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ABSTRACT:

In this paper, we present an automated method for classification of binary voxel occupancy grids of discretized indoor mapping data such
as point clouds or triangle meshes according to normal vector directions. Filled voxels get assigned normal class labels distinguishing
between horizontal and vertical building structures. The horizontal building structures are further differentiated into those with normal
directions pointing upwards or downwards with respect to the building interior. The derived normal grids can be deployed in the context
of an existing voxel-based indoor reconstruction pipeline, which so far was only applicable to indoor mapping triangle meshes that
already contain normal vectors consistently oriented with respect to the building interior. By means of quantitative evaluation against
reference data, we demonstrate the performance of the proposed method and its applicability in the context of voxel-based indoor
reconstruction from indoor mapping point clouds without normal vectors. The code of our implementation is made available to the
public at https://github.com/huepat/voxir.

1. INTRODUCTION

In recent years, digital models of indoor building environments
(Borrmann et al., 2018) have experienced an ever increasing surge
in importance (Ghaffarianhoseini et al., 2017; Sacks et al., 2020)
in different fields of application, such as construction (Jafari et
al., 2021), facility management (Gao and Pishdad-Bozorgi, 2019),
energy efficiency (Jin et al., 2019) or cultural heritage (Solla et
al., 2020). In this context, methods for the efficient creation of
building models for existing building structures (Volk et al., 2014)
have come to the focus of current research efforts (Lehtola et al.,
2020; Weinmann et al., 2021) in the fields of indoor mapping
(Otero et al., 2020) (i.e. the efficient acquisition of 3D indoor
building geometry by means of mobile sensor systems) and indoor
reconstruction (Kang et al., 2020; Pintore et al., 2020) (i.e. the
automated generation of building models from indoor mapping
data).

Information hinting on a distinction between interior and exterior
with respect to building surfaces represented in indoor mapping
geometry can offer a valuable guidance for automated indoor
reconstruction approaches. This information can be provided by
normal vector directions, if they are consistently oriented with
respect to the building interior. While normal vectors can be
efficiently determined for points of a point cloud by analyzing the
point distribution in the neighbourhood of each respective point
(Yu et al., 2019; Sanchez et al., 2020a), consistently determining
the absolute orientation (i.e. pointing fowards or backwards along
the determined direction) can be more challenging (Ochmann and
Klein, 2019).

When an indoor mapping system provides information about the
position of the sensor at the time of recording of each respective
point, the normal vector can be oriented towards the sensor. Often,
however, only the point coordinates are provided. Other indoor
mapping systems provide output in the form of triangle meshes
as derived product generated in a black-box process from the

∗Corresponding author

primary sensor measurements like e.g. the Microsoft HoloLens
(Khoshelham et al., 2019; Hübner et al., 2020a) or the Matterport
system (Chang et al., 2017). These triangle meshes were found
to be comparable with point clouds in regard of their aptitude
towards classification and segmentation tasks while representing
a significantly more compact form of data (Bassier et al., 2020;
Weinmann et al., 2020).

Furthermore, these triangle meshes provide consistently oriented
normal vectors. A recently published voxel-based indoor recon-
struction approach (VoxIR) (Hübner et al., 2020b, 2021a) with
publicly availabe code is tailored towards such indoor mapping
triangle meshes and depends on their normal vectors as input data.
However, it is not straightforward to apply this approach to indoor
mapping point clouds, where consistently oriented normal vectors
are not available.

Thus, we provide in this paper the following contributions:

• We present a novel method for the automated classification of
3D occupancy voxel grids of indoor building environments
according to their normal direction in vertical and horizontal
structures. Voxels with vertical normal direction are further
distinguished in those, whose normal direction is directed
upwards, downwards or both with respect to the building
interior.

• We apply the proposed normal classification method in the
context of voxel-based indoor reconstruction, extending an
established approach so far only applicable to triangle meshes
with normal vectors to indoor mapping point clouds without
normal information.

• We present a thorough qualitative and quantitative evaluation
on two different publicly available benchmark datasets for
indoor reconstruction.

