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Abstract14

Penetration of liquid with distinct volumes into a funnel-like pore structure is widely observed15

in nature and technical applications. However, when the droplet size is comparable with the16

pore size, the penetration criterion, namely, under which condition the droplet can penetrate into17

the pore, remains an open question. In this work, we present theoretical models to address the18

penetration criteria in terms of the droplet size, the intrinsic wettability, and the opening angle19

of the funnel-shaped structure. The proposed theoretical models are well corroborated by phase-20

field simulations. Our findings demonstrate a critical contact angle below which a finite-volume21

droplet can penetrate into a hydrophobic pore. This critical contact angle is intimately related22

to the opening angle and the droplet size, which provides a complement to previous literature.23

Noteworthily, for a certain-sized droplet, the critical contact angle becomes invariant when the24

opening angle is greater than a certain threshold. Moreover, we find that for a constant opening25

angle, the critical contact angle decreases with the increase of the droplet size. As the droplet26

volume tends to be infinite, the opening angle almost has no influence to the penetration, and the27

critical contact angle asymptotically approaches 90◦, being consistent with previous works. Our28

observations illuminate a special mechanism for a precise maneuver of droplets in pore structures29

with potential applications in filter systems and microfluidic platforms.30

I. INTRODUCTION31

The penetration of liquid into a capillary tube has been studied for more than a century [1,32

2]. The pioneering works of Lucas [3] and Washburn [4] considered the penetration of liquid33

from an infinite reservoir into a capillary tube, establishing the famous Lucas-Washburn34

equation. One common conclusion in the previous works is that liquid cannot spontaneously35

penetrate into a hydrophobic capillary tube with intrinsic contact angle greater than 90◦. In36

contrast to previous consideration of infinite-volume liquid, the penetration of a finite-volume37

droplet into a pore structure is more appealing for practical applications, such as ink-jet38

printing, coating, and spray cooling [5]. As demonstrated by Marmur [6], when the droplet39

diameter is comparable with the characteristic length of the capillary tube, a complete40
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penetration of the droplet can be achieved in a capillary tube with intrinsic contact angles41

up to 114◦. Willmott et al. [7] have also experimentally shown that a finite-volume droplet42

can penetrate into a capillary tube with static contact angles greater than 90◦. Indeed, the43

size effect results from the Laplace pressure induced by the droplet curvature. However, it44

is still a knotty issue to address the penetration criterion of a finite-volume droplet into a45

capillary tube as a function of the intrinsic wettability, which shall be discussed in this work.46

Apart from the droplet size, the opening angle 2φ of the pore plays an important role47

as well. Previous studies about the droplet penetration into capillaries focused on either48

straight tubes (φ = 90◦) [7–9], wedge geometries [10–13], cones [14], and others [1]. These49

geometries may deviate from the pore shape in reality with different opening angles [15, 16].50

Some other researchers have investigated the influence of pore geometries such as liquid51

diodes and passive microfluidic valves [17–19] to the liquid movements but the majority of52

these works considered infinite-volume droplets. Suffice to say, the mechanisms controlling53

the penetration behavior of a certain-sized droplet in geometrically confined capillaries have54

not been completely identified yet. A comprehensive understanding of droplet penetration55

into geometrically confined capillaries is of crucial significance for a further investigation on56

the novel biocapillary problems and the development of functional materials with directional57

water transport properties, to name a few [20–22].58

In this work, we consider micrometer scale droplets penetrating into a funnel-like capillary59

tube in a quasi-equilibrium way. The penetration process is considered as an interplay60

between the capillary force and the Laplace pressure induced by the droplet curvature to61

minimize the total free energy. Thus, the penetration behavior can be manipulated by62

altering the substrate wettability, the opening angle, and the droplet volume. Specifically, we63

concern limiting configurations for droplets in different sizes penetrating into a pore structure64

with varying contact angles and opening angles. To the best of our knowledge, this is the65

first time of comprehensively studying the impact of the opening angle and its combined66

influence with contact angle and droplet size. In our study, we propose analytical models67

to address the droplet penetration behavior and obtain regime maps of penetration and no68

penetration. Phase-field simulations are carried out to confirm the theoretical predictions.69
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II. PHASE-FIELD METHOD70

We apply a volume-preserved Allen-Cahn-type phase-field (PF) model [23] to simulate71

the droplet penetration behavior. In this model, we introduce a space and time dependent72

variable ϕ(x, t) to characterize the phase state. In particular, the states: ϕ(x, t) =1 and73

0 stand for the pure liquid and gas phase, respectively. Inside the liquid-gas interface, the74

variable ϕ(x, t) varies between 0 and 1. The free energy functional of the system reads [24–75

