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We study the complexity of earliest arrival problems on time-dependent networks with 
non-FIFO travel time functions, i.e. when departing later might lead to an earlier arrival. In 
this paper, we present a simple proof of the weak NP-hardness of the problem for travel 
time functions defined on integers. This simplifies and reproduces an earlier result from 
Orda and Rom. Our proof generalizes to travel time functions defined on rational numbers 
and also implies that, in this case, the problem becomes harder, i.e. is strongly NP-hard. 
As arbitrary functions are impractical for applications, we also study a more realistic 
problem model where travel time functions are piecewise linear and represented by a 
sequence of breakpoints with integer coordinates. We show that this problem formulation 
is strongly NP-hard, too. As an intermediate step for this proof, we also show the strong
NP-completeness of SubsetProduct on rational numbers.
© 2022 The Author. Published by Elsevier B.V. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Finding shortest paths in time-dependent networks 
is an important problem with numerous applications. A 
prominent example would be routing in road networks 
with traffic predictions, i.e. when the travel time of a road 
segment depends on the time of the day at which the 
segment is traversed. Another example is routing pack-
ets through computer networks when link capacities and 
delays depend on the time. The core problem in these ap-
plications is, given a source vertex, a target vertex and a 
departure time, to obtain the path with the earliest arrival
at the target. This path is sometimes also referred to as a 
minimum delay path.

A critical property which time-dependent networks 
may or may not exhibit is the first-in-first-out (FIFO) prop-
erty. Informally, this property holds when it is not possible 
to arrive earlier by departing later. For networks where 
this property holds, the earliest arrival problem can be 
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solved with a variation of Dijkstra’s algorithm [1]. How-
ever, realistic networks may not always adhere to the FIFO 
property. For example in road networks, when an impor-
tant tunnel can only be traversed during certain times, one 
may have to drive a longer detour when arriving too early 
while the tunnel has not yet opened. Of course, it may 
be possible to avoid such a detour by waiting. Likewise, 
non-FIFO networks can be transformed into FIFO networks 
when waiting is possible all the time at any vertex. How-
ever, allowing waiting at arbitrary locations and times is 
not always a realistic modeling assumption. Cars cannot 
park at arbitrary locations and network packets may be 
dropped when buffers become full. In this paper, we there-
fore study the complexity of the earliest arrival problem in 
networks with non-FIFO travel times when waiting is not 
allowed.

Related work Time-dependent shortest path problems 
were studied extensively in the past, both from a theo-
retic and practical perspective. As an extensive overview 
is beyond the scope of this work, we refer to the survey 
in [2]. Most practical works assume that all travel times 
 article under the CC BY license 
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adhere to the FIFO property or that arbitrary waiting is al-
lowed [3–6]. An exception is [7] where routing for truck 
drivers considering temporary driving bans is studied.

The complexity of the earliest arrival problem in non-
FIFO time-dependent networks has been studied before, 
most prominently by Orda and Rom [8,9]. In [8], they 
present several time-dependent shortest path algorithms 
and study different waiting policies. They prove that under 
certain assumptions allowing waiting at the source vertex 
is sufficient to find a path with the same arrival as the 
fastest path when arbitrary waiting is allowed. Also, they 
show that in some cases, the path with the earliest ar-
rival may use an infinite number of hops. Many recent 
works [4,5,10,2] cite [8] stating that the earliest arrival 
problem in non-FIFO time-dependent networks is NP-hard. 
However, the paper just states that the hardness can be 
shown (second paragraph of Section 3.2) but does not 
provide any evidence. Some works [7,6,3] state the hard-
ness referring to an unpublished manuscript by Orda and 
Rom [11]. We were not able to find this manuscript in any 
public source but could only obtain it through personal 
contact with authors. In this manuscript, Orda and Rom 
proved the weak NP-hardness of the time-dependent ear-
liest arrival problem with travel time functions defined on 
integers and forbidden waiting by reduction from Finite-

FunctionGeneration. They also show that the problem 
can be solved in pseudo-polynomial time. However, since 
the proof is quite complex and was apparently never pub-
lished, we believe that independently reproducing this re-
sult is a valuable contribution.

