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A B S T R A C T

Multifidelity models attempt to reduce the computational effort by combining simulation models of different
approximation quality and from different sources. Information fusion combines outputs from a model hierarchy
in order to obtain efficient estimators for a quantity of interest. In this paper, information fusion is
applied to reliability estimation. To this end, efficient multifidelity estimators for the probability of failure
are developed by combining additive and multiplicative information fusion with importance sampling and
importance splitting (notably the moving particles method). Importance sampling and importance splitting
based multifidelity reliability estimators are compared focusing on relative error and coefficient of variation.
. Introduction

Reliability analysis in engineering is concerned with the determi-
ation of the probability that the performance function of the system
e.g. the difference between resistance and load of a structure) becomes
egative. For most engineering applications, the failure probability is
ather small, which precludes the application of direct Monte Carlo sim-
lation for its evaluation. Instead, importance sampling and importance
plitting have been widely applied to estimate the occurrence of rare
vents [1].

Importance sampling estimates the occurrence of rare events by gen-
rating samples from an alternative distribution and correcting for the
ias by the introduction of weights. The success of this method relies on
he quality of the importance sampling density, which is therefore often
onstructed in an adaptive way, e.g. by the cross-entropy method [2].

Importance splitting allows estimating small failure probabilities
fficiently, even for problems that involve a high-dimensional vector of
nput random variables [1]. It is based on a multiplicative decomposi-
ion of the failure probability in larger conditional probabilities that are
stimated by means of Markov chain Monte Carlo simulation methods,
f. e.g. subset simulation [3]. Recently, the moving particles method
as been proposed for reliability estimation [4], which is an importance
plitting method that associates a threshold to each sample, moves
amples to new positions in the design space and counts the number of
oves of the initial samples to reach the failure domain. This quantity

ields an estimator for the failure probability, which is of comparable
ccuracy and efficiency as the subset simulation estimator [5]. The
dvantage of this algorithm is the description of the number of moves
y a Poisson distribution and thus the application of Poisson process
heory to importance splitting.

∗ Corresponding author.
E-mail addresses: proppe@kit.edu (C. Proppe), jonas.kaupp@kit.edu (J. Kaupp).

In addition, the introduction of sets of models instead of a single
model offers a great potential for increasing the efficiency of reliability
computations. In multilevel and multifidelity methods, sets of models
are introduced that comprise in general a computational expensive
high-fidelity model and one or several less expensive low-fidelity mod-
els. In multilevel methods [6], models are ordered by computational
accuracy [7], e.g. by means of a discretization parameter (a mesh
parameter or a time step) that is linked to the approximation error.
In multifidelity methods the output of low-fidelity models is leveraged
to increase the computational efficiency for an estimator of a quantity
of interest while maintaining its accuracy [8]. The low-fidelity models
can come from various sources including e.g. different discretization
methods, different mathematical models or even experimental mod-
els. The relation to the high-fidelity model is in general established
by means of a statistical parameter such as the Pearson correlation,
dependence-based measures or information-based measures [9].

The quantity of interest computed by means of the different mod-
els can be combined by serial application (i.e. information fusion)
and parallel application (i.e. information filtering) of the different
models [10]. Information fusion and information filtering can also
be combined [11]. For information fusion, additive information fu-
sion based on a telescoping sum seems to dominate the literature,
cf. e.g. [6]. In addition, multiplicative information fusion by means
of metamodeling techniques based on maximum likelihood estimation
or regression has been proposed as well, especially in the context of
co-Kriging [12–14].

For reliability estimation, information filtering has been well es-
tablished in recent years. The general idea is to apply a selective
refinement strategy, such that realizations far away from the boundary
between the failure domain and the safe domain are solved by a lower
accuracy than those close to the boundary, which further reduces the
computational effort.
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This concept has been combined with direct Monte Carlo simu-
ation [15,16] and importance sampling [17]. A multilevel method
ased on information filtering has been combined with importance
plitting in [18]. In [19], low-fidelity models of increasing accuracy
ave been employed as preconditioners to determine an importance
ampling density based on cross-entropy minimization. Concerning
nformation fusion, applications to reliability estimation are less fre-
uent. Direct Monte Carlo simulation and co-Kriging have been pro-
osed for reliability estimation in [13]. A multilevel Monte Carlo
ethod has been proposed that is based on additive information fusion

nd information filtering [11]. Moreover, additive information fusion
as been combined with cross-entropy based importance sampling in
20].

The aim of this contribution is to study the combination of infor-
ation fusion and efficient simulation of rare events by importance

ampling and importance splitting in a systematic manner with the aim
f further increasing the efficiency of the latter methods by introducing
set of models instead of the application of a single high-fidelity
odel. To this end, both additive and multiplicative information fusion

re combined with cross-entropy based importance sampling and the
oving particles importance splitting algorithm. Besides the already

xisting methods for reliability estimation with additive information
usion, new methods based on multiplicative information fusion are de-
eloped and introduced. They combine cross-entropy based importance
ampling with a regression approach and the moving particles method
ith multivariate estimation for Poisson distributions. This yields in

otal four different prototypes of multifidelity rare event simulation
echniques that are established and critically compared.

This paper is organized as follows: in the next section, information
usion for the combination of the model output is briefly introduced and
he concepts of additive and multiplicative information fusion are out-
ined. The following section introduces cross-entropy based importance
ampling and the moving particles algorithm for importance splitting.
fter that, importance sampling and importance splitting are combined
ith additive and multiplicative information fusion. The proposed
lgorithms are tested on examples comprising a simple cumulative
istribution function, a system of stochastic ordinary differential equa-
ions and a nonlinear stochastic partial differential equation. Finally,
onclusions are drawn.

. Information fusion

The application of a set of models instead of a single model offers
reat potential to develop computationally efficient simulation mod-
ls. While less computational demanding low-fidelity models help to
educe the computational effort, the high-fidelity model is necessary to
aintain the accuracy of the simulations.

In principle, the information obtained from a set of models can
e evaluated in two different ways. Either the models are applied in
arallel and an appropriate model out of the set of models hierarchy is
elected to carry out a specific simulation task — or the model hierar-
hy is applied in series and the information of each model is fused such
hat the overall computational effort is less than that of using solely the
igh-fidelity model. According to [10], the former approach is called
nformation filtering, while the latter approach is termed information
usion. As mentioned in the introduction, information filtering and
nformation fusion are not necessarily competing techniques, but can be
ombined. To this end, starting from a set of models, the combination of
odel outputs in parallel by information filtering leads to metamodels
hose output is then combined in series by information fusion.

