
Information Processing Letters 179 (2023) 106287

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

NP-hardness of shortest path problems in networks with

non-FIFO time-dependent travel times

Tim Zeitz

Karlsruhe Institute of Technology, Institute of Theoretical Informatics, Algorithmics, Am Fasanengarten 5, 76131, Karlsruhe, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 March 2022
Received in revised form 23 May 2022
Accepted 23 May 2022
Available online 27 May 2022
Communicated by Leah Epstein

Keywords:
Non-FIFO time-dependent shortest paths
NP-hardness
Theory of computation

We study the complexity of earliest arrival problems on time-dependent networks with
non-FIFO travel time functions, i.e. when departing later might lead to an earlier arrival. In
this paper, we present a simple proof of the weak NP-hardness of the problem for travel
time functions defined on integers. This simplifies and reproduces an earlier result from
Orda and Rom. Our proof generalizes to travel time functions defined on rational numbers
and also implies that, in this case, the problem becomes harder, i.e. is strongly NP-hard.
As arbitrary functions are impractical for applications, we also study a more realistic
problem model where travel time functions are piecewise linear and represented by a
sequence of breakpoints with integer coordinates. We show that this problem formulation
is strongly NP-hard, too. As an intermediate step for this proof, we also show the strong
NP-completeness of SubsetProduct on rational numbers.
© 2022 The Author. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Finding shortest paths in time-dependent networks
is an important problem with numerous applications. A
prominent example would be routing in road networks
with traffic predictions, i.e. when the travel time of a road
segment depends on the time of the day at which the
segment is traversed. Another example is routing pack-
ets through computer networks when link capacities and
delays depend on the time. The core problem in these ap-
plications is, given a source vertex, a target vertex and a
departure time, to obtain the path with the earliest arrival
at the target. This path is sometimes also referred to as a
minimum delay path.

A critical property which time-dependent networks
may or may not exhibit is the first-in-first-out (FIFO) prop-
erty. Informally, this property holds when it is not possible
to arrive earlier by departing later. For networks where
this property holds, the earliest arrival problem can be

E-mail address: tim.zeitz@kit.edu.
https://doi.org/10.1016/j.ipl.2022.106287
0020-0190/© 2022 The Author. Published by Elsevier B.V. This is an open access
(http://creativecommons.org/licenses/by/4.0/).
solved with a variation of Dijkstra’s algorithm [1]. How-
ever, realistic networks may not always adhere to the FIFO
property. For example in road networks, when an impor-
tant tunnel can only be traversed during certain times, one
may have to drive a longer detour when arriving too early
while the tunnel has not yet opened. Of course, it may
be possible to avoid such a detour by waiting. Likewise,
non-FIFO networks can be transformed into FIFO networks
when waiting is possible all the time at any vertex. How-
ever, allowing waiting at arbitrary locations and times is
not always a realistic modeling assumption. Cars cannot
park at arbitrary locations and network packets may be
dropped when buffers become full. In this paper, we there-
fore study the complexity of the earliest arrival problem in
networks with non-FIFO travel times when waiting is not
allowed.

Related work Time-dependent shortest path problems
were studied extensively in the past, both from a theo-
retic and practical perspective. As an extensive overview
is beyond the scope of this work, we refer to the survey
in [2]. Most practical works assume that all travel times
 article under the CC BY license

https://doi.org/10.1016/j.ipl.2022.106287
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2022.106287&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:tim.zeitz@kit.edu
https://doi.org/10.1016/j.ipl.2022.106287
http://creativecommons.org/licenses/by/4.0/

T. Zeitz Information Processing Letters 179 (2023) 106287
adhere to the FIFO property or that arbitrary waiting is al-
lowed [3–6]. An exception is [7] where routing for truck
drivers considering temporary driving bans is studied.