28]:76

F =

∫
Ω

[(1/ϵ)w(ϕ) + f0(ϕ) + ϵγlg(∇ϕ)2]dΩ +

∫
S

fw(ϕ)dS, (1)

where Ω is the spatial domain occupied by the system, ϵ is related to the width of the liquid-77

gas interface, and S represents the substrate in contact with the liquid phases. The obstacle78

potential w(ϕ) is formulated as w(ϕ) = (16/π2)γlgϕ(1− ϕ), if 0 ≤ ϕ ≤ 1; and w(ϕ) = +∞,79

if ϕ < 0 or ϕ > 1. The bulk free energy density f0(ϕ) ensures the volume preservation [23]80

and ϵγlg(∇ϕ)2 denotes a gradient energy density. In the last term, fw is the wall free energy81

density, which is formulated as [25]:82

fw(ϕ) = γlsh(ϕ) + γgs[1− h(ϕ)]. (2)

Here, h(ϕ) = ϕ3(6ϕ2 − 15ϕ + 10) depicts an interpolation function, so that fw(1) = γls83

and fw(0) = γgs, where γls and γgs are respectively the surface tensions of the liquid-solid84

and gas-solid interfaces. By minimizing the free energy functional based on the variational85

approach, we obtain the following equation:86

τϵ∂tϕ = −(16/π2)γlg(1− 2ϕ)/ϵ+ 2ϵγlg∆ϕ− f ′
0(ϕ), (3)

where τ is a time relaxation coefficient. The free energy minimization at the fluid-substrate87

boundary leads to the following natural boundary condition [28, 29]:88

2ϵγlg∇ϕ · n+ f ′
w(ϕ) = 0. (4)

Here, n is the normal vector of the solid-liquid boundary. From Eq. (2) and Eq. (4), we89

obtain90

2ϵγlg∇ϕ · n = (γgs − γls)h
′(ϕ), (5)

which is consistent with the Young’s law, cos θ = (γgs − γls)/γlg [30]. The parameters γlg,91

γls, and γgs determine the contact angle θ.92
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It should be noticed that for a superhydrophobic surface, the order parameter on the93

substrate beneath the droplet may be smaller than 1. We use the parameters ϕs0 and94

ϕs1 to denote the order parameters on the substrate beneath and outside of the droplet,95

respectively. When the compositions from the substrate to the bulk of liquids are non-96

uniform, the surface tensions of the liquid-solid and gas-solid interfaces are modified as (see97

also [31–33]):98

γ∗
gs = fw(ϕs0) +

∫ ϕs0

0

2
√

γlgw(ϕ)dϕ, (6)

99

γ∗
ls = fw(ϕs1) +

∫ 1

ϕs1

2
√

γlgw(ϕ)dϕ. (7)

The surface compositions on the substrate ϕs0 and ϕs1 are obtained by solving the equation100

2
√
γlgw(ϕ) = f ′

w(ϕ). When the substrate is relatively hydrophobic, we obtain ϕs0 = 0101

and ϕs1 < 1. In this case, the contact angle is calculated via cos θ = (γ∗
gs − γ∗

ls)/γlg =102

[(γgs − γls)h(ϕs1)−
∫ 1

ϕs1
2
√
γlgw(ϕ)dϕ]/γlg. In the next section and Appendix A, we present103

the validation of the wetting boundary condition and the setups of contact angles in detail.104

In the numerical model, variables are nondimensionalized by the characteristic length105

x∗ = 1 × 10−6 m, time t∗ = 1 × 10−9 s, and energy E∗ = 1 × 10−11 J, respectively. We106

choose the following modeling parameters τ = 1, ϵ = 1, and γlg = 1 in the simulations.107

This model has already been validated for the wetting phenomenon on homogeneous as well108

as chemically patterned substrates [25, 34, 35]. Here, we utilize the phase-field model to109

simulate the droplet penetration into a funnel-like pore structure, which is not only observed110

in nature but also used in many technical applications [36–38]. The funnel shaped structure111

consists of two parts: the left wedge with an opening angle of 2φ and the right channel112

with an inner diameter of L. As shown in Fig. 1, a circled droplet with the initial diameter113

D is initially released inside the left wedge. The inner wall of the wedge is tangential to114

the droplet profile. Note that we mainly focus on the situation of D/L > 1. Driven by115

the capillary force, the droplet spreads along the inner wall and reaches an equilibrium116

state eventually. It is observed that the droplet in (a) with a hydrophilic substrate (θ = 60◦)117

completely penetrates into the right channel. However, the droplet in (b) with a hydrophobic118

(θ = 120◦) substrate shows no complete penetration. This reveals that the wettability plays119

an important role for the penetration. In the following, we will address the penetration120

criterion in the funnel-like structure in terms of the wettability, the opening angle, and the121

droplet size.122
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FIG. 1. Droplet evolution with time in a funnel-like structure for different contact angles θ. (a)

θ = 60◦, (b) θ = 120◦. The opening angle of the left wedge is 2φ = 60◦. The ratio of the droplet

diameter to the channel size is D/L = 3.

