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Kurzfassung

Kundenorientierte Auftragsbearbeitungsprozesse in Logistik- und Produktions-
systemen sind heutzutage mit kontinuierlich steigenden Auftragsvolumina, ho-
hen Kundenanforderungen hinsichtlich kurzfristiger und individueller Liefer-
fristen und einer stark stochastisch schwankenden Kundennachfrage konfron-
tiert. Um trotz der volatilen Kundennachfrage eine effiziente Auftragsbearbei-
tung und die Einhaltung der kundenindividuellen Lieferfristen gewährleisten zu
können, muss die Arbeitslast kundenorientierter Auftragsbearbeitungsprozesse
auf geeigneteWeise geglättet werden. Hopp and Spearman (2004) unterscheiden
zur Kompensation von Schwankungen in Produktionssystemen zwischen den
Dimensionen Bestand, Zeit und Kapazität. Diese stellen auch einen guten
Ausgangspunkt für die Entwicklung von Glättungskonzepten für stochastische,
kundenorientierte Bearbeitungsprozesse dar. In dieser Arbeit werden die Po-
tentiale der Dimensionen Zeit und Kapazität in der Strategie der nivellierten
Auftragseinlastung zusammengeführt, um die Arbeitslast mehrstufiger, stochas-
tischer Auftragsbearbeitungsprozesse mit kundenindividuellen Fälligkeitsfristen
auf taktischer Ebene zeitlich zu glätten. Ziel dieserArbeit ist (1) die Entwicklung
eines Glättungskonzeptes, der so genannten Strategie der nivellierten Auftrag-
seinlastung, (2) die Entwicklung eines zeitdiskreten analytischen Modells zur
Leistungsanalyse und (3) die Entwicklung eines Algorithmus zur Kapazität-
splanung unter Gewährleistung bestimmter Leistungsanforderungen für mehr-
stufige, stochastische Auftragsbearbeitungsprozessemit nivellierter Auftragsein-
lastung und kundenindividuellen Fälligkeitsfristen.

Die Strategie der nivellierten Auftragseinlastung zeichnet sich durch die Be-
reitstellung zeitlich konstanter Kapazitäten für die Auftragsbearbeitung und
eine Auftragsbearbeitung gemäß aufsteigender Fälligkeitsfristen aus. Auf
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Kurzfassung

diese Weise wird der zeitliche Spielraum jedes Auftrags zwischen dessen
Auftragseingang und dessen Fälligkeitsfrist systematisch zur Kompensation
der stochastischen Nachfrageschwankungen genutzt. Die verbleibende Vari-
abilität wird in Abhängigkeit der Leistungsanforderungen der Kunden durch
die Höhe der bereitgestellten Kapazität kompensiert. Das analytische Modell
zur Leistungsanalyse mehrstufiger, stochastischer Auftragsbearbeitungsprozesse
mit nivellierter Auftragseinlastung und kundenindividuellen Fälligkeitsfristen
bildet die Auftragsbearbeitung als zeitdiskrete Markov-Kette ab und berech-
net verschiedene stochastische und deterministische Leistungskenngrößen auf
Basis deren asymptotischer Zustandsverteilung. Diese Kenngrößen, wie beis-
pielsweise Durchsatz, Servicegrad, Auslastung, Anzahl Lost Sales sowie Zeit-
puffer und Rückstandsdauer eines Auftrags, ermöglichen eine umfassende und
exakte Leistungsanalyse von mehrstufigen, stochastischen Auftragsbearbeitung-
sprozessen mit nivellierter Auftragseinlastung und kundenindividuellen Fäl-
ligkeitsfristen. Der Zusammenhang zwischen der bereitgestellten Kapazität und
der damit erreichbaren Leistungsfähigkeit kann nicht explizit durch eine math-
ematische Gleichung beschrieben werden, sondern ist implizit durch das ana-
lytische Modell gegeben. Daher ist das Entscheidungsproblem der Kapazitäts-
planung unterGewährleistung bestimmterLeistungsanforderungen einBlackbox-
Optimierungsproblem. Die problemspezifischen Konfigurationen der Blackbox-
Optimierungsalgorithmen Mesh Adaptive Direct Search und Surrogate Optim-
isation Integer ermöglichen eine zielgerichtete Bestimmung des minimalen
prozessspezifischen Kapazitätsbedarfs, der zur Gewährleistung der Leistung-
sanforderungen der Kunden bereitgestellt werden muss. Diese werden anhand
einer oder mehrerer Kenngrößen des Auftragsbearbeitungsprozesses spezifiziert.

NumerischeUntersuchungen zurBeurteilung derLeistungsfähigkeit der Strategie
der nivellierten Auftragseinlastung zeigen, dass in Systemen mit einer Auslas-
tung größer als 0,6 durch den Einsatz der Strategie der nivellierten Auftrag-
seinlastung ein deutlich höherer α- und β-Servicegrad erreicht werden kann als
mit First come first serve. Außerdem ist der Kapazitätsbedarf zur Gewährleis-
tung eines bestimmten α-Servicegrads bei Einsatz der Strategie der nivellierten
Auftragseinlastung höchstens so hoch wie bei Einsatz von First come first serve.
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Abstract

Order fulfilment systems are forced tomanage a highly volatile customer demand
consisting of low-volume orders effectively and efficiently while simultaneously
meeting customer-required, short order deadlines. Hopp and Spearman (2004)
provide three buffer types – inventory buffer, time buffer, and capacity buffer –
to handle the volatile workload in production systems. These buffer types also
provide several potentials for workload balancing in order fulfilment. In this
thesis, we combine the potentials of time buffer and capacity buffer to develop
and analytically investigate the Strategy of Levelled Order Release to balance
workload in multi-stage, stochastic order fulfilment systems with customer-
required order deadlines over time on a tactical level. The contribution of this
thesis is three-fold: We develop (1) a workload balancing concept, the so-
called Strategy of Levelled Order Release, (2) a discrete-time analytical model
for performance analysis, and (3) an algorithm for capacity planning under
performance constraints in multi-stage, stochastic order fulfilment systems with
levelled order release and customer-required order deadlines.

The Strategy of Levelled Order Release is characterised by (1) a fixed capacity
reserved for order processing in each time period, and (2) an order processing
according to ascending due dates in each time period. In this way, the time
buffer of each order between its time of arrival and its deadline is used to
balance the variability of the customer demand. The remaining variability is
compensated by using the capacity buffer depending on the performance re-
quirements of the customers. The developed analytical model for performance
analysis of multi-stage, stochastic order fulfilment systems with levelled order
release and customer-required order deadlines models system behaviour of such
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Abstract

order fulfilment systems as a discrete-time Markov chain. It calculates mul-
tiple stochastic and deterministic, system- and customer-related performance
measures of order fulfilment systems based on the limiting distribution of the
Markov chain. These performance measures, such as system throughput, ser-
vice level, utilisation, number of lost sales, and time buffer and backlog duration
of a completed order, enable a comprehensive and exact performance analysis
of multi-stage, stochastic order fulfilment systems with levelled order release
and customer-required order deadlines. The relationship between the provided
capacity and the performance that is achieved with this capacity cannot be spe-
cified by a mathematical equation, but it is given by the analytical model. Thus,
the decision problem of capacity planning in multi-stage order fulfilment sys-
tems with performance requirements is a blackbox optimisation problem. The
problem-specific configurations of the blackbox optimisation algorithms Mesh
Adaptive Direct Search and Surrogate Optimisation Integer enable a target-
oriented determination of the minimum required, process-specific capacity to
meet any performance requirement of the customers that is specified based on
one or multiple performance measures of the order fulfilment system.

Numerical studies on the performance evaluation of the Strategy of Levelled
Order Release show that one can achieve significantly higher values of α- and
β-service level when using the Strategy of Levelled Order Release instead of
First come first serve in order fulfilment systems with a utilisation higher than
0.6. Furthermore, the total required capacity to guarantee a predefinedα-service
level in the order fulfilment system when using the Strategy of Levelled Order
Release is at most as high as the one when using First come first serve.
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1 Introduction

Intensified competition due to globalisation and e-commerce increases the pres-
sure on order fulfilment systems to operate in an effective and efficient way
(Van Gils et al. 2018; Kundu et al. 2020). Additionally, total order volume con-
stantly increases, while the character of orders has changed from a small number
of high-volume orders to a large number of low-volume orders (De Koster et
al. 2007). At German Amazon warehouses, for example, an average customer
order consists of 1.6 items (Boysen et al. 2019), and in production systems,
the trend from mass products to customised products increases the relevance of
low-volume/high-varietymake-to-order production systems (Kundu et al. 2020).
Moreover, promising short, individual, and reliable order deadlines has become
a crucial competitive requirement in order fulfilment due to increasing customer
orientation (Öner-Közen and Minner 2017). Individual order deadlines depend,
for example, on the shipping distance and the service type chosen by the cus-
tomer (Yan et al. 2010), and delivery promises, such as next-day or same-day
delivery, are widespread in e-commerce (Yaman et al. 2012; Boysen et al. 2019).
Furthermore, customer demand in order fulfilment systems is highly volatile, in-
dependent of the considered industry. Figure 1.1 shows an exemplary time series
of incoming customer orders in a German company of the automotive aftermar-
ket sector in 2015. The corresponding squared coefficient of variation of order
income is 0.3. The high variability of the number of incoming customer orders
results in strong fluctuations of system workload over time (Hopp and Spearman
2004; Boysen et al. 2019). In conclusion, order fulfilment systems are forced to
manage a highly volatile customer demand consisting of low-volume orders in
an effective and efficient way while simultaneously meeting customer-required,
short order deadlines.
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1 Introduction

Figure 1.1: Time series of incoming customer orders of a German company of the automotive
aftermarket sector in 2015 (Gaps in the time series correspond to weekends and public
holidays).

Investigating production systems, Hopp and Spearman (2004) claim that “all
variability [...] will be buffered”. They provide three buffer types to handle the
volatile workload in production systems:

• Inventory buffer (e.g. safety stocks),

• Time buffer (e.g. safety lead times), and

• Capacity buffer (e.g. excess capacity).

Inmake-to-stock production systems, systemworkload and customer demand are
decoupled by the finished-goods-inventory, so that inventory buffer provides sev-
eral potentials to compensate the variability of customer demand. In contrast,
in the main application fields of order fulfilment – make-to-order production
systems and warehouses –, system workload is directly driven by the customer
demand since the orders are customer-specific and unknown in advance. Apart
from some preparatory tasks, for instance, pre-picking, it is not possible to pro-
cess the orders before they arrive at the order fulfilment system. Thus, in order
fulfilment systems, inventory buffer only provides limited potential to handle the
variability of customer demand. Despite the short lead time requirements of cus-
tomer orders, there is some time buffer in order fulfilment since the processing
time of an order is still much shorter than its lead time. However, it is impossible
to flexibly adapt order deadlines depending on the current workload since they
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are given by the customers. Capacity buffer, such as a certain proportion of
additional permanent workers or temporary hired workers, provides safety capa-
city to handle temporary peaks of customer demand. However, using capacity
buffer faces the following limitations in order fulfilment: First, due to space and
equipment constraints, there is an upper limit on the number of workers that can
work simultaneously at the same processing step of the order fulfilment system.
Second, due to the increasing probability of blocking, a higher number of as-
signed workers does not necessarily increase the overall processing performance
(Furmans et al. 2009). Finally, providing safety capacity is expensive and might
become a competitive drawback (Van Gils et al. 2018; Kundu et al. 2020). In
conclusion, we state that inventory, time, and capacity buffer provide multiple,
but limited potentials to handle volatile customer demand in order fulfilment
systems.

In this thesis, we combine the potentials of time buffer and capacity buffer
to develop and analytically investigate the Strategy of Levelled Order Release
to balance workload in multi-stage, stochastic order fulfilment systems with
customer-required order deadlines. The focus is on the two main application
fields of order fulfilment: Warehouses and make-to-order production systems.
The contribution of this thesis is three-fold and comprises

• a workload balancing concept – the Strategy of Levelled Order Release –
formulti-stage, stochastic order fulfilment systemswith customer-required
order deadlines,

• a discrete-time analyticalmodel for performance analysis and performance
evaluation of multi-stage, stochastic order fulfilment systems with levelled
order release and customer-required order deadlines, and

• an algorithm for capacity planning while meeting performance require-
ments in multi-stage, stochastic order fulfilment systems with levelled
order release and customer-required order deadlines.

3
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1.1 Problem Description

Following the contribution of the thesis, we differentiate three major research
segments of the analysis of multi-stage, stochastic order fulfilment systems,
resulting in three research questions.

Workload Balancing in Order Fulfilment Systems Following the concept
of variability buffers of Hopp and Spearman (2004), time buffer and capacity
buffer are suitable instruments to balance variability in order fulfilment systems.
By combining the potentials of these buffers, we develop a workload balancing
concept for order fulfilment systems that balances system workload over time
on a tactical level. The concept is inspired by the concept of Heijunka levelling.
Hence, our workload balancing approach is called Strategy of Levelled Order
Release. The related research question is the following:

Howcanwebalanceworkloadover time inmulti-stage, stochastic
order fulfilment systems with customer-required order dead-
lines?

Performance Analysis of Order Fulfilment Systems To compare the
Strategy of Levelled Order Release with alternative strategies and to show the
benefit of workload balancing in order fulfilment systems, we model system
behaviour of multi-stage, stochastic order fulfilment systems with levelled order
release and customer-required order deadlines in a suitable analytical model.
Based on this analytical model, we derive exact formulas for various stochastic
and deterministic, system- and customer-related performance measures of order
fulfilment systems. The related research question is the following:

Howcanwedetermine theperformance ofmulti-stage, stochastic
order fulfilment systemswith levelled order release and customer-
required order deadlines?
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Capacity Planning in Order Fulfilment Systems The analytical model
enables the performance analysis of any order fulfilment system with a given
system configuration. However, the focus of operations managers is not on
the performance of a given system configuration but on adapting the current
system configuration to guarantee promised performance requirements to their
customers. In particular, they have to decide on the capacity that is provided
at the processing steps of the order fulfilment system to meet the performance
requirements of the customers. For this purpose, we provide an algorithm to
solve the capacity planning problem while meeting performance requirements
in order fulfilment systems based on the developed analytical model. The related
research question is the following:

How can we determine the capacity required to meet spe-
cific performance requirements in multi-stage, stochastic order
fulfilment systems with levelled order release and customer-
required order deadlines?

1.2 Scope of the Thesis

This thesis is divided into thirteen chapters. Figure 1.2 depicts the overall
structure of the thesis and assigns the chapters to the research segments of the
thesis.

Initially, Chapter 1 provides the motivation and the problem description of this
thesis. Chapter 2 gives a literature review on related topics, such asworkload bal-
ancing, performance analysis, and capacity planning in order fulfilment systems,
and states the research gap of this thesis.

The first research segment on workload balancing in order fulfilment systems
comprises Chapters 3 and 4: Chapter 3 introduces a general, formal description
of order fulfilment systems that forms the basis for all concepts and models
developed in the subsequent chapters. In Chapter 4, we develop the Strategy
of Levelled Order Release to balance the workload of order fulfilment systems
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over time based on the fundamental ideas of Heijunka levelling in production
systems and the specific characteristics and requirements of order fulfilment.

The second research segment on performance analysis of order fulfilment sys-
tems comprises Chapters 5 to 8: Chapter 5 provides methodological fundament-
als and problem-specific specifications of the chosen modelling approach. In
Chapters 6 and 7, we introduce an exact and a simplified analytical model for
performance analysis of multi-stage, stochastic order fulfilment systems with
levelled order release and customer-required order deadlines, respectively. In
Chapter 8, we compare these analytical models regarding modelling accuracy,
accuracy of performance analysis, and memory and computation time require-
ments.

The third research segment on capacity planning in order fulfilment systems is
discussed in Chapter 9. In this chapter, we formulate the decision problem of
capacity planning in order fulfilment systems as a mathematical optimisation
model and propose two algorithms to solve the capacity planning problem based
on the analytical models introduced in the second research segment.

The last part of this thesis incorporates several numerical studies applying the
models and algorithms developed in this thesis: In Chapter 10, we evaluate
multiple approaches of runtime andmemory optimisation to reduce computation
time and memory usage of the analytical models. In Chapter 11, we evaluate the
solution algorithms proposed for capacity planning regarding solution quality
and runtime efficiency. In Chapter 12, we evaluate the performance of the
Strategy of Levelled Order Release in order fulfilment systems compared to
alternative strategies.

Finally, Chapter 13 summarises the contribution and the main results of this
thesis and presents an outlook on future research directions.

6



1.2 Scope of the Thesis

3. Order Fulfilment Systems

4. Strategy of Levelled Order Release

Workload Balancing in Order Fulfilment Systems

1. Introduction

2. Literature Review

Motivation and Research Gap

9. Formalisation and Solution Algorithms of the Capacity Planning Problem

Capacity Planning in Order Fulfilment Systems

10. Runtime and Memory Optimisation of the Markov Chain

11. Evaluation of Capacity Planning Algorithms

12. Evaluation of the Strategy of Levelled Order Release

Numerical Analysis and Application

13. Conclusion

Conclusion and Outlook

5. Choice and Specification of Modelling Approach

8. Evaluation of Models for Performance Analysis

Performance Analysis of Order Fulfilment Systems

6. Exact Model for

Performance Analysis

7. Simplified Model for

Performance Analysis

Figure 1.2: Outline of the thesis.
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2 Literature Review

This chapter presents the state of the art of academic literature in the three
research segments of this thesis: Workload balancing in order fulfilment systems
in Section 2.1, analytical models for performance analysis of order fulfilment
systems in Section 2.2, and capacity planning approaches in the context of
order fulfilment in Section 2.3. The focus of each section is on the two main
application fields of order fulfilment: Make-to-order production systems and
warehouses. The state of the art of academic literature results from a keyword-
based systematic literature review in the Scopus database. The methodology of
the literature review and the keywords are described in Appendix A. The results
of the literature review are summarised in Section 2.4 by defining the research
gap of this thesis.

2.1 Workload Balancing

Workload balancing is defined as managing the variability of system workload
over a specific time horizon (Irastorza and Deane 1974). Academic literature
discusses workload balancing in different application fields: Project scheduling,
vehicle routing, facility balancing, assembly line balancing, and Heijunka lev-
elling. Table 2.1 provides a classification of workload balancing approaches in
these application fields.

In project scheduling, resource capacity is fixed, and there are precedence con-
straints between the project tasks. The decision problem is to determine the start
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Table 2.1: Workload balancing approaches in different application fields (extended representation
based on Vanheusden et al. (2020)).

Application field Capacity Tasks

Project scheduling Fixed Constrained by precedences
Vehicle routing Fixed Constrained by time windows
Facility balancing Fixed Unconstrained
Assembly line balancing Fixed Constrained by precedences
Heijunka levelling Fixed Constrained by production sequence

Order fulfilment Flexible Constrained by order deadlines

times of the project tasks provided that maximum project duration and preced-
ence constraints are met, and provided that resource utilisation is balanced over
time (Rieck et al. 2012). Vehicle routing determines the routes of a given set of
vehicles so that customer demand is fulfilled within the required time windows,
and vehicles’ capacity utilisation is balanced. Matl et al. (2018) provide a re-
view of workload balancing approaches in vehicle routing. In facility balancing,
the workload is balanced among multiple facilities and over time by adequately
assigning a given set of independent tasks to a given set of facilities (Huang
et al. 2006). Assembly line balancing problems assign tasks to stations of the
assembly line so that the total workload for manufacturing one product unit is
balanced among the stations and provided that precedence constraints between
the tasks and the fixed number of available machines are met (Becker and Scholl
2006). Heijunka levelling balances both production volume and product mix of
a multi-product production line over time. The decision problem of Heijunka
levelling is on determining the buffer size of finished-goods-inventory that is
required to guarantee a predefined service level (Matzka et al. 2012).

Workload balancing in order fulfilment differs from the above mentioned balan-
cing approaches to some extent (see Table 2.1): First, resource capacity in order
fulfilment is flexible since a high proportion of tasks is still manual (De Koster
et al. 2007; Marchet et al. 2015; Peeters and Van Ooijen 2020), and it is possible
to quickly hire additional temporary workers in case of shortage (Van Gils et al.
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2017). Hence, we initially balance system workload over time. Subsequently,
we determine the capacity that is required tomeet the performance requirements.
Second, the tasks in order fulfilment are time-constrained by clear, individual,
and externally given order deadlines (Öner-Közen and Minner 2017).

In the following, we provide the state of the art of workload balancing in the
two main application fields of order fulfilment: Make-to-order systems in Sec-
tion 2.1.1 and warehouses in Section 2.1.2.

2.1.1 Workload Balancing in Make-To-Order Systems

The classification of order review and release (ORR) policies of Bergamaschi et
al. (1997) mentions workload balancing as a possible decision criterion of work-
load control in make-to-order production systems. Balanced workload control
focuses on balancing the workload among the workstations of the production
system. Optimisation approaches are used to minimise the deviations of the cur-
rent workload from its target workload level at every workstation (Kundu et al.
2020). This lean-based approach differs from the majority of ORR policies in
make-to-order production systems, which predominantly focus on strictly limit-
ing the workload of every workstation (Kundu and Staudacher 2017). Kundu et
al. (2020) provide a literature review of ORR strategies incorporating workload
balancing.

While balanced workload control in job shops is widely discussed in the literat-
ure, there are only few publications on balanced workload control in flow shops:
Portioli-Staudacher and Tantardini (2012) introduce a lean-based ORR policy
for flow shops that aims at levelling workload along the flow. The proposed op-
timisation model minimises the unbalancing of workload among workstations
and the unbalancing over time. Fernandes et al. (2020) develop an optimisation-
based ORR policy that combines characteristics of balancing and limiting order
release approaches. The corresponding optimisationmodel minimises the differ-
ences between the released workload and a predefined workload norm at every
workstation so that lower and upper bounds of the stations’ workload are met.
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Kundu et al. (2020) introduce a modular design of ORR policies, conduct a sim-
ulation study to better understand the interaction effects between the parameters
of an ORR policy in flow shops, and develop new ORR policies for flow shops
with high processing time variability. The simulation results show that an ORR
policy which uses an optimisation approach to balance the workload among the
workstations enables higher system performance than ORR policies focusing on
limiting the workload at the workstations.

The order fulfilment systems studied in this thesis can be seen as flow shops.
However, the above mentioned publications on balanced workload control differ
from ourworkload balancing concept regarding the balancing unit sincewe study
workload balancing over time and not among workstations (see Table 2.2).

Table 2.2: Workload balancing concepts in the context of order fulfilment in make-to-order systems
(above), in warehouses (middle), and in this thesis (below) (extended representation
based on Vanheusden et al. (2020)).

Decision level Balancing unit Variability buffer1

Balanced workload
control

Tactical Among workstations –

Zone sizing Tactical Among zones –
Zone assignment Tactical Among zones –
Bucket brigade Operational Among workers –
Flexible workforce
planning

Tactical Among workers,
over time

Capacity buffer

Operational Workload
Balancing Problem

Operational Over time Time buffer,
capacity buffer

Strategy of Levelled
Order Release

Tactical Over time Time buffer,
capacity buffer

1 The concept of variability buffers only applies to workload balancing concepts using the balancing unit “time”.
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2.1.2 Workload Balancing in Warehouses

Inwarehousing, workload balancing is applied in different settings (seeTable 2.2).
Zone picking is a classical approach to reduce the time needed for order pro-
cessing in order picking systems. For this purpose, the order picking system
is subdivided into multiple zones, and each order can be simultaneously pro-
cessed in the different zones. Jane (2000) and Jane and Laih (2005) provide two
approaches for workload balancing among the zones of a zone order picking
system in the long term: Zone sizing and zone assignment. Jane (2000) adjusts
the zone size in order to balance the workload among the pickers, whereas Jane
and Laih (2005) develop a clustering algorithm that assigns items to zones in
order to balance the workload among the pickers. Dynamic picking systems,
such as bucket brigades, consider workload balancing among workers in manual
order picking systems in the short term. In the concept of bucket brigade,
multiple pickers work in a flow line, whereby every worker follows one simple
rule: Go on processing an order until your successor in the flow line is met, who
takes over the order. Then, go back upstream and take over the current order
of your predecessor in the flow line. If the pickers are sequenced according to
their picking performance from the slowest to the fastest, the workload of the
order picking system is balanced, independent of the starting positions of the
workers (Bartholdi III and Eisenstein 1996). Academic literature studies dif-
ferent approaches for throughput improvement of bucket brigades and different
configurations of order picking systems. Hong (2019) provides a current liter-
ature review on bucket brigades. In contrast to the above mentioned workload
balancing concepts, this thesis focuses on workload balancing over time (see
Table 2.2).

Flexible workforce planning represents a reasonable approach to balance tempor-
ary fluctuations in customer demand: Workers of a pool of fixed and temporary
workers are flexibly scheduled to balance system workload over time and among
workers. This approach expects a precise forecast of the daily workload. Based
on forecasted workload and worker productivity, the total number of required
workers and their allocation is determined. Van Gils et al. (2017) propose this
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workload balancing approach for a zone order picking system and present fore-
casting methods to precisely forecast the daily number of incoming order lines.
Flexible workforce planning concentrates on the capacity buffer for workload
balancing, whereas the Strategy of Levelled Order Release regards a combination
of capacity and time buffer (see Table 2.2).

Vanheusden et al. (2020) and Vanheusden et al. (2021) study workforce balan-
cing as a planning step in daily resource capacity planning of warehouses:

1. Workload forecasting: Forecast the workload of the following day;

2. Workload balancing: Schedule forecasted tasks within the day so that
workload peaks are avoided, and release and deadline of each task are
met;

3. Workload level: Determine the number of workers required to perform
the scheduled tasks.

The authors introduce the Operational Workload Balancing Problem (OWBP)
to evenly distribute the tasks in an order picking system over the time periods of
one day, whereby the number of tasks, their release, and their deadline are given.
The objective function minimises the unbalancing of the scheduled workload
over all time periods of one day, which is measured by the range (Vanheusden
et al. 2020), the maximum, the lexicographic maximum, the variance, or the
Gini coefficient (Vanheusden et al. 2021) of the scheduled workload. The
OWBP is solved by an iterated local search algorithm. This approach differs
from the Strategy of Levelled Order Release regarding decision level and the
mathematical modelling of system parameters: Vanheusden et al. (2020) and
Vanheusden et al. (2021) analyse a planning horizon of one day, such that
customer demand and order deadlines are deterministic, and the workload is
balanced on an hourly level. In contrast, we examine a planning period of
multiple days. Thus, customer demand and order deadlines are stochastic, and
the workload is balanced on a daily or a shift-based level (see Table 2.2).
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2.2 Performance Analysis of
Order Fulfilment Systems

The literature review on analytical models for performance analysis of order ful-
filment systems is limited to the two main application fields of order fulfilment:
Make-to-order systems in Section 2.2.1 and warehouses in Section 2.2.2.

2.2.1 Performance Analysis of Make-To-Order
Systems

Analytical models, especially queueing models, for performance analysis of
stochastic manufacturing systems are widely discussed in academic literature.
Dallery and Gershwin (1992), Buzacott and Shanthikumar (1993), Papado-
poulos and Heavey (1996), Govil and Fu (1999), and Papadopoulos et al. (2019)
provide comprehensive reviews on queueingmodels in manufacturing. However,
analytical models that focus particularly on performance analysis of make-to-
order production systems are barely studied in the literature. Haskose et al.
(2002) and Haskose et al. (2004) introduce queueing models for performance
analysis of workload control production planning in make-to-order systems with
limited buffer capacities that provide exact results for small arbitrary make-to-
order systems. To analyse make-to-order systems of any size and complexity,
the authors provide an approximation approach. In contrast, simulation models
are commonly used to analyse make-to-order systems (Haskose et al. 2004).

Furthermore, performance analysis of make-to-order systems is often limited to
system-related performance measures, such as utilisation, throughput, and in-
ventory levels, although they are interrelated with customer-related performance
measures, such as service level and order tardiness (Altendorfer and Jodlbauer
2011). Operations managers in make-to-order systems are often confronted with
a trade-off between system- and customer-related performance measures: While
high capacity and inventory levels are reasonable from the customer-related per-
spective to guarantee high service levels, they are adverse from the system-related
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perspective due to low system utilisation and high operational costs. Although
customer-related performance measures are key to quantify the perceived quality
of service, they are often neglected in analytical models for performance analysis
of make-to-order systems (Altendorfer and Jodlbauer 2011).

Customer service level measures to which extent the delivery time requirements
of the customer orders are met. Thus, knowing the order deadlines is key when
calculating customer service level. In the research fields of order acceptance
and due date setting in make-to-order systems, order deadlines are modelled as
endogenous variables: In the job entry phase of workload control, customer
enquiry management determines whether to bid for an order or not and, if so,
what due date and price should be (Thürer et al. 2011). Common strategies of
customer enquiry management are total acceptance, acceptance based on present
and future workload, and due date negotiation (Mezzogori et al. 2021), whereby
the focus of academic literature is on the latter two. These two strategies have
in common that orders can be rejected, and that order deadlines are determined
internally. Slotnick (2011) and Thürer et al. (2019) provide literature reviews of
order acceptance and due date setting, respectively. In contrast, order deadlines
that result from the shipping distance, the service type chosen by the customer
or delivery promises, such as next-day or same-day delivery (Yan et al. 2010;
Yaman et al. 2012) are exogenous variables. These customer-required order
deadlines are predominantly defined to be deterministic and constant for every
order (Altendorfer 2014). Liu and Yuan (2001) specify order deadlines by
a deterministic maximum delivery lead time in their queueing model for per-
formance analysis of a simple assembly network where different components
are processed at two workstations before being merged at the assembly sta-
tion. Assuming exponentially distributed interarrival times, processing times,
and machine breakdowns, the authors provide exact formulas for the probability
distribution of the flow time, the throughput, the expected work-in-process, and
the service level, and introduce a mathematical program to maximise system
throughput while maintaining the required customer service level. Alternatively,
Souza and Ketzenberg (2002) model order deadlines by a deterministic upper
bound of the average order lead time when analysing a two-stage make-to-order
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remanufacturing system in order to determine the long-run production mix that
maximises profit subject to a service level constraint.

However, real make-to-order systems face random, customer-required order
deadlines due to different products ordered by different customers and the plan-
ning uncertainty the customers of a manufacturing company face (Altendorfer
and Minner 2011). There are only few publications regarding both stochastic,
customer-required order deadlines and customer-related performance measures
in make-to-order systems: The heavy traffic analysis of single-stage stochastic
systems with the scheduling policy Earliest due date, conducted by Doytchinov
et al. (2001), incorporates generally distributed customer-required order dead-
lines, interarrival times, and processing times. The authors provide approximate
formulas of customer service level and the probability distribution of customer
lateness. Moreover, the priority sequencing problem in make-to-order sys-
tems with respect to minimum tardiness cost, which is modelled as Markovian
decision process by Öner-Közen and Minner (2017), incorporates stochastic,
customer-required order deadlines as well as the customer-related performance
measures service level and expected order tardiness. The model is primarily
used to evaluate the impact of priority sequencing decisions on the perform-
ance measures. However, exact performance analysis of single-stage, stochastic
make-to-order systems can be conducted based on the model when using a
simple due date-based priority sequencing policy, such as Earliest due date.
Altendorfer and Jodlbauer (2011) introduce an analytical model for perform-
ance analysis of single-stage, stochastic make-to-order systems with stochastic,
customer-required order deadlines that incorporates multiple customer-related
performance measures, such as service level, expected lead time, expected
finished-goods-inventory, and expected order tardiness. Assuming exponentially
distributed interarrival times, processing times, and order deadlines, the com-
puted performance measures are exact. For systems with arbitrary distributed
parameters, the performance analysis is limited to approximations. Altendorfer
and Minner (2011) extend this model to two-stage make-to-order systems in
order to analyse the simultaneous optimisation of manufacturing capacities and
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planned lead times with respect to total inventory holding and customer order
tardiness cost.

Table 2.3 summarises the relevant analytical models for performance analysis of
stochastic make-to-order systems by classifying them regarding modelling ap-
proach, modelling of order deadlines, number of stages, performance measures,
and solution quality. To the best of our knowledge, the model of Altendorfer and
Minner (2011) is the only one for performance analysis of multi-stage make-to-
order systems incorporating stochastic, customer-required order deadlines and
customer-related performance measures. However, it differs from our model
regarding the modelling approach: Altendorfer and Minner (2011) provide a
continuous-time model whose solution quality depends on the shape of the
probability distributions of the stochastic parameters, whereas our discrete-time
model provides exact results for any arbitrary distributed parameters. Further-
more, discrete-time models enable the calculation of complete probability dis-
tributions of relevant stochastic performance measures (Schleyer and Furmans
2007).

2.2.2 Performance Analysis of Warehouses

The focus of research in warehousing is on the analysis and optimisation of spe-
cific planning and control problems, especially in order picking, such as batch-
ing, routing, zoning, sequencing, worker assignment, and storage assignment.
There are numerous analytical models analysing the impact of specific control
strategies on warehouse performance and determining optimal parameter val-
ues and strategy configurations in order to maximise warehouse performance.
Rouwenhorst et al. (2000), Gu et al. (2007), De Koster et al. (2007), and
Davarzani and Norrman (2015) provide comprehensive reviews on warehouse
operations. Despite the existing interdependencies between different processes
and decisions inwarehouse operations, integratedmodelling and analysis ofmul-
tiple warehouse planning problems as well as a holistic performance analysis of
warehouses are barely studied in the literature so far (Davarzani and Norrman
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2015; Van Gils et al. 2017). Van Gils et al. (2018) state the potentials of in-
tegrated analysis and simultaneous solution approaches of multiple operational
planning problems and provide a classification of combined planning problems
in warehouse operations. The authors conclude that integrated modelling and
analysis focuses on batching and storage assignment, routing and storage as-
signment, and batching and routing. However, these integrated models regard
combinations of multiple specific decision problems. None of them studies a
holistic performance analysis of warehouses.

Furthermore, stochastic problems are rarely studied in warehouse literature,
although warehouse managers suffer from several stochastic influences and un-
certainties resulting from both the outside supply chain and internal processes.
Deterministic models can provide good approximations of stable stochastic sys-
tems. However, when analysing warehouses with highly fluctuating parameters,
deterministic models may strongly deviate from actual system behaviour and
lead to wrong conclusions (Gong and De Koster 2011). Gong and De Koster
(2011) state the potentials of stochastic models and optimisation approaches and
provide an overview of stochastic research in warehouse operations.

The existing stochastic models for performance analysis of warehouses, which
especially investigate different configurations of order picking systems, focus
on system-related performance measures, such as travel time (Chew and Tang
1999; Le-Duc and De Koster 2007; Pan et al. 2014), throughput time (Tang and
Chew 1997; Gong and De Koster 2011; Le-Duc and De Koster 2007; Yu and
De Koster 2009; Van Nieuwenhuyse and De Koster 2009; Pan andWu 2012; Xu
et al. 2014), and throughput capacity (Van Der Gaast et al. 2020). The provided
models are approximations, and they are restricted to expected values and vari-
ances of the performance measures. In contrast, customer-related performance
measures, such as service level and order tardiness, are rarely considered despite
their importance with respect to customer satisfaction (Van Gils et al. 2018).

Consequently, order deadlines that are essential for quantifying customer-related
performancemeasures are barely incorporated into stochastic warehousemodels.
In the wave picking models of Çeven and Gue (2017) and MacCarthy et al.
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(2019), customer orders that arrive before a certain cutoff time are due to the
next deadline corresponding to a truck departure in the shipping area of the
warehouse. Thus, each wave is specified by a cutoff time and a deadline, and
service level is measured as the proportion of orders that is completed until
their deadline. Based on this performance measure, called Next Scheduled
Deadline, Çeven and Gue (2017) optimise the timing and the number of order
waves, and MacCarthy et al. (2019) provide best performance frontiers to
determine minimum picking rate as well as optimum timing and number of
order waves. Furthermore, the discrete-time model for performance analysis of
a one-block warehouse with order batching of Schleyer and Gue (2012) specifies
order deadlines by a deterministic maximum throughput time. Based on this
model, the authors calculate the probability distribution of the throughput time
and the service level and derive the optimal batch size with respect to a service
level constraint.

Table 2.4: Analytical models for performance analysis of stochastic systems in warehousing.

Modelling
approach

Modelling of
order deadlines

Number
of stages

Performance
measures

Solution
quality

Çeven and
Gue (2017)

Continu-
ous-time

Deterministic,
process-oriented
deadlines

One Service level Exact

MacCarthy
et al. (2019)

Continu-
ous-time

Deterministic,
process-oriented
deadlines

One Service level Exact

Schleyer and
Gue (2012)

Discrete-
time

Deterministic,
maximum
throughput time

One Throughput time,
service level

Exact

This thesis Discrete-
time

Stochastic,
customer-required
deadlines

Multiple Service level etc.
(see Table 6.1)

Exact
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Table 2.4 summarises the relevant analytical models for performance analysis
of stochastic systems in warehousing. Although the aforementioned models
incorporate order deadlines, they are restricted to deterministic order deadlines.
Furthermore, they are limited to order picking, that is, single-stage systems.
Thus, there is no analytical model in warehouse literature for performance
analysis of stochastic, multi-stage order fulfilment processes with stochastic,
customer-required order deadlines with respect to customer-related performance
measures.

2.3 Capacity Planning in Order
Fulfilment Systems

Capacity planning determines the resource requirements to meet a given cus-
tomer demand over a planning horizon (Chen et al. 2009). Capacity planning
problems with customer-required deadlines and due date-related performance
constraints are barely studied in the literature. Table 2.5 presents an overview
of the related literature that can be subdivided into performance analysis and
comparison of capacity planning policies and optimisation of capacity plan-
ning. Furthermore, the publications differ regarding the number of stages, the
modelling of order deadlines, and the chosen performance metric.