In the following, Section 2 gives a brief overview on related work.
Afterwards, the proposed methodology is explained in Section 3
before Section 4 presents both qualitative and quantitative eval-
uation results which are further discussed in Section 5. Finally,
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the paper closes with a concluding summary and suggestions for
future research in Section 6.

2. RELATED WORK

Automated reconstruction of building environments from indoor
mapping data such as point clouds is a wide and active field of
research (Kang et al., 2020; Pintore et al., 2020). The various pro-
posed approaches differ significantly in the amount of assumptions
that are made with respect to the building structure to be recon-
structed and thus in their flexibility towards challenging building
environments, ranging from single room scenarios (Li et al., 2020;
Sanchez et al., 2020b), Manhattan World structures where all sur-
faces are orthogonal to the coordinate axes (Ryu et al., 2020; Kim
et al., 2020) to diagonal (Shi et al., 2019; Tran and Khoshelham,
2020) or even curved walls (Yang et al., 2019; Wu et al., 2020) and
slanted ceilings (Nikoohemat et al., 2020; Lim and Doh, 2021).

The available methods also differ in their general approaches.
Some follow a bottom-up strategy, where small local plane patches
are detected in the point cloud data and assembled to constitute
rooms (Xie et al., 2019; Shi et al., 2020; Oh et al., 2021). Others
follow a more top-down approach by first detecting the dominant
global planes in the dataset and intersecting them with one another.
The cells of the resulting cell complex are then partitioned into
building interior and outside space. Storey-wise 2D cell complexes
(Li et al., 2018; Tran and Khoshelham, 2020) as well as fully three-
dimensional cell complexes can be used (Coudron et al., 2018;
Ochmann et al., 2019). Other reconstruction methods make use of
trajectory information of the mobile mapping system if available
(Cui et al., 2019; Nikoohemat et al., 2020; Lim and Doh, 2021) or
operate in a discretized voxel grid (Fichtner et al., 2017; Flikweert
et al., 2019; Gorte et al., 2019). Recently, reconstruction methods
relying on deep learning methods are gaining in prevalence (Kim
et al., 2020; Gankhuyag and Han, 2021; Yang et al., 2021).

Regarding the task of determining normal directions with a con-
sistent orientation with respect to the building interior as a pre-
processing step to indoor reconstruction (i.e. not deriving the
information about the normal orientation from the reconstructed
indoor models), only few works are available that are dedicated
specifically to this topic (Ochmann and Klein, 2019). The task of
determining floor and ceiling layers from indoor mapping point
clouds, on the other hand, is addressed more frequently in the
context of indoor reconstruction (Macher et al., 2017; Fichtner et
al., 2017; Elseicy et al., 2018; Li et al., 2018; Leoni et al., 2019;
Romero-Jarén and Arranz, 2021). Usually, however, the ceilings
and floors are assumed to occur in structure of fixed storey levels
globally over the whole building and are often assumed to be
planar.

3. METHOD

In the following, we present a novel methodology to classify the
filled voxels of 3D occupancy grids derived from indoor mapping
data according to their main normal direction with respect to
the represented building structures. First, Section 3.1 describes
the proposed approach. Afterwards, Section 3.2 describes its
application in the context of voxel-based indoor reconstruction.

3.1 Normal Classification of Occupancy Grids

The aim of the approach presented here is to classify the filled
voxels of a 3D occupancy grid representing indoor building envi-
ronments into vertical structures (of horizontal normal direction
class NH ) and horizontal structures (of vertical normal direction
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Figure 1. Schematic workflow of the proposed normal classifica-
tion approach for occupancy voxel grids.

NV ). The NV voxels are further subdivided into the normal
classes NU (normal up), ND (normal down) and NUD (normal
up and down) with regard to their normal direction pointing to-
wards the room interior. Here, the normal class NUD considers
voxels vertically subdividing rooms of different storeys, i.e. where
a ceiling surface and the next floor surface above are covered by
one and the same voxel.

As is the case with the indoor reconstruction procedure VoxIR
(Hübner et al., 2020b, 2021a) in which the proposed normal classi-
fication method is to be deployed, we do not assume room surfaces
to be planar or subject to common restrictions like the Manhattan
World assumption (Hübner et al., 2021b). In particular, we do not
assume that rooms are necessarily structured in distinct storeys
but account for floors and ceilings to be on different height levels
over different rooms as well as within one room.

