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Abstract
Many engineering applications rely on lubricated gaps where the hydrodynamic pressure distribution is influenced by cavi-
tation phenomena and elastic deformations. To obtain details about the conditions within the lubricated gap, solvers are 
required that can model cavitation and elastic deformation effects efficiently when a large amount of discretization cells is 
employed. The presented unsteady EHL-FBNS solver can compute the solution of such large problems that require the con-
sideration of both mass-conserving cavitation and elastic deformation. The execution time of the presented algorithm scales 
almost with N log(N) where N is the number of computational grid points. A detailed description of the algorithm and the 
discretized equations is presented. The MATLAB© code is provided in the supplements along with a maintained version on 
GitHub to encourage its usage and further development. The output of the solver is compared to and validated with analytical, 
simulated, and experimental results from the literature to provide a detailed comparison of different discretization schemes 
of the Couette term in presence of gap height discontinuities. As a final result, the most favorable scheme is identified for 
the unsteady study of surface textures in ball-on-disc tribometers under EHL conditions.

Keywords  Elasto-Hydrodynamic Lubrication (EHL) · Fischer-Burmeister-Newton-Schur (FBNS) · Jakobsson-Floberg-
Olsson (JFO) · Mass-conserving cavitation · Elastic half-space

1  Introduction

In the case of lubrication flows in narrow gaps, the Reyn-
olds equation [1] is a handy tool to determine the hydrody-
namic pressure distribution in a simpler way than by using 
the full Navier-Stokes Equations (NSE) [2, Ch. 7]. Since 
cavitation commonly occurs in lubrication flows, various 
models have been developed to describe this phenomenon 
[3]. Especially when it occurs within surface textures, mass-
conserving properties of the cavitation model are required 
to properly describe the flow’s transition from the cavita-
tion region to the full-film region, because this full-film 
reformulation interface has a great effect on the extension 
of the cavitated area and the subsequent downstream rise 
in pressure within the full-film region [4]. The required 

mass-conserving properties can be taken into account with 
the Jakobsson-Floberg-Olsson (JFO) [5, 6] cavitation model 
[3]. Starting from the cavitation algorithm of Elrod [7], Gia-
copini et al. [8] developed a one-dimensional finite element 
method (FEM) solver that couples the Reynolds equation 
with the mass-conserving JFO cavitation model through a 
complementarity formulation. This work was extended by 
Bertocchi et al. [9] to consider two-dimensional problems 
with compressible, piezoviscous, and shear-thinning fluid 
behavior. The arising complementarity problem was refor-
mulated to be expressed by an unconstrained equation sys-
tem by Woloszynski et al. [10], resulting in the Fischer-Bur-
meister-Newton-Schur (FBNS) algorithm. As demonstrated 
by Woloszynski et al., the FBNS algorithm is of remarkable 
computational efficiency also for high spatial resolutions.

In many cases, the hydrodynamic pressure can deform the 
lubricated surfaces notably leading to the regime of Elasto-
Hydrodynamic Lubrication (EHL) [11]. Various solvers 
have been developed to tackle EHL problems, some of the 
most prominent ones are the finite difference method (FDM) 
Multigrid solver of Venner and Lubrecht [12] and the FEM 
solver of Habchi [13]. Some algorithms are also capable of 
simulating surface contact along with the Reynolds equation 
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[14–18]. Since the full-film reformulation interface is often 
not of relevance in EHL problems, many EHL solvers do 
not employ mass-conserving cavitation models. However, 
in some cases - such as starved lubrication—mass-conserv-
ing cavitation is crucial and has been considered in several 
works [19, 20]. Among them, the coupling of pressure, 
mass-conserving cavitation, elastic deformation, a rough-
ness asperity contact model and the FBNS algorithm was 
achieved by Ferretti [21, 22]. In contrast to Ferretti’s work, 
the FBNS algorithm is coupled with the elastic deforma-
tion of an elastic half-space within this paper, thus present-
ing the new EHL-FBNS algorithm. Due to the half-space 
assumption, the elastic deformation is a linear convolu-
tion of a kernel function with the hydrodynamic pressure 
field. This allows exploiting the fast Fourier transformation 
(FFT) to speed up the computation of the elastic deforma-
tion [23]. Furthermore, a proportional integral derivative 
(PID) controller is employed to meet the load balance equa-
tion through adjustment of the rigid body displacement 
as already introduced by Wang et al. [24]. Eventually, the 
EHL-FBNS algorithm is capable of efficiently computing 
the solution of large problems that require the consideration 
of both mass-conserving cavitation and elastic deformation 
at the same time.

In the beginning of this paper, the basic equations and 
the general procedure of the EHL-FBNS algorithm are 
summarized. The algorithm is implemented in MATLAB© 
with the finite volume method (FVM) and a generic order 
spatial discretization scheme for the Couette term of the 
Reynolds equation. The discretized equations are supplied 
in Appendix. Then, the performance of the steady EHL-
FBNS implementation is compared to the original FBNS 
algorithm of Woloszynski et al. [10]. Afterward, one- and 
two-dimensional literature reference cases [9, 25] of a con-
vergent slider with rectangular pocket are used to compare 
the EHL-FBNS output to analytical and simulated reference 
results, assess the influence of the discretization order of the 
Couette term in the presence of gap height discontinuities 
through grid convergence studies and give an example case 
where both mass-conserving cavitation and elastic proper-
ties of the solver are required. Moreover, unsteady EHL-
FBNS simulations are performed for the set-up of a single 
texture that passes through the EHL contact of a ball-on-disc 
tribometer. The results are compared to experimental and 
simulated data of Mourier et al. [26]. This allows to demon-
strate the stability of the EHL-FBNS algorithm under EHL 
operating conditions with discontinuous surface textures and 

to provide recommendations about the most suitable discre-
tization scheme. Eventually, the EHL-FBNS algorithm is 
validated for surface texture investigations with ball-on-disc 
tribometers under unsteady EHL operating conditions.

The MATLAB© code, set-up, and visualization scripts 
are provided in the supplements. The MATLAB© scripts are 
thoroughly commented to encourage their usage and further 
development. A maintained and publicly available version of 
the code can also be found on GitHub: https://​github.​com/​
ErikH​ansen​Git/​EHL.

2 � Numerical Methods

2.1 � Governing Equations

The lubrication flow in a narrow gap (schematically depicted 
in Fig. 1) is governed by the Reynolds equation considering 
mass-conserving cavitation with the JFO model [5, 6] at any 
set of spatial coordinates x1 and x2 and time t [9]:

In this equation, h denotes the gap height, �l is the density 
of the liquid phase and �l describes the dynamic viscosity of 
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Fig. 1   Schematic sketch of the lubricated gap
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the liquid phase. All of them can vary in space and time. The 
mean velocity um =

Uup+Ulow

2
 is composed of Uup as the veloc-

ity of the upper surface and Ulow as the velocity of the lower 
surface in x1-direction. The relative pressure p = phd − pcav 
and the cavity fraction � = 1 −

�

�l
 are the solution variables, 

where � is the mixture density of the flow. The hydrody-
namic pressure phd is prevented from falling below the cavi-
tation pressure pcav by adding the following complementary 
constraints [9]:

Depending on whether the liquid phase is modeled as iso- 
or piezoviscous through the Barus or Roelands model, its 
dynamic viscosity reads [12, Ch. 1.3.3], [27]:

where zR =
�Rp0,R

ln (�0+9.67)
 [26] is the pressure viscosity index, �B 

and �R denote the pressure viscosity coefficient and p0,R is a 
constant in the Roelands equation. The dynamic viscosity of 
the liquid phase at ambient pressure is �0 . Moreover, 
depending on whether the liquid phase is assumed to be of 
constant density or to be compressible according to the 
Dowson-Higginson model, the liquid phase density is given 
by [12, Ch. 1.3.4], [9, 27]:

where �0 is the density of the liquid phase at ambient pres-
sure and C1 and C2 are constants.

The gap height h can be constructed as a superposition 
of the rigid body displacement of the two surfaces hd , the 
variation of the gap height due to the rigid geometry of the 
surfaces hg and the elastic deformation of the gap height hel 
due to the hydrodynamic pressure [2, Ch. 19.2]:

(2)p ⋅ � = 0, p ≥ 0, � ≥ 0.

(3)
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,

(4)�l =

{
�0,

�0
C1+C2(phd−pcav)
C1+(phd−pcav)

,

Depending on whether the upper and lower surfaces are 
assumed to be rigid or elastic half-spaces, the elastic defor-
mation of the gap height can be expressed as [12, Ch. 1.3.5]:

where the reduced elastic modulus is stated as [12, Ch. 
1.3.5]:

In this equation, E denotes the corresponding Young’s mod-
ulus and � the Poisson ratio of the upper and lower surface. 
If a constant rigid body displacement hd is prescribed, the 
provided set of equations is sufficient to describe the EHL 
problem. If, however, a constant imposed normal load force 
FN,imp is prescribed, it needs to be satisfied by the normal 
force FN resulting from the hydrodynamic pressure profile 
[28]:

where pamb is the ambient pressure. The rigid body displace-
ment hd needs to be set such that the load balance Equation 
(8) is fulfilled.

