KIT | KIT-Bibliothek | Impressum | Datenschutz

Orientation-dependent micromechanical behavior of nacre: In situ TEM experiments and finite element simulations

Peng, Xiang-Long; Lee, Subin 1; Wilmers, Jana; Oh, Sang Ho ; Bargmann, Swantje
1 Institut für Angewandte Materialien – Werkstoff- und Grenzflächenmechanik (IAM-MMI), Karlsruher Institut für Technologie (KIT)

Abstract:

Nacre's superior mechanical properties and failure behavior are strongly orientation-dependent due to its brick-and-mortar microstructure. In this work, the anisotropic microscopic deformation and the resulting macroscopic mechanical properties are evaluated under different loading conditions. Our in situ transmission electron microscopy deformation experiments and finite element simulations reveal that nacre possesses enhanced indentation resistance along the direction normal to the tablets through delocalization of indentation-induced deformation by taking advantage of its layered structure. In addition, nacre's ability to recover from large deformations is observed. We study the strong loading direction dependence of nacre's macroscopic mechanical properties and elucidate the underlying microscopic deformation patterns in the tablets and the soft matrix. Particularly, its performance along the transverse direction is optimized to withstand the loading conditions in nature. We show the importance of the vertical matrix for the initial stiffness and fracture toughness of the composite. These findings provide guidelines for designing nacre-inspired artificial composites with enhanced mechanical properties.
... mehr


Download
Originalveröffentlichung
DOI: 10.1016/j.actbio.2022.05.033
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 8
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Werkstoff- und Grenzflächenmechanik (IAM-MMI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.07.2022
Sprache Englisch
Identifikator ISSN: 1742-7061, 1878-7568
KITopen-ID: 1000148008
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Acta Biomaterialia
Verlag Elsevier
Band 147
Seiten 120-128
Vorab online veröffentlicht am 21.05.2022
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page