The proposed normal classification approach is further detailed
in the following sections. A graphical overview is presented in
Figure 1, while exemplary results for a section of the dataset
’Office’ of (Hübner et al., 2021a) are depicted in Figure 2.

3.1.1 Vertical Structure Extraction In a first step, clearly
vertical structures such as wall surfaces are detected in the input
voxel occupancy grid and labeled as NH . To this aim, continuous
vertical columns of filled voxels of at least 0.5m of height are
detected. This parameter choice was established as producing
satisfactory results over a range of different datasets. Exemplary
results are depicted in Figure 2(a).

3.1.2 Horizontal Structure Segmentation The remaining vox-
els not labeled as NH are preliminarily assumed to belong to
horizontal structures (i.e. NV ) and are segmented into horizontal
voxel segments SV depicted in Figure 2(b). As in VoxIR, a 2.5D
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Figure 2. Exemplary results of the normal classification approach presented in Section 3.1 for a section of the dataset ’office’ from
(Hübner et al., 2021a). (a) NH voxels. (b) SV segments. (c) After classification of SU0 and SD0 . (d) After classification of SV between
SU0 and SD0 . (e) After classification of SU1 and SD1 . (f) After classification of SV between SU1 and SD1 . (g) After completion of
classification of SV . (h) Final normal grid after refinement.

region growing with a threshold on height differences between
positionally neighbouring voxels is used, in order to allow SV

to stretch over small height offsets such as stair steps. This can
however lead to SV under-segmenting ceiling surfaces together
with the floor surface of the next room above. To prevent this, an
additional stopping condition is introduced for the region growing
process by not only regarding height differences in the voxel seg-
ment itself but also differences in the vertical distance above the
respective voxels until the next voxels not yet classified as NH (or
the upper border of the voxel grid) are encountered.

3.1.3 Vertical Adjacency Graph The resulting horizontal seg-
ments SV are assembled in a Vertical Adjacency Graph (VAG)
where the voxel segments are the nodes and the edges represent
a vertical adjacency (i.e. above/below) relation between them,
weighted with the respective area of coverage and mean vertical
distance. Besides the SV , the upper and lower outside OD and
OU are included as two additional nodes in the graph as neighbour
for segments that to not have another segment above/below them.
The resulting graph serves as input to the subsequent iterative step
of normal classification.

3.1.4 Iterative Normal Classification of Horizontal Segments
Some of the SV as nodes of the VAG are assigned normal classes
NU , ND and NUD in an iterative process aiming at identifying
main layers of segments SU and SD which are clearly definable as
deliminating rooms vertically from below and above, respectively.
While these layers pass vertically upwards through the voxel grid
during the iterative process, they are not necessarily restricted to a
single height level at a time (i.e. storey-wise).

The iterative process starts from below as we assume the lower
surfaces of a room (i.e. floor and horizontal furniture surfaces
acquired from above by the respective indoor mapping system)
to be more complete than the upper surfaces. The process can
however be inverted starting from above if this is more suited for a
given indoor mapping system. All examples and results presented
in this work are processed from bottom to top.

First, the first lower layer SU0 is initialized by detecting SV whose
largest neighbour below with respect to coverage is the lower
outside node OU of the VAG. Starting from here, each lower layer

SUi is classified as NU and a corresponding upper layer SDi is
determined as those SV whose largest neighbour below is one
of the SUi segments. Here, however, a minimum threshold of
1.5m on the mean vertical distance between SV is applied, as we
associate SUi and SDi with lower and upper surfaces of rooms
and assume rooms to have a certain minimum height. The detected
SDi are assigned the ND label.