2.2 � EHL‑FBNS Algorithm

The set of equations described above can be solved numeri-
cally with the EHL-FBNS algorithm presented in the fol-
lowing. This new algorithm is based on the FBNS algorithm 
developed by Woloszynski et al. [10] and extends it by tak-
ing elastic surface deformation and the load balance equa-
tion into account. First of all, the dimensionless Reynolds 
equation considering mass-conserving cavitation is defined 
as:

(5)h = hd + hg + hel.

(6)hel
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It can be derived by inserting the following non-dimensional 
quantities (indicated by ∗ ) and reference quantities (denoted 
by the index ref  ) into and reformulating Equation (1):

Similar to Venner and Lubrecht [12, Ch. 6.3], the coeffi-
cients of the Poiseuille, Couette, and unsteady term within 
the dimensionless Reynolds equation can be consolidated as:

The complimentary constraints (2) are replaced by the Fis-
cher-Burmeister equation in non-dimensional form [10]:

The EHL-FBNS algorithm uses the Newton-Raphson 
method to determine the values of p∗ and � such that G and 
F get sufficiently close to 0, thus solving the dimensionless 
Reynolds Equation (9) and the dimensionless Fischer-Bur-
meister Equation (12). By evaluating the discretized form 
of G and F at each discrete position, an equation system is 
created. The discretized equations are obtained though the 
FVM, where the second-order midpoint rule is applied to 
evaluate surface and volume integrals. The required values 
and derivatives of the Poiseuille term are discretized with a 
second-order central scheme, of the Couette term by either 
the first-order upwind interpolation (UI) or the third-order 
quadratic upwind interpolation (QUICK) and the unsteady 
term with the first-order Euler implicit scheme [29, Chs. 
3.3, 4, 6.3.2]. The discretized expressions of Equations (9) 
and (12) are provided in Appendix A.1. The set of discrete 
dimensionless Reynolds equations G⃗ can be expressed in 
matrix-vector notation through the pressure coefficients con-
tributed by the Poiseuille term APo , the discretized dimen-
sionless relative pressures p⃗∗ , the cavity fraction coefficients 
contributed by the Couette and unsteady term B, the discre-
tized cavity fractions 𝜃 , and the remaining constants from 
the Couette and unsteady term c⃗ [10]:

The set of discrete dimensionless Fischer-Burmeister Equa-
tions (12) are denoted by F⃗(p⃗∗, 𝜃) . The non-dimensional 
properties �∗ and �∗ at each discrete point are computed 
according to the respective Eqs. (3, 4 and 10).

The gap height h at each discrete point is computed 
according to Eqs. (5 and 6). It is prevented from becom-
ing lower than 1 nm by using truncation at this instant. 

(10)
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1
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(12)F = p∗ + � −
√
p∗2 + �2.

(13)G⃗ = APop⃗
∗ + B𝜃 + c⃗.

Afterward, the non-dimensional gap height h∗ is determined 
through Equation (10). If the surfaces are chosen to be elas-
tic, Equation (6) is discretized by assuming a constant pres-
sure over the rectangular discretization cell [30, Ch. 3.3], 
[31, Ch. 3.1], the discretized equation is also provided in 
Appendix A.2. Since the resulting equation is a linear con-
volution of a kernel function with the hydrodynamic pres-
sure field, it is computed in Fourier space by means of FFT 
to speed up the computation. Attention is paid to double 
the size of the kernel in each direction and to zero pad the 

hydrodynamic pressure field such that a linear instead of a 
circular convolution is obtained. After the convolution, the 
deformation and pressure fields are resized to their original 
size [23, 32, 33].

After computing G⃗ and F⃗ , the Newton-Raphson method 
is used to determine the updates of non-dimensional relative 
pressure 𝛿p∗ and cavity fraction 𝛿𝜃 [10]:

The most important extension of the EHL-FBNS algorithm 
compared to the original FBNS algorithm is the approxi-
mation of the pressure Jacobian JG,p∗ of the dimensionless 
Reynolds equation when elastic deformation is taken into 
account. The idea is to consider the dependence h∗(p∗) by 
inserting it into c⃗ , thus creating the matrix Ah . Due to the 
kernel function, this would result in Ah being a full matrix 
which is prone to lose its diagonal dominance and there-
fore being unfeasible to invert and likely to cause unsta-
ble behavior in the iteration process. This is rectified by 
approximating Ah only by some of its diagonals as already 
done in the literature for other EHL algorithms: for example, 
Venner and Lubrecht [12, Chs. C.1, C.3.2] who combine it 
with distributive relaxation and multigrid methods or Wang 
et al. [15] who employ the semi-system method. In case of 
the EHL-FBNS algorithm, Ah is reduced to the 5 diagonals 
that correspond to the South, West, Center, East, and North 
cells. Eventually, the Jacobians of G⃗ read JG,p∗ = APo + Ah 
and JG,� = B . The boundary conditions of p⃗∗ are considered 
in APo and c⃗ and the boundary conditions of 𝜃 in F⃗ and JF,� . 
If Neumann boundary conditions are used for 𝜃 , the Jaco-
bian JF,� would contain several diagonals. In this case, it is 
approximated only by its main diagonal. It is worthwhile to 
note that this approximation of the Jacobians eventually only 
affects the updates of non-dimensional relative pressure 𝛿p∗ 
and cavity fraction 𝛿𝜃 , but never the computation of G⃗ and F⃗ . 

(14)J𝛿 =

[
JF,p∗ JF,𝜃
JG,p∗ JG,𝜃
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𝛿p∗

𝛿𝜃

]
= −
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The discrete formulations of the Jacobians JG,p∗ = APo + Ah 
and JG,� = B are provided in Appendix A.1 and A.3. The 
center entries of the Jacobians of the dimensionless Fischer-
Burmeister equation JF,p∗,C and JF,�,C for each discrete point 
are [10]:

Here, p∗
C,aux

 and �∗
C,aux

 are the auxiliary dimensionless pres-
sure and cavity fraction which are adjusted such that JF,p∗ 
and JF,� do not become singular [10]. To prevent them from 
having center entries close to zero within the range (−�, �) , 
they are adjusted as:

where machine epsilon is given by � ≈ 2.2204 ⋅ 10−16 . As 
already done in the original FBNS algorithm, the corre-
sponding columns of the Jacobian J and rows of the updates 
𝛿  are swapped if JF,p∗,C < JF,𝜃,C to obtain a reordered system 
[10]:

Due to the swapping, AF is better conditioned than JF,p∗ 
which is exploited when Equation system (19) is solved [10]:

After obtaining 𝛿a and 𝛿b , the earlier performed row swap-
ping is reversed to get the updates of non-dimensional 
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C
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C
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C
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−𝜀 if − 𝜀 < p∗
C
< 0,

(18)𝜃C,aux =
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𝜃C if 𝜃C ≥ 𝜀 or 𝜃C ≤ −𝜀,
𝜀 if 0 ≤ 𝜃C < 𝜀,
−𝜀 if − 𝜀 < 𝜃C < 0,

(19)
[
AF BF

AG BG

][
𝛿a
𝛿b

]
= −

[
F⃗

G⃗

]
.

(20)𝛿b =
(
BG − AG

(
A−1
F
BF

))−1(
−G⃗ + AG

(
A−1
F
F⃗
))

,

(21)𝛿a = A−1
F

(
−F⃗ − BF𝛿b

)
.

pressure 𝛿n
p∗

 and cavity fraction 𝛿n
𝜃
 [10]. The new values p⃗∗,n 

and 𝜃n at iteration n are obtained by means of relaxation:

where �p∗ , p⃗∗,n−1 , �� and 𝜃n−1 are the relaxation factors and 
previous solutions of non-dimensional relative pressure and 
cavity fraction. Depending on the simulated case, relaxa-
tion coefficients between 0.05 and 1 resulted in good trade-
offs between convergence speed and stability. Preventing 
p⃗∗,n from having values below 0 and 𝜃n from having values 
below 0 or above 1 through truncation furthermore enhances 
favorable convergence properties.

If a constant load force is prescribed, the dimensionless 
rigid body displacement h∗

d
= hd∕href  is adjusted through 

a PID controller to meet the load balance Equation (8) as 
already done by Wang et al. [24]. This is done by first deter-
mining the resulting normal load force Fn

N
 through the dis-

cretized load balance equation:

where Nx1
 , Δx1 , Nx2

 , and Δx2 are the amount and spacing 
of the discretization cells in x1 - and x2-direction and pn

hd,C
 

is the hydrodynamic pressure at the center of each discrete 
cell. The residual of the load balance equation is defined as:

where FN,ref  is a reference normal force that is usually just 
set equal to the imposed normal force FN,imp . Note that rn

FN
 

can be either positive or negative, depending on whether Fn
N

 
is larger or smaller than FN,imp . This is required for the PID 
controller to work properly. Finally, rn

FN
 is fed into the PID 

controller to determine h∗,n+1
d

 of the next iteration step [24]:

Note that KI is only multiplied with the sum up until rn−1
FN

 , 
since rn

FN
 is already considered by KP . For all of the later 

considered simulations with imposed normal load force, 
KP = 0.001 , KI = 0.02 , and KD = 0.001 worked well. At last, 
the following residuals are computed:

(22)p⃗∗,n = p⃗∗,n−1 + 𝛼p∗𝛿
n
p∗
,

(23)𝜃n = 𝜃n−1 + 𝛼𝜃𝛿
n
𝜃 ,

(24)Fn
N
=

Nx2∑ Nx1∑(
pn
hd,C

− pamb

)
Δx1Δx2,

(25)rn
FN

=
Fn
N
− FN,imp

FN,ref

,

(26)h
∗,n+1

d
= KPr

n
FN

+ KI

n−1∑
i

ri
FN

+ KD

(
rn
FN

− rn−1
FN

)
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(27)
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Note that the residuals rn
max,�G

 and rn
max,�F

 are directly affected 
by the relaxation factors and G⃗n and F⃗n are computed through 
the solutions p⃗∗,n−1 and 𝜃n−1 . The EHL-FBNS algorithm is 
repeated as long as rn

EHL-FBNS
 and in case of an imposed nor-

mal load force abs(rn
FN
) are above the tolerance tol = 10−6 . 

