
Semantic Scene Understanding for
Prediction of Action Effects in Humanoid

Robot Manipulation Tasks

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

M. Sc. Fabian Paus
aus Coesfeld

Tag der mündlichen Prüfung: 17. Mai 2022
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Deutsche Zusammenfassung

Menschen sind in der Lage, komplexe Szenen mit mehreren übereinander lie-
genden Objekten intuitiv zu verstehen und zu handhaben. Das semantische
Verständnis der Szene, d. h. deren Zerlegung in die enthaltenen Objekte und die
Analyse ihrer 3D-Struktur, des Szenenlayouts und der Beziehungen zwischen
Objekten ermöglicht es dem Menschen, gelernte Konzepte auf zuvor ungese-
hene Szenen mit einer unterschiedlichen Anzahl von Objekten und Beziehun-
gen zu übertragen. Dieses Konzept aus den Neurowissenschaften wird kom-
binatorische Generalisierung genannt und erlaubt Menschen, ihr Verständnis
über Objekte und Beziehungen bzw. Relationen zwischen diesen zu kombi-
nieren, um neue Situationen konzeptionell zu erfassen. Auf Basis dieses rela-
tionalen Szeneverständnisses können Menschen effektive, intuitive physikali-
sche Prädiktionsmodelle für Interaktionen mit der Welt erlernen und bei der
Ausführung von Aufgaben verwenden. Analysiert man menschliche Vorhersa-
gen für Objektinteraktionen, kann man feststellen, dass diese eher mit intuiti-
ven Modellen basierend auf Objektrelationen übereinstimmen als mit genau-
en Physiksimulationen. Kleinkinder erwerben die Fähigkeit zum Verständnis
von Objektrelationen und der Vorhersage mit intuitiven Modellen während der
ersten zwei Lebensjahre. Zunächst entwickelt sich ein Verständnis von einfa-
chen Objektrelationen wie Kontakt und Nicht-Kontakt. Über die Zeit wird die-
se Fähigkeit erweitert, um in komplexen Szenen zu verstehen, welche Objekte
in Kontakt sind und von anderen unterstützt werden.

Ziel dieser Arbeit ist es, einen humanoiden Roboter mit einem Szenenverständnis
basierend auf Objektrelationen und einem intuitiven Prädiktionsmodell aus-
zustatten, um damit Aufgaben wie Greifen und Platzieren von Objekten in
komplexen Szenen zu unterstützen. Dazu wird zunächst eine neue probabi-
listische Repräsentation von Objekten und deren Unterstützungsrelationen er-
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arbeitet. Dann wird eine Methode zur Extraktion dieser Repräsentation aus
Punktwolken, die von den Tiefenkameras des Roboters aufgenommen wurden,
implementiert und evaluiert. Anschließend werden Prädiktionsmodelle für In-
teraktionen zwischen mehreren starren und verformbaren Objekten (am Bei-
spiel einer Stofftasche) entwickelt. Diese Modelle können mit Szenengraphen
umgehen, die eine beliebige Anzahl von Objekten in den Knoten und Objek-
trelationen in den Kanten darstellen können. Sowohl die Extraktion von Un-
terstützungsrelationen als auch die Prädiktionsmodelle werden in Experimen-
ten mit den humanoiden Robotern ARMAR-III und ARMAR-6 validiert. Im Fol-
genden werden die drei Einzelbeiträge dieser Arbeit vorgestellt:

Repräsentation und Extraktion von Unterstützungsrelationen: Aus einer
Punktwolke der Szene, die von der Tiefenkamera des Roboters aufgenommen
wurde, sollen Objektgeometrie und Unterstützungsrelationen extrahiert wer-
den. Dabei soll die Unsicherheit aus der Wahrnehmung der Szene sowohl in
der Geometrie als auch in den Relationen repräsentiert werden. Dazu wird eine
neuartige probabilistische Repräsentation entwickelt, die Objektposen, Formen
und Unterstützungsrelationen umfasst. Die Objektgeometrien werden als pa-
rametrisierbare Primitive, wie z. B. Boxen, Zylinder und Kugeln repräsentiert.
Die Wahrnehmungsunsicherheit wird über eine Wahrscheinlichkeitsverteilung
über den Primitivtyp und die geometrischen Parameter modelliert. Für die-
se Repräsentation wird eine Extraktionsmethode aus Punktwolken implemen-
tiert. Zunächst wird die Wahrscheinlichkeitsverteilung über die Objektgeome-
trien mittels eines modifizierten RANSAC-Algorithmus (Random Sample Con-
sensus) berechnet. Dann schätzt eine Monte-Carlo-Simulation die Wahrschein-
lichkeit des Vorhandenseins einer Unterstützungsrelation durch eine Analy-
se der wirkenden Kräfte und der Szenengeometrie. Durch eine Analyse der
Stützpolygone kann potenzielle Unterstützung von oben erkannt werden, wel-
che von existierenden Verfahren bisher nicht betrachtet wurde. Die Extraktions-
methode wird auf zwei Datensätzen, die komplexe Szenen mit mehreren Ob-
jekten enthalten, evaluiert. Die Ergebnisse zeigen, dass sowohl die Analyse der
Stützpolygone als auch die probabilistische Repräsentation die Erkennungsra-
ten für Unterstützungsrelationen deutlich verbessern.
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Graphenbasierte Prädiktion von Aktionseffekten: Aus dem aktuellen Zu-
stand einer Szene und den Parametern für eine Aktion, die der Roboter ausführen
wird, soll der Zustand der Szene nach Aktionsausführung vorhergesagt wer-
den. Dazu werden Methoden zur Vorhersage von Aktionseffekten auf der Grund-
lage von neuronalen Graphnetzen (engl. neural graph networks) für Interaktionen
zwischen mehreren starren und verformbaren Objekten entwickelt. Zunächst
wird eine Methode zur Prädiktion der Effekte von Schiebeaktionen auf mehre-
re starre Objekte implementiert. Der Zustand der Szene wird als Graph darge-
stellt, in dem die Knoten die Objekteigenschaften und die Kanten die räumlichen
Relationen zwischen den Objekten repräsentieren. Die Trainingsdaten wurden
durch die Simulation von Aktionen in zufällig generierten Szenen erzeugt. An-
schließend wurde ein neuronales Graphnetz trainiert, dessen Eingabe und Aus-
gabe Graphen mit einer beliebigen Anzahl von Knoten und Kanten sind. Um
diese Methode auf Interaktionen mit deformierbaren Objekten anwenden zu
können, wurde die Repräsentation des Szenengraphen erweitert. Dabei wer-
den relevante Punkte auf der Oberfläche von deformierbaren Objekten aus-
gewählt und als Knoten im Graph aufgenommen. Darüber hinaus wurde ei-
ne zweistufige Prädiktionsmethode implementiert, die zunächst die sich be-
wegenden Knoten klassifiziert und sie dann mithilfe eines Regressionsmodells
aktualisiert, falls sie als bewegend klassifiziert wurden. Schließlich wurde ein
Modell konzipiert und implementiert, das Vorhersagemodelle mit unterschied-
lichen Zeitschritten kombiniert, um Vorhersagen über längere Zeithorizonte zu
ermöglichen. Die Evaluation der Prädiktion von Schiebeeffekten erfolgt mit si-
mulierten und realen Daten und zeigt, dass die Methode in der Lage ist, die
Interaktionen mehrerer starrer Objekte präzise und effizient vorherzusagen. Im
Gegensatz zu bestehenden datengetriebenen Methoden ist dieser Ansatz un-
abhängig von der Anzahl der beteiligten Objekte. Bei Interaktionen mit ver-
formbaren Objekten werden Ablationsstudien durchgeführt, um zu zeigen, dass
die zweistufige Methode sporadisch prädizierte Bewegungen reduziert, da der
Klassifikator unbeteiligte Knoten herausfiltert. Es wird gezeigt, dass das Mo-
del mit unterschiedlichen Zeitschritten die Vorhersagegenauigkeit über längere
Zeithorizonte verbessert.
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Anwendung auf Manipulationsaufgaben von humanoiden Robotern: Die
in der Arbeit entwickelten Methoden sollen auf Manipulationsaufgaben im Kon-
text der humanoiden Robotik angewendet und in Experimenten validiert wer-
den. Zunächst wird eine Methode zur Bestimmung einer sicheren Manipulati-
onsreihenfolge implementiert, die die Wahrscheinlichkeit maximiert, dass die
einzelnen Aktionen erfolgreich ausgeführt werden können. D. h., dass keine
anderen Objekte bewegt oder zu Fall gebracht werden. Anschließend wird eine
zweihändige Manipulationsstrategie implementiert, die die zweite Hand des
Roboters nutzt, um potenziell fallende Objekte zu sichern. Darüber hinaus wer-
den Methoden zur Prädiktion von Aktionseffekten verwendet, um Aktionsse-
quenzen zu parametrisieren, die von einem symbolischen Planer erzeugt wor-
den sind. Durch die Suche im Raum der Aktionsparameter und der Bewertung
der Parameter auf Basis der vorhergesagten Effekte kann ein Satz von Akti-
onsparametern identifiziert werden, der die spezifizierten symbolischen Effekte
erzeugt. Zur Validierung der vorgeschlagenen Methoden werden Experimente
mit den humanoiden Robotern ARMAR-III und ARMAR-6 durchgeführt.
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1. Introduction

Humans have the ability to intuitively understand and manipulate complex
scenes with multiple stacked and overlapping objects. Understanding the scene
semantically, i. e. decomposing it into the encountered objects, analyzing their
3D structure, scene layout, and relations, enables humans to transfer learned
concepts to previously unseen scenes with a varying number of objects and re-
lations (Kemp et al., 2006; Kemp and Tenenbaum, 2008). Equipped with this re-
lational scene understanding, humans build effective, intuitive physics predic-
tion models for interactions with the environment. Battaglia et al. (2013) com-
pared predictions made by accurate physics simulations with intuitive models
based on object relations. They showed that human predictions align with intu-
itive models rather than accurate physics simulations. Infants acquire this abil-
ity gradually during their first two years. They start by understanding simple
contact/no-contact relations and expand to reasoning about supported surface
areas (Baillargeon, 2002).

In humans, relational scene understanding and intuitive prediction models build
the basis for goal-directed manipulation of complex scenes. This thesis investi-
gates how these abilities can be developed, implemented, and evaluated in the
context of humanoid robot manipulation tasks. Figure 1.1 shows an example
of a complex scene that requires physical reasoning about object relations, the
ability to predict action effects, and the strategies to prevent undesired action
side effects.

This chapter starts with the problem statement and research question formula-
tion. Then, the main contributions of this thesis addressing the research ques-
tions are presented. Finally, an outline of the thesis is given.
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Chapter 1. Introduction

Scene Objects and Relations Prediction and Manipulation

Figure 1.1.: A scene with multiple stacked objects is perceived. By extracting
the contained objects and their relations, we can predict possible
action effects. For example, before grasping the yellow sugar box
with its left hand, the robot is able to reason about physical support
between objects and predict that the blue coffee filters box might fall.
Therefore, the right hand supports the filters during manipulation.

1.1. Problem Statement

This thesis approaches the problem of relational semantic scene understanding,
action effect prediction based on intuitive physics models, and their application
to humanoid robot manipulation tasks. To show that interpreting a scene as ob-
jects and their relations enables a robot to predict action effects and manipulate
complex scenes, the following three research questions will be investigated:

1. How can a robot understand a scene semantically and decompose it into
objects and their relations?

A humanoid robot perceives its environment through head-mounted cam-
eras. In this work, we assume that the robot has the ability to perceive 3D
information either via active depth cameras or stereo camera systems. The
robot needs to extract object shapes, poses, and relations from this scene
perception. Sensor noise, object occlusion, and partial views require a suit-
able object and relation representation, which captures these uncertainties.

2. How can a robot learn to predict the effects of its actions using an intuitive
physics model?

2



1.2. Contributions

This thesis considers actions like pushing, lifting, or moving an object, po-
tentially interacting with multiple other objects in the scene. One key chal-
lenge is to represent scenes with a varying number of interacting objects in
a unified way suitable for machine learning methods. Another challenge
is the generation of training data. On the one hand, generating data to
learn action effect prediction models on the real robot is time-consuming
and expensive. On the other hand, generating training data in simulation
requires transferring it to the real robot due to differences between the real
and simulated world.

3. How can relational scene understanding and action effect prediction mod-
els facilitate humanoid robot manipulation tasks?

Relevant tasks in this work are grasping an object in complex scenes while
preventing other objects from falling and bringing a scene into a specified
goal configuration. To achieve this, both scene understanding and action
effect prediction need to be part of a humanoid robots’ functional and cog-
nitive software architecture. Therefore, the extraction of object relations
and the action effect prediction models need to be integrated into existing
perception pipelines and memory systems.

1.2. Contributions

There are two areas to which this thesis makes contributions: semantic scene
understanding and action effect prediction. In the area of semantic scene under-
standing, this work proposes a novel probabilistic representation and a method
for extracting support relations. In the area of action effect prediction, graph-
based representations and prediction models are used to learn effects for scenes
with multiple interacting objects. Both contributions are validated in the context
of humanoid robot manipulation tasks.

Representation and Extraction of Support Relations: The first contribu-
tion of this thesis is a novel probabilistic representation and extraction method
for support relations. Support relations encode which object is supported by which

3



Chapter 1. Introduction

other objects in a scene. Both object and relation representations are modeled as
probability distributions to capture the uncertainty in perception. In this the-
sis, we assume that objects in the scene are unknown, i. e. no knowledge about
their class, shape, or texture is known before. Therefore, a method for extract-
ing probabilistic object shape and pose representations from point clouds of the
scene is developed. Furthermore, state-of-the-art extraction methods for sup-
port relations are extended and improved via a support polygon analysis, which
detects support relations previously overlooked by existing approaches. Based
on the probabilistic object representation, existence probabilities for support re-
lations are then estimated via a Monte Carlo simulation.

Graph-based Prediction of Action Effects: The second contribution of this
thesis is an action effect prediction method, which uses graph-based representa-
tions and learning methods. By encoding each involved object as a vertex in a
graph, and their relations as edges, these methods are order-invariant and in-
dependent of the number of interacting objects. This work investigates action
effect prediction for both rigid and deformable objects. First, a push effect pre-
diction for multiple rigid objects is developed and trained on a large number
of simulated, randomized scenes. This prediction model is then extended via a
sparse keypoint representation to handle deformable objects and multiple new ac-
tions, e. g. lifting or opening cloth-like bags. Furthermore, a mixed-horizon model
is proposed, which supports prediction over multiple time frames while reduc-
ing the accumulation of errors.

Application to Humanoid Robot Manipulation Tasks: The ability to under-
stand support relations between objects enables a humanoid robot to predict
which objects might fall during manipulation tasks. For example, lifting a par-
ticular object can lead to another object underneath it falling. To prevent un-
desired side effects, this work proposes a method to derive a safe manipulation
order, which takes into account uncertainties about object shape, poses, and sup-
port relations. Furthermore, the action effect prediction enables goal-directed ma-
nipulation of scenes. Given a description of the scene’s goal state, the robot can
generate action sequences and use the learned model to predict whether the
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1.3. Outline

actions lead to the desired effects. The proposed strategies have been imple-
mented and validated on the humanoid robots ARMAR-III (Asfour et al., 2006)
and ARMAR-6 (Asfour et al., 2019).

1.3. Outline

This thesis is structured into six chapters, discussing the state-of-the-art, pre-
senting and evaluating the main contributions, and summarizing the results.

Chapter 2 discusses related work concerning the contributions in this thesis.
This includes relational scene representations, focusing on spatial and support re-
lations. One central aspect of the state-of-the-art is concerned with methods for
extracting support relations from images or point clouds. The discussion of graph-
based learning methods is the basis for the proposed prediction models. Another
body of related work is action effect prediction, from which model-based, data-
driven, and hybrid methods are reviewed. Furthermore, simulation environ-
ments and prediction methods for deformable object dynamics are discussed.

Chapter 3 introduces a probabilistic representation of objects and support rela-
tions with physical grounding. This representation captures perception uncer-
tainty in object shapes and poses as well as support relation existence. A geomet-
ric primitive fitting algorithm is developed that extracts the probabilistic object
representation from point clouds. Based on the object representation, a method
for support relation extraction is proposed, which extends existing force-based
methods with a support polygon analysis. Finally, a Monte Carlo method is used,
which computes existence probabilities for support relations by propagating
the uncertainty in object shapes and poses. The proposed extraction method is
evaluated on two datasets. To this end, we record the novel KIT Support Rela-
tion (KIT-SR) dataset containing various table-top scenes with multiple stacked
objects and extend an existing dataset with support relation annotations.

Chapter 4 describes graph-based action effect prediction. This work considers
scenes in which multiple interacting objects can be affected by an action executed
by a robot. As a first scenario, we investigate push effect prediction for multiple
rigid objects. To this end, a graph-based scene representation encodes objects

5



Chapter 1. Introduction

and their relations. Furthermore, graph neural networks are trained to predict
the scene state after executing an action. To extend this prediction model for
more actions and deformable objects, we propose a sparse keypoint representa-
tion for both rigid and deformable objects. A two-stage graph neural network
model first classifies which keypoints potentially move and then predicts key-
point motion based on this representation. Furthermore, a mixed-horizon model
model combines prediction models trained with different time steps to prevent
the accumulation of prediction errors over longer time horizons. The proposed
methods are evaluated on large datasets generated in simulation.

Chapter 5 demonstrates the application of the support relation extraction and
the action effect prediction from the previous chapters to humanoid robot manip-
ulation tasks. First, a method to derive a safe manipulation order from the proba-
bilistic representation of support relations proposed in chapter 3 is presented.
Lifting a grasped object might unintentionally cause other objects in the scene
to fall. A bimanual manipulation strategy is implemented to prevent unintentional
effects, which uses a second hand of the robot to secure a potentially falling
object. Additionally, we propose to use internal simulation based on the action
effect prediction for planning action sequences to achieve a specific goal configura-
tion of multiple objects. Using the prediction models presented in chapter 4, the
robot can select suitable action parameters based on their predicted effects.

Chapter 6 concludes the thesis by summarizing the contributions and the ob-
tained results. Furthermore, it reviews the strengths and weaknesses of the pro-
posed methods. Finally, possible extensions for future work are presented.
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2. State of the Art

This thesis aims at developing methods for semantic scene understanding and
action effect prediction to facilitate humanoid robot manipulation tasks. To this
end, it contributes to three research areas in robotics: relational scene representa-
tion, support relation analysis, and action effect prediction. This chapter presents the
fundamentals and discusses the contributions and limitations of related work
in these three research areas.

The chapter begins with a discussion of relational scene representations in sec-
tion 2.1, focusing on spatial and support relations. Then, existing methods for
extracting support relations from sensor data are presented in section 2.2. After
reviewing graph-based machine learning methods in section 2.3, we discuss ap-
proaches for action effect prediction in section 2.4. Finally, section 2.5 presents
simulation and prediction methods for deformable object dynamics.

2.1. Relational Scene Representations

One key ingredient of human intelligence is combinatorial generalization (Kemp
and Tenenbaum, 2008). This is the ability to create infinitely many and arbitrar-
ily complex structures from a finite set of building blocks and relations. Humans
use this ability to construct sentences, acquire new skills, and understand the
world around them (Humboldt, 1999). In the area of visual scene understand-
ing, humans can transfer knowledge and skills to scenes with a previously un-
seen number of objects and relations by deconstructing perceived scenes into
objects and their relations.

Deconstructing scenes into objects and their relations allows humans to learn a
particular relation and generalize to a diverse set of scenes. For example, after

7



Chapter 2. State of the Art

Figure 2.1.: Example scenes containing different objects which support each
other. Understanding support relations between objects helps to
manipulate them safely in such scenes. (Images licensed under CC0)

learning the relation ”object A supports object B”, humans are able to under-
stand and manipulate a stack of dishes in the kitchen, a Jenga tower, or a heap
of cardboard boxes (see Figure 2.1). This is evidenced by the fact that relational
models are better at explaining human predictions than accurate physics simu-
lations (Battaglia et al., 2013).

There are different kinds of object relations. Spatial relations between objects are
based on the scene geometry, i. e. relative positions and orientations between
objects. Support relations take into account physical object interactions and en-
code whether an object is supported by other objects.

2.1.1. Spatial Relations

Spatial relations encode geometric information about the relative position and
orientation of objects, e.g. the cup is to the left of the plate, and both are on the
table. Representations of spatial relations differ in the way how they encode ge-
ometric information and whether they consider change over time. The encoding
can be symbolic or subsymbolic. A symbolic encoding uses a discrete set of spa-
tial relations existing between objects in a scene, e.g. left of, right of, in front of,
and behind. A subsymbolic encoding uses continuous values to represent spa-
tial relations, e.g. the euclidean distance between objects. If relations consider
change over time, e.g. the cup is getting closer to the plate, they are dynamic.
In contrast, relations that only consider a single point in time are static. Fig-
ure 2.2 shows examples of spatial relations and their categorization into static,
dynamic, symbolic, and subsymbolic representations.
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2.1. Relational Scene Representations

On To the Right of Contained in Moving 

Together

Getting 

Closer

Moving 

Apart

DynamicStatic

S
y

m
b
o
li

c
S

u
b
sy

m
b
o
li

c

Euclidean Distance Relative Orientation Relative Velocity
Transformation 

Change

Figure 2.2.: Categorization of different spatial relation representations accord-
ing to the consideration of time (static vs. dynamic) and the encod-
ing of geometric information (symbolic vs. subsymbolic).

Related works can be categorized using these criteria. First, static representa-
tions, which only consider a single point in time, are discussed. In Gupta et al.
(2010), the authors segment a point cloud into object hypotheses and represent
each object as a cuboid (block). Based on the relative position of these blocks,
they define three discrete spatial relations between them: in front of, behind, no
relationship. Rosman and Ramamoorthy (2011) derive symbolic spatial relations
between objects based on contact points, i.e. they are only interested in contact
relations like on, under, and adjacent. Kasper et al. (2011) use a subsymbolic en-
coding for euclidean distance in 3D and the projection onto the ground plane, as
well as relative orientation between objects. After segmenting the scene and an-
notating oriented bounding boxes manually, they compute statistics about the
occurrence of objects and spatial relations. In the works of Aksoy et al. (2011,
2015), the relations touching and overlapping are extracted from segmented im-
ages. Here, the authors track the changes in spatial relations during a human
manipulation task and store them into transition matrices called semantic event
chains (SECs). While changes in the spatial relations over time are tracked, the
relational representation is still static. Sui et al. (2017) estimate a probability dis-
tribution over possible scene graphs consisting of static relations in, on and has
(indicating that the robot grasped an object).
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Dynamic representations express change over time directly in relational form.
Meißner et al. (2013) represent subsymbolic relations as six Degrees-of-Freedom
(DoF) pose transformations. The transformations between the objects as well
as the transformations over time are tracked. In Ziaeetabar et al. (2017, 2020),
the authors introduce a symbolic representation for dynamic spatial relations,
moving together, halting together, or moving apart. Objects are approximated as
cuboids, and relations are derived based on hand-crafted geometric rules.

2.1.2. Support Relations

Support relations encode which object is supported by another object and allow
reasoning about the stability of a scene. When representing support relations
in scenes with multiple interacting objects, one can either consider the whole
scene, single objects, or object pairs. This determines the relational structure of
the support representation. When the whole scene is considered, the representa-
tion only stores whether the scene is stable or not (Battaglia et al., 2013; Sallami
et al., 2019; Paxton et al., 2022). Some models have unidirectional structure, i. e.
they represent whether an object is supported by other objects but not which
the supporting objects are (Liu et al., 2015).

Most relevant for this work are bidirectional support relations. We denote that
bidirectional support exists between two objects Y and Y as (X, Y) ∈ SUPP or
short SUPP(X, Y). The existence of a support relation SUPP(X, Y) means that if the
supporting object X is removed, the supported object Y will start to move. Moj-
tahedzadeh et al. (2015) give a formal definition of a support relation:

For two objects X and Y in a static configuration, we say that X supports Y if
removing X from the configuration causes Y to lose its motionless state (e.g.,
Y will fall down.). We denote this relation as SUPP(X, Y). A support relation
can hold if the two objects are in direct or indirect contact with each other.
(Mojtahedzadeh et al., 2015)

Support relations can either be grounded in physical or semantic principles. Phys-
ical grounding requires knowledge or assumptions about interaction forces and
physical object properties, e.g. mass, friction, and inertia. Semantic grounding
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Figure 2.3.: Categorization scheme for support relation representations accord-
ing to three criteria: grounding, structure, and model.

is mostly used in the computer vision community, e. g. ”mugs are often sup-
ported by tables, but rarely by walls“ (Silberman et al., 2012). The existence of a
semantic support relation is based on statistics about object categories and not
on physical object properties. Since physically accurate support relations are
necessary for robotic manipulation tasks, most robotic applications prefer the
physical definition over the semantic one.

A support relation representation can either be deterministic or probabilistic. In
a deterministic representation, a support relation between two objects either
exists or not. A probabilistic representation assigns an existence probability to
every object pair (X, Y):

P (SUPP(X, Y)) ∈ [0, 1] ⊂ R

In the following, related works that propose or use support relation represen-
tations will be classified according to their structure (stability, unidirectional, or
bidirectional), grounding (semantic or physical), and model (deterministic or
probabilistic). Figure 2.3 illustrates this categorization scheme.

