KIT | KIT-Bibliothek | Impressum | Datenschutz

A Probabilistic Approach for Spatio-Temporal Phase Unwrapping in Multi-Frequency Phase-Shift Coding

Uhlig, David ORCID iD icon 1; Heizmann, Michael 1
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract:

Multi-frequency techniques with temporally encoded pattern sequences are used in phase-measuring methods of 3D optical metrology to suppress phase noise but lead to ambiguities that can only be resolved by phase unwrapping. However, classical phase unwrapping methods do not use all the information to unwrap all measurements simultaneously and do not consider the periodicity of the phase, which can lead to errors. We present an approach that optimally reconstructs the phase on a pixel-by-pixel basis using a probabilistic modeling approach. The individual phase measurements are modeled using circular probability densities. Maximizing the compound density of all measurements yields the optimal decoding. Since the entire information of all phase measurements is simultaneously used and the wrapping of the phases is implicitly compensated, the reliability can be greatly increased. In addition, a spatio-temporal phase unwrapping is introduced by a probabilistic modeling of the local pixel neighborhoods. This leads to even higher robustness against noise than the conventional methods and thus to better measurement results.


Verlagsausgabe §
DOI: 10.5445/IR/1000148004
Veröffentlicht am 24.06.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industrielle Informationstechnik (IIIT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000148004
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 10
Seiten 52377–52397
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page