(28)
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.

Fig. 2   Flowchart of the most 
relevant steps of the EHL-
FBNS algorithm
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Reswap rows of �δa and �δb to obtain �δnp∗ and �δnθ

Compute � p∗,n and �θn, truncate � p∗,n below 0
and �θn outside of 0 and 1

Compute pnhd, F
n
N and resiuduals rn,t

Adjust h∗,n+1
d (rn,tFN

, rn−1,t
FN

, ..., rn,t−∆t
FN

, ...) with PID controller

rn,tEHL−FBNS and
abs(rn,tFN

) ≤ tol?

t = tfinal?

Export pnhd(x1, x2, t), θn(x1, x2, t) and h(x1, x2, t)

No

n ← n+ 1

No

Start unsteady simulation

t ← t+∆t

p0hd ← pnhd, θ
0 ← θn, h0

d ← hn
d

n = 1

Yes

Yes
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The most important steps of the algorithm structure are also 
visualized in Fig. 2. The initial guess is always a zero cavity 
fraction field and a pressure field at ambient pressure. If an 
unsteady simulation is performed, the solution at t = 0 is 
obtained through the steady problem caused by the geometry 
at t = 0 . Furthermore, the PID controller also takes the resid-
uals of the load balance equation of the previous time steps 
into account if t > 0.

3 � Results and Discussion

In order to assess the performance of the presented EHL-
FBNS algorithm, it is firstly employed in a numerical litera-
ture test case of a textured parallel slider. Then, the results 
of the EHL-FBNS algorithm are compared to the analytical 
solution of a rigid one-dimensional convergent slider with 
rectangular pocket to show the effect of the discretization 
order of the Couette term on the accuracy of the simulation 
result when gap height discontinuities are present. Subse-
quently, the slider is extended to a two-dimensional geome-
try and an elastic model is employed to give an example case 
where both mass-conserving cavitation and elasticity show 
relevant effects. Afterward, another experimental–numerical 
literature case is simulated with the EHL-FBNS algorithm 
to validate the code for textured ball-on-disc investigations, 
evaluate the code’s stability in unsteady EHL conditions, 
and compare different spatial discretization schemes. For 
all considered cases, the second-order midpoint rule is used 
for the evaluation of integrals arising from the FVM and the 
Poiseuille term is always discretized with a second-order 
central scheme. Consequently, the resulting order of the 
dimensionless Reynolds equation discretized with the FVM 
in the steady case is first order with the UI and second order 
with the QUICK scheme. In the unsteady case, only first 

order is achievable for both UI and QUICK since the first-
order Euler implicit scheme is employed. All of the EHL-
FBNS simulations are performed with MATLAB© R2020a.

Fig. 3   Exemplary cell array 
resulting in the case of 
Kx1

= Kx2
= 2

hg = hmin, p = pamb, θ = 0

hg = hmin

hg = hmin + hp/2

hg = hmin + hp

Lx1

x2

x1

Lx2

Table 1   Summary of the parameters and values used in the EHL-
FBNS simulations of the parallel slider with a various amount of 
trapezoidal pockets

Param. Value Param. Value Param. Value

Uup 5 ms−1 �0 3 ⋅ 10−2 Pas
Ulow 0 �B – Nx1

2 + 30 ⋅ Kx1

um 2.5 ms−1 �R – Nx2
2 + 30 ⋅ Kx2

p0,R – Lx1 8 ⋅ 10−2 m
pamb 105 Pa Lx2 Lx1

pcav 3 ⋅ 104 Pa �0 850 kgm−3 hd 0
phd,SB pamb C1 – hp 12 ⋅ 10−6 m
phd,WB pamb C2 – hmin 15 ⋅ 10−6 m
phd,EB pamb Eup –, 5 ⋅ 109 Pa
phd,NB pamb Elow –,  Eup Kx2

Kx1

�SB 0 �up –, 0.3 Δx1 Lx1∕(Nx1
− 1)

�WB 0 �low –, �up Δx2 Lx2∕(Nx2
− 1)

�EB 0 E′ –, 5.49 ⋅ 109 Pa
�NB 0 FN,imp –
href hmin

x1,ref Lx1 �p∗ 1, 0.5
x2,ref Lx2 �� 1, 0.5
pref 106 Pa �ref �0

tref – �ref �0

FN,ref – uref um

Param. Value

N 1024, 3844, 14,884, 58,564, 91,204, 3,62,404, 
14,44,804, 57,69,604

Kx1
1, 2, 4, 8, 10, 20, 40, 80
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3.1 � Parallel Slider with a Varying Amount 
of Trapezoidal Pockets

The parallel slider with a varying amount of trapezoidal 
pockets used by Woloszynski et al. [10] serves as first test 
case. This set-up is chosen because it can cause a generic 
amount of distinctive cavitation regions. This is to demon-
strate the good performance and stability properties of the 
EHL-FBNS algorithm since the simulation of such cases 
showed to be difficult or inefficient with other codes from 
the literature. Furthermore, the solid properties are chosen 
such that noticeable effects due to elastic deformations on 
the pressure profile occur. Thereby, it is shown that the con-
sideration of elasticity does not alter the performance scal-
ing. While being of little physical interest, this numerical 
set-up allows a comparison of the performance scaling to the 
original FBNS algorithm of Woloszynski et al.

The variation of the gap height due to the rigid geom-
etry of the surfaces hg is constructed by assembling several 
unit geometries. Each unit geometry is composed of 20 ⋅ 20 
cells with hg = hmin + hp . This square is surrounded by a one 
cell thick layer with hg = hmin + hp∕2 , which is in turn sur-
rounded by a layer of four cells with hg = hmin , resulting in a 
square of 30 ⋅ 30 cells. Depending on the desired size of the 
computational domain, a certain amount Kx1

⋅ Kx2
 of these 

unit cells is attached to each other and finally surrounded 
by a layer of cells for the Dirichlet boundary conditions of 
hydrodynamic pressure at pamb and zero cavity fraction. At 
last, the coordinates of each cell center are set such they 
are in the range of [0 Lx1 ]⊗ [0 Lx2 ] . The resulting array of 
cells in the exemplary case of Kx1

= Kx2
= 2 is visualized in 

Fig. 3. The rigid body displacement hd is set to 0 since it is 
already considered in hg.

The values of the parameters used in the EHL-FBNS 
simulations are summarized in Table 1. Piezoviscosity and 
compressibility of the liquid phase are not considered. The 

Fig. 4   Performance of EHL-FBNS and FBNS algorithm along with 
reference scalings. The performance of the FBNS algorithm was 
taken from Woloszynski et al. [10]

Fig. 5   Performance of combinations of rigid, elastic, UI, and QUICK 
EHL-FBNS simulations

Table 2   Summary of the code execution times of the FBNS algorithm given by Woloszynski et al. [10] and the ones of the EHL-FBNS algo-
rithm with UI or QUICK discretization and rigid or elastic geometry to simulate the parallel slider with a various amount of trapezoidal pockets

The FBNS simulations of Woloszynski et al. were performed on a workstation with 32 GB RAM and an Intel Xeon 3.3 GHz processor while the 
computations of the EHL-FBNS algorithm were conducted on a workstation with a 64 GB RAM and an AMD Ryzen 9 3900X 12-Core 3.8 GHz 
processor

Resolution Execution time tex[s]

N[−] FBNS [10] Ri, UI El, UI Ri, QUICK El, QUICK

1024 0.1 0.0285 0.1133 0.0456 0.1958
3844 0.3 0.0828 0.2591 0.3294 0.2884
14,884 1.3 0.3665 1.0631 0.9767 1.3695
58,564 5.7 2.0455 5.3531 4.1428 6.0378
91,204 11.3 3.5748 16.1899 6.7058 10.1669
362,404 47.1 17.6511 41.6014 31.8607 54.4950
1,444,804 – 103.5338 225.9930 179.1673 287.9650
5,769,604 – 632.0061 1,776.8957 1,042.3062 2,096.1574
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amount of unit geometries in x1-direction Kx1
 is varied while 

Kx2
= Kx1

 is always enforced such that the resulting mesh is 
always quadratic. By increasing the amount of unit geom-
etries, the total amount of discretization cells N is increased. 
Each resulting geometry is simulated with UI and QUICK 
for the rigid and elastic case. In the elastic case, the solid 
bodies’ Young’s modulus E and Poisson ratio � are set such 
that the elastic deformation shows notable effects even 
though the overall pressures are low. At the same time, this 
set-up produces many distinctive cavitation regions. The 
rigid simulations use relaxation factors of � = 1 . Since the 
elastic simulations are generally more unstable, the relaxa-
tion factors have to be reduced to 0.5.

