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Abstract

This paper studies highly oscillatory solutions to a class of systems
of semilinear hyperbolic equations with a small parameter, in a setting
that includes Klein–Gordon equations and the Maxwell–Lorentz sys-
tem. The interest here is in solutions that are polarized in the sense
that up to a small error, the oscillations in the solution depend on only
one of the frequencies that satisfy the dispersion relation with a given
wave vector appearing in the initial wave packet. The construction and
analysis of such polarized solutions is done using modulated Fourier
expansions. This approach includes higher harmonics and yields ap-
proximations to polarized solutions that are of arbitrary order in the
small parameter, going well beyond the known first-order approxima-
tion via a nonlinear Schrödinger equation. The given construction of
polarized solutions is explicit, uses in addition a linear Schrödinger
equation for each further order of approximation, and is accessible to
direct numerical approximation.

1 Introduction

We consider semilinear hyperbolic systems of the form

∂tu+A(∂x)u+
1

ε
Eu = ε T (u, u, u), x ∈ Rd, t ∈ [0, τend/ε] (1)

with vector-valued solution u(t, x) ∈ Rn (d, n ∈ N). Here, A(∂x) =
∑d

`=1A`∂`
is a first-order differential operator with symmetric matrices A1, . . . , Ad ∈
Rn×n, E ∈ Rn×n is a skew-symmetric matrix, T : Rn × Rn × Rn → Rn is a
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2 Polarized high-frequency wave propagation

trilinear nonlinearity, and 0 < ε � 1 is a small parameter. This problem
class includes, e.g., the Maxwell–Lorentz system and Klein–Gordon systems;
cf. Section 2.1 in [CL09].

In [CL09, Lan11] such systems have been considered with initial data

u(0, x) = eiκ·x/εp(x) + c.c., (2)

where κ ∈ Rd \{0} is a fixed wave vector and p : Rd → Rn a smooth envelope
independent of ε. (Different scalings such as p(x/

√
ε) instead of p(x) are

also of interest, but will not be considered here.) The dot · denotes the
Euclidean scalar product in Rd and “c.c.” means complex conjugation of
the preceding term.

Both the PDE (1) and the initial data (2) contain the small parameter
0 < ε � 1, and as a consequence, solutions of (1)–(2) typically oscillate
rapidly in time and space.

Polarization in the linear case. When T ≡ 0 in (1), a situation of par-
ticular interest appears for special initial data p(x) = α(x)v, where α is a
smooth real- or complex-valued function, and v is an eigenvector to an eigen-
value1 ω of the Hermitian matrix

∑d
`=1 κ`A` − iE (in different terminology,

the pair of the wave vector κ and the frequency ω satisfies the dispersion re-
lation). Then, the solution is of the form u(t, x) = ei(κ·x−ωt)/εµL(t, x)v+c.c.,
where µL is a smooth, ε-independent complex-valued function. This is a po-
larized solution where the other eigenvalues ω̃ 6= ω do not appear in highly
oscillatory exponentials ei(κ·x−ω̃t)/ε, as they would for general initial data.

Nonlinear polarization. In the present paper we contribute to extend-
ing the concept of polarization to the nonlinear situation (1). There is
earlier work by Colin & Lannes [CL09] and Lannes [Lan11], which mo-
tivated the present work. They considered initial data (2) with p(x) =
α(x)v+O(ε) and showed that the solution can then be written as u(t, x) =
ei(κ·x−ωt)/εµ(t, x)v+c.c.+O(ε) with a function µ that, together with its par-
tial derivatives, is bounded independently of ε. (Here and in the following,
the O(·) notation is with respect to the maximum norm.) This approxima-
tion result holds true over times O

(
ε−1
)
, which is the time scale over which

the nonlinearity yields an O(1) contribution to the solution.

Here, we are interested in approximations of higher order in ε. We will show
that for given smooth p(x) = α(x)v, there exists a solution of (1) of the
form (for an arbitrary fixed odd integer m ≥ 1)

u(t, x) =
∑
|j|≤m
j odd

uj(t, x) eij(κ·x−ωt)/ε +O
(
εm+1

)
(3)

1In the introduction we assume ω to be a simple eigenvalue.
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such that Pu1(0, x) = p(x) with the orthogonal projection P = vv∗ onto the
eigenspace, and the modulation functions uj with u−j = uj are smooth and,
together with their partial derivatives of any order, they are bounded by
uj = O

(
ε|j|−1

)
. The dominant modulation function u1(t, x) is aligned with

the eigenvector v up to O(ε). Moreover, the representation (3) is unique up
to O

(
εm+1

)
. This higher-order approximation result again holds true over

times O
(
ε−1
)
. Note that here no other frequencies ω̃ 6= ω are allowed to

appear in the oscillatory exponentials in (3). It is not obvious a priori that
this can be achieved for the semilinear equation.

Nonlinear Schrödinger approximation. In Section 2.3.2 of [CL09] and
Section 2.3 of [Lan11], the solution of (1)–(2) with p(x) = α(x)v is approx-
imated up to O(ε) by

uNLS(t, x) = ei(κ·x−ωt)/εU(εt, x− cgt) + c.c., (4)

where U(τ, ξ) is the solution of an ε-independent nonlinear Schrödinger equa-
tion (NLS) on the rescaled time interval [0, τend]. In the second argument
of U , cg is the group velocity.
The modulation function u1 in (3) admits an asymptotic expansion in powers
of ε: u1 = u01 + εu11 + ε2u21 + . . . . It turns out that u01(t, x) in (3) equals
U(εt, x− cgt), though it arises with a different proof.

