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PRECONDITIONED IMPLICIT TIME INTEGRATION SCHEMES
FOR MAXWELL’S EQUATIONS ON LOCALLY REFINED GRIDS ∗

MARLIS HOCHBRUCK† , JONAS KÖHLER‡ , AND PRATIK M. KUMBHAR§

Abstract. In this paper, we consider an efficient implementation of higher-order implicit time
integration schemes for spatially discretized linear Maxwell’s equations on locally refined meshes.
In particular, our interest is in problems where only a few of the mesh elements are small while
the majority of the elements is much larger. We suggest to approximate the solution of the linear
systems arising in each time step by a preconditioned Krylov subspace method, e.g., the quasi-
minimal residual method by Freund and Nachtigal [13].

Motivated by the analysis of locally implicit methods by Hochbruck and Sturm [25], we show
how to construct a preconditioner in such a way that the number of iterations required by the Krylov
subspace method to achieve a certain accuracy is bounded independently of the diameter of the small
mesh elements. We prove this behavior by using Faber polynomials and complex approximation
theory.

The cost to apply the preconditioner consists of the solution of a small linear system, whose
dimension corresponds to the degrees of freedom within the fine part of the mesh (and its next coarse
neighbors). If this dimension is small compared to the size of the full mesh, the preconditioner is
very efficient.

We conclude by verifying our theoretical results with numerical experiments for the fourth-order
Gauß-Legendre Runge–Kutta method.

Key words. Maxwell’s equations, higher-order time integration, locally refined mesh, Krylov
subspace methods, preconditioning, error analysis.

AMS subject classifications. 65F10, 65F08, 65L04, 65L06, 65M22

1. Introduction. Maxwell’s equations play a crucial role in understanding and
analyzing electromagnetic waves. Though finite difference time-domain methods [32]
are still predominately utilized to solve Maxwell’s equations, numerous other methods
based on finite element or finite volume space discretizations have been introduced
and are gaining more and more importance.

The numerical solution of time dependent partial differential equations by a
method of lines approach involves first discretization in space and then integrating
the semi-discrete system in time. For the space discretization, discontinuous Galerkin
(dG) methods (see [5] and references therein) are popular due to their flexibility in
treating complex geometries and discontinuous material parameters. Since dG meth-
ods lead to block diagonal mass matrices, applying an explicit time integration scheme
can be implemented very efficiently. Unfortunately, explicit time integration methods
are subject to the so-called Courant-Friedrichs-Lewy (CFL) condition depending on
the minimum diameter of mesh elements, denoted by hmin, that is, the time step τ
needs to satisfy τ . hmin. Here, we are interested in locally refined meshes, where
most of the mesh elements are coarse but a very small number of mesh elements are
fine. The latter require very small time steps on all mesh elements, which makes the
computation inefficient. An alternative is to use implicit time integrators. These can
eliminate the CFL condition completely but involve solving a linear system involving
all degrees of freedom at each time step. Unfortunately, this is expensive and might
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even not be feasible for large 3D problems.
To tackle this problem, locally implicit (LI) methods [31, 3, 25, 1, 4, 26] and local

time stepping methods [28, 6, 16, 15] were introduced and studied. While there is a
rigorous analysis of LI methods of order two for linear problems, it is not clear how to
prove the stability for higher-order LI methods constructed via composition methods
[18, Section II.4].

In this paper, we introduce a new strategy to develop a higher-order time inte-
gration method to solve linear Maxwell’s equations on a locally refined spatial grid in
a computationally efficient way. Note that though we only consider linear Maxwell’s
equations, our analysis can be applied to general Friedrich’s system as well [20, 21].

We start with a higher-order implicit Runge-Kutta method. Due to the large
size of the coefficient matrices, iterative solvers are usually used to solve the linear
systems. These solvers in many cases require less memory, less total time, and have
more scalable parallel performance. There have been numerous iterative methods
which were discovered in the last few decades to solve a linear system. Here, we restrict
ourselves to Krylov subspace methods (see [29] and references therein). We observe
that the coefficient matrix resulting from the full discretization of the linear Maxwell’s
equations is complex symmetric, and hence we use the quasi-minimal residual (QMR)
method to solve it [10, 13, 14]. Our main contribution is to construct a suitable
preconditioner for the QMR method and to prove, that the number of iterations
required to reach a certain accuracy is independent of the fine mesh.

The paper is organized as follows. In Section 2, we present our model problem,
notations, and recall properties of curl matrices obtained through spatial discretization
of Maxwell’s equations. Section 3 is dedicated to higher-order implicit Runge-Kutta
methods. In Section 4, we recall known results on Krylov subspace methods and
prove how their efficiency can be improved by the proposed preconditioning. Finally
in Section 5, we verify our theoretical findings with numerical experiments.

