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Abstract. Hash maps are a common and important data structure
in efficient algorithm implementations. Despite their wide-spread use,
real-world implementations are not regularly verified.
In this paper, we present the first case study of the IdentityHashMap
class in the Java JDK. We specified its behavior using the Java Modeling
Language (JML) and proved correctness for the main insertion and lookup
methods with KeY, a semi-interactive theorem prover for JML-annotated
Java programs. Furthermore, we report how unit testing and bounded
model checking can be leveraged to find a suitable specification more
quickly. We also investigated where the bottlenecks in the verification of
hash maps lie for KeY by comparing required automatic proof effort for
different hash map implementations and draw conclusions for the choice
of hash map implementations regarding their verifiability.
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1 Introduction

Maps are versatile data structures and a common foundation for important
algorithms as they provide a simple modifiable association between two objects:
the key and a value. A hash map realizes this association with a (constant
time) hash function, which maps a key to a memory location in the managed
memory space. Thus, the typical operations, i.e., lookup, update and deletion of
associations, achieve a constant run-time on average.

To optimize their performance, hash maps require complex memory layout
and collision resolution strategies. The memory layout describes where and how
associations are stored. The collision strategy handles the location resolution
when the memory location is already occupied by a different key with the same
hash. Further, an implementation needs to decide when and how a restructuring
of the memory layout is necessary to maintain the performance over time because
the addition and removal of association leads to fragmentation.

In this paper, we present the specification and verification of the Identity-
HashMap class of the Java SDK as it appears in the latest update of JDK7 and
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newer JDK versions (up to JDK17)4. To our knowledge, this is the first case study,
which formally verifies a real-world hash map implementation from a mainstream
programming language library. In particular, it is part of the Java Collections
Framework, which is one of the most widely used libraries. We formally specify
the behavior of the implementation using the Java Modeling Language JML.
The case study with all artifacts is available at [5]. We show how we combined
various JML-based tools (OpenJML, JJBMC, and KeY) together to exploit
their strengths and avoid the weaknesses. In detail, we firstly used JUnit tests
with generated runtime assertion and JJBMC [2] to quickly prove contracts and
strengthened the specification, OpenJML [7] to automatically prove contracts,
and finally KeY [1] to provide preciseness by the cost of performance and required
user interaction. Finally, we were able to prove 15 methods of the class with KeY.

Furthermore, we describe how various implementation choices of hash maps
affect the verification performance with KeY. For this, we re-implemented com-
monly used hash map concepts in Java and specified them with JML.

Related Work. The hash map/table data structure of a linked list has been
studied mainly in terms of pseudo code of an idealized mathematical abstraction,
see [15] for an Eiffel version and [16] for an OCaml version. Hiep et al. [10] and
Knüppel et al. [11] investigate correctness of some other classes of the Collections
framework using KeY, the latter mainly as a “stepping stone towards a case
study for future research”. In [4], the authors specify and verify the Dual Pivot
Quicksort algorithm (part of the default sorting implementation for primitive
types) in Java.

2 Preliminaries

The Java Modeling Language (JML) [13] is a behavioral interface specification
language [9] for Java programs according to the of design-by-contract paradigm
[14]. Lst. 1 shows an excerpt of the specification for the hash map method
get; the full specification is covered in detail in Sect. 4. JML annotations are
enclosed in comments beginning with /*@ or //@. The listing contains a method
contract (lines 5-10) covering the normal behavior case in which an exception
must not be thrown. The requires and ensures clauses specify the pre- and
postcondition respectively; the framing condition is given in the assignable
clause which lists the heap locations modifiable by the method. The special
keyword \nothing indicates that no existing heap location must be modified,
but new objects may be allocated. \strictly nothing specifies that the heap
must not be modified at all. Multiple contracts for a method are separated with
the keyword also. JML also supports class invariants (line 3) which need to
be established before and after every method invocation. To conduct inductive
proofs for loops, these can be annotated with loop specifications (lines 19-22).
The loop invariants (maintains) must hold when the loop is reached and after
4 http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/4dd5e486620d/src/share/

classes/java/util/IdentityHashMap.java

http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/4dd5e486620d/src/share/classes/java/util/IdentityHashMap.java
http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/4dd5e486620d/src/share/classes/java/util/IdentityHashMap.java
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1 class IdentityHashMap {
2 private /*@ nullable */ Object[] table;
3 //@ public invariant table != null;
4
5 /*@ public normal_behavior
6 @ requires (\exists \bigint i; 0 <= i < table.length/(\bigint)2;
7 @ table[i*2] == maskNull(key));
8 @ ensures (\exists \bigint i; 0 <= i < table.length/(\bigint)2;
9 @ table[i*2] == maskNull(key) && \result == table[i*2+1]);