The complexity of the earliest arrival problem in non-
FIFO time-dependent networks has been studied before,
most prominently by Orda and Rom [8,9]. In [8], they
present several time-dependent shortest path algorithms
and study different waiting policies. They prove that under
certain assumptions allowing waiting at the source vertex
is sufficient to find a path with the same arrival as the
fastest path when arbitrary waiting is allowed. Also, they
show that in some cases, the path with the earliest ar-
rival may use an infinite number of hops. Many recent
works [4,5,10,2] cite [8] stating that the earliest arrival
problem in non-FIFO time-dependent networks is NP-hard.
However, the paper just states that the hardness can be
shown (second paragraph of Section 3.2) but does not
provide any evidence. Some works [7,6,3] state the hard-
ness referring to an unpublished manuscript by Orda and
Rom [11]. We were not able to find this manuscript in any
public source but could only obtain it through personal
contact with authors. In this manuscript, Orda and Rom
proved the weak NP-hardness of the time-dependent ear-
liest arrival problem with travel time functions defined on
integers and forbidden waiting by reduction from Finite-

FunctionGeneration. They also show that the problem
can be solved in pseudo-polynomial time. However, since
the proof is quite complex and was apparently never pub-
lished, we believe that independently reproducing this re-
sult is a valuable contribution.

Contribution We contribute a simple proof of the weak
NP-hardness of the earliest arrival problem on networks
with time-dependent travel times defined on integers
when waiting is forbidden. Additionally, this proof im-
plies that the problem becomes strongly NP-hard when
the functions are defined on rational numbers. Further, we
show that the problem remains strongly NP-hard when
we limit ourselves to a more practical travel time function
model where functions are piecewise linear and given as a
sequence of breakpoints with integer coordinates, but the
computation is performed in the rational number domain.
As an intermediate result we show that SubsetProduct on
rational numbers is strongly NP-complete.

2. Preliminaries

We consider directed graphs G = (V , E) with n = |V |
vertices and m = |E| edges. We use uv as a short no-
tation for edges. Each edge uv has a travel time function
f tt

uv which maps a departure time τ to a travel time
f tt

uv(τ) at that departure. We consider both functions de-
fined on integers f : Z → Z and on rational numbers
f : Q → Q. Realistic travel times are non-negative but
here we also allow negative travel times for technical rea-
sons. Sometimes, it is more practical to consider the arrival
time function f at

uv(τ) = τ + f tt
uv(τ). For example, for two

edges uv and v w , the travel time function for traversing
them successively is f tt

uv(τ) + f tt
v w(τ + f tt

uv(τ)) while in ar-
rival time representation the result is just the composition
f at

v w(f at
uv(τ)).
2

A travel time function f tt has the first-in-first-out (FIFO)
property when the following holds:

∀τ , ε > 0 : f tt(τ) ≤ ε + f tt(τ + ε)

Assuming continuous functions, time intervals where the
FIFO property is violated have slopes < −1 in travel time
representation and slopes < 0 in arrival time representa-
tion.

A sequence of vertices P = (v1, . . . , vk) where vi vi+1 ∈
E is called a path. Paths may be non-simple, i.e. con-
tain the same vertex multiple times. We denote by Pi, j =
(vi, . . . , v j), 1 ≤ i < j ≤ k a subpath of P . The travel time
of a path P = (v1, v2, . . . , vk) can be obtained recursively:
f tt

P (τ) = f tt
v1 v2

(τ) + f tt
P2,k

(τ + f tt
v1 v2

(τ)). The goal of the
time-dependent earliest arrival problem (TDEA) is, given a
source vertex s, a target vertex t and a departure time τ to
find among all paths P = (s, . . . , t) the one that minimizes
f tt

P (τ). We define the decision problem as follows:

Definition 1 (TDEAT). Given a graph G = (V , E) with non-
negative travel times f tt

uv : T → T ≥0 for each uv ∈ E , ver-
tices s and t , a departure time τ dep ∈ T and a maximum
arrival time τmax ∈ T , is there a path P = (s, . . . , t) such
that τ dep + f tt

P (τ dep) ≤ τmax?