To quantify the algorithm’s performance independently 
of the hardware’s computational power, the non-dimensional 
code execution time is defined as:

where tex is the code execution time for a certain total 
amount of discretization cells N. The non-dimensional code 
execution time t∗

ex
 of the EHL-FBNS algorithm in the rigid 

UI case is compared with the one of the original FBNS algo-
rithm of Woloszynski et al. [10] in Fig. 4. Their code was 
also implemented in MATLAB© , considered rigid geome-
tries and was discretized with the FVM, where the Poiseuille 
term was discretized with second-order central differences 
and a first-order upwind scheme was employed for the cavity 
fraction. While Woloszynski et al. [10] use different toler-
ances for different residuals ( 10−3 for rn

max,G
 and 10−6 for 

rn
max,�G

 ), the EHL-FBNS algorithm employs an even stricter 
convergence criterion ( 10−6 for rn

EHL-FBNS
 given by Equation 

(28)). Furthermore, three reference curves for the scaling of 
the non-dimensional code execution time are displayed: lin-
ear t∗

ex,lin
= M1N , logarithmic t∗

ex,log
= M2N log(N) and quad-

(29)t∗
ex
=

tex(N)

tex(N = 1024)
,

Fig. 6   Hydrodynamic pressure 
profiles phd for a UI simulation 
with Kx1

= 8 : a rigid and b 
elastic case

Fig. 7   Hydrodynamic pres-
sure profiles phd for a QUICK 
simulation with Kx1

= 8 : a rigid 
and b elastic case
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ratic t∗
ex,quad

= M3N
2 . The coefficients M1 = 9.7656 ⋅ 10−4 , 

M2 = 1.4089 ⋅ 10−4 and M3 = 9.5367 ⋅ 10−7 are chosen such 
that t∗

ex
(N = 1024) = 1 in all cases. It can be seen that the 

original FBNS algorithm has a performance scaling close to 
the linear reference while the EHL-FBNS algorithm per-
forms a little bit slower than the N log(N) reference for large 
N but is always much faster than the quadratic reference. The 
difference between the FBNS and EHL-FBNS performances 
might be due to the fact that the EHL-FBNS algorithm con-
structs the matrices APo and B and vector c⃗ at each iteration 
step, while the FBNS algorithm might exploit that they are 
constant in a rigid and isoviscous simulation with an incom-
pressible liquid phase. However, the exact details of the 
implementation of the original FBNS algorithm are 
unknown and the difference in time scaling cannot be pinned 
down rigorously.

Next, it is investigated how combinations of UI or 
QUICK discretization and rigid or elastic geometry affect 
the performance. The code execution times tex are provided 
in Table 2. The corresponding non-dimensional code execu-
tion times t∗

ex
 are displayed in Fig. 5. Because all curves 

have almost the same inclinations in the double logarithmic 
diagram, it can be deduced that the performance scaling 
of the EHL-FBNS algorithm stays similar in all cases. To 
prove that the operating conditions were chosen such that 

discretization scheme and elastic model have a noticeable 
impact on the results while the performance scaling remains 
unchanged, exemplary results are considered in the follow-
ing for the geometry with Kx1

= 8 . The pressure profiles of 
the UI simulations are visualized in Fig. 6 for the rigid (a) 

hmin

Uup
x3

x1

hp

pamb pamb

ba

Lx1

hmax

Uup

x3

x2

x1

Lx2

w

hmin

hmax
pamb

(a)

(b)

Fig. 8   Schematic sketch of the convergent slider with rectangular 
pocket: a one-dimensional configuration, b two-dimensional geom-
etry with one-dimensional configuration along center line. Adapted 
from Bertocchi et al. [9]

Table 3   Summary of the parameters and values used in the EHL-
FBNS simulations of the one-dimensional convergent slider with rec-
tangular pocket

Param. Value Param. Value Param. Value

Uup 1 ms−1 �0 10−2 Pas
Ulow 0 �B –
um 0.5 ms−1 �R – Nx2

3
ur 1 ms−1 p0,R – Lx1 10−2 m
pamb 105 Pa Lx2 (Nx2

− 1)Δx2

pcav 0 �0 850 kgm−3 hd 0
phd,SB pamb C1 – hmax 1.05 × 10−6 m
phd,WB pamb C2 – hmin 10−6 m
phd,EB pamb Eup – a 2 ⋅ 10−3 m
phd,NB pamb Elow – b 3 ⋅ 10−3 m
�SB Neumann �up – Δx1 Lx1∕(Nx1

− 1)

�WB 0 �low – Δx2 Δx1

�EB 0 E′ – hp 10−6 m
�NB Neumann FN,imp –
href hmin

x1,ref Lx1 �p∗ 0.5
x2,ref Lx2 �� 0.5
pref 106 Pa �ref �0

tref - �ref �0

FN,ref - uref um

Param. Value

N 243, 483, 963, 1923
Nx1

81, 161, 321, 641

Fig. 9   Hydrodynamic pressure profile phd for UI simulations with dif-
ferent resolutions Nx2

⋅ Nx1
 in comparison to the analytical solution 

derived by Fowell et al. [25]
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and elastic (b) case. The contour of the regions where the 
hydrodynamic pressure phd reaches the cavitation pressure 
pcav is visualized by orange lines. The elastic deformation 
drastically reduces the resulting pressure profile in compari-
son to the rigid simulation. The results of the same cases but 
with the QUICK scheme are shown in Fig. 7 for the rigid (a) 
and elastic (b) case for comparison. Differences between the 
UI and the QUICK scheme are noticeable.

3.2 � Convergent Slider with Rectangular Pocket

The next test case is a convergent slider with a single rec-
tangular pocket that introduces discontinuities in the gap 
height. For this set-up, a mass-conserving cavitation model 
is essential to predict the full-film reformulation properly. 
The aim of the simulations is to show the effect of the spa-
cial discretization order on the pressure distribution when 
gap height discontinuities are present. For this steady case, 
the UI scheme eventually results in first and the QUICK 
scheme in second-order accuracy. The investigation is firstly 
done for a rigid one-dimensional geometry because it has 
the analytical solution of Fowell et al. [25] for comparison. 
Next, the two-dimensional set-up of Bertocchi et al. [9] is 
used on the one hand to demonstrate that the algorithm of 
Bertocchi et al. and the EHL-FBNS algorithm give consist-
ent results in the rigid case and on the other hand to show 
that the additional consideration of elastic deformations even 
at traditional hydrodynamic operating conditions is of great 
relevance. A sketch of the one-dimensional configuration 
is depicted in Fig. 8a while its extension to the two-dimen-
sional geometry is described in Fig. 8b.

The analytical solution of a rigid one-dimensional con-
verging slider with rectangular pocket and incompressible 
isoviscous liquid phase was derived by Fowell et al. [25] and 
was also used for code verification by Giacopini et al. [8]. 
The parameters used in the current study are summarized 
in Table 3. The one-dimensional geometry was replicated 

Fig. 10   Hydrodynamic pressure profile phd for QUICK simulations 
with different resolutions Nx2

⋅ Nx1
 in comparison to the analytical 

solution derived by Fowell et al. [25]

Table 4   Summary of the parameters and values used in the EHL-
FBNS simulations of the two-dimensional convergent slider with rec-
tangular pocket

Param. Value Param. Value Param. Value

Uup 1 ms−1 �0 10−2 Pas N 8320
Ulow 0 �B 1.2 ⋅ 10−8 Pa−1 Nx1

128
um 0.5 ms−1 �R – Nx2

65
ur 1 ms−1 p0,R – Lx1 2 ⋅ 10−2 m
pamb 105 Pa
pcav 0 �0 850 kgm−3 hd 0
phd,SB pamb C1 2.22 ⋅ 109 Pa hmax 1.1 ⋅ 10−6 m
phd,WB pamb C2 1.66 hmin 10−6 m
phd,EB pamb a 4 ⋅ 10−3 m
phd,NB pamb Elow Eup b 6 ⋅ 10−3 m
�SB 0 Δx1 Lx1∕(Nx1

− 1)

�WB 0 �low �up Δx2 Lx2∕(Nx2
− 1)

�EB 0 hp 0.4 ⋅ 10−6 m
�NB 0 FN,imp –
href hmin

x1,ref Lx1 �p∗ 0.05
x2,ref Lx2 �� 0.05
pref 107 Pa �ref �0

tref - �ref �0

FN,ref - uref um

Param. Value

Eup – , 210 ⋅ 109 Pa
�up – , 0.3
E′ –, 231 ⋅ 109 Pa
Lx2 10−2 m , 30 ⋅ 10−2 m
w 7 ⋅ 10−3 m , 30 ⋅ 7 ⋅ 10−3 m

Fig. 11   Distribution of hydrodynamic pressure phd along the center 
line of the inclined slider with pocket against the results obtained 
by Bertocchi et  al. [9]. Simulations were performed for the small 
( Lx2 = 10 mm , w = 7 mm ) and large ( Lx2 = 30 ⋅ 10 mm , w = 30 ⋅ 7 
mm ) geometry



	 Tribology Letters           (2022) 70:80 

1 3

   80   Page 12 of 25

by a pseudo one-dimensional grid with three discretization 
points in x2-direction and Neumann boundary conditions for 
pressure and cavity fraction at the south and north boundary.