Higher harmonics. A shortcoming of the nonlinear Schrödinger approx-
imation is the fact that substituting (4) into the nonlinearity yields

T (uNLS, uNLS, uNLS) = ei(κ·x−ωt)/ε
(
T (U,U, U) + T (U,U, U) + T (U,U,U)

)
+ e−i(κ·x−ωt)/ε

(
T (U,U,U) + T (U,U,U) + T (U,U, U)

)
+ e3i(κ·x−ωt)/εT (U,U, U) + e−3i(κ·x−ωt)/εT (U,U,U),

whereas substituting (4) into the left-hand side of (1) does not produce any
terms with factor e±3i(κ·x−ωt)/ε. Hence, these higher harmonics contribute
to the residual and thus to the approximation error. In order to improve
the accuracy, these higher harmonics have to be taken into account. This is
a first motivation to search for approximations to u of the form (3).

Modulated Fourier expansions and geometric optics. Asymptotic
expansions such as (3) are known as modulated Fourier expansions (MFEs)
in time, a name that was coined in [HLW02, Chapter XIII]. Multiscale ex-
pansions of this type were occasionally used before under different names: in
a formal way without rigorous bounds in [Kru58] for analysing the motion of
charged particles and in [Whi74] for asymptotics of wave propagation, and
with rigorous bounds of modulation functions and remainder term in [HL00]
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for studying the long-time behaviour of numerical methods for highly oscil-
latory Hamiltonian systems. Since then, MFEs were used in many works
on the analysis of highly oscillatory ordinary and evolutionary partial differ-
ential equations and their numerical approximations; see, e.g., the reviews
[HL12, GHL18] and numerous references therein.

In the way MFEs are used here, with an expansion of the modulation func-
tions in powers of ε (which is possible for the problem at hand but not
in other cases with near-resonances between frequencies; see e.g. [CHL08,
FGL13]), the approach of this paper is actually close to the often-used ap-
proach in geometric optics of making an ansatz (see e.g. [Rau12, Chap-
ters 7–9])

u(t, x) =
∑
j

εjaj(t, εt, x, (κ · x− ω̃t)/ε),

where θ 7→ aj(t, τ, x, θ) is 2π-periodic. Expanding this map into a Fourier
series, as is often done, and interchanging the appearing double sum yields
an expression that is formally very similar to a modulated Fourier expansion
(3) with modulation functions uj(t, x) expanded in powers of ε. The actual
construction of the coefficient functions and the derivation of bounds for
them uses, however, different perspectives and details.

For systems similar to or more general than (1) asymptotic expansions of so-
lutions have been constructed in [Rau12, DR97, JMR00, JMR93] and many
other works. These articles refer to the setting of geometric optics, where
the time interval does not depend on ε. This is to be distinguished from
diffractive geometric optics, where the length of the time interval is O(1/ε)
as in (1). In the diffractive regime, solutions of the initial-value problem for
semilinear and quasilinear systems with ε-oscillatory initial data (2) have
been approximated with arbitarily high order in ε in [DJMR96], though
with εE instead of E/ε in (1). For (1) with initial data (2) a second-order
approximation of the form (3), but with oscillating uj , has been analyzed in
[BJ22]. Note that the problem of nonlinear polarization posed in the present
paper is different from the standard initial value problem.

Computational aspects. Because of the high-frequency oscillations, a
direct discretization of (1)–(2) would have to use very small time steps and
spatial mesh widths and is therefore computationally prohibitive, and even
more so the computation of polarized solutions. The smooth, non-oscillatory
modulation functions uj in (3) are constructed explicitly in this paper, re-
quiring only the solution of one nonlinear and a few linear Schrödinger equa-
tions that are independent of ε, using co-moving coordinates and the slow
time scale τ = εt, on the ε-independent rescaled time interval [0, τend]. With
the NLS approximation or the MFE, one can thus achieve an accuracy of
O(ε) orO

(
εm+1

)
, respectively, without having to solve any oscillatory PDEs.
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While computational aspects were the basic motivation for the present pa-
per, they will not be elaborated here.

Outline. In Section 2 we give a precise formulation of the setting and
present our main result, Theorem 2.4, which establishes the polarized mod-
ulated Fourier expansion (3). For m = 1 equations for the computation of
the modulation functions are stated explicitly in Corollary 2.6. The remain-
der of the paper gives the proof of Theorem 2.4. In Section 3 we construct
the MFE formally, in Section 4 we derive bounds for the modulation func-
tions, and in Section 5 we bound the approximation error of the truncated
MFE.

2 Statement of the main result

For every k ∈ Rd we define the real symmetric matrix

A(k) =
d∑
`=1

k`A` ∈ Rn×n (5)

with the same matrices A` as in the differential operator A(∂x). A pair (ω, k)
fulfills the dispersion relation if iω/ε is an eigenvalue of A(ik/ε) + E/ε, or
equivalently, ω is an eigenvalue of the Hermitian matrix A(k)− iE.

Assumption 2.1 Let κ ∈ Rd \ {0} be a fixed wave vector, and let ω =
ω1(κ) be a selected eigenvalue of A(κ)− iE. We assume that ω1(·) is twice
continuously differentiable at κ.