2. Problem setting. Let Ω ⊂ Rd, d = 1, 2, 3, be an open, bounded Lipschitz
domain. For T > 0, let H,E : (0, T )×Ω→ Rd be the unknown magnetic and electric
field respectively, and J : (0, T ) × Ω → Rd be the given electric field density. The
linear Maxwell’s equations in an isotropic medium with permeability µ : Ω → R,
permittivity ε : Ω→ R, and a perfect conducting boundary are given by

µ∂tH = −curlE, (0, T )× Ω,(2.1a)

ε∂tE = curlH − J, (0, T )× Ω,(2.1b)

H(0) = H0, E(0) = E0, Ω,(2.1c)

n× E = 0, (0, T )× ∂Ω,(2.1d)

where ∂t denotes the partial derivative with respect to time and n is the unit outward
normal vector of the domain Ω. The initial conditions H0 and E0 satisfy

div(µH0) = 0, div(µE0) = %(0), Ω,(2.1e)

n · (µH0) = 0, ∂Ω,(2.1f)

where %(0) is the charge density at the initial time t = 0.
For a full discretization of (2.1), we first discretize it in space using a dG method

with central fluxes on a suitable mesh Th [5],[25, Section 2]. On this mesh we define
the broken polynomial space Vh = (Pm(Th))3 consisting of piecewise polynomials of
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degree at most m on each mesh element. The dG method then yields

(2.2)

∂tHh = −CE Eh, (0, T ),

∂tEh = CH Hh − Jh, (0, T ),

Hh(0) = H0
h, Eh(0) = E0

h,

where CE and CH are spatially discretized curl-operators containing µ and ε respec-
tively, and H0

h, E
0
h, and Jh are L2 projections of H0, E0 and J respectively, onto Vh

with respect to the weighted inner products defined below. The boundary condition
(2.1d) is weakly enforced in the definition of CE . These discrete operators CE , CH
are constructed by using weighted L2 inner products defined via(

u, v
)
µ

=
(
µu, v

)
L2(Ω)

,
(
u, v
)
ε

=
(
εu, v

)
L2(Ω)

, u, v ∈ L2(Ω).

The corresponding norms are denoted by
∥∥ · ∥∥

µ
and

∥∥ · ∥∥
ε

respectively. We refer to

[5, 25] for details on the dG discretization.
Let {φ1, . . . , φN} be a basis of Vh. Then the unknown discrete solutions Hh, Eh :

(0, T )→ Vh and the source term Jh : (0, T )→ Vh can be represented as

Hh(t) =

N∑
j=1

Hj(t)φj , Eh(t) =

N∑
j=1

Ej(t)φj , Jh(t) =

N∑
j=1

Jj(t)φj ,

with coefficient vectors H(t) = (Hj(t))
N
j=1, E(t) = (Ej(t))

N
j=1, J(t) = (Jj(t))

N
j=1. This

results in mass and stiffness matrices given by

(MH)l,j =
(
φj , φl

)
µ
, (C̃H)l,j =

(
CHφj , φl

)
ε
,(2.3a)

(ME)l,j =
(
φj , φl

)
ε
, (C̃E)l,j =

(
CEφj , φl

)
µ
.(2.3b)

Then, for t ∈ [0, T ], (2.2) is equivalent to the following system of ordinary differential
equations,

(2.4)

∂tH = −CE E, CE = M−1
H C̃E ,

∂tE = CH H− J, CH = M−1
E C̃H ,

H(0) = H0, E(0) = E0.

Here, H0 and E0 are the coefficient vectors of H0
h and E0

h respectively.
With an abuse of notation, given xh, yh ∈ Vh with coefficient vectors x,y ∈ CN ,

we define

(2.5)
(
x,y

)
ε

:= y∗MEx =
(
xh, yh

)
ε
,

(
x,y

)
µ

:= y∗MHx =
(
xh, yh

)
µ
,

and do so analogously for the induced norms in CN . Here, ∗ denotes the conjugate
transpose. For the matrix norms, we also take these weights into account, since then
these norms are equivalent to the operator norms of the discrete operators CH and
CE , i.e., we have∥∥CH

∥∥
ε�µ = sup

x∈CN\{0}

∥∥CHx
∥∥
ε∥∥x∥∥

µ

= sup
xh∈Vh\{0}

∥∥CHxh∥∥ε∥∥xh∥∥µ =
∥∥CH∥∥ε�µ,(2.6a)

∥∥CE

∥∥
µ�ε = sup

x∈CN\{0}

∥∥CEx
∥∥
µ∥∥x∥∥

ε

= sup
xh∈Vh\{0}

∥∥CExh∥∥µ∥∥xh∥∥ε =
∥∥CE∥∥µ�ε.(2.6b)



4 M. HOCHBRUCK, J. KÖHLER, AND P. M. KUMBHAR

In this paper, we are interested in locally refined meshes. We refer to our earlier
papers [25, 26] for detailed explanations on these meshes, but for the completion of
this paper, we introduce the necessary notation here. A locally refined mesh is a
mesh in which most of the mesh elements are coarse and very few mesh elements are
fine. Let Th,c and Th,f denote the collection of all coarse and fine mesh elements,
respectively. We denote by hf and hc the size of smallest mesh elements in Th,f and
in Th,c, respectively. These two sets are related to each other via

hf � hc and card (Th,f )� card (Th,c) .

