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Capillary adsorption of droplets into a funnel-like structure
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Penetration of liquid with distinct volumes into a funnel-like pore structure is widely
observed in nature and technical applications. However, when the droplet size is compara-
ble with the pore size, the penetration criterion, i.e., under which condition the droplet can
penetrate into the pore, remains an open question. In this work, we present theoretical mod-
els to address the penetration criteria in terms of the droplet size, the intrinsic wettability,
and the opening angle of the funnel-shaped structure. The proposed theoretical models are
well corroborated by phase-field simulations. Our findings demonstrate a critical contact
angle below which a finite-volume droplet can penetrate into a hydrophobic pore. This
critical contact angle is intimately related to the opening angle and the droplet size, which
provides a complement to previous literature. Note that for a certain-sized droplet, the
critical contact angle becomes invariant when the opening angle is greater than a certain
threshold. Moreover, we find that for a constant opening angle, the critical contact angle
decreases with the increase of the droplet size. As the droplet volume tends to be infinite,
the opening angle has almost no influence on the penetration, and the critical contact angle
asymptotically approaches 90◦, being consistent with previous works. Our observations
illuminate a special mechanism for a precise maneuver of droplets in pore structures with
potential applications in filter systems and microfluidic platforms.

DOI: 10.1103/PhysRevFluids.7.054004

I. INTRODUCTION

The penetration of liquid into a capillary tube has been studied for more than a century [1,2]. The
pioneering works of Lucas [3] and Washburn [4] considered the penetration of liquid from an infinite
reservoir into a capillary tube, establishing the famous Lucas-Washburn equation. One common
conclusion in the previous works is that liquid cannot spontaneously penetrate into a hydrophobic
capillary tube with an intrinsic contact angle greater than 90◦. In contrast to previous consideration
of infinite-volume liquid, the penetration of a finite-volume droplet into a pore structure is more
appealing for practical applications, such as ink-jet printing, coating, and spray cooling [5]. As
demonstrated by Marmur [6], when the droplet diameter is comparable with the characteristic length
of the capillary tube, a complete penetration of the droplet can be achieved in a capillary tube
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with intrinsic contact angles up to 114◦. Willmott et al. [7] have also shown experimentally that a
finite-volume droplet can penetrate into a capillary tube with static contact angles greater than 90◦.
Indeed, the size effect results from the Laplace pressure induced by the droplet curvature. However,
it is still a knotty issue to address the penetration criterion of a finite-volume droplet into a capillary
tube as a function of the intrinsic wettability, which shall be discussed in this work.

Apart from the droplet size, the opening angle 2ϕ of the pore plays an important role as well.
Previous studies about droplet penetration into capillaries focused on straight tubes (ϕ = 90◦) [7–9],
wedge geometries [10–13], cones [14], and others [1]. These geometries may deviate from the pore
shape in reality with different opening angles [15,16]. Some other researchers have investigated the
influence of pore geometries such as liquid diodes and passive microfluidic valves [17–19] on the
liquid movements, but the majority of these works considered infinite-volume droplets. Suffice to
say, the mechanisms controlling the penetration behavior of a certain-sized droplet in geometrically
confined capillaries have not been completely identified yet. A comprehensive understanding of
droplet penetration into geometrically confined capillaries is of crucial significance for a further
investigation of the novel biocapillary problems and the development of functional materials with
directional water transport properties, to name a few [20–22].

In this work, we consider micrometer-scale droplets penetrating into a funnel-like capillary
tube in a quasiequilibrium way. The penetration process is considered as an interplay between the
capillary force and the Laplace pressure induced by the droplet curvature to minimize the total free
energy. Thus, the penetration behavior can be manipulated by altering the substrate wettability, the
opening angle, and the droplet volume. Specifically, we are concerned with limiting configurations
for droplets in different sizes penetrating into a pore structure with varying contact angles and
opening angles.

In our study, we propose analytical models to address the droplet penetration behavior, and we
obtain regime maps of penetration and no penetration. Phase-field simulations are carried out to
confirm the theoretical predictions.