Concerning information fusion, a first method that combines a
igh- and a low-fidelity model in a multiplicative manner has been
resented as ‘‘global–local approximation’’ in [21]. Both additive and
ultiplicative combination of output quantities obtained from a high-

nd a low-fidelity model has been investigated for the analysis of a

rack in a stiffened composite panel in [22]. The generalization of these

2

ideas to sets of models leads to information fusion based on telescoping
or weighted sums [8] and information fusion based on telescoping
products [14], respectively.

The former method associates costs to the evaluation of the different
models and determines an optimal number of simulation runs for a
fixed computational budget. For reliability estimation, this method has
been combined with information filtering in [11].

The possibility to link models by telescoping products of conditional
probabilities for the output variables has been mentioned in [14],
although the investigations are limited to the case of two models. These
methods require the calibration of one or several metamodels that allow
to replace high-fidelity simulations by computationally less expensive
simulations of lower fidelity. They do not optimize costs.

2.1. Additive information fusion

For additive information fusion, denote by 𝑄𝑙 a quantity of interest
related to the 𝑙th model. An estimator for the quantity of interest
of the high-fidelity model 𝐿 that combines the information from the
et of models in an additive manner is obtained from the telescoping
um [6,23]

[𝑄𝐿] = 𝐸[𝑄0] +
𝐿
∑

𝑙=1
𝐸[𝑄𝑙 −𝑄𝑙−1]. (1)

he aim is to compute each of the estimates on the right-hand side
f this equation individually by Monte Carlo simulation. A reduction
f the overall computational effort can be expected if the variance of
he differences decreases with increasing index 𝑙 and thus, for a given
oefficient of variation, Monte Carlo estimates for the differences of
ighly accurate models will require less samples. The fact that there
s a nested sequence of approximations might also be beneficial in a
imilar manner as for multigrid methods.

It is important to note that for the estimation of 𝐸[𝑄𝑙 −𝑄𝑙−1] both
𝑙 and 𝑄𝑙−1 are evaluated for the same samples. If the dimension of the

andom vector depends on the selected model of the model hierarchy,
t is possible to generate the samples for the model with higher fidelity
nd to obtain the corresponding samples for the model with lower
idelity by coarse-graining.

If models from different sources are considered, such that a joint
nput vector cannot be established, an additive combination of the
odel outputs is still possible. For this purpose, in analogy to the
ethod of control variates, the estimator

̂ = 𝑄̂𝐿 +
𝐿−1
∑

𝑙=1
𝛼𝑙(𝑄̂𝑙 − 𝜇̂𝑙) (2)

is considered, cf. [8], where

𝑄̂𝑙 =
1
𝑁𝑙

𝑁𝑙
∑

𝑖=1
𝑄𝑙,𝑖 and 𝜇̂𝑙 =

1
𝑁𝑙+1

𝑁𝑙+1
∑

𝑖=1
𝑄𝑙,𝑖, with 𝑁𝑙 > 𝑁𝑙+1. (3)

hen, optimal weights 𝛼𝑙, 𝑙 = 1, 2,… , 𝐿 − 1 and sample sizes 𝑁𝑙,
𝑙 = 1, 2,… , 𝐿 are determined such that the variance of the estimator is
minimal for a fixed computational budget. As for control variates, the
efficiency of the estimator depends on the Pearson correlation between
the high-fidelity and the low-fidelity models [24].

2.2. Multiplicative information fusion

Multiplicative information fusion relies on training samples of the
model with higher and lower fidelity and a statistical metamodel that
links the quantity of interest of both models. The metamodel can be
based on the joint probability density function or, by means of the
decomposition

𝑝(𝑄𝐿) = ∫ ...∫ 𝑝(𝑄𝐿,… , 𝑄𝑙 ,… , 𝑄0)d𝑄𝐿...d𝑄𝑙 ...d𝑄0

= ∫ 𝑝(𝑄𝐿|𝑄𝐿−1)...∫ 𝑝(𝑄𝑙|𝑄𝑙−1)...

𝑝(𝑄1|𝑄0)𝑝(𝑄0)d𝑄𝐿−1...d𝑄𝑙−1...d𝑄0

(4)
∫



C. Proppe and J. Kaupp Probabilistic Engineering Mechanics 69 (2022) 103291

𝐼

i
o
n

3

C
t
𝑝

𝑃

o

𝑝

c

∫

T
p

3

s

l
g
t
a
s

t
l
l
a
p

c
a
n
v
c

w
s
f
a
f
v

s
M
r
M
t

r
b
P
p

𝜆

w
s

t
r
I

t

𝛿

w
t
A

on the conditional probability density function [14]. The metamodel
can comprise linear or non-linear relationships and is calibrated by
means of Bayesian regression or maximum likelihood estimation. It
allows to replace high-fidelity computations by low-fidelity ones. De-
pending on the choice of the metamodel, dependence-based measures
or information-based measures between the high-fidelity model and the
low-fidelity models may provide more meaningful information than the
Pearson correlation.

3. Reliability estimation

Reliability estimation deals with the evaluation of the failure prob-
ability

𝑃𝐹 = ∫𝐹
𝑝(𝜽)d𝜽 = ∫ 𝐼𝑔<0(𝜽)d𝜽, (5)

where 𝐹 = {𝜽 ∈ R𝑛|𝑔(𝜽) < 0} denotes the failure domain,

𝑔<0(𝜽) =

{

1, if 𝑔(𝜽) < 0,
0, if 𝑔(𝜽) ≥ 0

(6)

s the indicator function and 𝑝(𝜽) the joint probability density function
f the random vector 𝜣. In general, the performance function 𝑔(𝜽) is
ot known exactly, but is computed by numerical approximation.