Works from the computer vision community predominantly use a semantic
grounding for support relations based on object features. As a seminal work,
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Silberman et al. (2012) assign structure classes to each object in the scene (ground,
furniture, prop, or structure). Based on geometric features and these structure
classes, they define support relation probabilities. In the works of Xue et al.
(2015), the authors use a semantic grounding based on structure classes as well.
However, their representation of support relations is deterministic, i.e. relations
are represented as either support from the bottom, behind, the ground, or no
support. Similarly, Jia et al. (2014), Zheng et al. (2015) and Yang et al. (2017) use
a deterministic representation with semantic grounding.

A physical grounding is preferred for robotics applications since it allows rea-
soning about the scene’s stability and consequences of actions. The definitions
in Mojtahedzadeh et al. (2013) and Zhang et al. (2019) are based on a static equi-
librium analysis, which computes support relations based on the acting forces
and torques. In the work of Zheng et al. (2013), the authors use physical plausi-
bility based on stability under gravity. All these works employ a deterministic
representation. An example of a probabilistic representation with robotic appli-
cation is the work by Panda et al. (2013, 2016). However, this work uses semantic
grounding similar to the works by Silberman et al. (2012).

2.1.3. Summary and Review

Table 2.1 categorizes related works according to their grounding, relational struc-
ture, and model for support relations. While the probabilistic representations
have been exploited for support relations with semantic grounding, their com-
bination with physical grounding remains unaddressed. Since physical ground-
ing is necessary for robot manipulation tasks and a probabilistic representa-
tion enables robots to propagate uncertainty from sensors through perception
and up to high-level planning, this research gap is addressed in this thesis. To
this end, this thesis proposes a probabilistic scene representation with physical
grounding, which uses bidirectional support relations.
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Silberman et al. (2012) ✓ ✓ ✓ Computer Vision
Panda et al. (2013, 2016) ✓ ✓ ✓ Robotics
Jia et al. (2014) ✓ ✓ ✓ Computer Vision
Xue et al. (2015) ✓ ✓ ✓ Computer Vision
Zheng et al. (2015) ✓ ✓ ✓ Computer Vision
Yang et al. (2017) ✓ ✓ ✓ Computer Vision
Liu et al. (2015) ✓ ✓ ✓ Computer Vision
Battaglia et al. (2013) ✓ ✓ ✓ Neuroscience
Sallami et al. (2019) ✓ ✓ ✓ Robotics
Paxton et al. (2022) ✓ ✓ ✓ Robotics
Zheng et al. (2013) ✓ ✓ ✓ Robotics
Mojtahedzadeh et al. (2013) ✓ ✓ ✓ Robotics
Zeng et al. (2018) ✓ ✓ ✓ Robotics
Zhang et al. (2019) ✓ ✓ ✓ Robotics
This thesis ✓ ✓ ✓ Robotics
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2.2. Support Relation Extraction

Methods for extracting support relations aim at determining the support rela-
tions between objects given a perception of the scene, e.g. image, point cloud,
or voxel grid. There are five main methods to analyze support relations:

• Feature-based methods define hand-crafted features to determine sup-
port between image parts. Supervised models are trained to predict sup-
port relations based on these features.

• Rule-based methods determine support relations based on a set of hand-
crafted rules. These rules usually include geometric properties like height,
orientation, or density.

• Data-driven methods learn the correlation between input scene and sup-
port relations directly from data.

• Simulation-based methods estimate the stability of the scene by running
a physics simulation and analyzing object movement.

• Force analysis methods compute the forces which act on objects after ex-
tracting object poses and shapes from the scene.

We first describe different methods for support relation extraction. Then, the
advantages and disadvantages of the presented methods and the research gap
addressed in this thesis are discussed.

2.2.1. Methods

Feature-based methods extract features from input images of the scene and
learn regression models to predict both segmentation and support relations.
Most of the time, these methods try to improve image segmentation results by
incorporating knowledge about support relations between objects. All feature-
based methods use semantic grounding, i. e. they are not physically accurate.

In Gupta et al. (2010), the authors define geometric features like the objects’
shape and density and derive potential energy terms for each feature. This po-
tential energy is not a physical quantity but rather an optimization term, which
is lower if the scene is more stable than a scene with higher potential energy. By
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Figure 2.4.: Top row: Images of different indoor scenes. Bottom row: Segmen-
tation results and inferred support relations (Correct relations are
green arrows, wrong relations are red arrows). (taken from Silber-
man et al., 2012))

minimizing this potential energy during image segmentation, regions are split
in a way that prefers stable scene arrangements. The resulting support relations
between image segments have improved the image segmentation results but
are not evaluated for their physical accuracy.

Silberman et al. (2012) uses 2D and 3D features to infer support relations which
improve image segmentation results for indoor scenes. The authors first over-
segment the image. Then a hierarchical segmentation merges regions with low
boundary strength (computed based on 3D and 2D features and the region’s
class label). Based on this segmentation, structure classes (ground, furniture,
prop, and structure) and support relations for each region are inferred simul-
taneously. This is done by defining a function that assigns an energy value to
each assignment of support relations and structure classes. By optimizing this
energy function, they are able to find the most probable scene structure given
existing 3D and 2D features in each region. Figure 2.4 shows the results of the
approach for selected indoor scenes.

Jia et al. (2014) extend the work of Silberman et al. (2012) by fitting boxes to
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Figure 2.5.: Left image: Segmented scene. Middle image: Support relation be-
tween all segments. Right image: Relevant support relations for ma-
nipulating an object of interest O. (taken from Panda et al., 2016)

the segmented regions. Based on these boxes, the authors extract features like
the separating orientation, the center of mass, and the supporting area. Then,
an energy function is defined and optimized using these features. Xue et al.
(2015) use SIFT features to infer structure classes and add features describing
the stability of the scene. Yang et al. (2017) extend the work of Xue et al. (2015) by
incorporating prior knowledge about support relations between object classes.
All these works aim to use support relations to improve image segmentation
results.

Panda et al. (2013, 2016) apply a very similar segmentation and optimization ap-
proach to Silberman et al. (2012). However, the authors define different features,
e. g. boundary ratio (overlap between objects in contact), distance, and contain-
ment. In contrast to the other feature-based works, the goal of these works is to
infer a manipulation order that a robot can execute. Figure 2.5 shows extracted
support relations and manipulation order for an object of interest.

Rule-based methods take an already segmented scene as input and extract
support relations via a set of hand-crafted rules. These rules are usually defined
on the basis of symbolic predicates, which have in turn been extracted from
the scene before. Liu et al. (2015) derive symbolic predicates for object relations
(e. g. contact(A, B), higher(A, B), and intersect(A, B)) from 6D object poses. A so-
phisticated set of rules is used to infer support relations based on the symbolic
predicates. Zeng et al. (2018) define a heuristic based on object height and over-
lapping areas in the image, which determines whether support exists between
two image regions. Wu et al. (2019) extract object bounding boxes from images
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and, additionally, incorporate depth data to define rules for support relation
extraction.

Data-driven methods learn the correlation between perceived scene and sup-
port relations. To this end, they need large datasets annotated with support
relations. These methods are often based on Convolutional Neural Networks
(CNNs), which are used to extract features from images. Additionally, a pair-
wise support predictor determines support between image regions.

Zhang et al. (2018) predict manipulation order from input images. Their pro-
posed visual manipulation relationship network consists of a Convolutional
Neural Network, an object detector, and a relationship predictor. The CNN ex-
tracts features from the input images, which are used by both the object detector
and the relationship predictor. The object detector generates 2D bounding boxes
for detected objects. For each detected object pair, the relationship predictor de-
termines the manipulation order based on the extracted features. The predicted
manipulation order is equivalent to inverted support relations.

Yang et al. (2018) extend the visual manipulation relationship network of Zhang
et al. (2018) by correcting false support relation predictions. They use Condi-
tional Random Fields (CRFs) to predict where no support exists. In Ren et al.
(2018), the authors use the same method, i. e. CNN for feature extraction, CRFs
for support relation improvement, in the context of exoskeletons. Their goal is
to use the support relations to find a region on the floor that can safely support
the person wearing a leg exoskeleton.

Simulation-based methods run physics simulations and analyze object move-
ment to estimate the stability of the scene. Knowledge about geometry, poses
and physical properties is required to create object models for the simulation.
The stability of the scene and support relations between objects can be analyzed
in simulation by observing which objects start to move and which objects stay
still.

Battaglia et al. (2013) investigate how humans understand stability and support
relations scenes with stacked blocks. The authors compare an intuitive physics
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Figure 2.6.: The intuitive physics engine takes an input scene and simulates how
the scene evolves over time. The results are aggregated to determine
which object will fall and in which direction (taken from Battaglia
et al. (2013)).

model based on object relations with an accurate model based on a physics sim-
ulation. By simulating scenes with the Bullet physics simulator, they predict
whether a scene is stable or not and in which direction the objects will fall (see
Figure 2.6). As input, a distribution of scene geometries is used. Then, by sam-
pling from this distribution and simulating each sampled scene, the stability of
the scene can be predicted.

In Sallami et al. (2019), the goal is to estimate a consistent scene model from
an input point cloud. First, the authors compute initial support relations using
geometric features from bounding boxes. Then, the Bullet physics simulator is
used to correct inconsistencies due to penetrations or collisions.

Desingh et al. (2016) propose a simulation-informed particle filter for physically
plausible scene estimation taking into account stacked objects with partial sup-
port. By assigning scene structures with plausible support relations a higher
weight, the estimation of object poses can be improved.

Force analysis methods compute support relations based on acting forces
between objects. As input, these methods expect object poses and shapes, which
need to be extracted from the perceived scene. Due to the physical grounding,
the results can be effectively used to manipulate scenes with stacked objects in
robotic manipulation tasks.
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Figure 2.7.: The separating plane Ps between two objects A and B in contact can
be used to infer the ACT relation. Object A is on the separating plane’s
positive side (regarding gravity). Therefore, ACT(A, B) holds. (taken
from Mojtahedzadeh et al., 2013)

Zheng et al. (2013) use a two-step approach. First, during geometric reasoning,
shape primitives are extracted from an input point cloud and physical proper-
ties like volume, mass, and supporting areas are estimated. As a next step for
physical reasoning, the authors define a physical stability function, which takes
into account the minimal work necessary to change the scene configuration. In
Zheng et al. (2015), they extend their work to find the most stable scene seg-
mentation.

Mojtahedzadeh et al. (2013) first extract box primitives from input point clouds.
Based on the extracted boxes, contact points are computed. Between each box
pair in contact, the acting force is calculated, i. e. the force that one object exerts
on the other due to gravity. To this end, separating planes are introduced at
each contact point. The normal vector of this separating plane in combination
with the gravity vector determines which object is on the positive side of the
plane. This object acts on the object on the negative side of the separating plane.
Figure 2.7 shows an example of the ACT relation extraction. In order to extract
support relations SUPP(B, A), the relation ACT(A, B) is inverted. This method only
considers cases where an object supports another object above it.
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Zhang et al. (2019) register multiple views of the same scene before segmenting
it. Then, they use static equilibrium analysis, i. e. the object state is analyzed in
terms of the forces that act upon the object. This results in a system of equations
for each contact point. The system is stable if the equations can be solved.

2.2.2. Summary and Review

Table 2.2 categorizes the works related to support relation analysis according to
their method, support relation representation, and input. In the following, the
advantages and disadvantages of the different methods are discussed.

Feature-based methods offer a way to extract support relations from images.
Both deterministic as well as probabilistic representations are available. How-
ever, these methods are based on a semantic grounding, i. e. the extracted sup-
port relations are not necessarily physically plausible. They are optimized to
improve image segmentation results.

Instead of learning a regression model based on image features, rule-based
methods define a set of rules that derive support relations based on geometric
object properties. The rules can be implemented in a straightforward way and
can be evaluated efficiently. However, these hand-crafted rules cannot cover all
relevant cases and require a deterministic object and relation representation.

Data-driven methods do not rely on hand-crafted features or rules but learn
to extract relevant features for support relation extraction from images. Since
these methods employ supervised machine learning, they require large image
datasets annotated with support relations. They do not consider 3D geometric
information since only color images are used.

Simulation-based methods allow modeling accurate physical interactions be-
tween objects with complex geometries. However, they require knowledge about
object geometry, pose, and physical properties.

Most suitable for robotic manipulation tasks are force analysis methods since
they allow physically accurate predictions while not requiring a full physical
simulation. Furthermore, some methods can cope with partial knowledge about
object properties. Nevertheless, existing methods still rely on deterministic rep-
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Table 2.2.: Comparison of Methods for Extracting Support Relations

Reference Method Repr. Input

Gupta et al. (2010) Feature-based Prob. RGB-D
Silberman et al. (2012) Feature-based Prob. RGB-D
Panda et al. (2013, 2016) Feature-based Prob. RGB-D
Jia et al. (2014) Feature-based Det. RGB-D
Xue et al. (2015) Feature-based Det. RGB-D
Deng et al. (2015) Feature-based Det. RGB-D
Chen et al. (2015) Feature-based Det. RGB-D
Zheng et al. (2013, 2015) Feature-based Det. RGB-D
Yang et al. (2017) Feature-based Det. RGB-D
Ahmadi and Khotanlou (2017) Feature-based Det. RGB-D

Liu et al. (2015) Rule-based Det. Object Poses
Huang et al. (2015) Rule-based Det. Object Poses
Zeng et al. (2018) Rule-based Det. RGB-D
Wu et al. (2019) Rule-based Det. RGB-D

Zhang et al. (2018) Data-driven Prob. RGB
Yang et al. (2018) Data-driven Prob. RGB
Ren et al. (2018) Data-driven Prob. RGB
Ahuja et al. (2020) Data-driven Det. RGB

Battaglia et al. (2013) Simulation-based Det. Object Poses
Desingh et al. (2016) Simulation-based Det. Object Poses
Sallami et al. (2019) Simulation-based Det. Object Poses

Zheng et al. (2013) Force Analysis Det. Voxel Grid
Mojtahedzadeh et al. (2013, 2015) Force Analysis Det. Point Cloud
Jonathan et al. (2017) Force Analysis Det. RGB-D
Zhang et al. (2019) Force Analysis Det. Voxel Grid
This thesis Force Analysis Prob. Point Cloud
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resentations. To capture the uncertainty in perception, a method for extracting
support relations with a probabilistic representation is needed.

This thesis proposes a novel probabilistic representation and extraction method
for support relations. The extraction method extends existing force analysis
methods by incorporating uncertainty about object geometries and poses.

2.3. Learning with Relational Representations

This thesis makes extensive use of relational scene representations for under-
standing and manipulating scenes with multiple interacting objects. In order
to learn a model, which predicts action effects, relational scene representations
are both the input and output of the model. Since the number of objects and
their relations in a scene can vary, this learning problem challenges traditional
machine learning approaches.

Traditional machine learning methods, e. g. neural networks, can learn models
with fixed sized input and output data. Furthermore, the order of the input and
output data is relevant, e. g. the first three features contain position information
ordered x− y − z. Consider the scenes in Figure 2.8 with three and respectively
four objects on a table. Once could decide design a neural network architecture,
where the feature vectors of each object are stacked on top of each other to create
an input vector. However, this input vector size needs to be fixed before training
the neural network. Therefore, predictions for scenes with additional objects be-
yond this limit cannot be done. Furthermore, by stacking object feature vectors,
this approach is inherently order-dependent, i. e. a first, second, and third object
need to be defined.

To overcome these problems, relational representations for machine learning
should meet the following requirements:

• Variable input size: Since the number of objects in a scene can vary, the
input size of the model should accommodate for this.

• Order independence: There is no inherent order among objects, therefore
the model needs be order invariant.

22



2.3. Learning with Relational Representations
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Add New Object

Figure 2.8.: Example task of predicting support relations between objects. Top:
Table-top scenes with three objects (left) and four objects (right). Bot-
tom: Neural network with stacked object feature vector as input and
output relation matrix as output. Once the input and output size
have been fixed, new objects cannot be handled by the neural net-
work without modifying the structure and retraining.

Recently, effective learning methods for relational structure have been proposed.
They are mostly referred to as graph neural networks (see Wu et al., 2020b, for a
survey), although they are not tied to using neural networks. First, this section
reviews how graph neural networks work. Then, their application to physics
prediction is presented.

2.3.1. Graph Neural Networks

One step towards achieving variable input size and order independence, are
Deep Sets (Zaheer et al., 2017). They support a variable number of input objects,
over which shared object features are computed and aggregated in a symmet-
ric way. Symmetric aggregation functions (e. g. mean) provide a permutation
invariant way to achieve the same results independent of order. Deep Sets con-
sider an arbitrary number of objects but do not consider relations between ob-
jects. Furthermore, they can be used for classification and regression to produce
aggregated results with a fixed size, but not variably sized output sets. The idea
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of symmetric aggregation can be extended from sets to graphs by implement-
ing interactions between related sets (Hartford et al., 2018). By aggregating over
related objects, the features of an object in the output set can be computed.

This can be rephrased and extended to directed graphs as both input and output
of a neural network, which is often called a graph neural network (Battaglia
et al., 2018). This model combines learnable update functions (usually neural
networks) and symmetric aggregation functions for both vertices and edges.

Formally, graph neural networks operate on a directed, attributed graph G =

(V,E,u) consisting of Nv vertices V , Ne edges E and global features u:

• Vertices V = {vi | i ∈ [1, Nv]} with dv-dimensional attributes vi ∈ Rdv

• Edges E = {(ek, rk, sk) | k ∈ [1, Ne], rk, sk ∈ [1, Nv]} with de-dimenstional
attributes ek ∈ Rde , receiver vertex index rk, and sender vertex index sk,
where the receiver and sender index define the vertices that are connected
through the k-th edge

• Global feature vector u ∈ Rdu with du dimensions

The attribute dimensions dv, de and du are model parameters that can be chosen
freely.

A GN block transforms an input graph G = (V,E,u) into an output graph
G′ = (V ′, E ′,u′) in three steps. As a first step, the updated edges are computed
according to sender and receiver vertices as well as the global state using the
update function Φe (see Figure 2.9b).

e′k = Φe(ek,vrk ,vsk ,u)

The second step updates each vertex vi depending on the global state and an
aggregation ρe→v over incoming edges E ′

i to vi, i. e. rk = i using the update
function Φv (see Figure 2.9c).

v′
i = Φv(vi,u, ρe→v(E

′
i))

As a third step, the global feature vector is updated according to an aggrega-
tions over all vertices ρv→u and all edges ρe→u using the update function Φu (see
Figure 2.9d).

u′ = Φu(u, ρe→u(E
′), ρv→u(V

′))
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(a) Input graph with three vertices {v1, v2, v3}, four edges, and a global feature u.
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(b) Edges are updated according to sender, receiver and global features.
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(c) Vertices are updated according to incoming edges.

𝑢

𝑣1

𝑣2

𝑣3

(d) Global features are updated according to aggregated vertex and edge features.

Figure 2.9.: A complete update step of a Graph Network (GN) block transforms
an input graph (a) into an output graph (d). This consists of three
steps: edge update (b), vertex update (c), and global update (d). Ver-
tices and edges not involved in the update step are grayed out.
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(a) Encode-Process-Decode architecture

GN𝑒𝑛𝑐 GN𝑑𝑒𝑐
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x×𝑀
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𝑡

(b) Recurrent GN architecture

Figure 2.10.: Different network architectures can be created by concatenating
GN blocks. The white box with ×M indicates that the block is
concatenated to itself M times, i. e. the inner block runs repeatedly
(taken from Battaglia et al., 2018).

The vertex, edge and global update functions Φv,Φe,Φu are learnable models
and often implemented as neural networks. The aggregation functions ρe→v,
ρv→u and ρe→u are fixed functions which need to be symmetric, i. e. invariant
to permutations of the input, and accept a variable number of arguments, e. g.
sum or mean. Figure 2.9 illustrates the three update steps on an example.

GN blocks can be concatenated into more complex network architectures, e. g.
the Encode-Process-Decode architecture or the Recurrent GN architecture, see
Figure 2.10. The Encode-Process-Decode archicture (Hamrick et al., 2018) first
encodes the input graph into a latent representation using a GN block Genc, see
Figure 2.10a. Then, a GN block Gcore is run repeatedly on this latent represen-
tation until a fixed iteration limit M is reached. Finally, the result is produced
by running a separate GN block Gdec as a decoder. The recurrent GN archi-
tecture (Sanchez-Gonzalez et al., 2018) shares encoder, decoder and core GN
blocks with the Encode-Process-Decode architecture, see Figure 2.10b. How-
ever, it adds a hidden representation Gt

hidden that is updated on each recurrent
update step t. This hidden representation is input and output of the core GN
block.

26



2.3. Learning with Relational Representations

2.3.2. Predicting Physics with Graph Neural Networks

Due to their ability to handle arbitrary number of objects and relations, graph
neural networks are a natural fit for predicting physics of multiple interacting
objects. For example, forces are transferred between objects in a contact rela-
tionship. The Encode-Process-Decode and Recurrent GN architectures mimic
the way how physics simulators work. The core GN block is run repeatedly
similar to an integration or update step in physics simulators. The idea is that
each update step brings the prediction closer to the ground truth.

Graph neural networks have been applied to physics predictions. In Battaglia
et al. (2016), the authors show simple planar examples, including n-body sys-
tems interacting through gravity, balls bouncing in a box, and strings colliding
with an object. Two use cases are evaluated, physics prediction and estimating
potential energy in the system. Battaglia et al. (2018) have investigated mass-
spring systems with an arbitrary number of masses and springs, which are fixed
at both ends.

Janner et al. (2019) consider a scenario, where an object is dropped onto stack
of blocks. The input is an image of the rendered scene. The proposed approach
segments the objects from the image and derive a latent object representation.
This latent object representation is used as the vertex data, while the pairwise
relations between objects form the edges. A graph neural network predicts the
latent object representation after the object has been dropped. From this pre-
dicted object representation, Janner et al. (2019) reconstruct the image after ac-
tion execution. Figure 2.11 shows this mechanism.

2.3.3. Summary and Review

This section introduced graph neural networks, which allow arbitrarily sized
graphs as input and output of machine learning methods. This way, limitations
of traditional machine learning approaches like fixed-sized input and output
vectors as well as dependence on order are overcome. Since graphs are a natu-
ral encoding for scenes with multiple interacting objects, i. e. objects are vertices
and relations are edges, graph neural networks are suitable for predicting phys-
ical interactions between multiple interacting objects.
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Figure 2.11.: The perception model extracts a latent object representation from
the input image. Pairwise relations are fed into the physics predic-
tion model, which outputs predicted object representations. The
rendering model creates images of the scene containing only a sin-
gle object. These images are merged into the output image (taken
from Janner et al., 2019).

Examples of learning to predict physics of multiple interacting objects imple-
mented using graph neural networks were presented. For simple scenarios like
mass-spring systems, colliding balls, gravitational orbits, and falling blocks,
graph neural networks have been shown to be able to learn the involved physics
and generalize to numbers of involved objects not seen during training.

A remaining open question is, whether graph neural networks can be used in
more complex interaction scenarios and whether their predictions are useful in
the context of robot manipulation tasks. This thesis will investigate action effect
prediction models for multiple interacting rigid and deformable objects based
on graph neural networks.
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2.4. Action Effect Prediction

Given a perceived current scene state and an action to execute, the goal of ac-
tion effect prediction is to predict the scene state after execution of that action.
Figure 2.12 illustrates input and output of action effect prediction methods. The
robot can perceive the current scene state on a sensory level through its cameras
in the form of images, point clouds, or voxel grids. On a higher level, scene state
perception can include object detection, localization and extraction of spatial
and support relations. Actions include but are not limited to pushing, grasp-
ing, lifting, and dropping objects. They are parametrizable, e. g. pushing into a
direction or dropping an object at a specified location, and executable, i. e. the
robot can execute an action given concrete parameters.

Action Effect 

Prediction

Current Scene State

Action to Execute

Predicted Scene State

Figure 2.12.: Conceptual input and output of action effect prediction methods.
As an example, the scene state is perceived as an image, showing
objects on a table and the robot’s hand. The action is pushing to
the right and the output is an image of the scene after the push has
been executed.

The area of action effect prediction can be divided into four main approaches.
Model-based methods build an analytical model of the physics involved in-
cluding physical object properties like mass, friction coefficients and inertial
moments. Instead of building an analytical model from scratch, simulation-
based methods use existing physics simulators to predict action effects. Data-
driven methods learn the correlation between scene perception, action parame-
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ters and perceived effects. There exist also hybrid methods, which follow mostly
the model-based or simulation-based approach but try to learn parts of the
model, e. g. the friction model.

2.4.1. Methods

Model-based methods build analytical models based on physical object prop-
erties, which need to be known a-priori. These approaches consider the effects
on a single object and often are limited to planar motions.

Early work on analytical models for pushing has been done, predicting the ob-
ject motion based on frictional forces (Mason, 1986; Lynch et al., 1992). Current
model-based approaches (Zhou et al., 2018; Hogan and Rodriguez, 2020; Yu
et al., 2016) are focused on planar pushing and predict object motion based on
end-effector motion.

Simulation-based methods reconstruct the perceived scene in a physics sim-
ulator and simulate actions to predict their effects on a sub-symbolic level. For
the scene reconstruction, knowledge about physical object properties is neces-
sary, which either requires prior knowledge or the ability to estimate these prop-
erties from the robot’s perception.

