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Abstract—Time series-based applications such as recognition of
handwriting benefit from using Deep Neural Networks (DNNs)
in terms of accuracy and efficiency. Due to strict power and
memory limitations of embedded platforms in the Internet-of-
Things (IoT), the inference of such DNNs is usually performed on
more powerful and less constrained devices. However, inference
on mobile devices such as smartphones or tablets leads to high
system requirements. In this paper, we present our approach for
distributing computational workload between sensor pen and a
mobile device for handwriting recognition. This not only results
in lower system requirements for mobile devices, but also opens
up the possibility of storing compressed sensor data on the pen
when remote devices are not available or connected.

Therefore, we first quantize weights of the DNN layers to
significantly reduce the memory footprint and optimize a Con-
nectionist Temporal Classification (CTC) algorithm to minimize
the link bandwidth. The latter allows transmitting only a small
matrix from the pen to the mobile device, on which the decoding
is performed. To further improve the accuracy of handwriting
recognition, we add a Language Model (LM) to the decoding
algorithm executed on the mobile device.

As a result, we are able to reduce the memory footprint of
the DNN weights by almost a quarter to 736.64 KB. Additionally,
applying CTC-based beam search and an LM, we can reduce the
link bandwidth by almost 80%. Based on the RISC-V Instruction
Set Architecture (ISA), we finally define memory and performance
requirements to enable in-pen DNN inference.

Index Terms—Embedded Systems, Handwriting Recognition,
Recurrent Neural Network, Internet of Things

I. INTRODUCTION

Studies have shown that handwriting significantly improves
learning outcomes than just typing on a keyboard [1]. More-
over, handwritten work enhances creativity in problem-solving,
leading to better concepts and results [2]. Mobile devices offer
powerful tools for sharing or restructuring content, however,
this is not available with handwritten notes on paper. As a
result, sensor pens such as the STABILO Digipen [3] have
already been developed. These combine the best of both worlds
by recording user motion and transmitting sensor data to a
mobile device over Bluetooth Low Energy (BLE). An overview
of the system architecture used in this paper is shown in
Figure 1.

Reliable online handwriting recognition using Deep Neural
Networks (DNNs) in combination with Connectionist Temporal
Classification (CTC) decoding is the key to a high usability
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Fig. 1: Overview of the handwriting recognition system con-
sisting of several sensors. The data of each sensor is transferred
via I2C to the central SoC which executes DNN inference and
sends results over BLE to a mobile device for CTC decoding.

and thus high acceptance. Inference of the DNNs requires
processing a large amount of instructions, which is currently
done on a connected mobile device exclusively. However, this
leads to high performance requirements as well as uncertainties
regarding latency. Furthermore, using the pen without active
connection to the mobile device to store written text before
sending is not possible due to limited memory resources.
Consequently, executing the DNN on the pen itself is favorable,
since it offers static latency that allows it to be used by a larger
number of mobile devices, and since it is more independent of
the BLE connection to the mobile device.

Pre-trained DNNs have to be optimized towards system
requirements e.g. by quantization to reduce the memory foot-
print [4]. In addition, it is favorable to select a hardware design
that offers low power consumption to ensure sufficient uptime
as well as a reasonable inference latency and enough memory.
DNN inference on Internet-of-Things (IoT) devices has already
been addressed in numerous research. Bluche et al. presented
a quantized Long Short-Term Memory (LSTM) network using
CTC-decoding for keyword spotting on microcontrollers [5].
Their network offers a small memory footprint, however, they
did not investigate the latency, which is important in the
scope of online handwriting recognition. Gao et al. showed
an accelerator for Recurrent Neural Networks (RNNs) for use
in IoT computing platforms [6]. The LSTM offers low latency
and a suitable energy consumption for time series-based appli-
cations. However, the accelerator is highly optimized towards
RNNs. Since Convolutional Neural Networks (CNNs) achieve
better results in online handwriting recognition than pure RNNs
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Fig. 2: Overview of the CNN + BiLSTM neural network inference layers used for handwriting recognition [7]. The structure
consists of common CNN layers (1D Convolution, Batch Normalization, ReLU activation and 1D Max Pooling), followed by
two bidirectional LSTMs, a Dense, a Time Distributed (TD) Dense layer and finally a Softmax function layer.

according to Wehbi et al. [7], the accelerator is not suitable
for handwriting recognition applications. To the best of our
knowledge, no work is addressing DNN inference for online
handwriting recognition so far.