Bertrand and Sridharan (2001) evaluate subcontracting policies in single-stage
systems with stochastic, customer-required lead times, Poisson-distributed order
arrivals, and negative exponentially distributed processing times. Subcontract-
ing is necessary since the order arrival rate is greater than the service rate.
The developed subcontracting policies specify when and which orders should
be subcontracted and vary regarding informational needs and complexity. In a
numerical study, these policies are compared regarding the percentage of tardy
orders, the expected tardiness of an order, capacity utilisation, and throughput
time. Mincsovics and Dellaert (2009) propose workload-dependent capacity
planning policies in a single-stage system with exponentially distributed interar-
rival and service times and a fixed lead time. The number of unprocessed orders
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Table 2.5: Capacity planning approaches with due date-related performance constraints: Capacity
planning policies (above) and optimisation of capacity planning (below).

Number
of stages

Modelling of
order deadlines

Performance metric

Bertrand and Srid-
haran (2001)

One Stochastic, customer-
required lead times

Percentage of tardy orders,
expected tardiness of an
order

Mincsovics and Del-
laert (2009)

One Deterministic lead
time

Expected number of back-
orders, expected number of
early orders

Altendorfer et al.
(2014)

Multiple Stochastic, customer-
required deadlines

Service level, expected tardi-
ness of an order

Altendorfer and
Minner (2011, 2012)

Multiple Stochastic, customer-
required deadlines

Expected number of back-
orders

Buyukkaramikli et
al. (2013)

One Stochastic, customer-
required lead times

Probability distribution of
throughput time

Ma et al. (2019) One Deterministic max-
imum response time

Expected sojourn time

This thesis Multiple Stochastic, customer-
required deadlines

Service level, probability
distribution of a perform-
ance measure (see Table 6.1)

is constrained by a constant upper bound, and all arriving orders exceeding
this bound are refused. The workload-dependent capacity planning policies are
defined by two switching points. A switching point is a specific workload value,
for which an order arrival triggers a switch in capacity. The authors present one
exact and one approximate analytical approach to evaluate the due date-related
performance of the policies, measured by the expected number of backorders
and the expected number of early orders. A policy with constant provided ca-
pacity is used as a benchmark in the numerical study. Altendorfer et al. (2014)
investigate periodic capacity planning policies regarding potential improvements
of service level and the expected tardiness of an order in multi-stage systems
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with stochastic customer demand, processing times, and customer-required dead-
lines. The policies differ regarding the amount of available information on the
stochastic system parameters and the approach used to derive the amount of
provided capacity from the amount of demanded capacity. A policy with con-
stant provided capacity is used as a benchmark for these policies in a simulation
study.

Altendorfer and Minner (2011) and Altendorfer and Minner (2012) investigate
capacity planning in multi-stage systems with exponentially distributed interar-
rival times, processing times, and customer-required deadlines. Altendorfer and
Minner (2011) examine the planned lead time release policy that releases orders
to the next stage whenever the remaining time to due date is shorter than the
sum of planned lead times of the remaining stages. In contrast, Altendorfer and
Minner (2012) examine the work-ahead window release policy that releases an
order when its remaining time to due date is shorter than the work-aheadwindow.
Using a continuous-time queueing model, Altendorfer andMinner (2011) model
the system by a series of M|M|1 queueing systems, whereby the provided capa-
city per stage is modelled by the stage-dependent processing rate. Altendorfer
and Minner (2012) model the system by a series of M|M|m queueing systems
and the provided capacity per stage by the processing rate and the number of
servers per stage. Based on the queueing model, the authors derive analytic
formulas for the expected values of work-in-process per stage, finished-goods-
inventory, and the number of backorders. The capacity planning problem is
formulated as an unconstrained optimisation problem that minimises the ex-
pected costs of work-in-process per stage, finished-goods-inventory, backorders,
and capacity. Besides the provided processing rate per stage, further decision
variables are considered: The planned lead time per stage in Altendorfer and
Minner (2011) and the number of servers per stage and the work-ahead window
in Altendorfer and Minner (2012). Ma et al. (2019) study capacity planning
with a response time constraint in single-stage systems. Customer demand is
Poisson-distributed, processing times are generally distributed, and there is a
deterministic maximum response time per order. The system is modelled as a
M|G|1 queueing system, whose processing rate specifies the required capacity.
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2.3 Capacity Planning in Order Fulfilment Systems

Based on the Pollaczek-Khintchine formula, the expected sojourn time of an
order is calculated. The response time constraint is modelled by penalty costs
that occur if the expected sojourn time of an order exceeds the maximum re-
sponse time per order. Thus, the capacity planning problem is to minimise the
sum of capacity cost and expected penalty cost. Buyukkaramikli et al. (2013)
examine capacity planning with a throughput time constraint in single-stage
systems with exponentially distributed interarrival times, processing times, and
customer-required lead times. Capacity can be changed periodically, whereby
two capacity levels are possible: Permanent capacity level and permanent plus
contingent capacity level. The throughput time constraint guarantees that each
order is completed before its predefined lead time with a certain probability. The
optimisation problem for capacity planning determines the period length, the
permanent capacity level, the contingent capacity level, and the switching point
at which contingent capacity is deployed, such that the capacity-related cost is
minimised, and the throughput time constraint is satisfied. For this, the system
is modelled as a queueing system, and the periodic capacity policy is reflected
in the change of the processing rate. The capacity planning problem is solved
using a search algorithm.

Except Buyukkaramikli et al. (2013), the literature on capacity planning with
customer-required deadlines and due date-related performance constraints is
limited to average-based performance metrics, such as the expected number of
backorders, the expected sojourn time, or the expected tardiness (see Table 2.5).
In contrast, in this thesis, the performance constraint of capacity planning is
specified by the probability distribution of a performance measure, such as
system throughput or backlog duration, or the service level of the order fulfilment
system.
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2.4 Chapter Conclusion

The results of the literature review state the research gap of this thesis. First,
there is no workload balancing concept in the literature to balance the workload
of order fulfilment systems over time on a tactical level by using a combination
of time buffer and capacity buffer (see Table 2.2). Second, the discrete-time
analytical model provided in this thesis is the first analytical model for perform-
ance analysis of workload balancing in order fulfilment systems that ensures
a real-life representation of order fulfilment systems (see Tables 2.3, 2.4). It
regards customer-required order deadlines and the interdependencies between
the processing steps, and it models customer demand, customer-required dead-
lines, and processing performance as stochastic parameters. Furthermore, the
discrete-time analytical model enables the exact calculation of complete probab-
ility distributions for several system- and customer-related performance meas-
ures of the order fulfilment system. Third, capacity planning problems with
due date-related performance constraints, which rely on probability distribu-
tions of corresponding performance measures and service level, in multi-stage
systemswith stochastic, customer-required order deadlines have not been studied
in literature so far (see Table 2.5).
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This chapter aims at introducing a general and formal description of order
fulfilment systems, as they form the basis for all concepts and models developed
in the following. In Section 3.1, we give an overview of the definition of order
fulfilment in the literature. Section 3.2 introduces a formal description of order
fulfilment systems. Section 3.3 summarises the results of this chapter.

3.1 Definition of Order Fulfilment

TheGlobal SupplyChain Forum identifies order fulfilment as one of the eight key
processes of supply chain management, along with customer relationship man-
agement, customer service management, demand management, manufacturing
flow management, procurement, product development and commercialisation,
and returns (Cooper et al. 1997). The process of order fulfilment aims at design-
ing a logistics network that permits a company to meet customer requests while
minimising total costs. It involves all activities on defining customer require-
ments, designing the logistics network, and filling customer orders (Croxton
2003). The activities of order fulfilment are subdivided into

• Strategic order fulfilment and

• Operational order fulfilment.

Strategic order fulfilment is on establishing a suitable structure for managing the
order fulfilment process effectively and efficiently by incorporating the require-
ments of manufacturing, logistics, and marketing. Table 3.1 gives an overview
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Table 3.1: Sub-processes of strategic order fulfilment (adopted from Croxton (2003)).

Sub-process Tasks

Review marketing
strategy, supply chain
structure, customer
service goals

• Review firm’s strategies
• Understand customer requirements
• Determine capabilities of the supply chain
• Determine the order fulfilment budget

Define requirements
for order fulfilment

• Review the order-to-cash cycle and supply capabilities
• Define lead time and customer service requirements for
each customer segment

• Define operational requirements
• Evaluate core competencies

Evaluate logistics
network

• Determine if the current network can support the require-
ments within financial constraints

• Determine which plants produce which products,
determine warehouse, plant and supplier locations,
determine transportation modes

Define plan for order
fulfilment

• Determine how to fill the orders from each customer seg-
ment

• Make decisions about payment terms, order sizes, and
packing requirements

• Determine allocation rules
• Assess the role of technology

Develop framework of
metrics

• Link order fulfilment performance to the firm’s financial
performance

• Determine appropriate metrics and set goals

of the sub-processes of strategic order fulfilment. In contrast, operational order
fulfilment focuses on the execution of the order fulfilment process once it has
been established. It determines how customer orders are generated and com-
municated, recorded, processed, documented, picked, and delivered (Croxton et
al. 2001; Croxton 2003). Table 3.2 gives an overview of the sub-processes of
operational order fulfilment.
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Table 3.2: Sub-processes of operational order fulfilment (adopted from Croxton (2003)).

Sub-process Tasks

Generate and
communicate order

• Generate order
• Transmit order

Enter order • Receive order
• Enter order
• Edit order

Process order • Check credit
• Check inventory
• Plan order flow and transportation

Handle
documentation

• Acknowledge order
• Prepare bill of lading, picking instructions, and packing slips
• Generate invoice

Fill order • Pick product
• Pack product
• Stage for loading
• Prepare load confirmation

Deliver order • Prepare shipping documents
• Transmit delivery confirmation
• Audit and pay freight bill

Perform post delivery
activities and measure
performance

• Receive and post payment
• Record bad debt expense
• Measure process performance

Lin and Shaw (1998) identify the order fulfilment process as one of the three
pillars of a company, along with the product development process and the cus-
tomer service process. The order fulfilment process “starts with receiving orders
from the customers and ends with having the finished goods delivered” (Lin and
Shaw 1998). It involves order management, manufacturing, and distribution.
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Order management is on receiving customer orders and committing order re-
quests. Manufacturing involves production scheduling, material planning, capa-
city planning, and shop floor control, and distribution focuses on inventory and
transportation planning. Following Lin and Shaw (1998), the main objectives of
order fulfilment are

• to deliver qualified products to fulfil customer demand at the right time
and the right place, and

• to achieve the agility to handle uncertainties resulting from internal or
external environments.

Okongwu et al. (2012) extend the definitions of Lin and Shaw (1998) and
Croxton et al. (2001) by subdividing the order fulfilment process into the
following phases:

• Order promising, and

• Order fulfilment.

Order promising verifies resource availability to commit reliable due dates to
the customers. In contrast, order fulfilment focuses on the execution of the order
fulfilment process after the due dates are determined. It incorporates operational
disruptions, such as machine breakdowns, material shortage, and quality defects
(Okongwu et al. 2012).

3.2 Formal Description

In this thesis, the focus is on operational order fulfilment. We concentrate on the
phase of order fulfilment of the order fulfilment process since order promising
is irrelevant under the assumption of customer-required order deadlines.

We describe order fulfilment from a superior, abstract, and process-oriented per-
spective (see Figure 3.1): Incoming, unprocessed orders with customer-required
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Figure 3.1: Exemplary structure of an order fulfilment system with three order types (green, red,
blue) and ten processes (A-J).

order deadlines determine the starting point of the order fulfilment process (see
definition of Lin and Shaw (1998)). These orders are processed within the order
fulfilment system in a sequence of multiple processing steps. We do not further
specify the processing steps of the order fulfilment system in this thesis. We
abstract from a subdivision into, for instance, administrative, manufacturing,
and logistics tasks or a subdivision according to the sub-processes of operational
order fulfilment (see Table 3.2). Instead, we model every processing step as a
separate process that is specified by the parameters introduced in Section 3.2.3.
Completed orders ready for delivery represent the output of the order fulfilment
system (see definition of Lin and Shaw (1998)).

To evaluate the performance of the order fulfilment system regarding the over-
arching objectives of order fulfilment, we calculate several system- and customer-
related performance measures. System-related performance measures charac-
terise the efficiency of the order fulfilment process. Common examples are the
utilisation, the number of unprocessed orders, and the number of lost sales. In
contrast, customer-related performance measures specify the characteristics of
the completed orders and are indicators to quantify customer satisfaction. Com-
mon examples of customer-related performance measures are the service level
and the backlog duration of a completed order.
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The resources that are required for order processing at each processing step of
the order fulfilment system are not explicitly modelled as a separate parameter.
Instead, they are integrated into the specification of each processing step by
determining the time capacity provided for order processing at each process.
This approach is sufficient since we abstract from the technical design and
implementation of the processing steps – manual, partly automated, or fully
automated – and thus from different resource types, such as workers of different
qualification levels, different variants of tools and machines, or any combination
of multiple resource types. If necessary, the number of required resources at
any processing step can be derived from the amount of required time capacity
by considering its technical design and its specific characteristics. However, this
is beyond the scope of this thesis.

We abstract from the occurrence of material shortage by assuming that all
products ordered by the customers are always available in the required quantity
in the order fulfilment system. Thus, aspects of inventory management and
product availability are neglected in the concepts and models developed in the
following.

In order fulfilment, orders are usually classified into different order types. Orders
are subdivided, for instance, regarding their deadlines into standard and express
orders. Furthermore, in warehouse operations, a classification of the orders in
picker-to-parts and parts-to-picker can be meaningful.

In conclusion, we formally define an order fulfilment system by

• a finite set of order types I = {1, . . . , imax}, each of which is specified
by the parameters introduced in Section 3.2.2,

• a finite set of processes P = {1, . . . , pmax}, each of which is specified
by the parameters introduced in Section 3.2.3, and

• a function v : I → {0, 1}pmax×pmax defining the processing sequence of
the order types in the order fulfilment system by mapping each order type
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i ∈ I to an adjacency matrix, whose rows and columns correspond to the
processes p ∈ P of the order fulfilment system:

v : I → {0, 1}pmax×pmax

i 7→ Vi =


vi,1,1 . . . vi,1,|P|
...

. . .
...

vi,|P|,1 . . . vi,|P|,|P|

 (3.1)

with

vi,p,p′ =


1 if process p′ succeeds process p in

processing sequence of order type i
0 otherwise

∀i ∈ I,∀p, p′ ∈ P. (3.2)

3.2.1 Specification of an Order

An order represents the reference base in order fulfilment. However, an order
can be specified in different ways: In the simplest case, every order corresponds
to a single customer order. Furthermore, internal processing orders that result
from the customer orders depending on the processing strategy of order fulfil-
ment can represent the reference base in order fulfilment. In order batching,
customer orders are consolidated to batches by some criteria, whereby every
batch represents one internal processing order. Order batching is widespread in
logistics and production systems since it is often more efficient to process a batch
of customer orders instead of processing a single customer order. For instance,
there are processing steps in production systems at which a certain number of
units is processed simultaneously. Thus, it is reasonable to group multiple cus-
tomer orders to one batch to efficiently use the capacity at these processing steps.
Moreover, in order picking, multiple customer orders are pooled to one batch
to increase the picking performance (Schleyer and Furmans 2007). In contrast,
in order picking systems with zone picking, every customer order is subdivided
into several internal processing orders, one per zone, to simultaneously process
the customer order in the different zones (Gu et al. 2007; De Koster et al. 2007).
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Furthermore, in the case of high-volume customer orders, it can be meaningful
to subdivide the customer orders into their order lines, so that every order line
represents one internal processing order.

The concrete specification of the reference base is not relevant for the concepts
and models developed in this thesis, provided that all parameters specifying the
order fulfilment system refer to the same reference base. For simplicity reasons,
we sum all specifications of the reference base under the expression order and
only use this expression in the following.

3.2.2 Specification of an Order Type

Each order type i ∈ I of an order fulfilment system is specified by the parameters
number of incoming orders and lead time of an order:

Number of incoming orders The number of incoming orders Ai specifies
the volume of orders of order type i that arrive at the order fulfilment system per
time period. It is modelled as a discrete random variable with the finite range
Ai = {ai,min, . . . , ai,max} to ensure a real-life representation of the highly
volatile customer demand in order fulfilment systems.

Lead time of an order The lead time of an order Ei specifies the time
buffer of an order of order type i between its time of arrival and its deadline.
It is measured in number of time periods. We model the lead time of an order
as a discrete random variable to incorporate the real-life characteristics of order
deadlines in order fulfilment: Individual and customer-required deadlines. The
range of the lead time of an order is given by Ei = {ei,min, . . . , ei,max}. The
minimum possible lead time of an order is zero. In this case, the order is due in
the same time period in which it arrives at the system.
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3.2.3 Specification of a Process

Each process p ∈ P of an order fulfilment system is specified by the parameters
processing performance and capacity:

Processing performance The processing performance Li,p specifies the
number orders of order type i that can be completely processed per time unit
at process p. Operational disruptions, such as machine and tool breakdowns
and rework of orders, have an impact on the processing performance. They
are incorporated by modelling the processing performance as a discrete random
variable. Its range is given by Li,p = {li,p,min, . . . , li,p,max}.

Capacity The capacity ci,p specifies the amount of time capacity that is
provided for order processing of order type i at process p in every time period.
It is measured in time units, and it is modelled as a deterministic, integer, and
non-negative parameter.

3.3 Chapter Conclusion

In this chapter, we presented the formal description of an order fulfilment system
that forms the basis for all concepts and models developed in the following. We
define an order fulfilment system by a finite set of order types, a finite set of
processes, and a function mapping each order type to its processing sequence in
the order fulfilment system. Each order type is characterised by the number of
incoming orders and the lead time of an order. Each process is specified by its
processing performance and its capacity.
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4 Strategy of Levelled Order
Release

This chapter aims at developing a levelling concept for order fulfilment systems
that balances system workload over time. The concept is inspired by the key
ideas of Heijunka levelling in production systems. In Sections 4.1 and 4.2,
we present the concept of Heijunka levelling in production systems and discuss
the differences between levelling in order fulfilment and levelling in production
systems. Based on these findings, we develop a levelling concept for order fulfil-
ment systems, the so-called Strategy of Levelled Order Release, in Section 4.3.
By summarising the results of this chapter, Section 4.4 provides an answer to
the first research question of this thesis.

4.1 Concept of Heijunka Levelling in
Production Systems

Section 4.1 is based onMohring et al. (2020). Parts of the following
text and the figures are taken from that publication without changes.

Heijunka levelling is a simple and widespread concept in production systems to
manage the production of several product types on one common production line.
It has its origins in the Toyota Production System. The key idea of Heijunka
levelling is to convert the volatile customer demand into a regular, recurring,
and standardised production schedule to guarantee an even utilisation of the
given production capacity. Furthermore, Heijunka levelling aims at supplying
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downstream processes with a constant flow of small lots of different product
types and at generating a constant demand of parts from upstream processes.
Consequently, the need of excess capacity or stocks to handle peaks as well as
the bullwip effect are reduced or even eliminated. Heijunka levelling smooths
both the volume and the product mix of the production system (Matzka et al.
2012; Liker 2004, p.115f.).

Heijunka levelling is applied to one selected production step of the production
line, the so-called pacemaker. This pacemaker production step controls the
production sequence and the production rhythm of the whole production line:
Kanban loops control upstream production steps, and downstream production
steps form a continuous flow system. The choice of the pacemaker depends on
several characteristics of the production line, such as product portfolio, produc-
tion capacity, and customer requirements. The pacemaker production step is
usually close to the customer. However, the further upstream the pacemaker the
better (Furmans and Veit 2013; Smalley and Womack 2004, p.30).

The planning procedure of Heijunka levelling refers to one planning period of the
production system, for instance, one month or one quarter. The planning period
is subdivided into smaller scheduling intervals, such as one week, one day, or
one shift. The planning procedure of Heijunka levelling consists of two planning
steps: System parametrisation and Operational planning (see Figure 4.1).

System 

Parametrisation

Operational 

Planning
Smoothing of

Production Volume

Smoothing of

Product Mix

Figure 4.1: Planning procedure of Heijunka levelling.
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4.1.1 System Parametrisation

System parametrisation occurs at the beginning of every planning period and
aims at smoothing both the production volume and the product mix.

Volume smoothing determines the production capacity per product type per
scheduling interval that is reserved for producing this product type in each
scheduling interval. For this, the total product type-specific customer demand
of the planning period is evenly distributed on the scheduling intervals. The
reserved product type-specific production capacity corresponds to the average
customer demand per scheduling interval of this product type (Matzka et al.
2012; Furmans and Veit 2013).

Product mix smoothing determines the production sequence of the product types
within a scheduling interval. Common objectives of production sequence plan-
ning are minimising setup times or maximising the regularity of the product
mix. These decision problems are discussed in detail by the research area of
level scheduling. Dhamala and Kubiak (2005) and Boysen et al. (2009) provide
comprehensive reviews of level scheduling. The production sequence is charac-
terised by the so-called EPEI (“each part each interval”). The EPEI corresponds
to the time interval in which at least one part of each product type can be
produced (Matzka et al. 2012).

Figure 4.2 presents a model of a Heijunka levelled kanban system. The levelling
pattern on the Heijunka-board visualises the reserved production capacities and
the production sequence per scheduling interval.

4.1.2 Operational Planning

Based on the levelling pattern, operational planning occurs at the beginning
of each scheduling interval. The incoming customer orders of the current
scheduling interval are completed by taking the required products from the
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Figure 4.2: Model of a Heijunka levelled kanban system.

finished-goods-supermarket. The associated kanbans return to the Heijunka-
board. These kanbans are assigned to the reserved production capacities of the
corresponding product types on the Heijunka-board according to First come first
serve (see Figure 4.2). If the customer demand of a product type exceeds its
reserved production capacity in the current scheduling interval, the associated
kanbans are stored in an overflow box. They are assigned to future scheduling
intervals when the customer demand of this product type is below its reserved
production capacity. If the reserved production capacity of a product type ex-
ceeds the number of free kanbans of this product type, the excess production
capacity remains unused in order to avoid the production of unneeded products
(Matzka et al. 2012; Furmans and Veit 2013).

4.2 Delimitation from Heijunka Levelling

The workload balancing concept of Heijunka levelling balances a volatile cus-
tomer demand over time, as it is the objective of workload balancing in order
fulfilment systems. However, due to differences in the system characteristics
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and the overarching question of the levelling concept, it is impossible to directly
apply the concept of Heijunka levelling in order fulfilment systems. Table 4.1
provides an overview of these differences, and they are discussed in detail in the
following.

Table 4.1: Comparison of levelling in order fulfilment systems and Heijunka levelling in production
systems regarding system characteristics (above) and overarching question (below).

Levelling in order fulfilment Heijunka levelling

Order lot size Lot size of one Lot size of at least one
Role of customer
demand

System workload is directly
driven by customer demand

System workload and customer
demand are decoupled by a
buffer

Capacity • Determined by the number
of assigned workers

• Determined by the number
of available machines

• Flexible in the short term • Fixed in the short term

Decision variable Amount of provided capacity Buffer size of finished-goods-
inventory

First, production systems and order fulfilment systems differ regarding order lot
size. In order fulfilment systems, orders are customer-specific in product type and
product volume. The probability that multiple customers place the same order at
the same time is negligible. Therefore, order lot size in order fulfilment is usually
one. It is possible to have a lot size of one in production systems. However,
it is predominantly more efficient to have larger lots in production systems
due to the required setups between the production of different product types.
Setup processes, such as tool changes, cleaning operations, and programming
setups, are usually time-consuming, especially in immature production systems.
Consequently, higher lot sizes lead to a decreasing frequency of setup processes
and higher productivity in production systems (Dehdari 2014, p.18).

Second, customer demand plays a different role in Heijunka levelling than in
the levelling concept for order fulfilment systems since the focus of Heijunka
levelling is on make-to-stock production systems. Make-to-stock production
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systems satisfy the customer demand from the finished-goods-inventory (see
Figure 4.2). Thus, system workload and customer demand are decoupled by the
finished-goods-inventory in Heijunka levelling. In contrast, in order fulfilment
systems, system workload is directly driven by the customer demand since
the orders are customer-specific and unknown in advance. Apart from some
preparatory tasks, it is not possible to process the orders before they arrive at the
order fulfilment system.

Third, there are differences regarding the characteristics of the available capacity.
In order fulfilment systems, a high proportion of processing steps is still manual
due to the high flexibility of workers and the high investment cost of automated
systems (De Koster et al. 2007; Marchet et al. 2015; Peeters and Van Ooijen
2020). Hence, capacity in order fulfilment systems is predominantly determined
by the number of assigned workers. Furthermore, capacity is flexible in the short
term since it is possible to hire additional temporary workers in case of shortage
(Van Gils et al. 2017). In contrast, capacity in production systems is determined
by the number of available machines, which is fixed in the short term (Becker
and Scholl 2006).

Finally, levelling in order fulfilment systems differs from Heijunka levelling
regarding the overarching question of levelling. In both application areas, the
objective is to guarantee specific promised performance requirements, such as a
service level of 99%, at minimum costs. However, the starting points to achieve
this objective are different due to the above mentioned differences in system
characteristics: The question of Heijunka levelling is to decide on a suitable
buffer size of the finished-goods-inventory to meet the promised performance
requirements (Furmans 2005; Lippolt and Furmans 2008; Matzka et al. 2012;
Furmans and Veit 2013). In contrast, in order fulfilment systems, the decision
is on a suitable amount of provided capacity to meet the promised performance
requirements.
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4.3 Levelling Concept for Order
Fulfilment Systems

Section 4.3 is based onMohring et al. (2020). Parts of the following
text are taken from that publication without changes.

The levelling concept for order fulfilment systems balances the volatile system
workload over time and comprises two planning problems: Capacity planning
and order dispatching. It is called the Strategy of Levelled Order Release. It is
inspired by the key ideas of Heijunka levelling (see Section 4.1) and considers the
specific characteristics and requirements of order fulfilment (see Section 4.2).

In order fulfilment systems, the pacemaker processing step always corresponds to
the first processing step in the processing sequence of an order type since orders
are customer-specific and system workload directly depends on the customer
demand (see Section 4.2). The Strategy of Levelled Order Release is applied to
the pacemaker. All downstream processing steps form a continuous flow system.

The planning procedure of the Strategy of Levelled Order Release consists of the
planning steps of system parametrisation and operational planning, analogous to
Heijunka levelling (see Figure 4.1).

4.3.1 System Parametrisation

System parametrisation occurs at the beginning of every planning period and
determines the capacity per order type per scheduling interval that is reserved
for order processing of this order type in each scheduling interval (smoothing
of volume), and the processing sequence of the order types within a scheduling
interval (smoothing of product mix).

The reserved capacity per scheduling interval c̄i,p of order type i ∈ I at process
p ∈ P is calculated as the ratio of the expected number of incoming orders per
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scheduling intervalE(Ai) of order type i to the expected processing performance
per time unit E(Li,p) of order type i at process p:

c̄i,p =
E(Ai)

E(Li,p)
. (4.1)

This approach of capacity planning should be seen as one possible, straightfor-
ward approach to determine a good initial capacity level. However, this capacity
level is probably insufficient in order fulfilment systems that face high per-
formance requirements, such as service level requirements of 99%. A solution
approach to determine the minimum capacity that is required to guarantee spe-
cific performance requirements in the order fulfilment system will be presented
in Chapter 9.

To determine the processing sequence of the order types, we use the same
methodology as in Heijunka levelling (see Section 4.1.1). The resulting levelling
pattern is visualised on theHeijunka-board (see Figure 4.3) and forms the starting
point of the operational planning.
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Figure 4.3:Model of an order fulfilment system with levelled order release.
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4.3.2 Operational Planning

Operational planning occurs at the beginning of each scheduling interval and
allocates unprocessed orders of the different order types to the corresponding
reserved capacities in the levelling pattern. The pool of assignable orders com-
prises the order income of the current scheduling interval and the unprocessed
orders remaining from previous scheduling intervals stored in the overflow box
of the Heijunka-board (see Figure 4.3). To determine the processing sequence of
orders of a specific order type, we consider their individual due dates as follows:

• Orders are processed according to ascending due dates.

• Orders with equal due dates are processed following First come first serve.

If the number of unprocessed orders of an order type exceeds its reserved capacity
in the current scheduling interval, the order backlog in the overflow box increases
by the corresponding number of orders. Otherwise, the remaining capacity is
deployed for training, maintenance, and continuous improvement measures.

4.4 Chapter Conclusion

In this chapter, we developed a levelling concept for order fulfilment systems, the
so-called Strategy of Levelled Order Release, based on the key ideas of Heijunka
levelling in production systems. It is impossible to directly apply the concept
of Heijunka levelling in order fulfilment systems due to several differences
in the system characteristics between production systems and order fulfilment
systems (see Table 4.1). Furthermore, the overarching question of the levelling
concept is different: Heijunka levelling decides on a suitable buffer size of
the finished-goods-inventory to meet the promised performance requirements,
whereas in order fulfilment systems, the decision is on a suitable amount of
provided capacity to meet the promised performance requirements.
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The key elements of the Strategy of Levelled Order Release are the following:

• There is a fixed capacity per order type per scheduling interval reserved for
order processing of orders of this order type in each scheduling interval.

• In each scheduling interval, the reserved capacity per order type is de-
ployed to process orders of this order type according to ascending due
dates.

The Strategy of Levelled Order Release balances volatile workload in multi-
stage, stochastic order fulfilment systems with order deadlines over time by
combining the potentials of time buffer and capacity buffer in order fulfilment
systems: By processing the orders according to ascending due dates, the time
buffer of each order between its time of arrival and its deadline is systematically
exploited to balance the variability of the customer demand. The remaining
variability of the customer demand is either passed on to the customer, resulting
in low service levels, or it is balanced using the capacity buffer. Thus, the
Strategy of Levelled Order Release provides an answer to the first research
question of the thesis:

Howcanwebalanceworkloadover time inmulti-stage, stochastic
order fulfilment systems with customer-required order dead-
lines?

The extent to which capacity buffer is used to balance the remaining variability
depends on the specific performance requirements of the order fulfilment system.
According to the Strategy of Levelled Order Release, the reserved capacity per
order type per scheduling interval is fixed within one planning period. However,
at the beginning of every planning period, capacity can be adapted individually
depending on the specific performance requirements of order fulfilment since
capacity in order fulfilment systems is flexible in the short term (see Section 4.2).
The approach of capacity planning based on expected values presented in Sec-
tion 4.3.1 should be seen as one possible, straightforward approach to determine
a good initial capacity level. This capacity level is probably insufficient in order
fulfilment systems that face high performance requirements, such as a service
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level of 99%. A solution approach to determine the minimum capacity that is
required to guarantee specific performance requirements will be presented in
Chapter 9.
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5 Choice and Specification of
Modelling Approach

This chapter aims at selecting and specifying a suitable modelling approach to
model and analyse system behaviour and performance of multi-stage, stochastic
order fulfilment systems with levelled order release and customer-required or-
der deadlines. We initially discuss the advantages of discrete-time analytical
models compared to simulation models and continuous-time models (see Sec-
tion 5.1) and introduce the theoretical basics of discrete-time Markov chains
(see Section 5.2). Subsequently, Section 5.3 provides several specifications for
modelling system behaviour of multi-stage order fulfilment systemswith levelled
order release and customer-required order deadlines as a discrete-time Markov
chain. Finally, Section 5.4 summarises the results of this chapter.

5.1 Discrete-time Analytical Model

Analytical models and simulation models are widespread modelling approaches
to depict and analyse system behaviour and performance of stochastic systems.
Simulation models provide a high degree of freedom and enable modelling
at any desired level of detail. However, modelling, validation, and performing
experiments using simulation models is time-consuming, and simulation models
are usually tailored to the individual characteristics of the considered system.
In contrast, analytical models are of higher generality and more time efficient.
However, analytical models suffer from a limited level of detail since they are
often restricted to simplified representations of the real system. Furthermore, key
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figures calculated based on simulation results only approximate actual system
behaviour, whereas analytical models enable an exact calculation of relevant key
figures (Schleyer 2007, p.17-19). Due to the drawbacks of simulation models
compared to analytical models, we prefer an analytical model to analyse order
fulfilment systems.

Analyticalmodels are differentiated into continuous-time and discrete-timemod-
els. Continuous-timemodels depict systembehaviour at any point in time t ∈ R0,
whereas in discrete-time models, time is discretised into constant time intervals
of length tinc. System behaviour is observed at points in time t that are integer
multiples of the discretisation interval tinc (Stewart 1994, p.4f.):

t = k · tinc k ∈ N0. (5.1)

Discrete-time models provide several advantages regarding accuracy, level of
detail, and the description of real processes compared to continuous-time mod-
els (Schleyer 2007, p.13-17): First, discrete-time models provide higher ac-
curacy in specifying the input parameters since complete probability distribu-
tions are given to specify generally distributed stochastic parameters, whereas
in continuous-time models, they are only specified by the first two moments.
Second, calculated key figures in continuous-time models are often limited to
their expected values and their variances. However, it is essential for practi-
tioners to know specific quantiles, for instance, when calculating the service
level. Hence, complete probability distributions of the key figures are required.
Discrete-time models enable the exact calculation of complete probability dis-
tributions of key figures and thus provide a more detailed analysis of system
behaviour than continuous-time models. Third, real processes, such as the
number of incoming orders and the processing performance in order fulfilment
systems (see Section 3.2), are discrete. Furthermore, probability distributions
resulting from real data that is observed in as-is analyses of the real system are
discrete and of arbitrary shape. In continuous-time models, these discrete and
arbitrary probability distributions are approximated by suitable parametric, the-
oretical probability distributions, which leads to additional computational effort
and an imprecise description of the real processes. In contrast, in discrete-time
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models, the discrete and arbitrary probability distributions are directly used
without any additional computational effort and any loss of precision. Due to
these advantages of discrete-time models, we choose a discrete-time analytical
model to analyse order fulfilment systems.

When modelling an order fulfilment system as a discrete-time analytical model,
one realises that the system state occurring at time (t+ 1) only depends on the
current system state at time t and the realisations of the stochastic parameters
occurring between time t and time (t + 1). This property is called the Markov
property. Hence, a discrete-time Markov chain is a suitable model to analyse
system behaviour of order fulfilment systems.

5.2 Discrete-time Markov Chain

A discrete-timeMarkov chain is a stochastic process {Xt, t ∈ T }with a discrete
time parameter set T = {0, 1, . . .} and a discrete state space X = {0, 1, . . .}
whose conditional probability function satisfies the Markov property:

P (Xt+1 = it+1 | X0 = i0, . . . , Xt = it) = P (Xt+1 = it+1 | Xt = it), (5.2)

whereby Xt specifies the state of the stochastic process observed at time t.
Hence, state Xt contains all relevant information concerning the history of the
process (Stewart 1994, p.4f.).

The conditional probabilities P (Xt+1 = it+1 | Xt = it) are called single-step
transition probabilities or transition probabilities for short. They give the con-
ditional probability of making a transition from state it at time t to state it+1 at
time (t + 1). If the transition probabilities are time-independent, the Markov
chain is said to be homogeneous. The transition matrix P summarises the trans-
ition probabilities in a (|X | × |X |)-dimensional stochastic matrix, whereby the
entry pi,j in the ith row and the jth column corresponds to the probability of
making a transition from state i at time t to state j at time (t+ 1):

pi,j = P (Xt+1 = j | Xt = i) i, j ∈ X . (5.3)
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The n-step transition probability

p
(n)
i,j = P (Xt+n = j | Xt = i) i, j ∈ X , (5.4)

is the probability of reaching state j at time (t + n), in n transitions, when
starting in state i at time t (Stewart 1994, p.5f.).

5.2.1 Characteristics

The states of a discrete-time Markov chain and the Markov chain itself have
several mathematical characteristics. In the following, we only introduce those
characteristics that become relevant in the subsequent chapters of the thesis. The
following definitions are based on Privault (2013, p.117-126).

Communicating States A state j ∈ X is said to be accessible from state
i ∈ X if it is possible to reach state j with non-zero probability in a finite
number of transitions when starting in state i. If states i and j are accessible
from each other, respectively, they are said to be communicating states. A subset
of the state space X ′ ⊂ X is called a communicating class if every pair of states
i, j ∈ X ′ is communicating.

Irreducible Markov Chain A Markov chain whose state space consists of a
unique communicating class is said to be an irreducible Markov chain. Other-
wise, the Markov chain is called reducible.

Recurrent and Transient States A state i ∈ X is said to be a recurrent
state if starting in state i, the Markov chain will return to state i within a finite
time with probability of one. Otherwise, in the case of a probability smaller
than one, state i is said to be transient. States of the same communicating class
are either all recurrent or all transient. A communicating class of recurrent
(transient) states is called a recurrent class (transient class).
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Aperiodic States The period of a state i ∈ X is the greatest common divisor
of n ∈ N with p(n)

i,i > 0. State i is said to be aperiodic if it has a period of
one. Otherwise, state i is periodic. All states of the same communicating class
have the same period. A Markov chain is said to be aperiodic if all states are
aperiodic.

5.2.2 Relevant Probability Distributions

When studying the behaviour of a discrete-time Markov chain, the following
probability distributions are of particular interest.

State Probability Distribution at Time t The state probability distribution
at time t

πt =
(
πt0 πt1 . . . πt|X|

)
πti = P (Xt = i) ∀i ∈ X ,

(5.5)

specifies the probability of being in any state i ∈ X at time t. Given the initial
state probability distribution π0, the state probabilities at time t are calculated
as follows (Stewart 1994, p.14)

πt = π0 ·Pt. (5.6)

Stationary Distribution State probabilities of a Markov chain are said to be
stationary if any transition according to the single-step transition probabilities
P have no effect on the state probabilities (Bolch 2006, p.41):

π = π ·P. (5.7)

In the case of an irreducible Markov chain with finite state space, the stationary
distribution π is obtained by solving the following set of linear equations:

πj =
∑
i∈X

πi · pi,j ∀j ∈ X (5.8)

∑
i∈X

πi = 1. (5.9)
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In the case of a reducible Markov chain with finite state space, its stationary
distribution π consists the stationary distributions of its recurrent classes that are
calculated by separately solving the set of linear equations (5.8)-(5.9) for every
recurrent class. The stationary probability of every transient state is zero (Cinlar
1975, p.152-156).