Based on this decomposition of the mesh, the matrices defined in (2.4) can be split
into

(2.7) CH = Ci
H + Ce

H , CE = Ci
E + Ce

E ,

cf. [25] for more details. The indices i and e indicate that the elements on which
Ci
H ,C

i
E act are treated implicitly and the ones on which Ce

H ,C
e
E act are integrated

explicitly. In fact, it was shown in [25] that not only the fine elements have to be
treated implicitly but also their direct coarse neighbors.

Let us state some properties of these matrices which are inherited from their
corresponding discrete operators, cf. [25]. First, CE and CH are adjoint to each
other, that is, for all H,E ∈ CN ,

(2.8)
(
CHH,E

)
ε

=
(
H,CEE

)
µ
.

It is easy to verify that these split matrices preserve the adjointness property of their
respective full ones, that is,

(2.9)
(
Ce
HH,E

)
ε

=
(
H,Ce

EE
)
µ
,

(
Ci
HH,E

)
ε

=
(
H,Ci

EE
)
µ
.

In addition to this, they satisfy

(2.10) Ce
HCe

E = Ce
HCE , Ci

HCi
E = Ci

HCE .

Furthermore, combining the above properties, it holds

(2.11)
∥∥CEE

∥∥2

µ
=
∥∥Ce

EE
∥∥2

µ
+
∥∥Ci

EE
∥∥2

µ
.

One of the important results from [25] is that the explicit split matrices Ce
H and

Ce
E can be bounded independently of the fine mesh, that is, using the definition of

weighted norm in (2.6) we have

(2.12)
∥∥Ce

E

∥∥
µ�ε ≤ ch

−1
c ,

∥∥Ce
H

∥∥
ε�µ ≤ ch

−1
c ,

with a constant c that is independent of hf and hc.
In [25, 26], these split matrices were constructed to develop a locally implicit

time integration method. In this paper, we use these split matrices in a different
way: to construct preconditioners which improve the performance of Krylov subspace
methods.
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3. Higher-order implicit Runge–Kutta methods. In this section, we con-
sider the time integration of (2.4) by an s-stage implicit Runge–Kutta (RK) methods
given by its matrix Oι = (aij)

s
i,j=1, weights bi and nodes ci, i = 1, . . . , s, cf., [18,

Section II.1]. To simplify the presentation, we write (2.4) in the compact form

(3.1)
∂tu = Cu + j, (0, T ),

u0 = u(0),

where

u =

(
H
E

)
, j =

(
0
−J

)
∈ R2N , and C =

(
0 −CE

CH 0

)
∈ R(2N)×(2N).

Assume that we already computed an approximation un ≈ u(tn) at time tn = nτ ,
where τ > 0 denotes the step size. Then, the implicit Runge–Kutta method applied
to (3.1) leads to the following coupled linear system of equations for the intermediate
stages Ui ≈ u(tn + ciτ)

(3.2) Ui = un + τ

s∑
j=1

aij
(
CUj + Fj

)
, i = 1, . . . , s,

where Fj = j(tn + cjτ). The new approximation un+1 ≈ u(tn+1) is then given
explicitly by

(3.3) un+1 = un + τ

s∑
i=1

bi
(
CUi + Fi

)
.

3.1. Gauß collocation methods. We use Gauß collocation methods to con-
struct higher-order implicit RK methods. It is well known that these methods are
algebraically stable [19, Theorem IV.12.9] and the RK matrix Oι is invertible [19,
Section IV.14]. In addition, the error analysis for linear wave-type problems [24, Sec-

tion 3.1] makes use of the existence of a diagonal positive definite matrix D̂ and a
positive scalar η > 0 such that

(3.4) v>D̂Oι−1v ≥ ηv>D̂v, for all v ∈ Rs.

Here, > denotes the transpose. For Gauß collocation methods, the coercitivity con-
dition (3.4) is satisfied for D̂ = B̂(Ĉ−1 − Is), where B̂ := diag(b1, . . . , bs), Ĉ :=
diag(c1, . . . , cs), and Is is the identity matrix of size s, cf. [19, Theorem IV.14.5].

For an efficient implementation of (3.2), we use Kronecker products [18, Section
VIII.6] to rewrite it as

(3.5) U = 1s ⊗ un + τ
(
(Oι⊗C)U + (Oι⊗ I2N )F

)
,

where U = (Ui)
s
i=1, F =

(
Fi
)s
i=1
∈ C2Ns, I2N is the identity matrix of size 2N ,

and the term 1s denotes the vector in Rs consisting of all ones. Diagonalization of
Oι yields a nonsingular matrix T ∈ Cs×s containing the eigenvectors and a diagonal
matrix ΛOι ∈ Cs×s containing eigenvalues λi, such that

(3.6) T−1OιT = ΛOι, ΛOι = diag(λ1, . . . , λs).