.1. Importance sampling

The aim of importance sampling is to reduce the variance of Monte
arlo simulation by sampling from an alternative density, the impor-
ance sampling density. To this end, the importance sampling density
𝐼𝑆 (𝜃) is introduced into Eq. (5):

𝐹 = ∫ 𝐼𝑔<0(𝜽)
𝑝(𝜽)
𝑝𝐼𝑆 (𝜽)

𝑝𝐼𝑆 (𝜽)d𝜽. (7)

The importance sampling estimate is then computed from the weighted
average

𝑃𝐹 ,𝐼𝑆 = 1
𝑁

𝑁
∑

𝑖=1
𝐼𝑔<0(𝜽𝑖)

𝑝(𝜽𝑖)
𝑝𝐼𝑆 (𝜽𝑖)

, (8)

where the 𝑁 samples 𝜽𝑖, 𝑖 = 1,… , 𝑁 , are drawn from 𝑝𝐼𝑆 (𝜽). The
ptimal importance sampling density is given by

𝐼𝑆 (𝜽) =
𝐼𝑔<0(𝜽)𝑝(𝜽)

𝑃𝐹
(9)

which however requires already the knowledge of 𝑃𝐹 and is thus
unfeasible.

In the cross-entropy method, an optimal importance sampling den-
sity is computed within a family of densities 𝑝̃(𝜽, 𝝂) with parame-
ter vector 𝝂 by minimizing the Kullback–Leibler divergence (i.e. the
ross-entropy)

𝑝𝐼𝑆 (𝜽) ln 𝑝𝐼𝑆 (𝜽)d𝜽 − ∫ 𝑝𝐼𝑆 (𝜽) ln 𝑝̃(𝜽, 𝝂)d𝜽 (10)

to the optimal importance sampling density [25]. This amounts to
maximizing the expression

∫ 𝐼𝑔<0(𝜽)𝑝(𝜽) ln 𝑝̃(𝜽, 𝝂)d𝜽. (11)

The estimation of this quantity requires again an importance sampling
procedure, which can be based on the same family of densities 𝑝̃(𝜽, 𝝂).

his leads to an iterative scheme for the determination of the optimal
arameter 𝝂, cf. [2].

.2. Importance splitting

The idea of importance splitting in reliability estimation is to discard

amples that are far away from the failure domain and to split at

3

east some of the remaining ones [26]. This procedure is repeated
radually by introducing thresholds and retaining only those samples
hat pass the threshold. Importance splitting can also be interpreted
s a special adaptive importance sampling procedure, where the final
amples define the importance sampling density.

One of the most prominent methods that applies importance split-
ing is subset simulation [3], where the thresholds are intermediate
evels of the performance function, Markov chain Monte Carlo simu-
ation is applied to split the remaining samples and the failure prob-
bility is computed as a telescoping product of successive conditional
robabilities.

The moving particles algorithm [4] can be considered as a special
ase of subset simulation with a maximum number of subsets. This
lgorithm has the advantage that the quantity to be estimated, the
umber of moves of the particles, is a Poisson distributed random
ariable. Thus, properties of the Poisson distribution can be used to
ombine information fusion with efficient reliability calculation.

The moving particles algorithm yields an estimate of 𝑃𝐹 . It starts
ith an initial Monte Carlo simulation with 𝑁 samples. These initial

amples – the particles – are then moved to the failure domain by the
ollowing procedure: The values 𝑔(𝜽𝑗 ), 𝑗 = 1,… , 𝑁 , of the 𝑁 samples
re ranked. The sample with the maximum value of the performance
unction is moved to a new position in the sample space with reduced
alue of the performance function by the following procedure:

A Markov chain Monte Carlo simulation (MCMC) is carried out
tarting from one of the remaining samples and the next state of the
arkov chain is accepted, if the value of the performance function is

educed. The Markov chain can be generated e.g. by application of the
etropolis–Hastings algorithm or by direct sampling from a normal

ransition kernel.
For each initial sample, the number 𝑀 of moves until the sample

eaches the failure domain is count. As has been shown in [4], the num-
er of moves to get an initial sample into the failure domain follows a
oisson distribution with parameter 𝜆 = − log𝑃𝐹 . The estimator for the
arameter of the Poisson distribution is obtained from 𝜆 = 𝐸[𝑀] as

̂ =

∑𝑁
𝑗=1𝑀𝑗

𝑁
, (12)

here 𝑀𝑗 , 𝑗 = 1,… , 𝑁 denotes the number of moves until the initial
ample 𝑗 reaches the failure state.

In order to obtain an unbiased estimate, it is mandatory that the
rajectories of the Poisson process generated from the initial samples
emain independent until the samples finally reach the failure domain.
n [27], two means are proposed to maintain the independence:

• Burn-in: The Markov chain Monte Carlo simulation is carried
out with a burn-in period. The burn-in should ensure the inde-
pendence of the candidate and the starting point of the Markov
chain.

• Seed avoidance: Repeated use of the same starting point for the
Markov chain should be avoided. Once a sample has been used
as starting point, the sample and its offspring should not be used
as starting point again.

The coefficient of variation for the failure probability estimated with
he moving particles algorithm is given by

𝑚𝑝 =

√

− log𝑃𝐹
𝑁

, (13)

cf. [4], and the average number of function evaluations is

𝑁𝑚𝑝 = 𝑁(1 − 𝑇 log𝑃𝐹 ), (14)

here the first term accounts for the initial Monte Carlo simulation and
he second term for the Markov chain samples (with burn-in period 𝑇 ).

burn-in period of 𝑇 = 5 and 𝑁 = 1000 initial samples were used in
the examples.
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Table 1
Relative error and coefficient of variation (c.o.v.), single level method.

Order 𝑟 = 1 𝑟 = 3 𝑟 = 5

Rel. error [%] C.o.v. Rel. error [%] C.o.v. Rel. error [%] C. o. v.

𝑛 = 1 20 0.0013 499 0.002 21510 0.022
𝑛 = 2 5 0.0015 59 0.006 291 0.017
𝑛 = 3 2 0.0015 23 0.006 81 0.010
𝑛 = 4 1 0.0018 12 0.005 39 0.006
𝑛 = 5 1 0.0017 8 0.005 23 0.007

4. Information fusion and importance sampling

Both information fusion by additive combination and multiplicative
combination of the model outputs can be combined with importance
sampling for reliability estimation. For additive information fusion,
the quantity of interest is the indicator function 𝐼𝑔𝑙<0(𝜽), 𝑙 = 1,… , 𝐿,
while for multiplicative information fusion, the quantity of interest is
the value 𝑔𝑙(𝜽), 𝑙 = 1,… , 𝐿, of the performance function, which is
interpreted as a random variable.

