR. Terms quadratic in U ext are estimated as follows, where β =
β′ + β′′. If |β′| < 3 or if not all three derivatives fall on ∂tUext,j , we obtain

I3 :=

∫ t

0

∫
R2

∂β
′
(Uext,i∂tUext,j)∂

β′′Rk∂
βRl dx ds ≤ Cε2

∫ t

0

∥∥∂βRl(·, s)∥∥L2(R2)

∥∥∥∂β′′Rk(·, s)
∥∥∥
L2(R2)

ds

≤ Cε2

∫ t

0

z̃(s) ds

as ‖∂β′ (Uext,i∂tUext,j) ‖L∞(R2×Jρ0,ε0 ) ≤ Cε2 by (45). If |β′| = 3 and ∂β
′

is only applied to ∂tUext,j , we
use (47) with ∂β

′
∂tUext,j = Aj + Bj . Sobolev’s embedding for x2 7→ Rk(x1, x2, s) implies that

I3 ≤
∣∣∣∣∫ t

0

∫
R2

Uext,iAj∂β
′′
Rk∂

βRl dx ds

∣∣∣∣+

∣∣∣∣∫ t

0

∫
R2

Uext,iBj∂β
′′
Rk∂

βRl dx ds

∣∣∣∣
≤ Cε2

∫ t

0

z̃(s) ds+

∫ t

0

‖∂βRl(·, s)‖L2(R2)

[∫
R2

|Uext,iBjRk|2 dx

] 1
2

ds
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≤ Cε2

∫ t

0

z̃(s) ds+ Cε2

∫ t

0

‖∂βRl(·, s)‖L2(R2)

[∫
R

sup
x2∈R

|Rk(x1, x2, s)|2 dx1

] 1
2

ds

≤ Cε2

∫ t

0

z̃(s) ds+ Cε2

∫ t

0

‖∂βRl(·, s)‖L2(R2)

[∫
R2

(
|Rk(x1, x2, s)|2 + |∂x2Rk(x1, x2, s)|2

)
dx

] 1
2

ds

≤ Cε2

∫ t

0

z̃(s) ds. (71)

In the same way, we treat terms linear in U ext. Let β = β′ + β′′ + β′′′ and w.l.o.g. |β′′′| ≤ 1. If |β′| ≤ 2,
it follows

I4 := εa
∫ t

0

∫
R2

∂β
′
∂tUext,i∂

β′′Rj∂
β′′′Rk∂

βRl dx ds

≤ Cε1+a

∫ t

0

∥∥∂βRl(·, s)∥∥L2(R2)

∥∥∥∂β′′Rj(·, s)∥∥∥
L2(R2)

ds

≤ Cε1+a

∫ t

0

z̃(s) ds,

using ∂β
′′′
Rk, ∂

β′∂tUext,i ∈ L∞(R2 × Jρ0,ε0). If |β′| = 3, as above we estimate

I4 ≤ εa
∣∣∣∣∫ t

0

∫
R2

AiRjRk∂βRl dx ds

∣∣∣∣+ εa
∣∣∣∣∫ t

0

∫
R2

BiRjRk∂βRl dx ds

∣∣∣∣
≤ Cε1+a

∫ t

0

z̃(s) ds+ Cεa
∫ t

0

‖∂βRl(·, s)‖L2(R2)

(∫
R2

|BiRjRk|2 dx

) 1
2

ds

≤ Cε1+a

∫ t

0

z̃(s) ds+ Cε1+a

∫ t

0

‖∂βRl(·, s)‖L2(R2)

(∫
R

sup
x2∈R

|Rk(x1, x2, s)|2 dx1

) 1
2

ds

≤ Cε1+a

∫ t

0

z̃(s) ds.

Note that these are the only cases where four derivatives can fall on one function in this step.
Collecting the above partial estimates, we finally get in (68)

z̃(t) ≤ C
(
ρ2

0 + ε2

∫ t

0

z̃(s) ds+ ε1+at+ ε
3
2−a + ε7−2a

)
.