II. PHASE-FIELD METHOD

We apply a volume-preserved Allen-Cahn-type phase-field (PF) model [23] to simulate the
droplet penetration behavior. In this model, we introduce a space- and time-dependent variable
φ(x, t ) to characterize the phase state. In particular, the states φ(x, t ) = 1 and 0 stand for the pure
liquid and gas phase, respectively. Inside the liquid-gas interface, the variable φ(x, t ) varies between
0 and 1. The free-energy functional of the system reads [24–28]

F =
∫

�

[(1/ε)w(φ) + f0(φ) + εγlg(∇φ)2]d� +
∫

S
fw(φ)dS, (1)

where � is the spatial domain occupied by the system, ε is related to the width of the liquid-gas
interface, and S represents the substrate in contact with the liquid phases. The obstacle potential
w(φ) is formulated as w(φ) = (16/π2)γlgφ(1 − φ) if 0 � φ � 1, and w(φ) = +∞ if φ < 0 or
φ > 1. The bulk free-energy density f0(φ) ensures the volume preservation [23], and εγlg(∇φ)2

denotes a gradient energy density. In the last term, fw is the wall free energy density, which is
formulated as [25]

fw(φ) = γlsh(φ) + γgs[1 − h(φ)]. (2)

Here, h(φ) = φ3(6φ2 − 15φ + 10) depicts an interpolation function, so that fw(1) = γls and
fw(0) = γgs, where γls and γgs are, respectively, the surface tensions of the liquid-solid and gas-solid
interfaces. By minimizing the free-energy functional based on the variational approach, we obtain
the following equation:

τε∂tφ = −(16/π2)γlg(1 − 2φ)/ε + 2εγlg
φ − f ′
0(φ), (3)
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FIG. 1. Droplet evolution with time in a funnel-like structure for different contact angles θ . (a) θ = 60◦,
(b) θ = 120◦. The opening angle of the left wedge is 2ϕ = 60◦. The ratio of the droplet diameter to the channel
size is D/L = 3.

where τ is a time relaxation coefficient. The free-energy minimization at the fluid-substrate bound-
ary leads to the following natural boundary condition [28,29]:

2εγlg∇φ · n + f ′
w(φ) = 0. (4)

Here, n is the normal vector of the solid-liquid boundary. From Eqs. (2) and (4), we obtain

2εγlg∇φ · n = (γgs − γls)h′(φ), (5)

which is consistent with Young’s law, cos θ = (γgs − γls)/γlg [30]. The parameters γlg, γls, and γgs

determine the contact angle θ .
It should be noted that for a superhydrophobic surface, the order parameter on the substrate

beneath the droplet may be smaller than 1. We use the parameters φs0 and φs1 to denote the order
parameters on the substrate beneath and outside of the droplet, respectively. When the compositions
from the substrate to the bulk of liquids are nonuniform, the surface tensions of the liquid-solid and
gas-solid interfaces are modified as (see also Refs. [31–33])

γ ∗
gs = fw(φs0) +

∫ φs0

0
2
√

γlgw(φ)dφ, (6)

γ ∗
ls = fw(φs1) +

∫ 1

φs1

2
√

γlgw(φ)dφ. (7)

The surface compositions on the substrate φs0 and φs1 are obtained by solving the equa-
tion 2

√
γlgw(φ) = f ′

w(φ). When the substrate is relatively hydrophobic, we obtain φs0 = 0
and φs1 < 1. In this case, the contact angle is calculated via cos θ = (γ ∗

gs − γ ∗
ls)/γlg = [(γgs −

γls)h(φs1) − ∫ 1
φs1

2
√

γlgw(φ)dφ]/γlg. In the next section and Appendix A, we present the validation
of the wetting boundary condition and the setups of contact angles in detail.

In the numerical model, variables are nondimensionalized by the characteristic length x∗ = 1 ×
10−6 m, time t∗ = 1 × 10−9 s, and energy E∗ = 1 × 10−11 J, respectively. We choose the modeling
parameters τ = 1, ε = 1, and γlg = 1 in the simulations. This model has already been validated for
the wetting phenomenon on homogeneous as well as chemically patterned substrates [25,34,35].
Here, we utilize the phase-field model to simulate the droplet penetration into a funnel-like pore
structure, which is not only observed in nature but is also used in many technical applications
[36–38]. The funnel-shaped structure consists of two parts: the left wedge with an opening angle of
2ϕ, and the right channel with an inner diameter of L. As shown in Fig. 1, a circled droplet with the
initial diameter D is initially released inside the left wedge. The inner wall of the wedge is tangential
to the droplet profile. Note that we focus mainly on the situation of D/L > 1. Driven by the capillary
force, the droplet spreads along the inner wall and reaches an equilibrium state eventually. It is
observed that the droplet in (a) with a hydrophilic substrate (θ = 60◦) completely penetrates into
the right channel. However, the droplet in (b) with a hydrophobic (θ = 120◦) substrate shows no
complete penetration. This reveals that the wettability plays an important role in the penetration. In
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FIG. 2. Validation of the phase-field method for modeling equilibrium states of droplets in a 2D wedge.
The distance x0 of the droplet center O from the wedge apex A as a function of the contact angle θ . The colored
symbols show the simulation results for droplets with a diameter of D = 1.96 mm (the same diameter as the
4 μL-droplet in the experiments of Ref. [12]) in three wedges with opening angles 2ϕ ranging from 26◦ to 37◦