We note that a sufficient (though not necessary) condition for the required
differentiability is that ω is a simple eigenvalue of A(κ)− iE.

The Hermitian matrix

L(ω, κ) = −ωI +A(κ)− iE ∈ Cn×n

thus has a nontrivial kernel, which is the eigenspace to the eigenvalue ω of
A(κ)− iE. Let P be the corresponding eigenprojection, i.e., the orthogonal
projection onto the kernel of L(ω, κ). We set P⊥ = I − P.

We consider a function p that takes values in the range of P:

p ∈ S(Rd,Cn) with Pp(x) = p(x) for all x ∈ Rd. (6)

Here, S(Rd,Cn) is the Schwartz space of smooth functions that, together
with all their derivatives, decay faster than every negative power of |x|. The
function p is assumed to be independent of ε.
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Our next assumption concerns the NLS approximation of (4), uNLS(t, x) =
ei(κ·x−ωt)/εU(εt, x− cgt) + c.c. with initial data uNLS(0, x) = p(x)eiκ·x + c.c.,
where cg = ∇ω1(κ) is the group velocity. With the Hessian of ω1 at κ,
denoted H = ∇2ω1(κ), the function U = U(τ, ξ) is taken as the solution of
the NLS

∂τU −
i

2
∇ξ ·H∇ξU = P

(
T (U,U,U) + T (U,U, U) + T (U,U, U)

)
with initial data U(0, ·) = p of (6).

(7)

Note that ε does not show up in (7). We assume the following.

Assumption 2.2 The NLS (7) has a bounded solution U on [0, τend] × Rd

that has arbitrarily many bounded partial derivatives.

This is satisfied at least for sufficiently small τend > 0, as follows from the
local existence result in [Seg63].

For the construction of higher-order approximations in powers of ε we need
the following assumption.

Assumption 2.3 The matrix

Lj = L(jω, jκ) ∈ Cn×n (8)

is invertible for every odd integer j with 3 ≤ j ≤ m+ 2.

For j = 3 this assumption was also made in [CL09, Assumption 3].

Under these assumptions we have the following theorem, which is the main
result of this paper.

Theorem 2.4 (Modulated Fourier expansion) Let κ ∈ Rd \ {0} be a
fixed wave vector and let the frequency ω = ω1(κ) ∈ R. Let p ∈ S(Rd,Cn)
with Pp = p. Fix an odd positive number m. Under Assumptions 2.1–
2.3, there exists a solution u of (1) on the interval [0, τend/ε] that admits a
modulated Fourier expansion

u(t, x) =
∑
|j|≤m
j odd

uj(t, x) eij(κ·x−ωt)/ε +Rm(t, x) (9)

with u−j(t, x) = uj(t, x) and with the following properties:

1. Pu1 satisfies the initial condition

Pu1(0, ·) = p.
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2. The modulation functions uj are bounded as follows, with a constant
C independent of ε (but depending on m):

‖Pu1‖L∞([0,τend/ε]×Rd) ≤ C, ‖P⊥u1‖L∞([0,τend/ε]×Rd) ≤ Cε, (10)

‖uj‖L∞([0,τend/ε]×Rd) ≤ Cεj−1 (for odd 3 ≤ j ≤ m), (11)

and the same bounds hold true for the spatio-temporal partial deriva-
tives of these functions up to any fixed order. Moreover, the modula-
tion functions uj admit an asymptotic expansion in powers of ε.

3. The remainder term is bounded by

‖Rm‖L∞([0,τend/ε]×Rd) ≤ Cεm+1. (12)

The modulation functions uj with these properties (and hence also u) are
unique up to O(εm+1) w.r.t. the maximum norm.

Remark 2.5 (Polarization) We note in particular that the initial value
u(0, x) = (eiκ·x/εp(x)+c.c.)+O(ε) is determined by p uniquely up to O(εm+1).
So Theorem 2.4 holds true for special initial values u(0, ·) of (1), which we
call polarized initial values. As will be seen from the explicit construction
in the next section, the polarization map p 7→ u(0, ·) is a nonlinear map.
The construction shows that polarized initial values correspond to a slow
manifold of a system of highly oscillatory partial differential equations.

For polarized initial values, the other frequencies ω2(κ), . . . , ωµ(κ) (i.e. the
other eigenvalues of A(κ)− iE) do not enter the oscillatory exponentials of
the modulated Fourier expansion. For general initial values of type (2), it
would be possible to obtain a modulated Fourier expansion that includes also
those frequencies, under appropriate resonance or non-resonance conditions
among the frequencies. However, this is not the point of the above result,
where the interest lies precisely in the fact that the other frequencies do not
occur.

Corollary 2.6 Choosing m = 1 in (9) gives an O
(
ε2
)

approximation on the
time interval [0, τend/ε] that is constructed as follows: We obtain u1 = p1+q1
(with Pu1 = p1 and P⊥u1 = q1) by setting

p1 = p01 + εp11, q1 = εq11,

where

• p01(t, x) = U(εt, x− cgt), where U(τ, ξ) is the solution to the nonlinear
Schrödinger equation (7) with initial value U(0, ·) = p.

• q11(t, x) = z11(εt, x− cgt), where z11(τ, ξ) is obtained from ∂ξU(τ, ξ) via
matrix operations detailed in (33).
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• p11(t, x) = y11(εt, x − cgt), where y11(τ, ξ) is the solution to the linear
Schrödinger equation (38) with zero initial value.