If a ∈ (1, 11
2 ), the Gronwall’s inequality yields

z̃(t) ≤ C
(
ρ2

0 + ε
3
2−a + ε1+at

)
eCε

2t ≤ C
(
ρ2

0 + ε
3
2−a + εa−1

)
for all t ∈ Jρ0,ε0 if ‖R(0)‖H3(R2)3 ≤ ρ0.

Step III: Analysis of ∂βR2,3 for |β| ≤ 3, β1 6= 0

We first consider β1 = 1. Setting α := (0, β2, βt)
>, we have β = (1, 0, 0)> +α and{

∂βR2 = ∂x2
∂αR1 −

(
S(R)∂t∂

αR+ sα(R) +wα(R) + ε−a∂αRes
)

3
,

∂βR3 = −
(
S(R)∂t∂

αR+ sα(R) +wα(R) + ε−a∂αRes
)

2
.

(72)

Each term on the right-hand side has derivatives ∂γ with |γ| ≤ 3 and γ1 = 0 and hence can be bounded by
Step II, for instance,

‖(S(R)∂t∂
αR)(·, t)‖L2(R2)3 ≤ ‖S(R)(·, t)‖L∞(R2×Jρ0,ε0 ) ‖(∂t∂αR)(·, t)‖L2(R2)3 ≤ C‖∂

γR‖L2(R2)3 .
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In summary, we get ∥∥∂βR2,3

∥∥2

L2(R2)3
≤ Cz̃(t) ≤ C

(
ρ2

0 + ε
3
2−a + εa−1

)
for all |β| ≤ 3, β1 = 1 and all t ∈ Jρ0,ε0 if a ∈ (1, 11

2 ) and ‖R(0)‖H3(R2)3 ≤ ρ0.
For larger values of β1 we iterate the process. For β1 = 2 we have (72) with β = (1, 0, 0)> + α and

α := (1, β2, βt)
> and using the previous step, all terms in the right-hand side can be estimated in L2(R2).

For β1 = 3 the same process applies, with β = (1, 0, 0)> +α and α = (2, 0, 0)>. Altogether, we arrive at∑
|β|≤3,
β1=0

∥∥∂βR(·, t)
∥∥2

L2(R2)3
+
∑
|β|≤3

(∥∥∂βR2(·, t)
∥∥2

L2(R2)
+
∥∥∂βR3(·, t)

∥∥2

L2(R2)

)
≤ C

(
ρ2

0 + ε
3
2−a + εa−1

)
(73)

for all t ∈ Jρ0,ε0 if a ∈ (1, 11
2 ) and ‖R(0)‖H3(R2)3 ≤ ρ0.

Step IV: Analysis of ∂βR1, |β| ≤ 3

In this final step we exploit the divergence equation∇ ·D(U) = ∇ ·D(U (0)) to estimate ∂βR1. First, for
α ∈ N3

0, |α| ≤ 2 and rα = ∂αR we have

ε−a∂α∂tD̃(εaR+U ext) = ∂t

((
ε1 + ε2aε3|R̃|2

)
r̃α

)
+ ∂α

(
ϕ̃(R)∂tR̃

)
+ ∂α

(
W̃ (R)R̃

)
+ ∂t

 ∑
0<γ≤α

(
α

γ

)
∂γ
(
ε1 + ε2aε3|R̃|2

)
∂α−γR̃

+ ε−a∂αR̃es

+ ε−a∂α
(
∂x2

Uext,3

−∂x1
Uext,3

) (74)

on R2
± × Jρ0,ε0 , where ·̃ of a 3 × 3-matrix denotes the restriction to the upper left (2 × 2)-submatrix and

·̃ of a vector in R3 denotes the first two components of this vector. The calculation to obtain (74) uses that
ϕ(R) and W (R) have a block structure and that the sum of the last two terms in (74) is ε−a∂tD̃(U ext).

An integration by parts yields∫ t

0

∂α
(
ϕ̃(R)∂tR̃

)
ds =

∫ t

0

(
ϕ̃(R)∂α∂tR̃+

∑
0<γ≤α

(
α

γ

)
∂γ ϕ̃(R)∂α−γ∂tR̃

)
ds

=

∫ t

0

(
−∂tϕ̃(R)∂αR̃+

∑
0<γ≤α

(
α

γ

)
∂γ ϕ̃(R)∂α−γ∂tR̃

)
ds+

[
ϕ̃(R)∂αR̃

]t
0
.