and contact angle θ changing from 110◦ to 180◦. The black dashed lines represent theoretical predictions in
two dimensions [see Eq. (8)]. The inset in the top left corner schematically illustrates the equilibrated state
of a droplet in a wedge. The insets in the bottom right corner show the equilibrium droplet morphologies for
opening angles 2ϕ = 37◦ and contact angle θ = 162◦. (i) Experimental results reproduced with permission
from Ref. [12]. Copyright 2015 Royal Society of Chemistry; (ii) present 2D phase-field simulation results. The
red dashed line is a circular fit of the droplet interface.

the following, we will address the penetration criterion in the funnel-like structure in terms of the
wettability, the opening angle, and the droplet size.

III. VALIDATION OF PHASE-FIELD MODEL

Here, we validate the phase-field model by simulating the equilibrium states of droplets in a
wedge in two dimensions. According to Baratian et al. [12], the droplet in a wedge at equilibrium is
a truncated sphere, as confirmed by the experimental snapshot (i) in Fig. 2. Based on the conclusion
of Baratian et al. [12], the two-dimensional (2D) droplet in a wedge at equilibrium should be a
truncated circle. We simulate the equilibrium droplet shapes in wedges by varying the opening
angle and the contact angle. The opening angle 2ϕ varies from 26◦ to 37◦ and the contact angle θ

changes from 110◦ to 180◦ (see more details for the setup of the contact angles in Appendix A).
The droplet diameter is the same as the one in the paper of Baratian et al. [12]. Initially, we release
a 2D circled droplet inside the wedge and the droplet evolves to the equilibrium state via surface
energy minimization. In Fig. 2, we plot the distance x0 of the droplet center from the wedge apex
as a function of the intrinsic Young’s contact angle θ . The colored symbols indicate the simulation
results for different setups of (θ , 2ϕ). The dashed lines present the theoretical prediction based on
the assumption that the equilibrated droplet is a part of a circle, which is formulated as

2x0/D =
√

π

−π + 2θ − sin 2θ

cos(π − θ )

sin ϕ
. (8)

Since the drop distance from the apex is larger than the droplet radius, the above equation has to meet
with the condition 2x0/D � 1. The insets in the bottom right corner show the equilibrium droplet
morphologies for opening angles 2ϕ = 37◦ and contact angle θ = 162◦. The snapshots (i) and (ii)
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FIG. 3. Schematic of critical states that the droplet cannot completely penetrate into the channel of a funnel-
like structure. The dot-dashed line is parallel to the channel wall and passes through the point O (or O1 and
O2). θ represents the static contact angle of the droplet on the substrate and the diameter of the channel is L.
(a) The droplet has a point contact with the substrate. In (b) and (c), the wedge of the pore has an opening angle
of 2ϕ. The green area indicates the critical state of the droplet. The red and blue dashed circles with radii R
fit the left and right droplet interfaces, respectively. M1, M2, N1, and N2 are contact points of the three phases.
(b) ϕ ∈ (0,π/2]. θ1 = ∠O1N1N2, θ2 = ∠O2M1M2. (c) ϕ ∈ (π/2, π ).

indicate the experimental result from Ref. [12] and the present 2D simulation result, respectively.
The droplet shapes show a great agreement with the dashed circular fits. The good consistency of
the simulation results with the experiments and theoretical predictions reveals the capability of the
numerical model to simulate the wetting behavior in a confined geometry.

IV. ANALYTICAL MODEL

In this section, we propose two theoretical models to address the penetration criterion of a droplet
into the channel of the funnel-like structure, as illustrated in Fig. 3. We consider a droplet with an
initial diameter of D. When the contact angle θ � 90◦, the droplet can always penetrate into the
funnel-like structure, as studied in many references [11,13,39,40]. Hence, we focus here on the
situation in which the contact angle is greater than 90◦.

Model 1 is described in Fig. 3(a), which shows a special penetration critical state in which
the droplet cannot penetrate into the channel. In this case, the droplet is a complete circle in two
dimensions (2D) and has a point contact with the substrate. In three dimensions (3D), it is a sphere
and has a line contact with the substrate (cylinder tube). To fulfill the wetting boundary condition
in the channel, we have the expression for calculating the radius of the droplet in the channel:
R = 0.5L/ cos(π − θ ), which is also equal to the initial radius of the droplet. Thus this critical state
can be described by the following equation both in 2D and 3D (model 1):

D

L
= − 1

cos θ
. (9)

For a certain droplet size D/L, solving Eq. (9) for θ yields the critical contact angle θc above which
penetration occurs. The curve described by Eq. (9) is called the penetration critical line. Thus we
obtain the penetration criterion: when θ < θc, penetration occurs; when θ > θc, no penetration takes
place. Note that ϕ does not appear in model 1. The details for the validity of model 1 [Eq. (9)] will
be discussed in the following.