6 M. HOCHBRUCK, J. KÖHLER, AND P. M. KUMBHAR

Substituting Oι = TΛOιT
−1 in (3.5) and performing some Kronecker product opera-

tions leads to s decoupled linear systems of the form

(3.7) (Is ⊗ I2N − τ(ΛOι ⊗C))Z = Z0 + τ(ΛOι ⊗ I2N )F̃,

where,

(3.8) Z = (T−1 ⊗ I2N )U, Z0 = (T−1 ⊗ I2N )(1s ⊗ un), F̃ = (T−1 ⊗ I2N )F.

Note that Oι might have complex conjugate pairs of eigenvalues. For such eigen-
values (say λj = λi), the corresponding linear systems are

(I2N − τλiC)Zi = Z0
i + τλiF̃i,(3.9a)

(I2N − τλi C)Zj = Z0
j + τλi F̃j .(3.9b)

In the homogeneous case, i.e., J ≡ 0 which leads to F̃ ≡ 0, the first term on
the right-hand sides of (3.9a) and (3.9b) are conjugate to each other and so are the
solutions.

Lemma 3.1. If J ≡ 0 and λj = λi, then the solutions of (3.9) satisfy Zj = Zi.

Proof. The RK matrix Oι is real and thus complex eigenvalues and eigenvectors
appear in complex conjugate pairs. Hence there exists a symmetric permutation
matrix P̂ ∈ Rs×s s.t.,

(3.10) T = TP̂, ΛOι = P̂ΛOιP̂,

which implies T−1 = P̂T−1. We choose an arbitrary index i ∈ {0, . . . , s} correspond-

ing to a complex eigenvalue λi 6∈ R and define the index j such that ej = P̂ei. By
(3.8) and un ∈ R2N we have

(3.11) Z
0

i = (e>i ⊗ I2N )Z
0

= (e>i T−11s ⊗ un) = ((P̂ei)
>T−1

1s)⊗ un = Z0
j .

Conjugating (3.9a) proves that Zi solves (3.9b).

In addition to this, Zi and F̃i in (3.9a) can be further decomposed into

Zi =

(
ZH,i
ZE,i

)
, F̃i =

(
0

F̃E,i

)
,

where ZH,i,ZE,i denote unknowns corresponding to the transformed intermediate
stages of H and E respectively. Taking the Schur complement, the linear systems in
(3.9a) can be further reduced to

(3.12) (IN + αi CHCE)ZE,i = Z0
E,i + τλi(CHZ0

H,i + F̃E,i), αi := τ2λ2
i ∈ C,

to compute the E-component of Zi. After solving this linear system of dimension N ,
the H-component of Zi can be calculated explicitly via

(3.13) ZH,i = Z0
H,i − τλiCEZE,i.

An efficient implementation of an s-stage implicit Runge-Kutta method using Gauß
collocation points thus requires solving a linear system of the form

(3.14) Ax = b where A := IN + αCHCE ,
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with a complex parameter α ∈ C, in each time step. The adjointness property (2.8)
implies that CHCE is symmetric with respect to

(
·, ·
)
ε

defined in (2.5). Hence, A is
complex symmetric, that is,(

Ax,x
)
ε

=
(
x,Ax

)
ε
, x ∈ CN .

However, for α 6∈ R it follows immediately that A 6= A∗ with respect to
(
·, ·
)
ε
. If

α ∈ R, then A ∈ RN×N is symmetric. Moreover, for

(3.15) α ∈ C\{z ∈ R : z < 0},

the matrix A is invertible. For Gauß collocation methods, the coercivity condition
(3.4) guarantees that the eigenvalues of Oι are not purely imaginary, and hence (3.15)
is satisfied.

4. Preconditioned Krylov subspace methods. In this section, we aim at
designing a tailored preconditioner for solving the sparse linear system (3.14) by a
preconditioned Krylov subspace method. We will prove that the number of Krylov
iterations to achieve a certain tolerance is independent of the fine mesh. The overall
method can be considered as a locally implicit scheme, because it only requires the
solution of a small linear system as it is required for the second-order method in [25].

We remark that in Subsection 4.1, we consider the L2 inner products and norms,
but this analysis holds in any weighted inner products.

4.1. Krylov subspace methods for complex symmetric matrices. For a
nonsingular, complex symmetric matrix K = K> ∈ CN×N and a given vector f ∈ CN ,
we consider the linear system

(4.1) Kx = f .

Given an initial guess x0 ∈ CN and its initial residual vector r0 = f −Kx0, a Krylov
subspace method yields an approximation of the form

(4.2) xm = x0 + Wmym, m = 1, 2, . . . ,

where Wm ∈ CN×m is a basis of the mth Krylov subspace

Km(K, r0) := span(r0,Kr0, . . . ,K
m−1r0),

and ym ∈ Cm is a suitable coefficient vector. The choices of Wm and ym characterize
the Krylov subspace method, cf. [11, 17, 29] for more details.

