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A B S T R A C T

Preeminent weight-specific mechanical properties predestine fiber-reinforced plastics for application in struc-
tural components. Virtual manufacturing chains (CAE-chains) capture a multi-step process sequence by
interlinking models with corresponding constitutive laws for each process step. In common numerical solving
techniques, spatial discretization of governing equations yields discrete solutions. Since mesh type and fineness
are usually problem-specific, mesh-to-mesh mapping must be embedded in the data interfaces between the
individual simulation steps. To receive meaningful data, the underlying averaging and interpolation schemes
between non-congruent meshes must be mathematically and physically consistent. In engineering applications,
interpolation of tensors is usually carried out component-based, treating each component as an independent
scalar-field and thus neglecting the tensorial character. The work at hand gives an overview of sophisticated
techniques that preserve specific tensor characteristics in interpolation. Compared to available approaches,
an enhanced decomposition-based interpolation method is proposed, allowing for a generalization with more
than two basic values. In the context of process simulation for short fiber-reinforced injection molding, the
influence of the interpolation techniques is evaluated in a three-stage approach with increasing proximity
to application. Firstly, mathematical examples demonstrate that component-based interpolation can result in
erroneous, non-monotonous tensor characteristics. Secondly, an analytically resolvable problem is derived,
and the solution is compared to reconstructed tensors from different interpolation schemes. Thirdly, a
numerical CFD-simulation is conducted. Field recovery via interpolation is performed and systematical errors
are statistically evaluated. The results reveal significant biases for certain tensor characteristics induced by
conventional component-wise interpolation. Overall, a reduction in systematic interpolation errors is achieved
by the proposed decomposition-based interpolation.
1. Notation

Symbolic tensor notation is preferred throughout this work. Di-
rection independent scalars are denoted by standard Latin and Greek
letters, e.g. 𝑎, 𝜆, 𝐹 . First order tensors are represented by bold lower
case letters, e.g. 𝒑, 𝜸, whereas upper case Greek or Latin letters are used
for 2nd-order tensors such as 𝑨,𝑬. Fourth order tensors are denoted
by C, S. The linear mapping of an arbitrary lower order tensor by a
corresponding higher order tensor, e.g. C𝑬 as well as the composition
of second and higher order tensors, e.g. 𝑨𝑩 are denoted without taking
use of a particular operator symbol. Scalar products between two
tensors of the same order are marked by a dot, e.g. 𝑨 ⋅ 𝑪 . The dyadic
outer product yields a tensor of order 𝑚 + 𝑛 from the multiplication
of a 𝑚 by a 𝑛-order tensor, e.g. 𝒂 ⊗ 𝑨. The Frobenius Norm

√

𝑨 ⋅𝑨
is used and abbreviated through ‖𝑨‖. The rotation of an arbitrary
order tensor is denoted by the Rayleigh Product 𝑸 ⋆ S, where the
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2nd-order tensor 𝑸 is member of the special orthogonal group 𝑆𝑂(3).
Arbitrary sized numerical arrays (e.g. components in a specific coor-
dinate system) are denoted by indices, e.g. 𝑎𝑖, 𝐴𝑖𝑗 where the number
of indices directly corresponds to their dimensionality. Two types of
indices must be distinguished: iterators in a set of discrete values are
denoted by upper case letters 𝐼, 𝐽 ,… ∈ N, spatial components in the
three-dimensional space are denoted by lower case letters 𝑖, 𝑗,… =
1..3. Unless otherwise indicated, Einstein’s convention for summation
holds, thus indices appearing twice in a single expression implying
summation. Four-dimensional quaternions are denoted by an arrow-
head above the Latin letter, such as in 𝑞. For derivatives with respect to
tensor fields 𝝓 of arbitrary order, right-hand operators are used, such
that grad (𝝓) = lim𝛺→0𝛺−1 ∫𝛤 𝝓⊗ d𝒔 and curl (𝝓) = lim𝛺→0𝛺−1 ∫𝛤 𝝓× d𝒔
respectively, where 𝛺 is the integration domain, closed by its boundary
𝛤 with outward normal 𝒔.
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2. Introduction

Fiber-reinforced plastics (FPRs) possess exceptional weight-specific
mechanical properties. Hence, this class of materials has shown in-
creased market share especially in weight-sensitive industrial sectors,
e.g. automotive or aviation. In contrast to most other engineering
materials, both the macroscopic-homogeneous composite material and
the actual load-bearing component are usually produced in-situ. The
well-known Resin Transfer Molding (RTM) process and other liquid
composite molding processes can serve as examples, where fiber and
matrix merging and bonding take place in the molding tool [1]. In al-
ternative manufacturing processes fiber and matrix are usually matched
in upstream processes (prepreg technology) or immediately prior to
component production (direct processes) [2]. As a consequence, the
characteristics of the final composite material are mainly determined
during the course of the manufacturing process. Several investigations
have shown pronounced influence of the manufacturing parameters
on the final load-bearing capacity [3–5]. This holds especially for
high-performance components that take maximum advantage of the
anisotropic characteristics of FRPs [3,6]. Hence, holistic composite
design requires taking the material’s entire prehistory along the process
route into account. Since physics and general material behavior usually
change over the course of the process, different types of simulations
have to be conducted and linked in so-called CAE-chains in order to
capture the relevant physical and chemical mechanisms in digital twins
for process and part [3,6,7].

Simulation of manufacturing processes, structural simulation of
load-bearing components and homogenization methods in multi-scale
approaches of FRPs require the use of tensors in order to describe
higher-dimensional and direction dependent (non-)linear interrelations
on kinematic, kinetic and constitutive level. Although governing equa-
tions of the underlying physical problems are usually formulated by the
means of classical continuum mechanics, common solution approaches
take use of numerical methods such as Finite Element Method (FEM),
Finite Difference Method (FDM) or Finite Volume Method (FVM)
operating on discretized domains. Instead of (continuous) fields, that
assign values to each material point 𝑿 (Lagrangian approach 𝜙Lagrange ∶
R+ × (𝑿 ∈ 𝛺) ↦ R𝑛) or each spatial point 𝒙 (Eulerian approach 𝜙Euler ∶
R+ × (𝒙 ∈ 𝛺) ↦ R𝑛)1 in the solution domain 𝛺 at an given point in
time 𝑡 ≥ 𝑡0 ≥ 0, only a finite number of values is assigned respectively
computed for each field.