In general cases, the left and the right interfaces of the equilibrium 2D droplet may not be on a
joint circle. This fact is considered in model 2, as presented in Figs. 3(b) (0 < ϕ � π/2) and 3(c)
(π/2 < ϕ < π ). Here, the blue and red dashed circles depict the left and right interfaces of the
2D droplet, respectively. At equilibrium, these two circles have the same curvature radius R to be
consistent with the uniform Young-Laplace pressure inside the droplet. We refer to this state as the
(penetration) critical state for the droplet. Fulfilling the wetting boundary conditions and the volume
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conservation, we obtain the penetration critical state described by model 2 in 2D:

D

L
=

√
2(θ − π ) + α + sin α + sin 2θ + cot ϕ(cos α − cos 2θ )

2π cos2 θ
, (10)

where α = 2θ + 2ϕ.
The 3D structures are obtained by rotating the 2D geometries along the dot-dashed center lines.

In this case, model 2 in 3D becomes

D

L
=

3

√
0.25[cot ϕ(cos3 θ2 − cos3 θ1) + ∑2

i=1(2 + sin θi )(1 − sin θi )2]

cos θ1
, (11)

with the angles θ1 = π − θ and θ2 = π − θ − ϕ. For certain values of D/L and ϕ, solving Eqs. (10)
or (11) for θ gives rise to the critical contact angle θc above which penetration occurs. The curve
described by Eqs. (10) or (11) is called the penetration critical line. Thus we have the penetration
criterion: when θ < θc, penetration occurs; when θ > θc, no penetration takes place. See the
Appendixes B and C for calculation details of model 2 in 2D and 3D, respectively.

Note that there is a special case for model 2 where the red and blue dashed circles in Figs. 3(b)
and 3(c) overlap with each other, which is equivalent to a boundary state,

ϕt/2 + θt = π. (12)

Here, 2ϕt and θt denote the opening angle and the contact angle for the boundary state, respectively.
This special state corresponds to the situation in which the equilibrium droplet has a point (in 2D)
or line contact (in 3D) with the throat, and its contact angles on the wall of the left wedge and the
inner wall of the channel are the same, i.e., θ = θt = π − ϕt/2. Substituting Eq. (12) into Eqs. (10)
or (11), we obtain the same criterion as model 1. Actually, when ϕ � ϕt = 2π − 2θt , the opening
angle does not affect the penetration behavior anymore. In this case, the critical state of the droplet
penetration is depicted by model 1. Thus models 1 and 2 are valid for ϕ � ϕt and 0 < ϕ � ϕt ,
respectively.

V. RESULTS AND DISCUSSIONS

In this section, we investigate numerically and analytically the influence of the opening angle 2ϕ,
the contact angle θ , and the droplet size D/L on the droplet penetration behavior. In the numerical
simulation, a droplet is initially released on the left side of the wedge, contacting the substrate. For
different opening angles and contact angles, we achieve distinct equilibrium states of the droplet.
Exemplary 2D simulation results are illustrated in Fig. 4(a) for D/L = 3. In Fig. 4(b), we plot the
penetration states from the 2D simulations in the ranges ϕ ∈ [10◦, 150◦] and θ ∈ [80◦, 140◦]. The
squares and triangles indicate the states of penetration and no penetration into the channel of the
pore structure, respectively. The theoretical prediction via model 1 (ϕ ∈ [140◦, 150◦]) and model 2
in 2D (ϕ ∈ [10◦, 140◦]) is depicted by the solid line, which is very consistent with the simulation
results in the studied range. It is further observed that for a fixed opening angle, a large contact angle
tends to prevent the penetration, and that for a fixed contact angle in the range of θ ∈ (96◦, 110◦), a
large opening angle facilitates the penetration.