Integrating (74) in time, we then deduce[
ε−a∂αD̃(εaR+U ext)

]t
0

=

[(
ε1 + ε2aε3|R̃|2

)
r̃α + ϕ̃(R)r̃α +

∑
0<γ≤α

(
α

γ

)
∂γ
(
ε1 + ε2aε3|R̃|2

)
∂α−γR̃

]t
0

+

∫ t

0

(
− ∂tϕ̃(R)r̃α +

∑
0<γ≤α

(
α

γ

)
∂γ ϕ̃(R)∂α−γ∂tR̃+ ∂α

(
W̃ (R)R̃

))
ds

+ ε−a
∫ t

0

(
∂αR̃es + ∂α

(
∂x2Uext,3

−∂x1Uext,3

))
ds.

(75)

Note that the divergence of the last term vanishes.
Substep 1: β1 = 1. We write β = (1, 0, 0)> + α, where α = (0, β2, βt)

>. We have that ∇ · ∂αD̃(U) is
constant in time because

∇ · ∂αD̃(U) = ∂α(∇ · D̃(U)) = ∂α%̃, %̃ := ∇ · D̃(U (0)).
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Note that %̃ ∈ H2(R2) because of the algebra property ofH2(R2) and U (0) ∈ H3(R2)3. Hence, taking the
divergence of (75), the first term vanishes and we have[(

ε1 + ε2aε3|R̃|2
)

(∂x1rα,1 + ∂x2rα,2) +∇
(
ε1 + ε2aε3|R̃|2

)
· r̃α

]t
0

= −

∇ ·
ϕ̃(R)∂αR̃+

∑
0<γ≤α

(
α

γ

)
∂γ(ε1 + ε2aε3|R̃|2)∂α−γR̃

t
0

−
∫ t

0

∇ ·

−∂tϕ̃(R)∂αR̃+ ∂α
(
W̃ (R)R̃

)
+ ε−a∂αR̃es +

∑
0<γ≤α

(
α

γ

)
∂γ ϕ̃(R)∂α−γ∂tR̃

 ds.

Because of R̃ ∈ C(Jρ0,ε0 , L
∞(R2))2, there exists a number ϑ > 0 with (ε1 + ε2aε3|R̃|2)(x, t) ≥ ϑ

for small enough ε, all t ∈ Jρ0,ε0 and almost all x ∈ R2. Since ∂x1R, ∂x2R ∈ C(Jρ0,ε0 , L
∞(R2))2, we

can also estimate
∥∥∥∇(ε1 + ε2aε3|R̃|2

)
(·, t)

∥∥∥
L∞(R2)3

≤ C for all t ∈ Jρ0,ε0 .

These facts yield the central inequality of this step:

ϑ ‖∂x1
rα,1(·, t)‖L2(R2)

≤ C
(
‖∂x2

rα,2(·, t)‖L2(R2) + ‖∇ · r̃α(·, 0)‖L2(R2) + ‖r̃α(·, t)‖L2(R2)2 + ‖r̃α(·, 0)‖L2(R2)2

)
+

∥∥∥∥∥∥
∇ ·

ϕ̃(R)∂αR̃+
∑

0<γ≤α

(
α

γ

)
∂γ(ε1 + ε2aε3|R̃|2)∂α−γR̃

 (·, s)

t
0

∥∥∥∥∥∥
L2(R2)

(76)

+

∥∥∥∥∥∥
∫ t

0

∇ ·

−∂tϕ̃(R)∂αR̃+ ∂α
(
W̃ (R)R̃

)
+

∑
0<γ≤α

(
α

γ

)
∂γ ϕ̃(R)∂α−γ∂tR̃

 (·, s) ds

∥∥∥∥∥∥
L2(R2)

+ ε−a
∥∥∥∥∫ t

0

∇ · ∂αR̃es(·, s) ds

∥∥∥∥
L2(R2)

We next iterate over βt and β2.
(i) α = (0, 0, 0)>. Here (76) simplifies to

ϑ ‖∂x1
rα,1(·, t)‖L2(R2) ≤ ε

−a
∥∥∥∥∫ t

0

∇ · R̃es(·, s) ds

∥∥∥∥
L2(R2)