We assume that the functions are given in some well-
defined compact representation, for example piecewise
constant or piecewise linear, which can be evaluated in
polynomial time. For the first part of the paper, we leave
the concrete function class unspecified. In the second part
we use piecewise linear functions represented by a se-
quence of breakpoints. We define the travel times before
the first and after the last breakpoints to equal the travel
time of the first and last breakpoint, respectively.

3. Complexity results

In this section we present our complexity results. We
start with the simplified NP-hardness proof for TDEAZ .

Theorem 2. TDEAZ is weakly NP-hard.

Proof. We prove NP-hardness by reduction from the
weakly NP-complete problem SubsetSum [12]. A Subset-

Sum instance consists of a multiset A of integers ai and
a target value B .1 The goal is to decide whether there
is a subset A′ ⊆ A such that

∑
a∈A′ a = B . We construct

our TDEAZ instance as follows: The instance has vertices
V = {vi | ai ∈ A} ∪ {s, t}. Let v0 = s and k = |A|. For each
SubsetSum element ai ∈ A, we create two edges from vi−1

to vi . The first one denoted as e′
i has constant travel time

zero and the second one denoted as ei constant travel time
ai . We insert a final edge vkt with the following non-FIFO
travel time function:

1 Note that usually SubsetSum is defined in terms of a set and a func-
tion mapping each element to a not necessarily unique weight. To sim-
plify notation, we instead use a multiset containing the weights directly
as elements.

T. Zeitz Information Processing Letters 179 (2023) 106287

s v1 v2 vk t

a1

0

a2

0

. . .
0 B

0

B + 1

τ

f tt
vkt (τ)

Fig. 1. Transformed TDEA instance for SubsetSum instance (A = {a1, . . . ,ak}, B).
f tt
vkt(τ) =

{
0 if τ = B

B + 1 else

Setting τ dep = 0 and τmax = B completes the instance.
See Fig. 1 for an illustration. This transformation runs in
O(|A|). The transformed graph contains zero weights and
multiedges, but neither is necessary. Zero weights can be
eliminated by adding 1 to the travel time of each edge,
shifting the instant where f tt

v |A|+1t has its minimum back
by k time units and increasing the arrival time τmax by
k +1. Multiedges can be avoided by inserting an additional
node in the middle of each multiedge.

We now show the equivalency of the transformed in-
stance. Assume that the SubsetSum instance admits a sub-
set A′ with

∑
a∈A′ a = B . Consider the path P from s to vk

which uses ei if ai ∈ A′ and e′
i otherwise. Obviously, it has

a constant total travel time of B . Thus, the edge vkt will be
traversed at τ = B . Since f tt

vkt(B) = 0 the total travel time
is B . It follows that the TDEAZ instance admits a feasible
path.

Conversely, assume that the TDEAZ instance admits a
path P of travel time B . Since the last edge has a travel
time greater than B for all times except B , the travel time
to vk must have been B , too. Let A′ = {ai | ei ∈ P }. Since
the travel time to vk was B ,

∑
a∈A′ a = B has to hold and

the SubsetSum instance also admits a feasible solution.
This proves the weak NP-hardness. �

To prove that the problem is not strongly NP-hard,
we now give a pseudo-polynomial algorithm. Algorithm 1
shows the procedure in pseudo-code. The algorithm is a
time-expanded variation of the shortest path algorithm
of Bellman and Ford [13]. Instead of a distance array, it
maintains a 2-dimensional array indicating whether it is
possible to reach a vertex at a given time. Instead of
scanning edges |V | times, edges are relaxed for each in-
stant between τ dep and τmax. This leads to a running
time in O(τmax · |E|) which makes the algorithm pseudo-
polynomial in the input size.