Contribution We contribute a simple proof of the weak
NP-hardness of the earliest arrival problem on networks 
with time-dependent travel times defined on integers 
when waiting is forbidden. Additionally, this proof im-
plies that the problem becomes strongly NP-hard when 
the functions are defined on rational numbers. Further, we 
show that the problem remains strongly NP-hard when 
we limit ourselves to a more practical travel time function 
model where functions are piecewise linear and given as a 
sequence of breakpoints with integer coordinates, but the 
computation is performed in the rational number domain. 
As an intermediate result we show that SubsetProduct on 
rational numbers is strongly NP-complete.

2. Preliminaries

We consider directed graphs G = (V , E) with n = |V |
vertices and m = |E| edges. We use uv as a short no-
tation for edges. Each edge uv has a travel time function
f tt

uv which maps a departure time τ to a travel time 
f tt

uv(τ ) at that departure. We consider both functions de-
fined on integers f : Z → Z and on rational numbers 
f : Q → Q. Realistic travel times are non-negative but 
here we also allow negative travel times for technical rea-
sons. Sometimes, it is more practical to consider the arrival 
time function f at

uv(τ ) = τ + f tt
uv(τ ). For example, for two 

edges uv and v w , the travel time function for traversing 
them successively is f tt

uv(τ ) + f tt
v w(τ + f tt

uv(τ )) while in ar-
rival time representation the result is just the composition 
f at

v w( f at
uv(τ )).
2

A travel time function f tt has the first-in-first-out (FIFO) 
property when the following holds:

∀τ , ε > 0 : f tt(τ ) ≤ ε + f tt(τ + ε)

Assuming continuous functions, time intervals where the 
FIFO property is violated have slopes < −1 in travel time 
representation and slopes < 0 in arrival time representa-
tion.

A sequence of vertices P = (v1, . . . , vk) where vi vi+1 ∈
E is called a path. Paths may be non-simple, i.e. con-
tain the same vertex multiple times. We denote by Pi, j =
(vi, . . . , v j), 1 ≤ i < j ≤ k a subpath of P . The travel time 
of a path P = (v1, v2, . . . , vk) can be obtained recursively: 
f tt

P (τ ) = f tt
v1 v2

(τ ) + f tt
P2,k

(τ + f tt
v1 v2

(τ )). The goal of the 
time-dependent earliest arrival problem (TDEA) is, given a 
source vertex s, a target vertex t and a departure time τ to 
find among all paths P = (s, . . . , t) the one that minimizes 
f tt

P (τ ). We define the decision problem as follows:

Definition 1 (TDEAT ). Given a graph G = (V , E) with non-
negative travel times f tt

uv : T → T ≥0 for each uv ∈ E , ver-
tices s and t , a departure time τ dep ∈ T and a maximum 
arrival time τmax ∈ T , is there a path P = (s, . . . , t) such 
that τ dep + f tt

P (τ dep) ≤ τmax?

We assume that the functions are given in some well-
defined compact representation, for example piecewise 
constant or piecewise linear, which can be evaluated in 
polynomial time. For the first part of the paper, we leave 
the concrete function class unspecified. In the second part 
we use piecewise linear functions represented by a se-
quence of breakpoints. We define the travel times before 
the first and after the last breakpoints to equal the travel 
time of the first and last breakpoint, respectively.

3. Complexity results

In this section we present our complexity results. We 
start with the simplified NP-hardness proof for TDEAZ .

Theorem 2. TDEAZ is weakly NP-hard.