III. VALIDATION OF PHASE-FIELD MODEL123

Here, we validate the phase-field model by simulating the equilibrium states of droplets124

in a wedge in 2 dimensions (2D). According to Baratian et al. [12], the droplet in a wedge at125

equilibrium is a truncated sphere, as confirmed by the experimental snapshot (i) in Fig. 2.126

Based on the conclusion of Baratian et al. [12], the 2D droplet in a wedge at equilibrium127

should be a truncated circle. We simulate the equilibrium droplet shapes in wedges by128

varying the opening angle and the contact angle. The opening angle 2φ varies from 26◦129

to 37◦ and the contact angle θ changes from 110◦ to 180◦ (see more details for the setup130

of the contact angles in Appendix A). The droplet diameter is the same as the one in the131

paper of Baratian et al. [12]. Initially, we release a 2D circled droplet inside the wedge132

and the droplet evolves to the equilibrium state via surface energy minimization. In Fig. 2,133

we plot the distance x0 of the droplet center from the wedge apex as a function of the134

intrinsic Young’s contact angle θ. The colored symbols indicate the simulation results for135

different setups of (θ, 2φ). The dashed lines present the theoretical prediction based on the136

assumption that the equilibrated droplet is a part of a circle, which is formulated as:137

2x0/D =

√
π

−π + 2θ − sin 2θ

cos(π − θ)

sinφ
. (8)

Since the drop distance from the apex is larger than the droplet radius, the above equation138

has to meet with the condition 2x0/D ≥ 1. The insets in the bottom right corner show the139

equilibrium droplet morphologies for opening angles 2φ = 37◦ and contact angle θ = 162◦.140

The snapshots (i) and (ii) indicate the experimental result from the work [12] and the present141

2D simulation result, respectively. The droplet shapes show a great agreement with the142
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FIG. 2. Validation of the phase-field method for modeling equilibrium states of droplets in a 2D

wedge. The distance x0 of the droplet center O from the wedge apex A as a function of the contact

angle θ. The colored symbols show the simulation results for droplets with a diameter of D = 1.96

mm (the same diameter as the 4 µL-droplet in the experiments of Ref. [12] ) in three wedges with

opening angles 2φ ranging from 26◦ to 37◦ and contact angle θ changing from 110◦ to 180◦. The

black dashed lines represent theoretical predictions in 2D (see Eq. (8)). The inset in the top left

corner schematically illustrates the equilibrated state of a droplet in a wedge. The insets in the

bottom right corner show the equilibrium droplet morphologies for opening angles 2φ = 37◦ and

contact angle θ = 162◦. (i) Experimental results reproduced with permission from the work [12].

Copyright 2015 Royal Society of Chemistry; (ii) Present 2D phase-field simulation results. The red

dashed line is a circular fit of the droplet interface.

dashed circular fits. The good consistency of the simulation results with the experiments143

and theoretical predictions reveals the capability of the numerical model to simulate the144

wetting behavior in a confined geometry.145

IV. ANALYTICAL MODEL146

In this section, we propose two theoretical models to address the penetration criterion of147

a droplet into the channel of the funnel-like structure, as illustrated in Fig. 3. We consider148
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FIG. 3. Schematic of critical states that the droplet cannot completely penetrate into the channel

of a funnel-like structure. The dot dashed line is parallel to the channel wall and passes through

the point O (or O1 and O2). θ represents the static contact angle of the droplet on the substrate

and the diameter of the channel is L. (a) The droplet has a point contact with the substrate. In

(b) and (c), the wedge of the pore has an opening angle of 2φ. The green colored area indicates

the critical state of the droplet. The red and blue dashed circles with radii R fit the left and right

droplet interfaces, respectively. M1, M2, N1, N2 are contact points of the three phases. (b) φ ∈

(0,π/2]. θ1 = ∠O1N1N2, θ2 = ∠O2M1M2. (c) φ ∈ (π/2, π).

a droplet with an initial diameter of D. When the contact angle θ ≤ 90◦, the droplet can149

always penetrate into the funnel-like structure, as studied in many references [11, 13, 39, 40].150

Hence, we here focus on the situation where the contact angle is greater than 90◦.151