Remark 2.7 (Computation of polarized solutions) Since the proof of
Theorem 2.4 gives an explicit construction of the modulation functions, the
result can be used to devise numerical schemes to compute polarized solutions
of (1), using time steps that are much larger than ε. This will be presented
elsewhere.

3 Construction of the modulated Fourier expan-
sion

3.1 Rescaling of time and co-moving coordinate system

For our analysis it is convenient to change to the new variables

τ = εt, ξ = x− cgt, v(τ, ξ) = v(εt, x− cgt) = u(t, x), (13)

where again cg = ∇ω1(κ) is the group velocity. Since

∂tu(t, x) = ∂tv(εt, x− tcg) = ε∂τv(τ, ξ)− cg · ∇ξv(τ, ξ),

A(∂x)u(t, x) = A(∂ξ)v(τ, ξ),

the change of variables turns the original problem (1) into

∂τv +
1

ε
B(∂ξ)v +

1

ε2
Ev = T (v, v, v), ξ ∈ Rd, τ ∈ [0, τend] (14)

with

B(∂ξ) =
d∑
`=1

B`
∂

∂ξ`
, B` = A` − (cg)`I. (15)

We choose a fixed odd number m ≥ 1 and define the index sets

J = {±1,±3, . . . ,±m} and J+ = J ∩ N. (16)

We aim to construct modulation functions vj(τ, ξ) = uj(t, x) such that in
the new variables (τ, ξ),

v(τ, ξ) ≈
∑
j∈J

eijκ·ξ/εeij(κ·cg−ω)τ/ε
2
vj(τ, ξ), v−j = vj (17)

with the bounds in the maximum norm

Pv1 = O(1) , (18a)

P⊥v1 = O(ε) , (18b)

vj = O
(
εj−1

)
for odd 3 ≤ j ≤ m, (18c)



Julian Baumstark, Tobias Jahnke, and Christian Lubich 9

and the same bounds for the space and time derivatives up to some fixed
order, and with an

approximation error in (17) of size O
(
εm+1

)
w.r.t. maximum norm. (19)

When this is achieved, this yields (9) in the original variables (t, x) together
with the bounds of Theorem 2.4.

3.2 PDEs for vj

Substituting (17) into (14), collecting terms with the same exponential factor
and discarding terms with factors

eijκ·ξ/εeij(κ·cg−ω)τ/ε
2
, |j| > m,

yields the system

∂τvj +
i

ε2
Ljvj +

1

ε
B(∂ξ)vj =

∑
#J=j

T (vJ), (20)

j ∈ J+, t ∈ [0, τend], x ∈ Rd

with Lj defined in (8) and the notation J = (j1, j2, j3), #J := j1 + j2 + j3,
and T (vJ) = T (vj1 , vj2 , vj3). The sum on the right-hand side is taken over
the set {

J = (j1, j2, j3) ∈ J 3 : #J = j
}
.

The system of PDEs (20) is compatible with the condition that v−j = vj .
Since Lj is invertible for 3 ≤ j ∈ J+ according to Assumption 2.3, (20) can
be reformulated as

vj = iεL−1j
(
ε∂τvj +B(∂ξ)vj − ε

∑
#J=j

T (vJ)
)
, 3 ≤ j ∈ J+. (21)

The case j = 1 is special. We distinguish

y1 = Pv1, y−1 = y1, (22a)

z1 = P⊥v1, z−1 = z1. (22b)

In order to derive equations for y1 and z1, we use that PL1 = L1P = 0 by
definition, and that PA(∂ξ)P = P(cg ·∇); cf. [Lan11, Lemma 2.9]. It follows
that PB(∂ξ)y1 = 0, PB(∂ξ)z1 = PA(∂ξ)z1 and hence

∂τy1 +
1

ε
PA(∂ξ)z1 =

∑
#J=1

PT (vJ), (23)

∂τz1 +
i

ε2
L1z1 +

1

ε
P⊥B(∂ξ)(y1 + z1) =

∑
#J=1

P⊥T (vJ). (24)
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L1 is not invertible, but the restricted mapping L⊥ := L1|P⊥Cn : P⊥Cn →
P⊥Cn has an inverse L−1⊥ = P⊥L−1⊥ P

⊥ : P⊥Cn → P⊥Cn. Therefore, (24) is
equivalent to

z1 = iεL−1⊥ P
⊥
(
ε∂τz1 +B(∂ξ)(y1 + z1)− ε

∑
#J=1

T (vJ)
)
. (25)

3.3 Asymptotic expansion in powers of ε

Our next goal is to approximate a solution of the PDE system (20) with func-
tions ṽj that are appropriately bounded together with their partial deriva-
tives and that satisfy the initial condition P ṽ1(0, ·) = p. The condition (18)
suggests an ansatz as a truncated power series in ε of the form

ṽj(τ, ξ) =
m∑

`=j−1
ε`v`j(τ, ξ), j ∈ J+, (26)

where m is the same number as in the definition of J in (16). Note that `

is a power on ε and is a superscript on vj . As before we let v`−j = v`j . For
example, for m = 5 we have J+ = {1, 3, 5} and (26) reads

v1 ≈ v01 + εv11 + ε2v21 + ε3v31 + ε4v41 + ε5v51, (27)

v3 ≈ ε2v23 + ε3v33 + ε4v43 + ε5v53,

v5 ≈ ε4v45 + ε5v55.