When transferring discrete field data from one simulation module
to another involves changing mesh types or mesh topologies, an in-
termediate data-mapping step becomes mandatory [7]. To minimize
information loss as result of this mapping operation, the underly-
ing averaging and interpolation methods have to be optimal from
an informatics-algorithmic perspective, but are also required to fulfill
field-specific boundary conditions to be mathematically and physically
consistent.

Scope of this work. The work at hand focuses on interpolation tech-
niques for 2nd-order symmetric tensor fields like fiber orientation or
stress tensors. It may be noted, that the numerical investigations are
carried out in a composite context, but do not restrict to this specific
domain. The overall aim is to integrate such techniques into virtual
manufacturing workflows for composites and thus minimize system-
atical errors when transferring tensorial field data between deviating
discretizations.

This paper is structured as follows: Section 3 provides an overview
of the underlying mathematics, containing theory on the basic inter-
polation concepts and their advantageous and adverse properties in
terms of physical interpretation and numerical feasibility. In addition,
generalization of approaches are proposed that allow for more than two

1 A bijective relation usually exists except for singular boundaries.
2

g

basic values as input and therefore enable application in two- and three-
dimensional problems. In Section 4 an example problem of practical
significance and its analytical solution are introduced. Selected inter-
polation methods are tested upon this example and their performances
are compared on various error metrics. Finally, a numerical process
simulation example is provided. Interpolation techniques are applied
to perform local field recovery. The induced errors are statistically
evaluated for different densities of information.

3. Interpolation methods for 2nd-order symmetric tensor fields

The section starts with the relevant theoretical background of tensor
algebra, distance measurements between tensors and associated met-
rics. Subsequently, a categorization proposal of interpolation schemes is
introduced. Finally, occurring differences in the regarded interpolation
schemes are discussed and visualized by means of purely mathematical
example problems.

3.1. The set of symmetric tensors

The set of symmetric tensors 𝑆𝑦𝑚 ∶ {𝑨 ∈ Lin ∶ 𝒙⋅𝑨𝒚 = 𝒚 ⋅𝑨𝒙∀𝒙, 𝒚 ∈
∖{𝟎}} can be interpreted as entirety of all tensors 𝑨 that are identical
to their transposes 𝑨⊤. As an ultimate consequence of this definition,
the Eigenvalues of this group of tensors are real-valued in each case [8].
Therefore, a large proportion of tensors describing physical quantities
– or at least their observable part – have to be symmetric. Additionally,
symmetric tensors allow for the determination of at least one cor-
responding real-valued ortho-normal system of distinct Eigenvectors.
The set of symmetric tensors can be further subdivided by means of
the signs of the occurring Eigenvalues. For visualization purposes of
2nd-order symmetric tensors in a fixed coordinate frame, superquadric
glyph rendering, as proposed in [9] and generalized in [10], will be
used in Sections 3–5.

3.2. Interpolation techniques and requirements for tensor fields

Formally, an interpolation scheme �̄� = 𝑓 (𝜙𝐼 , 𝑤𝐼 ) is defined as
mapping 𝑓 taking a set of 𝑁 ≥ 1 discrete values 𝜙𝐼 and their

orresponding weights 𝑤𝐼 ∈ [0; 1] as arguments. The normalized
eights have to satisfy the completeness condition ∑𝑁

𝐼 𝑤𝐼 = 1 [11].
n spatial interpolation, weights are usually determined as function of
he relative distance between interpolation location and basis point
ocation(s). Various explicit approaches, e.g. the nearest point method,
olynomial shape functions on (un)structured grids or Shepard’s in-
erse distance formulation [12] are well-known and integrated into
ommercial and open-source codes. With increasing computational
ower, more advanced implicit approaches, such as the radial basis
unction interpolation (RBF) [13] and its derivatives become feasi-
le [14]. Herein, the weights are computed as approximate solution
o an optimization problem on function spaces.

In this work, the expansion of interpolation techniques, which were
riginally formulated for scalar input, towards the set of 2nd-order
ymmetric tensors will be investigated with particular emphasis set
n the involved averaging schemes. Thus, weights are not subject of
nvestigation and assumed to be given in the present section.

The boundary condition 𝑤𝐽 = 1 and 𝑤𝐼 = 0, 𝐼 ≠ 𝐽 → �̄� =
𝐽 stated for scalar interpolation, can be adapted to tensorial input
ithout further modification. For tensor fields, however, results must
ot additionally depend on the chosen basis [15]. Hence, the mapping

has to be invariant under any rotation and satisfy the isotropy
ondition

⋆ �̄� = 𝒇
(

𝑸 ⋆ 𝝓𝐼 , 𝑤𝐼
)

, ∀𝑸 ∈ 𝑆𝑂(3). (1)

In principle, two groups of interpolation techniques are to be distin-

uished: Global methods operate directly on the input tensors, whereas
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in decomposition-based methods specific characteristics are interpolated
eparately and the interpolant is constructed by means of re-assembly.

In the following, a selection of different available tensor inter-
olation methods will first be presented and subsequently evaluated
omparatively with regard to different criteria afterwards.

.3. Global interpolation methods

Global interpolation techniques operate directly on the input tensor-
alued arguments. The resulting weighted averages are usually a solu-
ion to an optimization problem of the type:

̄ = arg min
𝑨

𝑁
∑

𝐼
𝑤𝐼𝑑

2 (𝑨𝐼 ,𝑨
)

, (2)

where 𝑑 is a distance measure that is connected to a specific metric. The
value obtained in this way is referred to as weighted Frechet mean [16].
Depending on the structure of 𝑑, there may exist closed-form explicit
solutions or implicit solutions, which must be solved using numerical
approaches.