Model 1 is described in Fig. 3(a), which shows a special penetration critical state that152153

the droplet cannot penetrate into the channel. In this case, the droplet is a complete circle154

in 2 dimensions (2D) and has a point contact with the substrate. In 3 dimensions (3D), it155

is a sphere and has a line contact with the substrate (cylinder tube). To fulfill the wetting156

boundary condition in the channel, we have the expression for calculating the radius of the157

droplet in the channel: R = 0.5L/ cos(π − θ), which also equals to the initial radius of the158

droplet. Thus this critical state can be described by following equation both in 2D and 3D159

(model 1):160

D

L
= − 1

cos θ
. (9)

For a certain droplet size D/L, solving Eq. (9) for θ yields the critical contact angle θc161

above which penetration occurs. The curve described by Eq. (9) is called the penetration162

critical line. Thus we obtain the penetration criterion: when θ < θc, penetration occurs;163

when θ > θc, no penetration takes place. Noteworthily, φ does not appear in model 1. The164
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details for the validity of model 1 (Eq. (9)) will be discussed in the following.165

In general cases, the left and the right interfaces of the equilibrium 2D droplet may166

not be on a joint circle. This fact is considered in the model 2, as presented in Fig. 3(b)167

(0 < φ ≤ π/2) and (c) (π/2 < φ < π). Here, the blue and the red dashed circles depict168

the left and the right interfaces of the 2D droplet, respectively. At equilibrium, these two169

circles have the same curvature radius R to be consistent with the uniform Young-Laplace170

pressure inside the droplet. We call this state as the (penetration) critical state for the171

droplet. Fulfilling the wetting boundary conditions and the volume conservation, we obtain172

the penetration critical state described by model 2 in 2D:173

D

L
=

√
2(θ − π) + α + sinα + sin 2θ + cotφ(cosα− cos 2θ)

2π cos2 θ
, (10)

where α = 2θ + 2φ.174

The 3D structures are obtained by rotating the 2D geometries along the dot dashed center175

lines. In this case, model 2 in 3D becomes:176

D

L
=

3

√
0.25[cotφ(cos3 θ2 − cos3 θ1) +

∑2
i=1(2 + sin θi)(1− sin θi)2]

cos θ1
, (11)

with the angles θ1 = π − θ and θ2 = π − θ − φ. For certain values of D/L and φ, solving177

Eq. (10) or Eq. (11) for θ gives rise to the critical contact angle θc above which penetration178

occurs. The curve described by Eq. (10) or Eq. (11) is called the penetration critical line.179

Thus we have the penetration criterion: when θ < θc, penetration occurs; when θ > θc, no180

penetration takes place. See the Appendix for calculation details of model 2 in 2D and 3D.181

Note that there is a special case for model 2 where the red and blue dashed circles in182

Fig. 3(b) and (c) overlap with each other, which is equivalent to a boundary state183

φt/2 + θt = π. (12)

Here, 2φt and θt denote the opening angle and the contact angle for the boundary state,184

respectively. This special state corresponds to the situation where the equilibrium droplet185

has a point (in 2D) or line contact (in 3D) with the throat and its contact angles on the186

wall of the left wedge and the inner wall of the channel are the same, i.e., θ = θt = π−φt/2.187

Substituting Eq. (12) into Eq. (10) or Eq. (11), we obtain the same criterion as model 1.188

Actually, when φ ≥ φt = 2π−2θt, the opening angle does not affect the penetration behavior189

anymore. In this case, the critical state of the droplet penetration is depicted by model 1.190

Thus model 1 and model 2 are valid for φ ≥ φt and 0 < φ ≤ φt, respectively.191
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FIG. 4. Penetration criterion diagrams in funnel-like pore structures as a function of φ and θ. (a)

Final states of droplets (D/L = 3) with varying φ and θ. (b) Regime diagram for the penetration

states of the droplet with D/L = 3. Blue squares: complete penetration into the channel of the

pore structure; red triangles: no penetration. The penetration critical line via theoretical model is

indicated by the solid line. (c) The penetration critical lines predicted from the theoretical model

for different D/L. The colored rhombus points are intersections of model 1 and 2. The black

dashed line passing through these rhombus points is described by Eq. (12). The circle points with

scattering bars via binary search algorithm indicate the simulation results for the critical state.

V. RESULTS AND DISCUSSIONS192

In this part, we numerically and analytically investigate the influence of the opening193

angle 2φ, the contact angle θ, and the droplet size D/L to the droplet penetration behavior.194

In the numerical simulation, a droplet is initially released on the left side of the wedge,195

10



contacting the substrate. For different opening angles and contact angles, we achieve distinct196

equilibrium states of the droplet. Exemplary 2D simulation results are illustrated in Fig. 4(a)197

for D/L = 3. In Fig. 4(b), we plot the penetration states from the 2D simulations in the198

ranges φ ∈ [10◦, 150◦] and θ ∈ [80◦, 140◦]. The squares and triangles indicate the states of199

penetration and no penetration into the channel of the pore structure, respectively. The200

theoretical prediction via model 1 (φ ∈ [140◦, 150◦]) and model 2 in 2D (φ ∈ [10◦, 140◦])201

is depicted by the solid line, which is excellently consistent with the simulation results in202

the studied range. It is further observed that for a fixed opening angle, a large contact203

angle tends to prevent the penetration and that for a fixed contact angle in the range of204