To investigate the grid convergence properties of the spa-
cial schemes for this kind of set-up, the resulting pressure 
profiles of the UI and QUICK schemes are shown in Figs. 9 
and 10 for different grid resolutions alongside the analytical 
solution. While both schemes converge toward the same ana-
lytical solution, the first-order UI scheme converges faster 
at much lower resolutions than the second-order QUICK 
scheme. It is therefore concluded that for rigid geometries, 
lower order discretization schemes are preferable when gap 
height discontinuities are present.

Next, the two-dimensional set-up of a converging slider 
with rectangular pocket is considered. It is the same set-up 
that was used by Bertocchi et al. [9] to show the agreement 
of their code with the formulation of Ausas et al. [4] and 
Giacopini et al. [8]. This set-up is simulated to demonstrate 
the good agreement of the EHL-FBNS algorithm with the 
aforementioned algorithms in the rigid case and to point 
out that the resulting pressure distribution is greatly affected 
when common elastic bodies instead of rigid ones are used.

The parameters employed in the EHL-FBNS simulations 
are summarized in Table 4. In the rigid case, Bertocchi et al. 
[9] used a domain width of Lx2 = 10 mm and pocket width of 
w = 7 mm to compare their results with the formulation of 
Ausas et al. [4] and employed a domain width of Lx2 = 300 
mm and pocket width of w = 210 mm to approximate a one-
dimensional case along the center line of the computational 
domain which was compared to the one-dimensional results 
of Giacopini et al. [8]. Differently to the non-equidistant 
mesh used by Bertocchi et al. consisting of 3528 elements, 
the EHL-FBNS simulations are performed with a mesh of 
8320 cells and an equidistant spacing in each of the respec-
tive directions. Dirichlet boundary conditions of pamb and 

zero cavity fraction are employed. Piezoviscosity is modeled 
with the Barus model and compressibility of the liquid phase 
with the Dowson-Higginson model. Differently to Bertocchi 
et al. shear thinning is neglected. As the following compari-
son of the EHL-FBNS results with the ones of Bertocchi 
et al. show, shear thinning has a negligible effect for this 
problem. The EHL-FBNS simulations are performed with 
the UI and QUICK scheme and for rigid and elastic surfaces.

Figure 11 shows the pressure distribution of the rigid 
UI EHL-FBNS simulations along the center line for both 
geometry widths next to the results of Bertocchi et al. [9]. 
The curve of Bertocchi et al. was read in with the software 
Engauge Digitizer and can therefore be subject to minor 
deviation from the original data. Still, the results of the 
EHL-FBNS algorithm and Bertocchi et al. are similar. Fur-
thermore, Bertocchi et al. found their results being in close 
agreement to Ausas et al. [4] and Giacopini et al. [8]. This 
indicates that the EHL-FBNS algorithm is consistent with 
all the mentioned works.

In the following, only the small geometry ( Lx2 = 10 mm , 
w = 7 mm ) is considered to show that even at traditional 
hydrodynamic operating conditions with low pressures 
between 1 and 10 MPa , the employment of common elastic 
parameters can induce small variations in the gap height 
which in turn severely alter the resulting hydrodynamic pres-
sure and cavity fraction profiles. The resulting pressure pro-
files of the rigid and elastic simulations are shown in Fig. 12 
for the UI scheme. The boundary of the cavitation region is 
indicated by an orange line and the center line is marked in 
green. The resulting pressure profiles are severely weakened 
due to the introduced elastic deformation and the cavitation 
region has a larger downstream extension.

The gap height h, hydrodynamic pressure phd and cav-
ity fraction � along the center line are compared in Fig. 13 
for the rigid, elastic, UI, and Quick simulations. It becomes 

Fig. 12   Distribution of hydro-
dynamic pressure phd in the 
inclined slider with pocket for 
UI discretization and rigid a and 
elastic b model
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visible that the differences between rigid and elastically 
deformed gap height are small compared to the correspond-
ing differences in the hydrodynamic pressure. The maxi-
mum hydrodynamic pressure is not only reduced to about 
20% , but also the general shape and peak change drastically. 
In the elastic case, the cavitation region extends over the 
whole length of the pocket, thus reducing the area of posi-
tive pressure gradient in front of the downstream end of the 
pocket and eventually causing only a small pressure increase 
compared to the rigid case. Comparing the UI and QUICK 
schemes shows a tendency of the higher order scheme to 
cause oscillations at the downstream end of the cavitation 
region and minor discrepancies in the pressures profiles at 
the end of the pocket.

From these results, it is concluded that even at low pres-
sures between 1 and 10 MPa , small elastic deformations 
can significantly alter the hydrodynamic pressure and cavity 
fraction profiles. Consequently, results of traditional hydro-
dynamic simulations with mass-conserving cavitation but no 
elastic deformation model must be handled with care when 
making statements about the possible increase of the load 
carrying capacity due to surface textures. Furthermore, the 
performed simulations show that the EHL-FBNS algorithm 
is a useful tool to build up on the considered reference inves-
tigations since it can take the additionally required elastic 
deformation effects into account. Moreover, the implemen-
tation of the solver allows to switch conveniently between 
first- and second-order discretization schemes of the Couette 
term. This allows to quickly identify the preferable scheme 
through grid convergence studies.

3.3 � Ball‑on‑Disc Tribometer with a Single Texture

The second set-up is the ball-on-disc tribometer with a 
single texture used in the simulations and experiments of 
Mourier et al. [26]. These were performed to investigate 
the unsteady effect of isolated dimples passing through an 
EHL contact at pure rolling and rolling-sliding conditions. 
Mourier et al. state that they used shallower dimples in 
the simulations than in the experiments because the deep 
dimples compromised convergence. In the following, both 
geometries are simulated with the EHL-FBNS algorithm to 
show that the presented algorithm can provide converged 
results in either case. Firstly, grid convergence studies are 
performed to identify the preferable discretization scheme. 
Then, the gap height measurements of Mourier et al. are 
used to validate the EHL-FBNS algorithm for ball-on-disc 
tribometers. Lastly, differences in the simulated results of 
Mourier et al. and the EHL-FBNS algorithm are discussed 
and additional deductions about the discretization schemes 
are drawn.

The rolling-sliding condition of the EHL contact is char-
acterized through the slide-to-roll ratio SSR as provided by 
Mourier et al. [26]:

The time dependent variation of the gap height due to the 
rigid geometry of the surfaces is expressed as [26]:

where d is the dimple depth, r is the dimple radius and D 
is the distance of any position to the moving dimple center 
[26]:

(30)SSR =
Ulow − Uup

Ulow + Uup

.

(31)

hg(x1, x2, t) =
x2
1

2Rx1

+
x2
2

2Rx1

+ d cos
(
�

2
⋅

D

1.2r

)
exp

(
−2

(
D

1.2r

)2
)
,

Fig. 13   Distribution of gap height h a, hydrodynamic pressure phd b 
and cavity fraction � c along the center line of the inclined slider with 
pocket for rigid, elastic, UI, and QUICK simulations
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The dimple center has the coordinates x1,d and x2,d with [26]:

The initial position of the dimple center is described by x1,0 
and x2,0 at time t = 0 s . The dimple moves with velocity 
utex = Ulow . The parameters used in the EHL-FBNS simula-
tions are summarized in Table 5. All simulations are per-
formed with the same mean velocity um , but different SSR 
and therefore different Uup , Ulow and number of time steps 
Nt . In the case of SSR = 0 , Nt = 257 time steps and a dimple 
radius of r = 15.5 μm are used. To replicate the experiment, 
a dimple depth of d = 7 μm is employed, while d = 0.175 μm 
is used to be consistent with the numerical set-up of Mourier 

(32)D =

√
(x1 − x1,d)

2 + (x2 − x2,d)
2.

(33)x1,d = x1,0 + tutex, x2,d = x2,0.

et al. [26]. For SSR = −0.5 , the dimple radius r = 21.5 μm is 
considered. Since the dimple moves more slowly in this case, 
Nt = 513 time steps are required while the time step length 
Δt stays constant. A dimple depth of d = 1.3 μm is used for 
the experiment replication, while d = 0.16 μm is used to be 
consistent with the numerical set-up of Mourier et al.