3.3.1. Euclidean Interpolation (EU)
The simplest interpolation of a continuous scalar valued function �̄�

can be interpreted as weighted arithmetic average of 𝑁 ∈ N function
values 𝜙𝐼 . The averaged value is computed in accordance to �̄�EU =
∑𝑁
𝐼 𝑤𝐼𝜙𝐼 . This method owes its name to the fact that the interpolated

value is located on the hyperplane within the𝑁-dimensional Euclidean-
space spanned by the weights 𝑤𝐼 and is also referred to as linear
interpolation (LERP) [17]. With respect to tensors, this approach is
extended to components in a common ortho-normal basis yielding

�̄�EU,𝑖𝑗 =
𝑁
∑

𝐼
𝑤𝐼𝐴𝐼,𝑖𝑗 (3)

by formula. This is the explicit solution of the corresponding optimiza-
tion problem, where the Euclidean distance 𝑑 = ‖𝑨𝐼 − 𝑨𝐽‖ is used
o minimize the cumulative distances between basis values and their
eighted average using the Frobenius norm as distance measure. The
uclidean approach treats each component as independent scalar field.
he comparatively simple explicit expression stated in Eq. (3) works for
n arbitrary number of input arguments and underlines the numerical
uperiority of this approach, especially for the case that all discrete
ensor values are stored with respect to an explicit common basis and
o upstream coordinate transformation is required.

.3.2. Riemannian interpolation (RIE)
The set of symmetric positive (semi-)definite tensors can be inter-

reted as smooth and curved Riemannian manifold [18–20]. Due to
his curvature the usage of the Frobenius norm, which assumes flat
uclidean space as distance measure is not valid. Instead, the associated
ogarithmic map is used and yields

RIE
(

𝑨1,𝑨2
)

=
‖

‖

‖

‖

‖

ln
(

𝑨
− 1

2
1 𝑨2𝑨

− 1
2

1

)

‖

‖

‖

‖

‖

(4)

as the natural distance between two tensors 𝑨1,𝑨2 [21]. From inserting
this distance formulation in Eq. (2), the solution follows as:

�̄�Rie = 𝑨
1
2
1 exp

(

𝑤2 ln
(

𝑨
− 1

2
1 𝑨2𝑨

− 1
2

1

)

𝑨
1
2
1

)

, 𝑁 = 2 (5)

𝑁
∑

𝐼
𝑤𝐼 �̄�

− 1
2

Rie𝑨𝐼 �̄�
− 1

2
Rie = 0, 𝑁 > 2. (6)

Hereby, a case distinction becomes necessary: if only two input ar-
guments are provided, an explicit expression exists and can be com-
puted straightforwardly. If the number of basis values exceeds 2 how-
ver, only an implicit solution can be derived [22]. Computation is
3

erformed by taking use of an iterative method.
3.3.3. Log-Euclidean (LOG)
Since the implicit characteristic of the affine Riemannian approach,

requires several computational expensive evaluations of non-linear ten-
sor functions, this method is not feasible for complex problems. Against
this backdrop, a novel approach has been introduced in [23]: the Log-
Euclidean tensor interpolation technique is basically a generalization
of the geometric mean for scalars towards symmetric positive definite
(SPD) tensors [24]. Thus the explicit follows as

�̄�LOG =
𝑁
∑

𝐼
exp

(

𝑤𝐼 ln
(

𝑨𝐼
))

. (7)

The associated distance is defined as

𝑑LOG
(

𝑨1,𝑨2
)

= tr
1
2
(

(

ln
(

𝑨1
)

− ln
(

𝑨2
))2

)

. (8)

Hence, a straightforward computation is feasible, regardless of the
number of input basis arguments. Besides the application in interpo-
lation problems, the Log-Euclidean approach has recently gained rele-
vance in fluid and solid mechanics’ context. Hameduddin and Zaki [25]
apply the approach in order to improve the accuracy of visco-elastic
turbulence models. Gao et al. [26] and Huang et al. [27] use the
technique for the determination of mean stress measurements. Bréthes
et al. [28] and Shakkor and Park [29] have embedded the algorithm in
their implementation of PDE solving applications.

It may be noted, that the above appearing powers, logarithms and
exponentials formulas are the associated isotropic tensor functions and
must not be confused with the scalar mappings [30]. The application of
negative exponents and tensor logarithms in the context of the Rieman-
nian and the Log-Euclidean approaches are unambiguous for strictly
positive definite tensors only, therefore restricting those techniques to
this specific subset [31].

3.4. Decomposition-based interpolation methods

In several scenarios, the specific invariants of the regarded tensors
are of particular relevance. On this account, numerous efforts have been
conducted in recent years in order to design interpolation techniques
that put special emphasis on this characteristics. Driven by the increas-
ing acceptance of medical diffusion tensor magnetic resonance imaging
(DT-MRI), most of the progress has been achieved in the context
of this field. Decomposition-based interpolation methods pursue the
concept of interpolating invariants and orientation of tensors separately
and independently. Afterwards, a reassembly step occurs yielding the
interpolated result.

3.4.1. Eigendecomposition and projector representation
The well-known Eigenvalue problem 𝑨𝒑𝑖 = 𝜆𝑖𝒑𝑖 can be rewritten

as spectral decomposition 𝑨 = 𝑬𝜦𝑬−1 using a tensor 𝑬 constructed
by the Eigenvectors 𝒑𝑖 as column vectors. The tensor 𝜦 contains the
Eigenvalues. Its non-zero entries are located exclusively on the princi-
pal diagonal. Since the Eigenvectors are arbitrary in magnitude and also
bidirectional, an infinite number of 𝑬 tensors exists. If the Eigenvectors
are normalized, 𝑬 becomes an orthogonal tensor. By way of distinction,
the symbol 𝑹 is used for such normalized Eigenvector tensors. Due to its
orthogonality, the inverse of 𝑹 is identical to its transpose 𝑹⊤ = 𝑹−1.
In this special case the spectral decomposition further simplifies to

𝑨 = 𝑹𝜦𝑹⊤ (9)

Herein, 𝑹 may be interpreted as a pure rotational mapping from
Eigensystem to a global basis. Despite the Eigendecomposition itself
is unique, the tensor 𝑹 is not [32]. Depending on the cardinality 𝛾 of
different-valued Eigenvalues, four (for 𝛾 = 3), an infinite subset of SO(3)
(𝛾 = 2) or even 𝑹 ∈ SO(3) (𝛾 = 1) fulfill Eq. (9) (cf. Fig. 1).