θ ∈ (96◦, 110◦), a large opening angle facilitates the penetration.205

Fig. 4(c) presents the effect of the droplet size D/L on the penetration critical lines,206

where different droplet sizesD/L correspond to distinct colored solid lines. The theoretically207

predicted penetration critical lines are obtained by solving Eq. (9) and Eq. (10) for different208

values of D/L. The colored circle points indicate the 2D simulation results, where the209

scattering bar is a result of the binary search algorithm. For instance, we initially run two210

simulations with contact angles θI and θII . The selection for the contact angles is guided by211

the theoretical value θc, such that θI < θc < θII , and leads to penetration and no penetration212

states, respectively, for θI and θII . The so-called binary search algorithm compares these213

two simulation results to the one for θm := (θI+θII)/2. If penetration takes place for θm, we214

replace θI by θm; otherwise, θII is replaced by θm. We repeat this procedure successively for215

the new θI and θII until the critical state is found within a relatively narrow interval. At the216

end of the binary search procedure, the critical state from the simulation is represented by217

θm and the scattering bar is obtained according to the difference of the final θI and θII . The218

intersections (θt, φt) between model 1 (straight part of the solid lines) and model 2 in 2D219

(curved part of the solid lines) are illustrated with the rhombus points. The black dashed220

line passing through these intersections corresponds to Eq. (12), which divides the whole221

region into two zones, namely, the blue zone (φ ≥ φt) and the white zone (φ ∈ (0◦, φt)).222

The simulation results coincide excellently with model 1 in the blue zone as well as with223

model 2 in the white zone. This implies that the equilibrated droplet in the blue zone has224

only a point contact with the substrate. A typical result for the scenario of a point contact225

inside the blue zone is demonstrated in Fig. 4(a) for the setup (θ = 120◦, φ = 150◦).226

For a certain-sized droplet, the critical contact angle increases with the opening angle227
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until a certain value φt is achieved. Above φt, the critical contact angle is a constant value.228

The value of φt increases with the droplet size D/L, implying that the penetration behavior229

of a larger droplet can be manipulated by adjusting the opening angle in a wider range (φ230

∈ (0◦, φt)). Moreover, the critical lines become more and more steep with an enlargement231

of the droplet size, which reveals that the changes in the opening angle have more profound232

impact on smaller droplets. It is to be expected that when D/L >> 1, the curvature is233

not largely affected by the opening angle anymore. In this case, the critical contact angle234

asymptotically approaches 90◦. This is consistent with the classic conclusion in literature235

that a large droplet cannot spontaneously penetrate into a hydrophobic capillary tube. It236

should be noticed that the critical line of droplet penetration for D/L = 1 still exists, under237

which the droplet cannot completely penetrate into the channel. For instance, when ϕ = 10◦,238

the droplet with D/L = 1 at θ = 160◦ cannot completely penetrate. In this case, the droplet239

forms a liquid bridge with aspect ratio (width/height) smaller than 1. It is highly possible240

that the small droplet may touch only one side of the wall and finally obtains a shape of241

spherical cap. Our model is not valid for this situation anymore. Our current study mainly242

focuses on the situation of D/L > 1, thus the situation of tiny droplets with D/L < 1 is243

neglected.244

In Fig. 5(a)-(c), we keep the opening angle constant (φ = 30◦) and study the combined245

influence of the droplet size and the contact angle on the droplet penetration. Fig. 5(a)246

and (b) illustrate the 2D simulation snapshots of the final droplet states by varying the247

contact angle and the droplet size, respectively. As shown in Fig. 5(a) for φ = 30◦ and248

D/L = 3, the droplet completely penetrates into a hydrophilic channel (θ = 30◦, 60◦, and249

90◦), whereas this is not possible for a hydrophobic substrate with θ = 120◦ and 150◦. For250

a hydrophobic substrate (θ = 110◦), the droplet moves into the channel when the droplet is251

sufficiently small, as demonstrated in the first three panels in Fig. 5(b). These states can252

be obtained because we initially release the circled droplets inside the left wedge and the253

inner wall is tangential to the droplet profile (see e.g. Fig. 1(a) or (b) the first snapshot).254

It is also possible that small droplets may touch only one side of the wall and stay on the255

flat wall. So both cases are stable states but they are dependent on the initial states of256

droplets, but our model only addresses the former case. With an increase in the droplet257

size, a complete penetration cannot be achieved, as depicted by the last two panels in258