4.1. Additive information fusion

For additive combination of the model outputs according to Eq. (1),
the importance sampling density for each expectation has to focus on
the differences of the performance functions of neighbouring models.
An ordered set of performance functions 𝑔𝑙(𝜽), 𝑙 = 0,… , 𝐿 is needed,
where 𝑙 = 0 denotes the model with lowest fidelity and 𝑙 = 𝐿 the high-
fidelity model. Alternatively, the importance sampling estimators might
be computed separately for each model and then the differences of the
estimators are weighted, cf. [8].

Example 1, additive multifidelity method: Consider the circular
performance function 𝑔(𝜃1, 𝜃2) = 𝑟−

√

𝜃21 + 𝜃
2
2 with parameter 𝑟 > 0 and

standard normal distribution for the random variables 𝜃1, 𝜃2. The limit
state function 𝑔(𝜃1, 𝜃2) = 0 is approximated by a regular convex polygon

ith 𝑛 + 3 facets and orbiting radius 𝑟 and the corresponding perfor-
mance functions 𝑔𝑛(𝜃1, 𝜃2) represent the oriented Euclidean distance of
a sample from the approximated limit state function.

Table 1 displays the convergence of the single level approximations
with approximation order 𝑛. As can be seen, the relative error decreases
quickly. For lower failure probabilities, a high approximation order is
necessary, e.g. for 𝑟 = 5, an octogonal approximation is not sufficient
to reduce the relative error below 10%.

For the multifidelity method with additive information fusion, the
expectations for the differences of the failure probabilities are com-
puted by an adaptive cross-entropy based importance sampling scheme
that utilizes a Gaussian mixture model to represent the importance
sampling density, cf. [28]. As Table 2 reveals, the relative error of the
multifidelity method is similar to the single level method for 𝑟 = 1,
lower for 𝑟 = 3 and 𝑛 > 2 and higher for 𝑟 = 5. The coefficient of
variation of the estimator for the differences 𝛥𝑛+1𝑛 = 𝐸[𝑔𝑛+1(𝜃1, 𝜃2) −
𝑔𝑛(𝜃1, 𝜃2)] is lower than that of the single level estimator only for 𝑟 = 5
and low approximation order (𝑛 < 4). In contrast to multilevel methods,
the coefficient of variation increases with increasing approximation
order 𝑛. Thus, the multifidelity method is not efficient in this case.

The reason for these results of the multifidelity method can be seen
from Fig. 1 that displays the samples obtained from the importance
sampling density for the differences 𝛥21 and 𝛥43 for 𝑟 = 1. As can
be seen, the importance sampling density focus in both cases on the
domain where the approximated performance functions differ in sign;
however, for 𝛥43, these domains are so small that many samples are
still outside of these domains. For increasing approximation order 𝑛,
the number of separated domains that have to be covered by the im-
portance sampling density increases and the domains become smaller.
Thus, for higher 𝑛, it is more difficult to cover these domains very well.
 e

4

Fig. 1. Samples from the importance sampling density for differences between
approximation orders. (a) 𝛥21, (b) 𝛥43.

his leads to the increase of the coefficient of variation and also to the
ncrease of the relative error for larger values of 𝑟.

Next, the weighted multifidelity method proposed in [20] is con-
sidered, where a weighted sum of importance sampling estimates is
computed. This approach requires unbiased importance sampling es-
timates. Thus, the importance sampling densities are calibrated by
means of the different approximations of the performance function
𝑔𝑖(𝜽), 𝑖 = 1,… , 𝑛; however, the samples generated with the different
mportance sampling densities are evaluated with respect to the per-
ormance function 𝑔𝑛(𝜽) of highest fidelity. This is different from the
ther methods presented in this paper, where the generated samples
re either evaluated by the performance function of the same or the
ext higher level. In order to be efficient, a reduction of the coefficient
f variation for the weighted multifidelity estimator compared to the
ingle level approach is therefore mandatory, such that in total, less
amples are evaluated by the high-fidelity performance function.

Table 3 indicates that the coefficient of variation of the weighted
ultifidelity method is indeed smaller than that of the single level ap-
roach. It decreases with increasing high-fidelity approximation order
. For 𝑛 = 5, the coefficient of variation of the single level approach
s almost twice as large as that of the weighted multifidelity method.
his is due to the fact that with increasing 𝑛 the approach weights more
stimators, namely a total of 𝑛, one for each level.
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Table 2
Relative error, mean value and coefficient of variation for the differences between approximation orders.
Order 𝑟 = 1 𝑟 = 3 𝑟 = 5

Err. [%] Mean C.o.v. Err. [%] Mean C.o.v. Err. [%] Mean C.o.v.

𝛥21 5 0.0914 0.003 60 0.0489 0.0029 337 7.97E−04 0.0099
𝛥32 2 0.0195 0.007 20 0.0045 0.0075 108 8.52E−06 0.0083
𝛥43 1 0.0079 0.0151 6 0.0015 0.0135 57 1.93E−06 0.0227
𝛥54 0 0.0042 0.0244 0 7.53E−04 0.0214 34 8.39E−07 0.0318
a
e
−
a

Table 3
Relative error and coefficient of variation, weighted multifidelity method.

Order 𝑟 = 1 𝑟 = 3 𝑟 = 5

Rel. error [%] C.o.v. Rel. error [%] C.o.v. Rel. error [%] C. o. v.

𝑛 = 2 5 0.0014 59 0.0043 293 0.02
𝑛 = 3 2 0.001 23 0.0038 81 0.0095
𝑛 = 4 1 9.6E−4 12 0.0031 39 0.0051
𝑛 = 5 1 8.3E−4 8 0.0027 23 0.0046

4.2. Multiplicative information fusion

For multiplicative information fusion, the importance sampling den-
sity is based on the model with lower fidelity and pairs of output
quantities for neighbouring models are obtained for samples generated
by means of the importance sampling density. These pairs of samples
are then utilized to find a functional expression by regression that
relates the high-fidelity model output to the low-fidelity model output.