𝛾 = 1 𝛾 = 2 𝛾 = 3



International Journal of Mechanical Sciences 226 (2022) 107378C. Krauß and L. Kärger
Fig. 1. Arbitrariness of Right-Hand Eigensystems for different cardinalities 𝛾. The linestyle of each axis gives the information about the corresponding Eigenvalue. For 𝛾 = 1 each
Right-Hand system is an Eigensystem, for 𝜆 = 2 each pair of ortho-normal axes in the gray-colored planes form an Eigensystem with the dotted principal axis. For 𝜆 = 3 four
different Eigensystems exist.
Another representation of 𝑨 in terms of Eigenvalues and Eigenvec-
tors can be achieved by

𝑨 =
𝛾
∑

𝑖
𝜆𝑖𝑷 𝑖. (10)

This additive decomposition is referred to as projector representa-
tion of 𝑨, since the 2nd-order tensor

𝑷 𝑖 =
𝛾(𝜆𝑖)
∑

𝛼
𝒑𝛼 ⊗ 𝒑𝛼 (11)

is the projector corresponding to the 𝑖-th Eigenvalue 𝜆𝑖 with multiplicity
𝛾(𝜆𝑖) ∈ [1; 3]. Each set of projector tensors is unique for a given tensor 𝑨
and suffices completeness ∑𝛼 𝑷 𝛼 = 𝟏, biorthogonality 𝑷 𝛼 ⋅𝑷 𝛽 = 0 ∀𝛼 ≠
𝛽 and idempotence 𝑷 𝑛

𝛼 = 𝑷 𝛼 ∀𝑛 ∈ R [33].

3.4.2. Shape interpolation
The shape of a 2nd-order symmetric tensor can be expressed by a set

of three linear-independent invariants. The most obvious example for
such a set are the Eigenvalues 𝛾𝑖. Actually, there are approaches from
the area of image processing, that operate directly on the Eigenvalues,
e.g. [34,35]. However, [36] has shaped the concept of orthogonal invari-
ants 𝐼𝑖 and showed that those are well suited for physical problems. The
derivatives of those invariants with respect to the tensor itself form a
orthogonal basis, such that

𝜕𝐼𝑖
𝜕𝑨

⋅
𝜕𝐼𝑗
𝜕𝑨

= 0 𝑖 ≠ 𝑗. (12)

In the context of [36], two sets of this kind have been proposed and
labeled as 𝐾- and 𝑅- invariant. The 𝐾 invariants consist of tensor trace
𝐾1, the norm of the deviatoric, directional share 𝐾2 and tensor mode
𝐾3, while the 𝑅 invariants are composed of tensor norm 𝑅1, fractional
anisotropy 𝑅2 and also tensor mode 𝑅3 = 𝐾3.

𝐾1 = tr (𝑨) , 𝐾2 = ‖𝑨′
‖, 𝐾3 = 3

√

6
det

(

𝑨′)

‖𝑨′
‖

3
(13)

𝑅1 = ‖𝑨‖, 𝑅2 =
√

2
3
‖𝑨′

‖

‖𝑨‖

, 𝑅3 = 𝐾3. (14)

Herein, 𝑨′ = 𝑨− tr (𝑨) ∕3 denotes the deviatoric part of the tensor. Via
a geometric access, the 𝐾 invariants can be interpreted as cylindrical
coordinates in the Eigenspace of 𝑨 spanned by its projectors 𝑷 𝑖 with
axial height 𝐾1, radial distance 𝐾2 and azimuthal angle 𝐾3, while 𝑅
invariants correspond to spherical coordinates composed by radius 𝑅 ,
4

1

inclination 𝑅2 and again azimuthal angle 𝑅3. In both cases, the zenith
direction is co-linear with the isotropic line obeying 𝜆1 = 𝜆2 = 𝜆3. Fig. 2
is supposed to illustrate the correlations mentioned above and displays
the generalized gradient of both invariant sets.

Since the orthogonal invariant sets are constructed to be indepen-
dent of one another, scalar interpolation techniques become feasible.
Numerous investigations and applications can be found in literature,
e.g [37–41]. All works have used linear interpolation on the according
set of orthogonal invariants

�̄�𝑖 =
𝑁
∑

𝐼
𝑤𝐼𝐾𝐼𝑖 or �̄�𝑖 =

𝑁
∑

𝐼
𝑤𝐼𝑅𝐼𝑖 (15)

[37] have proposed methods to compute the interpolated shape tensor
�̄� respectively the interpolated set of Eigenvalues from the 𝐾 or 𝑅
invariants. It is stated within this work that this back calculation is
restricted to positive semidefinite tensors. However, with no loss of
generality the 𝐾 invariants can be analytically reconstructed to unique
Eigenvalues even if the tensor in question is negative (semi)definite or
indefinite.

3.4.3. Orientation interpolation
The orientation of a tensor is fully characterized by the orthogonal

tensor 𝑹 in Eq. (9), which can be understood as mapping related to a
rigid body rotation. The theory of rotations is comprehensively inves-
tigated due to countless applications in computer graphics and inverse
kinematics. Therefore, a broad variety of more or less sophisticated
interpolation approaches exists for this classes [42–45], that can and
have been adopted for orientation interpolation purposes.

Unit quaternion interpolation. Operating directly on rotation matrices is
uncommon in modern codes due to two practical reasons: First, storing
and accessing all nine components is unfavorable from a numerical
point of view, since the set of rotations 𝑆𝑂(3) is a three parameter
group. Second, the set 𝑆𝑂(3) is not closed under addition, and stan-
dard algebraic operations may yield non-orthogonal tensors. This is
especially true when linear interpolation is applied to two or more
orientation tensors. Most work in literature, that used a decomposi-
tion approach has applied this method for orientation interpolation
nonetheless taking the inevitably induced error into acceptance. In-
stead, rotation related operations are conducted by means of unit
quaternions 𝑞 ∈ 𝑆𝑈 (2), with ‖𝑞‖ = 1. Here, 𝑆𝑈 (2) is the special
unitary group that is connected via a homorphism to 𝑆𝑂(3). Therefore,
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Fig. 2. Graphical interpretation of the 𝑅- and 𝐾-sets of invariants and their derivatives
with respect to 𝑨 in the Eigenspace of 𝑨.

unit quaternions can be interpreted as three-dimensional rotations.
Thus, the inverse operation 𝑞−1 simplifies to changing the sign of the
maginary part of the quaternion such that 𝑞 𝑞−1 = 1.