Proof. We prove NP-hardness by reduction from the 
weakly NP-complete problem SubsetSum [12]. A Subset-

Sum instance consists of a multiset A of integers ai and 
a target value B .1 The goal is to decide whether there 
is a subset A′ ⊆ A such that 

∑
a∈A′ a = B . We construct 

our TDEAZ instance as follows: The instance has vertices 
V = {vi | ai ∈ A} ∪ {s, t}. Let v0 = s and k = |A|. For each
SubsetSum element ai ∈ A, we create two edges from vi−1

to vi . The first one denoted as e′
i has constant travel time 

zero and the second one denoted as ei constant travel time 
ai . We insert a final edge vkt with the following non-FIFO 
travel time function:

1 Note that usually SubsetSum is defined in terms of a set and a func-
tion mapping each element to a not necessarily unique weight. To sim-
plify notation, we instead use a multiset containing the weights directly 
as elements.



T. Zeitz Information Processing Letters 179 (2023) 106287

s v1 v2 vk t

a1

0

a2

0

. . .
0 B

0

B + 1

τ

f tt
vkt (τ )

Fig. 1. Transformed TDEA instance for SubsetSum instance (A = {a1, . . . ,ak}, B).
f tt
vkt(τ ) =

{
0 if τ = B

B + 1 else

Setting τ dep = 0 and τmax = B completes the instance. 
See Fig. 1 for an illustration. This transformation runs in 
O(|A|). The transformed graph contains zero weights and 
multiedges, but neither is necessary. Zero weights can be 
eliminated by adding 1 to the travel time of each edge, 
shifting the instant where f tt

v |A|+1t has its minimum back 
by k time units and increasing the arrival time τmax by 
k +1. Multiedges can be avoided by inserting an additional 
node in the middle of each multiedge.

We now show the equivalency of the transformed in-
stance. Assume that the SubsetSum instance admits a sub-
set A′ with 

∑
a∈A′ a = B . Consider the path P from s to vk

which uses ei if ai ∈ A′ and e′
i otherwise. Obviously, it has 

a constant total travel time of B . Thus, the edge vkt will be 
traversed at τ = B . Since f tt

vkt(B) = 0 the total travel time 
is B . It follows that the TDEAZ instance admits a feasible 
path.

Conversely, assume that the TDEAZ instance admits a 
path P of travel time B . Since the last edge has a travel 
time greater than B for all times except B , the travel time 
to vk must have been B , too. Let A′ = {ai | ei ∈ P }. Since 
the travel time to vk was B , 

∑
a∈A′ a = B has to hold and 

the SubsetSum instance also admits a feasible solution. 
This proves the weak NP-hardness. �

To prove that the problem is not strongly NP-hard, 
we now give a pseudo-polynomial algorithm. Algorithm 1
shows the procedure in pseudo-code. The algorithm is a 
time-expanded variation of the shortest path algorithm 
of Bellman and Ford [13]. Instead of a distance array, it 
maintains a 2-dimensional array indicating whether it is 
possible to reach a vertex at a given time. Instead of 
scanning edges |V | times, edges are relaxed for each in-
stant between τ dep and τmax. This leads to a running 
time in O(τmax · |E|) which makes the algorithm pseudo-
polynomial in the input size.

For simplicity, we describe the algorithm under the as-
sumption that all travel times are strictly positive. Travel 
times of zero can be handled by repeating the loop in 
line 4 |V | times.

We prove correctness inductively. We show that in step 
τ of the loop in line 3 for all vertices v , all possible ar-
rival times τ ′ ≤ τ have been correctly marked in R. Clearly, 
the base case holds, because in the absence of zero travel 
times, s is the only vertex reachable at τ dep. Assume the 
induction hypothesis for τ −1. For any path (s, . . . , u, v) of 
3

Data: R[u][τ ]: 2-dimensional array of booleans indicating 
whether it is possible to arrive at vertex u at time τ

Data: G = (V , A): Directed graph with travel time functions f tt
e

for each e ∈ E
1 Function TimeExpandedBellmanFord(s, t, τ dep, τmax):
2 R[s][τ dep] ← true;

3 for τ ∈ [τ dep, τmax] do
4 for uv ∈ E do
5 if R[u][τ ] then
6 if u = t then
7 return true;

8 R[v][τ + f tt
uv (τ )] ← true;

9 return false;

Algorithm 1: Time-expanded Bellman-Ford algorithm.

travel time τ − τ dep the vertex u was reachable at a time 
τ ′ < τ . Thus, R[u][τ ′] was correctly set, the outgoing edges 
of u were relaxed and R[v][τ ] will also be set which com-
pletes the inductive step. Repeating the loop in line 4 |V |
times would additionally allow intermediate paths of travel 
time zero with up to |V | vertices, which clearly suffices to 
solve this case, too.