In each iteration, further SV between the detected main layer seg-
ments can be classified as NU or ND if its largest upper neighbour
is among the current SDi and its largest lower neighbour is among
the SUi and is also a lower neighbour of the respective upper
SDi neighbour. For the classification of an intermediate segment
detected in this manner, its lateral borders are examined in the
height range between its SUi and SDi neighbours. If there are
voxels indicating a lateral vertical surface below/above the SV

segment, it is assumed to represent the upper/lower surface of a
piece of furniture (e.g. table surface / lower surface of a lamp) and
assigned NU or ND accordingly. If there are no lateral surfaces
to be found, the decision is made based upon height above the
lower SUi neighbour, assuming that horizontal surfaces below
1.5m above the floor are likely to be captured from above and
thus assigned NU .

Based on the current SDi , the lower main layer of the next iter-
ation SUi+1 is detected, again as those SV , whose largest lower
neighbour is among the SDi . Here, however, it needs to be con-
sidered that depending on voxel resolution and width of building
structures, ceiling surfaces and the next floor surfaces above could
be covered by the same horizontal layer of voxels. Thus, if the
mean vertical distance from a SDi segment to its SUi+1 neigh-
bour above is more than 1.5m, the respective SDi segment gets
assigned an additional NU label and is itself part of SUi+1 instead
of its upper neighbour.

This process terminates, when no SUi+1 can be found anymore.
Intermediate results of the iterations are exemplarily depicted in
Figure 2(c) to (f).

3.1.5 Completion and Refinement SV segments that are so
far not yet assigned a normal class value (e.g. because due to
occlusion or incomplete acquisition of building geometry they
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do not have consistent upper and lower neighbours among the
main layers of the same iteration) are finally considered in this
step. All direct voxel contacts of an unclassified segment with
other voxels that are already assigned a value (NH as well as NV )
are considered and counted. A segment is assigned to the class
with the largest contact count. If it does not directly contact any
classified voxels, it is assigned NH . The final classification result
of the SV segments is depicted in Figure 2(g).

Lastly some refinement steps are conducted on the resulting nor-
mal grid. For instance, vertical pillars of multiple NV voxels are
resolved by leaving only the topmost (for NU ) or lowest (for ND)
voxel NV and turning the others to NH as they clearly form a
vertical structure. The final normal grid is exemplarily depicted in
Figure 2(h).

3.2 Voxel-based Indoor Reconstruction from Point Clouds
without Normal Vectors

The voxel-based indoor reconstruction method VoxIR presented
in (Hübner et al., 2020b, 2021a) is tailored towards indoor map-
ping triangle meshes as acquired for instance with the Microsoft
HoloLens (Hübner et al., 2020a) or the Matterport system (Chang
et al., 2017) as these provide normal vectors consistently oriented
with respect to inside/outside of the building structure. These
oriented normals are further discretized to a normal grid of arbi-
trary resolution with the values NH , NU and ND as described
above which is the input to the voxel-based indoor reconstruction
process.

In the scope of this work, we extent VoxIR to also be applicable to
point clouds without normal vectors by means of the normal clas-
sification approach on occupancy grids presented in Section 3.1.
Furthermore, we extend VoxIR to consider NUD voxels represent-
ing a ceiling surface as well as the next floor above. The code of
the extended version of VoxIR adapted to indoor mapping point
clouds such as those of the ISPRS Benchmark on Indoor Model-
ing (Khoshelham et al., 2017) including our implementation of
the normal classification procedure described above is released at
https://github.com/huepat/voxir.

4. EVALUATION AND RESULTS

In order to quantitatively evaluate our proposed approach, we use
the metrics of completeness, correctness and accuracy as proposed
in (Khoshelham et al., 2018) and used in the context of evaluating
the contributions to the ISPRS Challenge on Indoor Modeling
(Khoshelham et al., 2020, 2021). However, these metrics expect
reference and reconstructed building geometry to be given in con-
tinuous, Euclidean space, considering the fraction of reconstructed
building structures within a given buffer distance around the refer-
ence building structure. As our method operates in discrete voxel
space, we also use discretized versions of the evaluation metrics

Completeness(b) =
#VoxTP(b)
#VoxRef

(1)

and

Correctness(b) =
#VoxTP(b)
#VoxRec

(2)

with #VoxRef denoting the number of voxels representing build-
ing geometry in the discretized reference, #VoxRec the same
value for the reconstruction voxel grid and #VoxTP(b) being the
number of true positive reconstructed voxels with respect to a
buffer level b. For b = 1, we only consider a voxel as a true
positive, if the corresponding voxel position in the reference grid

Table 1. Evaluation results of the normal classification of the
HoloLens triangle meshes published in (Hübner et al., 2021a)
with 5 cm voxel resolution.