Fig. 5(b). The penetration states from the 2D simulation results are displayed in Fig. 5(c)259
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FIG. 5. Regime diagram for the end-state of droplets in funnel-like structures with different D/L

and θ. The opening angle (φ = 30◦) is constant in (a)-(c). (a) and (b) The final droplet states

influenced by θ and D/L, respectively. In (c), the blue squares and the red triangles indicate a

complete penetration and no penetration, respectively. The solid curve describes the penetration

critical line from the theoretical model. In (d), different colored curves show the results from

the theoretical model with φ varying from 10◦ to 120◦. The inset displays a magnification of the

diagram. The black dashed curve (Eq. (12)) intersects the colored curves with different points

which are highlighted by rhombus points.

for D/L ∈ [1, 4.2] and θ ∈ [40◦, 150◦]. The theoretical prediction of the penetration critical260

line is represented by the solid line, which shows a very good agreement with the simulation261

results. As described by the penetration state map, a low volume droplet with a small262

contact angle is more prone to penetrate into the channel of the funnel structure. In the263

hydrophilic region (θ ≤ 90◦), penetration is inevitable irrespective of the droplet volume.264

Fig. 5(d) presents the 2D theoretical predictions via model 1 (black dashed line, θ ∈265

[θt, 180
◦)) and model 2 (colored lines, θ ∈ (90◦, θt]) for a series of opening angles. The266

intersections (θt, (D/L)t) of model 1 and model 2 are highlighted by colored rhombus points.267

The subscript t indicates the boundary state and (θt, (D/L)t) meets with both Eq. (9) and268
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FIG. 6. Comparison of 2D and 3D theoretical predictions for the penetration critical lines. (a) The

penetration critical lines as a function of φ and θ. (b) The penetration critical lines as a function

of D/L and θ. The penetration critical lines via 2D model (dot-dashed line) and 3D model (solid

line) for different values of D/L in (a) (or φ in (b)) are displayed in different colors. The black

dashed line in (a) is described by Eq. (12). The black dashed curve in (b) shows model 1 (Eq. (9)).

The colored circle points with scattering bars are results of the binary search algorithm via 3D

simulations. (c) and (d) show 3D simulations for θ = 118◦ and 122◦ respectively. For both cases,

φ = 120◦ and D/L = 2.

Eq. (10). All the penetration critical lines show the same tendency that the critical contact269

angle increases with a decrease in the droplet size but in two stages: (i) decreasing along270

the colored line in the range of φ ∈ (90◦, θt]; (ii) decreasing along the black dashed line in271

the range of θ ∈ [θt, 180
◦). Moreover, it is observed that a small droplet is more sensitive to272

the change in the opening angle, while a large droplet is more robust to the influence of the273

opening angle. All the penetration critical lines asymptotically approach 90◦ as the droplet274

becomes extremely large.275

The above discussions are based on 2D analysis. Here, we further consider the 3D conical276

structures, which are obtained by rotating the 2D geometries along the axis of symmetry.277

Fig. 6(a) and (b) present the comparison of 2D (dot dashed lines, Eq. (10)) and 3D (solid278

lines, Eq. (11)) theoretical predictions of the penetration critical lines. The circle points279

with scattering bars via binary search algorithm indicate the 3D simulation results for the280

14



critical states, which confirms the 3D theoretical model for D/L = 2. As shown in Fig. 6(c)281

and (d), the 3D droplet penetrates into the channel for θ = 118◦ but stays outside of the282

channel for θ = 122◦. To avoid repeated confirmations of the similar situation for other283

droplet sizes, additional 3D simulations are not further performed. It is found that there284

is only slight difference between the 2D and 3D theoretical models in the situation where285

model 2 is valid. Noteworthily, model 1 in 3D is exactly the same as the 2D case. It implies286

that the conclusions for the 2D situation also work for the 3D scenario.287

VI. CONCLUSIONS288

The droplet penetration behavior into a 2D funnel shaped structure has been investigated289

for a wide range of droplet sizes, contact angles, and opening angles. Based on the geometric290

analysis of droplet shapes and the pore structures, we proposed two theoretical models to291

address the regime maps of penetration and no penetration, which are confirmed by the292

comprehensive phase-field simulations. It is found that for a fixed droplet size D/L, the293

critical contact angle increases with the opening angle until a certain value of the opening294

angle 2φt is achieved. Above the opening angle 2φt, the critical contact angle is not affected295

by the opening angle anymore. Furthermore, for a certain opening angle, the critical contact296

angle increases with decreasing the droplet size and a relatively small droplet is more sensitive297

to the influence of the opening angle. Additionally, we considered the 3D conical structures298

by rotating the 2D geometries along the axis of symmetry and only tiny difference exists299

between 2D and 3D predictions, thus similar findings were observed in 3D scenario. It is300

noteworthy that the equilibrated droplet in a hydrophobic wedge with a certain range of301

different opening angles tends to be a truncated sphere (in 3D) or a truncated circle (in302