10 @ assignable \nothing;
11 @ also public normal_behavior ...
12 @*/
13 public /*@ nullable */ Object get(/*@ nullable */ Object key) {
14 Object k = maskNull(key); Object[] tab = table;
15 int len = tab.length, i = hash(k, len);
16
17 //@ ghost \bigint hash = i;
18 /*@ // Index i is always an even value within the array bounds
19 @ maintaining 0 <= i < len && i % (\bigint)2 == 0;
20 @ maintaining ...
21 @ decreasing hash > i ? hash - i : hash + len - i;
22 @ assignable \strictly_nothing;
23 @*/
24 while (true) {
25 Object item = tab[i];
26 if (item == k) return tab[i+1];
27 if (item == null) return null;
28 i = nextKeyIndex(i, len);
29 }
30 }
31 }

Listing 1. The lookup method get of class IdentityHashMap as an introductory
example of JML specifications.

every iteration. In the example, the variable i is specified to remain in range
between 0 and len and is always even. The loop variant expression (decreasing)
computes to a natural number which must be strictly decreased in every loop
iteration. The assignable clause specifies the heap locations all loop iterations
are allowed to change. JML extends the Java expression language by first-order
logic constructs like existential (\exists) and universal quantification (\forall).
Also, the construct (\num of int x; G; C) is relevant for the case study. It
counts the number of values for x such that the guard G and the condition C
are satisfied. For instance, (\num of int i; 0<=i<a.length; a[i] != null)
returns the number of non-null elements in array a. The identifier \result refers
to the method’s return value in postconditions, and the expression \old(E)
evaluates the expression E in the pre-state of the method invocation. JML ghost
variables (line 17) behave like local Java variables during verification, but are
not available at runtime and must therefore not have an impact on the effects
and result of the method they are declared in. The special primitive JML value
type \bigint refers to the mathematical integers Z.5 Finally, JML adds a few

5 At various places in the specifications, explicit casts like (\bigint)2 have been added.
These force the semantics of surrounding arithmetic operations to be in Z (rather
than in 32-bit int with overflows) which simplifies the verification considerably.
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initial table:

0 1 2 3 4 5 6 7

1. put(k1,v1): k1 v1

2. put(k2,v2): k1 v1 k2 v2

3. put(k3,v3): k3

0

v3

1 2 3

k1

4

v1

5

k2

6

v2

7

4. remove(k1): k2 v2 k3 v3

5. remove(k2): k3 v3

Fig. 1. Memory layout of the table array with length N = 8, hi = hash(ki, N) for
hashes h1 = 4, h2 = 4, and h3 = 6.

modifiers to the language like nullable which specifies that a field, method
argument or return value may be null. Without the modifier, the value must
not be null and, in the case of arrays, must not contain null values.

JML specifications can be used in different formal analyses, ranging from for-
mal documentation, test case generation, runtime assertion checking to deductive
verification. This paper will focus on the deductive verification of JML-annotated
programs using two tools implementing different deductive JML verification
approaches: KeY and JJBMC.

KeY is a theorem prover for JML-annotated Java programs that supports
automatic and interactive verification. KeY encodes method contracts as proof
obligations in dynamic logic, a program logic similar to the weakest precondition
calculus or Hoare logic. The programs inside the dynamic logic formulas are
resolved by applying a series of inference rules, thus symbolically executing the
code and hence producing the weakest preconditions in first order logic. Further
inference rules are applied to discharge these resulting obligations. KeY possesses
a powerful automatic strategy that can prove most obligations fully automatically.
In case of more sophisticated heavyweight specifications (like the ones in the
present hash map case study), the user can apply inference rules interactively to
guide the proof.

The tool JJBMC [2] on the other hand combines modular deductive verification
with bounded model checking. It translates JML specifications to Java statements
using additional assumptions and assertions. The enriched Java sources are then
submitted to the state-of-the-art Java bounded model checker JBMC [8]. In
Sect. 5.1 we will report how the combination of bounded verification with modular
concepts inside JJBMC helped engineering the specifications.

3 The Verification Subject: JDK’s IdentityHashMap

The IdentityHashMap is a hash table implementation of the interface java.-
util.Map of the Java Collections Framework. Fig. 2 shows an overview of the
class. Like any Map, it implements a modifiable mapping between keys and values,
s. t. every key ki is associated with exactly one value vi. In the IdentityHashMap,
two keys k1 and k2 are considered equal if and only if k1 = k2 (equality by
reference, see Lst. 1 line 26 and Lst. 4 line 33). In contrast, the equality of keys
in HashMap is defined by the equals method).
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IdentityHashMap

-table : Object[]
-size : int
-modCount : int

+IdentityHashMap()
+IdentityHashMap(int)
+get(Object): Object
+containsKey(Object): boolean
+containsValue(Object): boolean
-containsMapping(Object, Object): boolean
+put(Object, Object): Object
-resize(int newCapacity): boolean
+remove(Object key): Object

Fig. 2. Excerpt of the IdentityHashMap
class.

The IdentityHashMap stores the
key-value entries sequentially in a
one-dimensional array (private field
table). The class relies on the
built-in function System.identity-
HashCode(o) which returns a hash
code for the object o. The hash is the
first candidate spot in table to lookup
the entry, or locating a free spot to
store the entry.