As in (22) we set

y`1 = Pv`1, y`−1 = y`1, z`1 = P⊥v`1, z`−1 = z`1 (28)

and in accordance with (18)

ỹ1 = P ṽ1 = y01 + εy11 + ε2y21 + . . .+ εmym1 (29)

z̃1 = P⊥ṽ1 = 0 + εz11 + ε2z21 + . . .+ εmzm1 . (30)

Negative subscripts mean complex conjugation as before. All other terms
are set to zero, i.e.

z0±1 = 0, v`j = 0 for ` < |j| − 1. (31)

In particular, this implies v0±1 = y0±1. For multi-indices J = (j1, j2, j3) ∈ J 3

and L = (`1, `2, `3) ∈ N3
0 we let

vLJ =
(
v`1j1 , v

`2
j2
, v`3j3

)
.

We will now derive equations for the coefficient functions y`1 for 0 ≤ ` ≤ m,
for z`1 for 1 ≤ ` ≤ m, and for v`j with odd 3 ≤ j ≤ m for j − 1 ≤ ` ≤ m. In
order to fulfill the condition Pu1(0, ·) = p (cf. Property 1 in Theorem 2.4)
we choose the initial data y01(0, ·) = p and y`1(0, ·) = 0 for ` ≥ 1.
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3.4 Equations for y01 and z11

Substituting the expansions (26), (29), and (30) into (23) and (25) and
equating like powers of ε yields

∂τy
0
1 + PA(∂ξ)z

1
1 =

∑
#J=1
|L|1=0

PT (vLJ ), (32)

z11 = iL−1⊥ P
⊥B(∂ξ)y

0
1, (33)

cf. [Lan11, Sect. 2.2]. Substituting (33) into (32) yields

∂τy
0
1 + iPA(∂ξ)L−1⊥ P

⊥B(∂ξ)y
0
1 =

∑
#J=1
|L|1=0

PT (vLJ ). (34)

With (15) it follows that

P⊥B(∂ξ)y
0
1 = P⊥A(∂ξ)y

0
1 − (cg)`P⊥y01 = P⊥A(∂ξ)y

0
1,

because P⊥y01 = 0 according to (28). Lemma 2.12 in [Lan11] yields for every
smooth v : Rd → Cn

PA(∂ξ)L−1⊥ P
⊥A(∂ξ)Pv(ξ) = −1

2
(∇ξ ·H∇ξ)Pv(ξ)

where H = ∇2ω1(κ) is the Hessian of ω1(·) at κ. Substituting these equa-
tions into (34) leads to the nonlinear Schrödinger equation

∂τy
0
1 −

i

2
∇ξ ·H∇ξy01 =

∑
#J=1
|L|1=0

PT (vLJ ). (35)

Since ∑
#J=1
|L|1=0

T (vLJ ) = T (y01, y
0
1, y

0
−1) + T (y01, y

0
−1, y

0
1) + T (y0−1, y

0
1, y

0
1)

depends only on y01 and y0−1 = y01, (35) is independent of z11 . Thus, one
can first solve (35) with initial value y01(0, ·) = p to determine y01. This is
precisely the initial value problem for the NLS approximation considered in
Assumption 2.2. Therefore, by this assumption a smooth solution y01 = U
exists over the interval [0, τend]. Once y01 is obtained, z11 is determined by (33).
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3.5 Equations for y11 and z21

Proceeding in the same way yields

∂τy
1
1 + PA(∂ξ)z

2
1 =

∑
#J=1
|L|1=1

PT (vLJ ), (36)

z21 = iL−1⊥ P
⊥
(
B(∂ξ)(y

1
1 + z11)−

∑
#J=1
|L|1=0

T (vLJ )
)
. (37)

Inserting (37) into (36) and proceeding as before gives

∂τy
1
1 −

i

2
∇ξ ·H∇ξy11 + iPA(∂ξ)L−1⊥ P

⊥
(
B(∂ξ)z

1
1 −

∑
#J=1
|L|1=0

T (vLJ )
)

=
∑
#J=1
|L|1=1

PT (vLJ ). (38)

The sum∑
#J=1
|L|1=1

T (vLJ ) = T (v11, v
0
1, v

0
−1) + T (v11, v

0
−1, v

0
1) + T (v0−1, v

1
1, v

0
1)

+ T (v01, v
1
1, v

0
−1) + T (v01, v

0
−1, v

1
1) + T (v0−1, v

0
1, v

1
1)

+ T (v01, v
0
1, v

1
−1) + T (v01, v

1
−1, v

0
1) + T (v1−1, v

0
1, v

0
1)

depends only on y01 and v11 = y11 + z11 . Since v11 appears exactly once in each
evaluation of the trilinearity and since z11 does not depend on y11, the PDE
(38) is a linear inhomogeneous Schrödinger equation for y11, to be solved
with zero initial value: y11(0, ·) = 0. With the solution y11 we then compute
z21 from (37).