Wojtczak showed in [14] that many common weakly
NP-hard problems, including SubsetSum, become strongly
NP-hard when defined on rational numbers. As our proof 
generalizes to rational numbers without modification, we 
get the following corollary:

Corollary 3. TDEAQ is strongly NP-hard.

We now restrict ourselves to a function class used in 
many practical implementations: piecewise linear func-
tions represented as a sequence of breakpoints. Evaluating 
the function at a time between two breakpoints is imple-
mented through linear interpolation. As input data usually 
comes at a limited resolution, we assume that all break-
point coordinates can be represented by integers. Never-
theless, the result of a linear interpolation may be a ra-
tional number. Thus, when performing the computation in 
the integer domain, one has to round. However, practical 
implementations often need to compute travel time func-
tions for paths, for example to find the shortest travel time 
function between two nodes, i.e. solve profile queries. In the 
integer domain, this is very difficult because of the round-
ing. Therefore, many practical implementations [4,3,6] ap-
proximate computation in the continuous domain by us-
ing floating point numbers. This lead us to the question if 
TDEAQ on piecewise linear functions with integer coordi-
nates is weakly or strongly NP-hard.
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With piecewise linear functions with integer break-
points, we cannot easily construct constant travel time 
functions with arbitrary rational travel times. Thus, the 
generalizing the reduction from SubsetSum is difficult. 
However, we can encode rational numbers in the slope
of arrival time function and exploit that when composit-
ing linear functions, the result function’s slope is equal 
to the product of the slopes of the composed functions. 
In the following, we show the strong NP-hardness with a 
two-step reduction from SubsetProduct on rational num-
bers as an intermediate problem. On integers, SubsetProd-

uct is weakly NP-complete [12,15].2 However, as we now 
show, when allowing rational numbers, the problem be-
comes strongly NP-complete. SubsetProduct is defined as 
follows:

Definition 4 (SubsetProduct). Given a finite multiset of 
positive numbers A and a positive number B , is there a 
subset A′ ⊆ A such that 

∏
a∈A′ a = B?

Theorem 5. SubsetProduct on rational numbers is strongly 
NP-complete.

Proof. A guessed solution for SubsetProduct can be veri-
fied in polynomial time. In the worst case, all numerators 
and denominators in the solution would have to be multi-
plied with each other. Thus, SubsetProduct is in NP even 
with rational numbers.

For hardness, we reduce from the ExactCoverBy3Sets

problem. It is strongly NP-complete due to [12] and de-
fined as follows:

Definition 6 (ExactCoverBy3Sets (X3C)). Given a set X =
{x1, . . . , xk} with k being a multiple of 3, and a collection 
C of 3-element subsets of X , does C contain an exact cover 
C ′ for X , where C ′ ⊆ C and every element in X occurs in 
exactly one element of C ′?

For the transformation, we first generate the first 2k +1
primes. We refer to these primes in two groups of each k
primes {p1, . . . , pk} and {p′

1, . . . , p
′
k} and one final prime 

number p∗ . Generating these primes is possible in polyno-
mial running time [14]. We construct the set A = A X ∪ AC

from one number for each element in X and one number 
for each 3-element set in C :