When an entry (k1, v1) is added
(put(k1, v1), cf. Lst. 4), a hash h1 ∈
{0, 2, 4, . . . , N − 2} is calculated based
on the hash of the key k1 and the length N of the table (line 28). The key
k1 is then stored in table at the (even) index h1, and the value v1 is stored
adjacently at (odd) index h1 + 1 (line 40). Item 1. in Fig. 1 shows the case where
an entry is added to an empty map. In case k1 was already present in the table,
it would not be inserted a second time (this would break uniqueness), but its
associated value would be overwritten with v1. While keys are unique, there is
no guarantee that their hash values are. Collisions might occur: the calculated
index in table can be already occupied by an entry with a different key. The new
entry is then stored at the next free position in table (item 2. in Fig. 1, where
(k2, v2) is stored at index 6, while its hash h2 is 4). If that index idx is taken as
well, the next even index idx′ = idx + 2 mod N is calculated by nextKeyIndex
and tried, until a free spot is found (item 3. in Fig. 1). This ensures that there
is no gap (empty slots) between the calculated index and the actual index of
a key. This collision resolution strategy is called linear probing [12]. Sect. 6.1
discusses other strategies. IdentityHashMap supports using the null value as
a key. To distinguish the null key from an empty slot in the table, a constant
object reference, NULL KEY, is used in place of null.

The get(k) (Lst. 1) method retrieves the value for a given key k. It searches
the table with the same process that we described above for insertion: start at
the hash of k (line 15+25) and move to the next key slot (two spots further,
modulo N , see line 28) until k is found (line 26). The search also terminates
when an empty element in the array is encountered: this means there is no entry
with key k (line 27). To ensure termination, it is thus crucial that the array at
all times contains at least one empty slot.

We do not discuss removing an entry (method remove) in detail, but only
note that table needs to be rearranged as if the entry had never been added in
the first place, so that remove introduces no gaps between the calculated and
actual index of a key. For an example, see last items in Fig. 1.
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4 Specification and Verification of the IdentityHashMap

We now discuss the specification and verification of core parts of the Identity-
HashMap. The full case study comprises several hundred lines of source code and
specifications and over 1.4 million proof steps (Tab. 1). An exhaustive exposition
is therefore clearly not feasible. Instead, we focus on the core methods and
highlight several of the main proof obligations and their proofs in this section.

Particularly with case studies of such a large size, it can be challenging,
but is crucial, to make and keep the formal specifications manageable and
understandable. Developers of the specification must quickly see which properties
were formalized already and which remain to be fixed or added (if they turn
out to be flawed during analysis). During the proof, one must understand the
specifications sufficiently well to use them in proving the verification conditions.
Clients of the IdentityHashMap should be able to use the class solely on the
basis of the specifications (without looking at particular implementation details).
To facilitate understandability, our specifications include comments in natural
language that explain what the formal property expresses.

Some of the core properties maintained by the class invariant are for example
that the table contains at least one empty spot (so that lookup methods terminate)
(line 18 in Lst. 2) and that all spots between the hash value and the actual index
(including the wrap-around behavior as described in Sect. 3) in the table are
occupied (lines 24 and 34 in Lst. 2).

One could use the pure hash method from the Java code in the class invariant
to refer to the hash of an object. But this can be inconvenient for the proof process:
the hash method body must then be executed to derive that heap modifications
do not alter hashes of existing objects (and that the result is deterministic, etc).
We simplify this by introducing a new mathematical (deterministic) function
dl genHash that does not rely on the heap to refer to an object hash and adding
a postcondition to hash that its return value is dl genHash. Let us now discuss
some of the main proof obligations that arise in the verification of this class.

Termination of get(..). Lst. 3 shows the specification of the loop in the get
method. This loop also appears (in slightly different forms) in many other core
methods of the hash map: the three contains* methods, put, and remove. The
main goal of this loop is to search for a given key. As the loop guard is true,
the loop only terminates if a return statement is encountered. Intuitively, if the
given key is not present, the loop eventually hits the empty spot in the table,
which the class invariant ensures to exist. If the key is present, eventually the
condition item == k becomes true.

We now prove termination formally, using the variant in the decreasing
clause (line 21 in Lst. 1). Suppose the loop invariant and the loop guard hold
at the start of a loop iteration. If a return statement is hit in the iteration,
then clearly the loop terminates promptly. Otherwise, we must show that the
variant has decreased at the end of the iteration (with an updated value of i),
but remains non-negative. The following cases (where i is the value at the start



Specification and Verification of Identity Hash Map Implementation 7

1 /*@ public invariant table != null &&
2 @ MINIMUM_CAPACITY * (\bigint)2 <= table.length && // 4
3 @ MAXIMUM_CAPACITY * (\bigint)2 >= table.length; // 2ˆ29
4 @
5 @ public invariant // Non-empty keys are unique
6 @ (\forall \bigint i; 0 <= i && i < table.length / (\bigint)2;
7 @ (\forall \bigint j;
8 @ i <= j && j < table.length / (\bigint)2;
9 @ (table[2*i] != null && table[2*i] == table[2*j]) ==> i==j));