For simplicity, we describe the algorithm under the as-
sumption that all travel times are strictly positive. Travel
times of zero can be handled by repeating the loop in
line 4 |V | times.

We prove correctness inductively. We show that in step
τ of the loop in line 3 for all vertices v , all possible ar-
rival times τ ′ ≤ τ have been correctly marked in R. Clearly,
the base case holds, because in the absence of zero travel
times, s is the only vertex reachable at τ dep. Assume the
induction hypothesis for τ −1. For any path (s, . . . , u, v) of
3

Data: R[u][τ]: 2-dimensional array of booleans indicating
whether it is possible to arrive at vertex u at time τ

Data: G = (V , A): Directed graph with travel time functions f tt
e

for each e ∈ E
1 Function TimeExpandedBellmanFord(s, t, τ dep, τmax):
2 R[s][τ dep] ← true;

3 for τ ∈ [τ dep, τmax] do
4 for uv ∈ E do
5 if R[u][τ] then
6 if u = t then
7 return true;

8 R[v][τ + f tt
uv (τ)] ← true;

9 return false;

Algorithm 1: Time-expanded Bellman-Ford algorithm.

travel time τ − τ dep the vertex u was reachable at a time
τ ′ < τ . Thus, R[u][τ ′] was correctly set, the outgoing edges
of u were relaxed and R[v][τ] will also be set which com-
pletes the inductive step. Repeating the loop in line 4 |V |
times would additionally allow intermediate paths of travel
time zero with up to |V | vertices, which clearly suffices to
solve this case, too.

Wojtczak showed in [14] that many common weakly
NP-hard problems, including SubsetSum, become strongly
NP-hard when defined on rational numbers. As our proof
generalizes to rational numbers without modification, we
get the following corollary:

Corollary 3. TDEAQ is strongly NP-hard.

We now restrict ourselves to a function class used in
many practical implementations: piecewise linear func-
tions represented as a sequence of breakpoints. Evaluating
the function at a time between two breakpoints is imple-
mented through linear interpolation. As input data usually
comes at a limited resolution, we assume that all break-
point coordinates can be represented by integers. Never-
theless, the result of a linear interpolation may be a ra-
tional number. Thus, when performing the computation in
the integer domain, one has to round. However, practical
implementations often need to compute travel time func-
tions for paths, for example to find the shortest travel time
function between two nodes, i.e. solve profile queries. In the
integer domain, this is very difficult because of the round-
ing. Therefore, many practical implementations [4,3,6] ap-
proximate computation in the continuous domain by us-
ing floating point numbers. This lead us to the question if
TDEAQ on piecewise linear functions with integer coordi-
nates is weakly or strongly NP-hard.

T. Zeitz Information Processing Letters 179 (2023) 106287
With piecewise linear functions with integer break-
points, we cannot easily construct constant travel time
functions with arbitrary rational travel times. Thus, the
generalizing the reduction from SubsetSum is difficult.
However, we can encode rational numbers in the slope
of arrival time function and exploit that when composit-
ing linear functions, the result function’s slope is equal
to the product of the slopes of the composed functions.
In the following, we show the strong NP-hardness with a
two-step reduction from SubsetProduct on rational num-
bers as an intermediate problem. On integers, SubsetProd-

uct is weakly NP-complete [12,15].2 However, as we now
show, when allowing rational numbers, the problem be-
comes strongly NP-complete. SubsetProduct is defined as
follows:

Definition 4 (SubsetProduct). Given a finite multiset of
positive numbers A and a positive number B , is there a
subset A′ ⊆ A such that

∏
a∈A′ a = B?

Theorem 5. SubsetProduct on rational numbers is strongly
NP-complete.

Proof. A guessed solution for SubsetProduct can be veri-
fied in polynomial time. In the worst case, all numerators
and denominators in the solution would have to be multi-
plied with each other. Thus, SubsetProduct is in NP even
with rational numbers.