To exploit the complex symmetric structure of K, we suggest to use the quasi-
minimal residual (QMR) algorithm for complex symmetric matrices [10, Section 3],
which is based on the complex symmetric Lanczos process. Here, Wm satisfies

(4.3) KWm = Wm+1H̃m, Dm+1H̃m = W>
m+1KWm,

with a diagonal matrix Dm+1 = W>
m+1Wm+1 ∈ C(m+1)×(m+1). The complex symme-

try of K implies that H̃m ∈ C(m+1)×m is tridiagonal and the upper m×m submatrix
of Dm+1H̃m is again complex symmetric. H̃m has full column rank m until Km(K, r0)
becomes a K-invariant subspace.

With β =
∥∥r0

∥∥, the QMR approximation is defined as

(4.4) xm = x0 + Wmym, ym = βH̃+
me1, H̃+

m = (H̃∗mH̃m)−1H̃∗m,
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where e1 denotes the first canonical unit vector. Its residual can be written as

rm = f −Kxm = Wm+1(βe1 − H̃mym).

The advantage of this algorithm compared to methods based on the Arnoldi
process (e.g., GMRES) is that it uses three-term recurrences for the computation of
the basis as well as for the approximation. It can be combined with look-ahead strate-
gies [12] to prevent breakdowns of the Lanczos process, which might appear because it
constructs a basis which is orthogonal w.r.t. the indefinite bilinear form 〈x,y〉 = x>y,
instead of the Euclidean inner product

(
x,y

)
= x∗y, see [10, Section 4]. For the sake

of presentation, we assume that breakdowns do not appear until a sufficiently accurate
solution is computed, but we note that with minor modifications, our analysis also
holds for the (complex symmetric) look-ahead Lanczos method [12]. This assumption
ensures that

(4.5)
∥∥D−1

m+1

∥∥ ≤ δ,
for a given (small) tolerance δ > 0, because otherwise, one would switch to the look-
ahead version of the Lanczos process.

In the following, Pm denotes the set of all polynomials over C of degree at most
m.

Theorem 4.1. Let K be a nonsingular, complex symmetric matrix, and xm be
the QMR approximation (4.4) after m steps. Then the error of the QMR method
satisfies

(4.6)
∥∥K−1f − xm

∥∥ ≤ ∥∥K−1Pm

∥∥ min
pm∈Pm

pm(0)=1

∥∥pm(K)r0

∥∥
with a projection matrix Pm given by

Pm = IN −Wm+1H̃mH̃+
mD−1

m+1W
>
m+1.

Moreover, if
∥∥Wm+1ej

∥∥ = 1, j = 1, . . . ,m+ 1, and (4.5) holds, we have

(4.7)
∥∥Pm

∥∥ ≤ 1 + (m+ 1)δ.

Proof. Analogously to the proof of [23, Theorem 2] it can be seen from (4.3) that
PmKWm = 0. Using (4.4) this implies

K−1f − xm = K−1Pmr0 = K−1Pmpm(K)r0

for all pm ∈ Pm with pm(0) = 1.
The bound on

∥∥Pm

∥∥ follows from (4.5) and
∥∥Wm

∥∥ ≤ √m.

Since
∥∥pm(K)r0

∥∥ ≤ ∥∥pm(K)
∥∥∥∥r0

∥∥, it remains to bound

min
pm∈Pm

pm(0)=1

∥∥pm(K)
∥∥.

This can be done by means of Faber polynomials and complex approximation theory,
cf. [9], based on a superset of the field of values of K defined as

F(K) := {ρK(v),v ∈ CN ,v 6= 0}, ρK(v) :=

(
v,Kv

)(
v,v

) .
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Theorem 4.2. Let S ⊂ C be a convex and bounded superset of F(K) with 0 6∈ S
and let φ be the conformal map which maps the exterior of S onto the exterior of the
unit circle with φ(∞) =∞. Then

(4.8) min
pm∈Pm

pm(0)=1

∥∥pm(K)
∥∥ ≤ (1 +

√
2) min

{ 3∣∣φ(0)
∣∣m , 2∣∣φ(0)

∣∣m − 1

}
.

Proof. It was shown in [2] that∥∥pm(K)
∥∥ ≤ (1 +

√
2) max

z∈S

∣∣pm(z)
∣∣.

The statement then follows from [22, Eq. (2.14)] and [9, Theorem 2].

The conformal map φ can be determined numerically by using the Schwarz-
Christoffel toolbox [8].

4.2. Preconditioning for locally refined grids. Our aim and the content
of this section is the construction of a preconditioner such that the field of values
of the preconditioned matrix with respect to the weighted inner product

(
·, ·
)
ε

is
independent of the fine mesh elements. Then by Theorem 4.2, the same holds for the
error of the preconditioned Krylov method in this weighted inner product.