For tensor interpolation purposes, Gahm and Ennis [46] firstly
applied quaternion based orientation interpolation. However, they re-
main with an academic example considering only two basis values:
the unique case, in which an explicit solution exists [47]. To the
knowledge of the authors, there is no work published that proposes or
applies a generalized approach in the context of tensor interpolation.
Therefore, this gap should be closed with the following approach. A
related Frechet mean ̄⃗𝑞 of 𝑁 ∈ N unit quaternions 𝑞𝐼 can be computed
with fast convergence in a simple predictor–corrector approach, as
analytical expressions for logarithmic and exponential maps exist for
𝑆𝑈 (2). Those preserve distance and angle when mapping onto respec-
tively from the tangent hyperplane. The algorithm, outlined in proc.
3.4.3 using pseudo-code, specifies the command sequence. Addition-
ally, Fig. 3 illustrates the fundamental procedure on the unit circle
𝑆1, since the actual four-dimensional problem is not accessible through
human spatial perception. The conducted steps, principles and terms
remain the same, though.

Algorithm 1 Determination of the Frechet mean ̄⃗𝑞 in pseudo code
1: procedure Quaternion Interpolation(𝑞𝐼 , 𝑤𝐼 , 𝜀 )
2: ̄⃗𝑞 ←

∑

𝐼 𝑤𝐼𝑞𝐼 ⊳ Guess ̄⃗𝑞 using Euclidean metric
3: ̄⃗𝑞 ← ̄⃗𝑞∕‖ ̄⃗𝑞‖ ⊳ Map ̄⃗𝑞 onto 𝑆3

4: while ‖𝛿‖ ≥ 𝜀 do ⊳ Repeat until convergence

5: ⃗lm𝑞 ← ln
(

(

̄⃗𝑞
)−1

𝑞𝐼

)

⊳ Map 𝑞𝑖 to the tangent hyperplane

6: 𝛿 =
∑

𝐼 𝑤𝐼 ⃗lm𝑞,𝐼 ⊳ Euclidean average on hyperplane
7: ̄⃗𝑞 ← ̄⃗𝑞 exp

(

𝛿
)

⊳ Update ̄⃗𝑞

8: return ̄⃗𝑞

The iterative algorithm shows fist-order convergence behavior. For
000 randomly created samples error fell below floating point accuracy
ithin the first 8 iterations. Convergence behavior can be improved
y using a gradient-based approach. However, evaluating complex
erivatives, as outlined by Kim et al. [48], might lead to an increase in
verall runtime.

yadic interpolation. The aforementioned sign ambiguity of the nor-
5

alized Eigenvectors results in at least four equivalent candidates for E
orientation tensors 𝑹𝐼 . While approaches exist to select a favorable
combination based on geometric argumentation, this problem is of
factorial time complexity with respect to the number of input basis
values. In order to circumvent this problem, the so called dyadic tensor-
based interpolation is introduced in [46]. This method takes use of the
fact that the projector decomposition (10) is based upon the bi-linear
dyadic product of the Eigenvectors. Thus, permuting the sign of 𝒑𝑖
leaves the corresponding projector 𝑷 𝑖 unaffected [49].

In this approach an approximation 𝑴 for the orientation tensor is
computed and weighted with the interpolated Eigenvalues stored in 𝜦.
Finally, the interpolated orientation tensor 𝑹 is computed using a polar
decomposition and dropping the stretch part 𝑼 ∈ 𝑆𝑌𝑀 .

�̄��̄� = �̄�𝑼 (16)

The reader is referred to [46] for a detailed derivation of obtaining 𝑴 .

3.4.4. Reassembly
With obtaining the results for interpolated shape �̄� and orientation

�̄� the full interpolated tensor is reassembled following Eq. (9) and
finally yielding:

�̄�LI = �̄��̄��̄�⊤. (17)

3.5. Comparison of the interpolation techniques

From a computational perspective, the Euclidean approach is supe-
rior and will always outperform its alternatives in terms of speed, since
only simple additions occur and the procedure can be parallelized with-
out any limitations. However, there are cases in which the Euclidean
method can yield undesirable effects.

The linear interpolation of the components can result in tensor
characteristics that are not interpolated monotonously. This can be
illustrated by means of an simple example with only two basis values,
that are chosen to 𝑨1 = diag

(

⟨1, 0.8, .4⟩⊤
)

and 𝑨2 = diag
(

⟨1, 2, 3⟩⊤
)

.
ig. 4 shows the result of the interpolated 𝐾 invariants using the three
echniques Euclidean (EU), Log-Euclidean (Log) and Linear Invariant
LI).
𝐾1 = tr (𝑨) is interpolated monotonically for each considered

ethod. While EU and LI methods reveal a linear connection, the LOG
pproach yields a non-linear behavior that is still monotonous. For
he 𝐾2 and 𝐾3 invariants however, completely different characteristics

arise: Both LOG and EU method show courses that are highly non-
linear. In each case local extrema are induced due to interpolation. If
the invariants possess physical significance, the effect of the values not
being bounded, can become critical. In the worst case scenarios, highly
over- or underestimated values may result from numerical calculation.

Another academic case is carried out to further illustrate the dif-
ferences of the considered interpolation-techniques. The tensor 𝑨1 =
diag

(

⟨0.2, 0.4, 0.8⟩⊤
)

is given. A second basis 𝑨2 is constructed by a rigid
rotation of 𝑨1 by 85 deg. 𝑨3 is initialized 𝑨3 = diag

(

⟨0.15, 0.2, 0.7⟩⊤
)

nd rotated by 75 degrees in order to construct 𝑨4. Bi-linear interpola-
ion is used with the EU, LOG and LI schemes. The latter is conducted
ith both quaternion based an dyadic orientation interpolation. Tensor
lyphs in Fig. 5 serve for better presentation of the results.