3.6 Equations for y21, z
3
1, and v23

As in the first two steps one obtains

∂τy
2
1 + PA(∂ξ)z

3
1 =

∑
#J=1
|L|1=2

PT (vLJ ), (39)

z31 = iL−1⊥ P
⊥
(
∂τz

1
1 +B(∂ξ)(y

2
1 + z21)−

∑
#J=1
|L|1=1

T (vLJ )
)
. (40)
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For the first time there is now a contribution from the time-derivative ∂τz1
on the right-hand side of (25). Substituting (40) into (39) leads to

∂τy
2
1 −

i

2
∇ ·H∇y21 + iPA(∂ξ)L−1⊥ P

⊥
(
∂τz

1
1 +B(∂ξ)z

2
1 −

∑
#J=1
|L|1=1

T (vLJ )
)

=
∑
#J=1
|L|1=2

PT (vLJ ),

(41)

which is to be solved with zero initial value. In contrast to the first two
steps the sum ∑

#J=1
|L|1=2

PT (vLJ )

on the right-hand side involves not only terms v`±1 with subscript ±1, but
also PT (vLJ ) = PT (v23, v

0
−1, v

0
−1) and two other terms with permuted ar-

guments. Here, v23 has to be computed from (21). Since by construction
∂τv

0
3 = 0 and v13 = 0 we obtain

v23 = −iL−13

∑
#J=3
|L|1=0

T (vLJ ). (42)

The sum ∑
#J=3
|L|1=0

T (vLJ ) = T (v01, v
0
1, v

0
1) = T (y01, y

0
1, y

0
1)

depends only on y01, which is already available.

3.7 Equations for y`1, z
`+1
1 , and v`j

For ` = 3, . . . ,m we obtain y`1 by solving the PDE

∂τy
`
1 −

i

2
∇ ·H∇y`1 + PA(∂ξ)

(
iL−1⊥ P

⊥
(
∂τz

`−1
1 +B(∂ξ)z

`
1 −

∑
#J=1
|L|1=`−1

T (vLJ )
))

=
∑
#J=1
|L|1=`

PT (vLJ ) (43)

with zero initial data. Then, we set

z`+1
1 = iL−1⊥ P

⊥
(
∂τz

`−1
1 +B(∂ξ)(y

`
1 + z`1)−

∑
#J=1
|L|1=`−1

T (vLJ )
)

(44)
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and for j ∈ J+ with 3 ≤ j ≤ `+ 1

v`j = iL−1j
(
∂τv

`−2
j +B(∂ξ)v

`−1
j −

∑
#J=j
|L|1=`−2

T (vLJ )
)
. (45)

If ` = m, then (44) need not be computed, because zm+1
1 appears neither in

the ansatz (26) nor in the construction of the other quantities.

Substituting (26) into (17) yields a modulated Fourier expansion

ṽ(τ, ξ) :=
∑
j∈J

eijκ·ξ/εeij(κ·cg−ω)τ/ε
2
ṽj(τ, ξ) (46)

=
∑
j∈J

eijκ·ξ/εeij(κ·cg−ω)τ/ε
2

m∑
`=|j|−1

ε`v`j(τ, ξ), (47)

with v`−j = v`j , as an approximation to the solution of (14).

4 Bounds for the modulation functions

In this section we derive the bounds (18) for the modulation functions ṽj
constructed in the previous section. A suitable function space for the anal-
ysis is the Wiener algebra, which we recall now.

4.1 Wiener algebra

The Wiener algebra is defined by

W = {f ∈ S ′(Rd) : f̂ ∈ L1(Rd)}, ‖f‖W = ‖f̂‖L1 =

∫
Rd

|f̂(k)|2 dk,

where Ff = f̂ is the Fourier transform of f , i.e.

(Ff)(k) := (2π)−d/2
∫
Rd

f(x)e−ik·xdx.

W (Rd) is a Banach algebra and continuously embedded in L∞(Rd). There
is a constant CT such that the trilinear estimate

‖T (f1, f2, f3)‖W ≤ CT ‖f1‖W ‖f2‖W ‖f3‖W (48)

holds for all f1, f2, f3 ∈ W ; cf. Section 3.2 in [Lan11] and p. 715 in [CL09].
If, in addition, g1, g2, g3 ∈W , then it follows from (48) that

‖T (f1, f2, f3)− T (g1, g2, g3)‖W ≤ CTM2
3∑
`=1

‖f` − g`‖W (49)
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with M := max{‖f`‖W , ‖g`‖W , ` = 1, 2, 3}. For s ∈ N we define

W s = {f ∈W (Rd) : ∂αf ∈W (Rd) for all α ∈ Nd
0, |α|1 ≤ s},

‖f‖W s =
∑
|α|1≤s

‖∂αf‖W .

In these spaces (48) and the product rule of differentiation imply the trilinear
estimates

‖T (f1, f2, f3)‖W s ≤ C(s)
T

∑
s1+s2+s3=s

‖f1‖W s1‖f2‖W s2‖f3‖W s3 (50)

for all f1, f2, f3 ∈W s.

4.2 Boundedness of the coefficient functions

The right-hand side of (47) can provide a reasonable approximation only if
all coefficient functions y`1, z

`
1, v

`
j remain bounded on [0, τend]. This issue is

studied now. We will work with the regularity

y01 ∈ Xs :=

bs/2c⋂
i=0

Ci([0, τend],W s−2i) (51)

for a sufficiently large integer s, where bs/2c denotes the largest integer
which is not larger than s/2. Since y01 solves the nonlinear Schrödinger
equation (35), the regularity (51) with an arbitrary s is implied by Assump-
tion 2.2.