Motivated by locally implicit methods for Maxwell’s equations in [25, 31], we
suggest to precondition A from (3.14) with its dominant part,

(4.9) A ≈ B := IN + γCi
HCi

E ,

where γ > 0 is a suitably chosen parameter. Note that this basically boils down to
replacing the curl matrices CH ,CE in (3.14) defined on the full mesh by the split
matrices acting on the implicitly treated mesh elements, cf. Section 2. By (2.9) and
γ > 0, the preconditioner B is symmetric and positive definite with respect to

(
·, ·
)
ε
,

and thus it has a symmetric and positive definite square root B1/2. This allows us to
define an equivalent preconditioned linear system

(4.10a) Ãx̃ = b̃,

where

(4.10b) Ã := B−1/2AB−1/2, x̃ := B1/2x and b̃ := B−1/2b.

Since A is complex symmetric and B is real symmetric, the preconditioned matrix Ã
is again complex symmetric (with respect to

(
·, ·
)
ε
).

We now apply the complex symmetric QMR method to the preconditioned linear
system (4.10) and refer to this method as the preconditioned QMR (pQMR) method,
cf. [14, Alg. 8.1.]. It is essential that B1/2 is only used for theoretical purposes since
its computation is usually too expensive. The implementation of this method only
requires the solution of linear systems with B but does not involve the computation
of B1/2 or B−1/2. Solving linear systems with B does not lead to too much overhead
costs because Ci

HCi
E only acts on the fine elements and their direct neighbors and

thus is of small dimension compared to A.
It remains to show that its error can indeed be bounded independently of the fine

mesh. Note that Theorems 4.1 and 4.2. also hold for
∥∥ ·∥∥ =

∥∥ · ∥∥
ε
, if the Lanczos

process and the field of values are defined w.r.t.
(
·, ·
)

=
(
·, ·
)
ε
. Using these theorems,
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it is sufficient to show that the field of values F(Ã) can be bounded independent of
the fine mesh.

Let

(4.11) α := αR + iαI , αR, αI ∈ R,

and

(4.12) Γeζ = 1 + ζ
∥∥Ce

E

∥∥2

µ�ε, Γiζ = 1 + ζ
∥∥Ci

E

∥∥2

µ�ε, for ζ ∈ C.

Defining quadrilaterals

Q = conv
{

1, Γeα,
α

γ
,
α

γ
Γeγ
}
,(4.13a)

R = conv
{

1, Γeγ , 1 +
(α
γ
− 1
)(

Γeγ −
1

Γiγ

)
, Γeγ +

(α
γ
− 1
)(

Γeγ −
1

Γiγ

)}
,(4.13b)

allows us to construct a superset of F(Ã) which is independent of the fine mesh.

Theorem 4.3. Let α 6= 0 satisfy (3.15) and let Ã be defined in (4.10b) where
the preconditioner B is given in (4.9) for some parameter γ > 0. Then we have

F(Ã) ⊂ S, where

S =


Q ∩R, αI 6= 0,

[αγ ,Γ
e
α], αI = 0, 0 < αR = α ≤ γ,

[1, αγ Γeγ ], αI = 0, 0 < γ ≤ αR = α,

is independent of the fine mesh and 0 6∈ S.

Proof. Let v ∈ CN ,v 6= 0 and ṽ := B1/2v. Then, by the symmetry of B (and
thus of B1/2), the adjointness and split properties (2.8), (2.9), and (2.11), we have(

ṽ, Ãṽ
)
ε

=
(
v,Av

)
ε

=
∥∥v∥∥2

ε
+ (αR + iαI)

(∥∥Ce
Ev
∥∥2

µ
+
∥∥Ci

Ev
∥∥2

µ

)
,(4.14a) (

ṽ, ṽ
)
ε

=
(
v,Bv

)
ε

=
∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ
.(4.14b)

We now distinguish the cases of α being real or complex.
(a) For αI 6= 0, it is easy to see that

(4.15a) 1 ≤ Re ρÃ(ṽ) +
γ − αR
αI

Im ρÃ(ṽ) = 1 +
γ
∥∥Ce

Ev
∥∥2

µ∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

≤ Γeγ .

The first inequality is obvious and the second follows from the definition of the
weighted matrix norm in (2.6) and γ > 0. In addition, we have

(4.15b) 0 ≤ Re ρÃ(ṽ)− αR
αI

Im ρÃ(ṽ) =

∥∥v∥∥2

ε∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

≤ 1.

A simple calculation shows that the inequalities (4.15) are satisfied if and only if
ρÃ ∈ Q with Q defined in (4.13a).
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Next we consider only the imaginary part. Using (4.14), and (4.12) we obtain

(4.16) 0 ≤ γ

αI
Im ρÃ(ṽ) = 1 +

γ
∥∥Ce

Ev
∥∥2

µ∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

−
∥∥v∥∥2

ε∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

≤ Γeγ −
1

Γiγ
.

The bounds (4.15a) and (4.16) are satisfied if and only if ρÃ ∈ R with R defined in

(4.13b). Hence we proved F(Ã) ⊂ Q ∩R.