For hardness, we reduce from the ExactCoverBy3Sets

problem. It is strongly NP-complete due to [12] and de-
fined as follows:

Definition 6 (ExactCoverBy3Sets (X3C)). Given a set X =
{x1, . . . , xk} with k being a multiple of 3, and a collection
C of 3-element subsets of X , does C contain an exact cover
C ′ for X , where C ′ ⊆ C and every element in X occurs in
exactly one element of C ′?

For the transformation, we first generate the first 2k +1
primes. We refer to these primes in two groups of each k
primes {p1, . . . , pk} and {p′

1, . . . , p
′
k} and one final prime

number p∗ . Generating these primes is possible in polyno-
mial running time [14]. We construct the set A = A X ∪ AC

from one number for each element in X and one number
for each 3-element set in C :

A X =
{

pi p′
i+1

p′
i

∣∣∣∣∣ xi ∈ X \ xk

}
∪

{
p∗ · pk p′

1

p′
k

}

2 Garey and Johnson [12] state that SubsetProduct on positive integers
is strongly NP-complete by reduction from ExactCoverBy3Sets with ref-
erence to private communication with A.C. Yao in 1978. This is somewhat
surprising since there is no obvious reason why the pseudo-polynomial
dynamic programming algorithm for SubsetSum should not be applicable
to SubsetProduct. This strongly suggests that the problem is only weakly
NP-complete and that the original reduction proved only weak hardness.
Otherwise, this would prove P = NP. While we were unable to obtain the
original proof, other realizations of the same reduction can be found on-
line [16]. This reduction uses a number exponential in the input size for
the target product B . Clearly, this admits a pseudo-polynomial algorithm.
As it turns out, on integers, the problem is only weakly NP-hard. John-
son’s NP-completeness column later contains a correction [15].
4

AC =
{

1

pi p j pk

∣∣∣∣ {
ci, c j, ck

} ∈ C

}
Setting B = p∗ completes the instance.

Assume that the X3C instance admits a set C ′ ⊆ C
which covers X . Consider the set A′ = A X ∪ AC ′ containing
all elements from A X and all elements from AC corre-
sponding to elements form C ′ . By construction, the product
over all numbers in A′ equals p∗:∏
a∈A′

a =
∏

a∈A X

a ·
∏

a∈AC ′
a = p∗ ∏

xi∈X

pi p′
i

p′
i

·
∏
xi∈X

1

pi
= p∗

It follows that the SubsetProduct admits a feasible subset,
too.

Conversely, assume S ′ is a fulfilling subset for the Sub-

setProduct instance. First, since ak is the only element
which contains p∗ as a factor, it must be contained in S ′ .
Secondly, note that if S ′ contains any element from A X ,
it has to contain all elements in A X to cancel out the p′

i
prime factors. The product of all elements in A X is equal
to p∗ · ∏xi∈X pi . For the total product of all elements in S ′
to be equal to p∗ , the product of the remaining elements
in S ′ has to equal exactly

∏
xi∈X p−1

i . This can only be the
case when the elements of C corresponding to these re-
maining elements in S ′ form an exact cover of X . Thus,
the X3C instance admits a feasible cover. �

With the strong hardness of SubsetProduct on rational
numbers, we can now prove our main result.

Theorem 7. TDEAQ with piecewise linear functions repre-
sented by a sequence of breakpoints is strongly NP-hard even
when all input numbers are integers.

Proof. Let A = { p1
q1

, . . . , pk
qk

}, B = p∗
q∗ be our SubsetProduct

instance. First, we sort A in ascending order, i.e. pi
qi

≤ pi+1
qi+1

.
We then construct the TDEAQ instance as follows: Simi-
larly to the hardness proof for TDEAZ , we build a graph
with k + 2 vertices and two parallel edges ei and e′

i be-
tween vi−1 and vi for 1 ≤ i ≤ k and a final non-FIFO edge
between vk and t . All edges e′

i get constant travel time
zero. The edges ei get a time-dependent travel time func-
tion which has slope pi

qi
in the arrival time representation.