Example 1, multiplicative bifidelity method: Consider the same
erformance function and its approximation as before and the following
ifidelity method: For the lower approximation order (𝑛) the impor-
ance sampling density is calibrated by the same cross-entropy based
mportance sampling algorithm applied before. After that, 100 samples
out of 50000 samples) with highest weights are identified and only
or these samples, the performance function of approximation order
+ 1 is evaluated. A linear relation between the 100 values of the

ow-fidelity performance function and the high-fidelity performance
unction is then calibrated by regression. By means of this linear
elation, approximations of the high-fidelity performance function are
omputed for the remaining 49900 samples.

Table 4 summarizes the relative error and the coefficient of varia-
ion obtained for the bifidelity method. It can be seen that the relative
rror of the bifidelity method is comparable to that of the higher
pproximation order 𝑛 + 1. Thus, the bifidelity method considerably
mproves the approximations of the failure probability. The coefficient
f variation of the bifidelity estimator is higher than that of the single
evel estimator. It scales with the coefficient of determination 𝑅2 and
hus might be attributed to the regression error. For higher approxi-
ation order 𝑛 and for lower values of the radius 𝑟, the coefficient of
etermination increases because the differences between two successive
evels are smaller in these cases. Thus, the correlation between the val-
es of the performance functions is higher which reduces the coefficient
f variation.

Comparing the results for example 1 as summarized in Tables 2–4
he following conclusions can be drawn: The combination of additive
nformation fusion using telescoping sums with importance sampling
equires an importance sampling density that focuses on differences
etween approximations of successive order; a reduction of the coef-
icient of variation is then difficult to achieve (Table 2). Implementing
dditive information fusion by a weighted sum of importance sampling
stimators leads to a reduction of the coefficient of variation (Table 3),
ut requires all samples generated by the different importance sampling
ensities to be evaluated by the high-fidelity performance function. The
ombination of multiplicative information fusion with importance sam-
ling leads to mean square errors that are comparable to those of the
ext higher level (Table 4). A reduction of the coefficient of variation
s achieved, if the regression error is small. For linear regression, this is

he case if the approximations of successive order are highly correlated.

5

5. Information fusion and importance splitting

For importance splitting based on the moving particles algorithm,
the number of moves of the particles are the quantity of interest for
both additive and multiplicative information fusion. For multiplicative
information fusion, the adequate statistical related to the moving par-
ticles method is a bivariate (or more general a multivariate) Poisson
distribution, whose parameters are estimated from a rather large num-
ber of particles for which the moves are obtained with the low-fidelity
model and few particles for which both the low- and the high-fidelity
model must be evaluated.

In order to obtain a high variance reduction by the multifidelity
estimator it is important that the correlation of the number of moves
between models of different fidelity is high. Therefore, it is necessary to
closely relate the Markov chains obtained with different models that are
employed in each move of a particle. However, the stationary distribu-
tions that the Markov chains approach are different due to application
of different models when evaluating the performance function.

To solve this issue, two approaches have been proposed in the
literature. In [29], the random input vector of a high- and a low-
fidelity model is divided into a coarse part containing the joint input
parameters of both models and a fine part comprising additional input
parameters of the high-fidelity model. The Markov chain is advanced
first on the coarse part of the input vector and after that, the fine part
is generated. Although this approach is useful in many situations, it
cannot be applied in the context of the moving particles algorithm, as
the final criterion for the acceptance of a candidate – the reduction of
the value of the performance function – is different for the high- and
the low-fidelity model. Acceptance by the low-fidelity model does not
imply acceptance by the high-fidelity model and vice versa. Therefore,
fixing the coarse part of the input parameters by means of the low fi-
delity model introduces a bias when the high fidelity model is employed
in the moving particles algorithm, as a part of the intermediate failure
domains cannot be reached. An alternative approach is the method
proposed recently in [30], in which only the initial values and the
random numbers used during the Markov chain simulation are the
same, but not the intermediate states. This method can be successfully
applied to the moving particles algorithm.

5.1. Additive information fusion

For the moving particles algorithm, denote by 𝑀𝑙 the number of
moves when the numerically computed performance function 𝑔𝑙(𝜽) is
pplied. For additive information fusion with a telescoping sum, the
stimator for the Poisson distribution parameter at level 𝐿 and thus for
log𝑃𝐹𝐿 , where 𝑃𝐹𝐿 denotes the failure probability computed with the

pproximated performance function 𝑔𝐿(𝜽) at approximation order 𝐿, is
obtained from

𝐸[𝑀𝐿] = 𝐸[𝑀0] +
𝐿
∑

𝑙=1
𝐸[𝑀𝑙 −𝑀𝑙−1] (15)

and reads

𝑀̂𝑀
𝐿 = 1

𝑁0

𝑁0
∑

𝑖=1
𝑀 (𝑖)

0 +
𝐿
∑

𝑙=1

1
𝑁𝑙

𝑁𝑙
∑

𝑖=1
(𝑀 (𝑖)

𝑙 −𝑀 (𝑖)
𝑙−1). (16)

The corresponding single level estimator is

𝑀̂𝑆
𝐿 = 1

𝑁𝑆
∑

𝑀 (𝑖)
𝐿 . (17)
𝑁𝑆 𝑖=1



C. Proppe and J. Kaupp Probabilistic Engineering Mechanics 69 (2022) 103291

t

𝑁

w
t
t

s
i

𝐶

𝐶

F
m

𝜆

i
c

𝐶

t
o

Table 4
Relative error, coefficient of variation and coefficient of determination for the bifidelity method.
Order 𝑟 = 1 𝑟 = 3 𝑟 = 5

Err. [%] C.o.v. 𝑅2 [%] Err. [%] C.o.v. 𝑅2 [%] Err. [%] C.o.v. 𝑅2 [%]

𝑛 = 1 4 0.0226 85.31 42 0.3854 35.61 68 2.2314 24.50
𝑛 = 2 2 0.0059 98.78 10 0.1067 75.68 30 0.4132 60.46
𝑛 = 3 1 0.0035 99.67 7 0.0461 93.48 12 0.1184 86.75
𝑛 = 4 1 0.0024 99.89 5 0.023 97.42 7 0.0974 90.81
𝑛 = 5 1 0.002 99.95 5 0.0164 98.80 6 0.0513 93.74
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The mean square error for the single level estimator is

𝐸[(𝑀̂𝑆
𝐿 − 𝐸[𝑀])2] = 𝑉 (𝑀̂𝑆

𝐿 ) +
(

𝐸[𝑀̂𝑆
𝐿 ] − 𝐸[𝑀]

)2

= 𝑁−1
𝑆 𝑉 (𝑀𝐿) +

(

𝐸[𝑀𝐿] − 𝐸[𝑀]
)2 (18)

where 𝑉 (.) denotes the variance operator. The corresponding error for
the estimator (16) is

𝐸[(𝑀̂𝑀
𝐿 − 𝐸[𝑀])2] =

𝐿
∑

𝑙=0
𝑁−1
𝑙 𝑉 (𝑌𝑙) +

(

𝐸[𝑀𝐿] − 𝐸[𝑀]
)2 , (19)

where 𝑌0 =𝑀0 and 𝑌𝑙 =𝑀𝑙 −𝑀𝑙−1, 𝑙 > 0. In both expressions, the last
term is the numerical approximation error, while the first term is the
statistical error.