+ C
(
‖∂x2

rα,2(·, t)‖L2(R2) + ‖∇ · r̃α(·, 0)‖L2(R2) + ‖r̃α(·, t)‖L2(R2)2 + ‖r̃α(·, 0)‖L2(R2)2

)
+

∥∥∥∥[∇ · (ϕ̃(R)R̃
)

(·, s)
]t

0

∥∥∥∥
L2(R2)

+

∥∥∥∥∫ t

0

∇ ·
(
−∂tϕ̃(R)R̃+ W̃ (R)R̃

)
(·, s) ds

∥∥∥∥
L2(R2)

.

(77)

The residual term on the right-hand side is bounded by Cε
3
2−a due to (42). The second and fourth

term on the right-hand side of (77) are estimated by (73) and the third and fifth term by (67). In
the first norm on the last line of (77) all terms have been treated in Steps I, II or III except for
those of the type εaε3∂x1rα,1RjUext,k and ε3∂x1rα,1Uext,jUext,k. Using R ∈ L∞(R2 × Jρ0,ε0)3 and
‖U ext‖L∞(R2×Jρ0,ε0 )3 ≤ Cε, we have

‖εaε3 (∂x1
rα,1RjUext,k) (·, t)‖L2(R2) ≤ Cε

1+a ‖∂x1
rα,1(·, t)‖L2(R2) ,

‖ε3 (∂x1rα,1Uext,jUext,k) (·, t)‖L2(R2) ≤ Cε
2 ‖∂x1rα,1(·, t)‖L2(R2) .

In the last norm of the right-hand side of (77), the terms which have not been estimated so far are of the
type ∂x1rα,1∂tUext,jUext,k, εa∂t(Uext,jRk)∂x1rα,1, and εaUext,jRk∂t∂x1rα,1 for j, k ∈ {1, 2, 3}. Using
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R, ∂tR ∈ L∞(R2 × Jρ0,ε0)3 and ‖∂tU ext‖L∞(R2×Jρ0,ε0 )3 ≤ Cε, we obtain∫ t

0

‖ε3 (∂x1rα,1∂tUext,jUext,k) (·, s)‖L2(R2) ds ≤ Cε2

∫ t

0

‖∂x1rα,1(·, s)‖L2(R2) ds,∫ t

0

‖εaε3 (∂x1
rα,1∂t(RkUext,j)) (·, s)‖L2(R2) ds ≤ Cε1+a

∫ t

0

‖∂x1
rα,1(·, s)‖L2(R2) ds,

and, integrating by parts in time,∥∥∥∫ t

0

εaε3 (Uext,jRk∂t∂x1
rα,1) (·, s) ds

∥∥∥
L2(R2)

≤
∥∥∥∥[εa (Uext,jRk∂x1

rα,1) (·, s)]t0 −
∫ t

0

εa (∂t(Uext,jRk)∂x1
rα,1) (·, s) ds

∥∥∥∥
L2(R2)

≤ Cε1+a

(
‖∂x1

rα,1(·, t)‖L2(R2) + ‖∂x1
rα,1(·, 0)‖L2(R2) +

∫ t

0

‖∂x1
rα,1(·, s)‖L2(R2) ds

)
≤ Cε1+a

(
ρ0 + ‖∂x1rα,1(·, t)‖L2(R2) +

∫ t

0

‖∂x1rα,1(·, s)‖L2(R2) ds

)
.

Combining the above inequalities, for a ∈ (1, 11
2 ) and 0 ≤ t ≤ Tρ0,ε0 ≤ T0ε

−2 we infer

ϑ ‖∂x1rα,1(·, t)‖L2(R2) ≤ C
(
ρ0 + ε

1
2 ( 3

2−a) + ε
1
2 (a−1) + ε2 ‖∂x1

rα,1(·, t)‖L2(R2) + ε
3
2−a
)

+ Cε2

∫ t

0

(
ρ0 + ε

1
2 ( 3

2−a) + ε
1
2 (a−1)

)
ds+ Cε2

∫ t

0

‖∂x1
rα,1(·, s)‖L2(R2) ds.