2D), as discussed in Ref. [12] and Fig. 2. However, the equilibrium shape of the droplet in a303

funnel-like structure is highly dependent on the opening angle. Only when the opening angle304

is larger than a certain threshold, the equilibrium shape of the droplet becomes a sphere (in305

3D) or a circle (in 2D).306

As previously demonstrated by Marmur [6], a complete penetration into a capillary can307

be achieved for contact angles up to about 114◦ for sufficiently small droplets, but this308

conclusion is based on a straight tube. In the current work, by changing the opening angle309

of the funnel-like structure together with the droplet size, we have extended this contact310
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angle limit for the complete penetration of droplets. To sum up, our findings demonstrate311

that the droplet penetration behavior can be accurately controlled through the droplet312

volume, the opening angle, and the wettability of the pore structure. The thorough study of313

the combined influence of these three factors to the droplet penetration paves a novel way to314

better understand wetting behaviors in a pore structure. As a future perspective, appropriate315

modifications to our current model would permit the study of deformable substrates, leading316

to a smart way of directional transport of droplets. Our endeavours in this direction may317

provide essential guidelines for practical applications including microfluidics, filter system,318

drainage system, oil recovery system, and so on.319
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Appendix A: Setups of contact angles in hydrophobic region327

Table AI lists the setups of different contact angles via the interfacial energy parameters328

γgs and γls, which appear in the wall free energy density in Eq. (2). The contact angles329

are calculated through cos θ = (γ∗
gs − γ∗

ls)/γlg, with γ∗
gs = fw(ϕs0) +

∫ ϕs0

0
2
√
γlgw(ϕ)dϕ and330

γ∗
ls = fw(ϕs1) +

∫ 1

ϕs1
2
√
γlgw(ϕ)dϕ. The surface compositions from theory (ϕs0, ϕs1)theo and331

from simulation (ϕs0, ϕs1)sim are obtained by solving the equation 2
√

γlgw(ϕ) = f ′
w(ϕ) via332

Newton’s iteration method and by measuring the value in simulations, respectively. As333

shown in Fig. A1, when θ < 132.5◦, the curves g1(ϕ) = 2
√
γlgw(ϕ) and g2(ϕ) = f ′

w(ϕ)334

always intersect at (0,0) and (1,0). However, when θ > 132.5◦, two other intersections335

[ϕs1, g1(ϕs1)] and [1−ϕs1, g1(1−ϕs1)] appear, relating to additional energy minimum states.336

According to Refs. [31–33], the left intersection [ϕs1, g1(ϕs1)] corresponds to a hydrophobic337

surface, while the right solution [1− ϕs1, g1(1− ϕs1)] corresponds to a hydrophilic setup. In338
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Table AI. Setups of interfacial energies and the resulting surface compositions for different contact

angles.

θ (γgs, γls) (γ∗gs, γ
∗
ls) (ϕs0, ϕs1)theo (ϕs0, ϕs1)sim

100◦ (1, 1.174) (1, 1.174) (0, 1) (0, 1)

110◦ (1, 1.342) (1, 1.342) (0, 1) (0, 1)

120◦ (1, 1.500) (1, 1.500) (0, 1) (0, 1)

132◦ (1, 1.669) (1, 1.669) (0, 1) (0, 1)

148◦ (1, 1.700) (1, 1.848) (0, 0.429) (0, 0.419)

161◦ (1, 2.500) (1, 1.943) (0, 0.180) (0, 0.176)

170◦ (1, 6.000) (1, 1.985) (0, 0.071) (0, 0.073)

178◦ (1, 101.0) (1, 1.999) (0, 0.009) (0, 0.011)

this work, we focus on the hydrophobic setup, thus the intersection point (1−ϕs1, g1(1−ϕs1))339

is not considered. We have examined the equilibrium surface composition on hydrophobic340

substrates through phase-field simulations. It is found that when θ > 132.5◦, the solutions341

(0,0) and (ϕs1, g1(ϕs1)) are more energetically stable. However, when 90◦ < θ < 132.5◦, the342

intersections (0,0) and (0,1) are the only solutions (see the last column in Table AI). We343

have validated the contact angles by analyzing the equilibrium states of 2D droplet in a 2D344

wedge as illustrated in Fig. 2. The simulations show excellent agreement with the theoretical345

predictions.346347

Appendix B: Model 2 in 2D348

Model 2 considers the critical state, for which the left and the right interfaces of the349

droplet are not on a joint circle. As presented in Fig. 2(b)and (c), the blue and red dashed350

circles depict the left and right interfaces of the droplet, respectively. At equilibrium, these351

two circles have the same curvature radius R. The volume conservation of the droplet leads352

to the following equation353

SI + SII + SIII = πD2/4. (B1)