Lemma 4.1 For every integer q ≥ 0 there is a constant C independent of
ε such that

‖v`j‖Xq ≤ C

for all j ∈ J and all ` = 0, . . . ,m.

In particular, this implies the weaker bounds

‖v`j‖L∞([0,τend]×Rd) ≤ ‖v`j‖L∞([0,τend],W ) ≤ ‖v`j‖L∞([0,τend],W q) ≤ C.

Proof. The first step in the construction of Section 3.3 is to compute y01
by solving the nonlinear Schrödinger equation (35). All other coefficient
functions can be traced back to y01, and thus their regularity depends on the
regularity of y01, as we will explain now. Since z11 is given by (33), it follows
from (51) that z11 ∈ Xs−1. In Section 3.5 the next step was to construct
y11 by solving the linear inhomogeneous Schrödinger equation (38) with zero
initial data. The inhomogeneity includes the term

−iPA(∂ξ)L−1⊥ P
⊥B(∂ξ)z

1
1 ∈ Xs−3 (52)
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and other terms with higher regularity. By standard regularity theory (e.g.
based on Section 4.2 in [Paz83]), this yields y11 ∈ Xs−3. Since z21 defined by
(37) involves B(∂ξ)y

1
1 and other terms of higher regularity, we obtain that

z21 ∈ Xs−4.
The coefficient function y21 is the solution of the linear Schrödinger equation
(41) with zero initial data. Here, the critical term in the inhomogeneity is

−iPA(∂ξ)L−1⊥ P
⊥B(∂ξ)z

2
1 ∈ Xs−6,

such that y21 ∈ Xs−6. An immediate consequence of (40) is that z31 ∈ Xs−7.
The function v23 defined by (42) depends only on y01 ∈ Xs, such that v23 ∈W s.
By continuing this procedure, it is found that all coefficient functions in-
volved in the approximation (47) are bounded if s is sufficiently large.
Roughly speaking, three orders of regularity are required if the upper in-
dex of y`1 is increased by one, i.e. y`1 ∈ Xs−3`.

The bounds for the coefficient functions v`j in (26) yield the bounds (18)
when the truncated expansion ṽj is taken in the role of vj , as we always do
in the following.

5 Error bound

We will prove that the modulated Fourier expansion (46) approximates a
solution of (14) up to O

(
εm+1

)
. Let r be the residual of ṽ, i.e.

r = ∂τ ṽ +
1

ε
B(∂ξ)ṽ +

1

ε2
Eṽ − T (ṽ, ṽ, ṽ). (53)

Comparing

∂τ ṽ +
1

ε
B(∂ξ)ṽ +

1

ε2
Eṽ

=
∑
j∈J

eijκ·ξ/εeij(κ·cg−ω)τ/ε
2

(
∂τ ṽj +

i

ε2
Lj ṽj +

1

ε
B(∂ξ)ṽj

)
with

T (ṽ, ṽ, ṽ) =
∑
J∈J 3

ei#J(κ·ξ)/εei#J(κ·cg−ω)τ/ε
2
T (ṽj1 , ṽj2 , ṽj3)

=
∑
j odd
|j|≤3m

eij(κ·ξ)/εeij(κ·cg−ω)τ/ε
2
∑
#J=j

T (ṽj1 , ṽj2 , ṽj3)

shows that r has the representation

r(τ, ξ) =
∑
j odd
|j|≤3m

eij(κ·ξ)/εeij(κ·cg−ω)τ/ε
2
rj(τ, ξ), (54)
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with r−j = rj and

rj(τ, ξ) =


∂τ ṽj +

i

ε2
Lj ṽj +

1

ε
B(∂ξ)ṽj −

∑
#J=j

T (ṽj1 , ṽj2 , ṽj3) if 1 ≤ j ≤ m,

−
∑
#J=j

T (ṽj1 , ṽj2 , ṽj3) if m < j ≤ 3m.

The defects rj with j ≤ m are caused by solving the PDEs (20), (23), (24)
only approximately. For j > m the defects rj originate from the fact that
only the terms with index j ∈ J = {±1,±3, . . . ,±m} are used in the ansatz
(17).

Lemma 5.1 Let q ≥ 0 be arbitrary. There is a constant C independent of ε
(but dependent on q) such that

sup
τ∈[0,τend]

‖r(τ, ·)‖W q ≤ Cεm−1.

Proof. We will show that

sup
τ∈[0,τend]

‖rj(τ, ·)‖W q ≤ Cεm−1

for all odd j = 1, . . . , 3m for some constant C. Then, the assertion follows
directly from (54).
Lemma 4.1 and (26) imply that ‖ṽj‖W q = O

(
εj−1

)
and, via the trilinear

estimate (50), that

‖T (ṽj1 , ṽj2 , ṽj3)‖W q ≤ c εj1−1εj2−1εj3−1 = c ε#J−3 (55)

for some constant c which depends on C
(q)
T from (50). If j > m, then

j ≥ m+ 2 because j and m are both odd numbers, and we obtain

‖rj(t, ·)‖W q ≤
∑
#J=j

‖T (ṽj1 , ṽj2 , ṽj3)‖W q ≤ Cεj−3 ≤ Cεm−1,

where C depends on c from (55) and on the number of multi-indices J ∈ J 3

with #J = j.
Now let j ≤ m. In this case, rj is given by

rj(τ, ξ) =
m∑

`=j−1
ε`r`j(τ, ξ) (56)

with

r`j(τ, ξ) = ∂τv
`
j + iLjv`+2

j +B(∂ξ)v
`+1
j −

∑
#J=j
|L|1=`

T (vLJ ).
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In Subsection 3.3 the coefficients y`1, z
`
1, v

