
Received 29 April 2022, accepted 13 June 2022. Date of publication 00 xxxx 0000, date of current version 00 xxxx 0000.

Digital Object Identifier 10.1109/ACCESS.2022.3185046

Decentralized Review and Attestation of
Software Attribute Claims
OLIVER STENGELE , CHRISTINA WESTERMEYER ,
AND HANNES HARTENSTEIN , (Member, IEEE)
Institute of Information Security and Dependability (KASTEL), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Corresponding author: Oliver Stengele (oliver.stengele@kit.edu)

The work of Oliver Stengele was supported in part by funding from the topic Engineering Secure Systems of the Helmholtz Association
(HGF), and in part by the Competence Center for Applied Security Technology (KASTEL) Security Research Labs. The work of Christina
Westermeyer was supported by the German Federal Ministry for Economic Affairs and Climate Action within the Project
Software-Defined Car (SofDCar) according to a Decision of the German Federal Parliament under grant 19S21002K. This work was
supported by the KIT Publication Fund of the Karlsruhe Institute of Technology.

ABSTRACT Software can be described, like human users and other objects, through attributes. For this
work, we define software attributes as humanly verifiable, falsifiable, or judgeable statements regarding
characteristics of said software. Much like attributes in general, software attributes require robust identities
for their source but also for their target, meaning a software in general or a binary in particular. As software
can be of critical importance, performing an independent review of attribute claims appears beneficial.
We posit that decentralized platforms that were developed and refined over the past decade can bridge the gap
between existing tools and methods for software review and their open, transparent, and accountable use for
the benefit of users. In this work, we explore the feasibility and implications of decentralizing an independent
review of software attribute claims. We envision the decentralization of a review process from initialization
and execution to the persistent recording of results. We sketch the available design space by decomposing
the overall process into a modular design and describe how each component covers overarching objectives.
To illustrate practical implications and tradeoffs, we present ETHDPR, a proof of concept implementation
based on Ethereum and IPFS. Through a quantitative and qualitative evaluation, we show that a decentralized
software review is practically feasible. We illustrate the flexibility of the proposed approach using a toy
example of a software component in automotive systems. Lastly, we provide a discussion on fundamental
limits and open issues of facilitating independent reviews via technological means.

INDEX TERMS Decentralized systems, software attributes, software certification, software identity
management, software review, software transparency.

I. INTRODUCTION
Software holds a position of ever increasing importance in
modern society, both for individuals as well as governments
and businesses. However, the rigor with which software is
created, managed, and evaluated prior to its wide-spread use
still leaves room for improvement, as frequent incidents1

show. Kwan et al. [1] recently explored how transparency in
the development process of software can help to foster trust
among users and other relying parties with the long-term goal
of ‘‘Socially Responsible Software’’. In a similar way, works
by Denney and Fischer [2] and Heck et al. [3] argue for the

The associate editor coordinating the review of this manuscript and

approving it for publication was Thanh Ngoc Dinh .
1Most recently, the Log4Shell vulnerability: https://nvd.nist.gov/vuln/

detail/CVE-2021-44228

usefulness and importance of software audits and subsequent
certification. Indeed, in some open-source software projects
like Apache, structured review processes among developers
are employed to great effect [4].

We posit the existence of a gap between software review,
attestation, or certification concepts like the ones cited
above and their wide-spread practical adoption that public
decentralized platforms could help to overcome, particularly
for open-source software projects. Notice that the example
of Apache mentioned above deliberately conducts communi-
cation via mailing lists,2 i.e. one of the oldest decentralized
communication infrastructures of the Internet. Decentralized
platforms are built and maintained through a communal
contribution of resources and secured through mutual

2https://www.apache.org/foundation/how-it-works.html#communication

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 1

https://orcid.org/0000-0002-0574-0628
https://orcid.org/0000-0003-1905-1812
https://orcid.org/0000-0003-3441-3180
https://orcid.org/0000-0001-6698-8419


O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

FIGURE 1. Software attributes are statements about various
characteristics of a specific software that are objectively
verifiable/falsifiable through methods and tools or require a subjective
assessment by a human. Our overall goal is to initiate, conduct, and
document the results of a review process for such attributes via
decentralized platforms, such that relying parties can obtain both
software binaries and attestation of verified attributes.

vigilance. Consequently, they can serve as a neutral but
reliable medium for communication and long-term archive
independent of any single developer community. Through
their high availability and tamper-resistance, decentralized
platforms have the potential to foster an easily accessible
ecosystem of transparent and accountable exchange.

In this paper, we envision the decentralization of a general
software review process for attribute claims from initial-
ization to execution and the persistent recording of results,
as depicted in Fig. 1. Attribute claims are human-readable
statements regarding the characteristics of a software that
are either objectively verifiable or falsifiable, or require a
subjective assessment. Consequently, a software attribute
is a statement by a reviewer whether or not, or to which
extent, an attribute claim about a particular software holds
as the result of their individual review. Note that we use the
term review to mean both the general process of examining
software for the purpose of judging an attribute claim as well
as the result of said process, which can consist of multiple
attributes. Establishing such software attributes properly,
therefore, requires robust identities not only for the reviewers
but for the attributed software as well. Lastly, in order to
facilitate an independent generation of attributes, i.e. that no
attributing party is privy to the assessment of other parties
prior to committing to their own assessment, a coordinated
disclosure of these attributes is necessary as well. We note
here that such independent work can only be encouraged and
enabled through technical means but not strictly enforced,
a point we elaborate in Section VII.
We describe the four roles depicted in Fig. 1 as follows:

A maintainer manages a particular software, including its
identity representation, by developing new releases and
attaching or detaching them to said software identity as
needed. Claimants posit specific attribute claims of a par-
ticular software release to initiate and direct an independent
review with subsequent attributions. Reviewers participate in
such a review process and attest or refute posited claims of
a particular software release as part of their independently
generated attributions. Relying parties of a software under
review are interested in the results of a review process,

for example, to make an informed decision about using or
building upon the attributed software. Relying parties could
be end users who want to have independent information on
the software they are using, customers who want to ensure
the deployed software fulfills specific requirements or other
interested parties that may be affected by the software or are
representatives of those parties. Lastly, we need an entity that
governs the execution of a review process, more specifically
the aforementioned coordinated disclosure of attributes for
the purpose of independence. Note that none of the above
roles are mutually exclusive. We term the union of all listed
roles as stakeholders of a software under review.

In this paper, we build upon insights from our previous
works [5]–[7] to give a comprehensive overview from
problem statement over a conceptual design to a concrete
implementation and to provide a concise basis for future
work. More precisely, our contributions are as follows:
• Conceptual design of a decentralized software review
process to provide an overview and a modular decom-
position in order to illustrate the design space.

• ETHDPR, a modular, extensible framework enabling a
decentralized public review of software attribute claims
via Ethereum, a public blockchain.

• Quantitative evaluation of our implementation of
ETHDPR’s on- and off-chain operations; and a qualita-
tive evaluation of our implementation’s capabilities and
limitations.

• Discussion on fundamental limits, practical implica-
tions, and open challenges of a decentralized software
review process.

The remainder of this paper is structured as follows.
We begin by discussing related work in Section II.
In Section III, we introduce and examine the general problem
of reviewing software attribute claims and posit objectives
that a practical implementation should aim to achieve. With
Section IV, we give a conceptual design by decomposing
the general problem into distinct but interconnected modules
and by describing how each of them can address the desired
objectives from above. To illustrate the practical implications
of decentralizing a software review, we present ETHDPR,
a modular and extensible framework based on Ethereum
smart contracts in Section V. We then provide a quantitative
and qualitative evaluation of our implementation of ETHDPR
in Section VI to highlight the tradeoffs involved with the
decentralization of such a review process. In Section VII,
we offer a discussion of points both related to the general
problem at large as well as our proof of concept implemen-
tation, and we also provide directions for future work. With
Section VIII, we conclude the paper.

II. RELATED WORK
Software review as a process for quality control is well
documented in the literature [4], [8]. A similar but distinct
practice is the certification of software or its components [2],
[3], [9] for the purpose of quality attestation, which is closer
to the problem statement of this work. While these works

2 VOLUME 10, 2022



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

deal with what a software review entails, the work presented
here examines how and to which extent such tasks can be
accomplished on decentralized platforms.

Instead of relying on third parties to examine a software
regarding its characteristics, proof-carrying code [10], [11]
tasks creators of software with attaching safety proofs to
binaries which can be evaluated on end-user systems before
execution. We view the concept presented in this work as
complimentary to proof-carrying code in the following way:
Our approach allows more general software characteristics
to be attested but in exchange, the certainty and veracity of
each individual attestation can be lower.While proof-carrying
code is intended to be highly automated, we deliberately
allow the inclusion of human decisions as part of the review
process.

Crowdsourced software testing [12] transfers testing
activities to the crowd, e.g. to access a diverse pool of
testers and test environments to evaluate more software vari-
ants. Pastore et al. [13] present a crowdsourcing approach
to automate the generation of test oracles. Yan et al. [14]
propose a platform for crowdsourced testing of web and
mobile applications. Decentralized testing approaches [15],
[16] are also discussed in the related research field of
collaborative software testing. Architectures for decentral-
ized, blockchain-based malware detection are proposed
by Homayoun et al. [17] and Hu et al. [18]. Chen et al. [19]
discuss a decentralized software auditing approach similar
to ours but restricted to data integrity auditing. To our
knowledge, previous work therefore either concentrates
on distributing test activities or on decentralizing specific
tasks, whereas our approach aims at decentralizing arbitrary,
independent software examinations.