Figure 4(c) presents the effect of the droplet size D/L on the penetration critical lines, where
different droplet sizes D/L correspond to distinct colored solid lines. The theoretically predicted
penetration critical lines are obtained by solving Eqs. (9) and (10) for different values of D/L. The
colored circle points indicate the 2D simulation results, where the scattering bar is a result of the
binary search algorithm. For instance, we initially run two simulations with contact angles θI and
θII. The selection for the contact angles is guided by the theoretical value θc, such that θI < θc <

θII, and it leads to penetration and no penetration states, respectively, for θI and θII. The so-called
binary search algorithm compares these two simulation results to the one for θm := (θI + θII )/2.
If penetration takes place for θm, we replace θI by θm; otherwise, θII is replaced by θm. We repeat
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FIG. 4. Penetration criterion diagrams in funnel-like pore structures as a function of ϕ and θ . (a) Final
states of droplets (D/L = 3) with varying ϕ and θ . (b) Regime diagram for the penetration states of the
droplet with D/L = 3. Blue squares, complete penetration into the channel of the pore structure; red triangles,
no penetration. The penetration critical line via the theoretical model is indicated by the solid line. (c) The
penetration critical lines predicted from the theoretical model for different D/L. The colored rhombus points
are intersections of models 1 and 2. The black dashed line passing through these rhombus points is described by
Eq. (12). The circle points with scattering bars via the binary search algorithm indicate the simulation results
for the critical state.

this procedure successively for the new θI and θII until the critical state is found within a relatively
narrow interval. At the end of the binary search procedure, the critical state from the simulation is
represented by θm and the scattering bar is obtained according to the difference of the final θI and
θII. The intersections (θt , ϕt ) between model 1 (straight part of the solid lines) and model 2 in 2D
(curved part of the solid lines) are illustrated with the rhombus points. The black dashed line passing
through these intersections corresponds to Eq. (12), which divides the whole region into two zones,
namely the blue zone (ϕ � ϕt ) and the white zone [ϕ ∈ (0◦, ϕt )]. The simulation results coincide
excellently with model 1 in the blue zone as well as with model 2 in the white zone. This implies
that the equilibrated droplet in the blue zone has only a point contact with the substrate. A typical
result for the scenario of a point contact inside the blue zone is demonstrated in Fig. 4(a) for the
setup (θ = 120◦, ϕ = 150◦).

For a certain-sized droplet, the critical contact angle increases with the opening angle until a
certain value ϕt is achieved. Above ϕt , the critical contact angle is a constant value. The value of
ϕt increases with the droplet size D/L, implying that the penetration behavior of a larger droplet
can be manipulated by adjusting the opening angle in a wider range [ϕ ∈ (0◦, ϕt )]. Moreover, the
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FIG. 5. Regime diagram for the end-state of droplets in funnel-like structures with different D/L and θ .
The opening angle (ϕ = 30◦) is constant in (a)–(c). (a),(b) The final droplet states influenced by θ and D/L,
respectively. In (c), the blue squares and the red triangles indicate a complete penetration and no penetration,
respectively. The solid curve describes the penetration critical line from the theoretical model. In (d), different
colored curves show the results from the theoretical model with ϕ varying from 10◦ to 120◦. The inset displays
a magnification of the diagram. The black dashed curve [Eq. (12)] intersects the colored curves with different
points that are highlighted by rhombus points.

critical lines become more and more steep with an enlargement of the droplet size, which reveals
that the changes in the opening angle have a more profound impact on smaller droplets. It is to be
expected that when D/L � 1, the curvature is not largely affected by the opening angle anymore. In
this case, the critical contact angle asymptotically approaches 90◦. This is consistent with the classic
conclusion in the literature that a large droplet cannot spontaneously penetrate into a hydrophobic
capillary tube. It should be noted that the critical line of droplet penetration for D/L = 1 still exists,
under which the droplet cannot completely penetrate into the channel. For instance, when φ = 10◦,
the droplet with D/L = 1 at θ = 160◦ cannot completely penetrate. In this case, the droplet forms a
liquid bridge with an aspect ratio (width/height) smaller than 1. It is highly possible that the small
droplet may touch only one side of the wall and finally obtains the shape of a spherical cap. Our
model is not valid for this situation anymore. Our current study mainly focuses on the situation of
D/L > 1, thus the situation of tiny droplets with D/L < 1 is neglected. In Figs. 5(a)–5(c), we keep
the opening angle constant (ϕ = 30◦) and study the combined influence of the droplet size and the
contact angle on the droplet penetration. Figures 5(a) and 5(b) illustrate the 2D simulation snapshots
of the final droplet states by varying the contact angle and the droplet size, respectively. As shown
in Fig. 5(a) for ϕ = 30◦ and D/L = 3, the droplet completely penetrates into a hydrophilic channel
(θ = 30◦, 60◦, and 90◦), whereas this is not possible for a hydrophobic substrate with θ = 120◦
and 150◦. For a hydrophobic substrate (θ = 110◦), the droplet moves into the channel when the
droplet is sufficiently small, as demonstrated in the first three panels in Fig. 5(b). These states can
be obtained because we initially release the circled droplets inside the left wedge, and the inner wall
is tangential to the droplet profile [see, e.g., Figs. 1(a) or 1(b), the first snapshot]. It is also possible
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FIG. 6. Comparison of 2D and 3D theoretical predictions for the penetration critical lines. (a) The pene-
tration critical lines as a function of ϕ and θ . (b) The penetration critical lines as a function of D/L and θ .
The penetration critical lines via the 2D model (dot-dashed line) and the 3D model (solid line) for different
values of D/L in (a) [or ϕ in (b)] are displayed in different colors. The black dashed line in (a) is described
by Eq. (12). The black dashed curve in (b) shows model 1 [Eq. (9)]. The colored circle points with scattering
bars are results of the binary search algorithm via 3D simulations. Parts (c) and (d) show 3D simulations for
θ = 118◦ and 122◦, respectively. For both cases, ϕ = 120◦ and D/L = 2.