Limiting Distribution The limiting distribution specifies the asymptotic be-
haviour of the Markov chain. Given the initial state probability distribution π0

of the Markov chain, if the limit

π̃ = lim
t→∞

πt (5.10)

exists, then this limit is called the limiting distribution of the Markov chain
(Stewart 1994, p.15). For any aperiodicMarkov chain, the limiting distribution π̃
exists. In the case of an aperiodic, irreducible Markov chain with finite state
space, the limiting distribution π̃ is independent of the initial state probability
distribution π0 and corresponds to the unique stationary distribution π of the
Markov chain (Bolch 2006, p.47). In the case of an aperiodic, reducible Markov
chainwith finite state space, the limiting distribution π̃ depends on the initial state
of the Markov chain. If the initial state is recurrent, the limiting distribution π̃
corresponds to the stationary distribution of its recurrent class. Otherwise,
if the initial state is transient, the limiting distribution π̃ is calculated as the
weighted sumof the stationary distributions of the recurrent classes. Theweights
correspond to the probabilities that a certain recurrent class is accessible from
the initial state. The matrix of limiting distributions Π̃ summarises the limiting
distributions π̃ for any initial state, whereby the ith row corresponds to the
limiting distribution of initial state i ∈ X (Cinlar 1975, p.152-156).
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5.3 Modelling Order Fulfilment as a
Discrete-time Markov Chain

We use the general description of an order fulfilment system introduced in Sec-
tion 3.2 to model system behaviour of multi-stage order fulfilment systems with
levelled order release and customer-required order deadlines as a discrete-time
Markov chain. Section 5.3.1 introduces several specifications of the object of
consideration, and Section 5.3.2 specifies the considered modelling approaches.

5.3.1 Specification of the Order Fulfilment System

We consider the different order types i ∈ I of the order fulfilment system
separately since the reserved capacities per time period are order type-specific
in the case of levelled order release (see Section 4.3), so that there are no
interaction effects between different order types. To analyse an order fulfilment
system with multiple order types i ∈ I, we use one separate Markov chain for
each order type.

We assume each order type i ∈ I to have a sequential processing sequence and
the processes p ∈ P to be sorted according to the processing sequence of the
considered order type. Thus, process p = 1 is the first processing step and
process pmax is the last processing step of order type i in the order fulfilment
system. An order type whose processing sequence contains splits is modelled
by dividing this order type into multiple “artificial” order types, each of which
has a sequential processing sequence.

We consider orders with failed due dates, but we limit the possible backlog
duration of an order by the maximum accepted backlog duration of R time
periods. Consequently, orders become lost sales once their backlog duration
exceeds the maximum accepted backlog duration. The set of due dates K of an
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order is limited by the minimum possible due date of an order of (−R) time
periods and the maximum possible lead time of an order of emax time periods:

K = {−R, . . . , emax} . (5.11)

5.3.2 Specification of the Modelling Approach

There are different approaches to model the multi-stage character of order pro-
cessing and the transmission of orders between successive processing steps in
a multi-stage order fulfilment system as a discrete-time Markov chain. In this
thesis, we provide the following modelling approaches:

• Exact modelling approach, and

• Simplified modelling approach.

The exact modelling approach models each processing step of the multi-stage
order fulfilment system as a separate process (see Figure 5.1). In this man-
ner, the exact modelling approach considers the interdependencies between the
processing steps by exactly recording the partially processed orders that are trans-
mitted between successive processing steps of the multi-stage order fulfilment
system. However, the high level of detail of the exact modelling approach leads
to highmodelling complexity and high computational effort of the corresponding
discrete-time Markov chain.
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Figure 5.1: Structure of an order fulfilment system in the exact modelling approach.
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In contrast, the simplified modelling approach abstracts from the multi-stage
character of order processing by combining the multiple processing steps of
the order fulfilment system to one aggregated process (see Figure 5.2). Hence,
each multi-stage order fulfilment system is modelled as a single-stage order
fulfilment system consisting of one aggregated process, whose processing per-
formance results from the processing performances of the different processing
steps. Consequently, partially processed orders are neglected in the simplified
model. An order is either completely unprocessed or completely processed.
In this manner, this simplified modelling approach decreases both modelling
complexity and computational effort of the discrete-time Markov chain.
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Figure 5.2: Structure of an order fulfilment system in the simplified modelling approach.

5.4 Chapter Conclusion

In this chapter, we selected and specified the modelling approach to model and
analyse system behaviour and performance of a multi-stage, stochastic order ful-
filment systemwith levelled order release and customer-required order deadlines.
We chose a discrete-time Markov chain since discrete-time analytical models
provide several advantages regarding accuracy, level of detail, and the description
of real processes compared to continuous-time analytical models. Above all, a
discrete-time Markov chain enables the exact calculation of complete probabil-
ity distributions of stochastic performance measures. Thus, it provides a more
detailed performance analysis of order fulfilment systems than continuous-time
analytical models.
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To model system behaviour of multi-stage, stochastic order fulfilment systems
with levelled order release and customer-required order deadlines as a discrete-
time Markov chain, we consider the order types of the order fulfilment system
separately. Moreover, we assume each order type to have a sequential processing
sequence, and we limit the possible backlog duration of an order by the max-
imum accepted backlog duration. There are different modelling approaches to
model the multi-stage character of order processing and the transmission of or-
ders between successive processing steps in a multi-stage order fulfilment system
as a discrete-timeMarkov chain. In this thesis, we differentiate between an exact
and a simplifiedmodelling approach. The exact and the simplifiedmodel for per-
formance analysis will be introduced in Chapters 6 and 7. Furthermore, we will
evaluate these models regarding modelling accuracy, accuracy of performance
analysis, and memory and computation time requirements in Chapter 8.
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Analysis

This chapter aims at introducing an exact model for performance analysis of
multi-stage, stochastic order fulfilment systems with levelled order release and
customer-required order deadlines. Section 6.1 provides several preliminary
remarks about the exact model for performance analysis. We introduce the
discrete-time Markov chain in Section 6.2. Based on the limiting distribution of
the Markov chain, we derive exact formulas for various stochastic and determin-
istic, system- and customer-related performance measures of the order fulfilment
system in Section 6.3. Section 6.4 discusses the memory and computation time
requirements of the provided model. By summarising the results of this chapter,
Section 6.5 provides an answer to the second research question of this thesis.

6.1 Preliminaries

The exact model for performance analysis is based on the exact modelling
approach. It considers a multi-stage, stochastic order fulfilment system with
a finite set of processes P , a unique order type, and levelled order release
considering a finite set of due dates K (see Figure 5.1). The order type and each
process are specified by the parameters introduced in Sections 3.2.2 and 3.2.3,
respectively.

We observe the order fulfilment system at discrete-time points in time t ∈ N0

that are integer multiples of a constant time period. The time period corresponds
to the scheduling interval of operational planning of the levelling concept (see

59



6 Exact Model for Performance Analysis

Section 4.3). It commonly has a length of one day or one shift. In each time
period, the order fulfilment system is affected by two stochastic processes:

• Order processing specified by the processing performance per time period;

• Order income specified by the order income per time period.

6.1.1 Processing Performance per Time Period

The processing performance per time period Hp of process p ∈ P specifies
the number of orders that can be completely processed at process p within one
time period. At least (cp · lp,min) orders and at most (cp · lp,max) orders can
be processed at process p within one time period. Hence, the range Hp of the
processing performance per time period Hp is defined by

Hp = {(cp · lp,min) , . . . , (cp · lp,max)} . (6.1)

Assuming identical and independent distribution of the processing performance
per time unit Lp of process p, the probability distribution of the processing
performance per time periodHp of process p is computed as cp-fold convolution
of the probability distribution of Lp.

We use the random vector

H =
(
H1 . . . Hpmax

)
(6.2)

to describe the processing performance per time period of the order fulfilment
system, whereby the random variableHp corresponds to the processing perform-
ance per time period of process p ∈ P . The range of H is given by

H = H1 × . . .×Hpmax . (6.3)
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6.1.2 Order Income per Time Period

We specify the order income per time period using the random vector

G =
(
G−R . . . Gemax

)
, (6.4)

whereby the random variableGk corresponds to the number of incoming orders
per time period with a lead time of k ∈ K time periods. Its range G is defined
based on the following conditions:

• The lead time of each incoming order is non-negative.

• The range of every vector component Gk, k ∈ {0, . . . , emax}, is limited
downwards by zero and upwards by the maximum possible number of
incoming orders per time period amax.

• The total number of incoming orders per time period (
∑
k∈K gk) corres-

ponds to a realisation of the number of incoming orders per time periodA.

G =

{
g ∈ N(R+emax+1)

0 | gk = 0 ∀k ∈ {−R, . . . ,−1}

∧ gk ∈ {0, . . . , amax} ∀k ∈ {0, . . . , emax}

∧
∑
k∈K

gk ∈ A

}
.

(6.5)

The probability P (G = g) depends on

• the probability of having a total number of
(∑

k∈K gk
)
incoming orders

per time period,

• the number of combinatorial possibilities of having gk orders with a lead
time of k time periods for any lead time k ∈ E , and

• the probability of having gk orders with a lead time of k time periods for
any lead time k ∈ E .
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P (G = g) = P

(
A =

∑
k∈K

gk

)
·

[
emax∏
k=0

(
∑emax
m=k gm)!

gk! · ((
∑emax
m=k gm)− gk)!

]

·

[
emax∏
k=0

P (E = k)gk

]
∀g ∈ G.

(6.6)

6.1.3 Stable Order Fulfilment System

We assume the order fulfilment system to be stable. An order fulfilment system
is stable if its order income-related utilisation Ũ is smaller than one. The order
income-related utilisation Ũ is calculated as the ratio of the expected value of
the number of incoming orders per time period E(A) to the smallest expected
value of the processing performance per time period E(Hp) of the processes
p ∈ P:

Ũ =
E(A)

minp∈P E(Hp)
. (6.7)

6.2 Discrete-time Markov Chain

In the following, we introduce the discrete-timeMarkov chain thatmodels system
behaviour of a multi-stage, stochastic order fulfilment system with levelled order
release and customer-required order deadlines according to the exact modelling
approach.

6.2.1 System State

The system state X of the Markov chain depicts the number of unprocessed
orders in the order fulfilment system at the beginning of any time period

X =


X1,−R . . . X1,emax

...
. . .

...
Xpmax,−R . . . Xpmax,emax

 , (6.8)
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whereby Xp,k, p ∈ P , k ∈ K, specifies the number of unprocessed orders at
process p with a due date of k time periods at the beginning of the time period.

6.2.2 State Transition

The state transition from an arbitrary state Xt = x at the beginning of time
period t to state Xt+1 = z at the beginning of time period (t + 1) consists of
the following sub-steps:

• Order processing in time period t:

– Order processing at process p = 1,

– . . . ,

– Order processing at process pmax,

• Due date update at the end of time period t, and

• Order income at the beginning of time period (t+ 1).

The sub-step of order processing is further subdivided into pmax sub-steps since
we assume that order processing at the different processes is decoupled in time.
Hence, order processing at process p does not start before order processing at
the previous process (p− 1) is completed.

Based on these (pmax + 2) sub-steps, we explain the state transition in the fol-
lowing. We denote the interim states of the state transition by the variables
y(m), m ∈ {0, . . . , (pmax + 2)}, whereby m is used as a counter. The initial
value is given by y(0) = x. Note that y(p−1) specifies the number of unpro-
cessed orders immediately before the start of order processing at process p ∈ P ,
whereas y(p) specifies the number of unprocessed orders after order processing
at process p ∈ P is completed.
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Sub-step of Order Processing The number of processed orders at process p
in time period t depends on the realisation of the processing performance per
time period Hp = hp of process p in time period t. The number of processed
orders with a due date of k time periods at process p in time period t

min

{
y

(p−1)
p,k ; max

{
0;hp −

k−1∑
l=−R

y
(p−1)
p,l

}}

equals either the number of unprocessed orders y(p−1)
p,k immediately before the

start of order processing at process p having a due date of k time periods or
the residual processing performance remaining after all orders with a due date
of (l < k) time periods have already been processed. Consequently, after order
processing at process p is completed, the number of unprocessed orders at
process p is given by

y
(p)
p,k = y

(p−1)
p,k −min

{
y

(p−1)
p,k ; max

{
0;hp −

k−1∑
l=−R

y
(p−1)
p,l

}}

= max

{
0; y

(p−1)
p,k −max

{
0;hp −

k−1∑
l=−R

y
(p−1)
p,l

}}
∀k ∈ K,

(6.9)

and the number of unprocessed orders at process (p+ 1) equals

y
(p)

(p+1),k = y
(p−1)

(p+1),k + min

{
y

(p−1)
p,k ; max

{
0;hp −

k−1∑
l=−R

y
(p−1)
p,l

}}
∀k ∈ K.

(6.10)

Sub-step of Due Date Update Due to the transition from time period t to
time period (t+ 1), we have to update the due dates of all unprocessed orders at
the end of time period t by reducing their due date by one time period:

y
(pmax+1)
p,k = y

(pmax)

p,(k+1) ∀p ∈ P, ∀k ∈ K \ {emax}

y(pmax+1)
p,emax = 0 ∀p ∈ P.

(6.11)

Consequently, unprocessed orders having a due date of (−R) time periods at the
end of time period t become lost sales.
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6.2 Discrete-time Markov Chain

Sub-step of Order Income The incoming orders at the beginning of time
period (t+1) are specified by the realisation of the order income per time period
G = g at the beginning of time period (t+1). We add the incoming orders to the
unprocessed orders at process p = 1 since the processes are ordered according
to the processing sequence of the considered order type:

y
(pmax+2)
1,k = y

(pmax+1)
1,k + gk ∀k ∈ K

y
(pmax+2)
p,k = y

(pmax+1)
p,k ∀p ∈ P \ {1} ,∀k ∈ K.

(6.12)

Transition Probability The transition probability results from the product
of the probabilities of the aforementioned sub-steps since we assume that they
are independent of each other. The sub-step of order processing depends on the
realisation of the processing performance per time period H = h of the order
fulfilment system in time period t. Thus, the probabilities P (p), p ∈ P , are
given as follows

P (p) = P (Hp = hp) ∀p ∈ P.

The sub-step of due date update is deterministic,

P (pmax+1) = 1,

whereas the sub-step of order income depends on the realisation of the order
income per time period G = g at the beginning of time period (t+ 1):

P (pmax+2) = P (G = g).

By combining these probabilities, we define the transition probability of the
state transition from an arbitrary state Xt = x at the beginning of time period t
to state Xt+1 = z at the beginning of time period (t+ 1) as follows

P (Xt+1 = z | Xt = x) =
∑

(g,h)∈I(x,z)

[∏
p∈P

P (Hp = hp)

]
· P (G = g)

∀x, z ∈ X ,

(6.13)

whereby set I (x, z) contains all tuples (g,h) ∈ G ×H resulting in a state
transition from Xt = x to Xt+1 = z.
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6.2.3 State Space

The state space X of the Markov chain is non-negative as it is impossible to
observe a negative number of orders. The upper bound of the state space

O =


O1,−R . . . O1,emax

...
. . .

...
Opmax,−R . . . Opmax,emax

 (6.14)

results from the structure of the state transition. We observe the maximum
possible number of unprocessed orders Op,k at process p ∈ P with a due date
of k ∈ K time periods in any time period if the following conditions hold:

• Maximum possible number of incoming orders at process p with a due
date of k time periods,

• Minimum possible residual processing performance at process p for orders
with a due date of k time periods, and

• Maximum possible number of orders remaining from previous time peri-
ods at process p with a due date of k time periods.

The maximum possible number of incoming orders at process p = 1 equals
the maximum possible number of incoming orders per time period amax for
non-negative due dates and zero for negative due dates. At all subsequent
processes p ∈ P \ {1}, it corresponds to the maximum possible processing
performance per time period h(p−1),max of the previous processing step (p−1).
The minimum possible residual processing performance at process p equals the
minimum possible processing performance per time period hp,min of process p
for a due date of (−R) time periods. For due dates of (k > −R) time periods, it
is zero. The maximum possible number of orders remaining from previous time
periods at process p is zero if the due date corresponds to maximum possible
lead time of emax time periods. For due dates of (k < emax) time periods, it
corresponds to the maximum possible number of unprocessed orders with a due
date of (k + 1) time periods.
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6.2 Discrete-time Markov Chain

Thus, the components Op,k of the upper bound O are calculated as follows

O1,k = (emax + 1) · amax ∀k ∈ {−R, . . . ,−1}

O1,k = (emax − k + 1) · amax ∀k ∈ {0, . . . , emax}

Op,k = (emax + |k|) · h(p−1),max ∀p ∈ P \ {1},∀k ∈ {−R, . . . ,−1}

Op,k = (emax − k + 1) · h(p−1),max ∀p ∈ P \ {1},∀k ∈ {0, . . . , emax} .

(6.15)

6.2.4 Limiting Distribution

TheMarkov chain has a finite state space (see Section 6.2.3), and it is possible to
reach every state of the Markov chain from every other state either by a single-
step transition or by an indirect transition via a finite number of other states. In
the case of unreachable states, these states are excluded from the computations
(see Section 10.1.1). We then find an irreducible subset of the state space. We
assume that there is a tuple (g,h) ∈ G ×H that meets the following conditions:

• The processing performance per time period is the same at every pro-
cess p ∈ P:

hp = h ∀p ∈ P.

• The total number of incoming orders per time period equals the processing
performance per time period: ∑

k∈K

gk = h.

Thus, the irreducible subset of the state space contains state x with

x1,k = gk ∀k ∈ K

xp,k = 0 ∀p ∈ P \ {1},∀k ∈ K∑
k∈K

x1,k = h,

for which

P (Xt+1 = x | Xt = x) =

[∏
p∈P

P (Hp = h)

]
· P (G = g) > 0
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holds. Consequently, state x as well as all other states of the irreducible subset
of the state space are aperiodic. In conclusion, the limiting distribution π̃ of
the Markov chain exists, and we calculate the limiting distribution π̃ of a given
initial state as described in Section 5.2.2.

6.3 Performance Measures of the Order
Fulfilment System

In the following, we derive several stochastic and deterministic, system- and
customer-related performance measures of the order fulfilment system from the
limiting distribution of the Markov chain. Table 6.1 provides an overview of the
calculated performancemeasures of the order fulfilment system. The probability
of being in state X = x after a sufficiently long time, in steady-state, is denoted
by P (X = x) := π̃x.

6.3.1 Number of Unprocessed Orders

For each process p ∈ P , we differentiate between

• the number of unprocessed orders at the beginning of a time period (per-
formance measure Qp, p ∈ P), and

• the number of unprocessed orders immediately before the start of order
processing at process p (performance measure Q̃p, p ∈ P).

Since order processing at the different processing steps of the order fulfilment
system is decoupled in time, the values of the performances measuresQp and Q̃p
only equal for the first process. Qp is a suitable performance measure to quantify
the overall order backlog in the order fulfilment system at any point in time, and
Q̃p is a meaningful performance measure for buffer sizing at the processing steps
p ∈ P of the system.
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Table 6.1: Performance measures of the order fulfilment system.

Category Name Notation

System-related
performance
measures

Number of unprocessed orders at process p at the be-
ginning of the time period

Qp

Number of unprocessed orders in the system at the
beginning of the time period

Q

Number of unprocessed orders at process p immedi-
ately before the start of order processing at process p

Q̃p

Number of lost sales per time period at process p Sp

Total number of lost sales per time period S

Performance balance of process p Wp

Order backlog-related utilisation of process p Up

Order income-related utilisation Ũ

Customer-related
performance
measures

Processed orders per time period M

Number of processed orders per time period at pro-
cess p

Fp

Number of completed orders per time period F

Time difference to order deadline of a completed order D

Backlog duration of a completed order Dbacklog

Time buffer of a completed order Dbuffer

α-service level SLα

β-service level SLβ

γ-service level SLγ

The number of unprocessed orders Qp at process p at the beginning of a time
period is the sum of the number of unprocessed orders xp,k at process p with
a due date of k time periods for all due dates k ∈ K. Its range Qp is limited
downwards by zero and upwards by the sum of the upper limit of the state
space Op,k at process p with a due date of k time periods for all due dates
k ∈ K:

Qp =

{
0, . . . ,

(∑
k∈K

Op,k

)}
. (6.16)
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The probability distribution of Qp, p ∈ P , is calculated as follows

P (Qp = qp) =
∑

x∈IQ(p,qp)

P (X = x) ∀qp ∈ Qp

IQ(p, qp) =

{
x ∈ X |

∑
k∈K

xp,k = qp

}
.

(6.17)

Furthermore, the number of unprocessed ordersQ in the order fulfilment system
at the beginning of a time period is the sum of the number of unprocessed
orders xp,k at process pwith a due date of k time periods for all processes p ∈ P
and all due dates k ∈ K. Its rangeQ is limited downwards by zero and upwards
by the sum of the upper limit of the state spaceOp,k at process p with a due date
of k time periods for all processes p ∈ P and all due dates k ∈ K:

Q =

{
0, . . . ,

(∑
p∈P

∑
k∈K

Op,k

)}
. (6.18)

The probability distribution of Q is calculated as follows

P (Q = q) =
∑

x∈IQ(q)

P (X = x) ∀q ∈ Q

IQ(q) =

{
x ∈ X |

∑
p∈P

∑
k∈K

xp,k = q

}
.

(6.19)

The number of unprocessed orders Q̃p at process p immediately before the
start of order processing at process p corresponds to the sum of unprocessed
orders y(p−1)

p,k at process p with a due date of k time periods immediately before
the start of order processing at process p for all due dates k ∈ K. Its range Q̃p is
limited downwards by zero. At process p = 1, the upper bound of Q̃1 is given
by the sum of the upper limit of the state state O1,k at process p = 1 with a
due date of k time periods for all due dates k ∈ K. Otherwise, the upper bound
of Q̃p additionally incorporates the maximum possible processing performance
per time period h(p−1),max of the previous processing step (p− 1):

Q̃p =


{

0, . . . ,
(∑

k∈KOp,k
)}

p = 1{
0, . . . ,

(∑
k∈KOp,k + h(p−1),max

)}
p ∈ P \ {1}.

(6.20)
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The probability distribution of Q̃p, p ∈ P , is calculated as follows

P (Q̃p = q̃p) =
∑

(x,h)∈IQ̃(p,q̃p)

P (X = x) · P (H = h) ∀q̃p ∈ Q̃p

IQ̃(p, q̃p) =

{
(x,h) ∈ X ×H |

∑
k∈K

y
(p−1)
p,k = q̃p

}
.

(6.21)

6.3.2 Number of Lost Sales

Lost sales occur in the order fulfilment system since the set of due dates K is
limited downwards by the maximum backlog duration R. Unprocessed orders
at process p with a due date of (−R) time periods become lost sales in any time
period t if their number exceeds the processing performance per time period of
process p in time period t. Thus, some of these orders are still unprocessed at
the end of time period t and their due dates fall below the minimum possible
due date when the due dates are updated at the end of time period t. These
unprocessed orders are removed from the order backlog of the order fulfilment
system without being processed. The performance measures Sp, p ∈ P , and
S quantify the number of lost sales per time period at process p and the total
number of lost sales per time period in the order fulfilment system, respectively.

The number of lost sales per time period Sp at process p corresponds to the
number of unprocessed orders y(p)

p,−R with a due date of (−R) time periods
remaining after order processing at process p is completed. Its range Sp is
limited by zero and the upper limit of the state space Op,−R at process p with a
due date of (−R) time periods:

Sp = {0, . . . , Op,−R} . (6.22)

The probability distribution of Sp, p ∈ P , is calculated as follows

P (Sp = sp) =
∑

(x,h)∈IS(p,sp)

P (X = x) · P (H = h) ∀sp ∈ Sp

IS(p, sp) =
{

(x,h) ∈ X ×H | y(p)
p,−R = sp

}
.

(6.23)
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The total number of lost sales per time period S in the order fulfilment system
is the sum of the number of unprocessed orders y(p)

p,−R with a due date of (−R)

time periods remaining after order processing is completed for all processes
p ∈ P . Its range S is limited downwards by zero and upwards by the sum of the
upper limit of the state space Op,−R at process p with a due date of (−R) time
periods for all processes p ∈ P:

S =

{
0, . . . ,

∑
p∈P

Op,−R

}
. (6.24)

The probability distribution of S is calculated as follows

P (S = s) =
∑

(x,h)∈IS(s)

P (X = x) · P (H = h) ∀s ∈ S

IS(s) =

{
(x,h) ∈ X ×H |

∑
p∈P

y
(p)
p,−R = s

}
.

(6.25)

6.3.3 Performance Balance

The performance balanceWp of process p ∈ P specifies the difference between
the processing performance per time period of process p and the number of
unprocessed orders immediately before the start of order processing at process p.
It is measured in number of unprocessed orders, and it is a suitable performance
measure to evaluate the workload at process p. A positive performance balance
at process p ∈ P indicates that there is some idle time at process p ∈ P since
the processing performance provided per time period of process p exceeds the
number of unprocessed orders per time period immediately before the start of
order processing at process p. Otherwise, in the case of a negative performance
balance, the provided processing performance at process p ∈ P is fully utilised
since the number of unprocessed orders per time period immediately before the
start of order processing at process p exceeds the processing performance per
time period of process p.

We observe a performance balance of wp orders at process p if the processing
performance per time period hp of process p differs by wp orders from the sum

72



6.3 Performance Measures of the Order Fulfilment System

of the number of unprocessed orders y(p−1)
p,k at process p with a due date of k

time periods immediately before the start of order processing at process p for
all due dates k ∈ K. The rangeWp of the performance balance of process p is
limited downwards by the negated maximum possible number of unprocessed
orders at process p immediately before the start of order processing at process p.
Its upper bound is given by the maximum possible processing performance per
time period of process p. Hence, the rangeWp is defined as follows

Wp =


{
−
(∑

k∈KOp,k
)
, . . . , hp,max

}
p = 1{

−
(∑

k∈KOp,k + h(p−1),max

)
, . . . , hp,max

}
p ∈ P \ {1}.

(6.26)

The probability distribution ofWp, p ∈ P , is computed as follows

P (Wp = wp) =
∑

(x,h)∈IW (p,wp)

P (X = x) · P (H = h) ∀wp ∈ Wp

IW(p, wp) =

{
(x,h) ∈ X ×H | hp −

∑
k∈K

y
(p−1)
p,k = wp

}
.

(6.27)

6.3.4 Utilisation

The order backlog-related utilisation Up of process p describes the relation
between the processing performance per time period and the number of unpro-
cessed orders immediately before the start of order processing at process p. It
considers the ratio of the number of unprocessed orders immediately before the
start of order processing at process p to the processing performance per time
period of process p. Its range is limited to the interval [0,1]. We calculate the
order backlog-related utilisation of process p as follows

Up =
∑

(x,h)∈X×H

min

{
1;

∑
k∈K y

(p−1)
p,k

hp

}
· P (X = x) · P (H = h). (6.28)
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6.3.5 Number of Processed Orders

The number of processed orders per time period is a suitable performance
measure to quantify the throughput of any process p ∈ P (performance measure
Fp) as well as the throughput of the whole system (performance measure F ).

We initially calculate the processed orders per time period

M =


M1,−R . . . M1,emax

...
. . .

...
Mpmax,−R . . . Mpmax,emax

 , (6.29)

whereby Mp,k specifies the number of processed orders per time period at
process p with a due date of k time periods at their time of processing. Its range
M is defined based on the following conditions:

• The range of every matrix component Mp,k, p ∈ P , k ∈ K, is limited
downwards by zero and upwards by the maximum possible processing
performance per time period hp,max of process p.

• The total number of processed orders per time period (
∑
k∈Kmp,k) at

process p corresponds to a realisation of the processing performance per
time period Hp of process p.

M =

{
m ∈ Npmax0 ×N(R+emax+1)

0 |

mp,k ∈ {0, . . . , hp,max} ∀p ∈ P, ∀k ∈ K

∧
∑
k∈K

mp,k ∈ Hp ∀p ∈ P

}
.

(6.30)

The number of processed orders per time period at process p with a due date of
k time periods at their time of processing

min

{
y

(p−1)
p,k ; max

{
0;hp −

k−1∑
l=−R

y
(p−1)
p,l

}}
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equals either the number of unprocessed orders y(p−1)
p,k at process p with a

due date of k time periods immediately before the start of order processing at
process p or the residual processing performance of process p remaining after
all orders with a due date of (l < k) time periods have already been processed.

The probability distribution of M is calculated as follows

P (M = m) =
∑

(x,h)∈IM(m)

P (X = x) · P (H = h) ∀m ∈M

IM(m) =

{
(x,h) ∈ X ×H |

min

{
y

(p−1)
p,k ; max

{
0;hp −

k−1∑
l=−R

y
(p−1)
p,l

}}
= mp,k

∀p ∈ P, ∀k ∈ K

}
.

(6.31)

The number of processed orders per time period Fp at process p corresponds to
the sum of the number of processed ordersmp,k at process p with a due date of
k time periods at their time of processing for all due dates k ∈ K. Its range Fp
is limited downwards by zero and upwards by the maximum possible processing
performance per time period hp,max of process p:

Fp = {0, . . . , hp,max} . (6.32)

The probability distribution of Fp, p ∈ P , is computed as follows

P (Fp = fp) =
∑

m∈IF (p,fp)

P (M = m) ∀fp ∈ Fp

IF (p, fp) =

{
m ∈M |

∑
k∈K

mp,k = fp

}
.

(6.33)

The number of completed orders per time period F corresponds to the number
of processed orders per time period at process pmax of the order fulfilment
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system. Hence, range and probability distribution of F correspond to the ones
of Fpmax :

F = Fpmax (6.34)

P (F = f) = P (Fpmax = f) ∀f ∈ F . (6.35)

6.3.6 Time Difference to Order Deadline

The time difference to order deadlineD specifies the time difference between the
deadline and the actual time of completion of an order. A negative time difference
to order deadline indicates that the order is completed after its deadline, whereas
a positive time difference to order deadline indicates that the order is completed
before reaching its deadline. The rangeD of the time difference to order deadline
corresponds to the set of due dates:

D = K. (6.36)

The probability P (D = d) that a completed order has a time difference of
d time periods to its deadline at its time of completion is proportional to the
weighted sum of the number of processed orders per time period mpmax,d at
process pmax with a due date of d time periods at their time of completion for
all realisations m ∈ M. By normalising this weighted sum, we calculate the
probability distribution of D as follows

P (D = d) =

∑
m∈Mmpmax,d · P (M = m)∑

m∈M
(∑

k∈Kmpmax,k

)
· P (M = m)

∀d ∈ D. (6.37)

Based on the time difference to order deadline D, we specify the performance
measures backlog duration Dbacklog and time buffer Dbuffer of a completed
order in the following.

The backlog duration of a completed order Dbacklog equals the number of time
periods by which its time of completion exceeds its deadline. Its rangeDbacklog

is limited downwards by one and upwards by the maximum backlog durationR:

Dbacklog = {1, . . . , R} . (6.38)
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The probability P (Dbacklog = d) that a completed order has a backlog duration
of d time periods at its time of completion is proportional to the probability
P (D = −d) that a completed order has a time difference to deadline of (−d)

time periods. By normalising the probabilities P (D = −d), d ∈ Dbacklog , the
probability distribution of Dbacklog is computed as follows

P (Dbacklog = d) =
P (D = −d)∑−1
k=−R P (D = k)

∀d ∈ Dbacklog. (6.39)

The time buffer of a completed order Dbuffer corresponds to the number of
time periods that remain at its time of completion until reaching its deadline. Its
range Dbuffer corresponds to the subset of non-negative due dates:

Dbuffer = {0, . . . , emax} . (6.40)

The probability P (Dbuffer = d) that a completed order has a time buffer
of d time periods at its time of completion is proportional to the probability
P (D = d) that a completed order has a time difference to deadline of d time
periods. By normalising the probabilities P (D = d), d ∈ Dbuffer, the probab-
ility distribution of Dbuffer is computed as follows

P (Dbuffer = d) =
P (D = d)∑emax

k=0 P (D = k)
∀d ∈ Dbuffer. (6.41)

6.3.7 Service Level

The service level of an order fulfilment system specifies the proportion of on-
time completed orders on the total number of orders. Its range is limited to
the interval [0,1]. Regarding the level of detail, we differentiate three types of
service level:

• α-service level SLα specifies the probability that all orders are completed
on time;

• β-service levelSLβ measures the proportion of on-time completed orders;
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• γ-service level SLγ considers the proportion of backorders as well as their
backlog duration.

We define α-service level SLα as the probability that none of the completed
orders per time period has a backlog duration. Thus, we consider the probability
that the sum of processed orders per time periodmpmax,k at process pmax with
a negative due date k ∈ {−R, . . . ,−1} at its time of completion equals zero:

SLα =
∑

m∈Iα

P (M = m)

Iα =

{
m ∈M |

−1∑
k=−R

mpmax,k = 0

}
.

(6.42)

β-service level SLβ is the proportion of on-time completed orders on the total
number of outgoing orders. The number of on-time completed orders per
time period corresponds to the number of processed orders per time period
at process pmax with a non-negative due date k ∈ {0, . . . , emax}. The total
number of outgoing orders per time period is the sum of the total number of
processed orders per time period at process pmax and the total number of lost
sales per time period. We calculate SLβ as follows

SLβ =
∑
x∈X

∑
h∈H

Φβ(x,h)

Ψβ(x,h)
· P (X = x) · P (H = h)

Φβ(x,h) =

emax∑
k=0

min

{
y

(pmax−1)
pmax,k

; max

{
0;hpmax −

k−1∑
l=−R

y
(pmax−1)
pmax,l

}}

Ψβ(x,h) =
∑
k∈K

min

{
y

(pmax−1)
pmax,k

; max

{
0;hpmax −

k−1∑
l=−R

y
(pmax−1)
pmax,l

}}
+
∑
p∈P

y
(p)
p,−R.

(6.43)

We define γ-service level SLγ as complementary of the proportion of completed
orders having a backlog duration and the total number of lost sales on the total
number of outgoing orders, whereby each component of the formula is weighted
by its corresponding backlog duration. The number of completed orders per time
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period having a backlog duration corresponds to the number of processed orders
per time period at process pmax with a negative due date k ∈ {−R, . . . ,−1}.
It is weighted by its backlog duration of |k| time periods. Furthermore, we
define the weight of the total number of lost sales per time period by a backlog
duration of (R+ 1) time periods. The total number of outgoing orders per time
period consists of the total number of processed orders at process pmax, which
is weighted by the maximum backlog duration of R time periods, and the total
number of lost sales per time period, weighted by a backlog duration of (R+ 1)

time periods. We calculate SLγ as follows

SLγ = 1−

(∑
x∈X

∑
h∈H

Φγ(x,h)

Ψγ(x,h)
· P (X = x) · P (H = h)

)

Φγ(x,h) =

−1∑
k=−R

|k| ·min

{
y

(pmax−1)
pmax,k

; max

{
0;hpmax −

k−1∑
l=−R

y
(pmax−1)
pmax,l

}}
+ (R+ 1) ·

∑
p∈P

y
(p)
p,−R

Ψγ(x,h) = R ·
∑
k∈K

min

{
y

(pmax−1)
pmax,k

; max

{
0;hpmax −

k−1∑
l=−R

y
(pmax−1)
pmax,l

}}
+ (R+ 1) ·

∑
p∈P

y
(p)
p,−R.

(6.44)

To verify the implementation of the exact model for performance analysis, we
conduct a model comparison between the exact model and a simulation model.
The simulationmodel depicts system behaviour of a multi-stage, stochastic order
fulfilment system with levelled order release and customer-required deadlines,
analogous to theMarkov chain. Based on the simulation results, we calculate the
same performance measures of the order fulfilment system as in the exact model
(see Table 6.1). A detailed description of the simulation model is provided in
Appendix B. The results of this model comparison confirm that the exact model
is implemented correctly. Details on the design and the results of the model
comparison are given in Appendix D.
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6.4 Memory and Computation Time
Requirements

Computing the exact model for performance analysis consists of calculating
(1) the state space, (2) the transition matrix, (3) the limiting distribution of
the Markov chain, and (4) the performance measures of the order fulfilment
system. The memory and computation time requirements of these steps are
predominantly driven by the size of the state space of the Markov chain. As the
state space increases, the transition matrix becomes larger. Thus, larger sets of
linear equations have to be solved to obtain the limiting distribution. Finally,
calculating the performance measures of the order fulfilment system requires
more memory and computation time since they are derived from the limiting
distribution.

The size of the state space |X | of the Markov chain is derived from the lower
and upper limit of the state space X (see Section 6.2.3) as follows

|X | =
∏
p∈P

∏
k∈K

(Op,k + 1)

|X | =
[
(emax + 1) · amax + 1

]R
·
emax∏
k=0

(
(emax − k + 1) · amax + 1

)
·
pmax∏
p=2

[ −1∏
k=−R

(
(emax + |k|) · h(p−1),max + 1

)

·
emax∏
k=0

(
(emax − k + 1) · h(p−1),max + 1

)]
.

(6.45)

An upper limit of the size of state space is obtained by the following estimations

|X | ≤
[
(emax + 1) · amax + 1

](R+emax+1)

·
pmax∏
p=2

[(
(emax +R) · h(p−1),max + 1

)R
·
(

(emax + 1) · h(p−1),max + 1
)(emax+1)

] (6.46)
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|X | ≤
[
(emax + 1) · amax + 1

](R+emax+1)

·
[
(emax +R) · hmax + 1

]R·(pmax−1)

·
[
(emax + 1) · hmax + 1

](emax+1)(pmax−1)

(6.47)

with
hmax = max

p=1,...,(pmax−1)
{hp,max} .

From equation (6.47), we recognize that the maximum backlog duration R, the
number of processes pmax, and the maximum possible values of the number
of incoming orders per time period A, the lead time E, and the processing
performances per time period Hp of the processes p ∈ P determine the size of
the state space of the Markov chain. The maximum backlog duration R, the
maximum possible lead time emax, and the number of processes pmax have a
major impact on the size of the state space since they determine the exponents
in equation (6.47).