Dataset Completeness Correctness
Office 0.88 0.87
Attic 0.85 0.84

Basement 0.90 0.89
Residential

House 0.82 0.80

reports building structure as well. For b > 1, we also consider vox-
els as true positives, where reference building structure is found
within a (26-)neighbourhood of the respective voxel position. For
b = 2, we consider the direct neighbours of the voxel position
and for b = 3 also the neighbours of these neighbours, and so on.
This can be regarded as a disrectized version of the buffer distance
used in (Khoshelham et al., 2018) as well as as a generalization of
the concept of ’neighbourhood precision/recall’ in (Hübner et al.,
2021a) where only b = 2 is considered.

Furthermore, we present accuracy values in analogy with (Khoshel-
ham et al., 2018), quantifying the distance d of reconstructed build-
ing geometry to corresponding reference geometry depending on
the buffer level b:

Accuracy(b) = Mean(d(b)) (3)

In our case, we use as distance d the distance between the re-
spective voxel center coordinates. Furthermore, instead of using
the median, we chose to use the arithmetic mean, as possible dis-
tances in our case are restricted to a few possible values due to the
discretization of the voxel grid.

While in (Hübner et al., 2021a) quantitative evaluation results are
presented for different semantic classes, here, we consider only
the building structure without any further semantic distinction as
proposed in (Khoshelham et al., 2018). In doing so, we consider
the semantic classes of ’Wall’, ’Floor’ and ’Ceiling’ as belonging
to the building structure, while ’Interior Object’ representing fur-
niture and clutter is disregarded as well as ’Empty Interior’ and
’Wall Opening’. For all presented experiments, a fixed voxel reso-
lution of 5 cm is used. Investigating the impact of this parameter
exceeds the scope of this work and is left to future research.

4.1 Normal Classification of Occupancy Grids

First, we evaluate completeness and correctness of the normal clas-
sification procedure presented in Section 3.1 on indoor mapping
triangle meshes, where normal vectors and reference values are
available. To this aim, we use the four publicly available datasets
of HoloLens triangle meshes of different indoor environments
presented in (Hübner et al., 2021a), where further details on the
datasets can be found. The respective datasets are discretized
to binary occupancy grids and, for each filled voxel, the normal
class is determined. As reference data, the voxel grid with normal
classification as derived by VoxIR from the triangle meshes and
their normal vectors is used. The results are presented in Table 1.
Here, we regard a voxel as a true positive, if it has the same normal
class label as the corresponding voxel in the reference grid, while
only considering buffer level b = 1.

4.2 Impact on VoxIR

The four datasets of triangle meshes used in Section 4.1 are fur-
thermore used to investigate the impact of determining the normal
classification from binary occupancy grids instead of from the
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Table 2. Evaluation of the impact of the normal grid on VoxIR re-
construction results on the HoloLens triangle meshes published in
(Hübner et al., 2021a) with 5 cm voxel resolution. The presented
values refer to results achieved when using normal grids deter-
mined with the method presented in Section 3.1. The values in
parentheses refer to results achieved with normal grids determined
directly from the triangle meshes.

Dataset Buffer
Level Completeness Correctness Accuracy

[m]

Office
1 0.86 (0.87) 0.69 (0.75) 0.00 (0.00)
2 1.13 (1.11) 0.91 (0.95) 0.02 (0.02)
3 1.19 (1.14) 0.96 (0.98) 0.03 (0.02)

Attic
1 0.80 (0.81) 0.65 (0.70) 0.00 (0.00)
2 1.05 (1.04) 0.86 (0.90) 0.02 (0.02)
3 1.11 (1.08) 0.91 (0.94) 0.03 (0.02)

Basement
1 0.83 (0.87) 0.71 (0.72) 0.00 (0.00)
2 1.07 (1.11) 0.91 (0.92) 0.02 (0.02)
3 1.12 (1.16) 0.95 (0.96) 0.03 (0.02)