that small droplets may touch only one side of the wall and stay on the flat wall. So both cases are
stable states but they are dependent on the initial states of the droplets, but our model only addresses
the former case. With an increase in the droplet size, a complete penetration cannot be achieved, as
depicted by the last two panels in Fig. 5(b). The penetration states from the 2D simulation results
are displayed in Fig. 5(c) for D/L ∈ [1, 4.2] and θ ∈ [40◦, 150◦]. The theoretical prediction of the
penetration critical line is represented by the solid line, which shows a very good agreement with
the simulation results. As described by the penetration state map, a low volume droplet with a small
contact angle is more prone to penetrate into the channel of the funnel structure. In the hydrophilic
region (θ � 90◦), penetration is inevitable irrespective of the droplet volume.

Figure 5(d) presents the 2D theoretical predictions via model 1 (black dashed line, θ ∈ [θt ,
180◦)) and model 2 (colored lines, θ ∈ (90◦, θt ]) for a series of opening angles. The intersections
[θt , (D/L)t ] of models 1 and 2 are highlighted by colored rhombus points. The subscript t indicates
the boundary state, and [θt , (D/L)t ] meets with both Eqs. (9) and (10). All the penetration critical
lines show the same tendency that the critical contact angle increases with a decrease in the droplet
size but in two stages: (i) decreasing along the colored line in the range of ϕ ∈ (90◦, θt ]; and (ii)
decreasing along the black dashed line in the range of θ ∈ [θt , 180◦). Moreover, it is observed
that a small droplet is more sensitive to the change in the opening angle, while a large droplet is
more robust to the influence of the opening angle. All the penetration critical lines asymptotically
approach 90◦ as the droplet becomes extremely large.

The above discussions are based on 2D analysis. Here, we further consider the 3D conical
structures, which are obtained by rotating the 2D geometries along the axis of symmetry. Fig-
ures 6(a) and 6(b) present a comparison of 2D [dot-dashed lines, Eq. (10)] and 3D [solid lines,
Eq. (11)] theoretical predictions of the penetration critical lines. The circle points with scattering
bars via a binary search algorithm indicate the 3D simulation results for the critical states, which
confirms the 3D theoretical model for D/L = 2. As shown in Figs. 6(c) and 6(d), the 3D droplet
penetrates into the channel for θ = 118◦ but stays outside of the channel for θ = 122◦. To avoid
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repeated confirmations of a similar situation for other droplet sizes, additional 3D simulations are
not performed anymore. It is found that there is only a slight difference between the 2D and 3D
theoretical models in the situation in which model 2 is valid. Note that model 1 in 3D is exactly the
same as in the 2D case. This implies that the conclusions for the 2D situation also work for the 3D
scenario.

VI. CONCLUSIONS

The droplet penetration behavior into a 2D funnel-shaped structure has been investigated for a
wide range of droplet sizes, contact angles, and opening angles. Based on the geometric analysis of
droplet shapes and the pore structures, we proposed two theoretical models to address the regime
maps of penetration and no penetration, which are confirmed by the comprehensive phase-field
simulations. It is found that for a fixed droplet size D/L, the critical contact angle increases with
the opening angle until a certain value of the opening angle 2ϕt is achieved. Above the opening
angle 2ϕt , the critical contact angle is not affected by the opening angle anymore. Furthermore, for
a certain opening angle, the critical contact angle increases upon decreasing the droplet size, and
a relatively small droplet is more sensitive to the influence of the opening angle. Additionally, we
considered the 3D conical structures by rotating the 2D geometries along the axis of symmetry, and
only a tiny difference exists between 2D and 3D predictions, thus similar findings were observed in
the 3D scenario. It is noteworthy that the equilibrated droplet in a hydrophobic wedge with a certain
range of different opening angles tends to be a truncated sphere (in 3D) or a truncated circle (in 2D),
as discussed in Ref. [12] and Fig. 2. However, the equilibrium shape of the droplet in a funnel-like
structure is highly dependent on the opening angle. Only when the opening angle is larger than a
certain threshold does the equilibrium shape of the droplet become a sphere (in 3D) or a circle (in
2D).