For ε small enough and a ∈ [ 5
4 ,

11
2 ) (so that 3

2 − a ≤ a− 1) it follows

‖∂x1
rα,1(·, t)‖L2(R2) ≤ C

(
ρ0 + ε

1
2 ( 3

2−a) + ε2

∫ t

0

‖∂x1
rα,1(·, s)‖L2(R2) ds

)
.

Finally, Gronwall’s inequality yields

‖∂x1
rα,1(·, t)‖L2(R2) ≤ C

(
ρ0 + ε

1
2 ( 3

2−a)
)

eCε
2t ≤ C

(
ρ0 + ε

1
2 ( 3

2−a)
)
.

(ii) We iterate the process from (i) for higher α2 = β2 and αt = βt (keeping β1 = 1). For instance, the
following sequence of α’s can be chosen: α = (0, 1, 0)>, (0, 0, 1)>, (0, 2, 0)>, (0, 0, 2)>, (0, 1, 1)>. Note
that |α| = βt + β2 ≤ 2 therefore we can always use integration by parts and Lemma C.1. In the terms with
W̃ again three derivatives can fall on ∂tUext,k. If ∂x1

is included, then one can proceed as above by means
of (45). Otherwise, one uses (47) and argues as in (71).
Substep 2: β1 > 1. In this last step we have to iterate over β1 and increase it to 3. For β1 = 2 we set
β = (1, 0, 0)> +α with α = (1, β2, βt)

>. The estimates work like in Substep 1(i) since we have |α| ≤ 2.
Finally, for β1 = 3 we have β = (3, 0, 0)> = (1, 0, 0)> + α with α = (2, 0, 0)> and apply Substep 1(i)
again. Here, factors ∂3

x1
∂tUext,k occur in the terms with W̃ , which are treated with (46).

In summary, collecting all the above estimates, one concludes

z(t) ≤ C
(
ρ2

0 + ε
3
2−a
)

for every t ∈ Jρ0,ε0 and ε ∈ (0, ε0) if a ∈ [ 5
4 ,

7
2 ) and ε0 is small enough.

Next, we keep ρ fixed, choose a ∈ [ 5
4 ,

3
2 ) and ρ0, ε0 so small that C

(
ρ2

0 + ε
3/2−a
0

)
< 1

2ρ
2 and

εa0ρ+ ‖U ext‖L∞(R2×[0,T0ε−2))3 ≤ $
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where we recall (59) and that ‖U ext‖L∞(R2×[0,T0ε−2))3 ≤ Cε ≤ Cε0. With this choice we have

z(t) <
1

2
ρ2

for every t ∈ Jρ0,ε0 and ε ∈ (0, ε0) if a ∈ [ 5
4 ,

3
2 ). The definition (61) of Tρ0,ε0 now implies that Tρ0,ε0 =

T0ε
−2 < tM and that (60) holds with t∗ = T0ε

−2.

6.2 Final error estimate
To finalize the proof of Theorem 1.1, we first compare U ext from (40) and Uans from (12). Similar as
deducing Res(U ext) ∈ G3(R2 × Jρ0,ε0)3 from (43), one can show that the same condition yields

‖U ext −Uans‖G3(R2×Jρ0,ε0 )3

=

∥∥∥∥(−ε2i∂X2
A∂kw(k0)− ε3 1

2
∂2
X2
A∂2

kw(k0) + ε3|A|2Ap
)
F1 + ε3A3hF 3

1 + c.c.

∥∥∥∥
G3(R2×Jρ0,ε0 )3

≤ Cε 3
2 .

Note that we again lose half a power of ε since A depends on X2 = ε(x2 − ν1t). Second, we use (62) and
the triangle inequality to conclude

‖U −Uans‖G3(R2×Jρ0,ε0 )3 ≤ ‖U −U ext‖G3(R2×Jρ0,ε0 )3 + ‖U ext −Uans‖G3(R2×Jρ0,ε0 )3

≤ C
(
εa + ε

3
2

)
≤ Cδε

3
2−δ

for all δ > 0. �

A Numerical method for the eigenvalue problem
To solve (15) numerically we rewrite the problem as a second-order ordinary differential equation