10 @
11 @ public invariant // Size == number of non-empty keys
12 @ size == (\num_of \bigint i; 0 <= i < table.length / (\bigint)2;
13 @ table[2*i] != null);
14 @
15 @ public invariant // Table length is always an even number
16 @ table.length % (\bigint)2 == 0;
17 @
18 @ // Table must have at least one empty key-element to prevent
19 @ // infinite loops when a key is not present.
20 @ public invariant
21 @ (\exists \bigint i; 0 <= i < table.length / (\bigint)2;
22 @ table[2*i] == null);
23 @
24 @ // There are no gaps between a key’s hashed index and its actual
25 @ // index (if the key is at a higher index than the hash code)
26 @ public invariant
27 @ (\forall \bigint i; 0 <= i < table.length / (\bigint)2;
28 @ table[2*i] != null &&
29 @ 2*i > \dl_genHash(table[2*i], table.length) ==>
30 @ (\forall \bigint j;
31 @ \dl_genHash(table[2*i], table.length) / (\bigint)2 <= j < i;
32 @ table[2*j] != null));
33 @
34 @ // There are no gaps between a key’s hashed index and its actual
35 @ // index (if the key is at a lower index than the hash code)
36 @ public invariant
37 @ (\forall \bigint i; 0 <= i < table.length / (\bigint)2;
38 @ table[2*i] != null &&
39 @ 2*i < \dl_genHash(table[2*i], table.length) ==>
40 @ (\forall \bigint j; \dl_genHash(table[2*i], table.length)
41 @ <= 2*j < table.length || 0 <= 2*j < 2*i;
42 @ table[2 * j] != null)); @*/

Listing 2. Excerpt of the class invariant.

of the iteration) may be encountered in this order during the execution of the
loop:

– If hash ≤ i < len − 2 then the updated value of i is i + 2, so clearly the
value of the variant has decreased from hash+len−i to hash+len− (i+2)
and remains non-negative (as hash ≥ 0 and i < len− 2.)

– If i = len − 2 then the new value of i is 0, so the variant decreases from
hash + len− (len− 2) = hash + 2 to hash (and hash ≥ 0).

– If 0 ≤ i < hash− 2, the updated value of i is i + 2 and the variant decreases
from hash− i to hash− (i + 2) and so remains positive.

– If i = hash − 2 then the loop invariant implies that all slots for keys in
the tab array in the intervals [0, hash− 2] and [hash, len− 2] are not equal
to k, the key that we searched for, and non-null (in other words, all keys
except the one at i = hash− 2). If tab[hash− 2] = k then clearly the return
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1 /*@ // Index i is always an even value within the array bounds
2 @ maintaining
3 @ i >= 0 && i < len && i % (\bigint)2 == 0;
4 @
5 @ // Suppose i > hash. This can only be the case when no key k
6 @ // and no null is present at an even index of tab in the
7 @ // interval [hash..i-2].
8 @ maintaining
9 @ i > hash ==>

10 @ (\forall \bigint n; hash <= (2*n) < i;
11 @ tab[2*n] != k && tab[2*n] != null);
12 @
13 @ // Suppose i < hash. This can only be the case when no key k
14 @ // and no null is present at an even index of tab in the
15 @ // intervals [0..i-2] and [hash..len-2].
16 @ maintaining
17 @ i < hash ==>
18 @ (\forall \bigint n; hash <= (2*n) < len;
19 @ tab[2*n] != k && tab[2*n] != null) &&
20 @ (\forall \bigint m; 0 <= (2*m) < i;
21 @ tab[2*m] != k && tab[2*m] != null);
22 @
23 @ decreasing hash > i ? hash - i : hash + len - i;
24 @ assignable \strictly_nothing; @*/

Listing 3. Loop specification of the loop in the get method and the inner loop of the
put method.

statement on line 26 is hit. Otherwise, since the assignable clause states that
the heap is not modified by the loop, we know the class invariant holds,
which implies there must be an empty key slot in the array. This must be
tab[hash− 2] = null since all other key slots were non-null. In this case, the
return statement on line 27 is hit and the loop terminates.

put(..) inner loop assignable clause. The assignable clause (Lst. 3) is peculiar:
the code has an assignment to an array element (which is not dead code), yet the
clause states that no locations are modified. This is due to the meaning of loop
specifications: they must hold whenever the loop guard is checked. This however
is not the case after leaving the loop by a return statement. Therefore in our
case the assignable clause does not have to hold for the loop iteration in which
the return statement is reached, and this is the case whenever the assignment
that modifies the table is reached.

This strong assignable clause is very useful to prove the remainder of the
method: all facts true before the loop (this may include the class invariant) are
still valid and can be exploited after the inner loop!

put(..) satisfies contract and preserves class inv. We distinguish three scenarios
with respect to the put method and wrote a contract for each of them. A so-called
exceptional contract for the case that the hash map is full (it has reached max
capacity): in that case the map is not modified and an exception is thrown.
Another contract for the case that the map already contains the given key: then
the corresponding value is updated. And a contract for the case where the table
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does not contain the given key yet so that the new key/value pair must be added.
We shall focus on the proof of this last contract and discuss the main reasoning to
show formally that, assuming the class invariant and precondition hold initially,
put preserves the class invariant and satisfies the postconditions of this contract.
This is the proof obligation that must be proven at line 41.