Weitnauer et al. (2010) predict planar object motion on a table using a physics
simulator. Furthermore, physics parameters are optimized to more accurately
resemble the real world action effects. Mösenlechner and Beetz (2011) want to
find suitable put down locations for objects during planning. They use a physics
simulator to predict action effect predicates for planning like contact, stability,
and occlusion. In Kunze and Beetz (2017), this concept is extended to predict ac-
tion effects for a complete planned manipulation sequence. On a sub-symbolic
level, the simulator predicts action effects, which are then translated into sym-
bolic predicates. Fromm and Birk (2016) minimize unintended object motion
while planning manipulation sequences. A cost function, which quantifies the
unintended object motion during action execution, is defined and evaluated us-
ing a physics simulator.
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Hybrid methods incorporate learning for different parts of a physics model.
In Zhou et al. (2018), the authors learn parameters of an even-degree homoge-
neous polynomial as a friction model. Another approach trains a convolutional
neural network to estimate object poses from depth images (Kloss et al., 2017,
2020). An analytical model then uses this object position to predict the effect of a
pushing action. Similarly, Wu et al. (2017) train a CNN to estimate object prop-
erties (position, velocity, mass, and friction), then predict how the scene evolves
over time using a physics simulation.

Data-driven methods learn the relationship between scene perception, action
parameters and expected outcome. They require a way of generating training
data, which can either happen on the robot or be augmented with data from
simulation. Additionally, some methods predict action effects directly on the
visual scene data (e. g. images or point clouds) while others rely on existing
localizers to extract object poses.

Early data-driven approaches have only considered the motion of a single ob-
ject. Omrčen et al. (2009) predict planar motion of a single object using binary
segmentation masks of the target object as input. In this work, the authors learn
the effects of pushing actions on different object classes separately. Kopicki et al.
(2011) use a visual object tracker to extract object poses from input images. Then,
a regression based method predicts relative pose changes of objects due to a
pushing action. In Elliott et al. (2016), an image-based prediction model is used
to predict planar motion of a single object. The goal is to find a push action that
makes the object graspable.

Instead of considering the motion of a single object, more recent approaches
consider a fixed amount of objects. By learning action effects in the image or
point cloud space, the limitation to a single object can be lifted. However, most
approaches rely on a constant number of object masks, which must be pre-
defined before training. These approaches cannot generalize beyond this fixed
number of objects. For example, Finn et al. (2016) use a fixed number of im-
age masks in their prediction model. Byravan and Fox (2017) and Byravan et al.
(2017) also use a fixed number of masks but their prediction model is based
on point clouds (Figure 2.13). The proposed model predicts full SE(3) transfor-
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Figure 2.13.: The SE3-Net prediction model from Byravan and Fox (2017) uses
point cloud and action data as input. The prediction output is gen-
erated for a fixed number k of masks (taken from Byravan and Fox,
2017).

mations, i. e. 3D translation and rotation, for each masked object. Nematollahi
et al. (2020) learn interaction dynamics during pushing actions with a similar
model.

By working only on images, the inherent limitations of a fixed number of objects
can be circumvented (Mottaghi et al., 2016; Agrawal et al., 2016; Eitel et al.,
2017). While these approaches are able to learn efficient models for predicting
effects on images, including non-planar object interactions, they are still limited
to the perceived 2D image plane. Zeng et al. (2018) use a height map with color
information as input and can, therefore, incorporate depth as well.

Recent works have applied implicit models effectively to determine action pa-
rameters using start and goal state as input. The goal of such reinforcement
learning models is to determine actions that yield the desired effects instead of
predicting action effects explicitly. Discriminative approaches rate the fitness of
a specific action vector to transform a given initial state into the desired goal
state. An action then can be chosen by sampling actions and maximizing this
score (Li et al., 2018; Eitel et al., 2017; Zeng et al., 2018). Contrary, a regression
approach predicts the action vector itself given start and goal state (Agrawal
et al., 2016).
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In order to handle an arbitrary number of objects, graph neural networks as dis-
cussed in section 2.3 have been used in a few works. However, these approaches
still only consider planar movement or are limited to object movement in the
image plane. Janner et al. (2019) learn an object-centric physics model by train-
ing a graph neural network using a physics simulation. The input is a rendered
2D image of blocks, where one block is suspended in the air. Then, the physics
model predicts how the image will look after the block has fallen. In the exper-
iments, the robot lets a block fall onto other blocks, mimicking the simulations.
Tekden et al. (2020) consider planar motion of multiple connected rigid objects.
A graph neural network is used, where the vertices encode an arbitrary number
of objects and the edges represent the connection information.

2.4.2. Summary and Review

Table 2.3 gives an overview and compares related works in the area of action
effect prediction. It illustrates the differences between related approaches re-
garding the following aspects:

• Method: Model-based approaches use an analytical physics model to de-
scribe and predict object interactions and motions. In contrast, data-driven
approaches learn a model from training data and do not rely on an explicit
physics model. If major parts of an approach require a physics model, but
other parts are learned, we call it a hybrid method.

• Explicit: An explicit prediction model produces the state after action exe-
cution as an output, whereas an implicit approach learns an internal pre-
diction model, which does not produce human-interpretable results.

• Number of Objects: Many approaches are designed to predict the motion
of a single object. If the approach can handle more than one object but
still limits the number of objects it can handle a priori, either by design or
during training time, we categorize the number of objects as fixed. If the
maximum number of objects is not inherently limited, we say that such an
approach can handle multiple objects.

• Dimension: We call an approach 2D if it constrains objects to planar mo-
tion. If an approach explicitly models non-planar motions, we categorize it
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as 3D. Note, that this does not require the approach to model full 6D trans-
formations. Some approaches only process 2D images, which are nonethe-
less able to handle specific non-planar cases. We label such approaches
2D*.

• Input and Output: Common representations for the input and output of
an approach include images (color and/or depth), object segmentation
masks (short: mask), object poses and pose changes. We use the term ac-
tion vector to refer to the encoding for parametrizing an action, e. g. start
point, direction, and length of a push.

While model-based and simulation-based methods give very accurate results,
they require a-priori knowledge about the relevant physical properties. In this
work, we do not assume that knowledge about physical properties like friction
or inertial moment is known. Hybrid approaches are able to deal with some un-
known object properties by learning them during interaction. However, similar
to model-based approaches, existing methods are still limited to actions applied
to a single object.

Implicit data-driven approaches use reinforcement learning to choose actions in
complex manipulation scenarios. However, these approaches do not predict the
scene state after action execution directly. Therefore, they lack interpretability
and explainability.

Explicit data-driven approaches are promising, since they are able to handle
more complex scenes with more than one object. Often, these approaches are
still limited to a fixed number of objects due to the use of a constant number of
segmentation masks. Image-based approaches are able to handle an arbitrary
number of objects, but the motion of objects is constrained to the image plane.
Furthermore, the object state needs to be extracted from the predicted image.

There are a few data-driven approaches, which have used graph neural net-
works to predict object motion. This way, the limitation to a fixed number of
objects can be lifted. Existing works have used graph neural networks to suc-
cessfully predict planar object motion.
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Table 2.3.: Comparison of Action Effect Prediction Approaches

Reference Method Explicit # Objects Dim. Input Output

Mason (1986) Model-based Yes Single 3D Push velocity Direction of rotation
Lynch et al. (1992) Model-based Yes Single 2D Push velocity Object velocity
Hogan and Rodriguez (2020) Model-based Yes Single 2D End-effector motion Object velocity

Zhou et al. (2018) Hybrid Yes Single 2D End-effector motion Object velocity
Wu et al. (2017) Hybrid Yes Multiple 2D* Color images and action vector Color images
Kloss et al. (2020) Hybrid Yes Single 2D Depth image and action vector Object pose

Weitnauer et al. (2010) Simulation Yes Single 2D Object Poses Object Poses
Mösenlechner and Beetz (2011) Simulation No Multiple 3D Object Poses Stability
Kunze and Beetz (2017) Simulation Yes Single 3D World State World State
Fromm and Birk (2016) Simulation No Multiple 3D Object Poses Manipulation Cost

Omrčen et al. (2009) Data-driven Yes Single 2D Mask Object velocity
Kopicki et al. (2011) Data-driven Yes Single 3D Object Poses Relative pose change
Elliott et al. (2016) Data-driven Yes Single 2D Object pose and action vector New object pose
Byravan et al. (2017) Data-driven Yes Fixed 3D Point cloud and action vector Point cloud
Finn et al. (2016) Data-driven Yes Fixed 2D* Image Image
Tekden et al. (2020) Data-driven Yes Multiple 2D Object Poses Object Poses
Mottaghi et al. (2016) Data-driven Yes Multiple 2D* Image and force vector Image
Janner et al. (2019) Data-driven Yes Multiple 2D* Image Image
Li et al. (2018) Data-driven No Single 2D Masks and action vector Similarity score
Eitel et al. (2017) Data-driven No Multiple 2D* Image and action vector Success probability
Agrawal et al. (2016) Data-driven No Multiple 2D* Images Action vector
Zeng et al. (2018) Data-driven No Multiple 3D Height map Dense expected reward
Nematollahi et al. (2020) Data-driven Yes Fixed 3D Point cloud and action vector Point cloud
This thesis Data-driven Yes Multiple 3D Object Poses Object Poses
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In this thesis, an explicit action effect prediction is required, which also increases
interpretability of the prediction model. Data-driven methods seem most promis-
ing due to their ability to learn complex object interactions. In the area of data-
driven methods, graph neural networks can handle multiple interacting objects
without being limited to a fixed number of objects. Contrary to existing works,
this thesis considers full 3D object motions, which has not been addressed in
the context of explicit action effect prediction for multiple interacting objects.

2.5. Deformable Object Dynamics

The previous section discussed action effect prediction in general. However,
most of the presented approaches only deal with rigid objects. Deformable ob-
ject like cloths, bags and ropes require additional modeling, since a single pose
is not sufficient to describe their configuration. This section first discusses exist-
ing simulation environments that were designed to handle deformable objects
explicitly. Then, prediction methods tailored for deformable object interactions
are presented.

2.5.1. Simulation Environments

Multiple simulation environments are capable of modeling and simulating de-
formable objects. They were either directly designed for or have been extended
to handle deformable objects.

SoftGym: SoftGym1 is a collection of open-source simulation benchmarks for
manipulation of deformable objects (Lin et al., 2020). The goal of SoftGym is
to facilitate reproducible research in the area of Reinforcement Learning (RL)
for deformable objects. Internally, SoftGym is based on the Nvidia FleX physics
simulator, which models deformable objects in a particle and position based
dynamical system (Müller et al., 2007; Macklin et al., 2014).

1https://sites.google.com/view/softgym
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The SoftGym benchmark suite contains different tasks, in which the goal is to
manipulate either a rope, a cloth/towel or fluids. The manipulators range from
points on the deformable object, which can be controlled freely, to a robot arm
that manipulates the object.

SOFA: Simulation Open Framework Architecture (SOFA)2 is an open-source
framework for implementing physics simulations. Its first application was sim-
ulation of the human organs during surgery (Allard et al., 2007). SOFA contains
different methods for modeling deformable objects: mass-spring systems, Finite
Element Method (FEM) and free-form deformation grids.

Although SOFA has mostly been used for simulating soft tissue for medical ap-
plications (Faure et al., 2012), these methods can also be used to model robotic
manipulation of other deformable objects like cloths (Yin et al., 2021), disman-
tling electronic devices (Suárez-Hernández et al., 2020), or tracking the state of
foam-like objects (Petit et al., 2015) and plush toys (Lagneau et al., 2020).

MuJoCo: Multi-Joint dynamics with Contact (MuJoCo)3 is a physics simula-
tor designed for model-based optimization of contact-rich manipulation tasks
(Todorov et al., 2012). While it is mostly used to model dynamics of robot arms
and rigid objects, it can also simulate deformable objects as collection of regular
rigid bodies connected through joints, tendons or soft constraints. In MuJoCo,
these composite objects can be used to model ropes, cloth or other objects (e. g.
Wu et al., 2020a).

Unity with Obi Cloth: Unity4 is a 3D engine focused on real-time rendering
applications, e. g. games, animation, architecture, etc. Various extensions for
specific use cases are available for Unity, including the Obi Cloth5 extension,
which focuses on the simulation of deformable cloth-like objects. Figure 2.14
shows examples of a cloth interacting with rigid objects. Obi Cloth uses a posi-
tion and particle based simulation similar to SoftGym. It is fully integrated into

2https://www.sofa-framework.org
3https://mujoco.org/
4https://unity.com
5http://obi.virtualmethodstudio.com/
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Figure 2.14.: Examples of deformable objects rendered in Unity and simulated
using the Obi Cloth extension. The left image shows a cloth that
covers multiple spheres. On the right, the cloth covers a single
sphere on a block. (Images are taken from the Obi Cloth website)

Unity and therefore allows to use the integrated editor tools for creation and
manipulation of scenes containing deformable and rigid objects.

2.5.2. Prediction Methods

There are two types of methods for predicting complex dynamics of deformable
objects as a result of an action. On the one hand, model-based methods try to
model the dynamics of deformable objects analytically, determine the model
parameters, and use the parametrized model for prediction. On the other hand,
data-driven methods collect data about action effects from simulation or real in-
teractions, learn the dynamics of deformable object interactions from this data,
and use the learned model for prediction.

Model-based Methods: Traditional methods for cloth dynamics are based on
analytical modeling (see Hou et al. (2019) and Yin et al. (2021) for a review). One
popular approach for analytical modeling is FEM, which mostly applies to fab-
rics of simple shapes if real-time simulations are required (Sanchez et al., 2018).
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Another approach is to construct a particle-based simulation system based on
the measured physical properties like friction, mass, elasticity, bending, etc.
(Luible and Magnenat-Thalmann, 2008). However, these methods are compu-
tationally expensive, especially when the geometric and topological structure is
complex.

Data-driven Methods: Data-driven methods rely on learning the dynamics of
deformable object interactions from data. Here, the dynamics are captured with-
out explicitly measuring and modeling the object properties. Recently, many re-
search works addressed rope dynamics modeling. Battaglia et al. (2016) inves-
tigate graph neural networks networks and learn the dynamics of a simulated
rope environment. Watters et al. (2017) use a front-end network to encode the
visual input as latent representations and build a dynamics estimator based on
interaction network structure. Yan et al. (2020) take images as input and use a
neural network to encode the rope state as a set of connected nodes, and apply
a bi-directional LSTM to capture the dynamics based on the node representa-
tions. For 2D cloth-like objects, physics simulators and deep neural networks
have been combined into a prediction model (Oh et al., 2018; Lee et al., 2019).
These works use the physics simulation to predict coarse motion and refine the
prediction results using deep neural networks. Hafner et al. (2019) encode input
images to a latent representation using an autoencoder and predict the future
state based on a recurrent neural network structure. The proposed approach is
evaluated in SoftGym (Lin et al., 2020).

2.5.3. Summary and Review

Now, we summarize and review the results of the previous sections and identify
promising methods that will be utilized in this thesis. Concretely, simulation en-
vironments and prediction methods for deformable objects will be discussed.

Simulation Environments: The presented simulation environments use dif-
ferent methods to model and simulate deformable objects. Common methods
include FEM and particle-based simulations.
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The purpose of SoftGym is to serve as a benchmark for further research about
reinforcement learning for manipulation tasks. New tasks and scenes can be
designed by hand. However, creating many randomized scenes is not the main
focus of SoftGym and therefore not well supported. SOFA is used for both med-
ical and robotic applications. Medical applications include modeling soft tissue
and organs in the human body, while robotic applications include the manipu-
lation of various soft objects and dismantling electronic devices. The framework
is flexible and extensible, so that deformable objects like cloths or bags can be
modeled and simulated but require a lot of parameter tuning to achieve realistic
simulation behavior. MuJoCo is designed to handle contact-rich interactions be-
tween actuated robots and rigid objects. While it can model deformable objects
via joints, tendons and soft constraints, it has been found that the simulated
behavior for deformable objects does not accurately model reality in more com-
plex manipulation tasks (Hoque et al., 2020). Unity with the Obi Cloth extension
offers good customization capabilities and tooling due to Unity’s wide spread
use for different applications. It is easy to automate the process of generating
new randomized scenes. Therefore, we have chosen Unity with the Obi Cloth
extension as a simulator for deformable object interactions in this thesis.

Prediction Methods: Model-based and data-driven prediction methods for
deformable object dynamics have been presented. Model-based methods allow
analytical modeling of different cloth-like and deformable objects. However,
they require a priori knowledge about physical parameters and are often not
real-time viable. Data-driven methods learn prediction models from data. They
do not require complete knowledge about physical properties and can be eval-
uated efficiently. However, they may require a lot of training data, which often
is generated in simulation.

All presented methods have their limitations when faced with more complex
scenarios. First, most of these works are devoted solely to modeling 1D linear
objects like ropes or cables. When 2D cloth-like objects are considered, the au-
thors implicitly assume that their topology is simple. Second, the considered
actions are typically restricted to picking and placing. In this thesis, we study
the dynamics of complicated deformable objects interacting with multiple rigid
objects, as well as a rich set of actions.
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2.6. Discussion

This chapter presented and reviewed the related work regarding central topics
of this thesis. Several promising approaches, which will be applied, extended
or evaluated in this work, were discussed and research gaps addressed by this
thesis were identified.

Relational Scene Representation: Representations for object relations can
describe geometric properties like spatial relation or encode physical properties
like support relations. Relation models can be deterministic or probabilistic, i. e.
assign existence probabilities to relations. Representations with semantic and
physical grounding were discussed. For robotic applications, physical ground-
ing is necessary to plan robust manipulation sequences. This thesis contributes
a probabilistic representation for support relations with physical grounding.

Support Relation Extraction: The review of different support relation ex-
traction methods included feature-based, rule-based, data-driven, simulation-
based and force analysis approaches. Out of these methods, simulation-based
and force analysis are grounded physically, making them suitable in the context
of robot manipulation tasks. A remaining challenge is the incorporation of un-
certainty about object geometries and poses. To this end, this thesis implements
and evaluates a probabilistic extraction method for support relations extending
existing force analysis approaches.

Learning with Relational Representations: Using relational representations
as input and output poses a challenge for traditional machine learning methods,
which only support fixed sized input and output and whose results are depen-
dent on the order of the input data. Graph neural networks address these prob-
lems. The input and output of graph neural networks are attributed graphs,
with a variable number of vertices and edges. Through careful choice of ag-
gregation functions, order-invariance can be achieved. Graph neural networks
have been successfully applied to physics prediction tasks with varying number
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of interacting objects. We have identified graph neural networks and in partic-
ular the Encode-Process-Decode architecture as a promising avenue for action
effect prediction with multiple interacting objects.

Action Effect Prediction: We discussed model-based, simulation-based, hy-
brid and data-driven action effect prediction methods. Existing works are either
limited to scenes with a fixed number of objects or only consider planar object
motion. To address this research gap, this thesis proposes an explicit action ef-
fect prediction for 3D motions and multiple interacting rigid objects.

Deformable Object Dynamics: Different simulation environments for de-
formable object dynamics were discussed. This thesis will use Unity with the
Obi Cloth extension as simulator for deformable object interactions due to its
customization capabilities and the ability to programmatically generate ran-
domized scenes easily. Furthemore, model-based and data-driven prediction
methods for deformable objects have been compared. In this thesis, we pro-
pose a graph-based representation for deformable object interactions and learn
an action effect prediction model for various tasks.

In summary, this chapter has reviewed relevant topics, analyzed promising
methods and tools, and identified existing research gaps, which lead to the
contributions in the following chapters of this thesis. A novel probabilistic re-
lational scene representation and support relation extraction method are pro-
posed and implemented in chapter 3. Chapter 4 presents action effect prediction
for both rigid and deformable objects based on relational scene representations
using graph neural networks. In chapter 5, applications of these methods to
humanoid robotics are presented.
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Robots operating in dynamic and cluttered environments must be able to infer a
physically plausible scene representation, which allows to leverage the environ-
ment for manipulation tasks and ensures successful task execution. In cluttered
scenes, pure geometric reasoning about the scene is insufficient to plan and exe-
cute actions. Therefore, the robot must be able to acquire and utilize knowledge
about the scene’s structure, i. e. how objects physically interact with each other,
in order to generate feasible and safe action plans.

Human perception automatically combines visual features, prior knowledge,
and basic physical constraints into a plausible model of the scene. The latter
part is known as naive physics (Hayes, 1978; Vosniadou, 2002) since the human
brain does not accurately model all physical phenomena at work. Instead, a
simplified model based on prior knowledge about action-effect relations is em-
ployed when acting in the world. Furthermore, by identifying ambiguities and
uncertainties in their scene understanding, humans are able to interact with the
environment to verify hypotheses about objects, their relations as well as pos-
sible interactions with them, and to acquire new knowledge about the scene
structure. Inspired by the concept of naive physics, we have investigated how
a robot can extract physically grounded support relations between entities in
the scene based on geometric reasoning. Since the proposed approach does not
require prior knowledge about the physical properties of involved objects, we
need to explicitly model the uncertainty of objects and support relations.

In this chapter, we propose a representation and extraction method for proba-
bilistic support relations, see Figure 3.1. The pipeline starts with an input point
cloud of the scene, which is segmented using state-of-the-art segmentation meth-
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Figure 3.1.: Overview of the pipeline for extracting probabilistic support rela-
tions from an input point cloud of a scene.

ods, i. e. Locally Convex Connected Patches (LCCP) (Stein et al., 2014). Then, ge-
ometric primitive fitting generates a probability distribution over object shapes
and poses in the scene. By sampling from this probability distribution and an-
alyzing forces between objects, probabilistic support relations can be extracted.
The chapter addresses the following three problems:

• Probabilistic Object and Support Relation Representation: How to rep-
resent objects and their support relations while capturing the uncertainty
in object shapes, poses, and relation existence?

• Probabilistic Geometric Primitive Fitting: How to fit probabilistic geo-
metric shape models to a point cloud of a scene captured by the robot?

• Extraction of Probabilistic Support Relations: How to extract probabilis-
tic support relations from geometric shape models?

The chapter is structured as follows. First, section 3.1 describes a novel proba-
bilistic representation for object shapes, poses and support relations. Section 3.2
presents a method for fitting geometric primitives to a point cloud while taking
into account shape and pose uncertainty. In section 3.3, a method for extracting
physically plausible support relations from a probabilistic object representation
is described. Finally, section 3.4 evaluates the proposed methods based on ex-
isting and newly recorded datasets. Parts of this chapter have been published
in Paus and Asfour (2021) and Kartmann et al. (2018).
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3.1. Probabilistic Object and Support Relation
Representation

We decompose a scene into a set of geometric primitives. To capture the un-
certainty about the parameters of these primitives, we define a probability dis-
tribution over primitive shapes and their poses. Furthermore, we define physi-
cally grounded support relations between objects. Objects and relations are then
combined into a support graph, whose nodes contain the object parameters and
whose edges contain the existence probability for a support relation.

Geometric Primitives: We assume that the shape of an object in a scene can be
approximated using geometric primitives. In this work, a geometric primitive
can be a box, a cylinder, or a sphere, but the set of primitives can be extended
to other shape primitives. Each primitive pi = (ti,xi) is defined by a primitive
type ti ∈ {Box,Cylinder, Sphere}, and a state vector xi ∈ RN(ti). The state vector
parametrizes the geometry of a primitive, e. g. a sphere is parameterized by four
variables xi = (cx, cy, cz, r)

T : a three-dimensional center point (cx, cy, cz)T and a
radius r. The size N(ti) of the state vector depends on the primitive type:

• N(Box) = 10 (position, orientation, extents)

• N(Cylinder) = 8 (position, direction, radius, height)

• N(Sphere) = 4 (position, radius)

A scene consists of a set of n objects O = {o1, o2, . . . , on}.

Probability Distribution over Geometric Primitives: The geometry of each
object oi is represented as a joint probability distribution P (ti,xi | oi) over the
primitive type ti and state vector xi with i ∈ [1, n]. Since the primitive type
and state vector are dependent variables, we can represent the joint probability
distribution as the product of a discrete distribution over primitive types P (ti |
oi) and a dependent distribution over state vectors P (xi | ti, oi):

P (ti,xi | oi) = P (ti | oi) · P (xi | ti, oi)
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Chapter 3. Representation and Extraction of Support Relations

We choose a multi-variate Gaussian distribution to represent P (xi | ti, oi):

P (xi | ti = Box, oi) ∼ N (µi,Box,Σi,Box) (3.1)

P (xi | ti = Cylinder, oi) ∼ N (µi,Cylinder,Σi,Cylinder) (3.2)

P (xi | ti = Sphere, oi) ∼ N (µi,Sphere,Σi,Sphere) (3.3)

Note that the mean µi,ti ∈ RN(ti) and the covariance Σi,ti ∈ RN(ti)×N(ti) have dif-
ferent dimensions corresponding to the primitive type ti and the corresponding
state vector dimension. Furthermore, the state vector xi includes both pose and
shape parameters, i. e. we do not assume that the shape and pose are indepen-
dent.

Given a scene with a set of objects O, we represent the probability distribution
over the complete scene geometry as a joint distribution over independent ob-
ject geometries. Therefore, we can express the geometric scene distribution as
the product of distributions for the set of primitives P = {p1, p2, . . . , pn}:

P (P | O) =
n∏

i=1

P (pi|oi) =
n∏

i=1

P (ti,xi|oi)

Definition of support relations: A support relation is a binary relation be-
tween objects. Since we want to analyze which objects are physically supported
by other objects in order to determine safe manipulation sequences, we rely on
physical grounding for our definition (similar to Mojtahedzadeh et al. (2015)):

Given an object set O, a support relation is a binary relation SUPP ⊆
O × O. For two objects A, B ∈ O, if A supports B then (A, B) ∈ SUPP.
Object A supports object B if and only if removing A causes B to lose
its motionless state.