As previously demonstrated by Marmur [6], a complete penetration into a capillary can be
achieved for contact angles up to about 114◦ for sufficiently small droplets, but this conclusion
is based on a straight tube. In the current work, by changing the opening angle of the funnel-like
structure together with the droplet size, we have extended this contact angle limit for the complete
penetration of droplets. To sum up, our findings demonstrate that the droplet penetration behavior
can be accurately controlled through the droplet volume, the opening angle, and the wettability of
the pore structure. The thorough study of the combined influence of these three factors to the droplet
penetration paves a way to better understand wetting behaviors in a pore structure. As a future
perspective, appropriate modifications to our current model would permit the study of deformable
substrates, leading to a smart way of directional transport of droplets. Our endeavors in this direction
may provide essential guidelines for practical applications including microfluidics, filter systems,
drainage systems, oil recovery systems, and so on.
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APPENDIX A: SETUPS OF CONTACT ANGLES IN HYDROPHOBIC REGION

Table I lists the setups of different contact angles via the interfacial energy parameters γgs

and γls, which appear in the wall free-energy density in Eq. (2). The contact angles are calcu-
lated through cos θ = (γ ∗

gs − γ ∗
ls)/γlg, with γ ∗

gs = fw(φs0) + ∫ φs0

0 2
√

γlgw(φ)dφ and γ ∗
ls = fw(φs1) +∫ 1

φs1
2
√

γlgw(φ)dφ. The surface compositions from theory (φs0, φs1)theor and from simulation
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TABLE I. Setups of interfacial energies and the resulting surface compositions for different contact angles.

θ (γgs, γls ) (γ ∗
gs, γ

∗
ls ) (φs0, φs1)theor (φs0, φs1)sim

100◦ (1, 1.174) (1, 1.174) (0, 1) (0, 1)
110◦ (1, 1.342) (1, 1.342) (0, 1) (0, 1)
120◦ (1, 1.500) (1, 1.500) (0, 1) (0, 1)
132◦ (1, 1.669) (1, 1.669) (0, 1) (0, 1)
148◦ (1, 1.700) (1, 1.848) (0, 0.429) (0, 0.419)
161◦ (1, 2.500) (1, 1.943) (0, 0.180) (0, 0.176)
170◦ (1, 6.000) (1, 1.985) (0, 0.071) (0, 0.073)
178◦ (1, 101.0) (1, 1.999) (0, 0.009) (0, 0.011)

(φs0, φs1)sim are obtained by solving the equation 2
√

γlgw(φ) = f ′
w(φ) via Newton’s iteration

method and by measuring the value in simulations, respectively. As shown in Fig. 7, when
θ < 132.5◦, the curves g1(φ) = 2

√
γlgw(φ) and g2(φ) = f ′

w(φ) always intersect at (0,0) and (1,0).
However, when θ > 132.5◦, two other intersections [φs1, g1(φs1)] and [1 − φs1, g1(1 − φs1)] appear,
relating to additional energy minimum states. According to Refs. [31–33], the left intersection
[φs1, g1(φs1)] corresponds to a hydrophobic surface, while the right solution [1 − φs1, g1(1 − φs1)]
corresponds to a hydrophilic setup. In this work, we focus on the hydrophobic setup, thus the
intersection point [1 − φs1, g1(1 − φs1)] is not considered. We have examined the equilibrium
surface composition on hydrophobic substrates through phase-field simulations. It is found that
when θ > 132.5◦, the solutions (0,0) and [φs1, g1(φs1)] are more energetically stable. However,
when 90◦ < θ < 132.5◦, the intersections (0,0) and (0,1) are the only solutions (see the last column
in Table I). We have validated the contact angles by analyzing the equilibrium states of a 2D droplet
in a 2D wedge as illustrated in Fig. 2. The simulations show excellent agreement with the theoretical
predictions.