In summary, our contributions in this paper are as follows:
• We present our basic system setup and the DNN structure

for fast and reliable online handwriting recognition in an
IoT system.

• We apply weight quantization to the DNN architecture to
meet hardware constraints.

• We add a Language Model (LM) to the beam search
decoding on the mobile device to improve the Character
Error Rate (CER) which is a highly relevant metric.

• We evaluate our results of the optimized DNN and define
hardware requirements for memory size and performance.

II. SENSOR SYSTEM

Handwriting recognition based on the movement of a pen
requires measuring multiple physical quantities such as acceler-
ation and rotation. In addition, the system must detect whether
the pen is in contact with a surface or not. The STABILO
Digipen, a sensor-enhanced ballpoint pen which serves as our
reference platform. It is equipped with an Inertial Measurement
Unit (IMU), magnetometer and force sensor in the front and
an additional accelerometer in the back [3]. Since the force
sensor and all three dimensions of the other sensors have to be
combined for reliable handwriting recognition, we have a total
of 13 sensor inputs for DNN inference. These are acquired
with a sampling frequency of 100 Hz and represented as 16-bit
integer values.

A. Hardware Platform

Currently, a commercially available BLE System-on-Chip
(SoC) with a general-purpose ARM Cortex M4F unit is in-
tegrated into the Digipen, but it is severely limited in terms
of energy efficiency and available memory size. In particular,
a substantial part of the available 512 KB Flash memory
is already reserved for the BLE software stack. To enable
DNN inference on the pen itself, we propose a holistic
hardware/software co-design approach based on the system
architecture shown in Figure 1. Our optimization is not limited
to the DNN architecture, but also takes the hardware platform
deployed in the pen into account. Thereby, the BLE interface
has to be considered as well since it impacts the overall energy
consumption and the latency of the system.

In general, IoT applications require taking several constraints
into account for enabling DNN inference. Memory and latency
requirements in particular are crucial for embedded applica-
tions such as handwriting recognition in a pen. Consequently,

optimization of the DNN also has to be done on Instruction
Set Architecture (ISA) and hardware level.

B. Neural Architecture

In this work, we use an LSTM for online handwriting
recognition with CTC decoding on the mobile device from
Wehbi et al. (Figure 2) [7]. The output of the model, also
referred to as CTC matrix, consists of 53 label probabilities,
which represent 26 uppercase, 26 lowercase latin letters and
one for a special CTC blank character (’-’). One or more such
matrices correspond to a single character. The special blank
character is used to differentiate between several occurrences
of the same character, e.g. ’aaa’ → ’a’ whereas ’aa-a’ → ’aa’. In
order to obtain the final prediction, a CTC decoding algorithm
[8] has to be applied. In our work, we use best path and beam
search algorithms with and without LM. The former algorithm
just uses one single predicted class at each timestep from the
CTC matrix with the maximum appearance probability. This
approach strongly limits the size of the data needed to be
transmitted, but does not consider alternative paths in decoding.

The beam search algorithm evaluates several possible CTC
paths (beams). The number of evaluated paths is defined by
the beam width parameter. The basic variant, also known
as vanilla, does not use a character level LM. As an LM
we use an n-gram character level LM [9]. Such a model
represents a probability of occurrence of a single character
after a sequence of n characters. In the beam search decoding,
LMs are used to weight beams at every timestep, which allows
to incorporate language characteristics to select more likely
character combinations. The impact of the LM on the beam
search may be scaled by the LM factor.

We apply post-training weight quantization to optimize mem-
ory footprint of the model for the pen hardware. Weights of
all layers of the model were quantized to 8-bit integer values.
Activation functions, intermediate feature maps, model input
and output are coded in 32-bit float values.