∂2
x1
w3 = i∂x1ε1(x1)ωw2 + iε1(x1)ω∂x1w2

=
∂x1

ε1(x1)

ε1(x1)
∂x1

w3 − ε1(x1)ω (µ0ωw3 + kw1)

=
∂x1ε1(x1)

ε1(x1)
∂x1w3 − ε1(x1)µ0ω

2w3 + k2w3

on R \ {0}. The interface condition Jw2K1D = 0 implies that
r
∂x1w3

ε1

z

1D
= 0. Now we have to solve the

eigenvalue problem
−∂2

x1
w3 (x1) +

∂x1
ε1 (x1)

ε1 (x1)
∂x1w3 (x1) + k2w3 (x1) = ε1 (x1)µ0ω

2w3 (x1) , x1 ∈ R \ {0},

Jw3K1D =

s
∂x1

w3

ε1

{

1D
= 0.

(78)

Note that we can use w1 = − k
ε1ω

w3 and w2 = − i
ε1ω

∂x1
w3 to calculate the remaining components of w.

We also see that the interface conditions Jε1w1K1D = Jw2K1D = 0 are satisfied if w3 solves (78).
To simplify the numerics we write w3 = w3,r + w3,s, with a smooth function w3,r and a function w3,s

that has a discontinuous first derivative at x1 = 0. For instance, we take

w3,s (x1) =

{
w−3,s = const., x1 ≤ 0,

w+
3,s (x1) , x1 > 0,
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and choose w+
3,s(0) = w−3,s so that w3,s is continuous. Note that with this choice w3 satisfies the first

interface condition. For the second interface condition we calculate ∂x1
w3 and get that

s
∂x1

w3

ε1ω

{

1D
= 0⇐⇒ ε−1 (0)

(
∂x1w3,r(0) + ∂x1w

+
3,s(0)

)
= ε+1 (0)∂x1w3,r(0)

⇐⇒ ∂x1
w+

3,s(0) =
ε+1 (0)− ε−1 (0)

ε−1 (0)
∂x1

w3,r(0) =: ε̃∂x1
w3,r(0).

We now set

w3,s(x1) = (Lw3,r) (x1) :=

{
− sgn (ε̃) ∂x1w3,r(0), x1 < 0,

− sgn (ε̃) ∂x1
w3,r(0)e−|ε̃|x1 , x1 ≥ 0.

to satisfy the second interface condition. Thus, w3,r has to solve
(
−∂2

x1
+
∂x1

ε1 (x1)

ε1 (x1)
∂x1 + k2

)
((I + L)w3,r (x1)) = ε1(x1)µ0ω

2(I + L)w3,r (x1) , x1 ∈ R \ {0},

Jw3,rK1D = J∂x1
w3,rK1D = 0.

(79)
We are interested in H1(R)-solutions, therefore we have at least the boundary conditions

lim
x0→−∞

w3,r (x1) = sgn (ε̃) ∂x1w3,r(0), lim
x1→∞

w3,r (x1) = 0.

To solve (79) numerically for a fixed k ∈ R we discretize the problem over a finite interval [−d, d] ⊂ R
and apply a solver for a generalized eigenvalue problem, e.g. a solver based on a Krylov-Schur algorithm.
To be more precise, we used d ranging from 102 to 104 with the step size h = 0.01 in space. We used the
second-order difference quotients with zero Dirichlet boundary conditions to discretize the derivatives. The
generalized eigenvalue problem was then solved with the Matlab functions “eigs”, where we calculated the
first 10 eigenvalues closest to ν0 with a convergence tolerance of 10−10. We then only selected solutions
where the corresponding eigenfunctions were almost zero in a small neighborhood of the boundary of
[−d, d], i.e., the norm of w3 on [−d,−d+ 100h] ∪ [d− 100h, d] is smaller than 10−6.