The solution of the first time step at t = 0 s is computed 
with the steady Reynolds equation and the dimple at its start-
ing position to obtain an initial solution for the unsteady 
Reynolds equation. The cavitation pressure pcav is set to 
the ambient pressure of pamb = 0 Pa and Dirichlet bound-
ary conditions are used for the hydrodynamic pressure. The 
boundary conditions of � correspond to zero cavity fraction 
at the West boundary and zero gradient Neumann condi-
tion at all other boundaries. The imposed normal force is 
FN,imp = 15 N and the initial guess of the rigid displacement 
is set to hd,ini = −1 μm . Elastic deformation, Roelands, and 
Dowson-Higginson models are employed to stay consist-
ent with the simulations of Mourier et al. [26] who used 

Fig. 14   Profiles of gap height h along center line for the deep dimple 
at position x1,d = 0 , UI discretization scheme and different resolutions 
of Nx1

⋅ Nx2
⋅ Nt

Fig. 15   Profiles of gap height h along center line for the deep dimple 
at position x1,d = 0 , QUICK discretization scheme and different reso-
lutions of Nx1

⋅ Nx2
⋅ Nt

Table 5   Summary of the parameters and values used in the EHL-
FBNS simulations of the ball-on-disc tribometer with single texture

Param. Value Param. Value Param. Value

�0 2.5 ⋅ 10−1 
Pas

N 66,049

�B – Nx1
257

um 0.09 ms−1 �R 2.2 ⋅ 10−8 
Pa−1

Nx2
257

p0,R 1.96 ⋅ 108 Pa Lx1 6a
pamb 0 Pa Lx2 6a
pcav pamb �0 850 kgm−3 hd,ini −10−6 m
phd,SB pamb C1 5.9 ⋅ 108 Pa a 136.5 ⋅ 10−6 

m

phd,WB pamb C2 1.34 Rx1
12.5 ⋅ 10−3 m

phd,EB pamb Eup – Δx1 Lx1∕(Nx1
− 1)

phd,NB pamb Elow – Δx2 Lx2∕(Nx2
− 1)

�SB Neumann �up – x1,0 −3a

�WB 0 �low – x2,0 0
�EB Neumann E′

110 ⋅ 109 Pa utex Ulow

�NB Neumann FN,imp 15 N Δt∗ Δx1∕a

href a2∕Rx1
Δt Δt∗ ⋅ tref

x1,ref a �p∗ 0.05
x2,ref a �� 0.05
pref 385 ⋅ 106 Pa �ref �0

tref a∕um �ref �0

FN,ref FN,imp uref um

Param. Value

Uup 0.09 ms−1 , 0.135 ms−1

Ulow 0.09 ms−1 , 0.045 ms−1

SSR 0, −0.5
Nt 257, 513
r 15.5 ⋅ 10−6 m , 21.5 ⋅ 10−6 m
d 7000 ⋅ 10−9 m , 175 ⋅ 10−9 m , 1300 ⋅ 10−9 m , 160 ⋅ 10−9 m
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the FDM multigrid solver of Venner and Lubrecht [12]. As 
stated by Mourier et al., the accuracy of this solver is of 
second order in space and time. Due to the Euler implicit 
discretization of the unsteady term in the EHL-FBNS solver, 
the achieved accuracy is generally limited to first order for 
both the UI and the QUICK scheme.

In order to perform a grid convergence study, simulations 
with the UI and QUICK scheme at SSR = 0 , respectively, 
for the deep and shallow dimple geometries, are employed 
to assess both schemes with and without gap height discon-
tinuities. For this grid convergence study, the less strict defi-
nition rn

EHL-FBNS
= mean

(
abs

(
𝛿n
p∗

))
 is used instead of Equa-

tion (28). This is necessary in order to perform the QUICK 
simulations at low resolutions, otherwise a stall in the con-
vergence of the residual rn

max,G
 can occur at some time steps 

for the used value of the underrelaxation coefficient. None-
theless, for the highest grid resolution, the stricter residual 
of Equation (28) does not lead to a stall and the maximum 
deviation in the resulting gap heights along the center line 
when the dimple is at position x1,d = 0 is less than 0.1% 

when compared for both residual definitions. Note also that 
for any other simulation in this publication, the stricter defi-
nition given by Equation (28) (and thus following the sug-
gestion by Woloszynski et al. [10]) is employed. The effect 
of the residual definition on the amount of required iterations 
for the highest resolution is discussed at the end of this 
section.

For the deep dimple at position x1,d = 0 , the resulting gap 
height profiles along the center line obtained for different 
resolutions are displayed in Fig. 14 for the UI and in Fig. 15 
for the QUICK scheme. The comparison of both figures 
shows that the QUICK scheme has a worse convergence 
behavior around the dimple than the UI scheme and even 
converges toward a different solution at the downstream end 
of the dimple. It is therefore concluded that in this case, the 
UI scheme with the first-order discretization of the Couette 
term is preferable over the QUICK scheme.

For the shallow dimple at position x1,d = 0 , the result-
ing gap height profiles along the center line obtained for 
different resolutions are displayed in Fig. 16 for the UI and 
in Fig. 17 for the QUICK scheme. For this geometry with 
no discontinuity, both schemes converge toward the same 
solution, but the second-order discretization of the Couette 
term with the QUICK scheme delivers the better conver-
gence properties and is therefore preferable.

The following simulations are performed at the highest 
resolution level and with the residual definition of Equation 
(28) to further support the previously identified arguments 
about the preferable discretization scheme of the Couette 
term. The results of the EHL-FBNS simulations are pro-
vided as videos in the supplements. Exemplary results of gap 
height h, hydrodynamic pressure phd and cavity fraction � at 
t = 0 s , SSR = 0 and d = 7 μm are shown for UI and QUICK 
simulations in Fig. 18. The contour line of phd = pcav is 
marked in orange while the center line is displayed in green. 
Apart from more pronounced spikes in the hydrodynamic 
pressure at the downstream end of the EHL-contact zone 
with the more accurate QUICK scheme, both simulations 
produce almost the same results at first glance.

In the following, the EHL-FBNS results are compared 
to the experimental and simulated counterparts of Mourier 
et al. [26]. The data of Mourier et al. was read in with the 
software Engauge Digitizer (https://​marku​mmitc​hell.​github.​
io/​engau​ge-​digit​izer/) and can therefore be subject to minor 
deviation from the original data. The data of Mourier et al. 
consists of gap height measurements in the experimental 
case and of gap height and pressure distributions in the 
simulated case at five distinctive dimple center positions.

Figure 19a shows the UI and QUICK results of the EHL-
FBNS algorithm along with the experimental results of 
Mourier et al. in case of the deep dimple with SSR = 0 . 
Due to the large depth of the dimple in comparison to the 
remaining gap height within the EHL contact, the gap 

Fig. 16   Profiles of gap height h along center line for the shallow dim-
ple at position x1,d = 0 , UI discretization scheme and different resolu-
tions of Nx1

⋅ Nx2
⋅ Nt

Fig. 17   Profiles of gap height h along center line for the shallow dim-
ple at position x1,d = 0 , QUICK discretization scheme and different 
resolutions of Nx1

⋅ Nx2
⋅ Nt

https://markummitchell.github.io/engauge-digitizer/
https://markummitchell.github.io/engauge-digitizer/


	 Tribology Letters           (2022) 70:80 

1 3

   80   Page 16 of 25

height distribution shows a strong discontinuity at the rim 
of the deep dimple. At the first and last dimple position, the 
dimple is just entering or leaving the visualized domain. 
Most of the domain is still unaffected by the dimple and 
basically corresponds to the steady solution without a dim-
ple. Small differences in the gap height h between UI and 
QUICK can be observed while the more accurate QUICK 

scheme closely fits the experimental results in the center 
of the domain. The systematic difference in the gap height 
between UI and QUICK is mostly due to a different value 
of the rigid body displacement hd which is set such that the 
load balance equation is eventually met. For the dimple posi-
tions 2–4, the QUICK scheme produces large deviations in 
the gap height compared to the experimental results at the 

Fig. 18   Distribution of gap 
height h a,b, hydrodynamic 
pressure phd c,d and cavity 
fraction � e,f in the ball-on-disc 
tribometer with single texture at 
t = 0 s for UI (left) and QUICK 
(right) discretization
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discontinuity at the downstream rim of the dimple. There, 
the UI scheme manages to fit the experimentally measured 
gap height better. These results are consistent with the find-
ing of LeVeque [34, Ch. 11] that for discontinuous problems, 

first-order methods give smoother results while second-order 
methods cause oscillations. Both schemes deviate from the 
experimental results at the downstream rim of the dimple 
when it is leaving the EHL contact at position 5. At all five 

Fig. 19   At SSR = 0 (a) and SSR = −0.5 (b): distribution of gap height h (top) and hydrodynamic pressure phd (bottom) along the center line of 
the ball-on-disc tribometer with single texture for UI and QUICK discretization against the experimental results of Mourier et al. [26]
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positions, the hydrodynamic pressure distributions of UI and 
QUICK are mostly in close agreement, but the UI scheme 
produces higher pressure spikes at the downstream rim of 
the dimple which in turn cause larger elastic deformations. 

This explains why the UI scheme shows better agreement 
in the gap height since this more diffusive scheme even-
tually tends to smooth the discontinuity at the rim of the 
dimple by adjusting the hydrodynamic pressure accordingly. 