Within the context of distributed ledgers, data oracles [20],
[21], some of which also rely on crowdsourcing, are an area
of active research. A crucial difference between the problem
explored in this paper and blockchain oracles is who the
supplied data is used by. Generally, blockchain oracles are
currently built to supply data for smart contracts to drive
logic dependent on real-world data whereas the software
attestations solicited in this work are primarily meant to
be used by human actors to inform their usage decisions
regarding a certain software. Still, there may be valuable
solutions in works on oracles that could be transferred to the
problem space of software attestation.

Two prominent works in the field of decentralized
systems to realize or support software distribution processes
are Chainiac by Nikitin et al. [22] and SmartWitness by
Guarnizo et al. [23]. While Chainiac is built from the ground
up as a permissioned, decentralized system, SmartWitness
makes use of the Ethereum blockchain and smart contract
functionality similar to our approach. SmartWitness is partic-
ularly noteworthy in relation to our work as it introduced the
ability for accredited security providers to attach a ‘‘security
score’’ to software releases, albeit without any mechanism to
ensure independent assessments by multiple such providers.
More recently, Ince et al. [24] presented a blockchain-based

package management system, which may also be extended
with independent review functionality as we describe it in this
work.

III. PROBLEM STATEMENT
We begin by defining the objectives and non-objectives of the
problem at hand.

A. OBJECTIVES
To explicitly describe the problem of conducting an inde-
pendent software review process, we divide it into smaller
objectives. First, we identify several objectives regarding the
overall review process:
O1 Reviews should be created independently.
O2 Review process should be censorship resilient.
O3 Review process should be transparent and enable

traceability of artifacts.
Objective O1 describes a fundamental requirement to enable
an independent review process. The submitted reviews
themselves as results of the review process should be
produced independently.

Another key requirement to enable an independent process
is censorship resilience in O2. We can think of different
forms of censorship that may be enforced at various stages
in the process. Censorship could target reviewers to exclude
unwanted reviews, e.g. by selectively announcing the review
process or suppressing review submissions. In addition,
censorship could also focus on the disclosure of review results
by completely or selectively dismissing the publication of
reviews to all parties or targeted relying parties. In summary,
any form of censorship would distort review results for
some or all relying parties and therefore compromise an
independent review process.

Lastly, an independent review process is enabled by O3.
Note that the term ‘‘transparency’’ has diametrically opposed
meanings in the field of computer science, either referring
to the unhindered observability or complete obscurity of a
process. By transparency, we refer to the former meaning
and describe the ability of all stakeholders of a software to
observe crucial operations of its review, such as its initiation
or the submission of review results. Traceability, meanwhile,
describes the ability of stakeholders to understand the
provenance and authorship as well as the relation between
artifacts within a given review instance. In this way,
transparency of the overall process is a necessary prerequisite
for traceability of corresponding artifacts. Thus, O3 enables
relying parties to interpret and assess review results. This
objective is also critical to verify the overall process, i.e. O1
and O2. Consequently, transparency of the overall process
and traceability of corresponding artifacts is critical for all
stakeholders to assure themselves of a fair review process.

Each review process references different types of artifacts,
i.e. a software binary under review, attribute claims, and
submitted review results. To enable the process-related
objectives (O1-O3) we frame the following objective for such
review artifacts:

VOLUME 10, 2022 3



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

O4 Review artifacts, including results, should be identifi-
able, persistently available, and traceable to the review
instance and the software release under review.

Artifacts should be clearly identifiable to ensure that all
reviewers review the very same software binary with respect
to consistent definitions of attribute claims. In addition,
relying parties must be able to uniquely identify all review
submissions of a review instance and of a specific software
release. This ability prevents disputes on whether a specific
review was submitted within the considered review instance
as well as disputes on the context of reviews. Traceability
of reviews is also of particular importance to judge the
independence of obtained review results in hindsight, as any
given software may undergo a review process more than
once. Results of later reviews may then be dependent on
previous reviews, but they should still be independent of each
other within their own round. Complementary, the persistent
retrievability and traceability of all review artifacts ensures
that the review process is traceable for all stakeholders in the
long-term. Thus, it enables a relying party to collect review
results pertaining to a given release at any time.

Finally, we specify the scope of facilitated reviews:
O5 Possible attribute claims and review consolidation

methods should be use case agnostic.
ObjectiveO5 describes that the overall process should not be
tailored to certain kinds of attribute claims to allow diverse
investigations of a given software. It should also be flexible
with respect to the consolidation of reviews. Therefore,
relying parties are enabled to use results in a way that meets
their specific information needs.

B. EXEMPLARY REVIEW SCENARIO
We illustrate a software review process in the context
of automotive software update management systems. This
domain faces several challenges: updating software in a
mixed-critical system that can harm road users; complex
pre-conditions for software changes as a consequence of
many product variants; and updating a system-of-systems that
runs software from a variety of software producers. To enable
decisions on a particular software update, we aim to describe
it with attributes that verifiably result from an independent
and transparent review process.

To present a more concrete example, we introduce a toy
open-source software component under review. Note that
this paper discusses claims of open-source software for
illustration purposes. The overall process, as we describe
it later, does not require open-source software as review
objects and is expected to be equally suited for closed-source
software, e.g. by specifying claims that can be evaluated
using black-box testing techniques. The source code of our
example is listed in the appendix in Listing 1. The component
is located on the interface of a Battery Management
System (BMS) in an Electric Vehicle (EV). It is responsible
for reducing the precision of the externally shared State of
Charge (SoC). The EV’s SoC may be of interest for various
processes outside the EV, e.g. to display the current SoC

on the owner’s smartphone or to plan charging stops in the
back end of a third party navigation system. Sharing battery
data of an EV entails the risk of inadvertently disclosing
sensitive information on the driver’s behavior [25] and may
allow profiling [26]. This risk is comparable to privacy
problems enabled by the Battery Status API in HTML5,
reported by Olejnik et al. in 2015 [27]. Device fingerprinting
was made possible by allowing accessed websites to query
the host’s high precision SoC [27], [28]. In response, the
World Wide Web Consortium now warns of exposing high
precision battery status information [29]. Therefore, the
correct implementation of reducing the precision of shared
SoC data may be of interest for end users.

If a user wants to ensure the compliance of the SoC
precision reduction functionality in their vehicle with respect
to its specification, they have to trust the responsible
Original Equipment Manufacturer (OEM). This reliance can
be reduced using an independent review process of the
OEM’s software attribute claims. By having a group of
independent reviewers examine attribute claims, the user no
longer has to trust a central authority. Independent reviews
may be especially relevant for software components that are
of interest to users but are not critical enough to require a
rigorous third party assessment before its release according
to type approval regulations.

We motivate the objectives set in the previous section
with this example. Vehicle users want to decide on a
software update without blindly trusting the corresponding
OEM. Hence, users expect reviews to be conducted by
different, organizationally independent parties, as specified
by O1. Independent reviews assure users that the OEM’s
claims are reviewed critically. Users only benefit from
these independent reviews if they get access to all reviews
submitted during the review period. Censorship resilience of
O2 is therefore important to ensure that users are not misled
by a selective publication of review results. In addition, users
also benefit from a transparent review process as specified
by O3. Transparency ensures that users are able to retrace
how the review was conducted. As a result, users can assess
the quality of the review process as well as the results’
applicability to their information needs. Other parties also
benefit from transparency. For example, it can protect the
OEM from unfounded criticism.

To enable a transparent and retraceable process, users
must be able to identify and trace all referenced artifacts
at any point after the reviews completion (see O4). This
objective therefore enables car users to access relevant review
results when required. They can also assure themselves that
the updated software in their vehicle is indeed the same
component that was reviewed. Additionally, users can retrace
the exact claims and additional information that were made
available to reviewers.

Lastly, O5 targets the flexibility of attribute claims
and consolidation methods. Regarding the toy software
component of our use case, the following exemplary claims
illustrate the range of conceivable attribute claims:

4 VOLUME 10, 2022



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

C1 Reproducible build
C2 Reproducible formal verification of precision-loss func-

tionality
C3 Valid formal specification of precision-loss functional-

ity
C4 No unspecified behavior detected
A reproducible build [30] in C1 describes the attribute that

the build process from source files to the reviewed software
binary is independently reproducible with regard to specified
dependencies and settings. The resulting attribute therefore
attests the absence of compromises in the build process of
the binary and enables the transfer of claims related to source
code (C2 - C4) to the reviewed binary. Reproducible builds
also enable the vehicle user to make sure that the software
binary in their vehicle corresponds to the exact source code
presented to reviewers.

For claims C2 and C3 we assume that the software main-
tainer used formal verification to prove the functional cor-
rectness of the software under review, i.e. the precision-loss
of the resulting SoC is implemented as specified. Claims C2
and C3 aim to independently verify and validate the OEM’s
formal verification.C2 is similar toC1 since the reviewers are
asked to reproduce the specified formal verification process
in their own environment and check if the verification passes
successfully. If independent reviewers can reproduce the
OEM’s functional verification, the vehicle owner can be
assured that the OEM actually executed the verification and
reported its result honestly.

C3 refers to the subjective validation of the given formal
functional specification with respect to the source code
and its specified precision-loss functionality. Reviewers are
asked to check if the formal specification correctly matches
the intended functionality. If the reviewers attest C3, the
vehicle user can be assured that the OEM provided a
sound specification. In summary, the resulting attributes from
C2 and C3 attest that the intended functionality of the
software in question was correctly specified and successfully
verified.