Apart from the size of the state space, the computational effort of calculating
the transition matrix depends on the discretisation of the stochastic parameters.
The discretisation of a stochastic parameter quantifies the number of its possible
realisations. It results from the lower and upper limit of the range of the stochastic
parameter. The higher the discretisation of the stochastic parameters G and H

of the Markov chain, which results from the discretisation of the stochastic
parametersA,E, and Lp, p ∈ P , of the order fulfilment system, the more tuples
(g,h) of possible realisations exist. Each of these tuples has to be considered
when calculating the entries of the transition matrix (see equation (6.13)).
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6.5 Chapter Conclusion

In this chapter, we introduced an exact analytical model for performance analysis
of multi-stage, stochastic order fulfilment systems with levelled order release and
customer-required order deadlines by

• modelling system behaviour of such order fulfilment systems according to
the exact modelling approach (see Figure 5.1) as a discrete-time Markov
chain, and

• calculating multiple stochastic and deterministic, system- and customer-
related performance measures of order fulfilment systems exactly based
on the limiting distribution of the Markov chain.

Based on the calculated performance measures (see Table 6.1), such as system
throughput, service level, utilisation, and backlog duration and time buffer of
a completed order, the developed model enables an exact and comprehensive
performance analysis of multi-stage, stochastic order fulfilment systems with
levelled order release and customer-required order deadlines. Consequently, the
exact model for performance analysis provides an answer to the second research
question of the thesis:

Howcanwedetermine theperformance ofmulti-stage, stochastic
order fulfilment systemswith levelled order release and customer-
required order deadlines?

82
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Performance Analysis

This chapter aims at introducing a simplified model for performance analysis
of multi-stage, stochastic order fulfilment systems with levelled order release
and customer-required order deadlines. Section 7.1 provides several preliminary
remarks about the simplified model for performance analysis. We introduce the
discrete-time Markov chain in Section 7.2 and calculate multiple performance
measures of the order fulfilment system in Section 7.3. Section 7.4 discusses
the memory and computation time requirements of the provided model and
Section 7.5 summarises the results of this chapter.

7.1 Preliminaries

The simplified model for performance analysis is based on the simplified mod-
elling approach. It considers a multi-stage, stochastic order fulfilment system
with a finite set of processes P , a unique order type, and levelled order release
considering a finite set of due datesK. The processing steps p ∈ P are combined
to one aggregated process (see Figure 5.2). The order type and each process is
specified by the parameters introduced in Sections 3.2.2 and 3.2.3.

We observe the order fulfilment system at discrete-time points in time t ∈ N0

that are integer multiples of a constant time period. The time period corresponds
to the scheduling interval of operational planning of the levelling concept (see
Section 4.3). It commonly has a length of one day or one shift. In each time
period, the order fulfilment system is affected by two stochastic processes:
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• Order processing specified by the aggregated processing performance per
time period;

• Order income specified by the order income per time period.

7.1.1 Aggregated Processing Performance
per Time Period

The aggregated processing performance per time period of the order fulfilment
system specifies the number of orders that can be completely processed in the
order fulfilment system within one time period. We calculate the aggregated
processing performance per time period H̃ as the minimum of the processing
performances per time period of the processes p ∈ P:

H̃ = min
p∈P
{Hp} . (7.1)

Hence, its range H̃ results from the smallest value of the minimum possible
processing performances per time period hp,min of the processes p ∈ P and
the smallest value of the maximum possible processing performances per time
period hp,max of the processes p ∈ P as follows

H̃ =

{
min
p∈P
{hp,min} , . . . ,min

p∈P
{hp,max}

}
. (7.2)

Assuming that the processing performance per time period of the processes
p ∈ P are independent of each other, the probability distribution of H̃ is given
as follows

P (H̃ = h̃) =
∑

h∈IH̃(h̃)

[∏
p∈P

P (Hp = hp)

]
∀h̃ ∈ H̃

IH̃(h̃) =

{
h ∈ H | min

p∈P
{hp} = h̃

}
.

(7.3)
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7.1.2 Order Income per Time Period

The order income per time period is specified by the random vectorG, analogous
to the exact model (see Section 6.1.2). The range and the probability distribution
of G are given by equations (6.5) and (6.6), respectively.

7.1.3 Stable Order Fulfilment System

We assume the order fulfilment system to be stable. An order fulfilment system
is stable, if its order income-related utilisation Ũ is smaller than one. In the
simplified model, the order income-related utilisation Ũ is calculated as the
ratio of the expected value of the number of incoming orders per time period
E(A) to the expected value of the aggregated processing performance per time
period E(H̃):

Ũ =
E(A)

E(H̃)
. (7.4)

7.2 Discrete-time Markov Chain

In the following, we introduce the discrete-time Markov chain modelling system
behaviour of a multi-stage, stochastic order fulfilment system with levelled order
release and customer-required deadlines according to the simplified modelling
approach.

7.2.1 System State

The system state X of the Markov chain depicts the number of unprocessed
orders in the order fulfilment system at the beginning of any time period. Since
order fulfilment systems are modelled as single-stage systems in the simplified
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model, we neglect the process index p. Hence, the definition of system state
simplifies to

X =
(
X−R . . . Xemax

)
, (7.5)

wherebyXk, k ∈ K, specifies the number of unprocessed orders with a due date
of k time periods at the beginning of the time period.

7.2.2 State Transition

The state transition from an arbitrary state Xt = x at the beginning of time
period t to state Xt+1 = z at the beginning of time period (t + 1) consists of
the same sub-steps as the state transition of the exact model (see Section 6.2.2).
However, the number of sub-steps reduces to three since only order processing
at one process, namely the aggregated process, has to be modelled.

Due to these simplifications, state transition and transition probability can be
expressed in a closed formula as follows

P (Xt+1 = z | Xt = x) =
∑

(g,h̃)∈I(x,z)

P (G = g) · P (H̃ = h̃)

I(x, z) =

{
(g, h̃) ∈ G × H̃ |

gk + max

{
0;xk+1 −max

{
0; h̃−

k∑
l=−R

xl

}}
= zk

∀k ∈ K \ {emax}

∧ gemax = zemax

}
∀x, z ∈ X .

(7.6)

The number of unprocessed orders zk with a due date of k time periods at the
beginning of time period (t + 1) is the sum of the number of incoming orders
per time period gk with a lead time of k time periods at the beginning of time
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period (t+ 1) and the number of unprocessed orders with a due date of (k+ 1)

time periods at the end of time period t

max

{
0;xk+1 −max

{
0; h̃−

k∑
l=−R

xl

}}
.

The number of unprocessed orders with a due date of (k + 1) time periods at
the end of time period t is either zero or it corresponds to the difference of the
number of unprocessed orders xk+1 with a due date of (k + 1) time periods at
the beginning of time period t and the residual processing performance of time
period t remaining after all orders with a due date of (l < k + 1) time periods
have already been processed. The number of unprocessed orders zemax with a
due date of emax time periods at the beginning of time period (t+ 1) equals the
number of incoming orders per time period gemax with a lead time of emax time
periods at the beginning of time period (t+ 1).

7.2.3 State Space

We derive the state space X of the Markov chain based on the same considera-
tions as in the exact model (see Section 6.2.3). The state spaceX is non-negative,
and its upper bound

O =
(
O−R . . . Oemax

)
(7.7)

is defined as follows

Ok = (emax + 1) · amax ∀k ∈ {−R, . . . ,−1}

Ok = (emax − k + 1) · amax ∀k ∈ {0, . . . , emax} .
(7.8)

7.2.4 Limiting Distribution

TheMarkov chain has a finite state space (see Section 7.2.3), and it is possible to
reach every state of the Markov chain from every other state either by a single-
step transition or by an indirect transition via a finite number of other states. In
the case of unreachable states, these states are excluded from the computations
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(see Section 10.1.1). We then find an irreducible subset of the state space. We
assume that there is a tuple (g, h̃) ∈ G × H̃ for which the total number of
incoming orders per time period equals the processing performance per time
period: ∑

k∈K

gk = h̃.

Thus, the irreducible subset of the state space contains state x with

xk = gk ∀k ∈ K∑
k∈K

xk = h̃,

for which

P (Xt+1 = x | Xt = x) = P (H̃ = h̃) · P (G = g) > 0

holds. Consequently, state x as well as all other states of the irreducible subset
of the state space are aperiodic. In conclusion, the limiting distribution π̃ of
the Markov chain exists, and we calculate the limiting distribution π̃ of a given
initial state as described in Section 5.2.2.

7.3 Performance Measures of the Order
Fulfilment System

In the simplified model, we calculate the same performance measures of the
order fulfilment system as in the exact model (see Table 6.1) using the formulas
introduced in Section 6.3. However, the subsequent adjustments are necessary:

• Replace the limiting distribution of the exact model by the one of the
simplified model, and

• Replace the processing performance per time period H by the aggregated
processing performance per time period H̃ .

In the exact model, we subdivide the number of unprocessed orders into two
key figures regarding their time of consideration (see Section 6.3.1). This
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differentiation is not meaningful in the simplified model since in single-stage
order fulfilment systems, the point in time immediately before the start of order
processing at a process corresponds to the beginning of the time period. Fur-
thermore, the differentiation between process- and system-specific key figures
regarding the number of unprocessed orders, the number of lost sales, and the
number of processed orders is no longer reasonable in the simplified model.

7.4 Memory and Computation Time
Requirements

Memory and computation time requirements of the simplified model for per-
formance analysis depend on the same factors as the ones of the exact model
for performance analysis (see Section 6.4): The size of the state space of the
Markov chain and the discretisation of the stochastic parameters.

In the simplified model, the size of the state space |X | of the Markov chain is
derived from the lower and upper limits of the state space X (see Section 7.2.3)
as follows

|X | =
∏
k∈K

(Ok + 1)

|X | =
[
(emax + 1) · amax + 1

]R
·
emax∏
k=0

(
(emax − k + 1) · amax + 1

)
.

(7.9)

An upper limit of the size of state space is obtained by the following estimation

|X | ≤
[
(emax + 1) · amax + 1

](R+emax+1)

. (7.10)

From equation (7.10), we recognize that the maximum backlog duration R and
themaximum possible values of the number of incoming order per time periodA
and the lead time E determine the size of the state space of the Markov chain.
The maximum backlog duration R and the maximum possible lead time emax
have a major impact on the size of the state space since they determine the
exponent in equation (7.10).
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7.5 Chapter Conclusion

In this chapter, we introduced a simplified analytical model for performance
analysis of multi-stage, stochastic order fulfilment systems with levelled order
release and customer-required order deadlines by

• modelling system behaviour of such order fulfilment systems according
to the simplified modelling approach (see Figure 5.2) as a discrete-time
Markov chain, and

• calculating multiple stochastic and deterministic, system- and customer-
related performance measures of order fulfilment system based on the
limiting distribution of the Markov chain.

The simplified model can be seen as a special case of the exact model introduced
in Chapter 6 since it ensues from the exact model when modelling is restricted to
single-stage order fulfilment systems. InChapter 8, wewill evaluate and compare
both models for performance analysis regarding modelling accuracy, accuracy
of performance analysis, and memory and computation time requirements.
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The exact and the simplified model for performance analysis differ regarding
the modelling of partially processed orders that are transmitted between the pro-
cessing steps of a multi-stage order fulfilment system. The exact model provides
an exact recording of partially processed orders, whereas partially processed
orders are neglected in the simplified model. This chapter aims at evaluating and
comparing the exact and the simplifiedmodel for performance analysis regarding
modelling accuracy (see Section 8.1), accuracy of performance analysis (see Sec-
tion 8.2), and memory and computation time requirements (see Section 8.3). By
summarising the results of this chapter, Section 8.4 provides recommendations
when to use which model for performance analysis of multi-stage, stochastic
order fulfilment systems with levelled order release and customer-required dead-
lines.

8.1 Modelling Accuracy

The main difference between the exact and the simplified model concerns the
modelling of partially processed orders that are transmitted between the pro-
cessing steps of amulti-stage order fulfilment system. The exact model considers
partially processed orders by exactly recording the unprocessed orders per pro-
cess (see Figure 5.1). In contrast, partially processed orders are neglected in the
simplifiedmodel (see Figure 5.2) since an order is either completely unprocessed
or completely processed. In the following, we initially derive two hypotheses
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on the impact of the modelling of partially processed orders on the modelling
accuracy of multi-stage, stochastic order fulfilment systems with levelled order
release and customer-required deadlines (see Section 8.1.1). Subsequently, we
prove that these hypotheses hold (see Section 8.1.2).

8.1.1 Hypotheses

In order fulfilment systems with low utilisation, the expected value of the num-
ber of incoming orders per time period is significantly smaller than the expected
value of the aggregated processing performance per time period (see equa-
tion (7.4)). The probability that the number of incoming orders per time period
exceeds the minimum of the processing performances per time period of the
processes p ∈ P in any time period is close to zero:

E(A)

E(H̃)
<< 1⇔ E(A) << E(H̃)

⇔
∑
a∈A

a · P (A = a) <<
∑
h̃∈H̃

h̃ · P (H̃ = h̃)

⇔
∑
g∈G

(∑
k∈K

gk

)
P (G = g) <<

∑
h∈H

min
p∈P
{hp} · P (H = h)

⇒
∑

(g,h)∈G×H

P

(∑
k∈K

gk > min
p∈P
{hp}

)
→ 0.

(8.1)

Consequently, the majority of the incoming orders per time period is processed
immediately after their time of arrival without being buffered at any processing
step, and the probability that partially processed orders occur at any processing
step is close to zero.

In contrast, in order fulfilment systems with high utilisation, the expected value
of the number of incoming orders per time period is approximately as high as
the expected value of the aggregated processing performance per time period.
There is a significant probability that the number of incoming orders per time
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period exceeds the minimum of the processing performances per time period of
the processes p ∈ P in any time period:

E(A)

E(H̃)
→ 1⇔ E(A) ≈ E(H̃)

⇔
∑
a∈A

a · P (A = a) ≈
∑
h̃∈H̃

h̃ · P (H̃ = h̃)

⇔
∑
g∈G

(∑
k∈K

gk

)
P (G = g) ≈

∑
h∈H

min
p∈P
{hp} · P (H = h)

⇒
∑

(g,h)∈G×H

P

(∑
k∈K

gk > min
p∈P
{hp}

)
>> 0.

(8.2)

Consequently, there is a significant probability that temporary buffers occur at
any processing step of the multi-stage system. Buffers in a multi-stage system
contain partially processed orders. In conclusion, we state that partially pro-
cessed orders predominantly occur in systems with high utilisation. Hence, the
focus for investigating the impact of the modelling of partially processed orders
is on order fulfilment systems with high utilisation in the following.

In order fulfilment systems with high utilisation, the processing performance per
time period of the system is the limiting factor of system throughput (see equa-
tion (8.2)). Regarding the simplified model, this means that system throughput
depends on the aggregated processing performance per time period, and thus
on the minimum of the processing performances per time period of processes
p ∈ P (see equation (7.1)). In the exact model, the relationship is more com-
plicated since there is no parameter describing the processing performance per
time period of the whole system. Instead, system throughput of systems with
high utilisation depends on

• the processing performance per time period Hp of processes p ∈ P ,

• the number of partially processed orders that are buffered at the pro-
cesses p ∈ P , and

• the relation between the current values of the aforementioned parameters.
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To illustrate these dependencies, we consider the processing step pmax of a
multi-stage system in any time period in detail, without loss of generality: If the
processing performance per time period hpmax of process pmax is at most as high
as the processing performance per time period h(pmax−1) of process (pmax − 1),
(hpmax ≤ hpmax−1), the number of completed orders equals the processing per-
formance per time period hpmax of process pmax independent of the number of
partially processed orders at process pmax. Otherwise, if the processing perform-
ance per time period hpmax of process pmax exceeds the processing perform-
ance per time period h(pmax−1) of process (pmax − 1), (hpmax > hpmax−1), the
number of completed orders equals the processing performance per time period
h(pmax−1) of process (pmax − 1) if no partially processed orders are buffered
at process pmax. However, it depends on the processing performance per time
period hpmax of process pmax if there is a sufficiently high number of partially
processed orders buffered at process pmax. The underlying precondition is that
temporary buffers of partially processed orders can occur at any processing step
of the system. Referring to common bottleneck definitions in literature (e.g.
Lawrence and Buss (1994), Lai et al. (2021)), we call them systems with a
shifting bottleneck.

A system with a finite set of processes P and a processing performance per
time period H is said to be a system with a shifting bottleneck if the processing
performance per time period H meets the following conditions:

∃ h ∈ H : hi > hj i, j ∈ P, i 6= j (8.3)

∃ h ∈ H : hi ≤ hj i, j ∈ P, i 6= j. (8.4)

In contrast, it is said to be a system with a static bottleneck if there is a pro-
cess p∗ ∈ P , called static bottleneck, for which the following condition holds:

∀ h ∈ H : hp∗ < hj j ∈ P, j 6= p∗. (8.5)

In the special case of systems with a static bottleneck, buffers of partially
processed orders only occur at the bottleneck and at processes upstream the
bottleneck. In this case, the number of completed orders per time period does
not depend on the three factors mentioned above, but it only depends on the
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processing performance per time period of the bottleneck. However, the pro-
cessing performance per time period of the bottleneck equals the minimum of
the processing performances per time period of processes p ∈ P (see equa-
tion (8.5)), and thus we observe the same relation as in the simplified model. In
conclusion, we state the following: In systems with high utilisation and a static
bottleneck, system throughput only depends on the processing performance per
time period of the bottleneck, and modelling of partially processed orders can be
neglected. Otherwise, in systems with high utilisation and a shifting bottleneck,
system throughput additionally depends on the temporary number and location
of partially processed orders. These findings lead to the following hypothesis:

Hypothesis 1. For performance analysis of order fulfilment systems with high
utilisation and a shifting bottleneck, there is a loss of modelling accuracy when
using the simplified model instead of the exact model.

As mentioned before, in the simplified model, system throughput of systems
with high utilisation is determined by the aggregated processing performance per
time period, which corresponds to the minimum of the processing performances
per time period of processes p ∈ P (see equation (7.1)). In contrast, in the
exact model, system throughput of systems with high utilisation and a shifting
bottleneck is determined by the processing performance per time period of
process pmax, when assuming a sufficiently high number of partially processed
orders buffered at process pmax. There are realisations h ∈ H for which the
processing performance per time period of process pmax is the minimum of the
processing performances per time period of processes p ∈ P (see equation (8.4)),
but there are also realisations h ∈ H for which this condition does not hold (see
equation (8.3)). These findings lead to the following hypothesis:

Hypothesis 2. In systems with high utilisation and a shifting bottleneck, the
simplified model underestimates the exact value of the expected value of the
system throughput.

95



8 Evaluation of Models for Performance Analysis

8.1.2 Mathematical Proof

In the following, we prove hypotheses 1 and 2. For this, some preliminary
remarks on the characteristics of order processing at any process p ∈ P (see
Section 8.1.2.1) and the lower bound of the total number of unprocessed orders
at process p ∈ P immediately before the start of order processing at process p
(see Section 8.1.2.2) are required. Subsequently, we derive a formula of system
throughput for each system configuration – system with a static and a shifting
bottleneck – in eachmodelling approach – exact and simplifiedmodel – under the
precondition of high system utilisation (see equation (8.2)) (see Sections 8.1.2.3-
8.1.2.5). By comparing these formulas in Section 8.1.2.6, we finally prove that
hypotheses 1 and 2 hold.

8.1.2.1 Preliminaries on Order Processing at Process p ∈ P

Order processing at process p in time period t depends on the realisationHp = hp
of the processing performance per time period of process p in time period t.
Following the principles of levelled order release, order processing at process
p starts with orders having a due date of (−R) time periods. Thus, in time
period t, a processing performance of hp orders is available for processing
orders with a due date of (−R) time periods. In contrast, for processing orders
with a due date of (k > −R) time periods, only the so-called residual processing
performance hresp is available that corresponds to the processing performance
remaining after all orders with a due date of (l < k) time periods have already
been processed.

The residual processing performance hresp of process p in time period t can be
written as a function of due date k ∈ K

hresp (k) = max

{
0;hp −

k−1∑
l=−R

y
(p−1)
p,l

}
, (8.6)
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whereby hresp (k) specifies the processing performance remaining for processing
orders with a due date of k time periods at process p in time period t. Due to the
principles of levelled order release, hresp (k) is monotonously decreasing in k:

hresp (−R) = max {0;hp} = hp

hresp (−R+ 1) = max
{

0;hp − y(p−1)
p,−R

}
...

hresp (emax) = max

{
0;hp −

emax−1∑
l=−R

y
(p−1)
p,l

}
.

We define the critical due date k∗p of process p in time period t as the shortest
due date whose orders are not processed in time period t:

k∗p =

min
{
k ∈ K | hresp (k) = 0

}
∃k ∈ K : hresp (k) = 0

∞ otherwise

k∗p =

min
{
k ∈ K |

∑k−1
l=−R y

(p−1)
p,l ≥ hp

}
∃k ∈ K : hresp (k) = 0

∞ otherwise.

(8.7)

The critical due date k∗p of process p in time period t can be interpreted as
follows: No order with a due date of (k ≥ k∗p) time periods is processed at
process p in time period t. In contrast, unprocessed orders with a due date of
(k∗p − 1) time periods are either partially or completely processed at process p
in time period t, and all unprocessed orders having a due date of (k ≤ k∗p − 2)

time periods are completely processed at process p in time period t.

The number of processed orders per time period mp,k at process p with a due
date of k time periods at their time of processing in time period t depends on
number of unprocessed orders at process p with a due date of k time periods
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immediately before the start of order processing at process p and the residual
processing performance (see equation (6.31)):

mp,k = min

{
y

(p−1)
p,k ; max

{
0;hp −

k−1∑
l=−R

y
(p−1)
p,l

}}

mp,k
(8.6)
= min

{
y

(p−1)
p,k ;hresp (k)

}

mp,k
(8.7)
=


y

(p−1)
p,k k ∈ K, k ≤ k∗p − 2

hp −
∑k−1
l=−R y

(p−1)
p,l k ∈ K, k = k∗p − 1

0 k ∈ K, k ≥ k∗p.

(8.8)

Consequently, the total number of processed orders per time period fp at pro-
cess p in time period t (see equation (6.33)) can be written as follows

fp =
∑
k∈K

mp,k

fp
(8.8)
=

k∗p−2∑
k=−R

y
(p−1)
p,k +

hp − k∗p−2∑
l=−R

y
(p−1)
p,l

+

emax∑
k=k∗p

0

fp
(8.7)
=


∑
k∈K y

(p−1)
p,k k∗p =∞

hp k∗p ∈ K.

(8.9)

8.1.2.2 Preliminaries on Lower Bound of Total Number of
Unprocessed Orders at Process p ∈ P Immediately Before
the Start of Order Processing

Using the notation of the state transition of theMarkov chain (see Section 6.2.2),
y

(p−1)
p , p ∈ P , denotes the number of unprocessed orders at process p ∈ P

immediately before the start of order processing at process p in any time period t.

The total number of unprocessed orders
(∑

k∈K y
(0)
1,k

)
at process p = 1 im-

mediately before the start of order processing at this process corresponds to the
total number of unprocessed orders at process p = 1 at the beginning of time
period t. The last sub-step of every state transition specifies the order income
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per time period G = g of the following time period (see Section 6.2.2). Thus,
the total number of unprocessed orders at process p = 1 immediately before the
start of order processing at this process is at least as high as the total number of
incoming orders at the beginning of time period t:∑

k∈K

y
(0)
1,k ≥

∑
k∈K

gk. (8.10)

The total number of unprocessed orders
(∑

k∈K y
(p−1)
p,k

)
at process p ∈ P \{1}

immediately before the start of order processing at this process in time period t
is the sum of the number of unprocessed orders at process p at the end of the
previous time period (t− 1) and the number of processed orders at the previous
processing step (p− 1) in time period t (see equation (6.10))∑
k∈K

y
(p−1)
p,k =

∑
k∈K

y
(p−2)
p,k

+
∑
k∈K

min

{
y

(p−2)

(p−1),k; max

{
0;hp−1 −

k−1∑
l=−R

y
(p−2)

(p−1),l

}}
∑
k∈K

y
(p−1)
p,k

(8.9)
=


∑
k∈K y

(p−2)
p,k +

∑
k∈K y

(p−2)

(p−1),k k∗p−1 =∞∑
k∈K y

(p−2)
p,k + hp−1 k∗p−1 ∈ K,

(8.11)

whereby H = h specifies the processing performance per time period in time
period t. Based on equations (8.10) and (8.11), we can derive a lower bound for
the total number of unprocessed orders at any process p ∈ P \ {1} immediately
before the start of order processing at this process in time period t. For process
p = 2, the lower bound is derived as follows

∑
k∈K

y
(1)
2,k =


∑
k∈K y

(0)
2,k +

∑
k∈K y

(0)
1,k k∗1 =∞∑

k∈K y
(0)
2,k + h1 k∗1 ∈ K

(8.10)⇒
∑
k∈K

y
(1)
2,k ≥


∑
k∈K gk k∗1 =∞

h1 k∗1 ∈ K.

(8.12)
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For process p = 3, the lower bound is derived as follows

∑
k∈K

y
(2)
3,k =


∑
k∈K y

(1)
3,k +

∑
k∈K y

(1)
2,k k∗2 =∞∑

k∈K y
(1)
3,k + h2 k∗2 ∈ K

(8.12)⇒
∑
k∈K

y
(2)
3,k ≥


∑
k∈K gk k∗1 =∞, k∗2 =∞

h1 k∗1 ∈ K, k∗2 =∞
h2 k∗2 ∈ K.

(8.13)

Consequently, the lower bound of any process p ∈ P \ {1} is defined as follows

∑
k∈K

y
(p−1)
p,k ≥


∑
k∈K gk k∗1 , . . . , k

∗
p−1 =∞

hj k∗j ∈ K, k∗j+1, . . . , k
∗
p−1 = ∞,

j ∈ {1, . . . , (p− 1)}.

(8.14)

8.1.2.3 System Throughput in Systems With a Static Bottleneck in
the Exact Model

Under the precondition of high utilisation (see equation (8.2)), in systems with
a static bottleneck p∗ (see equation (8.5)), the lower bound of the total number
of unprocessed orders at the bottleneck p∗ immediately before the start of order
processing at process p∗ (see equation (8.14)) simplifies to∑

k∈K

y
(p∗−1)
p∗,k > hp∗ ∀h ∈ H. (8.15)

Based on this, we conclude that the critical due date k∗p∗ of the bottleneck p∗

satisfies k∗p∗ ∈ K and that the throughput fp∗ of the bottleneck p∗ is given by its
processing performance per time period hp∗ for all realisations h ∈ H:∑

k∈K

y
(p∗−1)
p∗,k > hp∗ ∀h ∈ H (8.7)⇒ k∗p∗ ∈ K ∀h ∈ H

(8.9)⇒ fp∗ = hp∗ ∀h ∈ H.
(8.16)

If the last processing step pmax is the bottleneck of the system, system throughput
directly results from equation (8.16) as follows

f
(6.35)

= fpmax = fp∗
(8.16)

= hp∗ ∀h ∈ H. (8.17)
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Otherwise, if any other processing step p ∈ P \ {pmax} represents the bottle-
neck p∗ of the order fulfilment system, we additionally consider order processing
at the subsequent processing step (p∗ + 1) of the bottleneck p∗. Since the
throughput of the bottleneck p∗ corresponds to its processing performance per
time period hp∗ for all realisations h ∈ H (see equation (8.16)), and the pro-
cessing performance per time period h(p∗+1) of process (p∗ + 1) is higher than
the one of the bottleneck p∗ for all realisations h ∈ H (see equation (8.5)), there
never remain any unprocessed order at process (p∗ + 1) at the end of any time
period. The total number of unprocessed orders at process (p∗ + 1) immedi-
ately before the start of order processing at process (p∗ + 1) (see equation (8.11))
simplifies to ∑

k∈K

y
(p∗)
(p∗+1),k = hp∗ ∀h ∈ H. (8.18)

Based on this, we conclude that the throughput f(p∗+1) of process (p∗ + 1) is
given by the processing performance per time period hp∗ of the bottleneck p∗

for all realisations h ∈ H:∑
k∈K

y
(p∗)
(p∗+1),k = hp∗ ∀h ∈ H (8.5)⇒

∑
k∈K

y
(p∗)
(p∗+1),k < h(p∗+1) ∀h ∈ H

(8.7)⇒ k∗(p∗+1) =∞ ∀h ∈ H
(8.9)⇒ f(p∗+1) =

∑
k∈K

y
(p∗)
(p∗+1),k ∀h ∈ H

(8.18)⇒ f(p∗+1) = hp∗ ∀h ∈ H.

(8.19)

The same reasoning holds for all subsequent processesp ∈ {(p∗ + 2), . . . , pmax},
and thus system throughput is given by the processing performance per time
period hp∗ of the bottleneck p∗

f = hp∗ ∀h ∈ H. (8.20)

In conclusion, we showed that under the precondition of high utilisation (see
equation (8.2)), system throughput f of order fulfilment systems with a static
bottleneck p∗ in any time period is determined by the processing performance
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per time period hp∗ of the bottleneck p∗ for all realisations h ∈ H, independent
of the position of the bottleneck p∗ ∈ P

f = hp∗
(8.5)
= min

p∈P
{hp} ∀h ∈ H. (8.21)

8.1.2.4 System Throughput in Systems With a Shifting Bottleneck
in the Exact Model

For the analysis of system throughput in systems with a shifting bottleneck, we
focus on the last processing step pmax of the multi-stage system in any time
period t, whereby H = h specifies the processing performance per time period
in time period t. The following considerations assume high utilisation (see
equation (8.2)).

If the last processing step is the bottleneck of the system in time period t (see
equation (8.4)), following the reasoning of equation (8.16), system throughput
f in time period t corresponds to the minimum of the processing performances
per time period of processes p ∈ P (see equation (8.17)).

Otherwise, if the last processing step is not the bottleneck of the system in time
period t (see equation (8.3)), the throughput fpmax of process pmax in time
period t either corresponds to the processing performance per time period of
process pmax in time period t or to the total number of unprocessed orders at
process pmax immediately before the start of order processing at process pmax
in time period t, depending on the value of the critical due date k∗pmax of process
pmax in time period t (see equation (8.9)):

• Critical due date of k∗pmax ∈ K

fpmax = hpmax
(8.3)⇒ fpmax > min

p∈P
{hp}. (8.22)
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• Critical due date of k∗pmax =∞

fpmax =
∑
k∈K

y
(pmax−1)
pmax,k

(8.14)⇒ fpmax ≥


∑
k∈K gk k∗1 , . . . , k

∗
pmax−1 =∞

hj k∗j ∈ K, k∗j+1, . . . , k
∗
pmax−1 = ∞,

j ∈ {1, . . . , (pmax − 1)}
(8.3),(8.2)⇒ fpmax ≥ min

p∈P
{hp}.

(8.23)

In conclusion, we showed that under the precondition of high utilisation (see
equation (8.2)), system throughput f of order fulfilment systems with a shifting
bottleneck in any time period depends on the realisation h ∈ H as follows

f = min
p∈P
{hp} ∀h ∈ H : hpmax = min

p∈P
{hp} (8.24)

f > min
p∈P
{hp} ∀h ∈ H : hpmax > min

p∈P
{hp}, k∗pmax ∈ K (8.25)

f ≥ min
p∈P
{hp} ∀h ∈ H : hpmax > min

p∈P
{hp}, k∗pmax =∞. (8.26)

8.1.2.5 System Throughput in the Simplified Model

In the simplified model, system throughput in time period t either corresponds
to the aggregated processing performance per time period h̃ in time period t
or to the total number of unprocessed orders at the beginning of time period t,
depending on the value of the critical due date k∗ in time period t (simplification
of equation (8.9)):

f =

h̃ k∗ ∈ K∑
k∈K y

(0)
k k∗ =∞.

(8.27)

Under the precondition of high utilisation (see equation (8.2)), we conclude from
the lower bound of the total number of unprocessed orders (see equation (8.10))
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that system throughput f in any time period is determined by the aggregated
processing performance per time period h̃ for all realisations h̃ ∈ H̃:∑

k∈K

y
(0)
k ≥

∑
k∈K

gk
(8.2)⇒

∑
k∈K

y
(0)
k > h̃ ∀h̃ ∈ H̃

(8.7)⇒ k∗ ∈ K ∀h̃ ∈ H̃
(8.27)⇒ f = h̃ ∀h̃ ∈ H̃
(7.1)⇒ f = min

p∈P
{hp} ∀h ∈ H.

(8.28)

8.1.2.6 Comparison of System Throughput in the Exact and the
Simplified Model

Table 8.1 summarises the values of system throughput in time period t for each
system configuration – system with a static or a shifting bottleneck – in each
modelling approach – exact or simplified model – under the precondition of high
system utilisation (see equation (8.2)) as derived in the previous sections.

Table 8.1: Comparison of system throughput f in any time period t in the exact and the simplified
model (under the precondition of high system utilisation).

Exact model Simplified model

System with
a shifting
bottleneck

f = minp∈P{hp} f = minp∈P{hp}
∀h ∈ H : hpmax = minp∈P{hp} ∀h ∈ H

f > minp∈P{hp}
∀h ∈ H : hpmax > minp∈P{hp}, k∗pmax ∈ K

f ≥ minp∈P{hp}
∀h ∈ H : hpmax > minp∈P{hp}, k∗pmax =∞

System with
a static
bottleneck

f = minp∈P{hp} f = minp∈P{hp}
∀h ∈ H ∀h ∈ H
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We proved that system throughput of order fulfilment systems with a static bot-
tleneck in any time period t equals the minimum of the processing performances
per time period of processes p ∈ P under the precondition of high utilisation. It
is calculated exactly based on the simplified model. There is no loss of model-
ling accuracy for performance analysis of order fulfilment systems with a static
bottleneck when using the simplified model, which does not model partially
processed orders, instead of the exact model. Consequently, the modelling of
partially processed orders has no impact on the modelling accuracy of order
fulfilment systems with a static bottleneck.

Furthermore, we proved that system throughput of order fulfilment systems with
a shifting bottleneck in any time period t is at least as high as the minimum
of the processing performances per time period of processes p ∈ P under
the precondition of high utilisation. For systems with high utilisation and a
shifting bottleneck, the simplified model only provides a lower bound of the
exact system throughput since it approximates system throughput in any time
period t by the minimum of the processing performances per time period of
processes p ∈ P . There are modelling inaccuracies for performance analysis
of order fulfilment systems with high utilisation and a shifting bottleneck when
using the simplified model instead of the exact one. Consequently, the modelling
of partially processed orders affects modelling accuracy of order fulfilment
systems with high utilisation and a shifting bottleneck. The expected value of
the system throughput calculated based on the simplified model is smaller than
the one calculated based on the exact model.

By these findings, hypotheses 1 and 2 are mathematically proven.

8.2 Accuracy of Performance Analysis

For performance analysis of an order fulfilment system, several performance
measures (see Table 6.1) are derived from the limiting distribution of theMarkov
chain in both the exact and the simplified model. Due to the proven modelling
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inaccuracies of the simplified model (see Section 8.1), we expect inaccuracies
of performance analysis when using the simplified model. In the following,
we initially derive two hypotheses on the impact of the modelling inaccuracies
of the simplified model on the accuracy of performance analysis (see Sec-
tion 8.2.1). Subsequently, we verify these hypotheses in a numerical analysis
(see Section 8.2.2).

8.2.1 Hypotheses

In Section 8.1, we showed that the simplified model suffers from modelling
inaccuracies for performance analysis of order fulfilment systems with high
utilisation and a shifting bottleneck indicated by deviations of system throughput
in any time period t. Since the customer-related performance measures of
the order fulfilment system are derived from the system throughput and the
characteristics of completed orders, the results of Section 8.1 lead to the following
hypothesis:

Hypothesis 3. For performance analysis of order fulfilment systems with high
utilisation and a shifting bottleneck, the values of customer-related performance
measures calculated based on the simplified model deviate from the exact ones
calculated based on the exact model.

Furthermore, we proved in Section 8.1 that in systems with high utilisation and
a shifting bottleneck, the expected value of the system throughput calculated
based on the simplified model is smaller than the exact one calculated based on
the exact model. Thus, fewer orders are completed on time, and the proportion
of on-time completed orders on the total number of orders in the simplified
model is smaller than the one in the exact model. Based on the definition of the
service level (see Section 6.3.7), these findings lead to the following hypothesis:

Hypothesis 4. For performance analysis of order fulfilment systems with high
utilisation and a shifting bottleneck, the simplified model underestimates the
exact values of α-, β-, and γ-service level.
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8.2.2 Numerical Results

To verify hypotheses 3 and 4, we conduct a numerical analysis based on
samples C and E. Sample C contains 256 two-stage order fulfilment systems,
and sample E consists of 353 three-stage order fulfilment systems. The samples
differ regarding the ranges of the parameters, especially regarding the discret-
isation of the number of incoming orders per time period A: Its range is given
by AC = {3, 4, . . . , 14} in sample C and AE = {2, 3, . . . , 7} in sample E. A
comprehensive description of the samples is given in Appendix C.2. Sample
C consists of 167 systems with a shifting bottleneck (65% of sample size) and
89 systems with a static bottleneck. Sample E consists of 334 systems with a
shifting bottleneck (95% of sample size) and 19 systems with a static bottleneck.

The numerical analysis focuses on α- and β-service level for simplicity reasons.
As evaluation criteria, we calculate the absolute and the relative deviation of the
values of α- and β-service level calculated based on the simplified model from
the ones calculated based on the exact model, respectively.

8.2.2.1 Order Fulfilment Systems With a Static Bottleneck

Tables 8.2 and 8.3 present the absolute and the relative deviations of α- and
β-service level between the simplified and the exact model for order fulfilment
systems with a static bottleneck in samples C and E, respectively. Each sample
is subdivided into multiple classes according to the utilisation of the order fulfil-
ment system (see equation (6.7)). The tables give the minimum, the maximum,
and the average values of the absolute and relative deviations for each class of
utilisation as well as for the whole sample.