We use the terminology “object A supports object B” and “support exists be-
tween object A and object B” interchangeably. For shorter notation, we define

SUPP(A, B) = (A, B) ∈ SUPP, A, B ∈ O.
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Figure 3.2.: A probabilistic support graph for the object set O =

{o1, o2, o3, o4, o5}. Each vertex contains the parameters for dis-
tributions over primitive type and state vector. Each edge is
annotated with the existence probability of a support relation
between the corresponding objects.

The existence probability of a support relation SUPP(A, B) depends not only on
the objects A and B, but also on other objects in O:

P (SUPP(A, B) | O) = P ((A, B) ∈ SUPP | O), A, B ∈ O

We can now represent objects and the corresponding support relations as a di-
rected graph G = (V, E), in which the vertices V = O represent objects and the
edges E = SUPP represent support relations. The graph G is called a determinis-
tic support graph. By considering the probability distributions over the scene
geometry and support relations, we can define a probabilistic support graph
Gprob = (Vprob, Eprob) where each vertex vi ∈ Vprob includes the parameters of the
joint probability distribution P (ti,xi | oi) and each edge ei ∈ Eprob includes the
existence probability of a support relation P (ei ∈ SUPP | O). Figure 3.2 shows
an example of a probabilistic support graph.
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3.2. Probabilistic Geometric Primitive Fitting

Here, we describe how the probabilistic object representation can be extracted
from an input point cloud of a scene. First, we segment the input point cloud us-
ing the LCCP algorithm (Stein et al., 2014). Based on the segmented point cloud,
we propose a method for extracting a probability distribution over possible ob-
ject geometries using a modified Random Sample Consensus (RANSAC) algo-
rithm. After describing how we use RANSAC for fitting geometric primitives
like spheres, cylinders and boxes, a novel way for quantifying the uncertainty
in the extracted geometry is proposed.

Problem Formulation

A colored point cloud C consists of m points

C =
{
pj = (xj, yj, zj, cj) | j ∈ [1,m]

}
,

where each point contains position (xj, yj, zj) and color cj .

A segmentation S separates a point cloud into n disjunct segments.

S =
{
Si ⊆ C | i ∈ [1, n]

}
,

⋃
i∈[1,n]

Si = C, ∀i, j with i ̸= j : Si ∩ Sj = ∅

Given a segmentation S, we want to determine the probability distribution over
geometric primitives P (P | O). We assume that each segment Si corresponds to
an object oi and, therefore, a geometric primitive pi in the scene, i. e. |O| = |P| =
|S| = n. This problem can be further subdivided into finding the probability
distribution over primitive type ti and geometric parameters xi for each object
oi given its corresponding segment Si:

P (ti,xi | oi) = FitGeometricPrimitive(Si)

Geometric Primitive Fitting using RANSAC

Given a segment S, we want to determine the best fitting geometric parameters
x for all possible primitive types t ∈ {Box,Cylinder, Sphere} as well as an error
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3.2. Probabilistic Geometric Primitive Fitting

Algorithm 1: Geometric Primitive Fitting using RANSAC
Input: S: Point cloud segement

jmax: Maximum number of iterations
nMSS : Number of points in the Minimum Sample Set
δ: Inlier error threshold

Output: xbest: Best fitting model parameters
xbest = 0;
εbest = ∞;
for j ∈ [1, jmax] do

MSS = selectRandomSubset(S, nMSS);
xfit = fitModel(MSS);
I = ∅;
for pk ∈ S do

ε = computePointError(xfit, pk);
if ε<δ then

I = I ∪ {pk};
end

end
εinlier = computeInlierError(xfit, I);
if εinlier < εbest then

εbest = εinlier;
xbest = xfit;

end
end
return xbest;

measure. Since we only consider a single segment, we omit the object index i

for easier notation.

RANSAC (Derpanis, 2010; Bolles and Fischler, 1981) is an method for model
parameter estimation under the assumption that a given set of observed data
contains outliers. It is a probabilistic and iterative algorithm, where the proba-
bility to find the best fitting parameters increases with the number of iterations.
In our case, the model parameters x describe the pose and shape of geomet-
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ric primitives and the observed data are points pj ∈ S in the segmented point
cloud S.

An implementation of RANSAC for geometric primitive fitting is depicted in al-
gorithm 1. Central part is the loop, which iterates until the limit jmax is reached.
During each iteration, a Minimum Sample Set (MSS) is drawn from all points
in S. The MSS has a fixed size nMSS , which is the minimum number of points
necessary to estimate the model parameters of a geometric primitive. Note that
this number varies between primitive types. The model parameters xfit for the
selected MSS are computed. Then, the inlier set I ⊆ S is determined. The inlier
set contains all points pk ∈ S, which have an error smaller than the threshold δ

to the computed model. As a final step, the error over all inliers is computed. If
this inlier error is smaller than the error of the current best model, we update
the best model accordingly. We use mean quadratic distance of the inlier points
to the surface of the fitted geometric primitive as the error function. The imple-
mentation of fitting the model for a given MSS is different for each geometric
primitive type. In the following, we describe the procedure for the different
primitive types.

• A sphere can be described by four parameters xSphere = (cx, cy, cz, r) with
the center point c = (cx, cy, cz) and the radius r. Each point p ∈ R3 on the
surface of a sphere fulfills the following equation:

∥(p− c)∥2 = r2 (3.4)

Determining a sphere’s parameters requires a MSS with four distinct points
and solving equation 3.4 for c and r.

• A cylinder is parametrized by a center point c = (cx, cy, cz), a central axis
direction a = (ax, ay, az) with ∥a∥ = 1, a radius r, and a height h. By esti-
mating the surface normals for each point in S, two points with normals
can be used as a MSS for cylinders. First, the intersection of two lines along
the normal vectors through the two points is calculated as the center point
c of the cylinder. In a next step, the vector perpendicular to the plane both
points lie in, is calculated as the axis direction a of the cylinder. The ra-
dius r is the distance of either point from the MSS to the central axis line
L : c+ t ·a. To determine the height h of the cylinder, we project the inliers
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3.2. Probabilistic Geometric Primitive Fitting

onto the line L and determine the distance between the furthest projected
inliers.

• A box can be described by its central position c = (cx, cy, cz), orientation
q ∈ H as a quaternion, and the extents e = (ex, ey, ez). Garcia (2009) pro-
posed an approach for extracting boxes from point clouds, that requires
all six faces of a box to be visible. We modified this approach to only re-
quire two visible faces, making it viable to be used with point clouds cap-
tured from a single view point. The MSS for boxes contains five points
MSS = {p1,p2,p3,p4,p5}. First, a plane P1 through the first three points
p1, p2 and p3 is constructed.

P1 : p1 + s · (p2 − p1) + t · (p3 − p1) s, t ∈ R

Note that this requires p1, p2, and p3 to not be co-linear. Then a second
plane P2 is constructed from the remaining points p4 and p5 and the pro-
jection of p4 onto the plane P1.

P2 : p4 + s · (p5 − p4) + t · (projection(p4, P1)− p4) s, t ∈ R

This requires p4 and p5 to not lie on the plane P1.

We can now construct the three normals of the box with planes P1 and P2.

n1 =
(p2 − p1)× (p3 − p1)

∥ (p2 − p1)× (p3 − p1) ∥

n2 =
(p5 − p4)× (projection(p4, P1)− p4)

∥ (p5 − p4)× (projection(p4, P1)− p4) ∥
n3 = n1 × n2

In order to define the plane equations for three sides of the box, we then
determine the most frequent displacements d1, d2 and d3 given the normals
n1, n2 and n3 and the points in the segment S. We use a histogram with
128 bins for this task and select the displacement with the maximum bin
count. Each normal ni and corresponding displacement di define a side
plane of the box. The three normals determine the orientation q ∈ H of the
box. For each plane, the set of inlier points Ii ⊆ S is determined, whose
distance to the plane is below the threshold δ.
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Figure 3.3.: By projecting an inlier point p0 onto planes P1 and P2, we compute
the line starting point pL. The three lines L1, L2 and L3 go through
this point along their respective plane normals n1, n2 and n3.

As a final step, we compute the central position c and the extents e of the
box, given the three planes (ni, di) and inlier sets Ii. First, we define three
lines Li along the respective normals ni that intersect at a single point pL

that is the result of two consecutive projections of an inlier point p0 onto
the first two planes (see Figure 3.3).

Li : pL + t · ni

For each line Li, we project the inlier points Ii onto the line and compute
their projection parameters t ∈ Ti ⊂ R:

Ti = {t | p = pL + t · ni, p ∈ Ii}

We could now compute the extents of the box as the difference of the max-
imum and minimum from these projection parameters. Since this can eas-
ily be biased by outliers, we use the first and the 99th percentile instead.

ei = P99%(Ti)− P1%(Ti)
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Figure 3.4.: Projection of the blue inlier points onto line L1, whose direction is
along the plane normal n1. Not all inlier points are drawn for illus-
tration purposes. Points in gray are filtered by the percentile outlier
detection. The green points mark the first and the 99th percentile,
which are used to compute the size of the box e1 along L1.

Figure 3.4 illustrates the projection for line L1. The center point of the box
can now be computed starting at the middle point m3 of the edge along
L3 and going halfway along the normals:

c = m3 −
e1
2
· n1 −

e2
2
· n2

Quantifying Uncertainty during Geometric Primitive Fitting

We now modify the RANSAC algorithm for geometric primitive fitting to es-
timate the joint probability P (ti,xi | oi) over primitive type ti and geometric
parameters xi.

During the geometric primitive fitting, points are randomly drawn from the
segment Si. For each primitive type, the state vector is estimated based on the
drawn points. Then, the number of inlier points and the sum of squared errors

53



Chapter 3. Representation and Extraction of Support Relations

to all points in the segment is computed. Instead of selecting the primitive pa-
rameters which produced the maximum number of inliers, we collect all fitted
primitive types ti,j , state vectors xi,j , and the corresponding sum of squared er-
rors εi,j where j indicates the RANSAC iteration count. Given the total number
of RANSAC iterations jmax, we can now estimate the discrete probability dis-
tribution over primitive types P (ti | oi) by counting the occurrences of each
concrete primitive type T :

P (ti = T | oi) =
1

jmax
·
jmax∑
j=1

(ti,j = T ) (3.5)

The error can be used to calculate the weighted mean and covariance for the
state vectors per primitive type. For each object oi and primitive type ti in each
RANSAC iteration j, we assign a normalized weight wi,j using a Boltzmann
distribution over the error εi,j . The constant β is a parameter, which controls the
impact of errors on the weight. The the sum of all weights for a particular object
η serves as a normalization factor that ensures the sum of all weights equals 1.

wi,j =
1

η
· e−εi,j/β, η =

jmax∑
j=1

e−εi,j/β

Now the weighted means µi,Box, µi,Cylinder and µi,Sphere are computed per primi-
tive type T :

µi,T =

jmax∑
j=1

wi,j · xi,j

Σi,T = (σj,r) , σj,r =

∑jmax
j=1 wi,j · (xj,r − µi,T ) · (xi,r − µi,T )

T

1−
∑jmax

j=1 w
2
i,j

This defines a multi-variate Gaussian distribution per primitive type as defined
in equations 3.1 – 3.3.

P (xi | ti = T, oi) ∼ N (µi,T ,Σi,T ) (3.6)

Together with the discrete probability distribution over primitives types, we get
the desired joint probability

P (ti,xi | oi) = P (ti | oi) · P (xi | ti, oi). (3.7)
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In appendix C, we show that the samples generated by RANSAC actually fol-
low a multivariate Gaussian distribution.

3.3. Extraction of Probabilistic Support Relations

Given a probability distribution over geometric primitives in the scene as de-
termined by the previous section, this section proposes a method for extracting
support relations and their existence probability. First, a method for extract-
ing support relations from concrete geometric primitves is presented. Then, an
extension to propagate the uncertainty from geometric primitives to support
relations is proposed.

3.3.1. Deterministic Support Relation Extraction

We want to determine the binary support relation SUPP ⊆ P × P with phys-
ical grounding, given a concrete set of primitives P = {p1, p2, . . . , pn} with
pi = (ti,xi). Figure 3.5 depicts an example scene as a point cloud, the extracted
geometric primitives, and the derived support relations.

(a) Point cloud (b) Geometric primitives (c) Support graph

Figure 3.5.: Geometric primitives are extracted from a 3D point cloud captured
by an RGB-D camera (a) and used as input. Given the geometric
shape and pose of each object (b), we extract binary support rela-
tions and represent them as a directed graph (c). Black edges rep-
resent certain support, blue edges are unknown and red edges are
potential top-down support relations.
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Existing force analysis methods (Mojtahedzadeh et al., 2015; Zhang et al., 2019)
for extracting support relations are based on Static Equilibrium Analysis (SEA).
SEA requires all objects in the scene and the range of their physical properties
to be known. Since objects are extracted from point clouds, our method needs to
handle incomplete knowledge. To achieve this, we first extract the ACT relation,
which describes the forces acting at a contact between two objects due to grav-
ity. Then, we propose a support polygon analysis to capture potential top-down
support relations, in which an object above supports another object below it. Fi-
nally, we search for suitable parameters of the proposed methods using selected
validation scenes.

ACT Relation Analysis

In the first step of the support relation extraction, ACT ∈ P × P relations as
proposed by Mojtahedzadeh et al. (2015) are computed. Let A, B ∈ P be two
geometric primitives with given type, pose and shape. Motivated by Newton’s
third law of motion, ACT(A, B) indicates that, due to gravity, A is exerting a force
on B. In this case, A is called acting and B is called reacting. First, the contacts be-
tween the geometric primitives A and B are computed. To deal with perceptual

Contact 

with Normal

Separating Plane 

with Normal

Figure 3.6.: Contact points (red) and separating planes (blue) with their respec-
tive normals (arrows) for an example scene. Green lines connect ge-
ometric primitives which are in an ACT relation.
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(a) (b) (c)

Figure 3.7.: (a) Scene with solely bottom-up support. All support relations are
correctly determined by the act hypothesis. (b) Scene with possible
top-down support from B to A. Depending on the mass distribution
of A, it may fall or not when B is removed. (c) Scene with vertical
separating planes. While A supports B, there is no support between
A and C.

inaccuracies, we increase the size of the objects by a small margin δc ∈ R≥0 for
contact detection. Using the contact points and normals, the plane Psep separat-
ing A and B is constructed. If A is above Psep and B is below, we set ACT(A, B), and
vice versa if B is above Psep. Figure 3.6 illustrates contact points and separating
planes for an example scene.

When objects are located horizontally next to each other as shown in Figure 3.7c,
it might not be clear which object is acting, reacting, or whether a force is exerted
at all. This is the case if the separating plane is almost or completely vertical. As
an extension to Mojtahedzadeh et al. (2015), we introduce a threshold αmax. If
the separating plane’s rotation angle relative to the vector of gravity is below
αmax, we define the ACT relations between the respective objects as unknown.
Whether unknown ACT relations indicate support relations or not, will be inves-
tigated in the evaluation.

After computing the ACT relation for each pair of objects, we use it to generate
our first support relation hypothesis by

ACT(B, A) ⇒ SUPP(A, B) .

In other words, we state that an object B is supported by another object A if B
acts on A. This heuristic is valid in many scenes where objects are stacked on

57



Chapter 3. Representation and Extraction of Support Relations

top of each other (see Figure 3.7a), thereby offering a good basis for a support
hypothesis. However, there are cases of support, which are not covered by ACT

relations. For instance, consider the configuration shown in Figure 3.7b. Clearly,
B acts on A, and thus SUPP(A, B) according to the ACT heuristic. In addition, it
seems likely that A falls if B is removed. As A does not act on B, this possible
support is not found by the ACT heuristic. By vision alone, one cannot know
whether B supports A. If most of A’s mass is located at its left side, resting on C, it
might not need support from B to be stable under gravity. Still, this uncertainty
must be detected and taken into account when executing actions affecting a
possible support between B and A. In the following, we propose method for
detect such top-down support relations.

Support Polygon Analysis

Generally, objects do not only support other objects above them, but can also
support objects underneath (see Figure 3.7b). Approaches addressing top-down
support typically assume a uniform mass distribution (e. g. Mojtahedzadeh et al.
(2015); Fromm and Birk (2016)). We present a purely geometric approach for de-
tecting potential top-down support.

Let A, B ∈ P be two geometric primitives with ACT(B, A), i. e. B acts on A implying
an existing support relation SUPP(A, B). In order to decide whether B may also
support A, we consider how likely it is that A falls when B is removed. For ex-
ample in Figure 3.7a, A is well supported by the objects below it and will not fall
when removing B. In Figure 3.7b, however, A is badly supported by the object
below it. Since A is at rest nonetheless, it seems likely that it is supported by B.

The key idea is to investigate how well A is supported by the other objects in the
scene using a support polygon analysis. The approach is detailed in algorithm 2.
First, we project A to the ground plane, resulting in a 2D polygon PA. If an ob-
ject has round faces or edges, it is approximated by a triangle mesh. Second,
each object C supporting A is projected onto the ground plane as well, and its
projection polygon PC is intersected with PA. Then, the intersecting areas of all
supporting objects are combined into the set of polygons

PA = {PA ∩ PC | A, C ∈ P , SUPP(C, A)}
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Algorithm 2: Support Polygon Analysis
Input: P : Set of geometric primitives

ACT: ACT relation on P
rs,min: Threshold for support area ratio

Output: SUPP: Support relation on P
SUPP = ∅;
for (B, A) ∈ ACT do

SUPP = SUPP ∪ {(A, B)};
PA = projectToGroundPlane(A);
PA = ∅;
for C ∈ P do

if (A, C) ∈ ACT then
PC = projectToGroundPlane(C);
PA = PA ∪ {PC};

end
end
Ps = Conv(PA);
rs = area(Ps)/area(PA);
if rs < rs,min then

SUPP = SUPP ∪ {(B, A)};
end

end
return SUPP;

representing the directly supported area of A. The support polygon Ps is the
convex hull of the polygons in PA. Figure 3.8 visualizes the construction of the
support polygon in an example scene.

Finally, the support area ratio rs is computed as the proportion of the supported
area of A to its total area

rs =
area(Ps)

area(PA)
.

Note that rs ∈ [0, 1], where rs = 1 if A is fully supported, and rs = 0 if A is not
supported at all, i. e. A is floating. If rs is below a threshold rs,min, A is consid-
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(a)

(b) (c) (d)

Figure 3.8.: Example of a support polygon construction for object A from a scene
with three other objects B, C and D. (a) The object constellation. A
supports B and is supported by C and D. (b) The objects A, C and
D are projected onto the ground, creating polygons PA, PC and PD,
respectively. (c) PC and PD are intersected with PA, constructing PA.
(d) The support polygon Ps is the convex hull of the polygons in PA.

ered potentially unstable. In this case, a new support relation (B, A) labeled as
top-down is added to SUPP. If rs is above the threshold rs,min, A is likely well
supported by the objects below it and will stay at rest when B is removed, so no
support is detected. This reasoning is performed for all pairs of objects, adding
a support relation where potential support is detected. The supported area ra-
tio is a simple heuristic which does not require explicit assumptions about the
mass distribution of objects. A more sophisticated model could use the sup-
ported volume ratio or estimate the object’s center of gravity which requires
more prior knowledge.

A support graph consisting only of ACT relations is an acyclic graph, since edges
are added only in one direction depending on the relation between the sepa-
rating plane and the gravity vector. Note that the edges added to the support
graph by support polygon analysis create cycles. This might require additional
care when deriving a safe manipulation order from the support graph.
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3.3.2. Probabilistic Support Relation Extraction

Given a probability distribution P (P | O) over geometric primitives in the
scene, we want to determine the existence probability P (SUPP(A, B) | O) of a
support relation between each object pair A, B ∈ O. We achieve this through a
Monte-Carlo simulation. First, we sample concrete scene geometries and evalu-
ate support relations using the deterministic extraction method detailed above.
Then, we estimate the existence probability of support relations over sampled
scene geometries.

Sampling from the Geometric Scene Distribution: Algorithm 3 describes
sampling from a probability distribution P (P | O) over geometric primitives in
a scene. Drawing a sample from the joint distribution P (ti,xi | oi) according to
equation 3.7 produces a concrete geometric primitive psi = (tsi ,x

s
i ). To implement

this sampling, first, a primitive type tsi is sampled from the discrete probability
distribution P (ti | oi) (see equation 3.5). Then, a state vector xs

i is generated by
sampling from the multivariate Gaussian distribution N (µi,tsi

,Σi,tsi
) (see equa-

tion 3.6). Note that the primitive type tsi is a concrete value and not a random
variable. Since we assume independence between separate geometric primi-
tives, drawing a sample from the distribution P (P | O) can be implemented
by drawing samples from P (ti,xi | oi) for each object oi ∈ O. This results in a
set of sampled geometric primitives Ps = {ps1, ps2, . . . , psn} with psi = (tsi ,x

s
i ).

Algorithm 3: Sample from Geometric Scene Distribution
Input: P (P | O): Probability distribution over geometric scenes
Output: P = {p1, p2, . . . , pn}: Set of geometric primitives
P = ∅;
for i ∈ {1, n} do

t ∼ P (ti | oi);
x ∼ P (xi | ti, oi);
P = P ∪ {(t,x)};

end
return P ;

61



Chapter 3. Representation and Extraction of Support Relations

Algorithm 4: Estimate Support Relation Probability
Input: P (P | O): Probability distribution over geometric scenes
Output: P (SUPP): Probability distribution over support relations
count = {((A, B), 0) | (A, B) ∈ O ×O};
m = |O|;
for k ∈ {1,m} do

Pk ∼ P (O);
SUPPk = extractSupportRelation(Pk);
for (A, B) ∈ SUPPk do

count[(A, B)] = count[(A, B)] + 1;
end

end
for (A, B) ∈ O ×O do

P (SUPP(A, B)) = count[(A, B)]/m;
end
return P (SUPP);

Estimating Existence Probabilities: We approximate the existence probabil-
ities of support relations via a Monte-Carlo simulation. First, we generate m sets
of primitives {P1,P2, . . . ,Pm} by sampling from the geometric scene distribu-
tions as described above. Then, we extract pairwise support relations between
the sampled primitives using ACT relation and support polygon analysis pre-
sented in section 3.3.1. This way, we can estimate the existence probability for a
support relation between two objects oi and oj by counting the occurrences of
concrete support:

P (SUPP(oi, oj) | O) ≈ 1

m
·

m∑
k=1

SUPP(pki , p
k
j ), pki , p

k
j ∈ Pk

where pki , pkj ∈ Pk are primitives sampled from their objects’ geometric probabil-
ity distributions. As m → ∞, this estimate converges to the actual probability.

lim
m→∞

(
1

m
·

m∑
k=1

SUPP(pki , p
k
j )

)
= P (SUPP(oi, oj) | O)
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Algorithm 4 describes the procedure as presented in this section. The variable
count keeps track of the number of detected support relations between each
object pair.

3.4. Evaluation

This section evaluates the proposed extraction of support relations from point
clouds. First, the deterministic method based on ACT relation and support poly-
gon analysis is evaluated. Then, the impact of the probabilistic extraction method
is compared to the deterministic method.

3.4.1. Deterministic Support Relation Analysis

To evaluate the deterministic methods for support relation extraction based on
ACT relations and support polygon analysis, the following questions will be ad-
dressed:

1. How to handle vertical separating planes between objects in contact?

2. Does support polygon analysis improve support relation detection?

To answer these questions, we evaluate our extraction method on multiple scenes
containing piles of objects on a table.

This evaluation uses both real-world as well as simulated scenes. The point
clouds of the real world scenes were recorded using an ASUS Xtion Pro. For the
simulation, a depth camera was simulated. For each scene, we created a ground
truth support relation SUPPGT. In the simulation, we determined support rela-
tions of each object by registering what other objects move due to the removal
of the inspected object. For the real scenes, we annotated the support relations
by hand. We manually matched extracted objects OHyp and ground truth objects
OGT, since we are only interested in the extracted support relations.

Vertical Separating Planes: Separating planes are inserted between two ob-
jects in contact. The angle α between the plane’s normal and the gravity vector

63



Chapter 3. Representation and Extraction of Support Relations

Strategy α0 α10N α10S
Scene Precision Recall Precision Recall Precision Recall

S1 1.00 1.00 1.00 1.00 1.00 1.00

S2 0.71 1.00 0.83 1.00 0.63 1.00

S3 0.71 1.00 1.00 1.00 0.56 1.00

S4 0.80 0.89 0.89 0.89 0.73 0.89

R1 1.00 1.00 1.00 1.00 1.00 1.00

R2 0.78 0.78 1.00 0.78 0.73 0.89

R3 0.67 0.67 1.00 0.67 0.75 1.00

R4 0.86 0.86 1.00 0.86 0.93 0.93

R5 0.86 0.86 1.00 0.86 0.81 0.93

R6 1.00 1.00 1.00 1.00 1.00 1.00

R7 1.00 0.75 1.00 0.75 1.00 0.75

R8 0.75 0.75 0.94 0.75 0.58 0.75

R9 1.00 0.83 1.00 0.83 1.00 0.83

R10 0.86 0.75 1.00 0.75 0.89 0.89

Mean 0.86 0.87 0.98 0.87 0.83 0.92

Table 3.1.: Precision and recall of extracted support relations for all scenes and
separating plane strategies. S1 – S4 are simulated and R1 – R10 are
real scenes. The last row contains the mean over all scenes.

determines the ACT relation. If α < αmax, a separating plane is labeled as vertical.
We compare three strategies for handling vertical separating planes:

• α0: No separating plane angle threshold (αmax = 0◦)

• α10N: Within threshold, assume that no support exists (αmax = 10◦)

• α10S: Within threshold, assume support exists (αmax = 10◦)

Either we make a hard decision for every separating plane (α0), or we introduce
a threshold for vertical separating planes (α10N and α10S). If we use the thresh-
old, we can either assume no support exists (α10N) or support exists (α10S)
between objects with vertical separating planes.