Fig. 20   At SSR = 0 (a) and SSR = −0.5 (b): distribution of gap height h (top) and hydrodynamic pressure phd (bottom) along the center line of 
the ball-on-disc tribometer with single texture for UI and QUICK discretization against the simulated results of Mourier et al. [26]
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Consequently, the lower order UI scheme is recommend-
able close to discontinuities in the gap height while the 
QUICK scheme is more advantageous at smoother parts of 
the geometry.

The UI and QUICK results along with experimental 
values of Mourier et al. in case of the deep dimple with 
SSR = −0.5 are depicted in Fig. 19b. In this case, the down-
stream area of the dimple also gets deformed because the 
dimple moves at a lower speed than the mean velocity um . 
This means that some of the fluid that is initially within the 
dimple leaves the texture behind which causes a deformation 
since more volume is occupied outside of the dimple. This 
behavior is principally also replicated by the EHL-FBNS 
results but in a more pronounced way than in the experi-
ments. The higher order QUICK scheme matches the experi-
mental results closer than the UI scheme in the vicinity of 
this effect as depicted at dimple position 3. The UI scheme 
causes higher hydrodynamic pressures downstream of the 
dimple which this time cause a larger overestimation of the 
occurring deformation than done by the QUICK scheme. 
However, the stronger this effects becomes, the larger the 
deviation between experiment and simulation becomes as 
shown at dimple position 4. Still, experimental and EHL-
FBNS results generally show a good agreement in the gap 
height distribution. The EHL-FBNS algorithm is thereby 
validated for simulations of discontinuous textures in ball-
on-disc tribometers under EHL operating conditions.

Next, the EHL-FBNS results are compared to the simu-
lated results of Mourier et al. [26]. Figure 20a shows the UI 
and QUICK results of the EHL-FBNS algorithm along with 
the simulated results of Mourier et al. in case of the shal-
low dimple with SSR = 0 . Unlike the deep dimple, the rim 

of the shallow dimple is only weakly discontinuous. At the 
first dimple position, the simulated results of Mourier et al. 
agree well with the gap height and hydrodynamic pressure 
produced by the QUICK scheme. This is expected because 
both eventually correspond to second-order spatial discre-
tizations of an almost steady case since the shallow dimple 
does not affect the displayed domain yet. Similar to the deep 
dimple case, the first-order UI scheme results in practically 
the same hydrodynamic pressure distribution as the QUICK 
scheme but a slightly different systematic offset in the gap 
height distribution. When the shallow dimple introduces 
unsteady effects at positions 2–5, the gap height distributions 
of QUICK stay closer to the results of Mourier et al. than in 
the case of UI discretization. Nonetheless, all three methods 
deliver different gap heights close to the dimple. While the 
hydrodynamic pressure distributions of UI and QUICK show 
similar oscillations around the dimple, it stays almost undis-
turbed in the simulations of Mourier et al.. Since differently 
to the deep dimple, the results of UI and QUICK are still rea-
sonably close to each other at the rim of the shallow dimple, 
errors or oscillations caused by the discretization scheme of 
the Couette term are not believed to be of dominant role. 
Instead, the differences in the results of EHL-FBNS algo-
rithm and Mourier et al. during the introduction of unsteady 
phenomena are likely caused by the first-order Euler implicit 
discretization of the EHL-FBNS algorithm while Mourier 
et al. use a second-order discretization in time.

These findings are complemented by the results in case 
of the shallow dimple at SSR = −0.5 as depicted in Fig. 20b 
along with the outcome of the simulations of Mourier et al. 
Gap height and hydrodynamic pressure of QUICK and 
Mourier et al. are in close agreement while the lower order 

Fig. 21   Amount of iterations Nn required by the EHL-FBNS algo-
rithm for the simulation of the ball-on-disc tribometer with single tex-
ture for each position of the dimple center x1,d

Fig. 22   Amount of iterations Nn required by the EHL-FBNS algo-
rithm for the simulation of the ball-on-disc tribometer with single tex-
ture for each position of the dimple center x1,d when the residual defi-
nition of Equation (28) is changed to rn

EHL-FBNS
= mean

(
abs

(
𝛿n
p∗

))
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UI results slightly differ at some points. The reason for the 
closer agreement of the EHL-FBNS results with Mourier 
et al. is expected to be due the dimple moving at a lower 
speed, thus introducing slower unsteady effects. Since the 
discrete time steps are of the same length as in the case 
of SSR = 0 , the time resolution is relatively higher for 
SSR = −0.5 , thus enabling all schemes to deliver almost 
the same results.

In order to better understand the performance of the EHL-
FBNS algorithm in unsteady EHL conditions, the required 
amount of iterations Nn at each position of the dimple center 
x1,d is displayed in Fig. 21. The most iterations are needed 
to compute the steady solution at the initial position of the 
dimple and once the dimple reaches the EHL-contact zone. 
Since it produces more irregular results, the deep dimple 
generally requires more iterations than the shallow one. UI 
and QUICK simulations need a similar amount of iterations 
for each respective pair of simulation. Each of the eight 
simulations required between 2 and 6 h code execution time 
on a desktop computer.

The amount of required iterations can be significantly 
reduced if the residual definition of Equation (28) is changed 
to rn

EHL-FBNS
= mean

(
abs

(
𝛿n
p∗

))
 . While the difference 

between the resulting gap height profiles is negligible as 
demonstrated in the beginning of this section, the less strict 
residual definition reduces the required amount of iterations 
noticeably, as displayed in Fig. 22. Furthermore, this reduces 
the code execution time per simulation to a range between 
0.5 and 2.5 h.

Summarizing, the EHL-FBNS algorithm manages to 
deliver converged results even in unsteady EHL operating 
conditions with deep dimples with strong discontinuities at 
their rim. Moreover, the first-order UI scheme gives closer 
agreement to the experimental results of Mourier et al. 
[26] in the vicinity of deep dimples than the higher order 
QUICK scheme. Therefore, lower order spatial discretization 
schemes are recommended close to strong gap height dis-
continuities while higher order schemes are recommended 
at smoother parts of the geometry due to their higher accu-
racy in these areas. Moreover, the extreme pressure spikes 
at the rim of the deep dimples raise the question whether the 
elastic half-space assumption is still valid in this area. None-
theless, the good agreement of the gap height distribution 
with the experimental data of Mourier et al. validates the 
EHL-FBNS algorithm for simulations of textures in ball-on-
disc tribometers under unsteady EHL operating conditions.

4 � Conclusion

The EHL-FBNS algorithm is presented in this paper. It 
allows the simulation of the unsteady hydrodynamic pres-
sure build up under consideration of mass-conserving cavi-
tation with the JFO model within lubrication gaps. Further-
more, its versatile implementation enables the simulation of 
various combinations of isoviscous or piezoviscous flows, 
incompressible or compressible liquid phases, rigid or elas-
tic surfaces, first- or second-order spatial discretizations of 
the Couette term, imposed rigid body displacements or nor-
mal forces and Dirichlet or Neumann boundary conditions. 
The algorithm is explained in detail within this paper and the 
implemented MATLAB© code with the corresponding set-
up and visualization scripts is provided in the supplements. 
That way, the results can be reproduced by downloading the 
code and repeating the simulations. Moreover, the usage and 
further development of the thoroughly commented code is 
encouraged through its public accessibility and maintenance 
on GitHub: https://​github.​com/​ErikH​ansen​Git/​EHL.

Within this paper, the EHL-FBNS algorithm results were 
compared to analytical, simulated and experimental litera-
ture data of Woloszynski et al. [10], Fowell et al. [25], Ber-
tocchi et al. [9] and Mourier et al. [26]. The key findings are:

•	 The performance of the EHL-FBNS code almost scales 
with N log(N) in simulations with N discretization cells 
and a constant rigid body displacement hd.

•	 The EHL-FBNS code can deliver converged results even 
when extreme gap height discontinuities are present.

•	 Higher order spatial discretizations of the Couette term 
can cause large errors in the gap height distributions 
when gap height discontinuities are present in the EHL 
contact. Therefore, lower order spatial discretization 
schemes are recommended close to strong gap height 
discontinuities while higher order schemes are recom-
mended at smoother parts of the geometry due to their 
higher accuracy in these regions.

•	 In order to evaluate whether surface textures in a geome-
try introduce discontinuities in the gap height that in turn 
worsen the result quality of higher order discretizations 
of the Couette term, performing a grid convergence study 
with different discretization orders is recommended.

•	 The EHL-FBNS algorithm is validated for the investiga-
tion of deep dimples with discontinuous rims in ball-on-
disc tribometers under EHL operating conditions.

•	 Even at traditional purely hydrodynamic operating con-
ditions with low pressures between 1 and 10 MPa , the 
employment of elastic models is recommended because 
the resulting pressure profiles are strongly influenced by 
slight elastic deformations.

https://github.com/ErikHansenGit/EHL


Tribology Letters           (2022) 70:80 	

1 3

Page 21 of 25     80 

•	 The EHL-FBNS algorithm is a convenient tool to per-
form grid convergence studies with different discretiza-
tion orders of the Couette term while taking both elastic 
deformation and mass-conserving cavitation effects into 
account.