C. BLE Link

The link is a crucial part of the whole system, since it
transfers sensor data to the mobile device. BLE allows sup-
porting a wide range of mobile devices and is a low-power
communication protocol. According to Tosi et al. [10], the
maximum BLE throughput in bit error free environment is
236.7 kbit/s. But the BLE link is constrained in available
bandwidth, which in turn depends on the BLE stack constraints
of the mobile device. Moreover, wireless communication can
be subject to transmission errors, hence, retransmissions have
to considered. Therefore, the amount of data to be transferred
should be minimized.



III. EVALUATION

Our model is trained using Keras and TensorFlow. The
training dataset consists of 49,877 labeled sequences, which
represent German words without umlauts. The training was per-
formed for 30 epochs, with CTC loss and an Adam optimizer at
a learning rate of 0.01. In total, the network consists of 731,853
parameters. As a prediction accuracy metric CER is used and
evaluated on the test data set of 756 words. CER is calculated
as the sum of Levenshtein distances between predicted and
expected words divided by the number of all characters in
the test data set. For evaluation, a 20-gram character LM is
used, generated from a publicly available corpus of one million
sentences from German news articles during the year 2015
without umlaut characters [11].

A. Architecture Optimization

1) Bandwidth Optimization: All sensor channels are ac-
quired as 16-bit integer values with a sampling frequency of
100 Hz. The required link bandwidth for the transmission
or the memory bandwidth for the local storage of the entire
raw sensor data is thus 20.31 kbit/s. Due to the three max
pooling layers applied over time dimension, transmissions of
CTC matrices occur after every 8th input sample resulting in
an output CTC-timestep rate of 12.5 Hz and thus a required
bandwidth of 20.70 kbit/s. Hence, running inference on the
sensor pen device without applying any further optimization is
not beneficial. Depending on the CTC decoding algorithm, the
amount of predicted classes can be reduced. For the best path
algorithm, which has been used by Wehbi et al. [7], only one
predicted class has to be transmitted. With this approach, which
serves as a reference for our evaluation, a CER of 15.70% can
be achieved and just a bandwidth of 0.39 kbit/s is required.

With beam search, higher prediction accuracy can be
achieved [8], but it requires more predicted classes from the
output to be transmitted. Figure 3 shows the evaluation of the
prediction accuracy depending on beam width for the vanilla
beam search and for beam search with the LM using different
factors. We evaluate the accuracy for beam widths from 1 up
to 30. We observe that CERs for beam widths greater than
30 remain nearly constant, and therefore all values above 30
are ignored in our evaluation. Vanilla beam search does not
significantly improve the prediction accuracy at any beam width
value, whereas the LM improves its prediction accuracy starting
from a beam width of four. The best prediction accuracy can
be achieved with a beam width of 22 and a LM-factor = 2.0
(CER = 11.19%). However, using only eleven beams and a
LM-factor = 1.0 reduces the required bandwidth by two times
without significant accuracy loss (CER = 11.90%). This results
in a reasonable trade-off between bandwidth and prediction
accuracy. Required bandwidth in case of eleven beams is
4.30 kbit/s.

2) Model Size Optimization: To minimize the memory foot-
print of the model, we quantize weights of the model to 8-bit.
Figure 4 shows a comparison of the original and quantized
model. Due to slight overfitting in the original model, the
prediction accuracy of the vanilla beam search improves by
0.12 percentage points on average. Using LM and LM-factor
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Fig. 3: Comparison of CER between vanilla beam search
and CTC Beam Search accompanied by language model. The
results show that vanilla beam search does not benefit from
using more than a single input. In contrast, CTC Beam Search
with language model performs better for 5 beams.
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Fig. 4: Comparison of CER between original model and quan-
tized model accompanied by language model. The results show
that accuracy of the quantized model degrade slightly.

1.0, the prediction accuracy degrades by only 0.53 percentage
points. The size of the quantized model is 0.739 Mbytes, which
is 3.7 times less than the original model size of 2.797 Mbytes.

B. System-on-Chip Platform Requirements

A critical aspect for hardware implementations is the mem-
ory footprint of the DNN application since memory consumes
a lot of area. Apart from the weights, intermediate feature
maps, the LSTM cell states and the DNN program code
have to be stored on the SoC. Since we assume sequential
processing of the DNN, the largest layer input and output
feature map define the memory requirement. In our case, the
second 1D convolution layer takes an N/2 × 512 tensor as
input and outputs N/2 × 256 values. The minimum number
of time steps N required to generate a valid CTC matrix is
24, due to three 1D max pooling with a sliding window size
of two and 1D convolution layers with kernel sizes five, three
and three. Consequently, to store 32-bit floating-point feature
maps, 36,864 bytes must be available. In addition, a total of
131,072 bytes of memory is required for the states of the two
bidirectional LSTM layers, each with 64 cells and 128 inputs.