Consider the postcondition on line 10 of Lst. 4, about the preservation of
old entries. The table is modified at table[i] and table[i + 1] which are null,
as per the loop guard. So clearly, none of the entries that were already present
are overwritten. In particular, in the case where the table is not resized, the
old entries are at exactly the same index as at the beginning of the method. If
the table was resized, the postcondition in the contract of resize (not shown)
guarantees that they are present. The second main postcondition on line 18 is
easy to establish: it says that there exists an index in the new table at which the
new entry is stored. At line 41 we know that i is that index.

Next, we focus on two of the class invariants. The invariants that there are
no gaps (key indices with a null) between the hash of any key and its actual
index in the table (lines 24 and 34) are satisfied for the new entry: this follows
from the invariant of the inner loop in put, Lst. 3 lines 7 and 15. For old entries,
these properties remain true, because the method only overwrites a null entry,
so it does not introduce new gaps. Hence, if there previously was no gap between
an old key’s hash and its index, then certainly there is not one after inserting
the new key either.

Finally, we discuss the invariant that the map maintains at least one empty
spot in table (line 18). The main challenge here is that table[i] was previously
null (i.e. it was an empty spot) and is now overwritten with the key object, so
is there guaranteed to be an empty spot elsewhere? Note that the capacity of the
table, i.e. the number of entries that can be stored, is len/2 since every entry (key
and value) occupies two indices. If the old size is smaller than len/2− 1, where
len is the new length of the table, we can establish the desired property from
the previous class invariant: as the size is the number of non-null entries (line 11)
there must have been at least two empty spots. We now show that the old size is
indeed smaller than len− 1 whenever we reach the return-statement on line 41.
The if-statement prior to it must then have been false (otherwise control jumps
back to the beginning of the outer loop with the continue statement). Hence,
one of the following two cases is true:

– If s + (s << 1) > len (where s is the new size) then resize must return
false. This happens when the table length was at the maximum capacity
already (so resize does not allocate a new table; it is a no-op) and the current
size is less than that capacity - 1. If the size is equal to the max capacity - 1,
resize (and put) throw an exception so the table is not modified.

– Otherwise s + (s << 1) > len is false. Simplifying the left shift to 2s yields
2s + s > len. If s ≤ 3, at most six array indices in the table are used, but the
table length is at least eight (line 2, where MINIMUM CAPACITY = 4). So there
must be an empty spot. If s > 2 then 2s + s ≤ len implies 2s + 2 < len.
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Some arithmetic reasoning about inequalities then suffices to establish the
desired s < len/2− 1.

1 /*@ also private exceptional_behavior ...
2 @ also ... // The key is already present in the table
3 @ also public normal_behavior // The key is not present in the table
4 @ requires size < MAXIMUM_CAPACITY - 1;
5 @ requires !(\exists \bigint i; 0 <= i < table.length/(\bigint)2;
6 @ table[i*2] == maskNull(key));
7 @ assignable size, table[*], modCount , table;
8 @ ensures size == \old(size) + 1 && modCount != \old(modCount)
9 @ && \result == null;

10 @ ensures // After execution , all old keys are still present
11 @ // and all old values are still present
12 @ (\forall \bigint i;
13 @ 0 <= i < \old(table.length) / (\bigint)2;
14 @ (\exists \bigint j;
15 @ 0 <= j < table.length / (\bigint)2;
16 @ (\old(table[i*2]) == table[j*2]) &&
17 @ \old(table[i*2+1]) == table[j*2+1]));
18 @ ensures // After execution , the table contains the new key
19 @ // associated with the new value
20 @ (\exists \bigint i;
21 @ 0 <= i < table.length / (\bigint)2;
22 @ table[i*2] == maskNull(key) && table[i*2+1] == value); @*/
23 public /*@ nullable @*/ Object put(/*@ nullable @*/ Object key,
24 /*@ nullable @*/ Object value) {
25 final Object k = maskNull(key);
26 retryAfterResize: for (;;) {
27 final Object[] tab = table; final int len = tab.length;
28 int i = hash(k, len);
29 //@ ghost \bigint hash = i;
30 /*@ // Loop invariant: see Listing 3 @*/
31 for (Object item; (item = tab[i]) != null;
32 i = nextKeyIndex(i, len)) {
33 if (item == k) {
34 java.lang.Object oldValue = tab[i+1];
35 tab[i+1] = value; return oldValue; } }
36 final int s = size + 1;
37 // Use optimized form of 3*s. Next capacity is len, 2*capacity
38 if (s + (s << 1) > len && resize(len))
39 continue retryAfterResize;
40 modCount++; tab[i] = k; tab[i + 1] = value;
41 size = s; return null; } }

Listing 4. The put method, including specifications.