A X =
{

pi p′
i+1

p′
i

∣∣∣∣∣ xi ∈ X \ xk

}
∪

{
p∗ · pk p′

1

p′
k

}

2 Garey and Johnson [12] state that SubsetProduct on positive integers 
is strongly NP-complete by reduction from ExactCoverBy3Sets with ref-
erence to private communication with A.C. Yao in 1978. This is somewhat 
surprising since there is no obvious reason why the pseudo-polynomial 
dynamic programming algorithm for SubsetSum should not be applicable 
to SubsetProduct. This strongly suggests that the problem is only weakly
NP-complete and that the original reduction proved only weak hardness. 
Otherwise, this would prove P = NP. While we were unable to obtain the 
original proof, other realizations of the same reduction can be found on-
line [16]. This reduction uses a number exponential in the input size for 
the target product B . Clearly, this admits a pseudo-polynomial algorithm. 
As it turns out, on integers, the problem is only weakly NP-hard. John-
son’s NP-completeness column later contains a correction [15].
4

AC =
{

1

pi p j pk

∣∣∣∣ {
ci, c j, ck

} ∈ C

}
Setting B = p∗ completes the instance.

Assume that the X3C instance admits a set C ′ ⊆ C
which covers X . Consider the set A′ = A X ∪ AC ′ containing 
all elements from A X and all elements from AC corre-
sponding to elements form C ′ . By construction, the product 
over all numbers in A′ equals p∗:∏
a∈A′

a =
∏

a∈A X

a ·
∏

a∈AC ′
a = p∗ ∏

xi∈X

pi p′
i

p′
i

·
∏
xi∈X

1

pi
= p∗

It follows that the SubsetProduct admits a feasible subset, 
too.

Conversely, assume S ′ is a fulfilling subset for the Sub-

setProduct instance. First, since ak is the only element 
which contains p∗ as a factor, it must be contained in S ′ . 
Secondly, note that if S ′ contains any element from A X , 
it has to contain all elements in A X to cancel out the p′

i
prime factors. The product of all elements in A X is equal 
to p∗ · ∏xi∈X pi . For the total product of all elements in S ′
to be equal to p∗ , the product of the remaining elements 
in S ′ has to equal exactly 

∏
xi∈X p−1

i . This can only be the 
case when the elements of C corresponding to these re-
maining elements in S ′ form an exact cover of X . Thus, 
the X3C instance admits a feasible cover. �

With the strong hardness of SubsetProduct on rational 
numbers, we can now prove our main result.

Theorem 7. TDEAQ with piecewise linear functions repre-
sented by a sequence of breakpoints is strongly NP-hard even 
when all input numbers are integers.

Proof. Let A = { p1
q1

, . . . , pk
qk

}, B = p∗
q∗ be our SubsetProduct

instance. First, we sort A in ascending order, i.e. pi
qi

≤ pi+1
qi+1

. 
We then construct the TDEAQ instance as follows: Simi-
larly to the hardness proof for TDEAZ , we build a graph 
with k + 2 vertices and two parallel edges ei and e′

i be-
tween vi−1 and vi for 1 ≤ i ≤ k and a final non-FIFO edge 
between vk and t . All edges e′

i get constant travel time 
zero. The edges ei get a time-dependent travel time func-
tion which has slope pi

qi
in the arrival time representation. 

The final edge has a travel time function with breakpoints 
(0, p∗ + 1) and (p∗, 0). The topology is the same as in the 
previous proof as illustrated in Fig. 1. We set τ dep = q∗
and τmax = p∗ . We pick the breakpoints for the ei func-
tions in such a way that the arrival time function has the 
correct slope at least for all times in [0, max(p∗, q∗)]. Thus, 
with si = � max(p∗,q∗)

qi

 the edge ei will have the arrival time 

function breakpoints (0, 0) and (siqi, si pi). This transfor-
mation has polynomial running time and also all numbers 
are polynomial bounded in the size of the SubsetProduct

instance.
Some of these arrival time functions have slope < 1 and 

thus for τ ∈ [0, τmax] we get f at(τ ) < τ . This means the 
corresponding travel time functions have negative travel 
times. We can obtain an equivalent instance without neg-
ative weights as follows: Let ei be an edge with a break-
point (x, y) in the travel time function where y < 0. We 
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increase the travel times of both ei and e′
i by the constant 

c = −y. Additionally, the departure times coordinates of 
breakpoints in every following travel time function must 
be increased by c, i.e. for (x, y) a breakpoint of a travel 
time function of an edge with head v j where j > i, this 
breakpoint will be set to (x + c, y). Also, τmax must be in-
creased by c. Even though negative travel times are not 
necessary, we still use them during the rest of the proof 
because it simplifies the calculations. This also applies to 
travel times of zero which can be avoided similarly.