It can be stated that the rigid rotations between 𝑨1 and 𝑨2 as well
s from 𝑨3 to 𝑨4 are only captured by the Linear Invariant approaches
c), (d). Both, EU (a) and LOG (b) method, reconstruct the transition
y altering tensor shape. This is achieved by preserving tensor trace or
eterminant, respectively. Further, the interpolation of those rotations
s reproduced in a more uniform manner when using quaternions
n favor of dyadics. This is related to the choice of the appropriate
etric in the former case. In the following numerical investigations,

he quaternion-based approach is preferred and abbreviated by LI.
enerally, the variance of occurring tensor shape is larger when the

U method is used.
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4

a

Fig. 3. Determination of Frechet mean on 𝑆1 for three basis values 𝑞𝐼 (a). An initial guess for ̄⃗𝑞 is made upon linear interpolation and downstream normalization yielding ̄⃗𝑞(0) (b).
A tangent line  is spanned at the location of the initial guess and basis values are transferred to the tangent line using the logarithmic map (c). In the predictor, step Euclidean
averaging is conducted on the flat tangent line. A residual 𝛿𝑞 to the initial guess is found and mapped back onto the manifold using the exponential map. Thereby, the interpolated
value ̄⃗𝑞 is updated. Step (c) and (d) are repeated until the desired convergence is reached.
h
t

H
o
Fig. 4. Course of the 𝐾 invariants during one-dimensional interpolation for different

nterpolation schemes.

. Analytical example

In this section the introduced interpolation approaches are extended
nd applied to a simple, yet application-relevant example. By deriving
6

a continuous exact solution, a quantifiable comparison of the regarded
numerical schemes is carried out.

4.1. Problem statement

In most macroscopic process simulations of discontinuous fiber-
reinforced polymers, single fibers are usually not explicitly modeled
due to high computational effort. Rather statistical approaches are
applied, that represent multiple fibers at a specific solution location
by means of a scalar fiber orientation density function (FODF) 𝜓 (𝒏),
where 𝒏 is the directional unit vector. Onat and Leckie [50] stated,
that the probability density 𝜓 can be reconstructed using its statistical
igher order moments. Therefore, Advani and Tucker [51] introduced
he so called fiber orientation tensor (FOT) 𝑨, which is defined for a

continuous FODF via

𝑨 = ∫𝑆2
𝜓 (𝒏)𝒏⊗ 𝒏 d𝑆. (18)

erein, 𝑆2 is the 2-Sphere. In the case of a finite number 𝑁 ∈ N
f discrete fibers, Eq. (18) reduces to 𝑨 = 1

𝑁
∑𝑁
𝐼 𝒏𝐼 ⊗ 𝒏𝐼 . From this

definition, the symmetric and positive semidefinite properties of 𝑨 are
evident [52].

In various composite processes, liquid polymer is infiltrated or
infused into the mold by means of a plane point sprue. In proximity
to the point sprue, the analytical expression for the velocity field is
derived from the conservation of volume: 𝒗 = 𝑟0∕𝑟 𝑣0𝒆𝑟 with 𝑣0 being
the velocity at inner radius 𝑟 of the point sprue. Thus, the spin-free
0
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Fig. 5. Tensor glyphs for the interpolation with four different techniques. Basis values are located at the corners of the computation domain and bi-linear weight determination
is used in-between. Basis values are only displayed in (a) in order to prevent redundancy.
spatial velocity gradient follows as 𝑳 = 𝑫 = − 𝑣0𝑟0
𝑟2

(

𝒆𝑟 ⊗ 𝒆𝑟 − 𝒆𝜑 ⊗ 𝒆𝜑
)

.
Following the transport equation as introduced in [51], a stationary
solution of the fiber orientation tensor distribution is described by the
boundary value problem:
𝜕𝑨
𝜕𝒙

𝒗 = 2𝜆 (sym (𝑨𝑫) − (𝑨⊗𝑨)𝑫) ; ∀𝒙 ∈ {𝒙 ⋅ 𝒙 > 𝑟2𝑜} (19)

𝑨 = 𝑨0 ∈ {PSYM ∩ 𝑨0 ⋅ 𝑰 = 1} ; ∀𝒙 ∈ {𝒙 ⋅ 𝒙 = 𝑟2𝑜} (20)

Herein, 𝜆 is a scalar factor, depending on the fibers’ aspect ratio.
By choosing the quadratic closure approach A = 𝑨⊗ 𝑨 as introduced
in [51] and a diagonal boundary value 𝑨0 = 𝐴𝑟,0𝒆𝑟⊗ 𝒆𝑟 +𝐴𝜑,0𝒆𝜑⊗ 𝒆𝜑 +
𝐴𝑧,0𝒆𝑧 ⊗ 𝒆𝑧, the set of first-order ODEs in Eq. (19) is decoupled within
the cylindrical coordinate system and yields a closed form explicit
expression for the components of 𝑨 for all 𝑟 satisfying 𝑟 ≥ 𝑟0:

𝐴𝑟𝑟 =
𝐴𝑟,0 𝑟4𝜆0 𝑟−2𝜆

𝐴𝑟,0 𝑟4𝜆0 𝑟−2𝜆 + 𝐴𝜑,0 𝑟2𝜆 + 𝐴𝑧,0 𝑟2𝜆0
(21)

𝐴𝜑𝜑 =
𝐴𝜑,0 𝑟4𝜆

𝐴𝑟,0 𝑟4𝜆0 𝑟−2𝜆 + 𝐴𝜑,0 𝑟2𝜆 + 𝐴𝑧,0 𝑟2𝜆0
(22)

𝐴𝑧𝑧 = 1 − 𝐴𝑟𝑟 − 𝐴𝜑𝜑, (23)

𝐴𝑟𝜑 = 𝐴𝑟𝑧 = 𝐴𝜑𝑧 = 0. (24)

It may be noted, that research has proposed various additional
right-hand side terms to Eq. (19) accounting for diffusion or advection
as a consequence of fiber interaction [53–56], which are deliberately
neglected in this context in order to obtain an analytical expression
to the stated BVP. Further, the solution does not depend on the value
of the inlet velocity, since all transport mechanisms are linear in 𝑣0
and thus cancel each other out. By normalizing all occurring distances
through inlet radius 𝑟0, the problem becomes nondimensionalized. As
Fig. 6 reveals, radial terms 𝐴𝑟𝑟 and out-of plane terms 𝐴𝑧𝑧 vanish in
favor of tangential alignment with 𝐴𝜑𝜑 converging towards 1 with
increasing distance to the origin.