The final edge has a travel time function with breakpoints
(0, p∗ + 1) and (p∗, 0). The topology is the same as in the
previous proof as illustrated in Fig. 1. We set τ dep = q∗
and τmax = p∗ . We pick the breakpoints for the ei func-
tions in such a way that the arrival time function has the
correct slope at least for all times in [0, max(p∗, q∗)]. Thus,
with si = � max(p∗,q∗)

qi

 the edge ei will have the arrival time

function breakpoints (0, 0) and (siqi, si pi). This transfor-
mation has polynomial running time and also all numbers
are polynomial bounded in the size of the SubsetProduct

instance.
Some of these arrival time functions have slope < 1 and

thus for τ ∈ [0, τmax] we get f at(τ) < τ . This means the
corresponding travel time functions have negative travel
times. We can obtain an equivalent instance without neg-
ative weights as follows: Let ei be an edge with a break-
point (x, y) in the travel time function where y < 0. We

T. Zeitz Information Processing Letters 179 (2023) 106287
increase the travel times of both ei and e′
i by the constant

c = −y. Additionally, the departure times coordinates of
breakpoints in every following travel time function must
be increased by c, i.e. for (x, y) a breakpoint of a travel
time function of an edge with head v j where j > i, this
breakpoint will be set to (x + c, y). Also, τmax must be in-
creased by c. Even though negative travel times are not
necessary, we still use them during the rest of the proof
because it simplifies the calculations. This also applies to
travel times of zero which can be avoided similarly.

Suppose the SubsetProduct instance admits a subset
A′ such that the product of all elements in A′ is B . We
consider the st-path which uses ei when pi

qi
∈ A′ and e′

i
otherwise. When visiting vertex vi−1 at instant τi−1 and
traversing the edge ei with arrival time breakpoints (0, 0)

and (siqi, si pi) with τi−1 ≤ siqi , the arrival time at vi can
be computed by linear interpolation: τi = τi−1 · pi

qi
. Assum-

ing τi−1 < siqi for 1 ≤ i ≤ k, the arrival time τk at the final
vertex vk before t can be computed as τ dep · ∏

ai∈A′ pi
qi

=
q∗ · p∗

q∗ = p∗ . The final edge has a travel time of 0 at p∗
which leads to an arrival of p∗ at t which shows, that the
TDEAQ instance admits a feasible path given that our as-
sumption on the τi holds. This assumption is valid because
the elements of A and thus the slopes of the edges are or-
dered ascendingly. For all pi

qi
≤ 1, τi ≤ τi−1, i.e. the travel

time is negative, and we arrive earlier than we started, so
τi < q∗ holds. Once edges with pi

qi
> 1 are reached, the τi

grow monotonically. But since the final result p∗ is within
the desired range, all intermediate τi have to be, too. Thus,
the assumption holds for all τi .

Conversely, assume the TDEAQ instance admits a path
P with the desired arrival time. This is only possible when
τk = p∗ because before p∗ , the arrival time function has a
strictly negative slope and after p∗ a strictly positive slope.
With the same argument as in the previous paragraph, we
get that all τi ≤ max(p∗, q∗). Hence, the following equation
holds: τ dep · ∏ai∈P

si pi
siqi

= τmax = p∗ which is equivalent to ∏
ai∈P

pi
qi

= p∗
q∗ . Thus, the set A′ = { pi

qi
| ai ∈ P } is a fulfilling

subset for the SubsetProduct instance. �
So far, we only discussed NP-hardness but not inclu-