C4 describes an even more subjective attribute. By attest-
ing that no unspecified behavior was detected, the resulting
attribute states that no unwanted or potentially mali-
cious functionality was found in an independent review
according to the subjective assessment of each individual
reviewer.

In consequence, if all four claims are attested in a review
process, the user may be assured that the software component
in their vehicle fulfills its specification and does not introduce
unexpected behavior.

SinceO5 also targets the flexibility of review consolidation
methods, the user receives direct access to each review result
and can interpret and consolidate them according to their
needs. For example, a vehicle user might benefit from a
more aggregated result consolidation, e.g. the percentage
of agreeing reviewers, whereas more proficient parties may
require detailed results.

C. NON-OBJECTIVES
The set of objectives considered in this paper is not exhaustive
to specify an independent software review. In particular,
we exclude the following challenges from the scope of this
paper.

We assume the voluntary participation of a group of
independent reviewers. We omit the specification of an
incentive mechanism to motivate reviewers, since this is a
separate field of research. Haddi and Benchaiba [31] survey
different incentive mechanisms and categorize them into
economy- and reciprocity-based approaches, which includes
reputation systems. In addition, we exclude mechanisms to
mitigate collusion between reviewers, which poses a threat to
independent reviews. Collusion detection and resistance also
constitute a different research area [32], [33].

Complementary to the execution of the general review pro-
cess, particular tools and methods for software examination,
while vitally important to our concept, are not the focus of
this work. Our goal is to enable those with expertise in the
matter to conduct decentralized reviews of software with as
broad of a set of tools and methods as possible.

IV. CONCEPTUAL DESIGN
In this section, we present a modular system design for
a decentralized software review, depicted in Fig. 2, and
describe how each module supports the objectives described
in Section III.

A. DECENTRALIZED PLATFORM
As the fundamental layer of our system design, decentralized
platforms like distributed ledger technologies (DLTs), partic-
ularly blockchains, fit well with the objectives of censorship-
resilience (O2) as well as transparency and persistence of
results (O4). Without single points of trust or failure, these
systems generally make it difficult to maliciously prevent any
party from participating in or observing procedures executed
on top of them. In a similar way, they also ensure the integrity
and continued availability of past records as part of their core
functionality.

B. SOFTWARE IDENTITY MANAGEMENT
As the primary subject of our endeavor, software in general
and associated binaries in particular need to be identifiable
and referenceable. A software identity management system
enables developers and maintainers of software to establish
and manage an identity representation of their software and
associated binaries. One important aspect of such a system is
to ensure an integrity-protecting binding between the identity
representation of a software and an associated binary release.
Such bindings are of particular importance for our purposes
because they prevent mismatches between the inputs and
results of a review process and form a necessary prereq-
uisite for objectives involving links to the software under
review (O4).

VOLUME 10, 2022 5



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

FIGURE 2. A module interaction diagram based on the modules described in Section IV. (1) Maintainer establishes
software identity. (2) Claimant initiates review by publishing attribute claims to be verified. (3) Setup for disclosure
coordination mechanism completed, starting the review period. (4) Reviewers submit reviews through notary
mechanism to log them within the review period. (5) Disclosure coordination mechanism ends the review period,
making contents of all appropriately prepared reviews public. (6) Relying parties can obtain review results and
perform their own aggregation. (7) Review results are collectively consolidated into concise attributes and
attached to software identity. (8) Relying parties can obtain consolidated attributes along software
binary.

C. DISCLOSURE COORDINATION MECHANISM
While the transparency of decentralized platforms and the
immutability of their stored records are beneficial to O3,
these properties also pose a challenge to the independence of
reviews. We define the module of a disclosure coordination
mechanism to overcome this challenge and facilitate the
logging of independently generated reviews (O1). More
specifically, such a mechanism employs a cryptographic
scheme to decouple the publication, timestamping, and
immutable logging of reviews from the disclosure of their
contents. In conjunction with the decentralized platform, this
disclosure coordination mechanism also serves to document
the independent creation of reviews for posterity. In order
to not introduce a single point of trust, a suitable disclosure
coordination mechanism needs to be decentralized as well.

D. REVIEW NOTARY MECHANISM
As mentioned in the previous module, the timestamping and
logging of reviews is an integral part of an independent
(O1) review process that is encapsulated in the review notary
mechanism. Furthermore, this module serves to establish
verifiable and undeniable links between each reviewer, their
reviews, the respective software releases, and the employed
disclosure coordination mechanisms (O3, O4). Fortunately,
logging such interlinked data is precisely what distributed
ledgers were designed for.

E. ATTRIBUTE CONSOLIDATION MECHANISM
The results of individual reviewers can already be considered
attributes. However, depending on use-case and context,
we envision two general approaches for post-processing and

consolidating these attributes after the disclosure coordina-
tion mechanism ends a given review period:

1) INDIVIDUAL CONSOLIDATION
Relying parties can obtain and examine individually gen-
erated reviews for a software release and consolidate them
either manually or algorithmically according to their own
standards or requirements. With this approach, there would
not be one singular module for attribute consolidation.
Similarly, no further records need to be logged publicly, since
this is a subjective and local procedure.

2) COLLECTIVE CONSOLIDATION
Contrary to the subjective and local consolidation, there could
also be the need for a more public consolidation. In this case,
conflicts between reviews need to be resolved and the final
result, namely a set of concise attributes, is cryptographically
attached to the software or binary as defined by the software
identity management module. For the sake of transparency,
traceability, and accountability, decisions made during this
consolidation should be logged and persisted on the decen-
tralized platform. Similar to the disclosure coordination
mechanism, a practical implementation of this module should
not introduce or rely on a single point of trust, as that would
invalidate the goal of a fully decentralized software review
process.

V. IMPLEMENTATION
In this section, we present a proof of concept implementation
for a decentralized public review of software attribute
claims via Ethereum to illustrate practical implications and
tradeoffs. We construct this implementation by integrating

6 VOLUME 10, 2022



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

previous works [5]–[7] together with some additions into a
coherent system based on the modular design presented in
Section IV.

A. COMPONENTS
We first cover individual components of our implementation
and describe how they fit into the modular system design
of Section IV. For the sake of clarity, we focus the
description of each component on the functionality and
interface most relevant to their role within the overarching
system, an overview of which is depicted in Fig. 3.

1) DECENTRALIZED PLATFORM
We opted to use Ethereum as the first part of a decentralized
base layer for our implementation. Due to its popularity
and market capitalization, Ethereum provides a realistic
benchmark for practical feasibility and costs. As a public
permissionless replicated state machine, Ethereum not only
covers the basic functionality of a distributed ledger when
it comes to recording and making available data, but it also
provides an execution environment for on-chain programs
called smart contracts, which are an essential building
block for our implementation. A subtle but rather important
feature of Ethereum smart contracts are their globally
unique addresses. In the proof of concept implementation,
we employ contract addresses to reference contracts as
objects as well as to further reference data that defines its
state.

Ethereum also provides a structured logging and monitor-
ing functionality for applications that rely on smart contracts
in the form of events. An event is a contract-defined data
structure consisting of a number and type of parameters,
up to three of which can be indexed. Ethereum clients can
efficiently monitor new blocks for certain events or search
prior blocks for events on behalf of users or applications
to identify contracts or transactions of relevance. Indexed
event parameters allow more fine-grained monitoring and
searching queries. Unindexed event parameters are stored as
data within transaction receipts, a data structure contained
in every block of the Ethereum blockchain. While such
event data is inaccessible to smart contracts, this mechanism
constitutes a cheap and efficient way of logging and
distributing data. In our case, we use it for references to
resources stored off-chain.

Rather than attempting to record artifacts only on the
Ethereum blockchain, which would result in either severe
file-size limitations or excessive costs, we employ the
InterPlanetary File System (IPFS) [34] as the second part
of our decentralized base layer and only record references
on-chain. These on-chain references are so called content
identifiers (CIDs) which take the form of specially formatted
strings of variable but small lengths. CIDs employ crypto-
graphic hash functions to form integrity-protecting references
to files based on their contents. For our purposes, it is
sufficient to understand that, given a CID, the corresponding
review artifact can be retrieved and its integrity verified

by anyone, so long as someone hosts this file via IPFS.
Those obtaining such a file can host it themselves, thereby
increasing its availability.

It is important to note that our implementation relies
on the standard functionality of Ethereum and IPFS client
applications. Our implementation did not necessitate any
changes to these clients and we therefore do not evaluate their
performance in Section VI.

2) SOFTWARE IDENTITY MANAGEMENT
Before explaining this component, it is helpful to first recall
and expand the brief introduction of software identities
from Subsection IV-B. We describe a software identity as a
uniquely referenceable and managed collection of binaries
which are usable expression of said software. It is vitally
important that only the maintainer of a software is able
to make changes to this collection by adding new binaries
or removing those no longer fit for use. Similarly, the
link between a software identity and each of its binaries
must ensure the integrity of the latter. Ultimately, the goal
of software identity management is to enable users of a
software to ensure that the binary they obtained belongs to
the software they expect, that the respective maintainer has
not revoked it, and that it was not modified in any way.
Consequently, the data representing a software identity must
be both highly available and protected against unauthorized
changes.