Here, SI , SII , and SIII are the surface areas of the segment M1M2 confined by the arch

and chord M1M2 corresponding to ∠M1O2M2, the segment N1N2 confined by the arch and
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Figure A1. The intersections between the curves g1(ϕ) = 2
√
γlgw(ϕ) (dot dashed line) and g2(ϕ) =

f ′
w(ϕ) for different contact angles (colored curves). The different contact angles are controlled via

the value of (γ∗gs − γ∗ls), which is affected by the intersection point.

chord N1N2 corresponding to ∠N1O1N2, and the trapezoid M1M2N1N2, respectively. D is

the initial diameter of the droplet. Defining the angles θ1 := π − θ and θ2 := π − θ − φ, we

have the following expressions for SIII , SIV , and SV

SI = R2(π/2− θ1 − sin θ1 cos θ1),

SII = R2(π/2− θ2 − sin θ2 cos θ2),

SIII = 0.5(L+ 2R cos θ2)H.

Here, H = (R cos θ2 − 0.5L) cotφ is the height of the trapezoid M1M2N1N2. In the case354

of 0 < φ < π/2 (Fig. 2(b)), π/2 < φ < π (Fig. 2(c)), and φ = π/2, the height H and the355

surface area SIII are positive, negative, and zero, respectively. Substituting the expressions356

for SI , SII , and SIII into Eq. (B1), we obtain the model 2 in 2D (see Eq. (10)).357
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Appendix C: Model 2 in 3D358

In 3D situation, the volume conservation of the droplet leads to the following equation359

VIV + VV + VV I = πD3/6. (C1)

Here, VIV , VV , and VV I are the volumes of the geometries formed by rotating the segment

M1M2 confined by the arch and chord M1M2 corresponding to ∠M1O2M2, the segment

N1N2 confined by the arch and chord N1N2 corresponding to ∠N1O1N2, and the trapezoid

M1M2N1N2 along the dot dashed center line, respectively. D is the initial diameter of the

droplet. Defining the angles θ1 := π−θ and θ2 := π−θ−φ, we have the following expressions

for VIII , VIV , and VV :

VIV = (πR3/3)(2 + sin θ1)(1− sin θ1)
2,

VV = (πR3/3)(2 + sin θ2)(1− sin θ2)
2,

VV I = (πR3/3)(cos3 θ2 − cos3 θ1)/ tanφ.

In the case of 0 < φ < π/2, π/2 < φ < π, and φ = π/2, the volume VV I is positive, negative,360

and zero, respectively. Substituting the expressions for VIV , VV , and VV I into Eq. (C1), we361

obtain model 2 in 3D (Eq. (11))362

Model 2 (both in 2D and 3D) is valid for 0 < φ ≤ φt, where φt meets with Eq. (12).363

Appendix D: Special cases for φ = 0364

The above calculation in the model 2 does not consider the case φ = 0. When the365

opening angle is zero, we obtain the classic straight capillary tube, where the droplet forms366

Figure D1. When φ = 0, the funnel-like structure becomes a classic straight capillary tube, where

the droplet forms a symmetric liquid bridge. (a) H > L tan(π − θ). (b) H = L tan(π − θ). (c)

H < L tan(π − θ). The red dashed line is a circular fit of the droplet interface.
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a symmetric liquid bridge. In this case, the height H is independent of the opening angle367

2φ. When H = L tan(π − θ) (see Fig. D1(b)), we obtain the relationship in 2D368

D

L
=

√
2θ − sin 2θ − π

π cos2 θ
. (D1)

In 3D (cylinder tube), the relationship becomes369

D

L
= 3

√
(2 + sin θ)(1− sin θ)2 + 3 sin θ cos2 θ

2 cos(π − θ)
. (D2)

The above equations are valid for θ > 90◦. Specially, when θ = 180◦, we obtain D/L = 1,370

which corresponds to the situation where the 2D circular droplet or 3D spherical droplet371

is tangent to the inner wall of the capillary tube. The calculation H = L tan(π − θ) is372

based on the assumption that the left and right interfaces of the droplet are on a joint373

circle. The circumstance where the interfaces of the droplet are not on a common circle,374

i.e., H > L tan(π− θ) (large droplet) and H < L tan(π− θ) (small droplet) are indicated in375

Fig. D1(a)(c) respectively. For more details of liquid bridge on different structures, we refer376

to the publications [1, 41, 42].377
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