The absolute deviation of α-service level is between -5.17E-05 and 8.53E-05 in
sample C and between -1.92E-05 and 2.56E-05 in sample E.We observe absolute
deviations of β-service level between -3.14E-05 and 4.88E-05 in sample C and
between -9.66E-06 and 2.05E-05 in sample E. Thus, the absolute values of the
absolute deviations of α- and β-service level are smaller than 8.6E-05 in both

107



8 Evaluation of Models for Performance Analysis

Table 8.2: Deviation of α-service level between the simplified and the exact model for order fulfil-
ment systems with a static bottleneck.

Absolute deviation1 Relative deviation [%]2

Utilisation Min Max Average Min Max Average No.

Sample C [0.3,0.4) -1.13E-06 -5.90E-11 -5.65E-07 -0.0001 0.0000 -0.0001 2
[0.4,0.5) 0.00E+00 2.22E-16 1.11E-16 0.0000 0.0000 0.0000 3
[0.5,0.6) -5.55E-16 3.83E-05 4.74E-06 0.0000 0.0038 0.0005 16
[0.6,0.7) -1.99E-14 2.26E-05 2.21E-06 0.0000 0.0023 0.0002 14
[0.7,0.8) -3.19E-05 4.87E-05 1.03E-06 -0.0032 0.0049 0.0001 17
[0.8,0.9) -3.80E-05 8.53E-05 7.04E-06 -0.0038 0.0087 0.0007 23
[0.9,1.0) -5.17E-05 4.59E-05 3.35E-06 -0.0052 0.0046 0.0002 14

[0.3,1.0) -5.17E-05 8.53E-05 3.73E-06 -0.0052 0.0087 0.0004 89

Sample E [0.5,0.6) -2.22E-16 -1.11E-16 -1.67E-16 0.0000 0.0000 0.0000 2
[0.6,0.7) -7.77E-16 2.56E-05 6.40E-06 0.0000 0.0026 0.0006 4
[0.7,0.8) -7.29E-09 -3.33E-16 -3.64E-09 0.0000 0.0000 0.0000 2
[0.8,0.9) -3.22E-08 0.00E+00 -1.07E-08 0.0000 0.0000 0.0000 3
[0.9,1.0) -1.92E-05 1.58E-05 3.80E-07 -0.0025 0.0019 0.0001 8

[0.5,1.0) -1.92E-05 2.56E-05 1.50E-06 -0.0025 0.0026 0.0002 19
1 Difference between the value ofα-service level calculated based on the simplifiedmodel and the one calculated
based on the exact model.

2 Difference between the value ofα-service level calculated based on the simplifiedmodel and the one calculated
based on the exact model, divided by the value calculated based on the exact model.

samples. We state these deviations to be negligible. They result from numerical
errors during the calculations. By comparing the magnitude of the absolute and
relative deviations of α- and β-service level of different classes of utilisation in
each sample, we note that the utilisation of the order fulfilment system does not
have any systematic impact on the absolute and relative deviations of neither α-
nor β-service level.

In conclusion, these results indicate that the chosen model for performance
analysis – exact or simplified model – has a negligible impact on the values of
α- and β-service level in order fulfilment systems with a static bottleneck.
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Table 8.3: Deviation of β-service level between the simplified and the exact model for order fulfil-
ment systems with a static bottleneck.

Absolute deviation1 Relative deviation [%]2

Utilisation Min Max Average Min Max Average No.

Sample C [0.3,0.4) -2.27E-07 -5.68E-11 -1.14E-07 0.0000 0.0000 0.0000 2
[0.4,0.5) -1.11E-16 3.33E-16 1.48E-16 0.0000 0.0000 0.0000 3
[0.5,0.6) -3.33E-16 2.74E-05 3.23E-06 0.0000 0.0027 0.0003 16
[0.6,0.7) -6.73E-07 1.66E-05 1.54E-06 -0.0001 0.0017 0.0002 14
[0.7,0.8) -2.80E-05 3.93E-05 9.29E-07 -0.0028 0.0039 0.0001 17
[0.8,0.9) -3.14E-05 4.88E-05 3.80E-06 -0.0031 0.0049 0.0004 23
[0.9,1.0) -2.84E-05 4.29E-05 2.64E-06 -0.0028 0.0049 0.0003 14

[0.3,1.0) -3.14E-05 4.88E-05 2.39E-06 -0.0031 0.0049 0.0002 89

Sample E [0.5,0.6) -5.55E-16 -3.33E-16 -4.44E-16 0.0000 0.0000 0.0000 2
[0.6,0.7) -1.11E-15 2.05E-05 5.12E-06 0.0000 0.0020 0.0005 4
[0.7,0.8) -4.02E-09 -3.33E-16 -2.01E-09 0.0000 0.0000 0.0000 2
[0.8,0.9) -1.36E-08 -1.11E-16 -4.52E-09 0.0000 0.0000 0.0000 3
[0.9,1.0) -9.66E-06 7.89E-06 1.22E-06 -0.0011 0.0010 0.0001 8

[0.5,1.0) -9.66E-06 2.05E-05 1.59E-06 -0.0011 0.0020 0.0002 19
1 Difference between the value ofβ-service level calculated based on the simplifiedmodel and the one calculated
based on the exact model.

2 Difference between the value ofβ-service level calculated based on the simplifiedmodel and the one calculated
based on the exact model, divided by the value calculated based on the exact model.

8.2.2.2 Order Fulfilment Systems With a Shifting Bottleneck

Tables 8.4 and 8.5 present the absolute and the relative deviations of α- and
β-service level between the simplified and the exact model for order fulfilment
systems with a shifting bottleneck in samples C and E, respectively. Each
sample is subdivided into multiple classes according to the utilisation of the
order fulfilment system (see equation (6.7)). The tables give the minimum, the
maximum, and the average values of the absolute and relative deviations for each
class of utilisation as well as for the whole sample.
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Table 8.4: Deviation of α-service level between the simplified and the exact model for order fulfil-
ment systems with a shifting bottleneck.

Absolute deviation1 Relative deviation [%]2

Utilisation Min Max Average Min Max Average No.

Sample C [0.2,0.3) -4.29E-07 3.21E-05 6.30E-06 0.0000 0.0032 0.0006 5
[0.3,0.4) -3.37E-06 6.21E-08 -4.61E-07 -0.0003 0.0000 0.0000 15
[0.4,0.5) -1.25E-06 4.17E-05 6.00E-06 -0.0001 0.0042 0.0006 24
[0.5,0.6) -1.84E-05 4.15E-05 8.47E-06 -0.0018 0.0041 0.0008 23
[0.6,0.7) -1.75E-05 2.73E-05 3.39E-06 -0.0018 0.0027 0.0003 31
[0.7,0.8) -3.37E-05 5.39E-05 4.91E-06 -0.0034 0.0054 0.0005 22
[0.8,0.9) -3.81E-03 7.85E-05 -2.37E-04 -0.4006 0.0079 -0.0245 28
[0.9,1.0) -3.12E-02 7.13E-05 -3.57E-03 -3.2642 0.0074 -0.4600 19

[0.2,1.0) -3.12E-02 7.85E-05 -4.42E-04 -3.2642 0.0079 -0.0561 167

Sample E [0.3,0.4) -1.40E-09 2.29E-06 8.69E-07 0.0000 0.0002 0.0001 3
[0.4,0.5) -3.75E-06 5.29E-05 1.01E-05 -0.0004 0.0053 0.0010 14
[0.5,0.6) -1.42E-05 6.37E-05 6.33E-06 -0.0014 0.0064 0.0006 40
[0.6,0.7) -4.44E-04 6.02E-05 -2.47E-05 -0.0448 0.0060 -0.0025 58
[0.7,0.8) -2.87E-03 5.72E-05 -2.41E-04 -0.2935 0.0057 -0.0244 83
[0.8,0.9) -1.39E-01 3.67E-05 -9.92E-03 -17.2552 0.0037 -1.1581 89
[0.9,1.0) -2.78E-01 2.62E-05 -4.92E-02 -47.5861 0.0026 -6.8910 47

[0.3,1.0) -2.78E-01 6.37E-05 -9.63E-03 -47.5861 0.0064 -1.2847 334
1 Difference between the value ofα-service level calculated based on the simplifiedmodel and the one calculated
based on the exact model.

2 Difference between the value ofα-service level calculated based on the simplifiedmodel and the one calculated
based on the exact model, divided by the value calculated based on the exact model.

We observe absolute deviations of α-service level between -3.12E-02 and
7.85E-05 in sample C and between -2.78E-01 and 6.37E-05 in sample E. The ab-
solute deviation of β-service level is between -6.69E-03 and 5.99E-05 in sample
C and between -2.29E-01 and 5.43E-05 in sample E. These results indicate that
for order fulfilment systems with a shifting bottleneck, there are data points in
both samples for which the values of α- and β-service level calculated based on
the simplified model deviate significantly from the ones calculated based on the
exact model.
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Table 8.5: Deviation of β-service level between the simplified and the exact model for order fulfil-
ment systems with a shifting bottleneck.

Absolute deviation1 Relative deviation [%]2

Utilisation Min Max Average Min Max Average No.

Sample C [0.2,0.3) -3.23E-08 2.80E-05 5.60E-06 0.0000 0.0028 0.0006 5
[0.3,0.4) -2.61E-06 1.25E-08 -3.03E-07 -0.0003 0.0000 0.0000 15
[0.4,0.5) -1.11E-06 3.55E-05 4.98E-06 -0.0001 0.0035 0.0005 24
[0.5,0.6) -1.19E-05 3.23E-05 6.78E-06 -0.0012 0.0032 0.0007 23
[0.6,0.7) -1.35E-05 2.03E-05 2.39E-06 -0.0013 0.0020 0.0002 31
[0.7,0.8) -1.09E-05 4.28E-05 4.85E-06 -0.0011 0.0043 0.0005 22
[0.8,0.9) -1.19E-03 5.64E-05 -7.28E-05 -0.1205 0.0056 -0.0073 28
[0.9,1.0) -6.69E-03 5.99E-05 -1.27E-03 -0.9864 0.0060 -0.1483 19

[0.2,1.0) -6.69E-03 5.99E-05 -1.54E-04 -0.9864 0.0060 -0.0178 167

Sample E [0.3,0.4) -1.03E-09 2.09E-06 7.21E-07 0.0000 0.0002 0.0001 3
[0.4,0.5) -3.36E-06 3.89E-05 7.58E-06 -0.0003 0.0039 0.0008 14
[0.5,0.6) -1.19E-05 5.43E-05 4.80E-06 -0.0012 0.0054 0.0005 40
[0.6,0.7) -1.44E-04 4.77E-05 -5.70E-06 -0.0145 0.0048 -0.0006 58
[0.7,0.8) -9.96E-04 4.36E-05 -7.16E-05 -0.1002 0.0044 -0.0072 83
[0.8,0.9) -9.49E-02 2.92E-05 -5.11E-03 -10.4485 0.0029 -0.5413 89
[0.9,1.0) -2.29E-01 1.68E-05 -3.11E-02 -26.3286 0.0017 -3.5121 47

[0.3,1.0) -2.29E-01 5.43E-05 -5.76E-03 -26.3286 0.0054 -0.6402 334
1 Difference between the value ofβ-service level calculated based on the simplifiedmodel and the one calculated
based on the exact model.

2 Difference between the value ofβ-service level calculated based on the simplifiedmodel and the one calculated
based on the exact model, divided by the value calculated based on the exact model.

Figure 8.1 presents the relative deviations of α- and β-service level between
the simplified and the exact model depending on the utilisation of the order
fulfilment system for order fulfilment systems with a shifting bottleneck in
samples C and E. It indicates that the utilisation of the order fulfilment system
has a systematic impact on the relative deviations of α- and β-service level since
the absolute value of the relative deviations of α- and β-service level increases
as the utilisation converges towards one.
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(a) α-service level in sample C (b) α-service level in sample E

(c) β-service level in sample C (d) β-service level in sample E

Figure 8.1: Deviation ofα- and β-service level between the simplified and the exact model for order
fulfilment systems with a shifting bottleneck.

In sample C, for systems with a utilisation smaller than 0.8, the relative deviation
is between -0.003% and 0.005% for α-service level and between -0.001% and
0.004% for β-service level. In sample E, for systems with a utilisation smaller
than 0.6, we observe a relative deviation of α-service level between -0.001% and
0.006% and of β-service level between -0.001% and 0.005%. Thus, for order
fulfilment systems with a utilisation smaller than approximately 0.6, the absolute
value of the relative deviation of α- and β-service level is at most 0.005% in both
samples. We state these deviations to be negligible and conclude that the chosen
model for performance analysis – exact or simplified model – has a negligible
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impact on the values of α- and β-service level in order fulfilment systems with
a utilisation smaller than approximately 0.6 and with a shifting bottleneck.

In contrast, in sample C, the maximum absolute value of the relative deviation is
3.3% for α-service level and 1% for β-service level for systems with a utilisation
of [0.9,1.0). In sample E, the maximum absolute value of the relative deviation
is 17.3% for α-service level and 10.4% for β-service level when considering
systemswith a utilisation of [0.8,0.9). Furthermore, for systemswith a utilisation
of [0.9,1.0), we observe a maximum absolute value of the relative deviation of
47.6% for α-service level and 26.3% for β-service level. These results indicate
that the values of α- and β-service level calculated based on the simplified
model can strongly deviate from the ones calculated based on the exact model
for systems with a utilisation higher than 0.8 and a shifting bottleneck.

By comparing the magnitude of the absolute and relative deviations of α- and
β-service level between sample C and sample E, we observe that the number
of processes of the considered order fulfilment system has a systematic impact
on the deviations of α- and β-service level between the simplified and the exact
model. The maximum absolute value of the relative deviation of α-service level
is 3.3% for the two-stage systems of sample C, whereas it is 47.6% for the three-
stage systems of sample E. Themaximum absolute value of the relative deviation
of β-service level is 1% for the two-stage systems of sample C and 26.3% for the
three-stage systems of sample E. These results indicate that the absolute values
of the deviations of α- and β-service level between the simplified and the exact
model increase with an increasing number of processes in the system.

8.2.3 Discussion

For order fulfilment systems with a utilisation smaller than approximately 0.6
or systems with a static bottleneck, the chosen model for performance analysis
– exact or simplified model – has a negligible impact on the values of α-
and β-service level in both samples. For these systems, the observed absolute
deviations have a magnitude of at most 6.4E-05. In contrast, for order fulfilment
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systems with a utilisation higher than 0.8 and a shifting bottleneck, there are
significant deviations of α- and β-service level between the simplified and the
exact model. For instance, for systems with a utilisation of [0.9,1.0), we observe
an absolute value of the relative deviation of α-service level of at most 3.3%
and on average 0.5% in sample C and of at most 47.6% and on average 6.9% in
sample E. In conclusion, these results confirm that the values of customer-related
performance measures calculated based on the simplified model deviate from
the exact ones calculated based on the exact model for performance analysis
of order fulfilment systems with high utilisation and a shifting bottleneck (see
hypothesis 3).

The deviations of α- and β-service level observed for order fulfilment systems
with a utilisation higher than 0.8 and a shifting bottleneck are negative. Thus,
the values of α- and β-service level calculated based on the simplified model are
smaller than the ones calculated based on the exact model. These results confirm
that the simplified model underestimates the exact values of α- and β-service
level for performance analysis of order fulfilment systems with high utilisation
and a shifting bottleneck (see hypothesis 4).

Furthermore, for order fulfilment systems with a utilisation higher than 0.6 and
a shifting bottleneck, the number of processes of the considered order fulfilment
system has a positive impact on the absolute magnitude of the deviations of α-
and β-service level between the simplified and the exact model. The modelling
inaccuracies of the simplified model result from the fact that partially processed
orders are not modelled in the simplified model (see Section 8.1). Partially
processed orders occur at the buffers of the processes p ∈ P \ {1} of an order
fulfilment system. Consequently, the higher the number of processes, the more
partially processed orders can occur in the order fulfilment system, and the
higher are the modelling inaccuracies and thus the inaccuracies of performance
analysis of the simplified model.

In the context of workload balancing in order fulfilment systems, the focus is
neither on systems with low utilisation nor on systems with a static bottleneck:
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On the one hand, in order fulfilment systems with low utilisation, provided capa-
city is not used efficiently and thus the order fulfilment system is not competitive
in the long run due to the recently intensified competition (Van Gils et al. 2018;
Kundu et al. 2020). On the other hand, in order fulfilment systems with a static
bottleneck, the most crucial measure for improvement is not workload balancing
but increasing the processing performance at the bottleneck. Consequently, we
expect order fulfilment systems with high utilisation and a shifting bottleneck to
be the main application field for workload balancing. For performance analysis
of these systems, one should prefer the exact model as the simplified model is
limited to worst-case analyses of system throughput and service level.

8.3 Memory and Computation Time
Requirements

In the simplified model, any multi-stage order fulfilment system is modelled as a
single-stage system consisting of one aggregated process (see Figure 5.2). Thus,
modelling the corresponding Markov chain is less complex than modelling the
one in the exact model. The simplified model can be seen as a special case
of the exact model since its Markov chain ensues from the Markov chain of
the exact model when modelling is restricted to single-stage order fulfilment
systems. Consequently, we expect differences between the simplified and the
exact model regarding memory usage and computation time. In the follow-
ing, we initially derive two hypotheses on the impact of the selected model for
performance analysis on memory and computation time requirements (see Sec-
tion 8.3.1). Subsequently, we verify these hypotheses in a numerical analysis
(see Section 8.3.2).
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8.3.1 Hypotheses

In the simplified model, any multi-stage order fulfilment system is modelled as a
single-stage system by combining the processing steps p ∈ P to one aggregated
process. The process index p is neglected in the definition of system state (see
Section 7.2.1). System state is a (R+ emax + 1)-dimensional vector in the
simplified model, whereas system state in the exact model corresponds to a
(pmax × (R+ emax + 1))-dimensional matrix (see Section 6.2.1). The size of
the state space in the exact model (see equation (6.45)) can be expressed as an
integer multiple N ∈ N of the size of the state space in the simplified model
(see equation (7.9)) with

N =

pmax∏
p=2

[ −1∏
k=−R

(
(emax + |k|) · h(p−1),max + 1

)

·
emax∏
k=0

(
(emax − k + 1) · h(p−1),max + 1

)]
.

(8.29)

Thus, the state space of the Markov chain in the exact model is always larger
than the one in the simplified model. As the size of the state space drives the
memory requirements to store the state space, the transition matrix, and the
limiting distribution of the Markov chain as well as the computational effort
to calculate the Markov chain (see Section 6.4), we formulate the following
hypotheses regarding memory and computation time requirements:

Hypothesis 5. Performance analysis of order fulfilment systems based on the
exact model requires more memory than performance analysis based on the
simplified model.

Hypothesis 6. Performance analysis of order fulfilment systems based on the
exact model requires more computation time than performance analysis based
on the simplified model.
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8.3.2 Numerical Results

To verify hypotheses 5 and 6, we conduct a numerical analysis based on
samples C and E. Sample C contains 256 two-stage order fulfilment systems,
and sample E consists of 353 three-stage order fulfilment systems. The samples
differ regarding the ranges of the parameters, especially regarding the discretisa-
tion of the number of incoming orders per time period A: Its range is given by
AC = {3, 4, . . . , 14} in sample C andAE = {2, 3, . . . , 7} in sample E. A com-
prehensive description of the samples is given in Appendix C.2. As evaluation
criterion of the computation time, we measure the time required to calculate the
Markov chain and the performance measures. Furthermore, we use the number
of reachable states of the Markov chain as an indicator of memory requirements.

Table 8.6 presents the number of reachable states and the computation time of the
exact and the simplified model as well as the absolute and relative deviations in
the number of reachable states and the computation time between the exact and
the simplified model for samples C and E. For each of these criteria, Table 8.6
gives the minimum, the maximum, and the average value.

In sample C, the number of reachable states is on average 135,072 states in the
exact model and on average 7,568 states in the simplified model. In sample E,
we observe on average 74,503 reachable states in the exact model and on average
1,101 reachable states in the simplified model. Thus, we observe an average
relative deviation in the number of reachable states between the simplified and
the exact model of -91.7% in sample C and -98.1% in sample E. These results
confirm that performance analysis based on the exactmodel requires significantly
more memory than performance analysis based on the simplified model (see
hypothesis 5).

In sample C, the average computation time is 1.4 hours for the exact model
and 2.6 seconds for the simplified model. In sample E, we observe an average
computation time of 25.6 minutes for the exact model and 0.2 seconds for the
simplified model. In both samples, the average relative deviation in computation
time between the simplified and the exact model is -99%. These results confirm

117



8 Evaluation of Models for Performance Analysis

Table 8.6: Number of reachable states and computation time of the exact and the simplifiedmodel.1,2

Number of reachable states Computation time [s]

Min Max Average Min Max Average

Sample C Exact model 11,131 215,155 135,072 12.40 20,418.07 4,890.58
Simplified model 3,610 8,387 7,568 1.23 4.26 2.63

Abs. deviation3 -207,334 -3,309 -127,504 -20,415 -10 -4,888
Rel. deviation [%]4 -98.08 -29.73 -91.74 -99.99 -80.69 -99.31

Sample E Exact model 1,807 133,646 74,503 1.77 7,418.54 1,534.94
Simplified model 931 1,212 1,101 0.09 0.50 0.15

Abs. deviation3 -132,535 -680 -73,402 -7,418 -1.64 -1,534
Rel. deviation [%]4 -99.17 -37.63 -98.11 -100.00 -92.83 -99.96

1 We apply the strategies for runtime and memory optimisation introduced in Chapter 10 to calculate theMarkov
chain of the exact and the simplified model.

2 Computations are conducted on a server with a CPU of 64 kernels and 128 threads and a RAM of 128 GB.
3 Difference between the value of the considered criterion in the simplified model and the one in the exact
model.

4 Difference between the value of the considered criterion in the simplified model and the one in the exact
model, divided by the value in the exact model.

that performance analysis based on the exact model requires significantly more
computation time than performance analysis based on the simplified model (see
hypothesis 6).

Note that it is not meaningful to compare the absolute values of the number of
reachable states and the computation time between samples C and E since they
depend on the discretisation of the stochastic parameters of the order fulfilment
systems, which differs between samples C and E (see Appendix C.2).

8.4 Chapter Conclusion

In this chapter, we evaluated and compared the exact and the simplified model
for performance analysis regardingmodelling accuracy, accuracy of performance
analysis, memory usage, and computational effort.
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Regarding memory usage and computational effort, the Markov chain of the
simplified model requires significantly less memory and significantly shorter
computation times than the corresponding Markov chain of the exact model due
to its smaller number of reachable states (average reduction in the number of
reachable states by more than 90%). Thus, when memory and computation time
are scarce, the simplified model should be preferred over the exact model.

Regarding modelling accuracy, we showed that the simplified model suffers from
modelling inaccuracies for performance analysis of order fulfilment systems
with a shifting bottleneck and high utilisation: We mathematically proved that
for this configuration of order fulfilment systems, the expected value of the
system throughput calculated based on the simplified model is smaller than the
actual expected value of the system throughput calculated based on the exact
model. Furthermore, we numerically showed that these modelling inaccuracies
of the simplified model lead to inaccuracies in the values of customer-related
performance measures. For order fulfilment systems with high utilisation and
a shifting bottleneck, the simplified model results in smaller values of α- and
β-service level than the exact model. For instance, for systems with a utilisation
of [0.9,1.0), the absolute value of the relative deviation of α-service level is at
most 3.3% and on average 0.5% in the sample of two-stage systems, and it is at
most 47.6% and on average 6.9% in the sample of three-stage systems. Hence,
for order fulfilment systems with high utilisation and a shifting bottleneck,
it is only reasonable to use the simplified model for worst-case analyses of
system throughput and service level. In contrast, for order fulfilment systems
with high utilisation and a static bottleneck, we mathematically proved that the
expected value of the system throughput calculated based on the simplifiedmodel
corresponds to the actual expected value of the system throughput calculated
based on the exact model. For order fulfilment systems with low utilisation, we
numerically showed that system performance calculated based on the simplified
model is the same as the one calculated based on the exact model, apart from
negligible numerical errors.

Order fulfilment systems with high utilisation and a shifting bottleneck are pre-
dominant in practical applications of workload balancing. For performance
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analysis of these systems, the exact model outperforms the simplified model in
terms of modelling accuracy and accuracy of performance analysis, despite its
drawbacks regarding memory and computation time requirements. The simpli-
fied model is limited to a worst-case performance analysis for these systems.
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9 Formalisation and Solution
Algorithms of the Capacity
Planning Problem

The analytical models developed in Chapters 6 and 7 enable the performance
analysis of any order fulfilment system with a given system configuration. How-
ever, the focus of operations managers is not on the performance analysis of a
given system configuration but on adapting the current system configuration to
guarantee promised performance requirements to their customers. In particular,
they have to decide on the capacity that is provided at the processing steps of the
order fulfilment system to meet the performance requirements of the customers.
Hence, this chapter aims at formalising the capacity planning problem in order
fulfilment systems and at providing suitable solution algorithms. Section 9.1
introduces the mathematical formulation of the capacity planning problem, and
Section 9.2 provides an overview of the research field of derivative-free and
blackbox optimisation algorithms. In Section 9.3, we identify Mesh Adaptive
Direct Search (MADS) and Surrogate Optimisation Integer (SO-I) to be suit-
able solution algorithms for capacity planning in order fulfilment systems. Their
procedure and their problem-specific configuration are presented in Sections 9.4
and 9.5, respectively. By summarising the results of this chapter, Section 9.6
provides an answer to the third research question of this thesis.
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9.1 Capacity Planning Problem

Capacity planning in multi-stage order fulfilment systems determines the min-
imum possible capacity that has to be provided at each processing step to meet
the performance requirements of the customers, such as a β-service level of
98%, in a multi-stage order fulfilment system with levelled order release. In the
following, we introduce the mathematical formulation of the capacity planning
problem (see Section 9.1.1) and specify its characteristics (see Section 9.1.2).

9.1.1 Mathematical Formulation

The decision variables of the capacity planning problem are defined by

c =
(
c1 . . . cpmax

)
, (9.1)

whereby cp ∈ N specifies the capacity provided at processing step p ∈ P . The
objective function minimises the sum of provided capacity:

min
∑
p∈P

cp.

We ensure that the performance SL(c) achieved with the capacity c is as least as
high as the required performance SL∗ by formulating the following constraint:

SL(c) ≥ SL∗.

Performance requirements in order fulfilment are commonly given as service
level requirements. However, any other performance measure of the order fulfil-
ment system (see Table 6.1) can be used to specify the performance requirements
of the customers. It is even possible to consider multiple different performance
requirements in the capacity planning problem. In this case, each performance
requirement is modelled as a separate constraint.
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Furthermore, we ensure the order fulfilment system to be stable by limiting the
order income-related utilisation Ũ(c) of the order fulfilment system with the
provided capacity c to at most one:

Ũ(c) ≤ 1.

We can derive lower cp,min and upper limits cp,max of the provided capacity cp,
p ∈ P , based on the ranges of the number of incoming orders per time period A
and the processing performances per time unit Lp of the processes p ∈ P of the
considered order fulfilment system. We obtain the minimum possible value of
the required capacity c1,min at process p = 1 if the number of incoming orders
per time period is at its minimum amin, and the processing performance per
time unit of process p = 1 is at its maximum l1,max. For processes p ∈ P \ {1},
the minimum possible value of the required capacity cp,min corresponds to the
smallest value of the minimum possible number of incoming orders per time
period amin and theminimum possible processing performances per time period
(cp′,min · lp′,min) of the previous processing steps (p′ < p):

cp,min =


⌈
amin
l1,max

⌉
p = 1⌈

min{amin;minp′∈P,p′<p{cp′,min·lp′,min}}
lp,max

⌉
p ∈ P \ {1}.

(9.2)

In contrast, we obtain the maximum possible value of the required capacity
c1,max at process p = 1 if the number of incoming orders per time period is
at its maximum amax, and the processing performance per time unit of process
p = 1 is at its minimum l1,min. For processes p ∈ P \ {1}, the maximum pos-
sible value of the required capacity cp,max results from the ratio of the maximum
possible processing performance per time period

(
c(p−1),max · l(p−1),max

)
of

the previous processing step (p − 1) to the minimum possible processing per-
formance per time unit lp,min of process p:

cp,max =


⌈
amax
l1,min

⌉
p = 1⌈

c(p−1),max·l(p−1),max

lp,min

⌉
p ∈ P \ {1}.

(9.3)
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Consequently, the domain C of the decision variables c is specified as follows

C = {c ∈ Npmax | cp,min ≤ cp ≤ cp,max ∀p ∈ P} . (9.4)

The resulting mathematical formulation of the capacity planning problem is
given as follows

min
∑
p∈P

cp (9.5)

s.t. SL(c) ≥ SL∗ (9.6)

Ũ(c) ≤ 1 (9.7)

c ∈ C (9.8)

c ∈ Npmax . (9.9)

9.1.2 Characteristics

The capacity planning problem (9.5)-(9.9) is a constrained integer optimisation
model. Its special characteristic is that the relationship between the provided
capacity c and the performance SL(c) that is achieved with this capacity cannot
be specified by a mathematical equation describing the performance of the order
fulfilment system depending on the provided capacity. Instead, the relationship
between the provided capacity and the resulting performance is specified by the
analytical model for performance analysis that calculates for any order fulfilment
system with given capacity the resulting system performance. This kind of
optimisation model is called blackbox optimisation model.

The optimisation model

min Θ(ξ) (9.10)

s.t. Λj(ξ) ≤ 0 ∀j ∈ J (9.11)

ξ ∈ Ω (9.12)

ξ ∈ Rn (9.13)
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with objective function Θ(ξ), a finite number of constraints Λj(ξ), j ∈ J , and
a finite variable domain Ω is said to be a blackbox optimisation model if the
objective function Θ(ξ) and/or the constraints Λj(ξ), j ∈ J , are not given as
mathematical equations but as a blackbox (Audet and Hare 2017, p.5).

In the case of the capacity planning problem, constraint (9.6) is given as a
blackbox, whereby the analytical model for performance analysis represents the
blackbox. In conclusion, the blackbox optimisation model for capacity planning
has the following characteristics:

• One linear objective function (see equation (9.5)),

• One blackbox constraint (see equation (9.6)),

• One non-linear constraint (see equation (9.7)),

• Bound constraints (see equation (9.8)), and

• Integer decision variables (see equation (9.9)).

Furthermore, the blackbox constraint is said to be relaxable since it does not need
to be satisfied to obtain a meaningful output of the blackbox (Le Digabel and
Wild 2015). These characteristics become crucial in Section 9.3 when selecting
suitable solution algorithms for the capacity planning problem.

9.2 Derivative-free and Blackbox
Optimisation Algorithms

In contrast to classical optimisation models, gradient information of the object-
ive functions and the constraints of blackbox optimisation models are not or
only partially available. Thus, common gradient-based solution approaches of
optimisation models cannot be applied to solve blackbox optimisation models,
such as the capacity planning problem. The research field of derivative-free
and blackbox optimisation studies optimisation algorithms that do not require
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derivative information. Thus, these optimisation algorithms are applicable to
solve the capacity planning problem.

9.2.1 Definition

Derivative-free optimisation is defined as themathematical study of optimisation
algorithms that do not use gradient information. In contrast, blackbox optimisa-
tion focuses on the design and analysis of algorithms that assume the objective
function and/or the constraints to be given as blackboxes. Blackbox optimisation
usually does not make any assumptions regarding continuity, differentiability, or
smoothness of the outputs. It includes research on heuristic methods or ad hoc
methods for solving blackbox optimisation models. In contrast, derivative-free
optimisation focuses on methods that can be mathematically analysed to prove
convergence and/or to provide a stopping criterion (Audet and Hare 2017, p.5f.).

Typical application fields of derivative-free and blackbox optimisation are op-
timisation models whose functions are provided by a computer simulation that
cannot be easily subjected to differentiation, optimisation models that involve
conducting laboratory experiments that cannot be described by explicit math-
ematical equations, and optimisation models including noisy functions whose
gradients are highly unreliable (Audet and Hare 2017, p.11f.).

If gradient information of the objective function and the constraints are avail-
able, reliable, and obtainable at reasonable cost, derivative-free and blackbox
optimisation algorithms rarely outperform standard gradient-based optimisation
algorithms. Thus, in this case, gradient-based algorithms should always be
preferred (Audet and Hare 2017, p.6).
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9.2.2 Classification

There are several criteria to classify the field of derivative-free and blackbox op-
timisation algorithms. Rios and Sahinidis (2013) provide a review on derivative-
free algorithms for blackbox optimisation models with bound constraints and
classify the algorithms into direct versus model-based algorithms, local versus
global algorithms, and stochastic versus deterministic algorithms. The classi-
fication into direct and model-based methods is the most common one in the
literature.

9.2.2.1 Direct Search Methods

There is no exact definition of the term direct search in the literature. It was first
mentioned by Hooke and Jeeves (1961), who defined direct search as “sequential
examination of trial solutions involving comparison of each trial solutionwith the
best [solution] obtained up to that time together with a strategy for determining
what the next trial solution will be.” A direct search method is an iterative
method that only uses comparisons of function values to determine trial points
and that does not attempt to develop or use approximate gradients (Audet 2014;
Larson et al. 2019, p.293). The pioneers among the direct search methods are
the Coordinate Search (Fermi 1952), the Nelder-Mead algorithm (Nelder and
Mead 1965), and the Hooke and Jeeves algorithm (Hooke and Jeeves 1961).

9.2.2.2 Model-based Derivative-free Methods

Model-based derivative-free methods iteratively construct a surrogate model to
approximate the blackbox model (Sóbester et al. 2012). The objective function
and the constraints of a surrogate model are reasonably accurate representations
of the ones of the blackbox model at least locally, but the surrogate model is
much faster to evaluate than the blackbox model. Note that the surrogate model
of the blackbox optimisation model (9.10)-(9.13) consists of (|J |+1) surrogate
functions, one for the objective function and one for every constraint j ∈ J . In
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each iteration, the surrogate model is used to determine new candidate points
(Koziel et al. 2011, p.34f.), (Audet and Hare 2017, p.236).

The generic procedure of a model-based derivative-free method consists of the
following phases (Vu et al. 2017):

1. Design phase,

2. Model phase, and

3. Search phase.

In the design phase, a set of starting points is created, and the blackbox model
is evaluated at these points. The Latin hypercube design is a commonly used
approach to create this set. The purpose of the design phase is to create a set
of points uniformly spread over the domain Ω of the blackbox model to get a
first, global picture of its behaviour. In the model phase, a surrogate model of
the blackbox model is constructed based on the already evaluated points. The
most commonly used surrogate functions to approximate the blackbox model are
polynomials, radial basis functions, and kriging models. It can be reasonable
to consider multiple surrogate models in the model phase to prevent the user
from choosing a poorly fitted model (Viana et al. 2013). Subsequently, in the
search phase, a new candidate point is selected based on the surrogate model,
the blackbox model is evaluated at this point, and this point is added to the set
of already evaluated points. The selection of a new candidate point is the most
crucial step in this phase. There is always the trade-off between exploitation –
select a point around the current best point – and exploration – select a point
that is far from all previously considered points to ensure that no global solution
is overlooked. The model and the search phase are repeated until a predefined
stopping criterion, such as a maximum number of evaluations of the blackbox
model, is met (Vu et al. 2017).

Koziel et al. (2011) and Vu et al. (2017) provide comprehensive reviews of
model-based derivative-free algorithms for blackbox optimisation models.
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9.3 Selection of Solution Algorithms for
Capacity Planning

To select suitable algorithms for the capacity planning problem, we refer to the
following criteria:

• The algorithm meets the characteristics of the capacity planning problem
(see Section 9.1.2). Thus, we require an algorithm for constrained integer
blackbox optimisation models.

• The convergence of the algorithm is mathematically proven.

• The implementation of the algorithm is open source.

We select one direct search method and one model-based derivative-free method
to investigate a representative of each category of blackbox optimisation al-
gorithms regarding its performance in solving the capacity planning problem.

The focus of derivative-free and blackbox optimisation algorithms in the liter-
ature is on unconstrained problems on the one hand and optimisation models
with continuous decision variables on the other hand. However, derivative-free
algorithms solving constrained integer blackbox optimisationmodels have barely
been studied in the literature so far (Müller et al. 2014).

Regarding the class of direct search methods, we prefer theMesh Adaptive Direct
Search (MADS) (Audet andDennis Jr 2006) over theGeneralised Pattern Search
(Torczon 1997), and the Coordinate Search (Fermi 1952) since the MADS
algorithm is the only method that considers general constraints. Furthermore,
integer variables can be easily handled by the MADS algorithm since its mesh
imposes a discrete structure on the variable domain. The MADS algorithm is
a local optimisation method whose convergence to a local optimum is mathe-
matically proven (Audet 2014). The implementation of the MADS algorithm is
provided in the open-source software tool NOMAD (Abramson et al. 2018).
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Regarding the class of model-based derivative-free methods, we select the Sur-
rogate Optimisation Integer (SO-I) algorithm (Müller et al. 2014), which is an
asymptotically complete model-based algorithm for integer optimisation models
with computationally expensive blackbox objective functions and constraints.
The implementation of the SO-I algorithm is available as MATLAB surrogate
model toolbox MATSuMoTo (Müller 2014).

9.4 Capacity Planning using Mesh Adaptive
Direct Search (MADS)

The direct search methodMesh Adaptive Direct Search (MADS) introduced by
Audet and Dennis Jr (2006) is an iterative procedure to identify a local optimum
of the blackbox optimisation model by evaluating the blackbox model at selected
points, starting at a given initial point. In each iteration, new points are selected
based on different criteria: Search step and poll step. The main characteristic
of the MADS algorithm is that every trial point has to be part of the mesh. The
mesh is a discretisation of the variable domain Ω, and the mesh size parameter
controls its fineness (Audet and Hare 2017, p.136-140).