APPENDIX B: MODEL 2 IN 2D

Model 2 considers the critical state, for which the left and right interfaces of the droplet are not
on a joint circle. As presented in Figs. 2(b) and 2(c), the blue and red dashed circles depict the

FIG. 7. The intersections between the curves g1(φ) = 2
√

γlgw(φ) (dot dashed line) and g2(φ) = f ′
w (φ) for

different contact angles (colored curves). The different contact angles are controlled via the value of (γ ∗
gs − γ ∗

ls),
which is affected by the intersection point.
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left and right interfaces of the droplet, respectively. At equilibrium, these two circles have the same
curvature radius R. The volume conservation of the droplet leads to the following equation:

SI + SII + SIII = πD2/4. (B1)

Here, SI, SII, and SIII are the surface areas of the segment M1M2 confined by the arch and chord M1M2

corresponding to ∠M1O2M2, the segment N1N2 confined by the arch and chord N1N2 corresponding
to ∠N1O1N2, and the trapezoid M1M2N1N2, respectively. D is the initial diameter of the droplet.
Defining the angles θ1 := π − θ and θ2 := π − θ − ϕ, we have the following expressions for SIII,
SIV, and SV:

SI = R2(π/2 − θ1 − sin θ1 cos θ1),

SII = R2(π/2 − θ2 − sin θ2 cos θ2),

SIII = 0.5(L + 2R cos θ2)H.

Here, H = (R cos θ2 − 0.5L) cot ϕ is the height of the trapezoid M1M2N1N2. In the case of 0 < ϕ <

π/2 [Fig. 2(b)], π/2 < ϕ < π [Fig. 2(c)], and ϕ = π/2, the height H and the surface area SIII

are positive, negative, and zero, respectively. Substituting the expressions for SI, SII, and SIII into
Eq. (B1), we obtain the model 2 in 2D [see Eq. (10)].

APPENDIX C: MODEL 2 IN 3D

In the 3D situation, the volume conservation of the droplet leads to the following equation:

VIV + VV + VVI = πD3/6. (C1)

Here, VIV, VV, and VVI are the volumes of the geometries formed by rotating the segment M1M2

confined by the arch and chord M1M2 corresponding to ∠M1O2M2, the segment N1N2 confined
by the arch and chord N1N2 corresponding to ∠N1O1N2, and the trapezoid M1M2N1N2 along the
dot-dashed center line, respectively. D is the initial diameter of the droplet. Defining the angles
θ1 := π − θ and θ2 := π − θ − ϕ, we have the following expressions for VIII, VIV, and VV:

VIV = (πR3/3)(2 + sin θ1)(1 − sin θ1)2,

VV = (πR3/3)(2 + sin θ2)(1 − sin θ2)2,

VVI = (πR3/3)(cos3 θ2 − cos3 θ1)/ tan ϕ.

In the case of 0 < ϕ < π/2, π/2 < ϕ < π , and ϕ = π/2, the volume VVI is positive, negative, and
zero, respectively. Substituting the expressions for VIV, VV, and VVI into Eq. (C1), we obtain model
2 in 3D [Eq. (11)].

Model 2 (both in 2D and 3D) is valid for 0 < ϕ � ϕt , where ϕt meets with Eq. (12).

APPENDIX D: SPECIAL CASES FOR ϕ = 0

The above calculation in model 2 does not consider the case ϕ = 0. When the opening angle
is zero, we obtain the classic straight capillary tube, where the droplet forms a symmetric liquid
bridge. In this case, the height H is independent of the opening angle 2ϕ. When H = L tan(π − θ )
[see Fig. 8(b)], we obtain the relationship in 2D,

D

L
=

√
2θ − sin 2θ − π

π cos2 θ
. (D1)

In 3D (cylinder tube), the relationship becomes

D

L
= 3

√
(2 + sin θ )(1 − sin θ )2 + 3 sin θ cos2 θ

2 cos(π − θ )
. (D2)
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FIG. 8. When ϕ = 0, the funnel-like structure becomes a classic straight capillary tube, where the droplet
forms a symmetric liquid bridge. (a) H > L tan(π − θ ). (b) H = L tan(π − θ ). (c) H < L tan(π − θ ). The red
dashed line is a circular fit of the droplet interface.

The above equations are valid for θ > 90◦. In particular, when θ = 180◦, we obtain D/L = 1, which
corresponds to the situation in which the 2D circular droplet or the 3D spherical droplet is tangent to
the inner wall of the capillary tube. The calculation H = L tan(π − θ ) is based on the assumption
that the left and right interfaces of the droplet are on a joint circle. The circumstances in which
the interfaces of the droplet are not on a common circle, i.e., H > L tan(π − θ ) (large droplet) and
H < L tan(π − θ ) (small droplet), are indicated in Figs. 8(a) and 8(c), respectively. For more details
of a liquid bridge on different structures, we refer the reader to Refs. [1,41,42].
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