We extract support relations SUPPHyp with every strategy using a contact margin
δc = 10mm. Table 3.1 shows precision and recall for all scenes and each of the
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four strategies calculated as

Precision =
|SUPPGT ∩ SUPPHyp|

|SUPPHyp|
, Recall =

|SUPPGT ∩ SUPPHyp|
|SUPPGT|

. (3.8)

Selected evaluation scenes are presented in Table 3.3. The α10N strategy is a
strict improvement over α0, demonstrating the usefulness of the threshold αmax

to detect vertical separating planes. Almost all support edges detected by α10N
are correct. However, it misses more edges than the other strategies resulting in
a worse recall. α10S produces a higher recall than α10N due to adding unknown
edges to the support hypothesis. Yet, precision is reduced considerably since not
all of the added edges are correct.

Support Polygon Analysis: The proposed support polygon analysis adds
potential top-down support relation. Here, we investigate the impact of these
additionally detected support relations on precision and recall. This goal of this
ablation study is to identify the benefits and drawbacks of adding support poly-
gon analysis on top of ACT relations.

Table 3.2 shows precision and recall for the three strategies α0, α10N, and α10S
combined with support polygon analysis (SPA) on the evaluation scenes (see
Table 3.3). All support relations were extracted using a contact margin δc =

10mm and a threshold for the support area ratio rs,min = 70%.

Adding support polygon improves recall without negatively affecting precision
in scenes containing top-down support (e. g. S4, R2, R7). As expected, α10S+SPA
adds the most edges out of all strategies and therefore achieves the best recall.
It also adds the most false positives, resulting in the worst precision. Overall,
α10S is too conservative and adds too many edges. α10N+SPA achieves high
precision and recall values by adding only potential top-down support edges.
It offers the best compromise between correctness and completeness of the sup-
port hypothesis. Therefore, we conclude that the α10N+SPA strategy is most
suitable for extracting support relations in cluttered environments.
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Strategy α0+SPA α10N+SPA α10S+SPA
Scene Precision Recall Precision Recall Precision Recall

S1 1.00(+0.00) 1.00(+0.00) 1.00(+0.00) 1.00(+0.00) 1.00(+0.00) 1.00(+0.00)

S2 0.71(+0.00) 1.00(+0.00) 0.83(+0.00) 1.00(+0.00) 0.63(+0.00) 1.00(+0.00)

S3 0.71(+0.00) 1.00(+0.00) 1.00(+0.00) 1.00(+0.00) 0.56(+0.00) 1.00(+0.00)

S4 0.75(−0.05) 1.00(+0.11) 0.90(+0.01) 1.00(+0.11) 0.75(+0.02) 1.00(+0.11)

R1 1.00(+0.00) 1.00(+0.00) 1.00(+0.00) 1.00(+0.00) 1.00(+0.00) 1.00(+0.00)

R2 0.80(+0.02) 0.89(+0.11) 1.00(+0.00) 0.89(+0.11) 0.75(+0.02) 1.00(+0.11)

R3 0.67(+0.00) 0.67(+0.00) 1.00(+0.00) 0.67(+0.00) 0.75(+0.00) 1.00(+0.00)

R4 0.81(−0.05) 0.93(+0.07) 0.76(−0.24) 0.93(+0.07) 0.74(−0.19) 1.00(+0.07)

R5 0.82(−0.04) 1.00(+0.14) 0.93(−0.07) 0.93(+0.07) 0.78(−0.03) 1.00(+0.07)

R6 0.75(−0.25) 1.00(+0.00) 0.75(−0.25) 1.00(+0.00) 0.75(−0.25) 1.00(+0.00)

R7 1.00(+0.00) 1.00(+0.25) 1.00(+0.00) 1.00(+0.25) 1.00(+0.00) 1.00(+0.25)

R8 0.67(−0.08) 0.80(+0.05) 0.80(−0.14) 0.80(+0.05) 0.53(−0.05) 0.80(+0.05)

R9 1.00(+0.00) 1.00(+0.17) 1.00(+0.00) 1.00(+0.17) 1.00(+0.00) 1.00(+0.17)

R10 0.89(+0.03) 0.89(+0.14) 1.00(+0.00) 0.89(+0.14) 0.89(+0.00) 1.00(+0.11)

Mean 0.83(−0.03) 0.94(+0.07) 0.93(−0.05) 0.93(+0.07) 0.79(−0.04) 0.99(+0.07)

Table 3.2.: Precision and recall of extracted support relations for all scenes and
separating plane strategies combined with support polygon analysis
(SPA). S1 – S4 are simulated and R1 – R10 are real scenes. The last row
contains the mean over all scenes. Changes compared to Table 3.1
without SPA are marked in parentheses.

3.4.2. Probabilistic Support Relation Extraction

We present experimental results for the extraction of support relations from
point cloud data. First, we introduce the two datasets and the evaluation pro-
cedure. Then, we present and discuss the results. The code and a reproduction
guide for the results presented in this section are available online1.

1https://gitlab.com/h2t/interactive-scene-exploration
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Scene Point Cloud Objects Hypothesis Ground Truth

S3

S4

R2

R3

R5

R7

R8

R9

R10

Table 3.3.: Selected evaluation scenes. We show the recorded point cloud, the
extracted objects, our support hypotheses and the ground truth sup-
port relation. Support hypotheses for all four strategies are visualized
by color coding differing edges. Black edges were generated by the
α10N strategy and are also part of the three other strategies. Blue
edges are part of the graph if we use α10S, while red edges are added
by the support polygon analysis. The scenes not shown in this table
are slight variations of their neighbors, e. g. R1 is a simpler version of
R2 without the unknown and uncertain edges.
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Image (Color and Depth) Point Cloud (Color and Label) Support Relations

Figure 3.9.: A single entry in the KIT Support Relation (KIT-SR) dataset consists
of color and depth images of the scene, a colored and labeled point
cloud as well as manually annotated support relations.

Datasets: We present the KIT Support Relation (KIT-SR) dataset, which con-
tains table-top scenes with a varying number of objects and support relations.
We provide full pixel-wise segmentation and support relation annotations for
each of the 60 scenes. The dataset is publicly available (see appendix A for de-
tails). Figure 3.9 shows a scene from the dataset and the corresponding available
data.

Additionally, we use the Object Segmentation Dataset (OSD) as used in Richts-
feld et al. (2012) to compare our probabilistic support relation extraction with
deterministic methods. The OSD contains table-top scenarios with varying ob-
ject geometry and scene complexity, ranging from simple scenes with two ob-
jects to cluttered scenes with up to 16 objects. Since the dataset focuses on object
segmentation, we added ground truth annotations for support relations to all
111 scenes by hand.

Metrics: The evaluation compares the proposed probabilistic support extrac-
tion with two deterministic approaches. The first deterministic approach is based
on ACT relations and assumes no support for vertical separating planes (α10N)
and serves as a baseline for the comparison. The second deterministic approach
extends ACT relations with support polygon analysis (α10N+SPA) to detect top-
down support relations, i. e. an object is supported by an object that is geomet-
rically above it.
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Figure 3.10.: Evaluation of the three approaches using the evaluation metrics
precision, recall, F1-Score, and Brier score on the two datasets KIT-
SR and OSD. Higher values for precision, recall, and F1-Score in-
dicate better results, while lower values for the Brier score indicate
better results.
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We evaluate the three approaches on the datasets by computing the metrics pre-
cision, recall, F1-Score, and Brier score. Given the ground truth support relation
SUPPGT and a hypothesis SUPPHyp generated by one of the extraction methods,
we can calculate precision and recall as follows:

Precision =
|SUPPGT ∩ SUPPHyp|

|SUPPHyp|
, Recall =

|SUPPGT ∩ SUPPHyp|
|SUPPGT|

.

The F1-Score is the harmonic mean of precision and recall:

F1− Score = 2 · Precision · Recall
Precision + Recall

When working with binary classification metrics and a probabilistic support
representation, we first need to binarize the probabilities, i. e. decide whether
support exists or not. We define support between A and B to exist if the existence
probability is above the threshold 0.5: P (SUPP(A, B)) > 0.5

As a proper score function, the Brier score can be directly used with probabil-
ities. It measures the accuracy of our probabilistic support relation extraction.
The Brier score gets smaller when the hypothesis gets more accurate compared
to the ground truth. The probabilities PDet(SUPP(A, B)) for the deterministic ap-
proaches are set to 1 if support exists between objects A and B, 0 otherwise.

Brier Score =
1

|O × O|
∑

A,B∈O×O

(PHyp (SUPP(A, B))− PGT (SUPP(A, B)))2

Results: Figure 3.10 and table 3.4 show the evaluation results on the KIT-SR
dataset and the OSD. We can see a significant improvement in precision and
a moderate increase in recall when comparing the probabilistic with the de-
terministic approaches. The Brier score is also significantly improved. Further-
more, the addition of support polygon analysis (α10N+SPA) yields better re-
sults than the method based on solely ACT relations (α10N) but remains behind
the probabilistic approach. The false positives and false negatives of the deter-
ministic approaches are mostly caused by uncertainties about object geometry
due to the dataset only containing single viewpoint clouds. The probabilistic
approach captures these uncertainties and avoids making hard deterministic
decisions early.
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Table 3.4.: Evaluation results on the two datasets.

Dataset Method Precision Recall F1 Brier Score
(higher is better) (lower is better)

KIT-SR
α10N 0.919 0.934 0.926 0.138

α10N+SPA 0.949 0.941 0.945 0.109

Prob. Supp. Extr. 0.994 0.957 0.976 0.034

OSD
α10N 0.786 0.842 0.813 0.314

α10N+SPA 0.864 0.872 0.868 0.158

Prob. Supp. Extr. 0.931 0.886 0.908 0.076

3.5. Summary and Review

This chapter introduced methods for representing and extracting support rela-
tions from point clouds. Three questions were addressed:

• How to represent objects and their support relations while capturing the
uncertainty in object shapes, poses and relation existence?

• How to fit probabilistic geometric shape models to a point cloud of a scene
captured by the robot?

• How to extract probabilistic support relations from a probability distribu-
tion over geometric shape models?

First, a probabilistic representation for geometric primitives and support rela-
tions among them was proposed. Second, a method for fitting geometric primi-
tives to point clouds using the proposed probabilistic representation was imple-
mented. Third, a method for extracting support relations from the probabilis-
tic object representation was developed. We evaluated the proposed methods
on different datasets containing scenes with varying degree of complexity and
showed their effectiveness.

Probabilistic Object and Support Relation Representation: The core idea
of the proposed representation is to use probability distributions for both object
poses, shapes and their relations. To approximate objects in a scene, we con-
sider paramtrizable geometric primitives, i. e. boxes, cylinders and spheres. A
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joint probability distribution over primitive types and geometric parameters in-
cluding pose and shape was specified. The distribution over primitive types is
modeled as a discrete distribution, while the geometric parameters are mod-
eled as a multi-variate Gaussian distribution. Then support relations and their
existence probability between object pairs were defined.

Probabilistic Geometric Primitive Fitting: The geometric fitting method is
based on RANSAC. For each segment in the input point cloud, geometric pa-
rameters are estimated using a minimum sampling set and evaluated based
on the number of inlier points. Methods for estimating the geometric parame-
ters of spheres, cylinders and boxes are presented. For boxes, a novel method,
which only requires two visible faces is developed. A modified RANSAC al-
gorithm was proposed and implemented, which generates a joint probability
distribution over primitive type and geometric parameters taking into account
the uncertainty about those properties.

Extraction of Probabilistic Support Relations: A physically grounded ex-
traction method for probabilistic support relations was proposed. The main idea
is to use a deterministic approach for support relation extraction and a Monte-
Carlo simulation to estimate existence probabilities of support relations. First, a
deterministic extraction approach based on ACT relations was implemented and
extended by a support polygon analysis to capture top-down support relations.
In order to apply this deterministic extraction method, we sample from the geo-
metric scene distribution and approximate the existence probability of support
relations by counting support occurrences in sampled scenes.

Evaluation: We show the effectiveness of the different components of the pro-
posed support relation extraction in separate ablation studies. First, the benefits
of handling vertical separating planes and applying the support polygon analy-
sis on top of existing ACT relations are demonstrated. Both lead to a higher recall
while maintaining a high precision. Then, the advantages of a probabilistic rep-
resentation and extraction method are evaluated. Here, all metrics indicate an
improvement over deterministic approaches.
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4. Graph-based Prediction of
Action Effects

When planning and executing actions, robots need the ability to predict the
effects of their actions. Relevant actions might be pushing, grasping or lifting an
object. For the pushing case, action effects include the position and orientation
of the object after push execution, but might also include other objects in the
scene interacting with the pushed object. Even for simple cases involving only
a single object, hard-coding action effects into the prior knowledge of a robot
by human experts is still a challenging task. However, when multiple objects
interact, methods for learning prediction models for complex action effects are
needed.

Predicting how things might be, not only now, but also in the future are a fun-
damental part of human cognitive abilities which allow us to choose how to
act (Berthoz, 2000). A cognitive system, which uses an internal model to rea-
son about action consequences in the world and learns from experience, should
also be able to explain why and what it is doing (Brachman, 2002). To this end,
simulations have been used in combination with logic-based reasoning to ac-
quire common sense knowledge (Johnston and Williams, 2008). Extending this
idea, physics-based simulations enable action parameter optimization in many
applications ranging from table-top pushing tasks (Weitnauer et al., 2010) to
preparing a pancake (Kunze and Beetz, 2017). Understanding the effects of ac-
tions is essential for planning and executing robot tasks. By imagining possible
action consequences, a robot can choose specific action parameters to achieve
desired goal states.

In this chapter, we propose an object-centric, graph-based representation for
scenes both as input and output of action effect prediction models. The robot
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Initial Scene Image

Scene RepresentationInput OutputGraph-based Prediction

Predicted Scene State

Initial Scene State 

and Action

Graph Representation

Action Parameters

Initial Graph

Action Effect 

Prediction Model
Predicted Graph

Figure 4.1.: Overview of the graph-based action effect prediction using pushing
into multiple interacting objects as an action.

extracts the initial scene state from a perceived scene by localizing known ob-
jects using Azad et al. (2009) and Pauwels and Kragic (2015) and approximating
unknown objects using geometric primitive fitting as described in chapter 3.
Given the initial scene state and parameters of an action to execute, e. g. start
and end point of a push, we create a graph that encodes object properties in
its vertices, relations in its edges and action parameters in its global attributes.
The graph is the input of the learned action effect prediction model, a graph
neural network that takes graphs as input and produces graphs as output (see
section 2.3). Finally, from the output graph the predicted scene state is recon-
structed. Figure 4.1 illustrates the proposed approach.

The graph-based action effect prediction is implemented and evaluated for two
different scenarios:

• Pushing Multiple Rigid Objects: In a table-top scenario, multiple rigid
objects on a flat surface interact during the execution of pushing actions.

• Interacting with a Deformable Object: A deformable, cloth-like bag in-
teracts with multiple rigid spheres while different actions are executed.
The actions include pushing an object towards the bag, opening the bag,
lifting the bag, and moving a handle of the bag along a trajectory.

In this chapter the following research questions are addressed:

• How can action effect prediction models for scenes with a varying number
of interacting objects be learned?
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• How effective are models learned from simulation to predict effects on
real-world data?

• How can graph-based scene representations containing both deformable
and rigid objects be built?

The chapter is structured as follows. Section 4.1 develops the methods for graph-
based action effect prediction for the scenario of pushing multiple rigid objects.
Central aspects, like the scene graph representation and the formulation of ac-
tion effect prediction as a graph learning problem are introduced. The approach
is evaluated on a large-scale synthetic dataset generated in simulation and on
recorded data from real robot experiments. Section 4.2 extends the developed
methods to handle deformable objects and more actions. To this end, a sparse
keypoint representation for deformable objects as well as a two-stage prediction
model are proposed. This extension is evaluated on a novel dataset for interac-
tions between a deformable bag an multiple rigid spheres. Finally, the chapter
is summarized in section 4.3. Parts of this chapter have been published in Paus
et al. (2020) and Weng et al. (2021).

4.1. Action Effect Prediction for Rigid Objects

We represent perceived scenes as object-centric graphs and learn an internal
model, which predicts object pose changes due to pushing actions. We train this
internal model on a large synthetic data set, which was generated in simulation,
and record a smaller data set on a real robot for evaluation.

A robot interacting with the world needs the ability to reason about the effects of
its actions (Krüger et al., 2011). Humans can predict the effects of actions based
on low-level motor control as well as high-level reasoning (Moore and Haggard,
2008; Sato, 2009). When comparing physics engines with intuitive physics mod-
els based on probabilistic simulations of interactions between objects and their
relations, humans tend to give results more consistent with the latter (Battaglia
et al., 2013). Taking inspiration from this idea, we want to enable a robot to
predict action effects based on objects and the spatial relations between them.
This results in two challenges. First, a scene can contain an arbitrary number
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of objects. Second, training a prediction model requires many samples, which
are hard to obtain on a real robot. We address the first challenge by learning a
model which is invariant to the number of objects and their order. By using a
physics simulation, we address the second challenge.

We start by presenting a graph-based action-centric scene representation in sec-
tion 4.1.1. Each scene is represented as an attributed directed graph, in which
vertices store object properties and edges contain relative spatial information
between object pairs. In section 4.1.2, we explain the data generation in a physics
simulation and on a real robot. The training data for learning push effects is
generated by executing pushes in randomized scenes using the physics simu-
lation MuJoCo (Todorov et al., 2012). To formulate an optimization problem on
these scene graphs, we use graph neural networks (as discussed in section 2.3),
which provide machine learning building blocks with graphs as input and out-
put. Section 4.1.3 defines action effect prediction as a graph learning problem
and trains a graph neural network using the generated data. The evaluation in
section 4.1.4 shows a high prediction accuracy of our internal model in simula-
tion and on real data. It verifies the ability of proposed approach to inherently
handle a varying number and order of objects.

The contribution is a data-driven method for push effect prediction with high
prediction accuracy while being faster than executing a physics simulation. In
contrast to state-of-the-art approaches, our method is neither limited to planar
object movement nor a fixed number of objects.

4.1.1. Scene Representation

Given a scene as a set of n objects O, the goal is to predict pose changes for these
objects caused by a pushing action.

O = {oi = (ti, Ri, si) | i ∈ [1, n]}

We represent an object oi = (ti, Ri, si) ∈ O as a tuple consisting of global po-
sition ti ∈ R3, global orientation Ri ∈ SO(3), and oriented bounding box size
si ∈ R3. A pushing action a = (d, e) ∈ A is represented as a direction d ∈ R3 and
an endpoint e ∈ R3 which specifies where the end-effector stops after executing
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𝑥

𝑦

(a) Global

𝑦

𝑥

(b) Moved origin

𝑦 𝑥

(c) Aligned x-axis

𝑥

𝑦

(d) Action-centric

Figure 4.2.: Example of a transformation from the global coordinate system (a)
to the action-centric coordinate system (d). The x-axis (in red) and
the y-axis (in green) of the coordinate system are shown as arrows.
The pushing direction and the end point of the push are illustrated
as arrow and circle. First, the origin is moved to the end point of the
push (b). Then, the x-axis is aligned with the pushing direction (c).

the action. We want to learn a prediction model M : Pow(O) × A → Pow(O)

which, given an initial scene Obefore and a push action a ∈ A, outputs the scene
Oafter after executing the push.

Oafter = M(Obefore, a)

We want to find an scene representation, which encodes object properties, re-
lations and actions into a graph and is invariant to translation and rotation. To
this end, we first transform the scene into an action-centric representation, be-
fore building a graph from this local representation.

Action-centric Representation: Since object poses and push directions de-
pend on an arbitrarily chosen global coordinate system, we transform the scene
to a local representation. First, the push endpoint e ∈ R3 becomes the origin
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of the new local coordinate frame. Second, we rotate the scene so that the push
direction d ∈ R3 is aligned with the positive x-axis of the local coordinate sys-
tem while keeping the z-axis pointing upwards (aligned with the global z-axis).
The y-axis is chosen to create a right-handed coordinate system. Since the local
origin is the push endpoint and the local x-axis is the push direction, the action
parameters are fully encoded in this action-centric coordinate system and no ex-
plicit push parameters are needed. Figure 4.2 illustrates this transformation.

Graph Representation: To use a graph neural network, the input and out-
put data need to be represented as a directed attributed graph G = (V,E,u),
where V is a set of vertices, E a set of edges, and u a global feature vector. For
each object, we create a corresponding vertex in the graph, i. e. |V | = |O|. Af-
ter transforming the scene to the action-centric representation, we encode the
features of each object oi as a stacked vector of position ti ∈ R3, orientation
Ri ∈ SO(3), and size si ∈ R3, resulting in a vertex feature vector vi ∈ R15. We
found that representing the orientation as a 3×3 matrix gives better results dur-
ing training compared to quaternions or Euler angles. Additionally, we create
edges between each vertex pair (vi,vj) using the relative position difference as
the feature vector

fi,j = tj − ti ∈ R3 .

A global feature vector u is not needed, as the action parameters are already en-
coded in the action-centric representation. Figure 4.3 shows the different steps
to create the described graph representation.

Scene Image

Global Scene State 

and Action
Action Parameters

Graph 

Representation
Action-centric 

Representation

𝑥

𝑦

𝑥

𝑦

Figure 4.3.: The scene image and action parameters are represented as a global
scene state and action before they are transformed into an action-
centric representation. The graph representation is built from the
action-centric representation.
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4.1.2. Data Generation

To learn a model that can predict the effects of pushing actions, we need to gen-
erate data, with which the model can be trained and evaluated. The data needs
to contain the initial scene state Obefore before action execution, the parameters
of the push action a, as well as the scene state Oafter after action execution. To
this end, we generate a large synthetic dataset using a physics simulation for
training and collect a smaller dataset on a humanoid robot for evaluation.

Physics Simulation: We use the MuJoCo (Multi-Joint dynamics with Con-
tact, Todorov et al. (2012)) physics simulator to execute pushes in simulation.
MuJoCo is designed for dynamic, contact-rich interactions, which can occur
if multiple objects interact while pushing an object. We generate randomized
scenes and execute random pushes in simulation. Figure 4.4 shows examples of
generated scenes and pushes. The following parameters have been randomized
during scene generation using a uniform distribution over all possible values:

• Object number: Scenes contain one to five objects

• Object position: The center point of each object is chosen inside a rectan-
gular region with size 1m× 1m.

• Object rotation: Only the rotation around the z-axis is randomized to en-
sure that the objects can stand upright.

• Object size: Width, height, and depth of the boxes can be in the interval
[0.05m, 0.20m].

Push parameters were chosen by first selecting a target object. Then, a local off-
set is sampled around the target’s center point, taking into account the size of
the object. The endpoint of the push is chosen to be the target’s center point
shifted by the local offset. This way, we ensure that most pushes are executed
close to objects where relevant interactions are happening. Then, the push di-
rection is sampled, allowing only pushes parallel to the ground.

During data generation, we use the model of the hand of ARMAR-6 (Asfour
et al., 2019) as end-effector. Then, we generate a random scene as described
above. In this scene, we execute 200 random pushes, after which we proceed
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Figure 4.4.: Examples of randomized scenes in simulation. Each row represents
a push executed in a generated scene. The first column shows the
initial scene state and the sampled push direction as a white ar-
row. The second column shows the scene during the execution of
the push. In the third column, the final scene state after the push is
shown.

with the next scene. The object poses before and after the push, as well as the
push parameters, are saved to train and evaluate the prediction model.

Humanoid Robot: We use a humanoid robot to generate data in the real world.
On ARMAR-6, we execute 185 pushes in 20 different scenes. The involved ob-
jects were taken from the KIT and YCB object sets (Kasper et al., 2012; Calli et al.,
2015). For ground truth data generation, we localize the involved objects (Azad
et al., 2009; Pauwels and Kragic, 2015) before and after execution and store their
poses and the push parameters accordingly. The recorded scenes contain be-
tween one and five objects. Figure 4.5 shows camera images from the recorded
data set.
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Figure 4.5.: Scenes from the data set recorded on the real robot. The top row
contains images from the robot’s cameras right before the push ac-
tion begins. The bottom row shows images after the push has been
executed. Each row shows a scene with an increasing number of ob-
jects.

4.1.3. Graph Learning Problem

The generated data contains scenes before and after action execution as well as
push parameters. We can convert these tuples (Obefore, a,Oafter) into the graph
representation as introduced in section 4.1.1. This produces an input graph Gin

representing the scene before action execution, and an output graph Gout repre-
senting the scene after action execution. Both graphs use action a as reference
for the transformation into the action-centric representation, which simplifies
the learning problem, since the model does not need to learn translation and
rotation invariance. We now define and train a graph neural network GNNθ

parametrized by θ that takes Gin as input and produces Gout as output:

Gout = GNNθ(Gin)

Network Architecture: We chose an Encode-Process-Decode architecture for
the graph network as discussed in section 2.3 (see Figure 4.6). First, the input
graph Gin is encoded where vertices, edges, and globals are expanded into a
latent representation. The process step consists of a full graph network block
which processes the latent representation 10 times. The process block uses a
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Figure 4.6.: The architecture of the prediction model is an Encode-Process-
Decode graph network. The input graph Gin is encoded into a la-
tent space using a graph independent block, i. e. , vertices, edges
and global attributes are transformed individually. We execute a full
graph network block ten times as the core processing step of our
model. The latent representation is then transformed into the out-
put graph Gout using a graph independent block as a decoder.