In the following, we initially provide a high-level description of the MADS
algorithm for solving unconstrained blackbox optimisation models with bound
constraints (see Section 9.4.1). Subsequently, we present several selected exten-
sions of the MADS algorithm, such as constraint handling, that are relevant for
solving the capacity planning problem (see Section 9.4.2). Finally, we introduce
the problem-specific configuration of theMADS algorithm for capacity planning
in order fulfilment systems (see Section 9.4.3).
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9.4.1 General Procedure

Weonly provide a high-level description of the procedure and themain character-
istics of the MADS algorithm for solving unconstrained blackbox optimisation
models with bound constraints. A detailed description can be found in Audet
and Hare (2017, p.136-140).

Each iteration of the MADS algorithm consists of the following steps:

1. Search step,

2. Poll step,

3. Parameter update, and

4. Check of stopping criterion.

In the search step, anymethod can be used to select a finite number of trial points.
The focus of the search step is on exploring the variable domain Ω to escape
from local optima and seek a global optimum. Line search, surrogate models,
or heuristic methods, such as Tabu search, variable neighbourhood search, and
simulated annealing, are commonly used methods (see Section 9.4.2.4). The set
of trial points is evaluated either opportunistically or completely. In the case of
an opportunistic evaluation, the evaluation of trial points stops as soon as a new
incumbent solution is found. Otherwise, in the case of a complete evaluation, all
trial points are evaluated, and the best trial point is selected as new incumbent
solution, only if it outperforms the current incumbent solution.

In the poll step, a finite number of trial points around the current incumbent
solution is selected based on given polling conditions:

• The distance between the incumbent solution and every trial point gener-
ated in the poll step is limited by the poll size parameter.

• The directions used to construct the poll set form a positive spanning set.

131



9 Formalisation and Solution Algorithms of the Capacity Planning Problem

The MADS algorithm provides different strategies to generate the polling direc-
tions (see Section 9.4.2.2). The set of trial points is evaluated using either the
opportunistic or the complete strategy, analogous to the search step. The poll
step ensures global convergence towards a local optimum.

In the step of parameter update, mesh and poll size parameter are updated
depending on whether the current iteration was successful – a new incumbent
solution was found – or unsuccessful – no new incumbent solution was found.
The mesh size parameter converges much faster towards zero than the poll size
parameter does. Hence, trial points in the search and the poll step can be chosen
on a finer mesh than the mesh defined by the poll size parameter.

At the end of each iteration, the stopping criterion is checked. Either the total
number of blackbox model evaluations, the computation time, or a threshold
of the mesh size parameter are used to specify the stopping criterion. If the
stopping criterion is met, the algorithm terminates. Otherwise, a new iteration
is conducted.

The choice of the initial point is a crucial issue since the number of required
iterations significantly reduces when choosing a good initial point. Either the
initial point is chosen based on practitioners’ professional intuition, or a small
number of blackbox model evaluations is conducted to explore the behaviour
of the blackbox model in the variable domain and to determine the initial point
based on this sample.

9.4.2 Extensions

In the following, we consider several extensions of the generic procedure of the
MADS algorithm presented in Section 9.4.1. However, we limit ourselves to
the extensions that are relevant for solving the capacity planning problem by the
MADS algorithm.
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9.4.2.1 Constraint Handling

The MADS algorithm provides multiple approaches for constraint handling
depending on the fact whether the constraints are relaxable or unrelaxable. A
relaxable constraint does not need to be satisfied to obtain a meaningful output of
the blackbox. In contrast, a blackbox model with an unrelaxable constraint only
provides ameaningful output if the unrelaxable constraint is satisfied (LeDigabel
and Wild 2015).

The extreme barrier approach considers unrelaxable constraints. It sets the
objective value to infinity for every infeasible point. Thus, the constrained
blackbox optimisation model is treated as an unconstrained one, and any feasible
point is preferred over any infeasible one (Audet and Dennis Jr 2006).

The progressive barrier approach uses the following non-negative constraint
violation function

Γ(ξ) =
∑
j∈J

(max {0; Λj(ξ)})2 (9.14)

to handle relaxable constraints. It places a threshold on the constraint violation it
allows. All infeasible points that exceed this threshold are rejected, whereby the
value of the threshold is progressively tightened with an increasing number of
conducted iterations. The MADS algorithm with progressive barrier approach
differentiates between feasible and infeasible incumbent solutions. In the poll
step, polling is done around some points of the set of feasible incumbent solutions
and the set of infeasible incumbent solutions (Audet and Dennis Jr 2009).

The progressive to extreme barrier approach is a hybrid method of progress-
ive and extreme barrier approach. Relaxable constraints are initially treated
by the progressive barrier approach. If polling around an infeasible incumbent
solution generates a new infeasible incumbent that satisfies a constraint violated
by the current infeasible incumbent, the corresponding constraint is treated by
the extreme barrier approach in all future iterations. Consequently, all relax-
able constraints are treated by the extreme barrier approach after finitely many
iterations (Audet et al. 2010).
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9.4.2.2 Strategies to Generate Poll Directions

The MADS algorithm provides several strategies to generate the directions used
to construct trial points in the poll step. The precondition is that the directions
form a positive spanning set.

GPS is the most straightforward strategy to generate poll directions. Following
the approach of the Generalised Pattern Search (Torczon 1997), GPS uses the
coordinate directions as poll directions.

LTMADS is a random procedure to generate poll directions. The main draw-
backs are that the runs of the MADS algorithm are not reproducible due to the
randomly generated directions and that the generated directions are not necessar-
ily orthogonal, which possibly leads to large angles between directions. Audet
and Dennis Jr (2006) provide a detailed description of LTMADS.

In contrast, ORTHOMADS is a deterministic procedure to generate poll dir-
ections that provides an orthogonal positive spanning set of polling directions.
Thus, the directions cover the surface of the unit sphere more densely and evenly
than the ones of LTMADS. The procedure of ORTHOMADS is presented in
detail in Abramson et al. (2009).

9.4.2.3 Surrogate Management Framework

If it is computationally expensive to evaluate the blackbox model at a certain
point, it can be reasonable to use surrogate models. An overview of commonly
used surrogate functions is given in Table 9.1. The surrogate management
framework specifies how surrogate models can be integrated into direct search
methods, especially into the MADS algorithm (Audet 2014).

On the one hand, surrogate models can be applied to conduct a model-based
search in the search step. For this, a surrogate model is constructed based on the
set of already evaluated points. The surrogate model is optimised to generate a
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Table 9.1: Commonly used surrogate functions in derivative-free and blackbox optimisation (Conn
and Le Digabel 2013; Vu et al. 2017; Audet et al. 2018; Bhosekar and Ierapetritou
2018).

Quadratic model Σ(ξ) = ω0 + ω1 · ξ + ω2 · ξ2

Polynomial response surface Σ(ξ) =
∑nF
j=1 ωj · χj(ξ)

Kriging model Σ(ξ) =
∑nF
j=1 ωj · ψj(ξ) + ε(ξ)

Radial basis function Σ(ξ) =
∑nS
i=1 ωi · φ(δ(ξ, ξi))

Kernel smoothing model Σ(ξ) =
∑nS
i=1 φ(δ(ξ,ξi))·Θ(ξi)∑nS

i=1 φ(δ(ξ,ξi))

Notation
Σ(ξ) Surrogate function
χ(ξ) Polynomial basis function of polynomial response surface
ψ(ξ) Basis function of Kriging model that defines the trend of the mean prediction
ε(ξ) Random error of Kriging model that is normally distributed with zero mean
φ(ξ) Kernel function

• Linear: φ(ξ) = ξ

• Cubic: φ(ξ) = ξ3

• Thin plate spline: φ(ξ) = ξ2 · ln(ξ)

• Gaussian: φ(ξ) = e
− ξ2

2σ2 , whereby σ denotes the shape coefficient
• Multi-quadric: φ(ξ) =

√
ξ2 + σ2, whereby σ denotes the shape coefficient

• Inverse multi-quadric: φ(ξ) = 1√
ξ2+σ2

, whereby σ denotes the shape coefficient

δ(ξ, ξi) Distance function, for instance l1-, l2- and l∞-norm
ω Weight
nF Number of independent basis functions
nS Sample size of sample used to construct the surrogate function
ξi ith sample point
Θ(ξi) True function value of the ith sample point

finite set of trial points, and the blackbox model is evaluated at these trial points
using the opportunistic strategy (Audet and Hare 2017, p.238).

On the other hand, surrogatemodels can be used to order a given set of trial points
either in the search or the poll step. For this, a surrogate model is constructed
based on the set of already evaluated points. The surrogate model is evaluated
at every trial point, and the trial points are sorted according to their value of the
surrogate model, such that the most promising trial point is the first point of the
ordered set. Finally, the blackbox model is evaluated at the ordered trial points
using the opportunistic strategy (Audet and Hare 2017, p.238).
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9.4.2.4 Methods to Use in the Search Step

There is a plethora of suitable methods to create trial points in the search
step. It is even possible to use several different methods in the search step. In
the following, we focus on the methods applied to solve the capacity planning
problem by the MADS algorithm.

As already described in Section 9.4.2.3, a model-based method can be used in
the search step to create a set of trial points based on a surrogate model.

Speculative search represents a further suitable method for the search step. If
the previous iteration of the MADS algorithm succeeded in finding an improved
incumbent solution, the speculative search in the search step of the current
iteration executes a simple line search along the previously successful polling
direction (Audet and Dennis Jr 2006).

Moreover, it is possible to use a problem-specific adaption of the Nelder-Mead
algorithm in the search step. Each iteration of the adapted Nelder-Mead al-
gorithm starts with a set of affinely independent points defining a simplex.
These simplex points are ordered based on the values of objective function and
constraints from the best to the worst. In each iteration, the worst point of the
simplex is replaced by a new point. Audet and Tribes (2018) give a detailed
description of the adapted Nelder-Mead algorithm.

9.4.3 Problem-specific Configuration

As already indicated by the discussed extensions in Section 9.4.2, the MADS
algorithm provides a plethora of algorithmic parameters enabling its problem-
specific configuration. The user manual of the corresponding software tool
NOMAD (Audet et al. 2009) provides a comprehensive overview of all al-
gorithmic parameters.
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Regarding a problem-specific configuration of the MADS algorithm for the
capacity planning problem, we determine the most important algorithmic para-
meters based on the results of numerical studies provided in the literature: First,
we choose the progressive barrier approach (see Section 9.4.2.1) to handle the
blackbox constraint of the capacity planning problem since it is a relaxable
constraint (see Section 9.1.2). Furthermore, numerical studies show that the
progressive barrier approach is the most reliable strategy for constraint handling
(Audet and Dennis Jr 2009; Audet et al. 2010). Second, regarding the strategy
to generate the poll directions (see Section 9.4.2.2), numerical studies show
that ORTHOMADS outperforms GPS and that solutions of ORTHOMADS are
not significantly bested by LTMADS in any scenario, especially in the case of
computationally expensive blackbox models, when only one run is conducted
(Abramson et al. 2009; Audet et al. 2010). Since the blackbox of the capacity
planning problem is computationally expensive, we prefer ORTHOMADS over
LTMADS.

We use the speculative search in the search step (see Section 9.4.2.4) and we
will investigate the added value of an additional use of the model-based method
and the Nelder-Mead algorithm in a numerical analysis on fine-tuning of the
MADS algorithm for solving the capacity planning problem in Chapter 11.
Furthermore, we will investigate different approaches to determine the initial
point of the MADS algorithm in this numerical analysis. The stopping criterion
of the MADS algorithm is defined by a threshold on the mesh size parameter.
We choose a tolerance of one since this corresponds to the natural threshold of
the mesh size parameter concerning integer blackbox optimisation models.

The blackbox optimisation model for capacity planning (9.5)-(9.9) has the fol-
lowing characteristics:

• The objective function (9.5) is continuous and strictly differentiable at any
point c ∈ Npmax .

• The variable domain C is finite (see equation (9.4)).
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• For every point within the variable domain C, the value of the objective
function and the value of Ũ(c) are finite, and the value of SL(c) is in the
range [0,1] due to the domain of the service level (see Section 6.3.7).

Based on these characteristics, applying the MADS algorithm with the pro-
gressive barrier approach, the constraint violation function (9.14), and OR-
THOMADS to the capacity planning problem generates a convergent refining
subsequence of incumbent solutions. The limit of the convergent refining sub-
sequence is a Clarke KKT stationary point for the optimisation of the capacity
planning problem. Audet et al. (2010) provide details on the convergence
analysis of the MADS algorithm with progressive barrier approach and OR-
THOMADS.

9.5 Capacity Planning using Surrogate
Optimisation Integer (SO-I)

The Surrogate Optimisation Integer (SO-I) algorithm introduced by Müller et
al. (2014) is a model-based derivative-free method for solving constrained,
integer blackbox optimisation models. In the following, we provide a high-
level description of the SO-I algorithm (see Section 9.5.1) and introduce the
problem-specific configuration of the SO-I algorithm for capacity planning in
order fulfilment systems (see Section 9.5.2).

9.5.1 General Procedure

The SO-I algorithm consists of two separate optimisation phases. The first
optimisation phase aims at finding a first feasible point if the initial set of points
does not contain any feasible point. For this, a model-based derivative-free
method (see below) is used to minimise the constraint violation function

Γ(ξ) =
∑
j∈J

max{0; Λj(ξ)} (9.15)
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with respect to the bound and integrality constraints of the blackbox optimisation
model. The second optimisation phase aims at identifying the minimum of the
constrained blackbox optimisation model. For this, a model-based derivative-
free method (see below) is used to minimise the penalty-augmented objective
function

Θp(ξ) =

Θmax + ρ ·
∑
j∈J (max{0; Λj(ξ)})2 if ξ is infeasible

Θ(ξ) if ξ is feasible,
(9.16)

with respect to the bound and integrality constraints of the blackbox optimisation
model. Θmax denotes the current worst feasible objective function value, and ρ
denotes the penalty factor.

The model-based derivative-free method used in both optimisation phases fol-
lows the generic procedure of model-based derivative-free methods as described
in Section 9.2.2.2: In the design phase, a Latin hypercube design is used to
create the initial set of points. A cubic radial basis function with l2-norm and a
linear polynomial tail is used as surrogate function. In the search phase, a finite
set of trial points is created by

• uniformly selecting integer points in the variable domain, and

• perturbing the best feasible point found so far.

Based on a score, the new candidate point is selected from the set of trial points.
The score is calculated as the weighted sum of the predicted objective function
value on the one hand and a distance criterion on the other hand. The predicted
objective function value of a trial point corresponds to the value of the surrogate
model at this point, scaled to the range [0,1]. The distance criterion calculates
the distance of a trial point to the set of already evaluated points, whereby the
result is also scaled to the range [0,1]. The iterative procedure terminates if
either a local minimum is found, or the number of blackbox model evaluations
equals the predefined maximum number of blackbox model evaluations (Müller
et al. 2014).
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The SO-I algorithm is asymptotically complete. Under the assumption of in-
definitely long runtime and exact calculations, the SO-I algorithm will find
the global minimum of the blackbox optimisation model with probability one
(Müller 2014).

9.5.2 Problem-specific Configuration

The SO-I algorithm, as described in Section 9.5.1, does not contain any degree
of freedom enabling a problem-specific configuration of the algorithm with
respect to the capacity planning problem. However, the SO-I implementation in
the MATLAB-toolbox MATSuMoTo provides several algorithmic parameters
to configure the SO-I algorithm. We will investigate some of them, such as the
selected surrogate function and the selected sampling strategy in the search step,
in a numerical analysis in Chapter 11 in order to fine-tune the SO-I algorithm
for solving the capacity planning problem.

9.6 Chapter Conclusion

In this chapter, we formulated the decision problemof capacity planning inmulti-
stage order fulfilment systems with performance requirements as a mathematical
optimisation model and provided two solution algorithms.

The capacity planning problem is a blackbox optimisation problem since the
relationship between the provided capacity and the performance that is achieved
with this capacity cannot be specified by a mathematical equation, but it is
given by the analytical model for performance analysis. The analytical model
for performance analysis that calculates for any order fulfilment system with
given capacity the resulting system performance represents the blackbox of the
capacity planning problem. The research field of derivative-free and blackbox
optimisation provides solution algorithms for blackbox optimisation models that
do not require derivative information. We selected the direct search method
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Mesh Adaptive Direct Search (MADS) and the model-based derivative-free
method Surrogate Optimisation Integer (SO-I) as suitable solution algorithms
for capacity planning since they meet the characteristics of the capacity planning
problem, their convergence is mathematically proven, and their implementation
is open source.

The problem-specific configurations of the MADS algorithm and the SO-I
algorithm enable a target-oriented determination of the minimum required,
process-specific capacity to meet any performance requirement of the customers
that is specified based on one or multiple performance measures of the order
fulfilment system (see Table 6.1). Thus, the MADS algorithm and the SO-I
algorithm provide an answer to the third research question of the thesis:

How can we determine the capacity required to meet spe-
cific performance requirements in multi-stage, stochastic order
fulfilment systems with levelled order release and customer-
required order deadlines?
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10 Runtime and Memory
Optimisation of the
Markov Chain

When modelling system behaviour of a real-life order fulfilment system as a
discrete-time Markov chain, memory and computation time requirements be-
come challenging issues. This chapter aims at evaluating multiple approaches
for runtime and memory optimisation of a Markov chain. In Section 10.1,
we introduce multiple strategies to optimise memory and computation time re-
quirements of a Markov chain. The optimisation potentials of these strategies
regarding the models provided in this thesis are analysed in a numerical study in
Section 10.2. Section 10.3 summarises the results of this chapter.

10.1 Strategies for Runtime and Memory
Optimisation

Memory and computation time requirements of aMarkov chain are driven by the
size of its state space and the discretisation of its stochastic parameters (see Sec-
tion 6.4). Since the size of the state space of the Markov chain quickly increases
when modelling the system behaviour of larger order fulfilment systems (see
equation (6.45)), memory usage and computational effort are often challenging
issues. In the following, we propose multiple strategies to optimise runtime and
memory usage of a Markov chain.

143



10 Runtime and Memory Optimisation of the Markov Chain

10.1.1 Limitation of State Space

The state space of the Markov chain results from its lower and upper limit (see
Section 6.2.3), and its size is calculated by equation (6.45). However, depending
on the parameterisation of the order fulfilment system and the discretisation of
its stochastic parameters, this set of states contains multiple unreachable states.
Unreachable states are not relevant in the subsequent calculation steps of the
Markov chain. Consequently, these states are removed from the state space, and
the subsequent calculation steps are limited to the set of reachable states.

The classical procedure to determine the set of reachable states of the Markov
chain initially calculates all theoretically reachable states based on the lower
and upper limit of the state space as well as the corresponding transition matrix.
Unreachable states are then identified based on the transitionmatrix. State i ∈ X
is said to be an unreachable state if the ith column of the transition matrix is
a zero-vector. Finally, the identified unreachable states are removed from the
state space and the transition matrix to obtain the set of reachable states and
the corresponding transition matrix. The main drawback of this procedure is
its inefficient use of runtime and memory: State space and transition matrix are
first calculated and stored for all theoretically reachable states. Subsequently,
unreachable states are removed.

The alternative procedure, which we propose to determine the set of reachable
states of the Markov chain, iteratively identifies all states that are reachable from
a given initial state of theMarkov chain, either by a single-step transition or by an
indirect transition via a finite number of other states. In this way, the alternative
procedure determines the set of reachable states in a runtime- and memory-
efficient manner since the state space and the transition matrix do not contain
any unreachable state at any intermediate step of the calculation procedure.

For irreducible Markov chains, the alternative procedure does not provide any
advantage compared to the classical procedure since the Markov chain consists
of a unique communicating class. However, for reducible Markov chains, the
alternative procedure does not determine the whole set of reachable states of
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the Markov chain but only the relevant subset of reachable states that contains
all states that are reachable from the initial state. Thus, by using the alternative
procedure, computation time and memory usage are reduced.

Based on the alternative procedure, it is impossible to calculate the matrix
of limiting distributions of a reducible Markov chain. In contrast, we can only
calculate the limiting distribution of the initial state. Hence, from amathematical
point of view, the alternative procedure is insufficient since it does not enable a
complete description of the asymptotic behaviour of theMarkov chain. However,
from a practical perspective, it is sufficient to know the limiting distribution of
the initial state of the Markov chain since the initial state describes the current
state of the considered system.

10.1.2 Sparse Storage Schemes

Transitionmatrices ofMarkov chains are usually large-sized but sparse matrices.
A sparse matrix is a matrix with very few nonzero elements. The key idea of
sparse storage schemes is to neglect the zero elements and to only store nonzero
matrix entries. At the same time, common matrix operations still have to be
possible (Saad 2003, p.73).

The compressed sparse row (CSR) format is the most popular sparse storage
scheme. It uses three arrays Ev , Ec, and Er to store the sparse matrix E:

• ArrayEv contains the real values ei,j of matrixE stored row by row, from
the first to the last row.

• Array Ec contains the column indices of the matrix entries ei,j as stored
in array Ev .

• Array Er contains the pointers to the beginning of each row in array Ev
and Ec. The ith entry of array Er is the position where the ith row starts
in the arrays Ev and Ec.
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There are multiple variations of the CSR format, such as the compressed sparse
column (CSC) format, which stores columns instead of rows (Saad 2003, p.89f.).

10.1.3 Indirect Solution Methods for Linear Systems

The limiting distribution of the Markov chain is obtained by solving a set of
linear equations based on the transition matrix of the Markov chain. Academic
literature provides a plethora of methods to solve sets of linear equations. These
methods are classified into direct and indirect solution methods. Direct methods
modify the parameter matrix and use a fixed number of operations to exactly
solve the set of linear equations. Common examples are theGaussian elimination
and Grassmann’s algorithm (Bolch 2006, p.118f.). On the contrary, indirect
methods iteratively calculate estimates starting with an initial estimate of the
unknown solution. The sequence of estimates is expected to converge towards
the solution eventually. The iterative procedure terminates if the estimates are
sufficiently close to the exact solution. Hence, indirect methods only provide an
approximation of the exact solution (Bolch 2006, p.132). Table 10.1 provides a
comparison of direct and indirect solution methods for linear systems. We point
out some differences in detail in the following.

Table 10.1: Comparison of direct and indirect solution methods for linear systems (Stewart 1994,
p.61f.), (Bolch 2006, p.104,118f.,132).

Direct Methods Indirect Methods

Result quality Exact Approximate
Convergence rate No issue Dependent on various factors
Use of sparse storage
schemes

Difficult Easily possible

Round-off errors Accumulation No issue
Computation time Fixed number of operations

independent of the values of
parameter matrix

Number of required iterations
depends on various factors
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Direct methods modify the entries of the parameter matrix, so that original
zero entries can become nonzero entries. Consequently, round-off errors occur,
and it is difficult to use sparse storage schemes. In contrast, indirect methods
only use matrix multiplications that do not alter the parameter matrix: Original
zero entries stay zero entries, and the sparsity of parameter matrix is preserved.
Hence, there are no round-off errors, and sparse storage schemes are applicable.
The convergence rate and the computation time of indirect methods depend
on multiple factors, such as the quality of initial estimate, the required solution
accuracy, the values of the parameter matrix, the chosen method, and the use of a
preconditioning technique (Stewart 1994, p.61f.), (Bolch 2006, p.104,118f.,132).
Preconditioning techniques are used to improve the efficiency and robustness
of indirect methods. A preconditioner transforms the original set of linear
equations into a set of linear equations that has the same solution but that is
likely to be easier solved by an indirect method (Saad 2003, p.261f.). Saad
(2003, p.283-345) provides a detailed overview of standard preconditioning
techniques. In general, indirect methods are more efficient in space and time
than direct methods. Hence, indirect methods are preferred over direct methods
when solving large sets of linear systems (Bolch 2006, p.104).

In this thesis, we use the indirect methodGeneralized Minimal Residual Method
(GMRES) that is a popular method for solving large linear systems. GMRES
is an iterative Krylov subspace method to solve a nonsymmetric set of linear
equations that minimises the norm of the residual vector over a Krylov subspace
in each iteration (Saad and Schultz 1986). The procedure ofGMRES is presented
in detail in Stewart (1994, p.190-206) and Saad (2003, p.164-184).

10.1.4 Parallel Computing

Parallel computing speeds up the calculation of a Markov chain since multiple
calculation steps of the Markov chain can be conducted in parallel: First, when
calculating the state space using the alternative procedure (see Section 10.1.1),
we can determine the states reachable from a given state in a single-step transition
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in parallel for different states. Second, when calculating the transition matrix,
it is possible to calculate each row in parallel, and for a given row, we can
calculate all entries of this row in parallel. Finally, when calculating the limiting
distribution, the matrix-vector operations, which are used to solve the set of
linear equations, can be executed in parallel.

For the calculations of this thesis, we use the available processors of the CPU to
conduct the aforementioned calculation steps in parallel. Graphics processing
units (GPUs) provide further potentials to reduce computation time and memory
usage. GPUs are widely used in high-performance computing, and they provide
high computing power and large memory bandwidth. However, new program-
ming challenges occur, such as adapting the parallel algorithms to the architec-
ture of parallel computers with GPUs (Khodja et al. 2014). The calculation of
Markov chains using GPUs is beyond the scope of this thesis.

10.2 Evaluation of Optimisation Potentials

In the following, we evaluate the potentials of the proposed strategies for runtime
and memory optimisation regarding the exact model for performance analysis in
a numerical analysis based on samples B and D. Sample B contains 133 single-
stage order fulfilment systems, and sample D consists of 256 two-stage order
fulfilment systems. The samples differ regarding the ranges of the parameters,
especially regarding the discretisation of the number of incoming orders per
time period A: Its range is given by AB = {3, 4, . . . , 15} in sample B and
AD = {2, 3, . . . , 6} in sample D. A comprehensive description of the samples
is given in Appendix C.2.
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10.2.1 Limitation of State Space

The alternative procedure, proposed in Section 10.1.1 to calculate the set of
reachable states of a Markov chain based on a given initial state, directly de-
termines the set of reachable states. In contrast, the classical procedure initially
calculates the set of all theoretically reachable states and subsequently reduces
this set to the set of reachable states. To show and to quantify the benefit of the
alternative procedure, we compare the number of theoretically reachable states,
which is calculated based on equation (6.45), with the number of reachable
states. Note that the initial state of each order fulfilment system is randomly
selected from its set of theoretically reachable states.

Table 10.2 presents the number of theoretically reachable states and the number
of reachable states, as well as the absolute and relative deviations between these
two metrics for samples B and D. For each of these criteria, Table 10.2 gives the
minimum, the maximum, and the average value.

Table 10.2: Number of theoretically reachable states, number of reachable states, and potentials of
state space limitation when using the alternative procedure.

Criterion Min Max Average

Sample B No. of theoretically reachable states 8,125 15,376 14,115
No. of reachable states 156 9,893 8,040

Absolute deviation1 -12,251 -3,419 -6,075
Relative deviation [%]2 -35.66 -98.08 -43.57

Sample D No. of theoretically reachable states 692,055 8,471,463 4,534,143
No. of reachable states 1,401 9,625 6,859

Absolute deviation1 -8,465,731 -685,779 -4,527,284
Relative deviation [%]2 -99.09 -99.93 -99.79

1 Difference between the number of reachable states and the number of theoretically reachable states.
2 Difference between the number of reachable states and the number of theoretically reachable states, divided
by the number of theoretically reachable states.
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For the single-stage order fulfilment systems of sample B, the number of theor-
etically reachable states is between 8,125 and 15,376 states, whereas the number
of reachable states is between 156 and 9,893 states. For the two-stage order
fulfilment systems of sample D, the number of theoretically reachable states is
between 692,055 and 8,471,463 states. In contrast, the number of reachable
states is between 1,401 and 9,625 states. Thus, we observe an average reduction
in the number of calculated states of 43.6% in sample B and 99.8% in sample
D. These results show that the number of states calculated by the alternative
procedure is significantly smaller than the one calculated by the classical pro-
cedure. Consequently, we recommend using the alternative procedure instead
of the classical procedure to calculate the set of reachable states of the Markov
chain in order to reduce memory usage and computational effort.

By comparing the magnitude of the number of theoretically reachable states
between samples B and D, we observe that the number of processes of the
considered order fulfilment system has a significant impact on the number of
theoretically reachable states. The average number of theoretically reachable
states is 14,115 states for the single-stage systems of sample B, whereas it is
4,534,143 states for the two-stage systems of sample D. The number of theoreti-
cally reachable states results from the lower and upper limit of the state space
(see equation (6.45)). Since the number of processes pmax determines the size
of the exponent in equation (6.45), it has a major impact on the number of
theoretically reachable states (see Section 6.4). In contrast, its impact on the
number of reachable states is significantly smaller. Consequently, we expect that
the potential of the alternative procedure in optimisingmemory and computation
time requirements increases with an increasing number of processes of the
considered order fulfilment system.

Note that it is not meaningful to compare the absolute values of the number of
reachable states between samples B and D since these depend on the discretisa-
tion of the stochastic parameters of the order fulfilment systems, which differs
between samples B and D (see Appendix C.2).
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10.2.2 Indirect Solution Methods for Linear Systems

In Section 10.1.3, we proposed using an indirect solution method for linear sys-
tems to reduce the computational effort of the Markov chain. To quantify the
savings in computation time resulting from using an indirect solution method
instead of a direct method for solving linear systems, we compare the computa-
tion time required to calculate the exact model for performance analysis when
using the Gaussian elimination with the one when using GMRES.

Table 10.3 presents the minimum, the maximum, and the average value of
the computation time in samples B and D for the following specifications of the
Markov chain: Use of the Gaussian elimination and sequential computing, use of
GMRES and sequential computing, and use of GMRES and parallel computing.
Furthermore, Table 10.3 gives the minimum, the maximum, and the average
value of the reduction in computation time when using GMRES instead of the
Gaussian elimination and when computing the Markov chain in parallel instead
of sequential computation.

In sample B, when using the Gaussian elimination, computation time is at least
0.04 seconds, at most 432 seconds, and on average 220 seconds. In contrast,
when using GMRES, computation time is between 0.03 and 308 seconds, and it
is 121 seconds on average. Thus, by using GMRES instead of the Gaussian elim-
ination, we reduce the computation time of the exact model by on average 46%.
Sample B contains one data point for which computation time increases by 4%
when using GMRES instead of the Gaussian elimination. In sample D, when
using the Gaussian elimination, computation time is between 2 and 428 seconds,
and it is 125 seconds on average. In contrast, when using GMRES, computation
time is at least 1.7 seconds, at most 286 seconds, and on average 64 seconds.
Hence, we observe an average reduction in the computation time of the exact
model by 49% when using GMRES instead of the Gaussian elimination. These
results confirm that using the indirect method GMRES to solve linear systems
provides significant savings in computation time compared to using the Gaussian
elimination. Note that it is not meaningful to compare the absolute values of
the computation time between samples B and D since the computation time

151



10 Runtime and Memory Optimisation of the Markov Chain

Table 10.3: Computation time and savings of computational effort when using GMRES and parallel
computing.1

Criterion Specification of Markov chain Min Max Average

Sample B Computation time [s] Gauss, sequential computing 0.04 432.05 219.68
GMRES, sequential computing 0.03 308.44 121.08
GMRES, parallel computing 0.05 6.47 3.51

Reduction of
computation time [%]

Use of GMRES2 -4.38 69.69 46.11
Use of parallel computing3 -64.95 98.50 94.55

Sample D Computation time [s] Gauss, sequential computing 2.00 428.45 124.86
GMRES, sequential computing 1.69 286.00 64.15
GMRES, parallel computing 0.27 4.65 2.59

Reduction of
computation time [%]

Use of GMRES2 15.51 68.00 49.47
Use of parallel computing3 83.89 98.37 95.36

1 Computations are conducted on a server with a CPU of 64 kernels and 128 threads and a RAM of 128 GB.
2 Relative deviation of the computation time of the exact model that uses GMRES and that is computed in
sequential manner from the computation time of the exact model that uses the Gaussian elimination and that
is computed in sequential manner.

3 Relative deviation of the computation time of the exact model that uses GMRES and that is computed in
parallel from the computation time of the exact model that uses GMRES and that is computed in sequential
manner.

depends on the ranges of the parameters of the order fulfilment systems, which
differ between samples B and D (see Appendix C.2).

Indirect methods, such as GMRES, suffer from a lack of result accuracy, whereas
direct methods are said to calculate exact results. However, direct methods suffer
from round-off errors (see Table 10.1). For this reason, we evaluate the result
accuracy by comparing the values of selected performance measures – α-service
level, β-service level, expected number of unprocessed orders, and expected
number of completed orders – obtained when using GMRES with the ones
obtained when using the Gaussian elimination. Table 10.4 presents the absolute
deviations of the selected performance measures when using GMRES instead of
the Gaussian elimination in samples B and D. For each performance measure,
Table 10.4 gives the minimum, the maximum, and the average value, as well as
the 2.5%- and the 97.5%-quantile of the absolute deviations.
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Table 10.4: Deviation of selected performance measures when using GMRES instead of the Gaus-
sian elimination.

Absolute deviation1

Criterion Min Max Average Q0.025 Q0.975

Sample B SLα -1.77E-04 1.20E-03 2.66E-06 -7.26E-05 4.06E-05
SLβ -1.89E-04 8.21E-04 1.23E-06 -6.71E-05 3.30E-05
E(Q) -1.99E-02 2.23E-03 -8.30E-06 -6.34E-04 1.45E-03
E(F ) -3.34E-04 2.37E-04 2.12E-05 -3.12E-05 1.17E-04

Sample D SLα -2.43E-04 1.11E-04 -1.06E-05 -1.04E-04 3.57E-05
SLβ -1.36E-04 8.52E-05 -8.22E-06 -7.78E-05 2.35E-05
E(Q) -6.83E-04 1.74E-03 9.51E-05 -1.30E-04 7.28E-04
E(F ) -3.26E-05 1.48E-04 1.30E-05 -1.15E-05 7.49E-05

1 Difference between the value of the considered performance measure resulting when using GMRES and the
one resulting when using the Gaussian elimination.

The absolute deviation of α-service level is between -1.77E-04 and 1.2E-03
in sample B and between -2.43E-04 and 1.11E-04 in sample D. The corres-
ponding 95%-confidence interval is given by [-7.26E-05, 4.06E-05] in sample
B and [-1.04E-04, 3.57E-05] in sample D. The absolute deviations of β-service
level, the expected number of unprocessed orders, and the expected number of
completed orders are of comparable magnitude. Note that the calculated devi-
ations only quantify the deviations obtained when using two different methods
to solve linear systems that both suffer from inaccuracies. The actual values
of the performance measures are still unknown. In conclusion, we state the
observed deviations to be negligible for all considered performance measures,
and we recommend using GMRES instead of the Gaussian elimination to speed
up the calculation of the Markov chain.

10.2.3 Parallel Computing

In Section 10.1.4, we pointed out some calculation steps of the Markov chain
that can be conducted in parallel. To quantify the savings in computation time of
parallel computing, we compare the computation time required to calculate the
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exact model for performance analysis in sequential manner with the one when
calculating the exact model in parallel.

In sample B, computation time when using parallel computing is between 0.05
and 6.5 seconds, and it is 3.5 seconds on average. Compared to the computational
effort of sequential computing, we observe an average reduction in computation
time of 95%. For one data point in sample B, we observe a higher computation
time for parallel computing (0.05 seconds) than for sequential computing (0.03
seconds). In sample D, computation time when using parallel computing is
between 0.3 and 4.7 seconds, and it is 2.6 seconds on average. In comparison
to the computational effort of sequential computing, we observe an average
reduction in computation time of 95% (see Table 10.3). The observed savings
in computation time when calculating the Markov chain in parallel confirm the
potential of parallel computing for runtime optimisation of the Markov chain.

The outlier in sample B, for which the computation time of parallel computing
is higher than the one of sequential computing, indicates that parallel computing
is only beneficial for sufficiently large problem instances. For small problem
instances, sequential computing can be quicker than parallel computing since
the time required for starting and accumulating the threads in parallel computing
exceeds the time saved by parallel computing. In conclusion, we recommend
using parallel computing to speed up the calculation of the Markov chain.

10.3 Chapter Conclusion

Runtime optimisation and efficient memory usage become challenging issues
when modelling system behaviour of real-life order fulfilment systems as a
discrete-time Markov chain since the size of the state space of the Markov chain
quickly increases. For this reason, we proposed and analysed different strategies
for runtime and memory optimisation of the Markov chain in this chapter.

By the proposed alternative procedure to calculate the set of reachable states of
a Markov chain based on a given initial state, we achieve an average reduction in
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number of calculated states by 43.6% for single-stage order fulfilment systems
and 99.8% for two-stage order fulfilment systems. A further strategy to reduce
memory usage of the Markov chain is to use a sparse storage scheme to store
the transition matrix of the Markov chain since transition matrices are usually
sparse.

To reduce the computation time of the Markov chain, we recommend using the
indirectmethodGMRES to solve linear systems and computing theMarkov chain
in parallel. By using GMRES instead of the Gaussian elimination, we achieve an
average reduction in computation time by 46% for single-stage order fulfilment
systems and 49% for two-stage order fulfilment systems. An analysis regarding
the result accuracy when using GMRES indicates that the absolute deviations
of the values of the performance measures are negligible. By calculating the
Markov chain in parallel, we achieve an average reduction in computation time
of 95% compared to a sequential computation. Parallel computing is limited to
the available processors of the CPU. The additional use of GPUs is beyond the
scope of this thesis. However, we expect the calculation of the Markov chain to
further speed up when using GPUs.
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11 Evaluation of Capacity Planning
Algorithms

This chapter aims at fine-tuning and evaluating the solution algorithms pro-
posed in Chapter 9 for capacity planning in order fulfilment systems: Mesh
Adaptive Direct Search (MADS) and Surrogate Optimisation Integer (SO-I).
In Section 11.1, we specify the evaluation criteria. Both the MADS algorithm
and the SO-I algorithm provide multiple algorithmic parameters for a problem-
specific configuration of the algorithm. In Sections 11.2 and 11.3, we evaluate
and compare several parameter settings of both algorithms to identify the most
suitable parameter setting for the capacity planning problem, respectively. In
Section 11.4, we evaluate and compare the overall performance of the algorithms.
Based on the results of this chapter, Section 11.5 provides recommendations
which algorithm to use for capacity planning in order fulfilment systems.