4.2. Numerical study

In the next step, the analytical solution given in Eq. (21) shall
be used to compare the addressed interpolation techniques. For the
7

purpose of interpolation, it is assumed that the solution has been ob-
tained by a numerical solver or has been measured in an experimental
setup and therefore is only accessible at discrete points. In order to
emulate a typical data transfer procedure from process simulation to
structural simulation, the fiber orientation tensors are mapped onto
a virtual non-congruent discretization. Literature gives several studies
in which this step has been conducted in order to estimate effective
(thermo-) mechanical composite properties by means of mean-field
homogenization [4,57–61].

4.2.1. Procedure and error metrics
Error measurement for tensor fields is not straight-forward, since it

requires reduction to a single scalar value. In this work, three singular
local errors between exact (⋅) and approximated ̄(⋅) value are to be
considered: The Frobenius norm

√

𝑨 ⋅𝑨 = ‖𝑨‖ corresponds to the
Euclidean metric and therefore is the natural choice for the Euclidean
interpolation scheme (EU), while the determinant is directly connected
to Log-Euclidean (LOG). The fractional anisotropy 𝐹𝐴 = 𝑅2 is chosen
to assess the interpolated tensor shape.

The procedure to determine the local errors 𝜖 at a specific location
(𝑥, 𝑦)⊤ is implemented as depicted in Fig. 7:

Algorithm 2 Determination of the approximation errors
1: procedure Local Error(𝑥, 𝑦, 𝛿 )
2: 𝑨 ← 𝑨ana

(

√

𝑥2 + 𝑦2
)

3: 𝑟𝐼 ←
√

(𝑥 ± 𝛿∕2)2 + (𝑦 ± 𝛿∕2)2

4: 𝑨𝐼 ← 𝑨ana
(

𝑟𝐼
)

5: �̄� ← �̄�
(

𝑨𝐼 , 𝑤𝐼
)

6: return 𝜖
(

�̄�,𝑨
)

Herein, 𝛿 represents the grid size of the rectangular virtual source
mesh cell. Weights 𝑤𝐼 are determined via a bi-linear shape-function
approach.

4.2.2. Results and discussion
Evaluation is conducted for locations along the line 𝑦 = 1∕3 𝑥. The

influence of mesh fineness is considered by conducting the numerical
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Fig. 6. Solution for the BVP from Eq. (19) with parameter set {𝐴𝑟,0 = 0.3, 𝐴𝜑,0 = 0.6, 𝐴𝑧𝑧 = 0.1, 𝜆 = 0.3}. Left-hand side: Course of the components of the fiber orientation tensor 𝑨
as a function of the normalized distance 𝑟∕𝑟0. Right-hand side: Tensor glyphs of the solution reveal the tendency to uni-axial orientation states in the far field of the point sprue
over the contour plot of the fractional anisotropy 𝐹𝐴.
Fig. 7. Problem statement for the analytical example discretization. A virtual rectan-
gular computation grid is superimposed on the continuous space. FOTs are interpolated
at locations within the cell (gray) using the nodes (black) as basis values.

study with varying normalized grid sizes 𝛿∕𝑟0. Fig. 8 shows the results
of the numerical study for the error metrics introduced in Section 4.2.1.

Two universal trends are identifiable for each combination of error
metric and selected interpolation technique: First, the local relative
errors are vanishing with increasing distance from the inlet at 𝑟 = 𝑟0.
Second, the displayed errors correlate negatively with grid lengths 𝛿.
Both observations can be explained by the occurring gradients, that
vanish with increasing 𝑟, since the state converges (cf. Fig. 6). Higher
values for 𝛿 are accompanied by major differences between the basis
values used for interpolation.

With focus on the Frobenius error depicted in Fig. 8(a), results
reveal significantly better performance in the case of the LI method
compared to EU and LOG even for coarse discretization. The same
behavior can also be seen when considering 𝐹𝐴 and determinant as
illustrated in Fig. 8(b) and (c), respectively. It is worth mentioning
that in the latter case, both EU and LI method have the tendency of
predicting values that are too low. The LOG technique on the other
hand underestimates the determinant in this analytical example.

This rather simple example problem shows that the choice of inter-
polation technique actually has an influence on the results obtained.
In this case, the relative errors are just in the single-digit percent
range. However, if higher gradient or even jumps and singularities
arise in more complex problems, the observed effects are likely to be
intensified.

5. Numerical example: Field recovery

From the observations conducted on the analytical example and
outlined in the previous chapter, the influence of the choice of the
applied interpolation scheme has to be investigated on a higher scale,
emulating the CAE workflow in a connected virtual manufacturing
8

chain. For this purpose an actual injection molding case is set up and
solved via the numerical computational fluid dynamics (CFD) solver
Moldflow 2018.

5.1. Problem statement

The problem at hand is a generic plate with dimensions 200mm
× 200mm × 10mm, that is filled with discontinuous fiber-reinforced
thermoplastic via an inlet located at the lower left corner at an constant,
predefined volume flow. FOTs are computed at each cell center. Fig. 9
illustrates the dimensions as well as the approximated solution of the
CFD simulation in terms of FOTs. The represented tensor-valued field
shows strong inhomogeneities across the solution domain. In the near
field of the inlet a trend towards anisotropy with principle directions
perpendicular to local velocity vectors can be observed. Isotropic distri-
butions are more frequent and pronounced in proximity of the corners
distant to the inlet.

5.2. Numerical study

It is assumed that the computed discrete data is mapped onto a
non-congruent structural mesh, where the FOTs are used to deter-
mine magnitude and orientation of local stiffnesses and coefficients of
thermal expansion.

5.2.1. Recovery procedure and statistical evaluation
In order to be able to give statements about the mapping quality,

an approach of field recovery via interpolation is conducted: 𝑁d com-
puted values at specific locations in the solution domain are artificially
deleted and reconstructed by means of the 𝑁r remaining values. The
value obtained as a result is then compared on the different metrics
introduced in Section 4. Weights are determined using the inverse
distance method as introduced by Shepard [12] choosing the power
parameter 𝑝 = 2.

𝑤𝐼 (𝒙) =
1

‖𝒙𝐼 − 𝒙‖𝑝
1

∑

𝐽 ‖𝒙𝐽 − 𝒙‖−𝑝
∀𝒙𝐽 ∶ ‖𝒙𝐽 − 𝒙‖ ≤ 𝑑0 (25)

Search distance 𝑑0 is set dynamically, guaranteeing four basic values
to be located within the sphere of influence for each case. The choice
of the deleted values is defined by random sampling neglecting specific
location and cell neighborhood. In order to reduce the influence of this
selection, a total of 35 numerical experiments with varying random
sampling is conducted. Statistical analysis is carried out across the
entirety of these experiments. The median 𝑄2 is defined as statistical
measure of determination.