B Residual of order ε4

For Res := Res(U ext) and F1 = ei(k0x2−ν0t) we have

Res3 = F1ε
4

(
1

2
∂3
X2
A∂2

kw1 (k0)−
(
2|A|2∂X2A+A2∂X2A

)
p1

)
+ F1ε

4µ0

(ν1

2
∂3
X2
A∂2

kw3 (k0)− i∂T∂X2
A∂kw3 (k0)− ν1

(
2|A|2∂X2

A+A2∂X2
A
)
p3

)
− 3F 3

1 ε
4
(
∂X2

AA2h1 + µ0ν1A
2∂X2

Ah3

)
+ c.c.+O

(
ε5
)

and the parts of Res1 and Res2 that are linear in U ext are given by

Reslin,1 = F1ε
4

(
1

2
∂3
X2
A∂2

kw3 (k0)−
(
2|A|2∂X2

A+A2∂X2
A
)
p3

)
+ F1ε

4ε1

(ν1

2
∂3
X2
A∂2

kw1 (k0)− i∂T∂X2
A∂kw1 (k0)− ν1

(
2|A|2∂X2

A+A2∂X2
A
)
p1

)
− 3F 3

1 ε
4
(
ε1ν1A

2∂X2
Ah1 +A2∂X2

Ah3

)
+ c.c.+O

(
ε5
)
,

Reslin,2 = F1ε
4ε1

(ν1

2
∂3
X2
A∂2

kw2 (k0)− i∂T∂X2A∂kw2 (k0)− ν1

(
2|A|2∂X2A+A2∂X2A

)
p2

)
− 3F 3

1 ε
4ε1ν1A

2∂X2
Ah2 + c.c.+O

(
ε5
)
.
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For the nonlinear part of Res1 we get

Resnl,1 = −ε4ε3
(
3ν1F

3
1A

2∂X2
A
(
m3

1 +m1m
2
2

)
+ ν0F

3
1A

2∂X2
A
(
3m2

1∂kw1 (k0) +m2
2∂kw1 (k0) + 2m1m2∂kw2 (k0)

)
+ ν1F1A

2∂X2
A
(
3|m1|2m1 + 2m1|m2|2 +m1m

2
2

)
+ ν0F1A

2∂X2
A
(
3m2

1∂kw1 (k0) +m2
2∂kw1 (k0) + 2m1m2∂kw2 (k0)

)
+ 2ν0F1|A|2∂X2

A
(
3|m1|2∂kw1 (k0) + |m2|2∂kw1 (k0) +m1m2∂kw2 (k0) +m1m2∂kw2 (k0)

)
+ 2ν1F1|A|2∂X2

A
(
3|m1|2m1 + 2m1|m2|2 +m1m

2
2

))
+ c.c.+O

(
ε5
)
,

and for Resnl,2 we simply have to change the indices of the components ofm and ∂kw (k0) in Resnl,2.

C Calculus Lemma
Lemma C.1

Let m1,m2 ∈ N0 with m1 ≥ m2 and m1 ≥ 2 and let J ⊂ R be an interval.

(i) Let j ∈ {0, . . . ,m1}, f ∈ Hm1−j(R2) and g ∈ Hj(R2). Then fg ∈ L2(R2) and

‖fg‖L2(R2) ≤ C ‖f‖Hm1−j(R2) ‖g‖Hj(R2) .

(ii) Let f ∈ Hm1(R2) and g ∈ Hm2(R2). Then fg ∈ Hm2(R2) and

‖fg‖Hm2 (R2) ≤ C ‖f‖Hm1 (R2) ‖g‖Hm2 (R2) .

(iii) Let f ∈ Fm1,1
0 (R2) and g ∈ Hm2(R2). Then fg ∈ Hm2(R2) and

‖fg‖Hm2 (R2) ≤ C ‖f‖Fm1,1
0 (R2)

‖g‖Hm2 (R2) .

(iv) Let f ∈ Fm1,1(R2 × J) and g ∈ Gm2(R2 × J). Then fg ∈ Gm2(R2 × J) and

‖fg‖Gm2 (R2×J) ≤ C ‖f‖Fm1,1(R2×J) ‖g‖Gm2 (R2×J) .

(v) Let f ∈ Fm1,1
0 (R2) and g ∈ Fm2,1

0 (R2). Then fg ∈ Fm2,1
0 (R2) and

‖fg‖Fm2,1
0 (R2)

≤ C ‖f‖Fm1,1
0 (R2)

‖g‖Fm2,1
0 (R2)

.

PROOF: The proofs can be done analogously to Lemma 2.22 in [27].
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