11.1 Evaluation Criteria

We use solution quality and runtime efficiency as evaluation criteria for the
numerical analysis and comparison of both different parameter settings of an
algorithm and different algorithms based on a given sample of data points in the
subsequent sections.
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11.1.1 Solution Quality

We evaluate the solution quality of an algorithm based on the objective function
value of its solution (see equation (9.5)). Since the true minimum objective
function value is unknown, we use the smallest objective function value of the
solutions of all considered algorithms as an estimate of the minimum objective
function value. To quantify the solution quality of an algorithm, we calculate
the following key figures:

• The share of suboptimal data points corresponds to the proportion of
data points for which the objective function value of the solution of the
algorithm deviates from the minimum objective function value.

• The average deviation from optimum is the average value of the absolute
deviations of the objective function value of the solution of the algorithm
from the minimum objective function value for all suboptimal data points.

11.1.2 Runtime Efficiency

We evaluate the runtime efficiency of an algorithm based on the number of cal-
culated blackbox instances since in the case of capacity planning, the calculation
of a blackbox instance, which corresponds to the calculation of the analytical
model for performance analysis, is the most computationally expensive step of
the algorithm. To quantify the runtime efficiency of an algorithm, we calculate
the following key figures:

• The average number of blackbox instances is the average value of the
number of calculated blackbox instances per data point for all data points.
The number of calculated blackbox instances per data point refers to the
number of blackbox instances the algorithm has to calculate per data point
until a solution is found.

• The average rank of runtime efficiency is the average rank of the algorithm
regarding the number of calculated blackbox instances per data point. We
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initially calculate the rank of each algorithm regarding the absolute number
of calculated blackbox instances per data point. Subsequently, we obtain
the average rank of runtime efficiency by calculating the average value of
the rank values for all data points.

The average rank of runtime efficiency is ameaningful additional key figure since
it abstracts from the differences in the absolute number of calculated blackbox
instances between the data points of the considered sample. The smaller the
average number of blackbox instances and the smaller the average rank of runtime
efficiency of an algorithm, the higher the runtime efficiency of this algorithm.

11.2 Fine-Tuning of the MADS Algorithm

The MADS algorithm provides a plethora of algorithmic parameters enabling
a problem-specific configuration of the algorithm. We can determine some of
them based on the results of numerical studies provided in the literature (see
Section 9.4.3). However, further algorithmic parameters require a closer exam-
ination in a problem-specific numerical analysis. In the following, we initially
determine the algorithmic parameters to investigate in the fine-tuning of the
MADS algorithm (see Section 11.2.1). Subsequently, we evaluate and compare
the resulting parameter settings to identify the most suitable parameter setting
of the MADS algorithm for the capacity planning problem (see Section 11.2.2).

11.2.1 Investigated Algorithmic Parameters

The fine-tuning of the MADS algorithm focuses on different approaches to
choose the initial point and different methods to use in the search step. Regarding
the choice of the initial point, we either calculate the initial point based on
equation (4.1) proposed in the step of system parametrisation of the levelling
concept (see Section 4.3.1), or we use the best point of a Latin hypercube design
whose sample size corresponds to 25% of the total number of points within
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the variable domain C of the capacity planning problem. Furthermore, we
investigate using a surrogate model both as an additional method in the search
step and to order the set of trial points in the search and the poll step (see
Section 9.4.2.3). We consider five different surrogate functions: A quadratic
model, a polynomial response surface, a radial basis function, a kernel smoothing
model, and a Kriging model. Moreover, we investigate using the Nelder-Mead
algorithm as an additional method in the search step.

Table 11.1 provides an overview of the values of the algorithmic parameters to
investigate in the fine-tuning of the MADS algorithm. In total, we consider 24
different parameter settings of the MADS algorithm.

Table 11.1: Algorithmic parameters and their values investigated in the fine-tuning of the MADS
algorithm.

Value of parameter

Parameter Notation Description

Choice of initial
point

SP Initial point is calculated based on equation (4.1)
LHD Initial point corresponds to best point of a Latin

hypercube design with a sample size of 0.25 · |C|

Use of surrogate
model

SMn No surrogate model is used
SMy-QM Use of a quadratic model
SMy-PRS Use of a polynomial response surface of degree

two
SMy-RBF Use of a radial basis function with Gaussian ker-

nel and l1-norm
SMy-KSM Use of a kernel smoothing model with Gaussian

kernel and l1-norm
SMy-KM Use of a Kriging model with l1-norm

Use of Nelder-
Mead algorithm

NMn No use of Nelder-Mead algorithm
NMy Use of Nelder-Mead algorithm
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11.2.2 Numerical Results

We conduct a numerical analysis based on sample G to evaluate and compare
the parameter settings of the MADS algorithm shown in Table 11.1 regarding
solution quality and runtime efficiency. Sample G consists of 200 two-stage
order fulfilment systems. A comprehensive description of sample G is given in
Appendix C.3. The performance requirement of the capacity planning problem
is specified by a predefined, individual value of α-service level. The results of
the numerical analysis are given in Table 11.2.

For parameter settings SP/SMn/NMn and SP/SMy-QM/NMy, we obtain one
unsolvable data point, respectively. Apart from this, the considered parameter
settings do not differ regarding solution quality. Independent of the considered
parameter setting, the MADS algorithm determines the optimal solution for all
data points of sample G.

However, we observe differences regarding runtime efficiency between the con-
sidered parameter settings of the MADS algorithm. The average number of
blackbox instances is between 20.19 and 24.03 for parameter settings using SP,
whereas it is between 30.23 and 31.94 for parameter settings using LHD. The
average rank of runtime efficiency is between 4.33 and 9.56 for parameter set-
tings using SP and between 15.69 and 17.69 for parameter settings using LHD.
Thus, using a Latin hypercube design to determine the initial point has a negative
impact on the runtime efficiency. In contrast, regarding the use of Nelder-Mead
algorithm and the use of a surrogate model, we do not observe any system-
atic impact on the runtime efficiency. We observe SP/SMy-QM/NMn (20.19),
SP/SMn/NMn (20.61), and SP/SMy-QM/NMy (20.76) to be the best parameter
settings regarding the average number of blackbox instances. SP/SMy-PRS/NMn
(4.33), SP/SMy-KM/NMn (4.34), and SP/SMy-QM/NMn (4.62) are the para-
meter settings with the smallest average rank of runtime efficiency. Furthermore,
LHD/SMy-KM/NMn (31.71; 17.12), LHD/SMy-RBF/NMn (31.7; 17.22), and
LHD/SMy-PRS/NMn (31.94; 17.69) are the parameter settings with the highest
average number of blackbox instances and the highest average rank of runtime
efficiency, respectively.
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11 Evaluation of Capacity Planning Algorithms

Table 11.2: Solution quality and runtime efficiency of different parameter settings of the MADS
algorithm based on sample G.

Solution quality Runtime efficiency

Share of sub-
optimal data
points [%]

Average devi-
ation from
optimum

Average no.
of blackbox
instances

Average rank
of runtime
efficiencyParameter setting

LHD SMn NMn 0.0 0.0 30.55 16.28
LHD SMn NMy 0.0 0.0 31.33 17.08
LHD SMy-KM NMn 0.0 0.0 31.71 17.11
LHD SMy-KM NMy 0.0 0.0 30.94 16.51
LHD SMy-KSM NMn 0.0 0.0 31.43 16.87
LHD SMy-KSM NMy 0.0 0.0 30.74 16.12
LHD SMy-PRS NMn 0.0 0.0 31.94 17.69
LHD SMy-PRS NMy 0.0 0.0 30.93 16.75
LHD SMy-QM NMn 0.0 0.0 30.33 15.69
LHD SMy-QM NMy 0.0 0.0 30.62 16.26
LHD SMy-RBF NMn 0.0 0.0 31.70 17.22
LHD SMy-RBF NMy 0.0 0.0 30.83 16.32
SP SMn NMn 0.0 0.0 20.61 4.84
SP SMn NMy 0.0 0.0 20.95 5.54
SP SMy-KM NMn 0.0 0.0 20.94 4.34
SP SMy-KM NMy 0.0 0.0 23.23 8.49
SP SMy-KSM NMn 0.0 0.0 21.60 5.16
SP SMy-KSM NMy 0.0 0.0 23.78 9.34
SP SMy-PRS NMn 0.0 0.0 21.16 4.33
SP SMy-PRS NMy 0.0 0.0 23.56 8.83
SP SMy-QM NMn 0.0 0.0 20.19 4.62
SP SMy-QM NMy 0.0 0.0 20.76 5.35
SP SMy-RBF NMn 0.0 0.0 21.53 4.98
SP SMy-RBF NMy 0.0 0.0 24.03 9.56

These results indicate that concerning the capacity planning problem, parameter
settings using SP should be preferred over the ones using LHD. In conclusion, we
recommend the parameter setting SP/SMy-QM/NMn of the MADS algorithm
for solving the capacity planning problem in order fulfilment systems since
the optimal solution is found for all data points of sample G when using this
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parameter setting. Furthermore, this parameter setting is the only parameter
setting that belongs to the three best parameter settings regarding both evaluation
criteria of runtime efficiency.

11.3 Fine-Tuning of the SO-I Algorithm

The implementation of the SO-I algorithm in the MATLAB-toolbox MAT-
SuMoTo provides some algorithmic parameters for a problem-specific config-
uration of the SO-I algorithm. Compared to the configuration options of the
MADS algorithm, the ones of the SO-I algorithm are rather limited. In the
following, we initially determine the algorithmic parameters to investigate in the
fine-tuning of the SO-I algorithm (see Section 11.3.1). Subsequently, we eval-
uate and compare the resulting parameter settings to identify the most suitable
parameter setting of the SO-I algorithm for the capacity planning problem (see
Section 11.3.2).

11.3.1 Investigated Algorithmic Parameters

The SO-I algorithm uses a Latin hypercube design to create the initial set of
points in the design phase. We determine its sample size by 25% of the total
number of points within the variable domain C of the capacity planning problem.
A predefined maximum number of blackbox model evaluations is one of the
stopping criteria of the SO-I algorithm. We determine the maximum number of
blackbox evaluations by the total number of points within the variable domain
C of the capacity planning problem.

The fine-tuning of the SO-I algorithm focuses on different sampling strategies
and different surrogate functions. Regarding the sampling strategy that determ-
ines the finite number of trial points in the search phase, we either perturb the
best feasible point found so far and uniformly select integer points in the vari-
able domain, or we select the local minimum of the surrogate model as a new
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candidate point. Regarding the surrogate function, we use either a cubic radial
basis function or a quadratic polynomial response surface.

Table 11.3 provides an overview of the values of the algorithmic parameters to
investigate in the problem-specific fine-tuning of the SO-I algorithm. In total,
we consider four different parameter settings of the SO-I algorithm.

Table 11.3: Algorithmic parameters and their values investigated in the fine-tuning of the SO-I
algorithm.

Value of parameter

Parameter Notation Description

Sampling strategy CANDglob Perturb the best feasible point found so far and
uniformly select integer points in the variable do-
main

SurfMin Select the local minimum of the surrogate model
as new candidate point

Surrogate function RBF Cubic radial basis function with l2-norm
PRS Quadratic polynomial response surface

11.3.2 Numerical Results

We conduct a numerical analysis based on sample G (see Appendix C.3) to
evaluate and compare the parameter settings of the SO-I algorithm shown in
Table 11.3 regarding solution quality and runtime efficiency. The results of the
numerical analysis are given in Table 11.4.

We obtain the optimal solution for all data points of sample G when using the
sampling strategy CANDglob, independent of the selected surrogate function.
In contrast, when using the sampling strategy SurfMin, we obtain a subop-
timal solution for some data points of sample G. The share of suboptimal data
points is 24% for parameter setting SurfMin/PRS and 1.5% for parameter setting
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Table 11.4: Solution quality and runtime efficiency of different parameter settings of the SO-I
algorithm based on sample G.

Solution quality Runtime efficiency

Share of sub-
optimal data
points [%]

Average devi-
ation from
optimum

Average no.
of blackbox
instances

Average rank
of runtime
efficiencyParameter setting

CANDglob PRS 0.0 0.0 62.74 2.49
CANDglob RBF 0.0 0.0 58.36 1.78
SurfMin PRS 24.0 1.0 58.32 1.98
SurfMin RBF 1.5 1.0 61.42 1.85

SurfMin/RBF. For both parameter settings, the corresponding average deviation
from optimum equals one. These results indicate that using the sampling strategy
SurfMin has a negative impact on the solution quality of the SO-I algorithmwhen
solving the capacity planning problem.

Regarding runtime efficiency, we observe SurfMin/PRS (58.32) and CAND-
glob/RBF (58.36) to be the best parameter settings regarding the average number
of blackbox instances. CANDglob/RBF (1.78) and SurfMin/RBF (1.85) are the
parameter settings with the smallest average rank of runtime efficiency.

In conclusion, we recommend not to use parameter settings SurfMin/PRS and
SurfMin/RBF of the SO-I algorithm due to the occurrence of suboptimal data
points. Instead, we state parameter setting CANDglob/RBF to be the most
suitable parameter setting of the SO-I algorithm for capacity planning since it
outperforms parameter setting CANDglob/PRS in both evaluation criteria of
runtime efficiency.
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11.4 Comparison of the MADS Algorithm and
the SO-I Algorithm

In the following, we evaluate and compare the overall performance of theMADS
algorithm and the SO-I algorithm to solve the capacity planning problem in
order fulfilment systems in a numerical analysis based on sample G (see Ap-
pendix C.3). For this, we focus on the most suitable parameter setting of
both algorithms for solving the capacity planning problem, respectively: Para-
meter setting SP/SMy-QM/NMn of the MADS algorithm and parameter setting
CANDglob/RBF of the SO-I algorithm. We use the complete enumeration as a
benchmark for the algorithms. The complete enumeration identifies the optimal
solution of the capacity planning problem by investigating every point in the
variable domain C.

We concentrate on a comparison regarding runtime efficiency since the results of
Sections 11.2 and 11.3 show that the MADS algorithm and the SO-I algorithm
do not differ regarding solution quality. The selected parameter settings of both
algorithms identify the optimal solution for every data point of sample G.

Table 11.5 presents the minimum, the maximum, and the average value of the
number of calculated blackbox instances per data point of the MADS algorithm,
the SO-I algorithm, and the complete enumeration in sample G. Furthermore,
Table 11.5 gives the minimum, the maximum, and the average value of the
absolute and the relative reduction in the number of calculated blackbox instances
when using the MADS algorithm compared to the complete enumeration, the
SO-I algorithmcompared to the complete enumeration, and theMADSalgorithm
compared to the SO-I algorithm.

The number of calculated blackbox instances per data point varies between 9 and
42 blackbox instances when using the MADS algorithm and between 49 and
72 blackbox instances when using the SO-I algorithm. The average number of
calculated blackbox instances per data point is 20.19 for the MADS algorithm
and 58.36 for the SO-I algorithm. The complete enumeration calculates 72
blackbox instances for every data point since the variable domain C of the
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Table 11.5: Comparison of theMADS algorithm and the SO-I algorithmwith complete enumeration
regarding runtime efficiency based on sample G.

Criterion Algorithm Min Max Average

Number of calculated
blackbox instances per
data point

MADS algorithm 9 42 20.19
SO-I algorithm 49 72 58.36
Complete enumeration 72 72 72.00

Absolute reduction in
number of calculated
blackbox instances

MADS compared to complete enumeration 63 30 51.82
SO-I compared to complete enumeration 23 0 13.65
MADS compared to SO-I 63 15 38.17

Relative reduction in
number of calculated
blackbox instances [%]

MADS compared to complete enumeration 87.50 41.67 71.97
SO-I compared to complete enumeration 31.94 0.00 18.95
MADS compared to SO-I 87.50 26.32 65.04

capacity planning problem is given by C = {1, 2, . . . , 6} × {1, 2, . . . , 12} (see
equation (9.4)) for every data point of sample G. Thus, the total number of points
within the variable domain is 72 points.

By using the MADS algorithm instead of complete enumeration, we observe an
average reduction in the number of calculated blackbox instances per data point
by 51.82 blackbox instances. The corresponding relative reduction is between
42%and 88%, and it is 72%on average. By using the SO-I algorithm, the number
of calculated blackbox instances per data point reduces by on average 13.65
blackbox instances compared to complete enumeration. The corresponding
relative reduction is on average 19% and at most 32%. For 12% of the data
points of sample G, the number of calculated blackbox instances per data point
of the SO-I algorithm corresponds to the total number of points within the
variable domain. Thus, for these data points, the SO-I algorithm provides no
benefit in runtime efficiency compared to complete enumeration. Furthermore,
we observe an average reduction in the number of calculated blackbox instances
per data point by 38.2 blackbox instances when using the MADS algorithm
instead the SO-I algorithm. The corresponding relative reduction is between
26% and 88%.
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In conclusion, these results indicate that the MADS algorithm has a remarkable
higher runtime efficiency compared to the SO-I algorithm and complete enu-
meration. Consequently, we recommend using the MADS algorithm to solve
the capacity planning problem in order fulfilment systems.

11.5 Chapter Conclusion

In this chapter, we investigated multiple settings of algorithmic parameters of the
MADS algorithm and the SO-I algorithm regarding solution quality and runtime
efficiency in a numerical analysis to identify the most suitable parameter setting
of each algorithm for capacity planning in order fulfilment systems. Furthermore,
we evaluated and compared the overall performance of theMADS algorithm and
the SO-I algorithm regarding solution quality and runtime efficiency.

We identify the parameter settings SP/SMy-QM/NMn and CANDglob/RBF to
be the most suitable parameter settings of the MADS algorithm and the SO-I
algorithm for solving the capacity planning problem, respectively. The MADS
algorithm and the SO-I algorithm do not differ regarding solution quality since
their most suitable parameter setting finds the optimal solution for all considered
data points. However, the MADS algorithm has a remarkable higher runtime
efficiency than the SO-I algorithm (average reduction in the number of calculated
blackbox instances per data point by 65%) and complete enumeration (average
reduction in the number of calculated blackbox instances per data point by 72%).
Consequently, we recommend using the parameter setting SP/SMy-QM/NMn of
the MADS algorithm for solving the capacity planning problem.
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12 Evaluation of the Strategy of
Levelled Order Release

This chapter aims at evaluating the Strategy of Levelled Order Release in multi-
stage, stochastic order fulfilment systemswith customer-required order deadlines
by comparing its performance with the one of an alternative strategy. A suitable
alternative strategy is selected in Section 12.1. In Section 12.2, we derive several
hypotheses on the expected behaviour of the strategies to compare. The models
developed in this thesis enable an evaluation of the Strategy of Levelled Order
Release regarding resulting system performance (see Section 12.3) as well as
regarding required capacity (see Section 12.4). Section 12.5 summarises the
results of this chapter.

12.1 Alternative Strategies

The main characteristics of the Strategy of Levelled Order Release are (1) that a
fixed capacity is reserved for order processing in each time period, and (2) that
the orders are processed according to ascending due dates in each time period
(see Chapter 4). Thus, the Strategy of Levelled Order Release comprises two
different planning problems: (1) Capacity planning and (2) order dispatching.
It is difficult to find suitable alternative strategies to evaluate the Strategy of
Levelled Order Release since related research fields only focus on one of these
planning problems.
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Furthermore, to ensure comparability, the alternative strategies used to evaluate
the Strategy of Levelled Order Release have to rely on the same amount of
available information as the Strategy of Levelled Order Release:

• Order income per time period G and processing performance per time
period H are not known in advance. Instead, they are given as stochastic
parameters with known probability distributions.

• Order income per time period G and processing performance per time
period H are independent of each other.

• The order backlog of the current time period and the characteristics of
these orders are known.

In the following, we investigate the research fields of dispatching (see Sec-
tion 12.1.1), scheduling (see Section 12.1.2), and flexible capacity adaption
(see Section 12.1.3) to identify suitable alternative strategies for evaluating the
Strategy of Levelled Order Release. The selected strategies are specified in
Section 12.1.4.

12.1.1 Dispatching Policies

A dispatching policy specifies a rule used to select the next order to be processed
from a set of orders awaiting service (Blackstone et al. 1982). Blackstone et
al. (1982), Pinedo (2009, p.442-444), and Baumann (2019, p.22-24) provide
comprehensive reviews on dispatching policies in production systems.

Due to the limited focus of dispatching policies, the comparison of the Strategy
of Levelled Order Release with any dispatching policy is limited to the planning
problem of order dispatching. A comparison with respect to capacity planning is
not possible. Instead, any dispatching policy selected to evaluate the Strategy of
Levelled Order Release has to be combined with the capacity planning approach
of the Strategy of Levelled Order Release in order to ensure comparability.
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Dispatching policies are classified into the following categories:

1. Processing-related dispatching policies,

2. Due date-related dispatching policies, and

3. Dispatching policies based on other characteristics.

Processing-related dispatching policies select the next order to be processed
based on either the number of processing steps or the processing time. These
policies are further differentiated regarding the considered metric – total sum or
remaining sum – and the used sort order – ascending or descending. Common
examples of this category are Smallest number of remaining operations, Highest
number of total operations, Shortest remaining processing time, and Longest
total processing time. The category of due-date related dispatching policies
contains the policies Earliest due date andMinimum slack time. The slack time
of an order specifies the time period that remains until reaching its due date and
that is not required for its processing. The third category summarises further
dispatching policies that use other characteristics to select the next order to be
processed. Common examples of this category are Random service, First come
first serve, and Greatest dollar first (Baumann 2019, p.22-24).

Processing-related dispatching policies implicitly assume each order to have a
priori known, deterministic, and individual processing times and an individual
processing sequence. In contrast, in order fulfilment systems, the processing
performance per time period is stochastic, and it is specified by an order type-
and processing step-specific probability distribution (see Section 3.2.3). Fur-
thermore, all orders of a particular order type have the same processing sequence
(see Section 3.2.2). Thus, orders of the same order type differ neither regarding
processing time nor regarding processing sequence in order fulfilment systems.
Since we investigate different order types separately in this thesis (see Sec-
tion 5.3.1), both the processing time and the number of processing steps are no
suitable criteria to select the next order to be processed in the order fulfilment
system. Consequently, processing-related dispatching policies are unsuitable
alternative strategies to evaluate the Strategy of Levelled Order Release.
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The due date-related dispatching policy Earliest due date selects the next order
to be processed based on its due date, analogous to the Strategy of Levelled Order
Release. The dispatching policy Minimum slack time corresponds to Earliest
due date in the context of order fulfilment due to the lack of order-specific
processing times and an order-specific processing sequence. Consequently, both
dispatching policies are unsuitable alternative strategies to evaluate the Strategy
of Levelled Order Release.

Regarding the third category of dispatching policies, Greatest dollar first is an
unsuitable alternative strategy since we do not model revenue and cost aspects of
order fulfilment systems. However, Random service andFirst come first serve are
suitable alternative strategies to evaluate the Strategy of Levelled Order Release.

12.1.2 Scheduling

Scheduling is a decision-making process used inmanymanufacturing and service
industries that allocates resources, such as machines and workers, to orders over
a given planning horizon to optimise one or multiple objectives (Pinedo 2016,
p.1). Scheduling is conducted based on the following information: A given finite
set of orders, a given finite set of resources, the processing time of each order
at each resource, and the release date, the due date, and the importance factor
of each order (Pinedo 2016, p.13f.). In deterministic scheduling, processing
times, release times, and due dates are deterministic, whereas, in stochastic
scheduling, these parameters are stochastic, and scheduling is conducted based
on the characteristics of their probability distributions (Pinedo 2016, p.246).

The comparison of the Strategy of Levelled Order Release with any scheduling
problem is limited to the planning problem of order dispatching. A compar-
ison with respect to capacity planning is not possible. Instead, any scheduling
problem selected to evaluate the Strategy of Levelled Order Release has to be
combined with the capacity planning approach of the Strategy of Levelled Order
Release in order to ensure comparability.
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In stochastic scheduling, processing time, release date, and due date of each
order are defined by individual probability distributions, respectively. In con-
trast, in order fulfilment systems, the processing performance per time period
is specified by an order type- and processing step-specific probability distribu-
tion (see Section 3.2.3), and the lead time is defined by an order type-specific
probability distribution (see Section 3.2.2). Thus, orders of the same order type
differ neither regarding processing times nor regarding lead time. Since we in-
vestigate different order types separately in this thesis (see Section 5.3.1), both
processing time and lead time are unsuitable criteria to schedule the orders in
an order fulfilment system. Consequently, stochastic scheduling is an unsuitable
alternative strategy to evaluate the Strategy of Levelled Order Release.

12.1.3 Strategy of Flexible Capacity Adaption

The Strategy of Levelled Order Release is characterised by a constant capacity
per time period. In contrast, the main idea of the Strategy of Flexible Capacity
Adaption is to match provided capacity as precisely as possible to demanded
capacity resulting from the current system workload by hiring and laying-off
workers (Chen et al. 2009).

There are different possible configurations of the Strategy of Flexible Capacity
Adaption regarding the degree of capacity flexibility. In the case of an instant-
aneous capacity adaption, capacity levels are adapted at the beginning of each
time period when order income and processing performance of the current time
period are already known. Hence, provided capacity always fits exactly to de-
manded capacity. However, an instantaneous capacity adaption does not meet
the assumptions of the Strategy of Levelled Order Release that order income and
processing performance per time period are unknown in advance. Thus, it is an
unsuitable alternative strategy to evaluate the Strategy of LevelledOrder Release.
Furthermore, periodic capacity adaptions are more realistic than instantaneous
capacity adaptions for several reasons: First, working time decisions (working
over/under time) are often taken periodically to abide to labour regulations and to
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accomplish the timely communication of these decisions to the relevant workers.
Second, deployment of temporary workers may be restricted to specific times,
such as the start of a day or the start of a week (Buyukkaramikli et al. 2013).

Independent of the chosen degree of flexibility, the Strategy of Flexible Capacity
Adaption concentrates on capacity planning. The second planning problem of
the Strategy of Levelled Order Release on order dispatching is not considered.
Furthermore, the Strategy of Flexible Capacity Adaption leads to additional
operational costs for hiring and laying off permanent and temporary workers and
for other organisational efforts of capacity adaption. Cost aspects are neglected
in our models of order fulfilment systems, but the evaluation of the Strategy of
Levelled Order Release is restricted to the performance measures of an order
fulfilment system (see Table 6.1). Consequently, in the context of this thesis,
the Strategy of Flexible Capacity Adaption is an unsuitable alternative strategy
since its flexibility costs cannot be incorporated into the comparison.

12.1.4 Selected Alternative Strategy

Although none of the related research fields provides any planning approach
that incorporates both capacity planning and order dispatching, we identify the
dispatching strategies Random Service and First come first serve as suitable
alternative strategies for evaluating the Strategy of Levelled Order Release. Ran-
dom Service randomly selects the next order to be processed. First come first
serve selects the next order to be processed based on the arrival times of the
orders.

In the following, we focus on First come first serve (FCFS) to evaluate the
Strategy of Levelled Order Release (LOR) since FCFS is widely used in produc-
tion and logistics systems. Note that this comparison is limited to the planning
problem of order dispatching. FCFS is combined with the capacity planning
approach of LOR in order to ensure the comparability of both strategies.
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12.2 Hypotheses

The models developed in this thesis provide two possibilities to compare LOR
and FCFS: When comparing the strategies regarding the resulting system per-
formance, we investigate the impact of the selected strategy on the system
performance, measured by at least one performance measure (see Table 6.1),
for order fulfilment systems with a given capacity. Otherwise, when compar-
ing the strategies regarding the required capacity, we analyse the impact of the
selected strategy on the total required capacity in order fulfilment systems with
predefined performance requirements.

In order fulfilment systems with low utilisation (see equation (8.1)), the order
income per time period is the limiting factor of system throughput. The majority
of incoming orders per time period is processed immediately after their time of
arrival without being buffered at any processing step since there is enough idle
capacity in systems with low utilisation. If orders are predominantly processed
immediately after their time of arrival, their processing sequence has no impact
on system throughput and the characteristics of the completed orders. These
findings lead to the following hypothesis:

Hypothesis 7. In order fulfilment systems with low utilisation, system perform-
ance is independent of the strategy that is used to select the next order to be
processed.

In contrast, in order fulfilment systems with high utilisation (see equation (8.2)),
the processing performance per time period is the limiting factor of system
throughput. A significant proportion of the incoming orders per time period is
not processed immediately after their time of arrival, but the orders are buffered
at some processing step of the multi-stage order fulfilment system before being
processed. If it is impossible to process all incoming orders immediately after
their time of arrival, a strategy is required to select the next order to be processed
from the set of buffered orders. Thus, this strategy has an impact on system
throughput and the characteristics of the completed orders.
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FCFS does not consider the due dates of the orders, but the next order to be
processed is selected based on its time of arrival. In contrast, LOR selects the
order with the shortest due date as the next order to be processed. Hence, LOR
tries to systematically avoid the occurrence of backorders. Its proportion of on-
time processed orders is expected to be higher than the one of FCFS. α-service
level measures the probability that none of the completed orders has a backlog
duration, and β-service level quantifies the proportion of on-time completed
orders on the total number of outgoing orders (see Section 6.3.7). Hence, we
formulate the following hypothesis:

Hypothesis 8. In order fulfilment systems with high utilisation, the values of α-
and β-service level achieved when using LOR are at least as high as the ones
achieved when using FCFS.

If it is possible to achieve higher values of α- and β-service level by using LOR
instead of FCFS, as stated in hypothesis 8, this means the following in reverse
with respect to capacity planning:

Hypothesis 9. The total required capacity to guarantee predefined performance
requirements concerningα- and β-service level in order fulfilment systems when
using LOR is at most as high as the one when using FCFS.

12.3 Comparison regarding Resulting
System Performance

In the following, we conduct a numerical analysis based on samples A1, A2, C,
and E to compare LOR and FCFS regarding the resulting system performance
and to verify hypotheses 7 and 8. We focus on α- and β-service level for
simplicity reasons. As evaluation criteria, we calculate the relative deviation of
the values of α- and β-service level achieved when using LOR from the ones
achieved when using FCFS, respectively.
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We use a simulation model to model the performance analysis in multi-stage,
stochastic order fulfilment systemswithFCFS. The simulationmodel is based on
the one used to verify the exactmodel for performance analysis (seeAppendixB).
The simulation models only differ regarding the modelling of order processing
in the simulation iteration when the next order to be processed is selected based
on its time of arrival and not based on its due date. β-service level is used to
determine the length of every simulation replication (precision of 1.0E-05) and
the number of simulation replications (precision of 1.0E-04).

Samples A1 and A2 contain 120 and 350 single-stage order fulfilment systems,
respectively. The ranges of the parameters are the same in both samples. Sample
A2 focuses on order fulfilment systems with a utilisation of [0.5,1.0) since hy-
pothesis 8 expects systems with high utilisation to be more relevant for the
evaluation of LOR. Sample C contains 256 two-stage order fulfilment systems,
and sample E consists of 353 three-stage order fulfilment systems. The samples
differ regarding the ranges of the parameters, especially regarding the discret-
isation of the number of incoming orders per time period A: Its range is given
byAA = {5, 6, . . . , 40} in samples A1 and A2,AC = {3, 4, . . . , 14} in sample
C, and AE = {2, 3, . . . , 6} in sample E. A comprehensive description of the
samples is given in Appendix C.2.

12.3.1 Analysis of α-Service Level

Table 12.1 presents the relative deviations of α-service level between LOR and
FCFS in samples A1, A2, C, and E. Each sample is subdivided into multiple
classes according to the system utilisation (see equation (6.7)). Table 12.1 gives
the minimum, the maximum, the average value, the 5%-, and the 95%-quantile
of the relative deviations for each class of utilisation as well as for the whole
sample.
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Table 12.1: Deviation of α-service level between the Strategy of Levelled Order Release (LOR) and
FCFS.

Relative deviation [%]1

Utilisation Min Max Average Q0.05 Q0.95 No.

Sample A1 [0.1,0.2) 0.00 0.00 0.00 0.00 0.00 4
[0.2,0.3) 0.00 0.00 0.00 0.00 0.00 14
[0.3,0.4) -0.01 0.18 0.01 -0.01 0.04 18
[0.4,0.5) 0.00 0.19 0.03 0.00 0.16 17
[0.5,0.6) 0.00 0.72 0.09 0.00 0.46 9
[0.6,0.7) 0.00 8.74 1.49 0.00 5.26 14
[0.7,0.8) 0.00 12.75 3.02 0.00 12.40 17
[0.8,0.9) 0.00 40.91 6.95 0.00 28.88 15
[0.9,1.0) 1.22 141.07 53.52 1.76 137.20 12

[0.1,1.0) -0.01 141.07 6.83 0.00 50.10 120

Sample A2 [0.5,0.55) -0.01 1.18 0.13 -0.01 0.60 28
[0.55,0.6) -0.01 1.10 0.17 -0.01 0.96 39
[0.6,0.65) 0.00 3.30 0.40 0.00 1.85 40
[0.65,0.7) -0.01 7.55 1.04 0.00 4.94 34
[0.7,0.75) -0.02 9.42 1.78 0.00 7.39 37
[0.75,0.8) -0.01 16.03 2.89 0.00 13.17 49
[0.8,0.85) 0.00 26.95 10.24 0.00 22.52 35
[0.85,0.9) 0.00 48.36 11.24 0.00 37.29 32
[0.9,0.95) 0.00 70.66 20.82 0.00 56.00 31
[0.95,1.0) 0.82 124.67 51.13 5.63 113.00 25

[0.5,1.0) -0.02 124.67 8.32 0.00 45.59 350

Sample C [0.2,0.3) 0.00 0.00 0.00 0.00 0.00 5
[0.3,0.4) 0.00 0.00 0.00 0.00 0.00 17
[0.4,0.5) 0.00 0.03 0.00 0.00 0.01 27
[0.5,0.6) -0.01 0.63 0.06 0.00 0.36 39
[0.6,0.7) -0.01 1.81 0.13 0.00 0.42 45
[0.7,0.8) 0.00 8.92 1.09 0.00 3.88 39
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Relative deviation [%]1

Utilisation Min Max Average Q0.05 Q0.95 No.

Sample C [0.8,0.9) 0.00 21.45 3.91 0.01 11.37 51
[0.9,1.0) -0.07 74.04 21.37 0.12 62.51 33

[0.2,1.0) -0.07 74.04 3.73 0.00 25.47 256

Sample E [0.3,0.4) 0.00 0.00 0.00 0.00 0.00 3
[0.4,0.5) -0.02 0.01 0.00 -0.01 0.00 14
[0.5,0.6) 0.00 0.12 0.01 0.00 0.08 42
[0.6,0.7) -0.02 1.44 0.16 0.00 0.65 62
[0.7,0.8) 0.00 4.96 1.21 0.02 3.25 85
[0.8,0.9) 0.03 20.99 5.35 0.32 12.45 92
[0.9,1.0) 0.03 47.53 16.49 1.02 37.18 55

[0.3,1.0) -0.02 47.53 4.29 0.00 20.80 353
1 Difference between the value of α-service level when using LOR and the one when using FCFS, divided by
the value of α-service level when using FCFS.

We observe three data points each in sample A1 and E, four data points in
sample C, and nine data points in sample A2 to have a negative relative deviation.
The maximum of the negative relative deviations is 0.01% in sample A1, 0.02%
in samples A2 and E, and 0.07% in sample C. The corresponding maxima of
the negative absolute deviations are smaller than 5.3E-04. Thus, we state the
observed negative deviations to be negligible. They result from numerical errors
during the calculation. Thus, for all data points of the considered samples,
α-service level of LOR is at least as high as the one of FCFS. Furthermore,
we observe a maximum relative deviation of 141% in sample A1, 125% in
sample A2, 74% in sample C, and 48% in sample E. Thus, there are data
points in every sample for which α-service level achieved when using LOR is
significantly higher than the one achieved when using FCFS.

Figure 12.1 presents the relative deviations of α-service level between LOR and
FCFS depending on the utilisation of the order fulfilment system in samples A1,
A2, C, and E. It indicates that the utilisation of the order fulfilment system has a
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(a) Sample A1 (b) Sample A2

(c) Sample C (d) Sample E

Figure 12.1: Deviation of α-service level between the Strategy of Levelled Order Release (LOR)
and FCFS.

systematic impact on the relative deviations of α-service level since the relative
deviations of α-service level increase as the utilisation increases.

In every sample, we observe a maximum relative deviation of at most 1.1%
and an average relative deviation of at most 0.2% for systems with a utilisation
smaller than 0.6. Consequently, for systems with a utilisation smaller than
approximately 0.6, the deviations of α-service level between LOR and FCFS are
negligible, and the strategy used to select the next order to be processed has a
neglectable small impact on the resulting α-service level of the order fulfilment
system.
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In contrast, in sample A1, the relative deviation is 141% at its maximum and
54% on average for systems with a utilisation of [0.9,1.0). In sample A2, we
observe a maximum relative deviation of 71% and an average relative deviation
of 21% for systems with a utilisation of [0.9,0.95), whereas the relative deviation
is 125% at its maximum and 51% on average for systems with a utilisation of
[0.95,1.0). In sample C, we observe a maximum relative deviation of 74% and
an average relative deviation of 21% for systems with a utilisation of [0.9,1.0).
In sample E, the relative deviation is 48% at its maximum and 16% on average
for systems with a utilisation of [0.9,1.0). These results indicate that for systems
with high utilisation, the strategy used to select the next order to be processed
has an impact on the resulting α-service level. For these systems, the α-service
level achieved when using LOR can be significantly higher than the one when
using FCFS.

By comparing the 90%-confidence intervals of the relative deviations of differ-
ent classes of utilisation in each sample, we note that the width of the 90%-
confidence interval increases as the utilisation of the order fulfilment systems
increases. In every sample, the 90%-confidence intervals per class of utilisation
are narrower than 1% for systems with a utilisation smaller than 0.6. In contrast,
for systems with a utilisation of [0.9,1.0), the 90%-confidence interval is given
by, for instance, [1.8%, 137%] in sample A1 and [1%, 37%] in sample E. These
results indicate that the variance of the relative deviations of α-service level
increases as the utilisation of the order fulfilment system increases.