We previously devised a software identity management
system based on Ethereum smart contracts called Palin-
odia [5], [6]. A software maintainer establishes a Palinodia
instance consisting of multiple smart contracts to represent
a software identity as described above. Most important
to this work are Binary Hash Storage (BHS) contracts.
Their main purpose is to function as a key-value registry
for cryptographic hashes of binaries to attach them in an
integrity-protecting way to their software identity. To add
a new binary to a BHS contract, a maintainer chooses a
new HashID, includes it together with the globally unique
address of said BHS contract as metadata in the binary, and
submits both HashID and a cryptographic hash over binary
and metadata to the BHS contract through a publishHash
transaction. During this transaction, the programming of the
BHS contract ensures that the transaction was sent by an
authorized maintainer and that the submitted HashID is free.
The BHS contract then persists the submitted hash as part
of its state with the HashID as its key. Consequently, a BHS
contract address together with a HashID uniquely identifies a
binary and allows anyone to check its integrity and revocation
status.

For the purpose of monitoring important changes to
software identities, Palinodia makes ample use of Ethereum
events. Most crucial for the purpose of this work are events
emitted during the publication of new binaries to a BHS
contract as part of the publishHash transaction, which we
extend to serve as the initiation of a review process for the
newly released binary.

VOLUME 10, 2022 7



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

FIGURE 3. Overview of actors, smart contracts, events, and artifacts congruent to the system design
depicted in Fig. 2. (1) Maintainer establishes software identity via Palinodia. (2) Maintainer publishes a new
binary release to Palinodia referencing a review prompt (on IPFS) containing attribute claims to be verified
and a reference to an ETHTID instance for scheduling. (3) Council of ETHTID instance releases a public key
for encryption, thus starting the review period. (4) Reviewers perform their examinations and encrypt their
results using the ETHTID public key before making them available via IPFS. Each reviewer announces their
review through their own Review Log (RevLog) smart contract to timestamp them within the review period
and link them to both the software under review and ETHTID instance for coordinated disclosure. (5)
Council of ETHTID instance releases secret key for decryption, thus ending the review period. (6) Relying
parties can obtain and decrypt review results attached to a software binary.

3) DISCLOSURE COORDINATION MECHANISM
As a distributed ledger, Ethereum is designed to persistently
log and quickly propagate information. This functionality
presents a challenge for an independent review process
as each review should be recorded without knowledge
of any other reviews for a given software release but
all reviews should become available after a well-defined
review period ends. To overcome this challenge, we employ
ETHTID [7] as the disclosure coordination mechanism of our
implementation.

An ETHTID instance consists of a single Ethereum smart
contract that orchestrates a council of independent secret
keepers for a threshold-based secret sharing. The basic
functionality of ETHTID is to provide a decentralized ‘‘time
capsule’’ functionality as a service by providing the public
and secret keys of an ElGamal [35] key pair at different points
in time: The public key is generated by the respective council
during a setup procedure whereas the secret key exists in a
shared state among said council until its scheduled recovery
and publication. The release of both public and secret key
is accomplished through transactions, submitPubKey and
submitSecKey respectively, sent by any council member
at the appropriate time. Similar to the publication of a
new binary hash in Palinodia, both of these key release
transactions emit an Ethereum event.

By referencing an ETHTID smart contract and using its
public key, arbitrary information can be be added to a time
capsule, i.e. prepared for a coordinated disclosure. With the
publication of the secret key, the corresponding time capsule
is opened and all properly prepared information it contained
becomes public. Note that one ETHTID time capsule can be

referenced and used by multiple applications so long as the
specified schedule matches their requirements.

4) REVIEW NOTARY MECHANISM
In addition to the components based on our previous works
described above, we also need to introduce Review Log
smart contracts as a new component to realize the review
notarymechanism described in Subsection IV-D. Fortunately,
the majority of the design objectives for this module are
inherently covered by the core functionality of Ethereum. The
primary utility of each Review Log contract is to facilitate
an access-controlled transaction named publishReview
for emitting events to time stamp the release of a review and
verifiably link its IPFS CID to both its author’s Ethereum
address as well as the software under review via a BHS
contract address and HashID.

For the sake of simplicity, we opted for each reviewer
deploying and using their own Review Log contract, the
functionality of which could in practice also be included in
another smart contract rather than being separate. Another
option would be to deploy only one autonomous Review Log
contract for everyone, in which case the ‘‘review published’’-
event would have to be extended to include each review’s
author.

B. ETHDPR
In this section, we present ETHDPR, our proof of concept
implementation of a decentralized public software review
on Ethereum. As a process-oriented, modular framework,
we describe the interactions and artifacts in the order they
are relevant to the initiation, execution, and conclusion of

8 VOLUME 10, 2022



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

FIGURE 4. Relations between transactions, smart contracts with their resulting states, emitted
events, and referenced off-chain artifacts. Colors denote references, either as contract addresses
(ETHTID_c, BHS_c), strings (HashID), or IPFS CIDs. Underlined event attributes are indexed for the
purpose of monitoring and searching. On-chain artifacts are stored as part of the state of their
respective smart contracts and depicted as enclosed boxes.

a software review as depicted in Fig. 3. An overview of all
transactions, resulting smart contract states, emitted events,
and artifacts is given in Fig. 4.
First, a software maintainer creates a Palinodia instance

to establish an identity for their software in order to attach
a new binary release for the purpose of a review. It is
important to note that we opted to unify the roles of software
maintainer and claimant as described in Section I for the sake
of simplicity, a point we elaborate in Section VII.
Next, a software maintainer creates and references an

ETHTID instance to enforce the schedule of a software
review, particularly the coordinated disclosure, via its
‘‘time capsule’’ functionality. Note that an already existing
ETHTID instance with a suitable schedule could also be
used. The way we integrate ETHTID into ETHDPR is
through an Elliptic Curve Integrated Encryption Scheme
(ECIES) [37]. Basically, each reviewer derives a unique
symmetric AES key from an ETHTID public key and
attaches it to their review such that it can only be recovered
with the corresponding ETHTID secret key, as depicted in
Fig. 5.

A software maintainer initiates an ETHDPR execution
by preparing a JSON-formatted review prompt consisting
of a reference to an ETHTID instance for scheduling,
a description of claimed software characteristics to be
verified, and all other resources necessary for the review
process such as source files and metadata. Within such a
review prompt, each software attribute to be verified is
assigned an identifier that reviewers later use to structure their
results. As part of the publishHash transaction to add the
hash of a new binary to their BHS contract, the software
maintainer also includes the CID of their review prompt,
which they make available via IPFS. To save on costs, the
CID is only emitted as event data and not stored as part of the
BHS contract state.

FIGURE 5. In order to prepare their review results for a coordinated
disclosure, each reviewer derives a unique AES key by first generating a
random, ephemeral ElGamal key pair (r , R) and then performing a
Diffie-Hellman key exchange [36] with r and an ETHTID public key to
generate a shared secret S. Through a key derivation function (SHA-3 in
our case), an AES key is derived from S which each reviewer uses to
encrypt their results. Each reviewer attaches R to their review, thus
enabling any relying party to recover S and the AES key once the
corresponding ETHTID secret key is available, thereby completing a
coordinated disclosure of review results.

Reviewers with an interest in reviewing new releases of
a particular software can instruct their Ethereum clients
to monitor new blocks for events of corresponding BHS
contracts. By parsing such events, reviewers find CIDs of the
maintainer’s review prompts and are able to obtain copies
via IPFS. They can then also retrieve the public key of
the referenced ETHTID instance via their Ethereum client,
or instruct their client to monitor the ETHTID instance for a
future release of said key via the PubKey event. Reviewers
can now perform the requested review tasks to the best of
their abilities and with their preferred or available tools and
prepare their JSON-formatted report as follows.

To facilitate the coordinated disclosure of results, reports
are split into a header and an encrypted payload. Using
the identifiers for software properties from the review
prompt, each reviewer records the result of their examination
alongside additional information such as tools or methods

VOLUME 10, 2022 9



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

used, additional observations, or counterexamples. Then,
using ECIES with the ETHTID public key as depicted in
Fig. 5, each reviewer generates a random AES key to encrypt
their results into the payload of their report while adding
the necessary information to recover said AES key with
the ETHTID secret key to the header of their report. The
header of each report also contains the addresses of both
the ETHTID and BHS contracts as well as the HashID of
the binary release, thereby linking the software under review
and enabling anyone obtaining the review from eventually
obtaining its contents.

Once the report is complete, each reviewer makes
it available via IPFS and broadcasts the CID via a
publishReview transaction to their own Review Log
smart contract which emits a Review event. Similar to the
PublishingEvent emitted during the publishHash
transaction, both the BHS contract address and HashID are
included as indexed event parameters to facilitate monitoring
for and collecting of reviews related to a particular release.

Once the ETHTID council releases their secret key via
the submitSecKey transaction, the review period ends
and the encrypted payloads of all correctly prepared reports
become decryptable. Since events signifying the release of
binaries, attached reports, and ETHTID keys (see Fig. 4)
are timestamped and immutable proofs of existence for
their respective artifacts, they serve as a time base both
during and after an ETHDPR execution. More specifically,
reports can be generated, encrypted, and logged on-chain
after an ETHTID secret key is published, but the order of the
corresponding Review events relative to the SecKey event
clearly distinguishes such reports as potentially dependent on
previously logged reports.

C. EXEMPLARY REVIEW EXECUTION
To illustrate ETHDPR, we demonstrate an exemplary
decentralized review regarding a software update of the
toy software component introduced in Subsection III-B.
Exemplary review artifacts are listed in the appendix
(Listings 1 to 7).