4.1 Mechanic proof

We specified 15 methods of the IdentityHashMap and verified in KeY that they
satisfy their contracts and preserve the class invariant: the default constructor
with accompanying capacity and init methods (responsible for establishing the
class invariant initially), the observers isEmpty, maskNull, nextKeyIndex, size,
unmaskNull, the lookup methods containsKeY, containsMapping, contains-
Value, get and mutators clear, put and the private resize method. Tab. 1
summarizes the main statistics. The observer methods all have short proofs
(< 1,000 steps) and no interactive steps. All lookup methods have similar statistics:
around 50k steps per contract. KeY’s support for user interaction was crucial and
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Table 1. Lines of code, lines of specification, and KeY statistics per method

Method Steps Br. IS SE QI OC LI MR PO JML LOC

Def.constructor 7,724 56 86 66 101 1 0 0 1 10 3
clear 17,588 78 0 115 79 0 1 0 1 19 7
containsMapping 55,611 146 8 484 458 6 1 0 1 17 14
put 973,404 4,088 1,655 2,221 1,564 26 4 2 3 70 24
resize 223,357 340 487 491 270 3 2 0 4 125 29
other 172,307 438 115 846 1,243 14 4 0 13 113 59
Totals 1,449,991 5,146 2,351 4,223 3,715 50 12 2 23 354 136

Br.: Number of branches in the proof tree, IS: Interactive Steps (number of interactively
(manually) applied rules), SE: Symbolic Execution steps, QI: Quantifier Instantiations, OC:
Operation Contract applications, LI: Loop Invariant applications, MR: Merge Rule applications,
PO: Proof Obligations (contracts) for the method, JML: lines of JML spec. (KeY only, not
counting empty and comment lines), LOC: Lines Of Code (Java code not counting empty and
comment lines).

used extensively to introduce intermediate lemmas and find suitable quantifier
instantiations in the proofs of the most complex methods: put and resize.

The IdentityHashMap uses features for performance that complicate reason-
ing, such as continue jumps in loops, bit shifts and exploiting integer overflows.
To match the intricate Java semantics, we took special care to analyze the
source code nearly verbatim. We stripped generics with an automated plug-in of
the KeY tool suite. The total effort of the case study amounts to roughly five
person months (800 hours). The largest part of this consists of developing the
formal specifications. This required many iterations of partial (failed) verification
attempts with KeY and other analysis techniques (see Sect. 5.1) that led to
corrections or additions to the specifications. With complete specifications, we
estimate that the KeY proofs alone can be done in about 80 hours.

The put method, together with the private method resize was the largest
and most difficult, comprising about 1.2 million steps together. The size is caused
mainly because the class invariant is large and must be proven in every proof
branch of a return statement. To minimize the number of such branches, we
aggressively used a branch merging technique [17]. For example, line 41 of put
gives rise to three branches: s + (s << 1) > len is false (branch 1), or it is true
but resize returns false (branch 2) or true (branch 3). In branch 1 and branch
2 the heap is not modified, so we merged these branches. This prevents, for
example, having to proving the class invariant twice.

Another valuable feature in KeY for put was the flexibility to verify loops
by either unrolling the loop (with symbolic execution) or by supplying a loop
invariant on a case-by-case basis. Observe that the body of the outer loop (line 26
is executed either just once (in case no resize is necessary) or twice (in case
of a resize). To avoid having to write and use a (complex) loop invariant that
complicates the proof, we exploited the feature of KeY to unroll the loop body
instead. This is why there is no invariant for the outer loop.
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5 Engineering Specifications Using Lightweight Analyses

Most of the time in a modular verification endeavor is spent on finding appropriate
specifications, and we need to distinguish between two types of specification:
While property specifications describe the exported guarantees one wants to verify,
auxiliary specifications (like loop-invariants and contracts of helper methods)
partition the verification condition into smaller obligations and guide tools to find
proofs. In the present case study, coming up with both categories had challenges
in store. To gain more confidence in the specifications and spot bugs early in the
process, we applied two lightweight verification techniques.

5.1 Bounded Analysis for Auxiliary Specifications

Coming up with appropriate auxiliary specifications is a challenging task, because
the specifications usually depend on each other in two directions: In modular
verification, it is not possible to prove a method contract containing a method
call without a specification of the called method. On the other hand, the inner
method is difficult to specify while it is not clear what guarantees are needed at
its call sites. It is thus very desirable to reduce these interdependencies and to
step back from the design-by-contract paradigm for the inner method call. We
achieved this by using a bounded analysis to check partially specified programs.

We use JJBMC [3] with which modular and bounded verification techniques
can be combined: methods (and loops) with specifications are treated modularly
(exploiting user-given method contracts and loop invariants to abstract from the
program flow) while unspecified constructs can be formally treated using bounded
verification (performing loop unrolling and method inlining to obtain a finite
program to analyze), enabling a formal (albeit bounded) analysis of partially
specified programs. The bounded analysis is parameterized by the maximum
number k ∈ N of unwindings and unrollings to apply. For a too small value of k,
specification violations may hence remain undiscovered by a bounded analysis.