sion in NP. On first glance, it appears likely that the TDEA

problem lies in NP because verifying path lengths takes
running time linear time in the path length. However, this
is not sufficient because solutions might have superpoly-
nomial length in the input size. Consider a graph with two
vertices s and t , one loop edge at s with constant travel
time 1 and one st edge with travel time 0 at instant 2k and
travel time 2k+1 during the rest of the time as depicted
in Fig. 2. For an instance with τ dep = 0 and τmax = 2k ,
the solution is a path which uses the loop at s 2k times.
A naive encoding of this solution would already be expo-
nentially bigger than the (binary encoded) input. Even if it
would be possible to show that a compact encoding of so-
lutions is always possible, one would still need to find a
way to evaluate the travel time of this path in polynomial
running time in the input size. Whether this is possible
likely strongly depends on the involved function classes.
Therefore, the question remains open. Nevertheless, since
5

s t

1

0 2k
0

2k + 1

τ

f tt
st (τ)

Fig. 2. Example graph with a shortest path with an exponential number
of hops.

we only used acyclic graphs in our reductions, we can still
conclude that when only allowing simple paths, the TDEA

problem is NP-complete.

4. Conclusion

In this work, we presented a simple transformation
from SubsetSum to the TDEAZ problem which confirms
its weak NP-hardness. Relating our proof to a recent result
on the strong NP-hardness of SubsetSum on rational num-
bers showed that TDEAQ on arbitrary rational functions is
strongly NP-hard, too. Finally, we showed that the prob-
lem remains strongly NP-hard for a typical practical model
when the travel times are piecewise linear functions de-
fined on rational numbers but all coordinates are integers.

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

Acknowledgements

I want to thank my colleague Jonas Sauer for many
helpful discussions on proof ideas. I also want to thank my
former colleague Lukas Barth for a great idea on a proof
simplification. Finally, I want to thank my colleague Paul
Jungeblut for proofreading a draft of this paper and his
many helpful suggestions for improvements.

Funding

This research was funded by Karlsruhe Institute of
Technology and the DFG project under grant number WA
654/23-2 in DFG research group 2083.

References

[1] S.E. Dreyfus, An appraisal of some shortest-path algorithms, Oper.
Res. 17 (3) (1969) 395–412.

[2] M. Gendreau, G. Ghiani, E. Guerriero, Time-dependent routing prob-
lems: a review, Comput. Oper. Res. 64 (2015) 189–197.

[3] G.V. Batz, Time-Dependent Route Planning with Contraction Hierar-
chies, Ph.D. thesis, 2014.

[4] D. Delling, D. Wagner, Time-dependent route planning, in: R.K. Ahuja,
R.H. Möhring, C. Zaroliagis (Eds.), Robust and Online Large-Scale
Optimization, in: Lecture Notes in Computer Science, vol. 5868,
Springer, 2009, pp. 207–230.

http://refhub.elsevier.com/S0020-0190(22)00044-8/bibE9BEC1C2F78AE56FD4E7C148EDE14512s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibE9BEC1C2F78AE56FD4E7C148EDE14512s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibEE50D3F5696EBBCD997CDB8DEFFCC8C1s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibEE50D3F5696EBBCD997CDB8DEFFCC8C1s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib031FA0AA4D0FB13A7BE2456CCF43CB7Ds1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib031FA0AA4D0FB13A7BE2456CCF43CB7Ds1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib1D9D86D1C246F73151EC6E1E0A728F87s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib1D9D86D1C246F73151EC6E1E0A728F87s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib1D9D86D1C246F73151EC6E1E0A728F87s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib1D9D86D1C246F73151EC6E1E0A728F87s1

T. Zeitz Information Processing Letters 179 (2023) 106287
[5] G. Nannicini, D. Delling, L. Liberti, D. Schultes, Bidirectional A* search
on time-dependent road networks, Networks 59 (2012) 240–251,
Best Paper Award.

[6] B. Strasser, D. Wagner, T. Zeitz, Space-efficient, fast and exact routing
in time-dependent road networks, Algorithms 14 (3) (January 2021),
https://www.mdpi .com /1999 -4893 /14 /3 /90.