In this example, an OEM takes on the maintainer role.
In addition, this OEM acts as the claimant in order to increase
vehicle users’ trust in the software under review. Since
ETHDPR is open for any interested reviewer, we assume
the participation of a variety of reviewers such as industry
experts, researchers, or vehicle users with knowledge in
software testing. The parties relying on the review results
consist of vehicle users and the OEM itself. As part of
this review, the OEM claims C1-C4 as introduced in
Subsection III-B.
To enable the review process, the OEM has already

established a uniquely referenceable software identity of
the software under review on Ethereum using Palinodia
((1) in Fig. 3). The specific software release under review
represents the binary of an updated version of this software.
This new binary release is added to the established software
identity. In our proof of concept implementation, the review

prompt ((2) in Fig. 3) is published together with the new
software release under review by the maintainer.

The review prompt is structured as follows and drafted
in Listing 2. First, the prompt contains references to the
unique context of the specific review process. To find the
corresponding disclosure mechanism, the chosen ETHTID
contract address is referenced. To identify the software binary
under review, the software identity is referenced by its
BHS contract address and HashID. The remaining review
prompt defines the different attribute claims reviewers are
asked to examine in this review instance. We note that
attribute claims such as C1-C4 are themselves based on,
potentially unverified, attributes of the software release,
e.g. the software’s source code or specification. To ensure
consistency among claims within a review, the artifacts
specifying these attributes are defined in a nested JSON
object and referenced in the corresponding claims. The
content of an artifact may either be directly specified in its
JSON value or pointed to by an integrity-protecting reference,
e.g. an IPFS CID. Please recall that a relying party can easily
verify that the source code regarded in reproducible builds
of C1 is the same as in the remaining source code related
claims C2-C4. Therefore, an attestation of C1 allows the
relying party to apply the results of C2-C4 to the software
binary under review. The claims are listed as key-value pairs
to allow unique references in reviews to the examined claim
by its corresponding key.

Let us explain claim C2 in more detail. As stated in the
review prompt in Listing 2, C2 references the C source code
of the software release under review as well as a formal
specification in the ANSI/ISO C Specification Language
(ACSL) [38] and metadata to reproduce the deductive ver-
ification of the software’s precision-loss functionality using
the Weakest Precondition (WP) plug-in in Frama-C [39].
Frama-C is a tool suite to analyze source code in C.3

Note that Frama-C and its WP plug-in merely serve as an
example in this paper, other tools could be used as well.
In total, C2 claims that the referenced source code can be
formally verified using the referenced formal specification
if the verification process is conducted as described in
the referenced additional information, i.e. using the same
Frama-C command. Listing 1 shows C source code of
the software under review for our toy example. The State
of Charge (SoC) representation is based on the published
encoding of SoC data in controller area network (CAN) bus
messages [40], [41]. In particular, we assume an integer
representation of the SoC which is computed by multiplying
the decimal SoC with an integer factor. For example, the
car manufacturers Peugeot and Renault reportedly use the
factor 100 [41]. If the decimal SoC is 12,34% and the factor
is 100, the encoded input SoC of the software’s function
encoded_floor is 1234. To reduce the SoC’s precision,
encoded_floor should return the encoded equivalent
of the floor function, in this case 1200 which represents

3https://frama-c.com/

10 VOLUME 10, 2022



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

12.00%. If the function’s input is invalid, i.e. the values
are out of range, encoded_floor should return the error
code −1. To verify the functionality of encoded_floor,
the OEM formally specifies the expected functionality in
ACSL, as depicted in Listing 3.

The last artifact referenced in C2 contains additional
information to specify the execution of Frama-C. For
example, the OEM might state the exact Frama-C command
that should be used by reviewers to reproduce the formal
verification, as depicted in Listing 4.

The OEM chooses an ETHTID instance that starts ((3)
in Fig. 3) once the software release and its review prompt
are published. Next, reviewers conduct their reviews and
announce their encrypted results through their respective
RevLog contracts. The structure of a review result is listed
in Listing 5. It contains the boolean decision for or against
attestation of the claim as well as optional attachments per
reviewed attribute claim. The reviewer has the option of
reviewing any subset of claims by leaving the value object
of unanswered claims empty. In this example, the reviewer
responds to and agrees with C2.
Attachments allow the reviewer to explain their result and,

thereby, increase trust in the review or simply provide addi-
tional information for relying parties. For C2 the reviewer
could attach the report result from Frama-C, as indicated in
Listing 6.

To publish the review of Listing 5, its results are encrypted
as described in Subsection V-B. The reviewer publishes
the encrypted review results with additional metadata in its
header, see Listing 7. The metadata links this review to
its disclosure-coordinating ETHTID contract, the software
release under review, and the review prompt CID, which
defines the reviewed claims. In addition, the published review
contains an encrypted AES key. Once the review period has
been terminated ((5) in Fig. 3), each AES key and thus all
review results can be decrypted and used by relying parties
((6) in Fig. 3).

VI. EVALUATION
In this section, we evaluate our implementation of ETHDPR
both quantitatively and qualitatively. The proof of concept
implementation is comprised of an on-chain part consisting
of Ethereum smart contracts and an off-chain part in the
form of a Python application to generate, encrypt, and
decrypt artifacts. Gauging the practicality of the proof of
concept implementation quantitatively tackles both parts
differently. For the on-chain part, we measure the required
contract execution effort via the monetary costs that would
occur in practice by simulating corresponding transactions.
Other metrics like latency between the submission of a
transaction and it being validated and recorded on-chain
are highly volatile in practice and are independent of our
implementation, i.e. no matter how our implementations
works, this latency is entirely dictated by current demand for
transactions to be recorded on-chain. For the off-chain part,
we focus on the cryptographic operations with encrypting and

TABLE 1. Gas costs for publishing hashes to BHS contracts with CIDs and
for publishing CIDs to reviews.

decrypting reports as the underlying elliptic curve, which is
the only one Ethereum currently supports, is generally not
intended for this use case. We refrain from evaluating the
performance of IPFS, since we merely rely on standard IPFS
client functionality and did not make any changes to such
clients that would warrant an evaluation. See, for example,
the work by Shen et al. [42] for a thorough performance
evaluation of IPFS.

A. QUANTITATIVE EVALUATION
Transactions on Ethereum that alter any part of its global
state and must therefore be recorded on-chain, incur costs
in the form of gas. State changes of those transactions are
determined by executing relevant smart contract code in the
Ethereum Virtual Machine (EVM). Each basic operation in
the EVM, like adding or multiplying integers, loading from
or writing to persistent storage, or conditional jumps, has a
fixed gas cost attached to it. When preparing a transaction,
a sender chooses how much Ether per gas they are willing to
pay to have their transaction executed and recorded in a future
block.

To evaluate the on-chain components, we compiled all rel-
evant smart contracts with solc 0.8.10 using the optimize
flag and deployed them to a local Ganache (v6.12.2)
development blockchain running on the Muir Glacier hard
fork. We then executed the relevant smart contract functions
and recorded their gas costs for various CID lengths. For
better intuition, we also report gas costs converted to USD
based on the average exchange rates of 20th April 2022 as
reported by Etherscan.4

Table 1 shows the gas costs for recording a new binary
release in an unmodified Palinodia BHS contract without a
CID (CID length 0) and a modified BHS contract to also
record a CID as event data. Also shown in Table 1 are the
costs for recording a CID for a review via a RevLog contract
as described in Subsection V-B. The CID lengths were chosen
to be representative of IPFS CIDs with various embedded
multihashes as described by the IPFS documentation:5

• 46: IPFS CIDv0.
• 60: IPFS CIDv1 with sha256.

4https://etherscan.io/
5https://docs.ipfs.io/concepts/content-addressing/

VOLUME 10, 2022 11



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

TABLE 2. Mean decryption time in seconds (rounded to two decimals) of
different sized review sets with different review attachment sizes over
100 repetitions.

• 63: IPFS CIDv1 with blake2b-256.
• 111: IPFS CIDv1 with sha3-512.
The disproportionate jumps in costs between CIDs of

lengths 60, 66, and 111 are due to padding to the nearest 32 B
for strings as required by the Ethereum contract ABI
specification.6 Still, the additional costs to log an IPFS
CID alongside an already existing event, as in the case of
publishing a hash, is very low with between 2710 and 4409
gas or USD0.60 to USD0.98.

Logging CIDs of reviews is comparatively more expensive
but still reasonable. Deployment of the minimally viable
RevLog contract, which consists of just one access-controlled
function to emit an event as described in Subsection V-A,
costs 252 503 gas or USD55.88. In practice, it would
probably be more sensible to include this functionality in
other contracts that a reviewer would deploy for other
activities. It is worth noting that, as long as the emit-
ted events are congruent, i.e. they have the same name
and arguments, the contracts that emit them can differ.
Similarly, a relying party does not need to know the
addresses of all RevLog or similar contracts beforehand,
as consistently named and structured events enable their
Ethereum clients to find both events and emitting contracts on
demand.