Multi-layer Perceptron (MLP) with batch normalization for each update func-
tion:

• Vertex update Φv: 3-layer MLP with layer sizes [256, 128, 96]

• Edge update Φe: 2-layer MLP with layer sizes [128, 96]

• Global update Φu: 2-layer MLP with layer sizes [64, 64]

We choose element-wise sum for all aggregation functions ρe→v, ρv→u, and ρe→u.
The encoder and decoder both use a graph independent block with two-layer
MLPs with layer sizes [64, 64] for all update functions. All the MLPs contain
parameters, which need to be optimized during training. We summarize them
into the model parameter vector θ to define the parametrized prediction model
GNNθ. As the loss function L, we use the mean squared error over the vertex
attributes v ∈ R15 from the predicted and ground truth scene, excluding the
bounding box size s, since it cannot change during a push. Here, we assume
that the pushed objects are rigid.
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4.1. Action Effect Prediction for Rigid Objects

Now, we want to find a model parameter vector θ which minimizes the loss
over all input and ground-truth output graphs, Gin and GGT:

argmin
θ

L(GNNθ(Gin), GGT)

The dataset of 2,000,000 simulated pushes is split into training (70%), validation
(20%), and test set (10%). During training, the model is optimized based on the
training set using a batch size of 256. We use the Adam optimizer with a learning
rate of 0.001. The layer sizes have been determined by a hyperparameter search
using the validation set.

Output Normalization: The network predicts position as a vector t ∈ R3 and
orientation as a matrix R ∈ R3×3. The predicted matrix does not necessarily sat-
isfy the requirements for a rotation matrix: R ∈ SO(3) : R·RT = I, det(R) = 1

Therefore, the predicted matrix needs to be orthogonalized and normalized to
ensure it represents a proper rotation matrix.

Consider the Singular Value Decomposition (SVD) of the predicted matrix R:
R = U · Σ · V T ,where U, V ∈ R3×3 are orthogonal matrices and Σ ∈ R3×3 is
a diagonal matrix, which contains the singular values σi of R on its diagonal.
Since the product of the singular values determine the absolute value of the
determinant

∥ det(R)∥ =
3∏
1

σi,

we replace Σ with the identity matrix I . Furthermore, the sign of the determi-
nant needs to be accounted for, since we only fixed the absolute value of the
determinant. Thus, the orthogonalized and normalized matrix R∗ ∈ SO(3) is
computed as follows:

R∗ =

U · I · V T if det(U · I · V T ) > 0

−U · I · V T if det(U · I · V T ) < 0

This is called symmetric orthogonalization and minimizes the Frobenius norm
(Aiken et al., 1980):

∥R∗ −R∥F =

√√√√ m∑
i=1

n∑
j=1

∥r∗ij − rij∥2
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4.1.4. Evaluation

First, we evaluate the performance of our approach quantitatively by looking
at the position and orientation prediction errors on the simulated and real data
generated in section 4.1.2. Then, we investigate the ability for combinatorial
generalization, i. e. how the model handles an unseen number of objects. Finally,
we discuss the runtime for model evaluation.

Position and Orientation Error: We evaluate the accuracy of our learned
model by comparing position and orientation errors in the training, validation,
and test set. For each executed action a ∈ A, we have the input scene graph
Ga

in = (V a
in, E

a
in,u

a
in) and the ground truth graph Ga

GT = (V a
GT, E

a
GT,u

a
GT) after ac-

tion exection. The learned model produces the predicted output graph

Ga
out = (V a

out, E
a
out,u

a
out) = GNNθ(G

a
in) .

For different actions, the number of vertices in a scene graph varies. We extract
the position t ∈ R3 and orientation R ∈ SO(3) from each vertex. The position
and orientation error is calculated for each vertex and averaged over all vertices
and actions:

∆tmean =
1

∥A∥
∑
a∈A

1

∥Vout,a∥

∥Vout,a∥∑
i=0

∥taout,i − taGT,i∥

∆αmean =
1

∥A∥
∑
a∈A

1

∥Vout,a∥

∥Vout,a∥∑
i=0

∥angle((Ra
GT,i)

−1 ·Ra
out,i)∥

The angle θ of the difference matrix Rdiff = (Ra
GT,i)

−1 ·Ra
out,i can be computed via

the trace, i. e. sum of the diagonal elements:

tr (Rdiff) = 1 + 2 · cos(θ)

angle(Rdiff) = θ = acos
(

tr (Rdiff)

2

)
The mean and standard deviation of both errors are calculated separately over
the different data subsets. The training, validation and test set contain generated
data from simulation, while the real set contains data collected on the real robot.
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Table 4.1.: Position and orientation error of the learned model

Position Error in [cm] Orientation Error in [◦]

Mean Stddev. Mean Stddev.

Training 0.83 0.57 4.21 6.54

Validation 0.86 0.61 5.35 7.77

Test 0.87 0.60 5.24 7.60

Real 1.84 2.66 14.82 23.83

The model was only trained on the synthetic training data. Table 4.1 shows the
mean value and the standard deviation for the position and the orientation error
as defined above.

The proposed model achieves an average position error of less than one cen-
timeter and an orientation error of around 5◦ on the training, validation and
test set, which were generated in simulation. On the real dataset the position
error is below two centimeters and the orientation error is around 15◦. The dif-
ference between the results for simulated and real data can be explained by the
fact, that the model was trained only on simulation data. In order to assess the
quality of these error, we can compare the prediction with the average motion of
objects in the dataset as shown in Table 4.2. Especially the position is predicted
very well, compared to an average movement of around 8 cm. For the orienta-
tion, the results on simulated data are good, but on the real data the prediction
error is closer to the average motion in the dataset (15◦ vs 19◦). However, the
variance in the prediction is much lower. This underperformance of the model
for orientation changes on real data is caused by different friction and inertial
parameters of real objects compared to the simulation environment.

Combinatorial Generalization: Next, we investigated the ability of our model
to cope with an unseen number of objects, i. e. , combinatorial generalization.
We trained a model only on scenes containing 2 − 3 objects and tested the pre-
diction errors in scenes with 1, 4 and 5 objects. In Table 4.3, we can see that
scenes with fewer objects are no problem. Also, scenes with 4 or 5 objects only
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Table 4.2.: Position and orientation changes for the data sets

Position Change in [cm] Orientation Change in [◦]

Mean Stddev. Mean Stddev.

Simulation 8.45 15.92 18.61 34.69

Real 7.90 11.67 19.18 31.30

Table 4.3.: Performance on an unseen number of objects

Number of Position Error in [cm] Orientation Error in [◦]

Objects Mean Stddev. Mean Stddev.

2− 3 0.79 0.48 4.17 5.90

1 0.76 0.45 4.02 5.87

4 0.91 0.75 7.03 8.05

5 0.98 0.81 7.61 8.46

incur a minor increase in position and orientation error. The whole data set was
used for this evaluation. This supports the claim that graph networks can be ef-
fectively used to learn models which are independent of the number of objects
and even generalize to an unseen number.

Runtime: Regarding the runtime, we compare our approximate model with
the full physics simulation. Executing a single push in MuJoCo takes on av-
erage 2.27s (with rendering disabled). Processing a batch of 1000 scenes with
our prediction model takes around 1.16s. We conclude that our model is much
faster than using the full physics simulation. All measurements were done on
an Intel Core i7-5820K CPU with 3.30GHz. This runtime efficiency enables us
to test hundreds of pushes in under a second and find push parameters, which
achieve a certain manipulation goal efficiently.
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4.2. Action Effect Prediction for Deformable Objects

4.2. Action Effect Prediction for Deformable
Objects

Now, we present the extension of the graph-based prediction model to inter-
actions between rigid and deformable objects. In particular, we investigate dif-
ferent actions involving a deformable bag and rigid spheres over longer time
periods. Figure 4.7 shows examples of such interactions. Predicting action ef-
fects for deformable objects requires a more sophisticated representation that
encodes the configuration, not only the object pose. Furthermore, predicting
over longer time periods is a challenging problem, since prediction errors can
accumulate fast if not handled explicitly.

Figure 4.7.: Two example interactions with a deformable bag. The first row
shows a white rigid sphere being pushed towards the bag, which
is held in place at both handles. The second row shows the bag be-
ing lifted from the ground using one handle, while the other handle
is left loose.

We start by introducing the term task in section 4.2.1. A task description con-
tains the executed action, the objects in the scenes, and their initial configura-
tion. In section 4.2.2, we present a publicly available dataset for interactions
between a deformable bag and rigid objects. The data generation process is de-
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tailed before the contents of the dataset are described. The action-centric graph
representation for scenes is extended in section 4.2.3 to handle deformable ob-
jects. To this end, we propose a sparse keypoint representation that is able to
encode different topologies. Then, section 4.2.4 proposes and implements a two-
stage prediction model, which first classifies active vertices likely to move dur-
ing the action and only predicts motion for those active vertices. By combin-
ing prediction models with different time steps, we further propose a mixed-
horizon model to mitigate accumulation of errors over multiple time steps. Fi-
nally, the proposed models are evaluated on the dataset in section 4.2.5. Mul-
tiple ablation studies show the benefits of both the two-stage and the mixed-
horizon aspects.

The main contributions can be summarized as follows. First, we build a novel
publicly available dataset for task-specific action effect prediction by leveraging
a deformable simulation engine. Scenes contain interactions between a cloth-
like deformable object and multiple rigid objects. Second, we propose a method
for predicting complex interactions between deformable and rigid objects by
representing the scenes as graphs and building a two-stage prediction model,
which first classifies which parts of the scene move at all and then applies
position updates selectively in a second stage. By combining two-stage mod-
els with different prediction horizons, our method outperforms baseline ap-
proaches with only one prediction horizon. Parts of this section have been pub-
lished in Weng et al. (2021).

4.2.1. Task Description

We consider tasks like opening a bag, pushing an object into a bag and moving a
handle of the bag along a specific trajectory with constant speed. A task consists
of a parameterized action, the objects in the scene, and further task parameters
like how stiff the bag is (Bag Stiffness), whether the bag is empty or a rigid ob-
ject is inside (Bag Content), and whether the handles are fixed in place, loose
or moved along a trajectory (Handle State). Each scene contains a deformable
bag, some number of rigid spheres, and a table. The bag can interact with rigid
objects and the table.
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Figure 4.8.: The deformable bag in its initial pose. The left figure shows the bag
template in Blender. The right figure shows the bag in the Unity
simulation environment.

For the deformable bag, we model the mesh in Blender as shown in Figure 4.8.
Compared to the cloth-like objects in previous works, our model has a more
complicated structure. The whole mesh consists of 1277 particles and 4326 edges.

For the actions, we investigate pushing an object towards the deformable bag,
moving a handle of the bag along a circular trajectory, opening the bag, and
lifting the bag. The handle motions are achieved by grasping the top part of a
handle and moving it along a trajectory. We consider the following actions:

• Pushing an object towards the bag: We sample a position to create a sphere
with a random radius around an existing object. A push trajectory is gen-
erated by sampling a planar motion direction pointing to either the bag
or one of the other rigid objects. By applying this strategy, we ensure that
most of the actions lead to meaningful object interactions.

• Handle motion along circular trajectory: We move one handle along a circular
trajectory as shown in Figure 4.9 (left). The trajectory is placed in one of
the coordinate planes. The radius and direction are randomized.

• Opening the bag: As shown in Figure 4.9 (right), we move one handle away
from the other fixed handle in order to stretch the bag horizontally. Before
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Figure 4.9.: Handle actions. The black point is the manipulated handle and the
gray point is the non-targeted handle. The left figure shows ex-
amples of circular handle movement in three different coordinate
planes. The right figure shows examples of opening actions.

performing the manipulation, we randomly choose a small horizontal de-
flection angle. During the manipulation, we calculate a base directional
vector depending on the handle position differences and rotate it by using
the deflection angle to construct the final moving vector.

• Lifting the bag: Before performing this action, the bag is dropped on the
table. Then, one handle performs an upward motion, which lifts the bag
from the table. The other handle is left loose.

4.2.2. Data Generation

We generate interaction data between the deformable bag and rigid spheres in
simulation. In section 2.5, we analyzed different simulators for deformable ob-
jects, and identified Unity1 with the Obi Cloth2 extension as a suitable option
for our use case. The Obi physics solver is optimized for real-time cloth simu-
lation and supports particle-level manipulation, rich types of interactions, and

1https://unity.com
2http://obi.virtualmethodstudio.com
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editable physical constraints (e. g. distance constraints, bending constraints, and
aerodynamics).

The simulated scenes include a deformable bag, a table, and multiple rigid
spheres with random radii for each task. Further task parameters are generated
as follows. By adjusting the bending constraints in the solver, we vary the stiff-
ness of the bag material (Bag Stiffness). We either initialize the bag in an empty
state or with a rigid sphere inside (Bag Conent). The left and right bag handles
are either left loose or grasped (Handle State). If a handle is grasped, it either is
fixed in place or moves along a given trajectory (opening, lifting, or circular).

During action execution, we record the complete scene state 10 times per sec-
ond. For every recorded time step, the scene state consists of the vertex positions
of the deformable bag, the positions and radii of all rigid objects including the
pushed sphere, and the grasped vertices on the left and right handle. Our goal is
to learn task-specific models, therefore the dataset is grouped by task. For each
task, we simulate 1000 trajectories, which results in 60000 recorded time steps.
The simulated task data is split into training (80%), validation (10%), and test
set (10%). We vary actions and task parameters to create data for 20 different
tasks. For each row, we collect data for both bag stiffness values (soft and stiff).
Figure 4.10 shows examples for simulated tasks. A detailed description of the
dataset content can be found in appendix B.

4.2.3. Scene Representation

Based on the generated dataset, we want to learn task-specific prediction mod-
els for actions involving the deformable bag and other rigid objects. Given a
scene state as a set of rigid and deformable objects Ot, the goal is to learn a dy-
namics model M to predict the future scene state Ot+1 after performing action
at at time step t.

Ot+1 = M(Ot, at)

The set of rigid objects consists of a variable number of spheres whose state
can be represented by their position and radius. The state of the deformable
bag consists of the position of all vertices and their topology. The action at is
parameterized by the start position pstart ∈ R3, the end position pend ∈ R3 and
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Figure 4.10.: Example trajectories of four actions in the dataset. Each row shows
different time steps of an action. From top to bottom: pushing an
object towards the bag, handle motion along circular trajectory,
opening the bag, and lifting the bag.

the radius ra ∈ R of the manipulated target, which can be either a rigid object
or one of the bag’s handles.

at = (pstart,pend, ra)

We define a graph representation that captures the state of the rigid objects and
approximates the state of the deformable bag using a set of sparse keypoints.
We want to represent the state of the scene objects Ot and the action at at time
step t as a graph Gt = (V,E,u) with vertices V , edges E, and a global feature
vector u. The set of vertices V encodes position information about the rigid and
deformable objects in the scene, see Figure 4.11.

The vertex feature vector v = (t, r, f) ∈ R5 encodes position t ∈ R3, radius r ∈
R, and a binary feature indicating whether the vertex is fixed in place f ∈ {0, 1}.
Each rigid object is represented as a vertex with the feature vector v = (t, r, 0) ∈
R5. The fixed flag is never set for rigid, free-moving objects. For the deformable
bag, we use a sparse keypoint representation, where task-relevant vertices are
chosen from the bag’s mesh. Each keypoint is represented as a vertex with a
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Figure 4.11.: We transform a scene consisting of deformable and rigid objects
into a sparse keypoint representation. Based on the keypoints, we
build a fully connected graph, whose vertices represent keypoints
and whose edges encode the connectivity between them. The mo-
tion of the handle along the black arrow is encoded in the global
graph feature u.

feature vector v = (t, 10−5, f), where the radius r is set to a small constant value
and f indicates whether it can freely move (f = 0) or is grasped, i. e. fixed in
place (f = 1). Since the choice of a global coordinate system is arbitrary, we
transform the positions to an action-centric, coordinate system, whose origin is
the starting position pstart of the manipulated object.

The edges E build a fully connected bidirectional graph between the vertices V .
We use an edge feature vector e = (d, c) ∈ R4 consisting of the pairwise position
differences d ∈ R3 between vertices and the physical connection flag c ∈ {0, 1}.
The edges connecting neighboring vertices from the deformable bag have their
physical connection flag set to c = 1. All other edges have no direct physical
connection (c = 0).

The global feature vector u = (pend−pstart, ra) ∈ R4 encodes the position change
pend − pstart ∈ R3 of the manipulated target and the radius of the manipulated
object ra ∈ R.
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4.2.4. Prediction Models

Using the proposed scene representation, we formulate a two-stage graph learn-
ing problem to facilitate fixed time step predictions. Then, we combine multiple
prediction models with different time step horizons to enable predictions of up
to 60 time steps into the future.

Two-stage Graph Prediction Model: The purpose of the two-stage graph
prediction model is, given the current scene state Gt, to predict the scene graph
Gt+h after h time steps where h is constant. We call h the time step horizon of
the prediction model. In this work, we address single time step horizons (h = 1)
and longer time step horizons (h = 5). For each time step horizon h, we learn a
dynamics model which consists of two separate modules: the Active Prediction
Module (APM) and the Position Prediction Module (PPM). APM is a binary
classifier predicting whether rigid objects or keypoints of the deformable bag
will move in the next time step. The classification is done for every vertex in
the scene state Gt. The ground-truth active labels are generated during training
based on the position difference between the time steps t and t + h. PPM is a
regression module that directly predicts the next scene state, i. e. the expected
positions of all vertices at time step t+1. Both APM and PPM are implemented
as graph neural networks with an Encode-Process-Decode architecture as de-
scribed in section 2.3.1.

The APM outputs a binary classification mask through a final softmax activa-
tion layer for the vertex features. The classification stage uses the following
cross-entropy loss

LAPM = − 1

N

N∑
i=1

CrossEntropy(ygt
i , y

pred
i ),

where N denotes the number of vertices in the scene graph, ygt
i ∈ {0, 1} is the

ground-truth active flag and y
pred
i ∈ [0, 1] is the predicted flag. The ground-truth

active flag is set to 1 if the position difference is above a pre-set threshold.

PPM is a regression model to predict the scene graph after action execution
using a final linear activation layer for the vertex features. The regression stage
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Figure 4.12.: The two-stage model takes as input the scene state as a graph Gin at
a certain time step. This graph is fed into both the APM and PPM.
The APM classifies which vertices are active, i. e. will move in the
next time step. In the graph Gactive, the green vertices have been
classified as active and the red ones as inactive. The PPM predicts
the positions of vertices in the next time step as a graph Gposition. In
a final step, only the position updates, whose corresponding ver-
tices have been classified as active in Gactive, are applied to the pre-
diction result Gpred.

uses a mean square error loss LPPM between the ground-truth and predicted
positions:

LPPM =
1

N

N∑
i=1

(tgti − tpredi )2

We train both models separately on the tasks in the generated dataset. By only
applying the regression update to those vertices which have been classified as
active, we prevent spurious motion of vertices that are not involved in the in-
teraction between objects in the current time step. Figure 4.12 shows how the
APM and PPM are combined to transform an input graph Gin into a predicted
graph Gpred.

We define MPPM
h and MAPM

h as the PPM and APM for a specific time step horizon
h. We call the combination of APM and PPM the two-stage model (APM+PPM),
whereas the regression stage alone is called one-stage model (PPM):
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M
one-stage
h (Gi) = MPPM

h (Gi)

M
two-stage
h (Gi) = MAPM

h (Gi)⊙MPPM
h (Gi)

Here the operator ⊙ only applies the position updates from the PPM if the ver-
tices have been classified as active by the APM.

Long Horizon Prediction Model: The one-stage and two-stage prediction
models only predict the scene for a fixed prediction horizon h. The longer hori-
zon model M5 is trained with a prediction horizon h = 5, and the single time
step model M1 is trained with a horizon h = 1. By chaining these models recur-
sively together, we can make predictions for any time step t.

If we only use the single time step model M1, we can predict the scene state Gt

after t time steps given the initial scene state G0:

Gt = (M1 ◦M1 ◦ · · · ◦M1)︸ ︷︷ ︸
t times

(G0)

Here, we can either use the one-stage or the two-stage model. However, this
causes the prediction error to accumulate fast. We can alleviate this problem, by
also incorporating the longer horizon model M5. First, we run M5 recursively
for ⌊t/5⌋ steps. Then, M1 is run for the remaining time steps t mod 5:

Gt = (M1 ◦M1 ◦ · · · ◦M1)︸ ︷︷ ︸
(t mod 5) times

◦ (M5 ◦M5 ◦ · · · ◦M5)︸ ︷︷ ︸
⌊t/5⌋ times

(G0)

We call this combination of a multi-step prediction and a single-step prediction
the mixed-horizon prediction model (see Figure 4.13 for an example).

4.2.5. Evaluation

The evaluation investigates the benefits and drawbacks of the proposed predic-
tion models by answering the following questions:

96



4.2. Action Effect Prediction for Deformable Objects

𝑀5 𝑀5 𝑀1 𝑀1 𝑀1

𝑡

Sc
en
e
St
at
e

K
ey
p
o
in
ts

T
im

e

Figure 4.13.: The mixed-horizon model combines prediction models with differ-
ent time steps. M5 and M1 are models with time step horizons of 5
and 1 respectively. The first row shows the time line and the pre-
diction steps of M5 and M1. The second row shows the scene state
including the deformable bag and rigid spheres at selected time
steps. The third row shows the sparse keypoint representation of
the scene state.

1. Does the inclusion of the APM in the two-stage model improve the predic-
tion results over the one-stage model with the PPM alone?

2. How does the material stiffness of the deformable bag influence the pre-
diction accuracy?

3. Does the mixed-horizon model improve long-term prediction results com-
pared to an iterative application of one-stage or two-stage models?

Metrics: As evaluation metrics, we consider the mean position error between
ground-truth positions and predicted positions. These include both the posi-
tions of rigid bodies as well as the positions of vertices on the deformable bag.
The mean position error metric is used to compare the overall performance of
the investigated models.
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Chapter 4. Graph-based Prediction of Action Effects

In addition, we want to analyze the inter-task variance of the results. We cal-
culate the mean position error per task. We calculate the standard error via the
standard deviation of the task-specific mean position errors. In the following
figures, the standard error is either shown as whiskers for bar plots or as col-
ored areas for line plots.

Results: To answer the first question, we conduct an ablation study to quan-
tify the benefits of the two-stage model compared to the one-stage model dur-
ing single time step predictions. Both models are evaluated with the time step
horizon h = 1. Fig. 4.14 shows that the two-stage model decreases the mean
position errors while also lowering the inter-task variance. This effect can be
equally seen in the training, validation and test set. Therefore, we conclude that
the APM improves single time step predictions when compared to the PPM
alone.

Figure 4.14.: Single time step prediction errors over all tasks for training, vali-
dation, and test set. The mean position error is shown as the bar
height and the whiskers show the standard error over all tasks.
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Figure 4.15.: Single time step prediction errors over all tasks grouped by mate-
rial stiffness. The mean position error is shown as the bar height
and the whiskers show the standard error over all tasks.

To address the second question, we compare the single time step prediction
results for soft bag material with results for stiff bag material. Fig. 4.15 shows
the mean position error and the standard deviation for both materials as well
as the one-stage and two-stage prediction models. As can be seen, the tasks
with soft bag material have a smaller prediction error. However, the difference
is lower than the inter-task variance, indicating that both models are able to
handle tasks independent of material stiffness.

For the third question, we compare the long horizon prediction results for the
recursive one-stage, two-stage and mixed-horizon models on the test set. We
initialize each model with the scene state G0 at time step t = 0 and apply the
prediction recursively as described in the section 4.2.4. Figure 4.16 shows the
mean position errors and standard error for the four actions Pushing an Object
towards the Bag, Handle Motion along Circular Trajectory, Opening the Bag, and Lift-
ing the Bag. As can be seen in the different shapes of the graphs, the long hori-
zon prediction performance variance between actions is quite high. However,
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Chapter 4. Graph-based Prediction of Action Effects

Figure 4.16.: Long horizon prediction errors per action for the one-stage, two-
stage, and mixed-horizon models. The solid lines show the mean
position error while the colored area around the line indicate the
standard deviation.

a trend can be identified if the data is grouped by action. We can see that the
two-stage model outperforms the one-stage model consistently, independent of
the action. The difference between the models in the lifting action is quite small,
since almost all parts of the bag move during this action. Therefore, the first
movement classification stage is not as helpful as in the other actions. Further-
more, the mixed-horizon model outperforms the two-stage model for longer
term predictions, while sometimes producing worse results for short term pre-
dictions. Depending on the action, the mixed-horizon model produces much
better predictions than the two-stage model (e.g. opening the bag), while for
other actions the improvement is marginal (e. g. pushing an object). For some
actions, i. e. pushing, opening and to some degree lifting, the error of the mixed-
horizon model actually decreases for later time steps when compared to earlier
time steps. For example, the graph for the pushing action reaches the maximum
error at around t = 35 and then decreases. Counter-intuitively, the later time
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steps are sometimes easier to predict than the earlier. This can be explained by
the fact, that the earlier time steps often include dynamic interactions between
the deformable object and the other objects in the scene, which are hard to pre-
dict. The final state in the later time steps is more stable and is therefore easier to
predict. Overall, the mixed-horizon model is better suited for predictions over
a longer time periods than the one-stage and two-stage models.