The complete procedure consisting of value erasure, field recovery
and statistical evaluation is performed for varying information density



International Journal of Mechanical Sciences 226 (2022) 107378C. Krauß and L. Kärger
Fig. 8. Local interpolation errors of the three interpolation schemes (EU, LOG, LI) for the point sprue problem as a function of normalized distance to inlet 𝑟∕𝑟0 and characteristic
grid length 𝛿∕𝑟0.
Fig. 9. Problem dimensions and results of the CFD simulation for fiber orientation
tensors.

𝜌 = 𝑁r∕(𝑁r +𝑁d). This is supposed to emulate differently pronounced
mismatches between characteristic mesh lengths from source to target
discretization.

5.2.2. Results and discussion
The results of the numerical study are plotted for visual interpre-

tation in Fig. 10. In each plot displayed, the error medians of the
experiments are represented through solid circle markers. Continuous
lines are graphs of non-linear analytical fittings obtained by regression.
For the Frobenius norm of the local relative interpolation error –
9

depicted in sub-plot (a) – a strong trend is emerging: For each of the
three investigated interpolation schemes, the error median grows in
a degressive manner with increasing inverse information density 𝜌−1.
The good accordances with the quadratic model of the type 𝑄2

2 ∝ 𝜌−1

confirm this observation. With minor differences for smaller values of
𝜌−1, the LI approach starts to outperform both LOG and EU method,
when the number of basic values is decreasing.

The statement also holds for the median error on the fractional
anisotropy measure 𝐹𝐴 in Fig. 10(b). A systematic underestimation is
demonstrated with this example in any case. As in the aforementioned
case, errors do also evolve following a quadratic tendency. It is note-
worthy, that the median error resulting from the application of the
LI method is considerably lower compared to both other approaches.
However, these findings do not necessarily indicate that the LI-method
yields lower local errors in each case, since positive and negative values
may cancel each other out. Still, it implies little systematic bias is
introduced by the LI method on this metric.

In the case of the determinant error metric in Fig. 10(c), the evo-
lution of the median local errors reveal an systematic overestimation
in the case of the EU approach, even for high information density,
while the LI and LOG methods produce too low values on average.
From an absolute perspective, the LOG interpolation scheme generates
the lowest statistical bias, which is expected, since the interpolation
schemes were originally introduced in order to guarantee monotony of
this measure. In this case, the error evolutions are approximated with
a cubic model of the type 𝑄3 ∝ 𝜌−1.
2



International Journal of Mechanical Sciences 226 (2022) 107378C. Krauß and L. Kärger

E

Fig. 10. Medians 𝑄2 of the interpolation errors of the fiber orientation tensor 𝑨 for the plate problem as a function of the inverse information density 𝜌−1.
As an additional error metric, the angular deviation of the first
igenvector 𝒑1 has been investigated. The graphs of the error courses

(d) reveal minor differences between the three considered interpolation
schemes. It may also be noted, that the absolute values of this system-
atic errors are within the per mille range and therefore generally lower
by an order of magnitude compared to the 𝐹𝐴-errors and even two
orders of magnitude compared to the Frobenius and determinant errors,
respectively.

To conclude this numerical study, it should be kept, that significant
statistical bias can be induced through interpolation, depending on
both the choice of the interpolation scheme and the regarded error
metric. When invariants are considered and processed in a subsequent
step, the conventional EU method may not necessarily be the best
choice, especially if pronounced gradients occur and the information
is transferred onto a finer discretization. In this case tensor shape
is interpolated incorrectly due to overestimated isotropy. Therefore,
an interpolation approach should rather be used, which is able to
interpolate the desired invariant monotonously. For the orientation
interpolation, only negligible differences and very small errors could
be observed.

6. Conclusion and outlook

A broad overview of existing conventional and more sophisticated
tensor interpolation techniques is presented and approaches to close
10
existing gaps in the orientation interpolation of an arbitrary numbers
of input tensorial basic values are proposed and carried out. A selec-
tion from the outlined interpolation techniques is implemented and
applied upon two simple purely mathematical problems. Fundamental
differences and characteristics are elaborated and discussed. It becomes
evident that conventional Euclidean interpolation (EU), introduces sig-
nificant non-monotonic behavior in tensor shape, which can result in
local extrema between basis values. The amount of artificial isotropy
due to interpolation can be reduced when applying a sophisticated
approach based upon decoupled interpolation of tensor shape and
tensor orientation. For this purpose sets of orthogonal tensor invariants
were used and interpolated in linear manner (LI method).

Eventually, focus is changed to application and use cases are chosen
in the context of process simulation for injection molding of short fiber-
reinforced thermoplastics. To quantitatively evaluate the considered
interpolation techniques, an analytical example is constructed by means
of the near field of a point sprue. The obtained continuous and deter-
ministic solution for the field of 2nd-order fiber orientation tensors is
then consulted and compared to values computed by reconstruction
via interpolation. Results confirm good performance of the advanced
linear-invariant method (LI) on different metrics. On the next step,
a CDF simulation of an injection molded generic plate is performed.
Information is deleted from the solution and interpolation is used to
reconstruct the omitted values. The procedure is repeated for different
information densities and randomized samples. Afterwards, statistical

evaluation is performed revealing trends and systematic errors. Again,
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an overestimating bias in tensor shape inducing artificial isotropy
can be detected on this higher-level when using conventional global
interpolation methods.

Although broadly applied in engineering workflows, the transfer of
tensor valued data is not as straightforward as it may appear on first
sight. It is shown, which undesired effects may result when interpolat-
ing on tensor-valued fields. Hence, users should be aware of the occur-
ring problems and the further utilization of results. Based upon these
considerations, a suitable interpolation technique should be selected- or
otherwise a user should preferably rely on non-interpolating mapping
techniques to be on the safe side. Future work will focus on the
evaluation of the actual impact on global performance and adapting
invariants-based interpolation techniques towards stress tensor interpo-
lation, where additional requirements have to be taken into account.
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