(b) For αI = 0, the matrix Ã ∈ RN×N is symmetric and thus ρÃ(ṽ) ∈ R for all
ṽ ∈ CN . Since α = αR we have

ρÃ(ṽ) =
α

γ
+

(1− α
γ )
∥∥v∥∥2

ε
+ α

∥∥Ce
Ev
∥∥2

µ∥∥v∥∥2

ε
+ γ
∥∥Ci

Ev
∥∥2

µ

.(4.17)

If α ≥ γ, (4.17) can be bounded by

1 =
α

γ
+

(1− α
γ )
∥∥v∥∥2

ε∥∥v∥∥2

ε

≤ ρÃ(ṽ) ≤ α

γ
+
α
∥∥Ce

Ev
∥∥2

µ∥∥v∥∥2

ε

≤ α

γ
Γeγ ,

Similarly, for 0 < α ≤ γ, it is straightforward to see

α

γ
≤ ρÃ(ṽ) ≤ α

γ
+

(1− α
γ )
∥∥v∥∥2

ε
+ α

∥∥Ce
Ev
∥∥2

µ∥∥v∥∥2

ε

≤ Γeα.

Furthermore, since

0 ≤ Γeγ −
1

Γiγ
≤ Γeγ , γ > 0,

all quantities defining the superset S are bounded independently of the implicitly
treated mesh elements and thus, S is independent of hf . Finally, in all cases we have
0 /∈ S.

Note that the superset S derived in Theorem 4.3 is not optimal. Further, we
point out that γ > 0 can be chosen freely and thus used to improve the convergence
factor. For example, a natural choice would be

(4.18) γ =
∣∣αR∣∣ if αR 6= 0 or γ =

∣∣α∣∣ else.

In any case, one should choose γ ∼ τ2 so that the dominating part of A is well
approximated by the preconditioner B.

As a special case of Theorem 4.3, we obtain an inclusion set for the field of values
of A itself. Hence, we can state an error bound for the complex symmetric QMR
method without preconditioning.

Corollary 4.4. For the matrix A defined in (3.14), Theorem 4.3 holds by sub-
stituting Ce

E = CE and Ci
E = 0 in (4.13).

Recall that by an inverse estimate [5, Lemma 1.44] there is a constant c indepen-
dent of the mesh width such that

∥∥CE

∥∥
µ�ε ≤ ch

−1
min. Hence, without preconditioning,

the superset will scale with h−1
min. Applying Theorems 4.1 and 4.2 to the precondi-

tioned system (4.10a) provides the following error bound:
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Theorem 4.5. Let x̃m be the QMR approximation to the solution of (4.10). If
(4.5) is satisfied, then there is a constant φ0 > 1 independent of the fine mesh such
that the error of the mth pQMR iterate satisfies

(4.19)
∥∥Ã−1b̃− x̃m

∥∥
ε
≤ cÃ(1 +

√
2)
(
1 + (m+ 1)δ

)
min

{
3

φm0
,

2

φm0 − 1

}
,

where

(4.20)

{
cÃ = 1, if 0 < γ ≤ αR, αI = 0 or αI 6= 0,

cÃ = γ
αR
, if 0 < αR ≤ γ, αI = 0.

Proof. Since Ã is complex symmetric, we apply Theorem 4.1 for K = Ã with∥∥ ·∥∥ =
∥∥ · ∥∥

ε
. By Theorem 4.3, F(Ã) ⊂ S is independent of the fine mesh and the

same holds for the conformal map φ used in Theorem 4.2, in particular for
∣∣φ(0)

∣∣ =: φ0.
Thus, the bound (4.19) follows from (4.6), (4.7), and (4.8), if we can show

(4.21)
∥∥Ã−1w

∥∥
ε
≤ cÃ

∥∥w∥∥
ε

for all w ∈ CN .

We choose an arbitrary w ∈ CN , w 6= 0 and define v = Ã−1w. Then Theorem 4.3
with cÃ defined in (4.20) and the Cauchy-Schwarz inequality yield

(4.22)
1

cÃ
≤ Re ρÃ(v) = Re

(
w, Ã−1w

)
ε∥∥Ã−1w

∥∥2

ε

≤
∥∥w∥∥

ε

∥∥Ã−1w
∥∥
ε∥∥Ã−1w

∥∥2

ε

=

∥∥w∥∥
ε∥∥Ã−1w
∥∥
ε

.

This proves (4.21).

As an immediate consequence of Theorem 4.5 we see that the error of the pQMR
method is bounded independently of the fine mesh, since S only depends on the coarse
mesh. In particular, the number of iterations is uniformly bounded with respect to
further refinement of the fine part of the mesh.

5. Numerical experiments. For our numerical experiments, we consider the
transverse magnetic (TM) polarization of linear Maxwell’s equations (2.1) in a ho-
mogeneous medium with µ = ε = 1 in a square Ω = (−1, 1)2 ⊂ R2, i.e.,

(5.1)

∂tHx(t) = −∂yEz(t),
∂tHy(t) = ∂xEz(t),

∂tEz(t) = −∂yHx(t) + ∂xHy(t)− Jz(t),
Hx(0) = H0

x, Hy(0) = H0
y , Ez(0) = E0

z .

As an example of locally refined meshes, we consider a series of unstructured
meshes as depicted in Figure 5.1, cf. [25] for more details.