Since it was shown that both higher and lower order discre-
tization schemes are beneficial in different parts of a geom-
etry, a hybrid approach is suggested for future implementa-
tion (for example by means of flux limiters [29, Ch. 4.4.6]) 
to achieve maximum accuracy for profiles that show both 
smooth and discontinuous features.

Appendix Discretized Equations

Discretized Dimensionless Reynolds Equation 
Considering Mass‑Conserving Cavitation 
and Discretized Dimensionless Fischer‑Burmeister 
Equation

Applying the FVM with a two-dimensional grid as schemati-
cally depicted in Fig. 23 to Equation (9) eventually results 
in the discrete dimensionless Reynolds equation considering 
mass-conserving cavitation at each cell center GC:

where the two-dimensional cell is of area A∗ , has the bound-
ary �A∗ and its outward pointing normal vector n⃗ is of length 
1. Since a rectangular mesh aligned with a Cartesian coor-
dinate system is used, the components n1 and n2 can take the 
values of ±1 or 0. The line increment of the cell boundary is 
denoted by L∗ . The scalar product is implied by ⋅ . The inte-
grals are discretized with the second-order midpoint rule. 
Values or derivatives at the boundaries of the Poiseuille term 
are discretized with a second-order central interpolation or 
differential scheme. Its coefficients APo read:

(34)

GC = ∫
�A∗
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Fig. 23   Schematic sketch of a two-dimensional FVM grid of size 
L∗
x1
⋅ L∗

x2
 with an exemplary stencil within the computational domain
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The components of B = BCo + BTi and c⃗ = c⃗Co + c⃗Ti con-
tain contributions of the Couette and unsteady term, which 
are detailed now. Values at the boundaries of the Couette 
term are discretized with a generic order upwind interpola-
tion scheme. Depending on how a, b, and c are set, first-
order upwind interpolation (UI: a = 0 , b = 1 , c = 0 ), third-
order quadratic upwind interpolation (QUICK: a = −1∕8 , 
b = 6∕8 , c = 3∕8 ), second-order linear upwind interpola-
tion (LUI: a = −1∕2 , b = 3∕2 , c = 0 ) or second-order cubic 
upwind interpolation (CUI: a = −1∕6 , b = 5∕6 , c = 2∕6 ) 
can be chosen [29, Ch. 4.4]. The coefficients of BCo read:

Special attention has to be paid close to the boundaries if no 
WestWest neighbor cell exists. In this case, the first-order 
upwind interpolation scheme is used for the approximation 
of �w = �W . Then, the coefficients of BCo read:

At the cell boundaries, �∗
Co

 is determined as:

except when there is no WestWest neighbor cell, such that 
�∗
Co,e

 stays the way it is but �∗
Co,w

 becomes:

The unsteady term is discretized with the first-order Euler 
implicit scheme. The coefficient of BTi reads:
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where Δt∗ = Δt∕tref  is the dimensionless time step. The 
components of c⃗Co and c⃗Ti read:

where �∗,prev
Ti,C

 and �prev
C

 correspond to the values of the previ-
ous time step. The discrete non-dimensional Fischer-Bur-
meister Equation (12) at each cell center reads:

Discretized Elastic Deformation

In its non-dimensional form, the gap height equation (5) 
reads:

where the discretized dimensionless elastic deformation of 
the gap height can be expressed as a linear convolution of 
a non-dimensional kernel function K∗ = Kpref∕href  with the 
non-dimensional hydrodynamic pressure field p∗

hd
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Fig. 24   Schematic sketch of the alignment of the mirrored dimen-
sionless kernel function K∗ with the dimensionless pressure field p∗

hd
 

to obtain the dimensionless elastic deformation h∗
el,C

 via convolution
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This convolution can be interpreted as the alignment of the 
non-dimensional hydrodynamic pressure field p∗

hd
 below the 

mirrored non-dimensional kernel function K∗ as shown in 
Fig. 24. This is explained in detail in the following. The 
non-dimensional kernel function is mirrored in x∗

1
 - and x∗

2

-direction. Afterward, the center entry K∗(0, 0) is aligned 
with p∗

hd,C
= p∗

hd
(x∗

1,C
, x∗

2,C
) . That way, aligned pairs of K∗ 

and p∗
hd

 are created. The product of each respective pair is 
computed, for example K∗(0, 0) ⋅ p∗

hd,C
 or K∗(−Δx∗

1
, 0) ⋅ p∗

hd,E
 . 

The sum over all of the products is equal to h∗
el,C

 . If instead 
of h∗

el,C
= h∗

el
(x∗

1,C
, x∗

2,C
) the dimensionless elastic deformation 

at the West cell h∗
el,W

= h∗
el
(x∗

1,W
, x∗

2,W
) is desired, the center 

entry K∗(0, 0) of the mirrored non-dimensional kernel func-
tion has to be aligned with p∗

hd,W
= p∗

hd
(x∗

1,W
, x∗

2,W
).

Assuming the hydrodynamic pressure being constant over 
the rectangular discretization cell of area A = Δx1Δx2 , the 
kernel K can be expressed as [30, Ch. 3.3], [31, Ch. 3.1]:

where the certain terms are consolidated as:

Discretized Pressure Jacobian of the Dimensionless 
Reynolds Equation

In the rigid case, the following procedure is obsolete and the 
pressure Jacobian of the dimensionless Reynolds Equation 
is simply JG,p∗ = APo . In order to consider the relationship 
between h∗ and p∗ in JG,p∗ in the elastic case, the coefficients 
of the Couette and unsteady term are reformulated:

(61)

K(x̃1, x̃2) =
2

𝜋E�

�
(x̃1 + q1) ln

�
(x̃2 + q2) +

√
(x̃2 + q2)

2 + (x̃1 + q1)
2

(x̃2 − q2) +
√
(x̃2 − q2)

2 + (x̃1 + q1)
2

�

+ (x̃2 + q2) ln

�
(x̃1 + q1) +

√
(x̃2 + q2)

2 + (x̃1 + q1)
2

(x̃1 − q1) +
√
(x̃2 + q2)

2 + (x̃1 − q1)
2

�

+ (x̃1 − q1) ln

�
(x̃2 − q2) +

√
(x̃2 − q2)

2 + (x̃1 − q1)
2

(x̃2 + q2) +
√
(x̃2 + q2)

2 + (x̃1 − q1)
2

�

+(x̃2 − q2) ln

�
(x̃1 − q1) +

√
(x̃2 − q2)

2 + (x̃1 − q1)
2

(x̃1 + q1) +
√
(x̃2 − q2)

2 + (x̃1 + q1)
2

��
,

(62)x̃1 = x1,C − x�
1
,

(63)x̃2 = x2,C − x�
2
,

(64)q1 =
Δx1

2
,

(65)q2 =
Δx2

2
.

with

Using the previously mentioned generic order upwind inter-
polation scheme for the Couette term, this results in:

Except if no WestWest neighbor cell exists and �∗
Co,w

 has to 
be replaced by:

Afterward, these expressions and Equations (59) and (60) 
are inserted into cC of Equation (34) (thus equations (56) 
and (57)) and only the coefficients of p∗

S
 , p∗

W
 , p∗

C
 , p∗

E
 and p∗

N
 

are considered to obtain JG,p∗ = APo + Ah = APo + ACo + ATi . 
Eventually, a generic scheme can be found to find the coef-
ficients of an arbitrary diagonal D of matrix ACo:

(66)�∗
Co

= �∗
Co,h

h∗, �∗
Ti
= �∗

Ti,h
h∗,

(67)�∗
Co,h

= 12
x1,ref um,ref�ref

h2
m,ref

pref
�∗u∗,

(68)�∗
Ti,h

= 12
x2
1,ref

�ref

tref h
2
ref
pref

�∗.

(69)�∗
Co,w

= a�∗
Co,h,WW

h∗
WW

+ b�∗
Co,h,W

h∗
W
+ c�∗

Co,h,C
h∗
C
,

(70)�∗
Co,e

= a�∗
Co,h,W

h∗
W
+ b�∗

Co,h,C
h∗
C
+ c�∗

Co,h,E
h∗
E
.

(71)�∗
Co,w

= �∗
Co,h,W

h∗
W
.

Table 6   Description on how 
to set id and jd to obtain the 
desired diagonal entry of ACo

ACo,D id jd

ACo,S 0 − 1
ACo,W − 1 0
ACo,C 0 0
ACo,E 1 0
ACo,N 0 1
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Note that id and jd are not the indices of matrix ACo , but 
counters that correspond to its diagonals ACo,D . For cells 
close to the boundary that do not have a WestWest neighbor 
cell, the following expression is used instead:

Some of the above equations are consolidated as:

In order to construct the South, West, Center, East, and 
North diagonals of ACo , the counters id and jd have to be set 
as shown in Table 6.

The unsteady term is discretized with the first-order Euler 
implicit scheme. The coefficients of ATi read:
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slider with a various amount of trapezoidal pockets [10]. The scien-
tific color map batlow was downloaded from https://​doi.​org/​10.​5281/​
zenodo.​12438​62 and is used in this study to prevent visual distortion of 
the data and exclusion of readers with colour-vision deficiencies [35].
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