Apart from on-chain gas costs, we also evaluate the
required time to execute cryptographic operations in
ETHDPR. In particular, we measured the off-chain compu-
tation time for a Python program to encrypt a review ((4)
in Fig. 3) and decrypt reviews ((6) in Fig. 3) of varying sizes.
These measurements are interesting because the encryption
and decryption of the reviews using ECIES and ElGamal (see
Subsection V-B) is neither common nor the most efficient
approach. We were restricted to ElGamal due to the use of
ETHTID which in turn is restricted by Ethereum currently
only supporting one elliptic curve that is suboptimal for this
use case. All measurements were repeated 100 times in an
OpenStack virtual machine running Ubuntu 20.04 on four
virtual 2.4GHz AMD EPYC CPUs and 8 GB RAM using
Python 3.8.10. The Python program randomly creates reviews
analogous to the example in Subsection V-C. The rounded
mean time for creation and encryption of reviews ((4)
in Fig. 3) increases linearly from 0.02 s for reviews without

6https://docs.soliditylang.org/en/develop/abi-spec.html

an attachment to 0.18 s for reviews with an attachment
of 1 MB. Table 2 depicts the mean time measurements
for review decryption ((6) in Fig. 3), including a check
for duplicate AES keys to identify obvious plagiarism.
We evaluated sets of reviews in which each review consists of
the same size of a random attachment, from zero to one MB.
In addition, we looked at varying numbers of participating
reviewers, from five to 50 reviews per review instance.
Table 2 depicts a linear increase of time with increasing
attachment size per review and increasing numbers of reviews
per review instance. The worst case of our measurements
is the decryption of 50 reviews with an attachment size
of one MB each. For this task the rounded mean time
measurement is 1.06 s, which is still reasonable and could
be reduced further by optimizing the implementation.
In summary, the required time for cryptographic operations
in ETHDPR is negligible compared to the tasks of creating
a review prompt, conducting reviews and evaluating review
results, which could in total be on the order of hours or
days.

B. QUALITATIVE EVALUATION
In addition to the quantitative assessment of our imple-
mentations, it is also worth examining its qualita-
tive properties based on the objectives described in
Subsection III-A.

O1 (REVIEWS SHOULD BE CREATED INDEPENDENTLY)
The independence of attributions is facilitated through the
use of ETHTID, but as we discuss in Section VII, the goal
of strict enforcement of independence appears unattainable.
For a malicious reviewer to violate this objective without
cooperation of other reviewers would entail coercing or
compromising a sufficient fraction of the council tasked
with the safekeeping of the employed ETHTID instance’s
secret key. In practice, the ETHTID smart contract could
be configured to economically punish council members if
the instance’s secret key were to be recovered prematurely,
thus transforming this endeavor into a measure of economic
means. A related threat to the independence of reviews is
plagiarism. Due to the use of ECIES via ETHTID’s tem-
porally decoupled asymmetric key pair, plagiarism between
reviewers is either immediately obvious or unpreventable.
Copying an encrypted AES key and encrypted payload from
any review and publishing it as one’s own is immediately
detectable even before disclosure. Altering both the encrypted
AES key and encrypted payload without knowing the
corresponding ETHTID secret key in order to avoid the
above scenario is most likely not going to result in a
sensible review once disclosed, if decryption is even possible.
Lastly, reviewers can either share their AES keys or results
of their reviews covertly, in which case it is less a case
of plagiarism and more a case of voluntary collusion.
As mentioned previously, such subversion of a review
process are most likely not preventable by technological
means.

12 VOLUME 10, 2022



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

O2 (REVIEW PROCESS SHOULD BE CENSORSHIP RESILIENT)
By virtue of being a public permissionless system, Ethereum
itself already preempts many forms of censorship. Generally
speaking, it is rather difficult to prevent any party in
particular from writing or reading data to or from the
Ethereum blockchain. It is similarly difficult to present two
distinct versions of events to different parties. In our case,
this means it is very difficult for any party to suppress
the announcement of a software review, the publication
of encrypted reviews, or their coordinated disclosure, both
generally and for particular individuals. However, unforeseen
spikes in transactions and subsequent congestion can lead
to delays in getting transactions executed. It is therefore
prudent to set time limits with enough leeway to handle such
eventualities.

O3 (REVIEW PROCESS SHOULD BE TRANSPARENT AND
ENABLE TRACEABILITY OF ARTIFACTS)
Similar to the point above, the public accessibility of
Ethereum and interlinking of artifacts as depicted in Fig. 4
positively contribute to this objective. Additionally, all
actions taken during the review process are tied to Ethereum
addresses and thus attributable to respective parties, assuming
all parties properly secure their Ethereum private keys, which
is important regardless. Similarly, each reviewer is implicitly
incentivized to publish their reviews via only one Ethereum
address in order to build a reputation.

O4 (REVIEW ARTIFACTS, INCLUDING RESULTS, SHOULD BE
IDENTIFIABLE, PERSISTENTLY AVAILABLE, AND TRACEABLE
TO THE REVIEW INSTANCE AND THE SOFTWARE RELEASE
UNDER REVIEW)
By being logged on the Ethereum blockchain, all
timing-critical information and attached references to arti-
facts available via IPFS become part of a persistent and highly
available record for each software review instance. Such a
record is especially important to judge the independence of
reviews by comparing their release timestamps to the start and
end of the review period as enforced by an ETHTID instance.
However, when it comes to the long-term availability of off-
chain artifacts, the case is less straightforward. As IPFS only
facilitates the dissemination of CID-addressed data but does
not ensure or encourage their long-term availability, it is
up to reviewers and other relying parties to keep off-chain
artifacts available. Depending on the use case and context,
existing institutions could perform the function of archives.
Note that the integrity of any artifact is protected via the IPFS
CID which is immutably logged on-chain, thus preventing
modifications. Similarly, IPFS CIDs also serve to give each
off-chain artifact a unique identity.

O5 (POSSIBLE ATTRIBUTE CLAIMS AND REVIEW
CONSOLIDATION METHODS SHOULD BE USE CASE
AGNOSTIC)
As long as attribute claims and attributions can be
expressed in text form, ETHDPR supports them. As such, our
implementation of ETHDPR does not further constrain the

set of methods and tools that can be employed for software
assessment.

VII. LIMITATIONS AND OPEN ISSUES
It is important to first acknowledge a fundamental issue
with independent review processes. Technological means can
enable or encourage independent work, but they can hardly
enforce or guarantee it. Regardless of the methods or tools
used to perform software reviews, humans are involved in
some capacity to interpret, refine, transform, or combine
results in order to decide whether or not to attribute a claimed
characteristic of a software. In the end, it is the assessment
of a human actor that makes a software review meaningful,
as even fully automated tools for evaluation were created and
assessed by humans. Humans also have the capacity to go
against any given plan or process out of spite, ignorance, or a
need to stand out. In the case of our implementation, anyone
observing a software review in progress can decide to forego
any coordinated disclosure mechanism and publish their
results immediately, regardless of their accuracy, to diminish
the independence of any properly prepared and disclosed
reviews. As such, it stands to reason that any system or
protocol for performing independent software reviews must
assume a shared goal among participants and their voluntary
compliance.

In a similar way, collusion and sybil attacks are equally
fundamental and difficult to overcome challenges. Analogous
to the scenario above, human participants in an independent
review process can decide to collude and privately share
or align their results for their mutual benefit, e.g. an
overall smaller workload or increased credence of their
results. Counter-collusion mechanisms have already been
presented for simpler scenarios [43], but they rely on all
relevant information being available on-chain, which is not
necessarily feasible, as our proof of concept implementation
shows. Likewise, by creating sybil identities, an individual
reviewer can provide a disproportionately large amount
of review results for both benign and malicious reasons.
The only incidental counter measure in our implementation
are the monetary costs associated with deploying RevLog
contracts and using them to publish reviews. This issue
emphasizes the need for robust identity management in
decentralized systems, which is also an area of current
research [44]–[47].

Performing a review of software attribute claims via
decentralized platforms was not intended to overcome the
aforementioned challenges. However, by examining the
problem in general and implementing a proof of concept,
we posit that the use of decentralized platforms, particularly
permissionless ones like Ethereum, has both positive and
negative effects. As a neutral and public infrastructure,
decentralized platforms can serve as a ‘‘common ground’’
for execution and logging of such processes and thus
focus the attention of all involved parties without relying
on a centralized provider. While this makes a software
review process more accessible to both good and bad actors

VOLUME 10, 2022 13



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

alike, it also forces any wrongdoing to be performed and
persistently recorded in public view. The same persistent
logging can also give greater weight to software attributes.
Since there is no way to revise or rescind one’s statement,
it stands to reason that greater care is taken in their
preparation.

It is also worth examining design decisions we took with
our proof of concept implementation and their consequences.
Initially, we chose to initiate a review for a software release
by extending the publishing event in Palinodia with an IPFS
CID of a review prompt out of simplicity and convenience.
In this way, we implicitly restricted each software release to
have at most one review and only the responsible maintainer
could define and initiate it. In retrospect, this choice vastly
simplified the overall implementation by preempting a host
of difficult scenarios. For example, if one software release
could undergo more than one review process, they could
happen simultaneously with overlapping claims but differing
ETHTID schedules. As mentioned above, such a scenario
would unfold in plain view but it would nevertheless
complicate both processes, including the evaluation of their
respective results, and potentially diminish their indepen-
dence from each other. Attributions of the review process with
a later ETHTID disclosuremay depend on similar attributions
from the review process with an earlier disclosure, depending
on when they were logged on-chain. One way to meet this
challenge would be to extend software identity management
systems so that anyone can initiate a review but only one
review could be active at any given time.

In a similar way, attaching reviews and attributes to binary
releases of a software simplified both the implementation and
its presentation, but it could potentially be very cumbersome
in practice. For instance, certain attribute claims may be
verifiable for, and should thus be attached to, a higher
level in a software identity hierarchy rather than being
verified repeatedly for derived binary releases. Determining
when such overarching attributes need to be re-evaluated
due to significant changes to the common code base is
a challenge currently being tackled [48]. Extending and
adapting software identity management solutions to support
such attribution and certification processes could be an
interesting avenue for future work.