We start with the initial mesh in Figure 5.1a, which is divided into two parts:
an inner fine mesh Th,f in the green square [−0.05, 0.05]2 and an outer coarse mesh

Th,c in [−1, 1]2\[−0.05, 0.05]2. We call this mesh T (1)
h,f , where the superscript denotes

the level of refinement of the fine mesh. We keep the coarse part the same but
refine the innermost part of the fine meshes recursively to produce three new meshes

T (2)
h,f , T

(3)
h,f , T

(4)
h,f . The fine parts of all four meshes are shown in Figure 5.1b. Based

on this decomposition, the split curl matrices Ci
E ,C

i
H act on the fine mesh elements
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-1 -0.5 0 0.5 1
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-0.5

0

0.5

1

(a) Mesh T (1)
h,f with fine mesh of refinement level 1.

(b) Refinement of the elements in Th,f : from left to right T (1)
h,f , . . . , T

(4)
h,f .

Fig. 5.1: Illustration of mesh refinements.

and their direct neighbors, while Ce
E ,C

e
H act on the remaining coarse mesh elements.

The codes for these experiments are available at [27].
Furthermore, for all these experiments we fix

(5.2) α =
( 1

24
+ i

√
3

24

)
τ2, γ = αR =

τ2

24
,

for A in (3.14) and the preconditioner B in (4.9) respectively. This choice of α
corresponds to (3.12), where λi is one of the two complex conjugate eigenvalues of
the RK matrix Oι of the fourth-order implicit Gauß-Legendre RK method.

In the first experiment, we consider the locally refined mesh in Figure 5.1a, and
construct Ã with α, γ defined in (5.2) for different choices of τ . We then compute the

boundary of F(Ã) using the matlab function wber.m from [30], and the superset S

derived in Theorem 4.3. In Figure 5.2, we observe that F(Ã) ⊆ S for all considered
values of τ = 0.1, 0.01, 0.001, and hence numerically verify Theorem 4.3. Moreover,
the superset S is close to being optimal for τ = 0.1 and τ = 0.001, but not for
τ = 0.01. Clearly, for τ → 0, F(Ã)→ {1}.

Next, we numerically calculate an optimized value γopt of γ used in the definition
of the preconditioner B in (4.9). For the mesh in Figure 5.1a, we choose α in (5.2)
with τ = 0.05, and compute φ0 defined in Theorem 4.5 using the Schwarz–Christoffel
toolbox [7]. In Figure 5.3, we plot 1/φ0 for different values of γ, and observe that
1/φ0 for γopt ≈ 3.7e−5 and γ = αR ≈ 1e−4 are close to each other. This suggests
that γ ≈ αR for αR > 0 could be a good guess for γopt.

We then examine the number of iterations required by QMR and pQMR to solve
the linear system (3.14) up to a tolerance of 10−3 in

∥∥ · ∥∥
ε
. The coefficient matrix A

and the preconditioner B are constructed with α, γ in (5.2) for τ = 0.05 on the meshes

T (1)
h,f , . . . , T

(4)
h,f depicted in Figure 5.1. For this experiment, we fix random vectors x0
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Fig. 5.2: Boundary of a numerical approximation of F(Ã) in blue, quadrilaterals Q
and R in red and green, respectively, for τ = 0.1, 0.01, 0.001 (from left to right).
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Fig. 5.3: Dependence of φ0 on γ for α in (5.2) with τ = 0.05.

and b. In Figure 5.4, we plot their relative errors against number of iterations m. We
observe that for all meshes, pQMR requires same number of iterations to reach the
tolerance. In contrast, the number of iterations without preconditioning grows as the
fine mesh is refined, as expected.

It remains to verify the error bounds presented in Theorem 4.5. To do so, we
consider the mesh in Figure 5.1a and solve the preconditioned linear system (4.10a)
for a fixed time step τ = 0.01, α, γ given in (5.2), and fixed random vectors b,x0. Fig-
ure 5.5 numerically verifies the error bounds produced by Theorem 4.5 for differently
calculated values of φ0 for the pQMR method.

6. Conclusion. In this paper, we proposed and analyzed computationally ef-
ficient implicit higher-order time integration methods for solving linear Maxwell’s
equations on locally refined spatial grids which consist of a small number of fine and
a large number of coarse mesh elements. This is achieved by constructing a precon-
ditioned Krylov subspace method for solving the linear systems arising in each time
step of the implicit scheme. Our main result shows that the number of Krylov steps
to achieve the desired accuracy can be bounded independently of the fine mesh.

Although we focused on linear Maxwell’s equations, our ideas carry over to non-
linear problems, where linear systems of the same type appear in each iteration of a
(simplified) Newton method. Moreover, instead of Gauß collocation methods other
implicit time integration schemes might be employed and the preconditioner can also
be combined with rational Krylov subspace methods.
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Fig. 5.4: Relative error of QMR (solid lines) and pQMR (dashed lines) for different
levels of fine mesh refinement.
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