In the following, we analyse the multifidelity version of the algo-
rithm, i.e. for a model hierarchy that is based on a series of decreasing
numerical approximation errors ℎ𝑙, 𝑙 = 0,… , 𝐿. For a given overall
precision 𝜖 > 0 such that the mean square error is less than 𝜖2, we
wish to achieve a statistical as well as an approximation error less than
𝜖2∕2. For the approximation error, we have
(

𝐸[𝑀𝐿] − 𝐸[𝑀]
)2 < 𝜖2

2
. (20)

If
|

|

|

log𝑃𝐹 − log𝑃𝐹𝑙
|

|

|

= (ℎ𝑙), (21)

we obtain the condition ℎ𝑙 = (𝜖) for the approximation error. For
he statistical error of the single level estimator, we impose
−1
𝑆 𝑉 (𝑀𝐿) = (𝜖2), (22)

hich leads, if 𝑉 (𝑀𝐿) is approximately constant, to 𝑁𝑆 = (𝜖−2) for
he number of samples, the total number of function estimations being
hus 𝑁𝑆 (1−𝑇 log𝑃𝐹𝐿 ), cf. Eq. (14). Suppose that the computational cost
𝐶(𝑀 (𝑖)

𝑙 ) = (1−𝑇 log𝑃𝐹𝑙 ) to compute a single sample is of order (ℎ−𝑟𝑙 ) for
ome 𝑟 > 0. Then the computational cost for the single level estimator
s of order

(𝑀𝑆
𝐿 ) = (𝑁𝑆ℎ

−𝑟
𝐿 ) = (𝜖−2−𝑟). (23)

For the multifidelity estimator, the total computational cost is

(𝑀𝑀
𝐿 ) =

𝐿
∑

𝑙=0
𝑁𝑙𝐶(𝑌

(𝑖)
𝑙 ). (24)

ixing the total computational cost, the statistical error becomes mini-
al, if 𝑁𝑙 = 𝜆

√

𝑉 (𝑌𝑙)∕𝐶(𝑌
(𝑖)
𝑙 ), with

= 𝜖−2
𝐿
∑

𝑙=0

√

𝑉 (𝑌𝑙)𝐶(𝑌
(𝑖)
𝑙 ) (25)

f the statistical error should be equal to 𝜖2. In this case, the total
omputational cost of the multifidelity algorithm is

(𝑀𝑀
𝐿 ) = 𝜖−2

( 𝐿
∑

𝑙=0

√

𝑉 (𝑌𝑙)𝐶(𝑌
(𝑖)
𝑙 )

)2

. (26)

If Eq. (21) holds and
|

|

|

log𝑃 2
𝐹 − log𝑃 2

𝐹𝑙
|

|

|

= (ℎ𝑙), (27)

hen from the fact that 𝑀𝑙 follows a Poisson distribution, the variance
(𝑖)
f 𝑌𝑙 is of (ℎ𝑙). Depending on the increase of the costs 𝐶(𝑀𝑙 ) with t

6

ℎ𝑙, which is described by the exponent 𝑟, the first or the last term
in the sum in (26) will dominate. In fact, if 0 < 𝑟 < 1, the costs
ncrease less than the variance will decrease and thus the sum in (26)
s dominated by

√

𝑉 (𝑌0)𝐶(𝑌
(𝑖)
0 ), so that 𝐶(𝑀𝑀

𝐿 ) = (𝜖−2). On the other

and, if 𝑟 > 1, then the sum is dominated by
√

𝑉 (𝑌𝐿)𝐶(𝑌
(𝑖)
𝐿 ) and

𝐶(𝑀𝑀
𝐿 ) = (𝜖−2ℎ𝐿ℎ−𝑟𝐿 ) = (𝜖−1−𝑟).

Thus, compared with the computational cost of order (𝜖−2−𝑟) for
he single level estimator, considerable savings are obtained with the
ultifidelity estimator. This can be attributed to the fact that the order

f magnitude for the cost of the single level estimator involves the
roduct of the variance 𝑉 (𝑌0) and the cost 𝐶(𝑌 (𝑖)

𝐿 ).
Conditions (21) and (27) depend directly on the approximation

f the performance function. For instance, if information fusion and
nformation filtering are combined, such that |

|

𝑔ℎ(𝑥) − 𝑔(𝑥)|| < |

|

𝑔ℎ(𝑥)|| or
𝑔ℎ(𝑥) − 𝑔(𝑥)|| ≤ ℎ, one has |

|

|

𝑃𝐹 − 𝑃𝐹ℎ
|

|

|

< ℎ ([11], Lemma 3.4). From
his result, a direct calculation shows that ||

|

log𝑃𝐹 − log𝑃𝐹ℎ
|

|

|

< 𝐶1ℎ and
log𝑃 2

𝐹 − log𝑃 2
𝐹ℎ
|

|

|

< 𝐶2ℎ, cf. [9].
Example 2: Stochastic heat equation with random heat source
Consider the linear stochastic partial differential equation

𝑢 = 𝜕2𝑢
𝜕𝑥2

d𝑡 + 𝜃𝑢d𝑡 + 𝜎d𝑊𝑡 (28)

ith parameters 𝜃 and 𝜎, where d𝑊 are the increments of a standard
ylindrical Wiener process

𝑡 =
∞
∑

𝑘=1
𝑊 𝑘
𝑡 sin(𝑘𝜋𝑥), (29)

nd 𝑊 𝑘
𝑡 are standard independent Brownian motions.