4.3. Summary and Review

This chapter proposed, implemented and evaluated graph-based representa-
tions and methods for action effect prediction for both rigid and deformable
objects. To this end, the following research questions have been addressed:

• How can action effect prediction models for scenes with a varying number
of interacting objects be learned?

• How effective are models learned from simulation to predict effects on
real-world data?

• How can graph representations for scenes containing both deformable
and rigid objects be built?

First, a data-driven method for predicting pushing effects for multiple interact-
ing rigid objects was proposed. This method relies on a graph-based scene rep-
resentation and graph neural networks as a model. Training data was generated
in simulation and evaluated on both simulated and real data. Second, the pro-
posed method was extended to handle deformable objects and a wider range of
actions, including lifting, opening and interacting with a cloth-like bag.

Action Effect Prediction for Rigid Objects: The proposed method is based
on a scene graph representation, where the vertices encode information about
the rigid objects and the edges encode information about spatial relations be-
tween objects. A graph neural network is used as a prediction model and trained
on data, which was generated in a physics simulator. Additional evaluation
data was collected during real-world robot experiments. In the evaluation, we
show that the proposed model achieves high prediction accuracy in scenes with
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a varying number of objects and, in contrast to state-of-the-art approaches, is
able to generalize to scenes with more objects than seen during training. The
goal was to build a prediction method based on intuitive physics, which does
not need to know a physics parameters a-priori. Although there are some cases,
in which the prediction model is slightly inaccurate, it is still able to predict
plausible outcomes of the push actions. Thus, we will demonstrate that this
push prediction system can be used on a robot to estimate action effects in the
next chapter.

Action Effect Prediction for Deformable Objects: An extension to the pre-
diction method for push effects is proposed and evaluated, which also han-
dles deformable objects and considers additional actions besides pushing. We
present a novel dataset for action effect prediction on scenes containing both
rigid and cloth-like deformable objects. Then, we define a graph representation
for the scene state, where the vertices are keypoints representing objects and
their parts. Our predictive model can generalize to different numbers of ver-
tices in the graph, allowing us to extend the method to different deformable
objects in the future. Furthermore, we propose a two-stage prediction model to
capture the dynamics based on graph neural networks. Additionally, we im-
plement a mixed-horizon model on top of the learned modules to predict the
future scene state and show the effectiveness of our methods in different tasks.
In the evaluation, we demonstrate the benefits of the two-stage prediction com-
pared to a one-stage model for single time step predictions. The mixed-horizon
model outperforms both the one-stage and the two-stage model significantly
for long time horizons. In summary, this demonstrates the effectiveness of the
sparse keypoint representation for deformable objects and the mixed-horizon
model for action effect prediction over multiple time steps.
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5. Application to Robot
Manipulation Tasks

The two previous chapters introduced methods for understanding support rela-
tions between objects and predicting action effects and evaluated these methods
based on simulated and real data collected on the robot. This chapter will apply
the proposed methods to robot manipulation tasks.

By extracting the support relations in a scene with multiple objects as described
in chapter 3, the robot can infer a manipulation order by first picking the object,
which has the highest probability of not supporting other objects, i. e. which is a
leaf of the support graph. However, due to the uncertainty in perception, which
is reflected in the probabilistic representation of the scene and the support rela-
tions, the robot cannot be sure whether this manipulation order does not lead to
other objects potentially falling. Furthermore, due to the support polygon anal-
ysis introduced in section 3.3, the support graph can contain cycles representing
potential support from objects above. To equip a humanoid robot with the abil-
ity to detect and handle these cases appropriately, we propose a manipulation
strategy based on support relations and describe it in section 5.1.

The action effect prediction in chapter 4 gives a robot the ability to estimate
scene states after it executes an action. Action sequences to achieve a particu-
lar manipulation goal are often generated by symbolic planners. They take into
account the symbolic preconditions and postconditions of executable actions,
e. g. an object can only be moved to a free, non-occupied place (precondition)
and after moving the object the place is occupied (postcondition). However, the
concrete parameters of, for example, a pushing action to achieve the desired
postconditions still need to be chosen. These parameters are subsymbolic, e. g.
in which direction to push and how far to push, and cannot by chosen by a sym-
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bolic planner. Given a sequence of actions with their pre- and postconditions in
symbolic form, we propose to leverage action effect prediction and describe it
in section 5.2.

This chapter addresses the following research questions:

• How can a manipulation order be derived from support relation, maxi-
mizing the probability of a successful execution?

• How can cycles in the support graph be handled during manipulation?

• How can actions be parametrized to achieve desired postconditions?

Parts of this chapter have been published in Kartmann et al. (2018), Paus et al.
(2020), and Paus and Asfour (2021).

5.1. Support Relations for Manipulation Tasks

We first introduce a method to derive a safe manipulation order from proba-
bilistic support relations extracted using the ACT relation and support polygon
analysis as described in chapter 3. Then, a bimanual manipulation strategy for
a humanoid robot to support potentially falling objects is proposed and imple-
mented.

5.1.1. Deriving Manipulation Order from Support Relations

When confronted with stack of objects in a scene, we want to derive a manipu-
lation sequence for the objects in the scene, which does not cause other objects
to fall or start moving during the individual manipulation actions. In particu-
lar, we consider picking actions, where the robot grasps and lifts an object from
the scene. We aim at deriving a manipulation order as seen in Figure 5.1. To
achieve this, we determine the object in the scene, which is most likely to not
support other objects, remove this object from the scene, and repeat this process.
To estimate how likely an object does not support other objects, we rely on the
probabilistic support relations as extracted in section 3.3.
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Scene Point Cloud 

(RGB and Segmented)

Scene Representation

(Geometry and Support Relation)

Derived Manipulation Order

1 2 3 4 5 6

Figure 5.1.: From the point cloud of the scene, we derive a probabilistic scene
representation as described in chapter 3. From this scene represen-
tation, we want to derive a manipulation order, i. e. sequence of ob-
jects to manipulate.

Problem Definition: Given a scene consisting of objects O and a probability
distribution over support relations P (SUPP(A, B) | O), A, B ∈ O, we want to deter-
mine an ordered sequence of the objects in O, which is most likely to not cause
undesired side effects, e. g. other objects falling as a consequence of an action
execution.

Approach: First, we calculate the probability that any object A ∈ O is safe to
manipulate, i. e. not supporting other objects, by multiplying the probabilities
of no support to all other objects B ∈ O\{A}:

P (SAFE(A)) =
∏

B∈O\{A}

P (¬SUPP(A, B)) =
∏

B∈O\{A}

(1− P (SUPP(A, B)))

Now, we can determine the first object in the manipulation order S ∈ O, which
has the highest probability of being safe to manipulate:

S = argmax
A∈O

(P (SAFE(A)))

To determine the sequence of objects that define the manipulation order, we
first remove the object S from the object set O, and repeat the procedure of de-
termining the object with the highest probability of being safe until all objects
have been removed from O.
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5.1.2. Bimanual Manipulation Strategy

The manipulation order as derived in section 5.1.1 only considers cases, where
single objects in the scene can be safely manipulated. However, there are cases,
where this assumption is too limiting. Figure 5.2 illustrates the case, where an
object supports another from above, i. e. removing the coffee filters box would
cause the yellow container beneath it to fall. With the support polygon analy-
sis (section 3.3.1), these support relations can be detected. Here, we propose to
handle these cases with a bimanual manipulation strategy, where one hand of
the humanoid robot supports the potentially falling object, while the other hand
executes the desired manipulation, e. g. lifting or pushing an object.

Figure 5.2.: The humanoid robot ARMAR-III segmented the scene based on
RGB-D images. The support relations are visualized in a graph, in
which uncertain edges are marked red. In order to lift the coffee fil-
ters on top of the pile, a precondition requires no top-down support.
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Consider the scene in Figure 5.2. The robot’s task is to lift the coffee filters box
on top of an object stack. The robot extracted a probabilistic scene representa-
tion from the point clouds captured by its depth camera. Based on scene rep-
resentation, physically plausible but not necessarily accurate support relations
are extracted and represented as a directed graph, in which objects are the ver-
tices and support relations are the edges. The edge from the top-most object to
the box underneath is marked red, indicating that such support relation creates
a cycle, requiring special attention during manipulation. Lifting the coffee fil-
ters (Box 4) might cause falling of the underlying box (Box 3). We can predict
these action effects by observing the preconditions of the lift action, which re-
quire the non-existence of a support relation between the lifted object and the
box underneath (highlighted in red in Figure 5.2). Instead of not executing the
action, our approach employs a bimanual manipulation strategy by which one
hand executes the action, and the second hand secures potentially falling ob-
jects. Further, we use force measurements obtained from force-torque sensors
in the robot’s wrists to detect whether an object fell into the second hand and
update the support relations accordingly. To this end, we propose bimanual
manipulation strategies to cope with the inherent uncertainty about the conse-
quences of action executions.

Detection of the Need for Bimanual Manipulation: If the robot has chosen
the next object A to manipulate, either by the manipulation order defined above
or by some task given to it, we want to determine whether it is safe to manip-
ulate the object with a single hand or whether support with a second hand is
needed. A second hand is needed if A still supports other objects from above as
computed by the support polygon analysis. We can compute this joint probabil-
ity for every other object B ∈ O:

P (SUPP(B, A) ∧ SUPP(A, B)) = P (SUPP(B, A)) · P (SUPP(A, B) | SUPP(B, A))

Note that the conditional probability P (SUPP(A, B) | SUPP(B, A)) models the case,
where we have support from above from A to B, which is only possible once
support from from B to A through the ACT relation exists. If this probability ex-
ceeds a chosen threshold for any B ∈ O, the need for bimanual manipulation is
detected.
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Chapter 5. Application to Robot Manipulation Tasks

We consider two actions push and lift, which the robot can execute in order
to manipulate a pile of objects. Listing 1 specifies actions, their preconditions,
and effects. We use the predicate OBJECT(A) to denote that A is an object with
which the agent can interact. The predicate HAND(H) identifies the end-effector
H used to execute the action, and SUPP(A,B) requires a support relation be-
tween objects A and B.

Uncertainties in the extraction of support relations or the existence of support
from above might lead to the execution of actions, which violate the defined
preconditions or have additional undesired effects on the world state. We focus
on the undesired effects on the support graph, i. e. pushing or lifting an object
causes other objects to change their support relation. If the action contains a
precondition that relies on the non-existence of a support relation involving
the object to be manipulated, we can still execute the action using a bimanual
manipulation strategy. Consider the case of lifting the coffee filters (Box 4) in
Figure 5.2, which is supported by (Box 3). Support polygon analysis adds a
support relation SUPP(Box 4,Box 3), which will be detected. Using the second
hand of the humanoid robot, we can prevent these undesired changes in the
scene structure.

Securing Potentially Falling Objects: Given an object set O, a support rela-
tions between them, an action a on a target object T ∈ O and an object S ∈ O,
which are in a potential support relation SUPP(T, S), we want to execute action
a, prevent any undesired effects caused by the existence of SUPP(T, S) and detect
whether SUPP(T, S) was true in the initial scene.

We solve this problem by using one hand HT to execute the primary action on
the target object T, and the other hand HS to secure the supporting object S. If S
would fall after or during the action execution, instead of falling unpredictably,
a new support edge SUPP(HS, S) from the securing hand HS to the supporting
object S is added. Using force-torque sensors in the hand of the robot we can
decide whether SUPP(HS, S) needs to be added to the graph.

Algorithm 5 shows the implementation of the safe manipulation strategy. First,
we decide which hand executes the action and which hand secures the support-
ing object. The action hand is chosen by a simple heuristic. If the target object’s
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�
(define (domain robot-actions)

(:predicates (object ?o) (hand ?h) (supp ?s ?o))

; Push object ?a on object ?b using hand ?h

(:action push

:parameters (?a ?b ?h)

:precondition (and (object ?a)

(object ?b)

(hand ?h)

(supp ?b ?a)

(not (supp ?a ?b)))

)

; Lift object ?a from object ?b using hand ?a

(:action lift

:parameters (?a ?b ?h)

:precondition (and (object ?a)

(object ?b)

(hand ?h)

(supp ?b ?a)

(not (supp ?a ?b)))

:effects (and (not (supp ?b ?a))

(supp ?h ?a))

)

)

�

Listing 1: Definition of operators, i. e. actions which the robot can execute, in-
cluding their preconditions and effects using STRIPS notation (Fikes
and Nilsson, 1971).

109



Chapter 5. Application to Robot Manipulation Tasks

position is to the right of the robot’s base, we choose the right hand and vice
versa. Then, we can calculate the secure and target poses TS and TT needed to
execute the action safely. Before executing the action, the robot should move its
end-effector to a suitable pre-pose Tpre,T. We solve the Inverse Kinematics (IK)
for the kinematic chain consisting of both arms, to allow bimanual manipula-
tion. Using the resulting joint values qBody, the robot moves its end-effectors to
the secure pose and action pre-pose. Before executing the desired action, the
force/torque measurements from the force/torque sensor in the wrist of the
supporting hand are used for change detection. The force measurements are
filtered using a median derivative filter to detect changes more easily. If the
filtered force measurements in the global z-direction (direction of gravity) ex-
ceed the predefined force threshold Fmax, the support relation existed and un-
desired side effects were prevented by adding SUPP(HS, S). Otherwise, the edge
SUPP(T, S) did not exist in the initial scene and can be removed from the cor-
rected graph.

Determining Action and Support Hand Poses: The hand poses TT, Tpre,T, TS ∈
SE(3) need to be determined before the bimanual IK can be calculated. The ac-
tion hand poses TT and Tpre,T are chosen depending on the action, which should
be executed. For a lifting action, the object needs be grasped. Therefore, a grasp
is generated using a skeleton-based grasp planner (Vahrenkamp et al., 2018)
that uses the the geometry information of the target object T. For the pushing
action, the center point of the object is chosen as the translation, while the ori-
entation is predefined. The pre-pose Tpre,T is a translational offset away from the
target pose along the grasp approach or push direction.

The supporting hand pose TS is determined by a polygon analysis and collision
checks between the hand model and the geometric models of the scene.

Detecting Fallen Objects using the Force/Torque Information: In order to
compensate for noise and drift in the force/torque measurements of our robot,
we use a median derivative filter to detect the fall of an object onto the securing
hand. Let Fw(k) be the latest w ∈ N force sensor values at time step k ∈ N:

Fw(k) =
{
f(k), f(k − 1), . . . , f(k − w + 1)

}
,
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Algorithm 5: Safe Manipulation Strategy
Input: HR, HL: Right and left hand/end-effector

T, S: Target and supporting object
a: Action to be executed
Fmax: Force threshold for fall detection
Gs = (O, E): Estimated support graph

Output: Gnew: Resulting support graph
Gcorr: Corrected initial support graph

HT, HS = ChooseHands(HR, HL, T, S);
TS = CalculateSecurePose(HS, S);
TT = CalculateTargetPose(a,HT, T);
Tpre,T = CalculatePrePose(a,HT, TT);
qBody = SolveBimanualIK(HT, Tpre,T, HS, TS);
MoveBody(qBody);
FT = CreateFilteredForceTorqueSensor(HS);
ExecuteAction(a,pT);
Enew = Ecorr = E;
if FT.MaxForceValue.z > Fmax then

Enew = E ∪ {(HS, S)};
else

Ecorr = E\{(T, S)};
end
return ((O, Enew), (O, Ecorr));

where f(k) ∈ R is the reported force value along the direction of gravity at time
step k. Let median(F ) return the median of a finite set F ⊂ R. Then, the filtered
value f̂(k) ∈ R at time step k ∈ N is determined as follows:

f̂(k) = median(Fv(k))−median(Fw(k))

where v, w ∈ N are window sizes with w ≫ v. The filtered value will be close to
zero if the applied force does not change. However, a caught object will result
in a significant peak (for an example see Figure 5.3).

111



Chapter 5. Application to Robot Manipulation Tasks

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 0.5 1 1.5 2 2.5 3

Fi
lt

er
ed

Fo
rc

e

Time in s

Fall
No Fall

Fmax

Figure 5.3.: Filtered force values during a push action. A fallen object produces
a clear peak, while the filtered force values stay around zero when
the object remains on the pile.

5.1.3. Validation Experiments

The proposed bimanual manipulation strategy was implemented and tested on
the humanoid robots ARMAR-III (Asfour et al., 2006) and ARMAR-6 (Asfour
et al., 2019). Both robots have two arms equipped with under-actuated five-
fingered hands and force/torque sensors in the wrists.

Experiments with ARMAR-III: In order to validate the bimanual manipula-
tion strategy, we conducted experiments on the humanoid robot ARMAR-III.
We purposefully created scenes that contained uncertain top-down support re-
lations to trigger the safe manipulation strategy. The robot was given the task
of either lifting or pushing an object which potentially supports another object
underneath it. We chose the same parameters for the support extraction as in
section 3.4, configured the force-torque filter with v = 11, w = 101 (correspond-
ing to time spans of about 300ms and 3000ms in our setup) and set the force
detection threshold to Fmax = 0.2N.

In the first scenario, the task was to lift the coffee filters on top of the yellow con-
tainer (see Figure 5.4). We shifted weights inside the container to alter the mass
distribution creating both cases of existing and non-existing top-down support.
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1 2 3

4 5 6 7

Figure 5.4.: ARMAR-III perceives the scene and extracts support relations (1).
Then, the action hand is moved to the pre-pose for grasping and the
supporting hand is moved to secure the potentially falling object (2
and 3). First, the coffee filters box is grasped (4 and 5) and then lifted
(6 and 7). During the lifting, the yellow box falls onto the supporting
hand.

The second scenario involved a push action where we changed the positioning
of the supporting blue cereal box to provoke both support cases. The robot was
able to prevent the fall of the bottom object in the case of real top-down support
and detect the fall of the object using its force-torque sensors (see Figure 5.3).
In case of no top-down support, we detected that the object did not fall on the
robot’s hand.

Experiments with ARMAR-6: In addition, experiments with ARMAR-6 were
conducted to show that the methods are transferable to different humanoid
robots. Figure 5.5 shows such a scenario, where the humanoid robot ARMAR-6

113



Chapter 5. Application to Robot Manipulation Tasks

Support Relations 

Before Picking

Support Relations 

After Picking

Figure 5.5.: ARMAR-6 picks a chips’ can with the right hand and supports an-
other object with the left hand to prevent the scene from collapsing.

tries to pick the chips can from a stack of objects. Using the probabilistic support
relations, the robot is able to infer that the box below the chips can is likely to
fall, and prevents this by supporting the box with the left hand.

5.2. Parametrizing Actions using Prediction

Now, we present an approach for parametrizing pushing actions based on a
learned prediction model as described in chapter 4. These pushing actions must
fulfill constraints given by a high-level planner, e. g., after executing a push ac-
tion the brown box must be to the right of the orange box.

Figure 5.6 shows ARMAR-6 in front of a table with multiple objects. The robot
has the task of bringing the large brown screw box to the left of the small orange
screw box. The image shows the robot executing one of the pushes required to
reach the goal state. For a given scene and goal state, the robot generates a set
of possible pushing action candidates by sampling the parameter space and
then evaluating the candidates by internal simulation, i. e. by comparing the
predicted effect based on the internal model with the desired effect provided by
the high-level planner.

This section is structured as follows. First, we determine action parameters to
achieve desired postconditions based on sampling the action parameter space
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Figure 5.6.: ARMAR-6 has the goal of moving the large brown screw box behind
the small orange box. The robot samples the parameter space of pos-
sible pushes and evaluates them according to the learned internal
prediction model. We choose push parameters, which are predicted
to produce the desired outcome. On the monitor, the red arrow in-
dicates the chosen push to be executed and the red box shows the
predicted pose of the brown box after the push.

and predicting action effects. Afterwards, this method is implemented and in-
tegrated into the robot software architecture. After explaining the details for
executing pushing actions on ARMAR-6, the section concludes with validation
experiments.

5.2.1. Determining Action Parameters based on Prediction

Given a set of symbolic actions defined with pre- and postconditions, we want
to determine an action sequence that transforms the current state to a speci-
fied goal state. A symbolic planner can generate an action sequence given the
current scene state and the actions defined in Listing 2.
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�
(define (domain push-planning)

(:predicates (object ?o) (side ?s) (free ?o ?s)

(on-side ?t ?o ?s)

)

; Push the target object ?tgt to the side ?s

; of object ?obj

(:action push-to-side

:parameters (?tgt ?obj ?s)

:precondition (and (object ?tgt)

(object ?obj)

(side ?s)

(free ?obj ?s)

(not (on-side ?tgt ?obj ?s))

)

:effect (and (not (free ?obj ?s))

(on-side ?tgt ?obj ?s))

)

; Make the side ?s of object ?obj free

(:action make-side-free

:parameters (?obj ?s)

:precondition (and (object ?obj)

(side ?s)

(not (free ?obj ?s))

)

:effect (free ?obj ?s)

)

)

�

Listing 2: Definition of operators, i. e. actions which the robot can execute, in-
cluding their preconditions and effects using STRIPS notation.
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Algorithm 6: Determine Parameters for Action Sequence
Input: S: Planned action sequence (symbolic)

O: Current scene state as set of objects
n: Number of samples for action effect prediction

Output: P : Parametrized action sequence
P = [ ];
Ocurrent = O;
Onext = O;
foreach s ∈ S do

ap = 0;
foreach i ∈ [1, n] do

as = sampleActionParameters(s);
Opred = predictActionEffect(Ocurrent, as);
if satisfiesExpectedEffects(Opred, s) then

ap = as;
Onext = Opred;

end
end
P.append(ap);
Ocurrent = Onext;

end
return P ;

In order to execute the planned symbolic action sequence, we need to parametrize
push actions to achieve the expected symbolic effects of the individual actions
in the plan. Symbolic effects include spatial relations, i. e. objects being on a spe-
cific side of other objects. Valid values for a side include on the left, on the right,
in front of, and behind. Another symbolic effect is, that a side of an object is free,
i. e. no other object is on this side.

We propose to use learned action effect prediction models to internally simu-
late the effects of different action parameters on the scene state. Algorithm 6 de-
scribes the steps to parametrize actions in a planned symbolic action sequence S
producing a parametrized action sequence P . First, we initialize P to an empty
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sequence. Then, we iterate over all actions in S and parametrize them via sam-
pling and predicting action effects. To this end, we sample n push parameters as

by generating push endpoints in the vicinity of the target object’s center. The di-
rection is chosen as a random rotation around the global z-axis. We evaluate for
which of the pushes the action effect prediction model outputs the scene state
Opred that satisfies the symbolic effects of the planned action s ∈ S. If multiple
pushes produce such an outcome, we chose the push that produces the least
amount of pose changes in not involved objects. After the push parameters ap

have been chosen, we append them to sequence of parametrized actions P . We
keep track of the current scene state Ocurrent while iterating over the planned
action sequence and updating it according to the chosen action parameters and
the predicted effect Opred.

5.2.2. Integration into the Robot Software Architecture

The action effect prediction requires action parameters for the push as well as
object poses and shapes in the global coordinate system (CS) as input. Further-
more, the robot needs to be able to store and load the learned action effect pre-
diction model. The action effect prediction as presented in chapter 4 needs to be
integrated into ArmarX (Vahrenkamp et al., 2015) and especially the memory
architecture.

Figure 5.7 gives an overview of the involved components and the data flow. The
action effect prediction model needs object poses and bounding boxes. There-
fore, we localize objects in a scene based on 6D pose estimation for known ob-
jects (Azad et al., 2009; Pauwels and Kragic, 2015) or fit geometric primitives to
unknown objects as described in chapter 3. Object poses along with the robot
state are tracked in the working memory of the robot. The learned model is
stored in and loaded from the prior knowledge of the robot. We assume that the
model is trained offline and does not need to be updated during execution.

To execute the action effect prediction on objects in a global CS, some transfor-
mations need to be applied. In the first step, the method transforms the input
objects into a local action-centric CS and builds a graph representing the objects
and their relations (section 4.2.3). The next step uses the learned model to pre-
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Figure 5.7.: The push effect prediction model is integrated into the robot’s soft-
ware architecture. Push parameters and object poses are used as in-
put to predict object poses after executing the push. The global in-
put poses are transformed into an action-centric CS before they are
transformed into the input graph. From the predicted output graph,
object poses are reconstructed and transformed back into the global
CS.

dict an output graph, from which the local object poses after the push can be
reconstructed. To get a prediction for object poses in the global CS, the initial
local transformation is inverted and applied to all objects.

5.2.3. Push Execution

The humanoid robot ARMAR-6 has two 8-DoF arms, which we use for push
execution. We will use a cartesian controller to control the 6D pose of the hand.
This controller utilizes the two-dimensional nullspace to avoid joint limits.
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Given the push parameters as endpoint e ∈ R3 and direction d ∈ R3, we want
to select which arm to use and calculate a cartesian push trajectory. The trajec-
tory begins at a defined initial pose, goes through a start point 10 cm before the
object, pushes along the direction d until the endpoint e is reached. Then, the
trajectory is reversed until it arrives at the initial pose again.

Since not all trajectories are executable with arbitrary hand orientation, we gen-
erate trajectories with hand rotations around the z-axis in the interval [−π

2
, π
2
].