Residential
House

1 0.72 (0.83) 0.58 (0.71) 0.00 (0.00)
2 0.97 (1.05) 0.78 (0.90) 0.02 (0.02)
3 1.04 (1.09) 0.84 (0.94) 0.03 (0.02)

normal vectors of the triangles on the reconstruction results of
VoxIR. Table 2 presents an evaluation of reconstruction results
on the four datasets for three buffer levels. The reported values
refer to reconstruction results achieved when using a normal grid
determined by the method from Section 3.1 from occupancy grids.
In parantheses, the respective values are given, if instead of a mere
occupancy grid, the normal grid derived directly from the triangle
mesh is used. As can be seen, using discretized indoor mapping
data without normal vectors only slightly diminishes the recon-
struction quality of VoxIR on most datasets, with the exception of
dataset ’Residential House’ showing a decrease in completeness
and correctness of around 10%.

Note that the reported values for completeness reach values above
1. This is due to the fact, that VoxIR tends to reconstruct room
surfaces with a thickness of several voxels while they are usually
represented as surfaces with a thickness of one voxel in the dis-
cretized reference data. Thus, there are much more reconstructed
voxels representing building geometry than reference voxels which
can lead to there being more true positive voxels than reference
voxels when using a buffer level b > 1.

4.3 VoxIR Applied to Point Clouds

Finally, the normal classification method presented in this work al-
lows to evaluate the voxel-based indoor reconstruction VoxIR also
on indoor mapping point clouds like those of the ISPRS bench-
mark on indoor modelling (Khoshelham et al., 2017). To this aim,
the reference IFC models were converted to triangle meshes using
IfcConvert 0.6.01. All triangle meshes belonging to building struc-
tures not represented in the point clouds (i.e. the outer surfaces
of the volumetric geometries) were removed in a semi-manual
process using Blender 2.9.12. Furthermore, the point clouds were
manually cleaned as well, as they contain parts of the building
environments that are not represented by the reference models.
The removed parts are marked in red in the occupancy grids of the
discretized point clouds depicted in the first column of Figure 3.
From the resulting occupancy grids, normal grids were determined
with the method presented in Section 3.1. These were then used
as input for VoxIR, with the resulting reconstruction voxel grids
being depicted in the right column of Figure 3 (with voxels of
semantic classes ’Wall Opening’ and ’Interior Object’ omitted as
they are not considered in the evaluation). The reference triangle

1http://ifcopenshell.org/ifcconvert
2https://www.blender.org/

Table 3. Evaluation of VoxIR reconstruction results on the point
clouds published in (Khoshelham et al., 2017, 2020) with 5 cm
voxel resolution.

Dataset Buffer
Level Completeness Correctness Accuracy

[m]
Case
Study

1

1 0.65 0.34 0.00
2 1.45 0.77 0.05
3 1.67 0.88 0.06

Case
Study

2

1 0.37 0.23 0.00
2 1.02 0.63 0.05
3 1.32 0.82 0.08

Case
Study

3

1 0.46 0.42 0.00
2 0.82 0.74 0.04
3 0.89 0.81 0.05

Case
Study

4

1 0.43 0.27 0.00
2 1.10 0.69 0.05
3 1.34 0.84 0.07

Case
Study

5

1 0.49 0.30 0.00
2 1.14 0.71 0.05
3 1.30 0.80 0.06

Case
Study

6

1 0.32 0.21 0.00
2 0.84 0.56 0.05
3 1.11 0.74 0.08

meshes manually derived from the IFC models were discretized
as well and they are depicted in the middle column of Figure 3 to
serve as reference data for quantitative evaluation. The results are
presented in Table 3.

5. DISCUSSION

The results of the evaluation of the normal classification procedure
presented in Table 1 hint on a good performance, and Table 2
shows that using these normal grids determined from occupancy
grids does not significantly reduce reconstruction quality when
fed as input into the VoxIR pipeline. Still, the reconstruction
results on the ISPRS benchmark presented in Table 3 leave room
for improvement, especially when regarding only the first buffer
level, i.e. only considering exact same voxel positions in result
and reference grid. However, the quality rapidly improves when
considering higher buffer levels.