The execution environment of our proof of concept is also
worth emphasizing. Applications on Ethereum have to deal
with its unrestricted accessibility. In particular, this means
that participants can create and act through as many identities
as their financial means allow. However, transferring a system
like the one presented in this work to a permissioned,
and thus more controlled, environment should be rather
straightforward. By vetting and provisioning reviewers, for
example, the sybil problem mentioned above is rendered
moot and consequences for inappropriate behavior can have
a lasting effect.

We previously stated that a user can tell if the software
binary running in their environment is the same as the
reviewed software. However, this ability is based on the

assumption that a user’s system, e.g. their car, is not
compromised. A compromised user environment may report
a different software version than the one actually running on
the system. ETHDPR by itself does not help in this regard but
it could benefit from Trusted Execution Environments (TEE).
Running an ETHDPR client inside a TEE could protect it
from compromise and thus help establish a robust and secure
bootstrapping chain.

Lastly, it is worth examining how a decentralized software
review process relates to the concept of coordinated vulner-
ability disclosure, previously called responsible disclosure.
If, for example, a reviewer discovers a critical security flaw
as part of an attribute claim review, they can inform the
responsible software maintainer just like before. However,
depending on the details such a reviewer includes in
their results, the previously negotiable dead line for the
public disclosure of such a vulnerability is now fixed and
enforced through the coordinated disclosure mechanism for
the reviews.

VIII. CONCLUSION
In this work, we explored how existing tools and methods
for software review and attestation could be employed
on top of decentralized platforms like Ethereum. To that
end, we decomposed the overall problem into distinct but
interconnected modules to realize a well-structured review
process. By integrating previous works based on Ethereum
for two of these modules together with new additions both on-
and off-chain, we provided a proof of concept implementation
for a decentralized public software review. Lastly, we discuss
both general and implementation-specific aspects of decen-
tralizing such an independent review process. The confluence
of ever-improving software testing and certification methods
with rapidly improving decentralized platforms should pro-
vide an interesting avenue for cross-disciplinary future work.
Similarly, the concept presented here may be transferable to
use cases other than software attestation.

LISTING 1. Example C source code of the exemplary review prompt claim
artifact source_code. The code implements the precision-loss
functionality of the example. It computes the rounded floor value
soc_rounded of a decimal number that is represented as the integer soc
via factor as described in Subsection V-C.

14 VOLUME 10, 2022



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

LISTING 2. Example review prompt structure. A review prompt uniquely
references a review instance by stating its corresponding ETHTID address
as well as the BHS contract address and HashID of the software binary
under review. The purpose of a review prompt is to state the claims that
should be investigated in this review instance. Claims may reference
additional information in the form of claim artifacts for consistency and
readability. In the example we replace the values of references with
ellipses for the sake of readability.

LISTING 3. Formal Specification in ACSL of the exemplary review prompt
claim artifact formal_specification. The OEM presents this
specification in the example of Subsection V-C to describe the formal
verification of the expected functionality of the software binary under
review and corresponding source_code (see Listing 1).

APPENDIX
LISTINGS
In this appendix, we give listings for the example execution
of ETHDPR in Subsection V-C.

LISTING 4. Frama-C/WP plug-in command of the exemplary review
prompt claim artefact frama-c_info that specifies how the OEM
executed the claimed reproducible formal verification.

LISTING 5. Example review result structure stating an attestation of claim
C2 while abstaining from all other claims of this review instance.

LISTING 6. Frama-C/WP plug-in verification report as an exemplary
attachment explanation of a review result such as the attestation in
Listing 5. Some details are omitted for readability.

LISTING 7. Example review structure. Analogous to review prompts (see
Listing 2), a review is uniquely referenced by the addresses of its
corresponding review prompt, ETHTID contract, and software binary. The
review also contains the encrypted results as well as the encrypted
symmetric key to decrypt the results once the review period has been
terminated.

ACKNOWLEDGMENT
The authors thank Lionel Blatter for his feedback on their
ACSL specification. They also thank all peer-reviewers for
their valuable comments, as well as everyone who gave
feedback on preliminary drafts of this article.

REFERENCES
[1] D. Kwan, L. M. Cysneiros, and J. C. S. D. P. Leite, ‘‘Towards

achieving trust through transparency and ethics,’’ in Proc. IEEE 29th Int.
Requirements Eng. Conf. (RE), Sep. 2021, pp. 82–93.

VOLUME 10, 2022 15



O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

[2] E. Denney and B. Fischer, ‘‘Software certification and software certificate
management systems,’’ in Proc. Autom. Softw. Eng. Workshop Softw.
Certificate Manage., vol. 11, 2005, pp. 1–5.

[3] P. Heck, M. Klabbers, and M. van Eekelen, ‘‘A software product
certificationmodel,’’ Softw. Quality J., vol. 18, no. 1, pp. 37–55,Mar. 2010.

[4] P. C. Rigby, D. M. German, and M.-A. Storey, ‘‘Open source software
peer review practices,’’ in Proc. 13th Int. Conf. Softw. Eng. (ICSE), 2008,
pp. 541–550.

[5] O. Stengele, A. Baumeister, P. Birnstill, and H. Hartenstein, ‘‘Access
control for binary integrity protection using ethereum,’’ in Proc. 24th ACM
Symp. Access Control Models Technol. (SACMAT), New York, NY, USA,
May 2019, pp. 3–12, doi: 10.1145/3322431.3325108.

[6] O. Stengele, J. Droll, and H. Hartenstein, ‘‘Practical trade-offs in integrity
protection for binaries via ethereum,’’ in Proc. 21st Int. Middleware
Conf. Demos Posters, New York, NY, USA, Dec. 2020, pp. 9–10, doi:
10.1145/3429358.3429374.

[7] O. Stengele, M. Raiber, J. Müller-Quade, and H. Hartenstein, ‘‘ETHTID:
Deployable threshold information disclosure on ethereum,’’ in
Proc. 3rd Int. Conf. Blockchain Comput. Appl. (BCCA), Nov. 2021,
pp. 127–134.

[8] P. C. Rigby and C. Bird, ‘‘Convergent contemporary software peer review
practices,’’ in Proc. 9th Joint Meeting Found. Softw. Eng. (ESEC/FSE),
New York, NY, USA, 2013, pp. 202–212, doi: 10.1145/2491411.2491444.

[9] M. P. Jones, ‘‘Dealing with evidence: The programatica certificate
abstraction,’’ Dept. Comput. Sci. Eng., OGI School Sci. Eng. OHSU,
Beaverton, OR, USA, Tech. Rep., Jan. 2002.

[10] G. C. Necula, ‘‘Proof-carrying code,’’ in Proc. 24th ACM SIGPLAN-
SIGACT Symp. Princ. Program. Lang. (POPL), New York, NY, USA,
1997, pp. 106–119, doi: 10.1145/263699.263712.

[11] G. C. Necula and P. Lee, ‘‘Safe, untrusted agents using proof-carrying
code,’’ in Mobile Agents and Security (Lecture Notes in Computer
Science), G. Vigna, Ed. Berlin, Germany: Springer, 1998, pp. 61–91, doi:
10.1007/3-540-68671-1_5.

[12] M. Alsayyari and S. Alyahya, ‘‘Supporting coordination in crowdsourced
software testing services,’’ in Proc. IEEE Symp. Service-Oriented Syst.
Eng. (SOSE), Mar. 2018, pp. 69–75.

[13] F. Pastore, L. Mariani, and G. Fraser, ‘‘CrowdOracles: Can the crowd solve
the Oracle problem?’’ in Proc. IEEE 6th Int. Conf. Softw. Test., Verification
Validation, Mar. 2013, pp. 342–351.

[14] M. Yan, H. Sun, and X. Liu, ‘‘ITest: Testing software with mobile
crowdsourcing,’’ in Proc. 1st Int. Workshop Crowd-Based Softw. Develop.
Methods Technol. (CrowdSoft), NewYork, NY, USA, 2014, pp. 19–24, doi:
10.1145/2666539.2666569.

[15] T. Long, I. Yoon, A. Porter, A. Memon, and A. Sussman, ‘‘Coordinated
collaborative testing of shared software components,’’ in Proc. IEEE Int.
Conf. Softw. Test., Verification Validation (ICST), Apr. 2016, pp. 364–374.

[16] S. S. Yau and J. S. Patel, ‘‘A blockchain-based testing approach for
collaborative software development,’’ in Proc. IEEE Int. Conf. Blockchain
(Blockchain), Nov. 2020, pp. 98–105.

[17] S. Homayoun, A. Dehghantanha, R. M. Parizi, and K.-K.-R. Choo,
‘‘A blockchain-based framework for detecting malicious mobile appli-
cations in app stores,’’ in Proc. IEEE Can. Conf. Electr. Comput. Eng.
(CCECE), May 2019, pp. 1–4.

[18] Q. Hu, M. R. Asghar, and S. Zeadally, ‘‘Blockchain-based public
ecosystem for auditing security of software applications,’’ Computing,
vol. 103, no. 11, pp. 2643–2665, Nov. 2021.

[19] H. Chen, H. Zhou, J. Yu, K. Wu, F. Liu, T. Zhou, and Z. Cai,
‘‘Trusted audit with untrusted auditors: A decentralized data integrity
crowdauditing approach based on blockchain,’’ Int. J. Intell. Syst.,
vol. 36, no. 11, pp. 6213–6239, Nov. 2021. [Online]. Available: https://
onlinelibrary.wiley.com/doi/abs/10.1002/int.22548

[20] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania,
‘‘Astraea: A decentralized blockchain Oracle,’’ in Proc. IEEE Int. Conf.
Internet Things Green Comput. Commun. Cyber Phys. Social Comput.
Smart Data, Jul. 2018, pp. 1145–1152.