Suppose the SubsetProduct instance admits a subset 
A′ such that the product of all elements in A′ is B . We 
consider the st-path which uses ei when pi

qi
∈ A′ and e′

i
otherwise. When visiting vertex vi−1 at instant τi−1 and 
traversing the edge ei with arrival time breakpoints (0, 0)

and (siqi, si pi) with τi−1 ≤ siqi , the arrival time at vi can 
be computed by linear interpolation: τi = τi−1 · pi

qi
. Assum-

ing τi−1 < siqi for 1 ≤ i ≤ k, the arrival time τk at the final 
vertex vk before t can be computed as τ dep · ∏

ai∈A′ pi
qi

=
q∗ · p∗

q∗ = p∗ . The final edge has a travel time of 0 at p∗
which leads to an arrival of p∗ at t which shows, that the 
TDEAQ instance admits a feasible path given that our as-
sumption on the τi holds. This assumption is valid because 
the elements of A and thus the slopes of the edges are or-
dered ascendingly. For all pi

qi
≤ 1, τi ≤ τi−1, i.e. the travel 

time is negative, and we arrive earlier than we started, so 
τi < q∗ holds. Once edges with pi

qi
> 1 are reached, the τi

grow monotonically. But since the final result p∗ is within 
the desired range, all intermediate τi have to be, too. Thus, 
the assumption holds for all τi .

Conversely, assume the TDEAQ instance admits a path 
P with the desired arrival time. This is only possible when 
τk = p∗ because before p∗ , the arrival time function has a 
strictly negative slope and after p∗ a strictly positive slope. 
With the same argument as in the previous paragraph, we 
get that all τi ≤ max(p∗, q∗). Hence, the following equation 
holds: τ dep · ∏ai∈P

si pi
siqi

= τmax = p∗ which is equivalent to ∏
ai∈P

pi
qi

= p∗
q∗ . Thus, the set A′ = { pi

qi
| ai ∈ P } is a fulfilling 

subset for the SubsetProduct instance. �
So far, we only discussed NP-hardness but not inclu-

sion in NP. On first glance, it appears likely that the TDEA

problem lies in NP because verifying path lengths takes 
running time linear time in the path length. However, this 
is not sufficient because solutions might have superpoly-
nomial length in the input size. Consider a graph with two 
vertices s and t , one loop edge at s with constant travel 
time 1 and one st edge with travel time 0 at instant 2k and 
travel time 2k+1 during the rest of the time as depicted 
in Fig. 2. For an instance with τ dep = 0 and τmax = 2k , 
the solution is a path which uses the loop at s 2k times. 
A naive encoding of this solution would already be expo-
nentially bigger than the (binary encoded) input. Even if it 
would be possible to show that a compact encoding of so-
lutions is always possible, one would still need to find a 
way to evaluate the travel time of this path in polynomial 
running time in the input size. Whether this is possible 
likely strongly depends on the involved function classes. 
Therefore, the question remains open. Nevertheless, since 
5

s t

1

0 2k
0

2k + 1

τ

f tt
st (τ )

Fig. 2. Example graph with a shortest path with an exponential number 
of hops.

we only used acyclic graphs in our reductions, we can still 
conclude that when only allowing simple paths, the TDEA

problem is NP-complete.

4. Conclusion

In this work, we presented a simple transformation 
from SubsetSum to the TDEAZ problem which confirms 
its weak NP-hardness. Relating our proof to a recent result 
on the strong NP-hardness of SubsetSum on rational num-
bers showed that TDEAQ on arbitrary rational functions is 
strongly NP-hard, too. Finally, we showed that the prob-
lem remains strongly NP-hard for a typical practical model 
when the travel times are piecewise linear functions de-
fined on rational numbers but all coordinates are integers.
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