Overall, the results presented in the right part of Figure 3 on the
right are visually also quite close to the discretized reference build-
ing structures depicted in the middle column. Among noticeable
deviations from the reference, the inner walls in Figure 3(c) are
partly missing or false, as are the big hexagonal column and the
inner wall in Figure 3(d). These missing walls are reconstructed
as interior objects (i.e. piece of furniture) and thus omitted in the
visualization in Figure 3.

The room in the front right corner in Figure 3(c) is only partly
reconstructed as well. Generally, as VoxIR is quite generic with
respect to its assumptions on building structures, partly scanned
rooms are reconstructed close to the shape of the parts included
in the input data. Better reconstruction results are possible when
applying more restricting assumptions on building geometry. For
instance, the mentioned room in Figure 3(c) could potentially be
restored better, when assuming that rooms are rectangular.

On the other hand, this flexibility of VoxIR towards possible build-
ing structures can also be regarded as its strength. For instance,
the protrusions of the ceiling of the large room in Figure 3(e) are
reconstructed quite well, as are the unusual room shapes in Fig-
ure 3(f). Here, in Figure 3(f), the inner yard is also reconstructed
as a room with its ceiling height determined from the height of the
surrounding ceilings.
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(a) Case Study 1.

(b) Case Study 2.

(c) Case Study 3.

(d) Case Study 4.

(e) Case Study 5.

(f) Case Study 6.

Figure 3. Visualization of input occupancy grids (manually removed parts depicted in red) on the left, discretized ground truth data in
the middle and VoxIR reconstruction results on the right (both with 5 cm voxel resolution, parts of the ceilings are removed for better
visibility) for the point clouds of the ISPRS benchmark on indoor modeling (Khoshelham et al., 2017, 2020). In the middle and right
parts, ceiling is depicted in red, while floor and walls are depicted in green and grey, respectively.

(a) Case Study 3. (b) Case Study 6.

Figure 4. Reconstruction results for two of the datasets depicted in Figure 3, when the red parts of the occupancy grids on the left in
Figure 3 are included in the input occupancy grids.
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As exemplified in Figure 4, the reconstruction results are also
more or less reasonable when including the removed parts of the
input occupancy grids depicted in red on the left-hand side of
Figure 3 which are not considered in the reference IFC models.
For instance, the lower floor of Figure 4(a) is partly reconstructed
where there are parts of its floor or ceiling available in the input
data. Also, the outdoor terrain around the building in Figure 4(b) is
included in the reconstruction, with its height being determined by
the height of the trees in the rearward part behind the building. In
this case, the height of the ceilings reconstructed above the inner
yards gets set to the tree height as well. Generally indoor/outdoor
transitions and their consideration in modeling and automated
reconstruction of buildings is still an interesting topic for future
research (Previtali et al., 2014; Koch et al., 2016).

6. CONCLUSION

In this paper, we presented a novel method for normal classifi-
cation of voxel occupancy grids of discretized indoor mapping
data along with qualitative and quantitative evaluation results. Fur-
thermore, the proposed method was used to extend an existing
voxel-based indoor reconstruction pipeline to be applicable to in-
put data in the form of point clouds. This enabled us to evaluate
the indoor reconstruction approach, which so far was only appli-
cable to triangle meshes, on the point clouds of the well-known
ISPRS Benchmark for Indoor Modeling.

While the presented results are promising, there is still ample op-
portunity for further research left for future work. For instance, the
evaluation presented here focuses exclusively on the reconstruc-
tion of building structures without regard for further semantics
or room partitioning which are also considered in the evaluated
voxel-based indoor reconstruction approach. Furthermore, the
discussed method (for normal classification as well as for indoor
reconstruction) is still restricted to the discretized voxel space.
Conversion of the results towards actual surface or even volume
geometries in Euclidean space would be a valuable extension,
providing the means for the automated generation of actual BIM
models from indoor mapping data and enabling better comparabil-
ity of the results with those of other reconstruction methods. Still,
we believe that voxels hold great potential for building-related
analysis tasks (Gorte et al., 2019; Song et al., 2019; Wang et al.,
2020).
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