The workflow to engineer auxiliary specifications is as follows: The user
annotates a top-level API method m0 with the desired property specification
together with candidate class invariants (but leaves inner methods unspecified).
They then run JJBMC to get feedback whether this specification is correct (within
the set bound). If it is not, a concrete counterexample trace is produced and
presented to the user who can use it for debugging. Once a suitable specification
has been found, the user can continue engineering the specification for a method
m1 called by m0. By continuously checking the bounded correctness of m0 and
the modular correctness of m0 (wrt. the contract for m1), the user hones in on an
appropriate specification (strong enough for the call sites and weak enough to be
provable) for m1. The process then continues with the next nested method call,
and also applies to (nested) loops. Using the bounded model checking analysis,
we gained confidence in the specifications and avoided a few tedious refactorings
otherwise needed for the proofs of the unbounded case.

As one example where this process helped us in the case study, reconsider the
specification of get in Lst. 1. In the first specification attempt, the conditions in
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line 7 missed the call to maskNull, making code and specification inconsistent.
Using JJBMC we were able to spot and correct this flaw early on before the
inner mechanisms of get had been looked at. We used this approach to come up
with several parts of the specification, and while we do not have hard evidence,
our subjective impression is that it allowed us to get to correct specifications
faster than we would have without it. We spent about 0.14 person months to
verify the IdentityHashMap with JJBMC.

5.2 Unit Tests for Property Specifications

Dynamic techniques that check whether specifications hold at run-time could be
cheap to apply, provided those checks are generated automatically from the JML
specifications. There are tools designed for this purpose: JMLUnitNG [18] aims
to generate unit tests and OpenJML [6] is a general analysis framework that
includes support for run-time assertion checking. However, our application of
these tools to this case study was unsuccessful: the semantics of the source code
and specifications proved to be too complex and intricate to load the Identity-
HashMap. In particular, this triggered exceptions and we did not manage to get
useful output of the tools (despite contacting the main developer of OpenJML).

Confronted with this problem, we instead manually wrote (ad-hoc) JUnit
tests to perform checks on method contracts (both pre- and postconditions)
and a test method for the class invariant that checks all clauses. We can
then call the test method whenever the class invariant should hold. Since the
class invariant accesses private fields such as table, we used Java Reflection
(Class.getDeclaredField(..)) to read the values of these fields. We handled
quantifiers in JML specifications with for-loops (all quantifiers are bounded over
the integers in our case study, so they can be translated routinely to for-loops).

Conducting these tests helped us to gain confidence in our specifications and
even uncovered some errors in early versions of it. However, there are two main
limitations: first, since JUnit tests operate at the granularity of entire methods,
internal specifications such as loop invariants and assignable clauses are difficult
to cover. Secondly, the manual translation of the JML specifications could be
inconsistent (e.g. due to a misunderstanding of the semantics of JML) with
the actual specification. Finally, as we use unit tests to discover errors quickly,
one should keep in mind that writing and maintaining the unit tests is very
time-consuming. We spent about 0.5 person months to develop the unit test
framework.

6 Discussion

6.1 Empirical Identification of Verification Challenges

To learn more about the particular challenges imposed by the verification of
hash tables, we not only verified the IdentityHashMap, but also investigated the
contributing factors for the complexity of hash table verification endeavors in
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Table 2. Required number of rules applications for different hash table implementations.
The dash “–” denotes a non-closed proof.

Separate Chaining Linear Probing
Method WI NE WE WI NE WE
constructor 24,096 0.90 − 3,577 1.06 1.04
get 15,353 1.26 1.02 1,160 1.35 3.32
put 82,624 2.72 − 29,632 1.63 −
delete 32,060 1.44 − 15,290 1.68 −
hash 1,303 1.10 2.80 1,061 1.37 7.03
getIndex 3,460 0.93 6.65 44,216 1.61 5.70
addNewPair 58,964 − − 385,191 − −
total 217,860 480,127

KeY. We considered two families of hash table implementations with different
hashing paradigms. For each family, we provided three implementations with
different complexity and abstraction levels and compared the effort needed to
verify them using KeY. To make the results more comparable and not influenced
by user input, we have run KeY fully automatically without user interaction. The
specification has a similar degree of abstraction and follows similar lines as the
one outlined in Sect. 4. By comparing the required number of proof steps for the
different implementations we can draw conclusions about the complexity of the
verification obligations and the strengths and weaknesses of the automated proof
strategy in KeY.

The two compared hash collision resolution paradigms are linear probing and
separate chaining. They differ in situations in which two different keys map to the
same hash (index) into the hash map. Linear probing is used in the Identity-
HashMap, as described in Sect. 3. Separate chaining is used in the HashMap class
in the JDK. It allows storing multiple entries into one slot: each slot contains a
bucket (i.e. a linear list) with all entries that are mapped by the hash function
to the same index (slot). The collision resolution strategy affects the algorithms
for insertion and lookup routines since these have to take conflicting keys with
identical indices into account. The implementations of the two paradigms have
quite different method contracts and in particular the class invariants capturing
the properties of the hash structure differ considerably – with different challenges
both for the specifier and the automatic verification engine.