The size of the DNN program code depends on the used
ISA. In the following, we use RISC-V ISA due to its exten-
sibility, which easily allows the analysis of different hardware
architectures. We evaluate the memory footprint of the weight
quantized DNN using a RISC-V cross-compiler for RV32IMFC
ISA offering not only base integer (I), integer multiplication
and division (M) and compressed (C) instructions but also



TABLE I: DNN metrics for the ARMv7E-M and three different
RISC-V ISAs including target hardware performance to achieve
required latency below 80 ms.

ARMv7E-M RV32IC RV32IMC RV32IMFC

Program Size 105.28 KB 305.58 KB 302.86 KB 291.90 KB
Instruction Count 0.73 · 109 6.75 · 109 1.29 · 109 0.34 · 109

Performance Target > 9.13 GFLOPS > 84.38 GOPS > 16.13 GOPS > 4.25 GFLOPS

single-precision floating-point operations (F). Furthermore, we
compare this with the DNN program size for the reference
ARMv7E-M, for the RV32IC and the RV32IMC ISA. In the
latter two cases, floating point instructions are implemented as
soft-float operations. The results are shown in table I. Since
the compiler was configured to optimize the code for size
rather than latency, there is only a minor difference between
the three RISC-V ISAs configurations. Compared to ARMv7E-
M, however, these require significantly more memory, which is
due to additional instruction set extensions in the ARM ISA.
Adding up the aforementioned memory requirements including
the weights, results in at least 1.2 MB of memory, which is
necessary for deploying the DNN using RV32IMFC.

After reading sensor values for the first 24 time steps, the
inference can be executed. Subsequently, only eight succeeding
time steps are required to compute the next DNN output.
Hence, to avoid data loss or having to buffer incoming sensor
values, the maximum latency of the inference at a sampling
frequency of 100 Hz must be less than 80 ms. For defining
the performance requirement of the hardware, we evaluate the
number of instructions which have to be executed for the
different ISAs using OVPsim [12] and Spike [13], respectively.
Based on the results, we can also derive the minimal hardware
performance. The performance requirement for each ISA is
shown in table I. The results clearly show that using the
RV32IC ISA leads to a very high number of instructions and
is therefore not suitable for IoT applications. Even though
RV32IMC requires fewer instructions, there is currently no
state-of-the-art SoC available offering the required performance
to meet our latency requirements. Similarly, there is currently
no ARM Cortex-M4F-based system that provides sufficient on-
chip memory for DNN inference. In contrast, according to
the current state-of-the-art, there are already SoCs supporting
RV32IMFC, which satisfy the performance target and memory
requirements such as [14]. Consequently, since RISC-V is
open source and can be extended with more efficient custom
instructions, this ISA appears to be the most suitable for online
handwriting recognition in an IoT device such as the Digipen.

IV. CONCLUSION

In this paper, we presented our hardware-aware DNN work-
load distribution approach for online handwriting recognition,
which now enables executing inference in a sensor pen. Con-
sequently, running DNN inference in the pen results in lower
requirements for mobile devices and opens up the possibility
of storing compressed sensor data on the pen itself when
there is no remote device available. We reduce the memory
footprint to almost a quarter of the original model size by
quantizing the weights of the LSTM. Moreover, by introducing

CTC decoding using a beam search algorithm and a character
level Language Model (LM) executed in the mobile device,
we were able to find a suitable trade-off between accuracy and
required BLE bandwidth. Both metrics, memory footprint and
BLE bandwidth, are crucial for deploying DNN in the sensor
pen. Finally, we defined requirements for an SoC considering
memory size and performance. In summary, the evaluation
shows promising results for memory footprint, DNN accuracy
and performance requirements. In the future, we plan to further
optimize the DNN architecture considering energy constraints
and to design an optimized SoC according to the requirements
defined in this paper.
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