`
j have been constructed in such a

way that r`j = 0 for ` ≤ m− 2. Hence, only

rm−1j = ∂τv
m−1
j +B(∂ξ)v

m
j −

∑
#J=j
|L|1=m−1

T (vLJ ), (57a)

rmj = ∂τv
m
j −

∑
#J=j
|L|1=m

T (vLJ ) (57b)

do not vanish. Since ‖rm−1j ‖W q and ‖rmj ‖W q remain uniformly bounded by
Lemma 4.1, it follows from (56) that

sup
τ∈[0,τend]

‖rj(τ, ·)‖W q ≤ Cεm−1

for all m < j ≤ 3m. This proves the assertion.

Lemma 5.2 There exists a unique mild solution v of (14) with initial data
v(0, ·) = ṽ(0, ·) in the space C(I,W q) (with arbitrary q ≥ 0) on the whole
time interval I = [0, τend] of Assumption 2.2, and

‖v − ṽ‖L∞([0,τend],W q) ≤ Cεm+1, (58)

where C is independent of ε (but depends on m and q).

In particular, this implies

‖v − ṽ‖L∞([0,τend]×Rd) ≤ Cεm+1.

Proof. We split the proof into three parts (a)–(c).

(a) For every ε > 0 the operator

Aε = −1

ε
B(∂ξ)−

1

ε2
E with domain D(Aε) = W q+1

generates a strongly continuous group
(

exp(τAε)
)
τ∈R on W q. The group

operators are explicitly given by

F
(

exp(τAε)f
)
(k) = exp

(
− τ
ε2
(
iεB(k) + E

))
f̂(k)
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for every f ∈ W q (with arbitrary q ≥ 0) and all τ ∈ R. Since E ∈ Rn×n is
skew-symmetric and iB(k) is skew-Hermitian, it follows that

‖ exp(τAε)f‖W q =
∑
|α|1≤q

∥∥F( exp(τAε)∂αξ f
)∥∥
L1

=
∑
|α|1≤q

∫
Rd

∣∣∣exp
(
− τ

ε2

(
iεB(k) + E

))
kαf̂(k)

∣∣∣
2
dk

=
∑
|α|1≤q

∫
Rd

|kαf̂(k)|2 dk

=
∑
|α|1≤q

‖∂αξ f‖W q = ‖f‖W q

so that exp(tAε) : W q → W q is an isometry. Together with the trilinear
estimate (50), this yields that a unique mild solution v of (14) with initial
data v(0, ·) = ṽ(0, ·) ∈ W q exists in the space C([0, τ̄ ],W q) for every τ <
τmax, for some maximal time τmax where the solution becomes unbounded.
We will find later that τmax > τend.
(b) By Lemma 4.1, ‖ṽ‖L∞([0,τend],W q) ≤ C. Comparing (53) with (14) shows
that the error e = v − ṽ solves the evolution equation

∂τe = −1

ε
B(∂ξ)e−

1

ε2
Ee+ [T (v, v, v)− T (ṽ, ṽ, ṽ)]− r. (59)

Applying Duhamel’s principle (variation of constants formula) to (59) and
using the trilinear estimate (49) yields

‖e(τ)‖W q ≤ ‖e(0)‖W q + C̃

τ∫
0

‖e(σ)‖W q dσ +

τ∫
0

‖r(σ)‖W q dσ.

Since e(0) = 0 by assumption and since ‖r(σ)‖W q ≤ Cεm−1 by Lemma 5.1,
we obtain

‖e(τ)‖W q ≤ C̃
τ∫

0

‖e(σ)‖W q dσ + Cτendε
m−1,

such that the error bound (58) follows from Gronwall’s lemma. This holds
true on subintervals of [0, τend] as long as the solution v ∈ C([0, τ ],W q)
exists, i.e. for τ < τmax. Since ‖v(τ)‖W q ≤ ‖v− ṽ‖W q + ‖ṽ‖W q , the solution
remains bounded and hence can be continued up to and beyond τ = τend, so
that τmax > τend.

(c) So far, we have only obtained an O
(
εm−1

)
error bound instead of the

stated O
(
εm+1

)
bound. The improvement of the order of approximation
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comes about as follows: We can repeat the same argument with m + 2
instead of m. The resulting error, denoted em+2, is then of size O

(
εm+1

)
and differs from the above error em = e (for the expansion up to terms of
order O(εm)) only by the terms ε`v`j with ` = m+ 1,m+ 2, i.e.

em(τ, ξ) = em+2(τ, ξ) +
∑

|j|≤m+2

eijκ·ξ/εeij(κ·cg−ω)τ/ε
2
∑

`∈{m+1,m+2}

ε`v`j(τ, ξ).

By Lemma 4.1 and the bound for em+2, each of these terms is O
(
εm+1

)
,

and so we obtain the stated error bound.

Finally we have proved (17)–(19). By returning to the original coordinates
(t, x), we thus obtain items 1.– 4. of Theorem 2.4. The uniqueness of the
modulation functions uj up to O(εm+1) follows from the uniqueness of the
functions v`j in the construction of Section 3. This completes the proof of
Theorem 2.4.
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