The three variants implemented for each conflict resolution strategy mainly
differ in the data types used for values and keys. In the first variant called
WithIntegers (WI), keys and values are of type int and the identity operator (==)
is used to compare keys. The second variant is called NoEquals (NE), and keys are
objects of a specialized immutable Key class, while values are arbitrary Objects,
and it uses the identity operator (==) to compare keys, like the IdentityHashMap
does. The third variant is called WithEquals (WE) and is similar to NE, but
uses the equals method to compare keys.

Tab. 2 shows the required effort to prove the respective method contracts
correct. The numbers of the WI variants represent the absolute number of rule
applications needed, whereas the other two variants (in italics) are stated as a
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ratio to the number in the WI column for the same method and hashing family.
Thus the relative overhead between the family members can be seen more easily.
The exact numbers of steps are not very important for the investigation, suffice
it to say that the WI proof for addNewPair with more than 380,000 steps took
12 minutes to complete. The hash method computes the hash value of a key
and getIndex returns the index of a key (if present). addNewPair inserts a new
key-value pair and is called by put, when the key is not already in the hash table.
Some proofs could not be finished (indicated as −) since the prover ran out of
memory resources. Since the solver is designed to be deterministic, the runs are
repeatable.

It can be observed that in most cases the complexity grows within a family
between the variants from WI to NE and from NE to WE. The variants that
introduce equals instead of == experience a vast increase in complexity for the
central method getIndex. This can be explained by the fact that the built-in
identity comparison is independent of the heap state (it only depends on the
compared values) and is inherently transitive and symmetric. Such properties
may (or may partially) be true for an equals implementation, but considerably
more effort must be taken to show consequences when dealing with this more
general form of equality. It can thus be safely said that one should use primitive
values as keys for hash maps as often as possible for KeY.

Contrary to what one might expect, some numbers decrease for the more
complex variants. This can be explained by the heuristic choices that are made
by the KeY strategy. In some cases, good decisions are made earlier than in other
cases, due to the presence/absence of certain trigger expressions.

6.2 Discovered Bugs and Recommendations

In this section, we discuss several issues that our analysis revealed.

Serialization. The IdentityHashMap supports serialization: writing a map to a
stream (e.g. a file) with a writeObject method and reading a map from a stream
with the readObject method. Effectively readObject acts as a constructor:
it creates a map object, so it should ensure that this object satisfies the class
invariant. To fill the map with serialized entries, readObject uses a putForCreate
method that does not resize (for performance reasons) but allocates a table based
on the size stored in the stream. Suppose an attacker serializes a map with a
single empty entry (satisfying the requirement from the class invariant that there
is an empty slot) to a file. The attacker can tamper with the file using a hex-editor
to overwrite the empty slot with a key. A victim who deserializes this rogue map
then inadvertently enters an infinite loop in putForCreate. We suggest solving
this by checking in the code whether the map to deserialize satisfies the class
invariant, and if not, throw an exception to prevent infinite loops or construction
of a map object that breaks the class invariant.
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put in JDK7u80. The binaries distributed by Oracle for JDK7 (an older but still
widely used JDK) uses source code from an old JDK7u80 update6. The main
difference between JDK7u80 and the IdentityHashMap in this paper (which
is used in all newer JDK’s and the later source-only updates to JDK7) is in
the put method. The JDK7u80 version resizes after adding a new entry, rather
than before (see Fig. 3), and there is no outer loop with a continue statement.

... // See Lst. 4, lines 27− 35
tab[i] = k; tab[i + 1] = value;
if (++size >= threshold)
resize(len);
// len == 2 * current capacity.

return null;

Fig. 3. put(..) in JDK7u80

Suppose put is called on a map that is
filled to the maximum capacity. The last
empty spot in the table is first overwrit-
ten and only then resize throws an ex-
ception. So, the map is left in an incon-
sistent state: it breaks the class invariant.
If a client then calls get(k) on a key k
not stored in the map, an infinite loop is
triggered. In other words: this version of put breaks failure atomicity : put fails
(as the table is full) so the operation should have been a no-op.

There is a way to fix this without resorting to continue statements: extract
the code for the inner loop in put, get, etc., which searches for the index of a
given key, or returns the index of its insertion point if the key is not present in
the map, into a new private method search(k). The duplicated code for the loop
can then be eliminated from the various methods by calling search. In put, call
resize before modifying the table. This may shuffle around the existing keys: the
hashes are recalculated based on the new table length. If a resize occurred, call
search(k) again to obtain the new insertion point for the key. Now the entries
can be safely inserted at the index returned by search.

7 Conclusion

In this paper we specified and verified the core of the challenging, real-world
implementation IdentityHashMap in KeY and discovered several issues. To
speed up finding suitable specifications, we successfully leveraged model checking
and unit testing. We extended our analysis with an investigation on the effect
on the proof complexity in KeY of features and strategies used in other map
implementations.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
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