[21] J. Heiss, J. Eberhardt, and S. Tai, ‘‘From oracles to trustworthy data on-
chaining systems,’’ in Proc. IEEE Int. Conf. Blockchain (Blockchain),
Jul. 2019, pp. 496–503.

[22] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,
I. Khoffi, J. Cappos, and B. Ford, ‘‘CHAINIAC: Proactive software-
update transparency via collectively signed skipchains and verified
builds,’’ in Proc. 26th USENIX Secur. Symp. Berkeley, CA, USA:
USENIX Association, Aug. 2017, pp. 1271–1287. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/nikitin

[23] J. Guarnizo, B. Alangot, and P. Szalachowski, ‘‘SmartWitness: A proactive
software transparency system using smart contracts,’’ in Proc. 2nd ACM
Int. Symp. Blockchain Secure Crit. Infrastructure (BSCI), New York, NY,
USA, Oct. 2020, pp. 117–129, doi: 10.1145/3384943.3409428.

[24] M. N. Ince, M. Ak, and M. Gunay, ‘‘Blockchain based distributed package
management architecture,’’ in Proc. 5th Int. Conf. Comput. Sci. Eng.,
Sep. 2020, pp. 238–242.

[25] A. B. Lopez, K. Vatanparvar, A. P. D. Nath, S. Yang, S. Bhunia, and
M. A. Al Faruque, ‘‘A security perspective on battery systems of the
Internet of Things,’’ J. Hardw. Syst. Secur., vol. 1, no. 2, pp. 188–199,
Jun. 2017.

[26] A. Brighente, M. Conti, and I. Sadaf, ‘‘Tell me how you re-charge, I will
tell you where you drove to: Electric vehicles profiling based on charging-
current demand,’’ in Proc. Eur. Symp. Res. Comput. Secur., in Lecture
Notes in Computer Science, E. Bertino, H. Shulman, andM.Waidner, Eds.
Cham, Switzerland: Springer, 2021, pp. 651–667.

[27] L. Olejnik, G. Acar, C. Castelluccia, and C. Díaz, ‘‘The leaking
battery—A privacy analysis of the HTML5 battery status API,’’ in Data
Privacy Management and Security Assurance (Lecture Notes in Computer
Science), vol. 9481, J. García-Alfaro, G. Navarro-Arribas, A. Aldini,
F. Martinelli, and N. Suri, Eds. Cham, Switzerland: Springer, 2015,
pp. 254–263, doi: 10.1007/978-3-319-29883-2_18.

[28] L. Olejnik, S. Englehardt, and A. Narayanan, ‘‘Battery status not
included: Assessing privacy in web standards,’’ in Proc. Int. Workshop
Privacy Eng., in CEUR Workshop Proceedings, vol. 1873, J. M. del
Álamo, S. F. Gürses, and A. Datta, Eds. CEUR-WS.org, 2017, pp. 17–24.
[Online]. Available: http://ceur-ws.org/Vol-1873/IWPE17_paper_18.pdf
and http://ceur-ws.org/HOWTOSUBMIT.html#REFERENCE

[29] Battery Status API. (2016). World Wide Web Consortium (W3C).
[Online]. Available: https://www.w3.org/TR/2016/PR-battery-status-
20160329/#security-and-privacy-considerations

[30] C. Lamb and S. Zacchiroli, ‘‘Reproducible builds: Increasing the integrity
of software supply chains,’’ IEEE Softw., vol. 39, no. 2, pp. 62–70,
Mar. 2022.

[31] F. L. Haddi and M. Benchaïba, ‘‘A survey of incentive mechanisms
in static and mobile P2P systems,’’ J. Netw. Comput. Appl., vol. 58,
pp. 108–118, Dec. 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1084804515002106

[32] M. Allahbakhsh, A. Ignjatovic, B. Benatallah, S.-M.-R. Beheshti,
E. Bertino, and N. Foo, ‘‘Collusion detection in online rating systems,’’ in
Web Technologies and Applications (Lecture Notes in Computer Science),
Y. Ishikawa, J. Li, W. Wang, R. Zhang, and W. Zhang, Eds. Berlin,
Germany: Springer, 2013, pp. 196–207.

[33] G. Ciccarelli and R. Lo Cigno, ‘‘Collusion in peer-to-peer systems,’’ Com-
put. Netw., vol. 55, no. 15, pp. 3517–3532, Oct. 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128611002581

[34] J. Benet, ‘‘IPFS–content addressed, versioned, P2P file system,’’ 2014,
arXiv:1407.3561.

[35] T. ElGamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469–472, Jul. 1985.

[36] E. Rescorla, Diffie-Hellman Key Agreement Method, document RFC2631,
IETF, 1999.

[37] V. G. Martínez, L. H. Encinas, and C. S. Ávila, ‘‘A survey of the elliptic
curve integrated encryption scheme,’’ J. Comp. Sci. Eng., vol. 2, no. 2,
pp. 7–13, 2010.

[38] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and
V. Prevosto, ‘‘ACSL: ANSI/ISO C specification language,’’ CEA-LIST
and INRIA, Palaiseau, France, Tech. Rep., Version 1.17, 2021.

[39] P. Baudin, F. Bobot, L. Correnson, Z. Dargaye, and A. Blanchard,
WP Plug-in Manual, CEA LIST, Université Paris-Saclay, Paris, France,
2021.

[40] L. Merkle, M. Pöthig, and F. Schmid, ‘‘Estimate e-Golf battery state using
diagnostic data and a digital twin,’’Batteries, vol. 7, no. 1, p. 15, Feb. 2021.
[Online]. Available: https://www.mdpi.com/2313-0105/7/1/15

[41] L. Petrovic. (2022). Evdash. [Online]. Available: https://github.
com/nickn17/evDash

[42] J. Shen, Y. Li, Y. Zhou, and X. Wang, ‘‘Understanding I/O performance of
IPFS storage: A client’s perspective,’’ in Proc. Int. Symp. Quality Service,
Jun. 2019, pp. 1–10.

[43] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
‘‘Betrayal, distrust, and rationality: Smart counter-collusion contracts
for verifiable cloud computing,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., New York, NY, USA, Oct. 2017, pp. 211–227, doi:
10.1145/3133956.3134032.

16 VOLUME 10, 2022

http://dx.doi.org/10.1145/3322431.3325108
http://dx.doi.org/10.1145/3429358.3429374
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1145/263699.263712
http://dx.doi.org/10.1007/3-540-68671-1_5
http://dx.doi.org/10.1145/2666539.2666569
http://dx.doi.org/10.1145/3384943.3409428
http://dx.doi.org/10.1007/978-3-319-29883-2_18
http://dx.doi.org/10.1145/3133956.3134032


O. Stengele et al.: Decentralized Review and Attestation of Software Attribute Claims

[44] S. Friebe, I. Sobik, and M. Zitterbart, ‘‘DecentID: Decentralized and
privacy-preserving identity storage system using smart contracts,’’ in Proc.
17th IEEE Int. Conf. Trust Secur. Privacy Comput. Commun., Aug. 2018,
pp. 37–42.

[45] S. Friebe, P. Martinat, and M. Zitterbart, ‘‘Detasyr: Decentralized ticket-
based authorization with sybil resistance,’’ in Proc. IEEE 44th Conf. Local
Comput. Netw. (LCN), Oct. 2019, pp. 60–68.

[46] O. Poupko, G. Shahaf, E. Shapiro, and N. Talmon, ‘‘Building a sybil-
resilient digital community utilizing trust-graph connectivity,’’ IEEE/ACM
Trans. Netw., vol. 29, no. 5, pp. 2215–2227, Oct. 2021.

[47] T. Rathee and P. Singh, ‘‘A systematic literature mapping on secure identity
management using blockchain technology,’’ J. King Saud Univ.-Comput.
Inf. Sci., vol. 6, no. 5, pp. 86–91, Mar. 2021.

[48] S. Dupont, G. Ginis, M. Malacario, C. Porretti, N. Maunero, C. Ponsard,
and P. Massonet, ‘‘Incremental common criteria certification processes
using DevSecOps practices,’’ in Proc. IEEE European Symp. Secur.
Privacy Workshops (EuroS&PW), Sep. 2021, pp. 12–23.

OLIVER STENGELE received the degree in
applied computer science fromHeidelberg Univer-
sity, Germany, in 2016. Since 2017, he has been
working as a Staff Member with the Decentralized
Systems and Network Services Research Group,
Karlsruhe Institute of Technology. His research
interests include decentralized software identity
management, access control, threshold cryptogra-
phy, and game theory.

CHRISTINA WESTERMEYER received the B.Sc.
degree in information systems and the M.Sc.
degree in computer science from the Friedrich-
Alexander-Universität Erlangen-Nürnberg, Ger-
many, in 2018 and 2021, respectively. Since 2021,
she has been a Staff Member with the Decen-
tralized Systems and Network Services Research
Group, Karlsruhe Institute of Technology. Her
current research interests include decentralized
software identity and access management within
the context of automotive software systems.

HANNES HARTENSTEIN (Member, IEEE)
received the Diploma degree in mathematics
and the Ph.D. degree in computer science from
Albert-Ludwigs-Universität, Freiburg, Germany.
He was a Senior Research Staff Member with
NEC Europe. He was appointed as the Chair
of decentralized systems and network services
(DSN), in October 2003, and has directed the
DSN Research Group, Karlsruhe Institute of
Technology, since 2003. His research interests

include decentralized and distributed systems, information security, and
information technology management.

VOLUME 10, 2022 17