The boundary conditions are 𝑢(𝑥 = 0, 𝑡) = 𝑢(𝑥 = 1, 𝑡) = 0 and the
nitial condition reads

(𝑥, 0) =
√

2
∞
∑

𝑘=1
sin(𝑘𝜋𝑥), (30)

o that the solution of the stochastic partial differential equation de-
ouples and can be written as

(𝑥, 𝑡) =
√

2
∞
∑

𝑘=1
𝑢𝑘(𝑡) sin(𝑘𝜋𝑥), (31)

here the coefficients 𝑢𝑘(𝑡) are described by the linear stochastic ordi-
ary differential equations

𝑢𝑘 = (−𝜋2𝑘2 + 𝜃)𝑢𝑘d𝑡 + 𝜎d𝑊 𝑘
𝑡 . (32)

heir solutions at time 𝑡 are

𝑘(𝑡) = exp((−𝜋2𝑘2 + 𝜃)𝑡) + 𝜉𝑘𝑡 , (33)

here 𝜉𝑘𝑡 is a normal random variable with mean zero and variance

𝜎2(1 − exp(2(−𝜋2𝑘2 + 𝜃)𝑡))
2(𝜋2𝑘2 − 𝜃)

. (34)

ailure is assumed to occur if 𝑢(𝑥 = 0.5, 𝑡 = 𝑇 ) is larger than a given
hreshold. In the following, 𝜃 = 1, 𝜎 = 1, 𝑇 = 1∕50 were set.

The solution of the stochastic partial differential Eq. (28) is ap-
roximated by truncating the solution at 𝑘 = 𝑘𝑚𝑎𝑥. In addition, time
ntegration is applied in order to solve the stochastic ordinary differen-
ial Eqs. (32). The approximation parameters for this problem are the
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Fig. 2. Variance of 𝑀ℎ𝑙 and 𝑀ℎ𝑙 −𝑀ℎ𝑙−1 .

runcation parameter 𝑘𝑚𝑎𝑥 and the time step. In order to relate them
o a single discretization parameter ℎ, a reference failure probability
as been computed from the solution given by Eqs. (33) and (34) and
sufficiently high value of 𝑘𝑚𝑎𝑥. With this reference value and given

alues for the two approximation parameters, the single discretization
arameter ℎ is obtained as relative error with respect to a direct Monte
arlo simulation, where the number of samples was so high that the
stimation error was negligible.

Fig. 2 displays the variance of the single level and the multilevel
stimator for the number of moves in dependence of the approximation
arameter ℎ is computed by comparing the exact and the approximate
ailure probability. The threshold value for failure has been set to
.5. It can be seen that the variance of the multilevel estimator is
maller than that of the single level estimator and that it decreases with
ecreasing discretization parameter ℎ, while the variance of the single
evel estimator is nearly independent of ℎ. As the number of moves is

Poisson distributed random variable, the same result holds for the
ean values.

.2. Multiplicative information fusion

For information fusion with multiplicative combination of the model
utputs, consider again without loss of generality the bifidelity situa-
ion with a high-fidelity and a low-fidelity model. 𝑀ℎ and 𝑀𝑙 denote
he random variables for the moves of the particles related to the high-
idelity and the low-fidelity model, respectively. As the low-fidelity
odel is assumed to be computationally more efficient, suppose that

amples 𝑀𝑙𝑖 , 𝑖 = 1,… , 𝑁 , are generated for particles with the low-
idelity models and pairs of samples (𝑀𝑙𝑖 ,𝑀ℎ𝑖 ), 𝑖 = 1,… ,𝑀 that
ere obtained with both the low- and the high-fidelity model, where
≪ 𝑁 . The objective is to estimate the parameters 𝜆𝑙 and 𝜆ℎ of the

wo dependent Poisson distributed random variables 𝑀ℎ and 𝑀𝑙. To
this end, three independent Poisson distributed random variables are
introduced and the parameters of the three Poisson distributions are
estimated by maximum likelihood estimation via the expectation max-
imization algorithm. The corresponding iteration scheme is described
in [31].

Example 3: Consider the same problem as described in example 2.
In this example only the truncation order 𝑘𝑚𝑎𝑥 has been varied. The
moving particles method has been applied with 1000 initial samples
(particles). For the bifidelity method described above, only ten par-
ticles were considered, for which the number of moves to reach the
failure domain were computed with both the low- and high-fidelity
 w

7

Fig. 3. Relative error and standard deviation for the single level estimator and the
bifidelity method with multiplicative information fusion.

model. Fig. 3 summarizes the results for the single level and the
bifidelity method. For low truncation order, the multiplicative bifidelity
method reduces the relative error compared to the single level method.
Moreover, due to the maximum likelihood estimation via expectation
maximization, also the standard deviation of the estimator is con-
siderably reduced. This demonstrates the advantages of the bifidelity
method over the single level moving particles algorithm.

Example 4: Burgers’ equation
Finally, additive and multiplicative information fusion combined

with importance splitting is applied to a nonlinear partial differential
equation, namely Burgers’ equation

𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

= 𝛼(𝑥, 𝜃) 𝜕
2𝑢
𝜕𝑥2

, (35)

where the stochastic viscosity 𝛼(𝑥, 𝜃) is given by the truncated
Karhunen–Loève expansion

𝛼(𝑥, 𝜃) = 1 +
𝑀
∑

𝑖=1

√

𝜆𝑖𝑓𝑖(𝑥)𝜉𝑖(𝜃), (36)

here 𝜉(𝜃) = [𝜉1(𝜃), 𝜉2(𝜃),… , 𝜉𝑀 (𝜃)] are independent standard normal
andom variables and 𝜆𝑖, 𝑓𝑖(𝑥), 𝑖 = 1,… ,𝑀 , are the eigenvalues
nd eigenvectors of a Fredholm integral equation of 2nd kind for the
xponential covariance kernel

𝑜𝑣(𝑥1, 𝑥2) = 𝜎2 exp(−‖𝑥1 − 𝑥2‖), (37)

here 𝜎 = 1.
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Table 5
Relative error and standard deviation for the single level, the additive multifidelity and the multiplicative
bifidelity method.
Grid points Single level Additive multifidelity Multiplicative bifidelity

Rel. error [%] Std. dev. Rel. error [%] Std. dev. Rel. error [%] Std. dev.