Now, we can evaluate the minimal distance ∆qmin to the joint limits for each
generated trajectory t ∈ T and each arm arm ∈ {left, right}:

∆qmin(t, arm) = minDistanceToLimits(t, arm).

We choose the trajectory t∗ and the arm arm∗ which maximize ∆qmin:

t∗, arm∗ = argmaxt∈T,arm∈{left,right}(∆qmin(t, side))

This combination of trajectory and arm tries to avoid joint limits if possible,
which prevents the loss of degrees of freedom in the cartesian controller.

Finally, the chosen trajectory t∗ will be executed by the cartesian controller for
the arm arm∗. Figure 5.8 shows an example optimization, where a trajectory
with the left arm and a rotation of around −1.396 rad ≈ −80 ◦ will be selected.
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Figure 5.8.: Trajectory optimization for both arms showing the minimal distance
to joint limits for varying hand orientations.
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5.2.4. Validation Experiments

In experiments on ARMAR-6, we validate the transfer from simulation and
show that the action effect prediction model can be used to manipulate scenes
into desired states effectively. We demonstrate that the learned model enables
goal-oriented manipulation for table-top scenes.

Figure 5.9 shows the initial and the goal scene configuration. The goal of the
robot is to bring the large brown box to the right of the small red box. A symbolic
planner has generated the following actions sequence:

1. Push the sponge away from the small red box:
(make-side-free(?sponge ?small-red-box ?right)).

2. Push the large box behind the small red box:
(push-to-side(?large-box ?small-red-box ?behind)).

3. Push the large box to the right of the small red box:
(push-to-side(?large-box ?small-red-box ?right)).

Figure 5.9.: The left image shows the initial scene state and the symbolic plan
to manipulate the scene into the desired goal state. The right image
shows the scene after executing the planned and parametrized ac-
tions.

Now, these actions need to parametrized and executed sequentially. First, the
sponge is pushed away to make the right side of th small red box free. Fig-
ure 5.10 shows parameter sampling and action executiong for pushing the sponge
away from the small red box.

During the next two actions, the large brown box is pushed behind and then to
the right of the small red box. The sampled and executed actions are shown in
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Figure 5.10.: The top row shows sampling of parameters for pushing the sponge
away from the right side of the small red box. After a push end
point and direction are chosen, the robot executes the push as seen
in the bottom row.

Figure 5.11. The predicted pose of the pushed object is shown as a red box. As
can be seen, the pose for the first push is accurate. During the push to the right
side, the object rotates more than was predicted. However, the goal configura-
tion could still be reached.

5.3. Summary and Review

This chapter implemented applications for support relations and action effect
prediction in the context of humanoid robot manipulation tasks. First, we in-
vestigated how a humanoid robot can leverage extracted probabilistic support
relations during the manipulation of stacked objects. Then, we presented a way
to parametrize and execute pushing actions based on action effect prediction
methods.
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Figure 5.11.: The top row shows the predicted action effects and the executed
pushing action for moving the large brown box behind the small
box. In the bottom row contains the last pushing action, to move
the large brown box to the final position.

Support Relations for Manipulation Tasks: Based on the probabilistic rep-
resentation and extraction of support relations, a method for deriving a safe
manipulation order was proposed. By choosing the next object to manipulate,
which has the highest probability to not support other objects, and repeating
this process, unintended motion of other objects can be avoided. For situations,
in which an object supports another from above, a bimanual manipulation was
developed. The humanoid robot uses its one hand to secure potentially falling
objects while executing the manipulation task with its other hand. Experiments
with the humanoid robots ARMAR-III and ARMAR-6 validated the proposed
approaches in lifting and pushing tasks.

Parametrizing Actions using Prediction: Using learned action effect pre-
diction models, we parametrized action sequences. First, the action parameter
space is sampled and the samples are evaluated based on the predicted effect on
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the scene. If the predicted effects matches the expected effect from the symbolic
action description, the action parameters are chosen accordingly. Additionally,
the action effect prediction method is integrated into the robot software and
memory architecture. Object poses are retrieved from the working memory and
the learned prediction model is loaded from the prior knowledge. During pre-
diction, the global object poses are transformed to an action-centric CS before
they are converted to the input scene graph. The prediction model produces an
output graph, from which object poses are reconstructed and transformed to the
global CS again. Another relevant aspect is the execution of push trajectories on
a humanoid robot. We implemented a trajectory optimization that avoids joint
limits by choosing an appropiate arm and hand orientation. Experiments with
the humanoid robot ARMAR-6 demonstrated this approach in goal-oriented
manipulation task.
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6. Conclusion

The goal of this thesis was to show that interpreting a scene as objects and their
relations enables a robot to predict action effects and facilitates manipulation
tasks. Towards this goal, this thesis first addressed how a robot can semanti-
cally understand a scene and decompose it into objects and their support rela-
tions. Here, a probabilistic representation for both object geometry as well as
support relations was proposed, and an extraction method from point clouds
was implemented. Second, graph-based action effect prediction methods were
proposed, which are able to learn and predict action effects for multiple inter-
acting rigid and deformable objects. Third, we applied both the support relation
extraction and action effect prediction models to humanoid robot manipulation
tasks, including grasping, lifting, and pushing objects.

6.1. Scientific Contributions

This section summarizes the three main chapters of this thesis and discusses the
scientific contributions.

Probabilistic Representation and Extraction of Support Relations: In chap-
ter 3, a novel probabilistic representation and extraction method for support
relations was proposed, implemented, and evaluated. The probabilistic repre-
sentation includes object poses, shapes, and support relations. It encodes the
geometry of the scene as parametrizable primitives, e. g. boxes, cylinders, and
spheres. A joint distribution over primitive type and shape parameters captures
the uncertainty in perception. A method to extract this representation from per-
ceived point clouds was developed. First, it computes the joint distribution over
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the scene’s geometry via a modified RANSAC algorithm. Then, a Monte-Carlo
simulation estimates the probability of support relation existence using ACT rela-
tion and support polygon analysis. The proposed support polygon is able to de-
tect potential support from above, which other state-of-the-art methods based
on ACT relations cannot detect.

The proposed extraction method was evaluated on two datasets: the KIT-SR
dataset collected in this thesis and the OSD with additional annotations for
support relations. The results show that both the support polygon analysis and
the probabilistic representation improve detection rates significantly compared
to current state-of-the-art approaches. The probabilistic representation and ex-
traction method was published in Paus and Asfour (2021), which extended the
previous work that introduced support polygon analysis in Kartmann et al.
(2018).

Graph-based Prediction for Action Effects: Chapter 4 introduced action ef-
fect prediction methods based on graph neural networks for interactions be-
tween multiple rigid and deformable objects. First, a method for predicting
the effects of pushing actions on multiple rigid objects was developed. The
scene state was represented as a graph, in which vertices encode object prop-
erties and edges encode spatial relations between objects. Training data was
generated by simulating pushes in randomized scenes. Then, a graph neural
network was trained, whose input and output are graphs with an arbitrary
number of vertices and edges. To extend the method for deformable object in-
teractions, a sparse keypoint representation for a scene containing both a de-
formable bag and other rigid objects was proposed. Furthermore, a two-stage
prediction method was implemented, which first classifies moving vertices and
then conditionally updates them according to a regression model. Finally, a
mixed-horizon model, which combines prediction models with different time
step horizons, was proposed and implemented to handle predictions over longer
time horizons.

The evaluation of the push effect prediction on both simulated and real data
has shown that the method is able to accurately and efficiently predict the in-
teractions of multiple rigid objects. In contrast to other state-of-the-art data-
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driven methods, the approach is independent of the number of objects involved.
For deformable object interactions, ablation studies have demonstrated that the
two-stage model reduces spurious movement due to the classifier eliminating
non-involved vertices. Furthermore, the mixed-horizon model improved pre-
diction accuracy over longer time horizons. The action effect prediction method
for rigid objects has been published in Paus et al. (2020) and extended for de-
formable objects in Weng et al. (2021).

Application to Humanoid Robot Manipulation Tasks: In chapter 5, the meth-
ods proposed in this thesis are applied to humanoid robot manipulation tasks
and validated in experiments. First, based on probabilistic support relations,
a method for deriving sequence of manipulation actions that maximizes the
probability of successfully executing the actions, i. e. not causing other objects
to move or fall, is proposed. Then, a bimanual manipulation strategy is imple-
mented, which uses the second hand of the robot to secure potentially falling
objects. Furthermore, action effect prediction methods are used to parametrize
symbolic action sequences generated by a symbolic planner. By sampling the
action parameter space and evaluating them based on the predicted effect, a set
of action parameters can be identified, which satisfies the specified symbolic
effects.

Finally, experiments were conducted on the humanoid robots ARMAR-III and
ARMAR-6 to validate the proposed methods. The methods for leveraging sup-
port relations for manipulation tasks have been published in Paus and Asfour
(2021) and Kartmann et al. (2018). Parametrizing actions using prediction mod-
els has been published in Paus et al. (2020).

6.2. Discussion and Future Work

This thesis introduced a novel representation and extraction method for sup-
port relations as well as action effect prediction for rigid and deformable ob-
jects. These methods have been applied to and validated in humanoid robot
manipulation tasks. However, this thesis is the first step in this direction, and
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further developments and extensions can be envisioned. This section presents
and explores possible directions for future research.

Explainability of Decisions through Prediction: In this thesis, the robot has
used both support relations and action effect prediction models to estimate
what happens during or after it executes an action. This knowledge about ac-
tion effects has helped choose a manipulation strategy and parametrize actions.
The action effects and the choices based on them are essential to understanding
why an autonomous robot takes a certain decision. This aims at explainable Ar-
tificial Intelligence (AI) or a robot system with the ability to explain its actions to
a human. Towards this goal, the robot’s perception, intended actions, predicted
action effects, and its decisions need to be recorded in the robot’s memory. Open
questions in this area are how to represent this data, how to link decisions, ac-
tion effects and perceptions, and how to store and retrieve this data.

A related research area is success and failure detection during and after action
execution. If a robot is equipped with the ability to predict the effect of its ac-
tions, it can compare predicted effects with actual effects of its action on the
environment. This can enable the robot to detect whether the action was exe-
cuted successfully or whether something went wrong.

Natural Language Commands to Alter Scene States: This thesis assumed
that the manipulation goal was predefined, either extracted from speech or gen-
erated by a symbolic planner. However, understanding natural language de-
scriptions of scenes containing complex and often not well-defined object rela-
tions is a challenging task. Consider the seemingly simple command, ”Put the
cup to the left of the milk.” In this sentence, a human bias and prior knowledge
are required to understand what the relation ”to the left of” actually means
(Kartmann et al., 2020, 2021). To enable robots to understand these commands
and alter scene states accordingly, a mapping between the symbolic descrip-
tion and the subsymbolic positions and orientations of objects needs to be es-
tablished. Open research questions in this area include how to represent this
mapping, learn it from human demonstration, and how to parametrize actions
according to a given command.
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A similar research topic is the verbalization of scene states, i. e. the robot de-
scribes a perceived scene in natural language to a human (Bärmann et al., 2021;
Doğan et al., 2019; Zhu et al., 2017). This requires a high-level understanding of
both spatial and support relations. Since relations can exist between each object
pair, the robot needs to decide which relations are relevant to the human.

Model Predictive Control for Manipulation of Deformable Objects: In this
thesis, methods for predicting action effects in scenes with deformable and rigid
objects were proposed and implemented. A possible application of the predic-
tion model would be to bring a deformable object in a specified goal state.
A promising avenue to achieve this is model predictive control that uses the
learned prediction model. Another problem is to estimate the state of a de-
formable object from vision. Based on the sparse keypoint representation pro-
posed in this thesis, a possible solution could extract those keypoints from a
partial view of the deformable object utilizing learned priors and symmetry.
Both for control and perception, the differences between simulated and real data
need to be considered. This might require techniques for domain randomization
and transfer learning.

129





Appendix

A. KIT Semantic Relation Dataset

The KIT Support Relation dataset (KIT-SR) contains table-top scenes recorded
with an RGB-D camera. The scenes have been annotated with a point-wise seg-
mentation and ground-truth support relations. Additionally, the robot and cam-
era poses are provided, with which the scenes have been recorded. The dataset
is publicly available1.

Structure of the Dataset

The dataset consists of 60 recorded table-top scenes. Each scene is stored in a
separate numbered folder. The folder names are zero-padded to a length of 2
characters.

The scenes are grouped by complexity:

• 00 - 09: Free-standing objects on a table. No contacts between objects on
the table.

• 10 - 19: Contact between two objects in the table.

• 20 - 29: Two support situations on the table (involving three to four ob-
jects).

• 30 - 39: 3 or more support situations on the table.

• 40 - 49: Cluttered scenes with small household objects.

• 50 - 59: Cluttered scenes including big boxes.
1https://gitlab.com/h2t/software/interactive-scene-exploration/-/

wikis/KIT-SR
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Appendix

Contents of an Entry

Each entry in the dataset consists of the contents in the corresponding folder:

Filename File Type Description

rgb.bmp Windows Bitmap Color image of the scene
depth.bmp Windows Bitmap Depth image of the scene

original.pcd Point Cloud Data Orignal point cloud in the camera coor-
dinate system (Format: XYZRGBA)

global.pcd Point Cloud Data Global point cloud in the global coordi-
nate system (Format: XYZRGBA)

labeled.pcd Point Cloud Data Labeled point cloud in the global coor-
dinate system (Format: XYZRGBL)

support.csv CSV Annotated support relations
robot-state.json JSON Robot state and camera pose at the time

of recording

Color Image (rgb.bmp)

The color image uses the Windows Bitmap format to store the recorded camera
image of the scene. The image has the size 640x480 pixel and a bit-width of 24
(8-bit per color channel).

Example for entry 57:
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Depth Image (depth.bmp)

The depth image uses the Windows Bitmap format to store the recorded depth
information about the scene. The image has the size 640x480 pixel and a bit-
width of 24. Each pixel stores the depth in millimeters in each pixel’s 24 bit.

Example for entry 57:

Original Point Cloud (original.pcd)

The original point cloud was recorded in the camera coordinate system. The
camera coordinate system is not aligned with the global coordinate system. The
camera pose can be found in the robot state (robot-state.json). The file is stored
in the binary PCD format. Each point consists of a coordinate (XYZ) and a color
value (RGBA).

Example for entry 57:
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Global Point Cloud (global.pcd)

The global point cloud is equivalent to the original point cloud transformed to
the global coordinate system using the camera pose from the robot state (robot-
state.json). The file is stored in the binary PCD format. Each point consists of a
coordinate (XYZ) and a color value (RGBA).

Labeled Point Cloud (labeled.pcd)

The labeled point cloud is a point-wise labeled version of the global point cloud.
Each object is assigned a unique label that is annotated to each point. The file
is stored in the binary PCD format. Each point consists of a coordinate (XYZ), a
color value (RGB) and a label (L).

Example for entry 57:

Ground-truth Support Relations (support.csv)

The ground-truth support relations between objects have been annotated in a
CSV file. The file contains two named columns, source and target. A row de-
fines that a support relation exists from the label in column source to the label
in column target. The labels are integers defined in the labeled point cloud (la-
beled.pcd).

134



A. KIT Semantic Relation Dataset

Example for entry 57:

source target

0 1

0 2

1 3

2 5

2 7

3 4

4 5

5 6

7 8

8 7

Robot State (robot-state.json)

The robot state at the time of recording the scene has been stored in a JSON
file. The most interesting part is the global camera pose. However, the complete
robot state, including the global platform pose and the joint configuration is
provided. The dataset has been recorded with the humanoid robot ARMAR-6.
The content has the following hierarchy:

• camera

– frame name

– global pose

• robot

– global pose

– joint configuration
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B. Deformable Bag Interaction Dataset

The purpose of this dataset is the learn action effects in scenes with rich interac-
tions between a deformable bag and multiple rigid objects.

This dataset contains 20 different tasks for four actions:

• Pushing an object towards the bag

• Handle motion along a circular trajectory

• Opening the bag

• Lifting the bag

For each task, we simulate 1,000 6-sec trajectories, and record the scene state 10
times per second, which results in 60,000 recorded time steps. The simulated
task data is split into training (80%), validation (10%), and test set (10%). We
vary actions and task parameters to create data for 20 different tasks.

The dataset is publicly available2.

Tasks

The following parameters differentiate the tasks:

• Bag Stiffness: Is the bag’s material stiff or soft?

• Bag Content: Is the bag empty or is a rigid object inside?

• Left/Right Handle State: Is the handle fixed in place, released or moved
along a trajectory?

• Controlled Object: Which object is actively manipulated during the ac-
tion?

• Action: Which action is executed?

The table on the following page contains all 20 tasks and their respective pa-
rameters.

2https://kth.box.com/s/q4m2z0retfygq5kbai5innfeh55p9mst
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Task ID Bag Stiffness Bag Content Left Handle State Right Handle State Controlled Object Action

1 Soft Object Inside Fixed Fixed Sphere Pushing an Object
2 Soft Empty Fixed Fixed Sphere Pushing an Object

3 Soft Object Inside Moving Fixed Left Hand Circular Handle
Motion

4 Soft Empty Moving Fixed Left Hand Circular Handle
Motion

5 Soft Object Inside Moving Released Left Hand Circular Handle
Motion

6 Soft Empty Moving Released Left Hand Circular Handle
Motion

7 Soft Object Inside Moving Fixed Left Hand Opening the Bag
8 Soft Empty Moving Fixed Left Hand Opening the Bag

9 Soft Object Inside Moving Released Left Hand Lifting the Bag
10 Soft Empty Moving Released Left Hand Lifting the Bag

11 Stiff Object Inside Fixed Fixed Sphere Pushing an Object
12 Stiff Empty Fixed Fixed Sphere Pushing an Object

13 Stiff Object Inside Moving Fixed Left Hand Circular Handle
Motion

14 Stiff Empty Moving Fixed Left Hand Circular Handle
Motion

15 Stiff Object Inside Moving Released Left Hand Circular Handle
Motion

16 Stiff Empty Moving Released Left Hand Circular Handle
Motion

17 Stiff Object Inside Moving Fixed Left Hand Opening the Bag
18 Stiff Empty Moving Fixed Left Hand Opening the Bag

19 Stiff Object Inside Moving Released Left Hand Lifting the Bag
20 Stiff Empty Moving Released Left Hand Lifting the Bag
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Contents of a Task Entry

The recordings for each task are contained in a HDF53 file. The file format sup-
ports structured data storage and retrieval in table format. Column keys, data
shape and description are detailed below.

Column Key Data Shape Description

randomname (1000) Random name for every trajectory.
clothid (1000) ID of the bag object. We provide one

bag with a fixed index ”20”.
clothmaterial bend (1000) Obi Cloth bending parameter for the

bag material: 0.1 for soft, 0.01 for
stiff material.

clothmaterial dist (1000) Obi Cloth distance parameter for the
bag material.

ballinside (1000) Is a sphere inside the bag? 1: Yes, 0:
No.

numRigid (1000) Number of rigid objects in the scene,
without counting the sphere effec-
tor. Defines the valid entries of the
position and velocity of rigid ob-
jects.

posCloth (1000, 61, 1277, 3) Position of bag mesh vertices for
each time step.

veloCloth (1000, 61, 1277, 3) Velocity of bag vertices in Unity.
posRigid (1000, 61, 10, 4) Position and radius of the free

sphere. Only the first ”numRigid”
entries are valid.

veloRigid (1000, 61, 10, 3) Velocity of rigid sphere in Unity.
Only the first ”numRigid” entries
are valid.

posEffector (1000, 61, 1, 4) Position and radius of the sphere ef-
fector. Only valid in the pushing ac-
tion task.

3https://www.hdfgroup.org/solutions/hdf5/
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graspnum l (1000, 61) Number of grasped points for the first
handle. Only valid when the left handle is
not released.

graspnum r (1000, 61) Number of grasped points for the first
handle. Only valid when the right handle
is not released.

graspnum l (1000, 61, 20) The indices of grasped vertices of the left
handle. Only valid if left handle is not re-
leased. Only first ”graspnum l” indices are
avaliable.

graspnum r (1000, 61, 20) The indices of grasped vertices of the right
handle. Only valid if right handle is not re-
leased.Only first ”graspnum r” indices are
avaliable.

circletype (1000) Circular type of the motion. We drawing
circle in different coordinate planes. 0: Fol-
lows a circle in x-z coordinate plane, 1: Fol-
lows a circle in x-y coordinate plane, 2:
Draw the circle in z-y coordinate plane.

initSpeedEffector (1000) Speed of the pushed sphere. Only valid for
the pushing action task.

initPosEffector (1000, 1, 4) The initial position and radius of the
pushed sphere. Only valid for the pushing
action task.

sampleflag (1000) How the initial position of the sphere was
chosen. Only valid in the pushing action
task. 0: The sphere’s position is generated
near another rigid sphere, 1: The sphere’s
position is generated near the deformable
bag.

towardsflag (1000) The target of effector pushing. Only valid
in the pushing action task. 0: The sphere
is pushed towards another rigid sphere,
1: The sphere is pushed towards the de-
formable bag.
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C. Normality Test for Geometric Primitive
Distributions

In section 3.1, we defined a multi-variate Gaussian distribution P (xi | ti, oi) to
represent the geometric pose and shape of objects:

P (xi | ti = Box, oi) ∼ N (µi,Box,Σi,Box)

P (xi | ti = Cylinder, oi) ∼ N (µi,Cylinder,Σi,Cylinder)

P (xi | ti = Sphere, oi) ∼ N (µi,Sphere,Σi,Sphere)

These distributions should capture the samples generated during the geometric
primitive fitting via RANSAC. To show that this assumption holds, we per-
form a multivariate normality test based on the Henze-Zirkler test (Henze and
Zirkler, 1990; Baringhaus and Henze, 1988).

Our null hypothesis H0 assumes that the samples are drawn from a multivari-
ate Gaussian distribution. We set α = 0.05, i. e. we discard the null hypothesis
if the probability for encountering the actual samples by drawing from a Gaus-
sian distribution is below 5%. Discarding the null hypothesis means that we
assume the alternative hypothesis H1 is true, which means that the samples do
not follow a normal distribution.

The Henze-Zirkler test calculates a statistic HZβ over all samples. If HZβ is
large, the tests rejects the null hypothesis. The parameter β can be be optimally
chosen depending on the dimension d of the n samples:

β = 2−0.5

(
(2d+ 1) · n

4

)1/(d+4)

The P value is calculated based on HZβ and is used to either confirm or discard
the null hypothesis. If P < α, the null hypothesis is rejected.

We calculated the HZβ as well as the P value for the samples generated by
RANSAC for all scenes in the two evaluation datasets (OSD and KIT-SR) sep-
arately. The following table shows the mean and standard deviation of both
values over all scenes.
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C. Normality Test for Geometric Primitive Distributions

Table 6.1.: Mean and standard deviation of HZβ and P values

Mean Standard Deviation
HZβ 0.9567 0.0510

P value 0.4442 0.2935

With an average value of 0.4442 > α = 0.05, the null hypothesis H0 is not re-
jected. This implies that the assumption that the samples drawn using RANSAC
follow a multivariate Gaussian distribution still holds.
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Acronyms

APM Active Prediction Module

CS coordinate system

DoF Degrees-of-Freedom

FEM Finite Element Method

GN Graph Network

IK Inverse Kinematics

LCCP Locally Convex Connected Patches

MLP Multi-layer Perceptron
MSS Minimum Sample Set
MuJoCo Multi-Joint dynamics with Contact

OSD Object Segmentation Dataset

PPM Position Prediction Module

RANSAC Random Sample Consensus
RL Reinforcement Learning

SEA Static Equilibrium Analysis
SOFA Simulation Open Framework Architecture
SVD Singular Value Decomposition
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Kasper, A., Jäkel, R., and Dillmann, R. (2011). Using spatial relations of objects in
real world scenes for scene structuring and scene understanding. In IEEE In-
ternational Conference on Advanced Robotics (ICAR), pages 421–426. IEEE. Cited
on page 9.

Kasper, A., Xue, Z., and Dillmann, R. (2012). The KIT object models database:
An object model database for object recognition, localization and manipula-
tion in service robotics. The International Journal of Robotics Research, 31(8):927–
934. Cited on page 80.

Kemp, C. and Tenenbaum, J. B. (2008). Structured models of semantic cognition.
Behavioral and Brain Sciences, 31(6):717–718. Cited on pages 1 and 7.

Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., and Ueda, N. (2006).
Learning systems of concepts with an infinite relational model. In AAAI, vol-
ume 3, page 5. Cited on page 1.

Kloss, A., Schaal, S., and Bohg, J. (2017). Combining learned and analytical
models for predicting action effects. CoRR, abs/1710.04102. Cited on page 31.

Kloss, A., Schaal, S., and Bohg, J. (2020). Combining learned and analytical
models for predicting action effects from sensory data. International Journal of
Robotics Research. Cited on pages 31 and 35.

Kopicki, M., Zurek, S., Stolkin, R., Mörwald, T., and Wyatt, J. (2011). Learning to
predict how rigid objects behave under simple manipulation. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 5722–5729. Cited
on pages 31 and 35.
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Marchal, M., and Alenyà, G. (2020). Leveraging multiple environments for
learning and decision making: a dismantling use case. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 6902–6908.
Cited on page 37.

Tekden, A. E., Erdem, A., Erdem, E., Imre, M., Seker, M. Y., and Ugur, E. (2020).
Belief regulated dual propagation nets for learning action effects on articu-
lated multi-part objects. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 0–0. Cited on pages 33 and 35.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-
based control. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5026–5033. Cited on pages 37, 76, and 79.
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