[7] A. Kleff, F. Schulz, J. Wagenblatt, T. Zeitz, Efficient route planning
with temporary driving bans, road closures, and rated parking areas,
in: S. Faro, D. Cantone (Eds.), Proceedings of the 18th International
Symposium on Experimental Algorithms (SEA’20), in: Leibniz Inter-
national Proceedings in Informatics, vol. 160, 2020.

[8] A. Orda, R. Rom, Shortest-path and minimum delay algorithms in
networks with time-dependent edge-length, J. ACM 37 (3) (1990)
607–625.

[9] A. Orda, R. Rom, Minimum weight paths in time-dependent net-
works, Networks 21 (1991) 295–319.

[10] L. Foschini, J. Hershberger, S. Suri, On the complexity of time-
dependent shortest paths, Algorithmica 68 (4) (2014) 1075–1097.

[11] A. Orda, R. Rom, Traveling without waiting in time-dependent net-
works is NP-hard, Tech. rep., Dept. Electrical Engineering, Technion-
Israel Institute of Technology, 1989.

[12] M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to
the Theory of NP-Completeness, W.H. Freeman and Company, 1979.

[13] R. Bellman, On a routing problem, Q. Appl. Math. 16 (1) (1958)
87–90.

[14] D. Wojtczak, On strong NP-completeness of rational problems, in: In-
ternational Computer Science Symposium in Russia, Springer, 2018,
pp. 308–320.

[15] D.S. Johnson, The NP-completeness column: an ongoing guide, J. Al-
gorithms 2 (4) (1981) 393–405.

[16] Is the subset product problem NP-complete?, https://cs.
stackexchange .com /a /27973. (Accessed 24 February 2022).
6

http://refhub.elsevier.com/S0020-0190(22)00044-8/bib466BC802FF6D5E5EE545970192DB92AAs1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib466BC802FF6D5E5EE545970192DB92AAs1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib466BC802FF6D5E5EE545970192DB92AAs1
https://www.mdpi.com/1999-4893/14/3/90
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib09BF2BB48FAB91B73550072A50F6E318s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib09BF2BB48FAB91B73550072A50F6E318s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib09BF2BB48FAB91B73550072A50F6E318s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib09BF2BB48FAB91B73550072A50F6E318s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib09BF2BB48FAB91B73550072A50F6E318s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib59F9D86E7E29E02DC956D78361A89A96s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib59F9D86E7E29E02DC956D78361A89A96s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib59F9D86E7E29E02DC956D78361A89A96s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib3FA7EC96882C2C3D09241C928B68EAB6s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib3FA7EC96882C2C3D09241C928B68EAB6s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibFF39C55A48B54CE1CF92F7F5886616C0s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibFF39C55A48B54CE1CF92F7F5886616C0s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib37BE942071D989050D9267C2DF79F778s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib37BE942071D989050D9267C2DF79F778s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib37BE942071D989050D9267C2DF79F778s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib3F0A21474AFC1E4FA40AF484C9677EF0s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib3F0A21474AFC1E4FA40AF484C9677EF0s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib4CC5E68F91E65037715435F9859BEBFAs1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bib4CC5E68F91E65037715435F9859BEBFAs1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibBFD500BB53C68F564749120B8A3EEE50s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibBFD500BB53C68F564749120B8A3EEE50s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibBFD500BB53C68F564749120B8A3EEE50s1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibC504486E90262B3A3B8D8AC201345F7Es1
http://refhub.elsevier.com/S0020-0190(22)00044-8/bibC504486E90262B3A3B8D8AC201345F7Es1
https://cs.stackexchange.com/a/27973
https://cs.stackexchange.com/a/27973

	NP-hardness of shortest path problems in networks with non-FIFO time-dependent travel times
	1 Introduction
	2 Preliminaries
	3 Complexity results
	4 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