𝑛𝑚𝑎𝑥 = 40 15.32 2.06 15.32 2.06 8.81 0.37
𝑛𝑚𝑎𝑥 = 42 11.57 2.04 11.83 0.2 7.90 0.37
𝑛𝑚𝑎𝑥 = 44 6.75 2.02 8.87 0.18 6.95 0.37
𝑛𝑚𝑎𝑥 = 46 4.74 2.01 6.26 0.16 5.84 0.37
𝑛𝑚𝑎𝑥 = 48 2.72 2.01 3.98 0.15 4.65 0.37
The boundary conditions are 𝑢(𝑥 = 0, 𝑡) = 0 and 𝑢(𝑥 = 𝓁, 𝑡) = 0, the
initial condition is 𝑢(𝑥, 𝑡 = 0) = sin( 𝜋𝑥

𝓁
).

The solution is represented by a polynomial chaos expansion

𝑢(𝑥, 𝑡, 𝜉) =
𝑃
∑

𝑖=0
𝑢𝑖(𝑥, 𝑡)𝜓𝑖(𝜉), (38)

cf. [32], and the partial differential equation that governs the expansion
coefficients reads as follows:
𝑃
∑

𝑖=0

𝜕𝑢𝑖
𝜕𝑡
𝜓𝑖(𝜉)+

𝑃
∑

𝑖=0
𝑢𝑖𝜓𝑖(𝜉)

𝑃
∑

𝑗=0

𝜕𝑢𝑗
𝜕𝑥

𝜓𝑗 = (1+
𝑀
∑

𝑖=1

√

𝜆𝑖𝑓𝑖(𝑥)𝜉𝑖(𝜃))(
𝑃
∑

𝑖=0

𝜕2𝑢𝑖
𝜕𝑥2

𝜓𝑖(𝜉)).

(39)

Application of a Galerkin scheme with respect to the polynomial chaos
and a finite difference approximation in space and time leads to the
equation

1
𝛥𝑡

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0
𝑏𝑖𝑗 (𝑢

(𝑚,𝑛+1)
𝑗 − 𝑢(𝑚,𝑛)𝑗 )

1
2(𝛥𝑥)

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0

𝑃
∑

𝑘=0
𝑐𝑖𝑗𝑘𝑢

(𝑚,𝑛)
𝑗 (𝑢(𝑚+1,𝑛)𝑘 − 𝑢(𝑚−1,𝑛)𝑘 )

= 1
(𝛥𝑥)2

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0

𝑀
∑

𝑘=1
𝑑𝑖𝑗𝑘

√

𝜆𝑘𝑓𝑘(𝑥)(𝑢
(𝑚+1,𝑛)
𝑗 − 2𝑢(𝑚,𝑛)𝑗 + 𝑢(𝑚−1,𝑛)𝑗 )

+ 1
(𝛥𝑥)2

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0
𝑏𝑖𝑗 (𝑢

(𝑚+1,𝑛)
𝑗 − 2𝑢(𝑚,𝑛)𝑗 + 𝑢(𝑚−1,𝑛)𝑗 )

(40)

for the discretized expansion coefficients 𝑢(𝑚,𝑛+1)𝑖 , cf. [33], where

𝑏𝑖𝑗 = ∫ 𝜓𝑖(𝑥)𝜓𝑗 (𝑥)d𝑃𝐺(𝑥),

𝑐𝑖𝑗𝑘 = ∫ 𝑥𝑘𝜓𝑖(𝑥)𝜓𝑗 (𝑥)𝜓𝑘(𝑥)d𝑃𝐺(𝑥),

𝑑𝑖𝑗𝑘 = ∫ 𝑥𝑘𝜓𝑖(𝑥)𝜓𝑗 (𝑥)d𝑃𝐺(𝑥)

(41)

and d𝑃𝐺(𝑥) denotes the 𝑀-dimensional standard normal measure.
Failure is assumed to occur if 𝑢(𝑥 = 𝓁∕2, 𝑡 = 𝑇 ) is larger than a given

threshold (0.42). Table 5 summarizes the results obtained with the
single level method, the multifidelity method with additive information
fusion and the bifidelity method with multiplicative information fusion.
Only the time step has been varied by adapting the number 𝑛𝑚𝑎𝑥 of steps
until the final time 𝑇 is reached, while the other parameters were fixed.

For all methods, the relative error decreases rapidly if the approx-
imation parameter 𝑛𝑚𝑎𝑥 is increased. However, this decrease is less
pronounced for the bifidelity method with multiplicative information
fusion.

With regard to the standard deviation of the estimator, Table 5
demonstrates again that the single level method leads to the highest
standard deviation and that the standard deviation for the multifidelity
method decreases with increasing values of the approximation param-
eter 𝑛𝑚𝑎𝑥. For the bifidelity method, the standard deviation is nearly
independent of 𝑛𝑚𝑎𝑥 and nearly twice as large as the standard deviation
of the multifidelity method after the first level. The standard deviation
of the bifidelity estimator can be further reduced, if the number of

high-fidelity samples is increased.

8

6. Conclusions

This paper combines additive and multiplicative information fu-
sion with importance sampling and importance splitting in order to
efficiently estimate the probability of failure.

Obtaining a good importance sampling density is still a challenging
task, especially in high dimensions. This is also the case, if the impor-
tance sampling density should focus on level differences. It therefore
appears to be more advantageous to combine different importance
sampling estimators by a weighted sum, even if this approach requires
unbiased estimators and thus the evaluation of all samples by the high-
fidelity performance function. Multiplicative information fusion might
have advantages compared to additive information fusion as it reduces
the relative error and requires less samples to be evaluated by the
high-fidelity performance function. However, multiplicative informa-
tion fusion relies on establishing a relationship between the values of
the performance function obtained with the model of lower and of
higher fidelity.

Importance splitting is a rather robust method to yield accurate
reliability estimates. Taking advantage of Poisson process theory, both
additive and multiplicative information fusion can be combined with
the moving particles method in order to further increase the efficiency
of the moving particles method.

The proposed methods help to balance the approximation error
and the statistical error by information fusion. It is demonstrated that
these methods may lead to a considerable increase in efficiency. The
approaches can be extended by taking the data and model error in a
Bayesian setting into account. It is also noted that the methods pre-
sented in the paper can be applied to sensitivity analysis and Bayesian
inference.
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