By comparing themagnitude of the relative deviations ofα-service level between
the samples, we observe that the number of processes of the considered order
fulfilment system has a systematic impact on the relative deviation of α-service
level. The maximum relative deviation is 141% for the single-stage systems
of sample A1, 74% for the two-stage systems of sample C, and 48% for the
three-stage systems of sample E. These results indicate that the benefit achieved
when using LOR instead of FCFS decreases as the number of processes of the
considered order fulfilment system increases.
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12.3.2 Analysis of β-Service Level

Table 12.2 presents the relative deviations of β-service level between LOR and
FCFS in samples A1, A2, C, and E. Each sample is subdivided into multiple
classes according to the system utilisation (see equation (6.7)). Table 12.2 gives
the minimum, the maximum, the average value, the 5%-, and the 95%-quantile
of the relative deviations for each class of utilisation as well as for the whole
sample.

Table 12.2: Deviation of β-service level between the Strategy of Levelled Order Release (LOR) and
FCFS.

Relative deviation [%]1

Utilisation Min Max Average Q0.05 Q0.95 No.

Sample A1 [0.1,0.2) 0.00 0.00 0.00 0.00 0.00 4
[0.2,0.3) 0.00 0.00 0.00 0.00 0.00 14
[0.3,0.4) -0.01 0.04 0.00 -0.01 0.01 18
[0.4,0.5) 0.00 0.02 0.00 0.00 0.02 17
[0.5,0.6) 0.00 0.10 0.01 0.00 0.06 9
[0.6,0.7) 0.00 1.37 0.18 0.00 0.71 14
[0.7,0.8) -0.01 1.65 0.33 0.00 1.57 17
[0.8,0.9) 0.00 4.94 0.81 0.00 4.16 15
[0.9,1.0) 0.04 6.17 2.50 0.05 6.11 12

[0.1,1.0) -0.01 6.17 0.42 0.00 3.25 120

Sample A2 [0.5,0.55) -0.01 0.15 0.01 0.00 0.07 28
[0.55,0.6) -0.01 0.19 0.02 -0.01 0.14 39
[0.6,0.65) 0.00 0.48 0.05 0.00 0.28 40
[0.65,0.7) -0.01 1.17 0.12 0.00 0.65 34
[0.7,0.75) -0.01 1.16 0.19 0.00 0.94 37
[0.75,0.8) -0.01 1.99 0.33 0.00 1.80 49
[0.8,0.85) 0.00 4.49 1.13 0.00 3.31 35
[0.85,0.9) 0.00 5.71 1.06 0.00 4.02 32
[0.9,0.95) -1.78 6.26 1.29 -0.35 5.29 31
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Relative deviation [%]1

Utilisation Min Max Average Q0.05 Q0.95 No.

Sample A2 [0.95,1.0) -6.62 6.07 1.15 -5.20 5.40 25

[0.5,1.0) -6.62 6.26 0.49 0.00 3.16 350

Sample C [0.2,0.3) 0.00 0.00 0.00 0.00 0.00 5
[0.3,0.4) 0.00 0.00 0.00 0.00 0.00 17
[0.4,0.5) 0.00 0.01 0.00 0.00 0.00 27
[0.5,0.6) 0.00 0.13 0.01 0.00 0.07 39
[0.6,0.7) -0.01 0.35 0.02 0.00 0.09 45
[0.7,0.8) 0.00 1.99 0.20 0.00 0.73 39
[0.8,0.9) 0.00 3.47 0.56 0.00 1.63 51
[0.9,1.0) -1.24 6.66 2.35 0.01 5.60 33

[0.2,1.0) -1.24 6.66 0.45 0.00 3.50 256

Sample E [0.3,0.4) 0.00 0.00 0.00 0.00 0.00 3
[0.4,0.5) -0.01 0.00 0.00 0.00 0.00 14
[0.5,0.6) 0.00 0.02 0.00 0.00 0.02 42
[0.6,0.7) 0.00 0.38 0.04 0.00 0.17 62
[0.7,0.8) 0.00 1.32 0.28 0.00 0.80 85
[0.8,0.9) 0.01 5.42 1.23 0.06 3.16 92
[0.9,1.0) -3.76 6.43 2.54 0.07 5.38 55

[0.3,1.0) -3.76 6.43 0.79 0.00 3.68 353
1 Difference between the value of β-service level when using LOR and the one when using FCFS, divided by
the value of β-service level when using FCFS.

We observe a minimum relative deviation of -0.01% in all samples, except six
data points in sample A2, whose relative deviation is between -7% and -0.7%,
one data point in sample Cwith a relative deviation of -1.2%, and two data points
in sample E with a relative deviation of -3.7%, respectively. Apart from these
outliers that will be discussed in Section 12.3.3, we state the observed negative
relative deviations to be negligible. They result from numerical errors during
the calculation. Hence, we conclude that β-service level achieved when using
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LOR is at least as high as the one achieved when using FCFS. Furthermore, we
observe a maximum relative deviation of approximately 6% in every sample.
Thus, there are data points in every sample for which β-service level achieved
when using LOR is significantly higher than the one achieved when using FCFS.

Figure 12.2 presents the relative deviations of β-service level between LOR and
FCFS depending on the utilisation of the order fulfilment system in samples A1,
A2, C, and E. It indicates that the utilisation of the order fulfilment system has a
systematic impact on the relative deviations of β-service level since the relative
deviations of β-service level increase as the utilisation increases.

(a) Sample A1 (b) Sample A2

(c) Sample C (d) Sample E

Figure 12.2: Deviation of β-service level between the Strategy of Levelled Order Release (LOR)
and FCFS.
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In every sample, we observe a maximum relative deviation of at most 0.2% and
an average relative deviation of at most 0.02% for systems with a utilisation
smaller than 0.6. Consequently, for systems with a utilisation smaller than
approximately 0.6, the deviations of β-service level between LOR and FCFS are
negligible, and the strategy used to select the next order to be processed has a
neglectable small impact on the resulting β-service level of the order fulfilment
system.

In contrast, for systems with a utilisation of [0.9,1.0), the maximum relative
deviation is between 6.1% and 6.7% in every sample. The corresponding average
relative deviation is between 1.2% and 2.5%. These results indicate that for
systems with high utilisation, the strategy used to select the next order to be
processed has an impact on the resulting β-service level. In these systems, the
β-service level achieved when using LOR can be significantly higher than the
one achieved when using FCFS.

By comparing the 90%-confidence intervals of the relative deviations of differ-
ent classes of utilisation in each sample, we note that the width of the 90%-
confidence interval increases as the utilisation of the order fulfilment systems
increases. In every sample, the 90%-confidence intervals per class of utilisation
are narrower than 1% for systems with a utilisation smaller than 0.7. In contrast,
for systems with a utilisation of [0.9,1.0), the 90%-confidence interval is given
by, for instance, [0.05%, 6.1%] in sample A1 and [0.07%, 5.4%] in sample E.
These results indicate that the variance of the relative deviations of β-service
level increases as the utilisation of the order fulfilment system increases.

12.3.3 Discussion

For bothα- andβ-service level, we do not observe significant differences between
LOR and FCFS for order fulfilment systems with a utilisation smaller than
approximately 0.6 in all samples. These results confirm that for order fulfilment
systems with low utilisation, the strategy used to select the next order to be

185



12 Evaluation of the Strategy of Levelled Order Release

processed has a neglectable small impact on the resulting system performance
(see hypothesis 7).

In contrast, in every sample, we observe significantly higher values of both α-
and β-service level when using LOR instead of FCFS in order fulfilment systems
with high utilisation. For instance, for systems with a utilisation of [0.9,1.0), the
average relative deviation over all samples is 27% for α-service level and 2% for
β-service level. α-service level is more sensitive to the selected strategy than β-
service level. These results confirm that the strategy used to select the next order
to be processed has an essential impact on the resulting system performance
in order fulfilment systems with high utilisation and that system performance
achievedwhen using LOR can be significantly higher than the one achievedwhen
using FCFS (see hypothesis 8).

Samples A2, C, and E contain few data points whose β-service level achieved
when using LOR is smaller than the one achieved when using FCFS. Table 12.3
gives a detailed analysis of selected performance measures – order income-
related utilisation, β-service level, and expected total number of lost sales per
time period – of the corresponding order fulfilment systems. All of them are
characterised by a high utilisation and a high proportion of backorders. In
this kind of order fulfilment systems, LOR, which selects the next order to be
processed based on the shortest due date to systematically avoid lost sales, has
the negative side-effect that only a small proportion of the available processing
performance per time period remains to process orders without failed due dates.
Thus, the β-service level achieved when using LOR is relatively small in these
systems. In contrast, FCFS, which does not rely on due dates when selecting the
next order to be processed, accepts a higher number of lost sales, and thus more
orders can be completed on time. Consequently, the β-service level achieved
when using FCFS is higher than the one achieved when using LOR.

186



12.4 Comparison regarding Required Capacity

Table 12.3: Order income-related utilisation, β-service level, and expected total number of lost sales
per time period of selected order fulfilment systems when using the Strategy of Levelled
Order Release (LOR) and when using FCFS (A2.1-A2.6 of sample A2, C.1 of sample
C, E.1-E.2 of sample E).

SLβ E(S)

Ũ LOR FCFS Deviation1 LOR FCFS Deviation1

A2.1 0.9638 0.8529 0.8791 -2.98% 0.0865 0.1396 -38.02%
A2.2 0.9771 0.7329 0.7488 -2.12% 0.1817 0.2515 -27.76%
A2.3 0.9278 0.8834 0.8896 -0.70% 0.0741 0.0925 -19.91%
A2.4 0.9823 0.8103 0.8677 -6.62% 0.1161 0.1784 -34.90%
A2.5 0.9489 0.8706 0.8863 -1.78% 0.0761 0.1068 -28.71%
A2.6 0.9838 0.7368 0.7818 -5.75% 0.1882 0.2636 -28.60%

C.1 0.9718 0.8699 0.8809 -1.24% 0.0221 0.0254 -12.80%

E.1 0.9773 0.8494 0.8826 -3.76% 0.0224 0.0326 -31.24%
E.2 0.9768 0.8535 0.8866 -3.73% 0.0213 0.0310 -31.30%

1 Difference between the value of the key figure (SLβ or E(S)) when using LOR and the one when using
FCFS, divided by the value of the key figure when using FCFS.

12.4 Comparison regarding Required Capacity

In the following, we conduct a numerical analysis based on samples F and G
to compare LOR and FCFS regarding the total required capacity and to verify
hypothesis 9. As evaluation criteria, we use the absolute and relative deviation
of the total required capacity in the order fulfilment system to guarantee a
predefined performance requirement when using LOR from the one when using
FCFS. The total required capacity corresponds to the objective function value
of the capacity planning problem (see equation (9.5)).

We use the parameter setting SP/SMy-QM/NMn of the MADS algorithm for
solving the capacity planning problem (see Chapter 11). In the case of ca-
pacity planning for order fulfilment systems using LOR, the exact model for
performance analysis represents the blackbox. In contrast, in the case of capa-
city planning for order fulfilment systems using FCFS, the adapted simulation
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model, which is used in Section 12.3 for performance analysis of order fulfilment
systems using FCFS, represents the blackbox.

Sample F consists of 200 single-stage order fulfilment systems, and sample G
contains 200 two-stage order fulfilment systems. The samples differ regarding
the ranges of the parameters, especially regarding the discretisation of the number
of incoming orders per time periodA: Its range is given byAF = {3, 4, . . . , 15}
in sample F andAG = {2, 3, . . . , 6} in sample G. A comprehensive description
of the samples is given in Appendix C.3. In both samples, the performance
requirement of the capacity planning problem is specified by a predefined, indi-
vidual value of α-service level.

12.4.1 Numerical Results

Table 12.4 presents the minimum, the maximum, and the average values of the
absolute and relative deviations of the total required capacity between LOR and
FCFS in samples F and G.

Table 12.4: Deviation of total required capacity between the Strategy of Levelled Order Release
(LOR) and FCFS.

Absolute deviation1 Relative deviation [%]2

Min Max Average Min Max Average

Sample F -1.00 0.00 -0.14 -33.33 0.00 -2.85
Sample G -1.00 0.00 -0.12 -20.00 0.00 -1.65

1 Difference between the capacity required when using LOR and the one required when using FCFS.
2 Difference between the capacity required when using LOR and the one required when using FCFS, divided by
the capacity required when using FCFS.

We observe a maximum absolute deviation of zero in both samples. Thus, for all
data points of the considered samples, the total required capacity to guarantee
a predefined α-service level when using LOR is at most as high as the one
when using FCFS. Furthermore, for 13.5% of the data points in sample F and
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12% of the data points in sample G, the total required capacity to guarantee a
predefined α-service level when using LOR is smaller than the one when using
FCFS. We observe a minimum absolute deviation of -1.00 in each sample. The
corresponding minimum relative deviation is -33% in sample F and -20% in
sample G, respectively.

Focusing on the data points for which we observe a capacity saving when using
LOR instead of FCFS, the average absolute capacity saving is one time unit
in each sample. The corresponding average relative capacity saving is 21% in
sample F and 14% in sample G (see Table 12.5).

Table 12.5: Capacity savings when using the Strategy of Levelled Order Release (LOR) instead of
FCFS.

Proportion of data
points [%]

Average absolute
capacity saving

Average relative
capacity saving [%]

Sample F 13.50 1.00 21.08
Sample G 12.00 1.00 13.71

Figure 12.3 presents the relative deviation of the total required capacity between
LOR and FCFS depending on the required α-service level in samples F and
G. It indicates that the value of the required α-service level does not have any
systematic impact on the capacity savings that can be achieved when using
LOR instead of FCFS. The required α-service level of data points for which we
observe a capacity saving when using LOR instead of FCFS is between 0.45 and
1.00 in sample F and between 0.08 and 1.00 in sample G.

12.4.2 Discussion

We observe no data point with a positive deviation of total required capacity
between LOR and FCFS in both samples. Furthermore, we observe capacity
savings of on average 18% when using LOR instead of FCFS for approximately
13% of the data points in each sample. These results confirm that the total

189



12 Evaluation of the Strategy of Levelled Order Release

(a) Sample F (b) Sample G

Figure 12.3: Deviation of total required capacity between the Strategy of Levelled Order Release
(LOR) and FCFS.

required capacity to guarantee a predefined performance requirementwhen using
LOR is at most as high as the one when using FCFS (see hypothesis 9).

The absolute capacity saving equals one time unit for every data point, for
which we observe a capacity saving when using LOR instead of FCFS. This
is due to the fact that the considered order fulfilment systems in both samples
are small (see Appendix C.3), and the capacity is an integer parameter (see
equation (9.9)). Thus, the variable domain C of the capacity planning prob-
lem is limited: It is given by CF = {1, 2, . . . , 8} in sample F and by CG =

{1, 2, . . . , 6} × {1, 2, . . . , 12} in sample G (see equation (9.4)).

12.5 Chapter Conclusion

In this chapter, we evaluated the Strategy of Levelled Order Release in multi-
stage, stochastic order fulfilment systemswith customer-required order deadlines
by comparing its performance with the one of FCFS.

The Strategy of Levelled Order Release comprises two planning problems: Ca-
pacity planning and order dispatching. It is difficult to find suitable alternative
strategies to evaluate the Strategy of LevelledOrderRelease since related research
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fields only focus on one of these planning problems: Strategies of flexible capa-
city adaption concentrate on capacity planning, whereas dispatching strategies
and scheduling problems focus on order dispatching. Consequently, the com-
parison of the Strategy of Levelled Order Release with any alternative strategy
is always limited to one of its planning problems. The Strategy of Flexible Ca-
pacity Adaption is an unsuitable alternative strategy since the models provided
in this thesis are restricted to performance analysis of order fulfilment systems
and do not consider further evaluation criteria, such as the flexibility costs of the
Strategy of Flexible Capacity Adaption. Furthermore, processing-related dis-
patching policies, such as Shortest remaining processing time, and scheduling
problems are unsuitable alternative strategies due to modelling reasons, and due-
date related dispatching policies select the next order to be processed based on
the same criterion as the Strategy of Levelled Order Release. However, the dis-
patching strategy FCFS is a suitable alternative strategy to evaluate the Strategy
of Levelled Order Release. Since FCFS is limited to the planning problem of
order dispatching, it is combined with the capacity planning approach of the
Strategy of Levelled Order Release in order to ensure the comparability of both
strategies.

The comparison of the Strategy of Levelled Order Release and FCFS regarding
the resulting system performance shows that the strategy used to select the next
order to be processed has a neglectable small impact on the resulting values of
α- and β-service level in order fulfilment systems with a utilisation smaller than
approximately 0.6. In contrast, in order fulfilment systems with a utilisation
higher than 0.6, one can achieve significantly higher values of α- and β-service
level when using the Strategy of Levelled Order Release instead of FCFS. For
instance, for systems with a utilisation of [0.9,1.0), we observe an average
increase of α-service level of 27% and of β-service level of 2%.

The comparison of the Strategy of Levelled Order Release and FCFS regarding
the total required capacity to guarantee a predefined α-service level in the order
fulfilment system shows that the total required capacity when using the Strategy
of Levelled Order Release is at most as high as the one when using FCFS. In
approximately 13% of the considered capacity planning problems, we achieve a
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capacity saving of on average 18% when using the Strategy of Levelled Order
Release instead of FCFS.
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13 Conclusion

This chapter aims at summarising the most important results of this thesis and
presenting an outlook on further research topics.

13.1 Summary

Order fulfilment systems are forced to efficiently manage a highly volatile cus-
tomer demand consisting of low-volume orders while simultaneously meeting
customer-required, short order deadlines. Hopp and Spearman (2004) provide
three buffer types – inventory buffer, time buffer, and capacity buffer – to handle
the volatile workload in production systems. In this thesis, we combine the
potentials of time buffer and capacity buffer to develop and analytically invest-
igate the Strategy of Levelled Order Release to balance workload in multi-stage,
stochastic order fulfilment systems with customer-required order deadlines over
time on a tactical level. The focus is on the two main application fields of
order fulfilment: Warehouses and make-to-order systems. The contribution of
this thesis is three-fold: We develop (1) a workload balancing concept, (2) a
discrete-time analytical model for performance analysis, and (3) an algorithm
for capacity planning under performance constraints for multi-stage, stochastic
order fulfilment systems with levelled order release and customer-required order
deadlines.

The results of the literature review state the research gap of this thesis. First,
there is no workload balancing approach in the literature to balance the workload
of order fulfilment systems over time on a tactical level by using a combination
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of time buffer and capacity buffer. Second, the discrete-time analytical model
introduced in this thesis is the first analytical model for performance analysis of
workload balancing in order fulfilment systems that ensures a real-life represent-
ation of order fulfilment systems. It regards customer-required order deadlines
and the interdependencies between the processing steps, and it models cus-
tomer demand, customer-required deadlines, and processing performance as
stochastic parameters. Furthermore, the discrete-time analytical model enables
the exact calculation of complete probability distributions for several system-
and customer-related performance measures. Third, capacity planning problems
with due date-related performance constraints that rely on probability distribu-
tions of corresponding performance measures and service level in multi-stage
systemswith stochastic, customer-required order deadlines have not been studied
in the literature so far.

Workload Balancing in Order Fulfilment Systems The order fulfilment
system forms the basis for all concepts and models developed in this thesis. We
formally describe an order fulfilment system by a finite set of order types, a
finite set of processes, and a function mapping each order type to its processing
sequence in the order fulfilment system. Each order type is characterised by the
number of incoming orders per time period and the lead time of an order, and
each process is specified by its processing performance and its capacity. We
develop a levelling concept for order fulfilment systems, the so-called Strategy
of Levelled Order Release, based on the key ideas of Heijunka levelling in
production systems. It is impossible to directly apply the concept of Heijunka
levelling in order fulfilment systems due to several differences in the system
characteristics, such as order lot size, the role of customer demand, and charac-
teristics of capacity. Moreover, the overarching question of the levelling concept
is different: Heijunka levelling decides on a suitable buffer size of the finished-
goods-inventory to meet the promised performance requirements, whereas, in
order fulfilment systems, the decision is on a suitable amount of provided capa-
city to meet the promised performance requirements. The key characteristics of
the Strategy of Levelled Order Release are the following:
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• There is a fixed capacity per order type per scheduling interval reserved for
order processing of orders of this order type in each scheduling interval.

• In each scheduling interval, the reserved capacity per order type is de-
ployed to process orders of this order type according to ascending due
dates.

In this way, the Strategy of Levelled Order Release systematically exploits the
time buffer of each order between its time of arrival and its deadline to balance the
variability of the customer demand. The remaining variability of the customer
demand is either passed on to the customer, resulting in low service levels, or
it is balanced using the capacity buffer. The extent to which capacity buffer is
used to balance the remaining variability depends on the specific performance
requirements of the order fulfilment system. Thus, the Strategy of Levelled
Order Release provides an answer to the first research question of the thesis:

Howcanwebalanceworkloadover time inmulti-stage, stochastic
order fulfilment systems with customer-required order dead-
lines?

Performance Analysis of Order Fulfilment Systems Wechoose a discrete-
time Markov chain to model and analyse system behaviour and performance of
a multi-stage, stochastic order fulfilment system with levelled order release and
customer-required order deadlines since discrete-time analytical models provide
several advantages regarding accuracy, level of detail, and the description of
real processes compared to continuous-time analytical models. Above all, a
discrete-time Markov chain enables the exact calculation of complete prob-
ability distributions of stochastic performance measures. To model system
behaviour of multi-stage order fulfilment systems with levelled order release as a
discrete-time Markov chain, we consider the order types of the order fulfilment
system separately. We assume each order type to have a sequential processing se-
quence, and we limit the possible backlog duration of an order by the maximum
accepted backlog duration. Furthermore, regarding the modelling of partially
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processed orders that are transmitted between the processing steps of a multi-
stage order fulfilment system, we differentiate between an exact and a simplified
modelling approach: The exact modelling approach provides an exact recording
of partially processed orders, whereas partially processed orders are neglected
in the simplified modelling approach. Based on these modelling approaches, we
introduce an exact and a simplified analytical model for performance analysis of
multi-stage, stochastic order fulfilment systems with levelled order release and
customer-required order deadlines by

• modelling system behaviour of such order fulfilment systems according to
the respective modelling approach as a discrete-time Markov chain, and

• calculating multiple stochastic and deterministic, system- and customer-
related performance measures of order fulfilment systems exactly based
on the limiting distribution of the Markov chain.

The simplified model can be seen as a special case of the exact model since it
ensues from the exact model when modelling is restricted to single-stage order
fulfilment systems. Based on the calculated performance measures, such as
system throughput, α-, β- and γ-service level, utilisation, performance balance,
number of unprocessed orders, number of lost sales, and time buffer and backlog
duration of a completed order, the developed models enable a comprehensive
performance analysis of multi-stage, stochastic order fulfilment systems with
levelled order release and customer-required order deadlines. These models for
performance analysis provide an answer to the second research question of the
thesis:

Howcanwedetermine theperformance ofmulti-stage, stochastic
order fulfilment systemswith levelled order release and customer-
required order deadlines?

We show that the simplified model suffers from modelling inaccuracies for
performance analysis of order fulfilment systems with high utilisation and a
shifting bottleneck: We prove that for this system configuration, the expected
value of system throughput calculated based on the simplified model is smaller
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than the actual one calculated based on the exact model. Furthermore, we
numerically show that these modelling inaccuracies of the simplified model lead
to inaccuracies in the values of α- and β-service level. For instance, for systems
with a utilisation of [0.9,1.0), the absolute value of the relative deviation of
α-service level is at most 3.3% and on average 0.5% in the sample of two-
stage systems, and it is at most 47.6% and on average 6.9% in the sample of
three-stage systems. Hence, for order fulfilment systems with high utilisation
and a shifting bottleneck, it is only reasonable to use the simplified model
for worst-case analyses of system throughput and service level. In contrast,
for order fulfilment systems with high utilisation and a static bottleneck, we
prove that the expected value of system throughput calculated based on the
simplified model corresponds to the actual one calculated based on the exact
model. For order fulfilment systems with low utilisation, we numerically show
that system performance calculated based on the simplified model is the same
as the one calculated based on the exact model, apart from negligible numerical
errors. However, we expect order fulfilment systems with high utilisation and
a shifting bottleneck to be the main application field for workload balancing
since systems with low utilisation are not competitive in the long run, and the
most crucial measure for improvement in systems with a static bottleneck is not
workload balancing but increasing the processing performance at the bottleneck.
For performance analysis of these systems, one should prefer the exact model
over the simplified model for reasons of modelling accuracy and accuracy of
performance analysis, despite its drawbacks regarding computational effort and
memory usage due to the larger number of reachable states (average reduction
in the number of reachable states by more than 90% when using the simplified
model instead of the exact one).

Capacity Planning in Order Fulfilment Systems The decision problem
of capacity planning in multi-stage order fulfilment systems with performance
requirements is a blackbox optimisation problem since the relationship between
the provided capacity and the performance that is achieved with this capacity
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cannot be specified by a mathematical equation, but it is given by the analyt-
ical model for performance analysis. The analytical model that calculates the
resulting system performance for any order fulfilment system with a given ca-
pacity represents the blackbox of the capacity planning problem. We select the
direct search method Mesh Adaptive Direct Search (MADS) and the model-
based derivative-free method Surrogate Optimisation Integer (SO-I) as suitable
solution algorithms for capacity planning since they meet the characteristics of
the capacity planning problem, their convergence is mathematically proven, and
their implementation is open source. The problem-specific configurations of the
MADS algorithm and the SO-I algorithm enable a target-oriented determination
of the minimum required, process-specific capacity to meet any performance
requirement of the customers that is specified based on one or multiple perform-
ance measures of the order fulfilment system. Thus, both algorithms provide an
answer to the third research question of the thesis:

How can we determine the capacity required to meet spe-
cific performance requirements in multi-stage, stochastic order
fulfilment systems with levelled order release and customer-
required order deadlines?

Numerical Analysis and Application Runtime optimisation and efficient
memory usage become challenging issues when modelling system behaviour
of real-life order fulfilment systems as a discrete-time Markov chain since the
size of the state space of the Markov chain quickly increases. Therefore, we
introduce the alternative procedure to determine the set of reachable states of
a Markov chain based on a given initial state. By this procedure, we achieve
an average reduction in the number of calculated states by 43.6% for single-
stage systems and by 99.8% for two-stage systems. A further strategy to reduce
memory usage of the Markov chain is to use a sparse storage scheme to store the
transition matrix of the Markov chain. To reduce the computation time of the
Markov chain, we recommend using the indirect method GMRES to solve linear
systems and computing the Markov chain in parallel. By using GMRES instead
of the Gaussian elimination, we observe an average reduction in computation
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time by approximately 46%. By calculating the Markov chain in parallel, we
achieve an average reduction in computation time by 95% compared to sequential
computation.

A numerical analysis on fine-tuning and evaluating the solution algorithms for
capacity planning regarding solution quality and runtime efficiency identifies
the parameter settings SP/SMy-QM/NMn and CANDglob/RBF to be the most
suitable parameter settings of the MADS algorithm and the SO-I algorithm
for solving the capacity planning problem. The MADS algorithm and the
SO-I algorithm do not differ regarding solution quality since their most suit-
able parameter settings find the optimal solution for all considered data points,
respectively. However, the MADS algorithm has a remarkable higher runtime
efficiency than the SO-I algorithm (average reduction in the number of calculated
blackbox instances per data point by 65%). Consequently, we recommend using
the parameter setting SP/SMy-QM/NMn of theMADS algorithm for solving the
capacity planning problem in order fulfilment systems.

Finally, we evaluate the Strategy of Levelled Order Release in multi-stage,
stochastic order fulfilment systems with customer-required order deadlines by
comparing its performance with the one of FCFS. Since the Strategy of Levelled
Order Release comprises two planning problems – capacity planning and order
dispatching –, it is difficult to find suitable alternative strategies in related re-
search fields to evaluate the Strategy of Levelled Order Release. Strategies of
flexible capacity adaption concentrate on capacity planning, whereas dispatch-
ing strategies and scheduling problems focus on order dispatching. The Strategy
of Flexible Capacity Adaption is an unsuitable alternative strategy since the
models provided in this thesis are restricted to performance analysis of order
fulfilment systems and do not consider further evaluation criteria, such as the
flexibility costs of the Strategy of Flexible Capacity Adaption. Furthermore,
processing-related dispatching policies, such as Shortest remaining processing
time, and scheduling problems are unsuitable alternative strategies due to mod-
elling reasons, and due-date related dispatching policies select the next order to
be processed based on the same criterion as the Strategy of Levelled Order Re-
lease. However, the dispatching strategy FCFS is a suitable alternative strategy
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to evaluate the Strategy of Levelled Order Release. Since FCFS is limited to the
planning problem of order dispatching, it is combined with the capacity planning
approach of the Strategy of Levelled Order Release in order to ensure the com-
parability of both strategies. The comparison of the Strategy of Levelled Order
Release and FCFS regarding the resulting system performance shows that the
strategy used to select the next order to be processed has a neglectable small im-
pact on the resulting values of α- and β-service level in order fulfilment systems
with a utilisation smaller than approximately 0.6. In contrast, in order fulfilment
systems with a utilisation higher than 0.6, one can achieve significantly higher
values of α- and β-service level when using the Strategy of Levelled Order Re-
lease instead of FCFS. For instance, for systems with a utilisation of [0.9,1.0),
we observe an average increase of α-service level of 27% and of β-service level
of 2%. The comparison of the Strategy of Levelled Order Release and FCFS
regarding the total required capacity to guarantee a predefined α-service level
in the order fulfilment system shows that the total required capacity when using
the Strategy of Levelled Order Release is at most as high as the one when using
FCFS. In approximately 13% of the considered capacity planning problems, we
achieve a capacity saving of on average 18%when using the Strategy of Levelled
Order Release instead of FCFS.

13.2 Outlook

After answering the research questions and summarising the results, we en-
counter the boundaries of this thesis. Some aspects go beyond the scope of this
thesis but are interesting and relevant to analyse.

First, further research can be deducted on generalising the models developed
in this thesis. In real-life order fulfilment systems, customer demand is often
seasonally fluctuating. By modelling the number of incoming orders as a time-
dependent, stochastic parameter, the time-dependency of customer demand can
be incorporated into the models of this thesis. Furthermore, the processing se-
quence of orders in order fulfilment systems usually contains multiple splits and
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merges, whereas the models of this thesis are limited to a sequential processing
sequence. We can model an order type whose processing sequence contains
splits by dividing this order type into multiple artificial order types, each of
which has a sequential processing sequence. However, modelling merges in
order fulfilment systems is beyond the scope of this thesis.

Second, parallel computing of the Markov chain is limited to the available
processors of the CPU in this thesis. However, we expect the additional use of
graphics processing units to provide further potentials in reducing computation
time and memory usage of the Markov chain.

Finally, the concept of variability buffers of Hopp and Spearman (2004) provides
further strategies for workload balancing in multi-stage, stochastic order fulfil-
ment systems apart from the Strategy of Levelled Order Release. For instance,
the Strategy of Flexible Capacity Adaption uses the capacity buffer to match
provided capacity as precisely as possible to demanded capacity. Even inventory
buffer provides some potentials for workload balancing in order fulfilment sys-
tems by doing preparatory processing steps in advance. Moreover, various com-
bined strategies are reasonable. A comprehensive evaluation and comparison
of these different approaches for workload balancing in multi-stage, stochastic
order fulfilment systems require a holistic evaluation framework. Based on the
models developed in this thesis, the comparison of the Strategy of Levelled Order
Release with alternative strategies is limited to several performance measures
so far. However, a holistic evaluation framework has to incorporate further
evaluation criteria, such as cost aspects.
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A Methodology of Literature
Review

The state of the art of academic literature in the research segments of this
thesis, which is presented in Chapter 2, results from a keyword-based systematic
literature review in the Scopus database. We searched for each pair of keywords
given in Table A.1 in the article title, abstract, and keywords. We limited the
resulting set of publications to journal articles and conference papers in English
language. We additionally removed all papers of unrelated research fields. In
the remaining relevant publications, we analysed the references and the citations
to find further relevant publications that did not emerge previously.

Table A.1: Keywords of literature review.

Keyword 1 Keyword 2

capacity deadline
capacity service level, service requirement
flow shop order release
Heijunka -
make to order, MTO analytic
make to order, MTO capacity
make to order, MTO deadline
make to order, MTO due date
make to order, MTO flow shop
make to order, MTO levelling, leveling
make to order, MTO linear system, linear flow
make to order, MTO multi-stage, multi stage
make to order, MTO order release
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Keyword 1 Keyword 2

make to order, MTO performance analysis
make to order, MTO queueing, queuing
make to order, MTO review
make to order, MTO sequential
make to order, MTO stochastic
make to order, MTO workload balance, workload balancing
order fulfilment, order fulfillment capacity
order fulfilment, order fulfillment deadline
order fulfilment, order fulfillment due date
order fulfilment, order fulfillment levelling, leveling
order fulfilment, order fulfillment make to order, MTO
order fulfilment, order fulfillment multi-stage, multi stage
order fulfilment, order fulfillment order release
order fulfilment, order fulfillment performance analysis
order fulfilment, order fulfillment queueing, queuing
order fulfilment, order fulfillment review
order fulfilment, order fulfillment stochastic
order fulfilment, order fulfillment uncertainty
order fulfilment, order fulfillment warehouse, order picking
order fulfilment, order fulfillment workload balance, workload balancing
performance analysis deadline
performance analysis due date
performance analysis multi-stage, multi stage
performance analysis stochastic
queueing, queuing deadline
warehouse, order picking analytic
warehouse, order picking capacity
warehouse, order picking deadline
warehouse, order picking dispatch
warehouse, order picking due date
warehouse, order picking flow shop
warehouse, order picking levelling, leveling
warehouse, order picking linear system, linear flow
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Keyword 1 Keyword 2

warehouse, order picking multi-stage, multi stage
warehouse, order picking order release
warehouse, order picking performance analysis
warehouse, order picking queueing, queuing
warehouse, order picking review
warehouse, order picking sequential
warehouse, order picking stochastic
warehouse, order picking uncertainty
warehouse, order picking workload balance, workload balancing
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B Simulation Model

The simulation model depicts and analyses system behaviour and performance
of multi-stage, stochastic order fulfilment systems with levelled order release and
customer-required order deadlines. It is based on the exact modelling approach
(see Figure 5.1), and it considers a multi-stage, stochastic order fulfilment system
with a finite set of processes P , a unique order type, and levelled order release
considering a finite set of due dates K. The order type and each process are
specified by the parameters introduced in Sections 3.2.2 and 3.2.3, respectively.
Analogous to the analytical models for performance analysis, we observe the
order fulfilment system at discrete-time points in time t ∈ N0. The state of the
simulation model specifies the number of unprocessed orders according to their
due dates (see equation (6.8)).

B.1 Simulation Iteration

Asimulation iterationmodels order processing in themulti-stage order fulfilment
system in any time period t. It consists of the same (pmax + 2) sub-steps as the
state transition of the Markov chain of the exact model (see Section 6.2.2):

• Order processing in time period t:

– Order processing at process p = 1,

– . . .,

– Order processing at process pmax,
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• Due date update at the end of time period t, and

• Order income at the beginning of time period (t+ 1).

We use the same notation as in the exact model for performance analysis
and denote the interim states of a simulation iteration by the variables y(m),
m ∈ {0, . . . , (pmax + 2)}, whereby m is used as a counter, and y0 specifies
the state of the simulation before the start of order processing in time period t.
The realisations of the order income per time period G = g and the processing
performance per time periodH = h in time period t are generated based on inde-
pendent random generators. Depending on these realisations, the interim states
y(m), m ∈ {0, . . . , (pmax + 2)}, of the simulation iteration in time period t
are calculated using the equations of the state transition of the Markov chain
of the exact model (see equations (6.9)-(6.12)). Based on the values of the
interim states, we calculate the values of the performance measures of the order
fulfilment system (see Table 6.1) in time period t as follows

• Number of unprocessed orders at process p at the beginning of the time
period

qp =
∑
k∈K

y
(0)
p,k ∀p ∈ P (B.1)

• Number of unprocessed orders in the system at the beginning of the time
period

q =
∑
p∈P

∑
k∈K

y
(0)
p,k (B.2)

• Number of unprocessed orders at process p immediately before the start
of order processing at process p

q̃p =
∑
k∈K

y
(p−1)
p,k ∀p ∈ P (B.3)

• Number of lost sales per time period at process p

sp = y
(p)
p,−R ∀p ∈ P (B.4)
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• Total number of lost sales per time period

s =
∑
p∈P

y
(p)
p,−R (B.5)

• Performance balance of process p

wp = hp −
∑
k∈K

y
(p−1)
p,k ∀p ∈ P (B.6)

• Order backlog-related utilisation of process p

up = min

{
1;
y

(p−1)
p,k

hp

}
∀p ∈ P (B.7)

• Processed order per time period

m =


m1,−R . . . m1,emax

...
. . .

...
mpmax,−R . . . mpmax,emax


mp,k = min

{
y

(p−1)
p,k ; max

{
0;hp −

k−1∑
l=−R

y
(p−1)
p,l

}}
∀p ∈ P, k ∈ K

(B.8)

• Number of processed orders per time period at process p

fp =
∑
k∈K

mp,k ∀p ∈ P (B.9)

• Number of completed orders per time period

f =
∑
k∈K

mpmax,k (B.10)

• α-service level

slα =

1
∑−1
k=−Rmpmax,k = 0

0 otherwise
(B.11)

209



B Simulation Model

• β-service level
slβ =

∑emax
k=0 mpmax,k

f + s
(B.12)

• γ-service level

slγ = 1−

(∑−1
k=−R |k| ·mpmax,k + (R+ 1) · s

R · f + (R+ 1) · s

)
. (B.13)

We register the time difference to the order deadline d, the backlog dura-
tion dbacklog , and the time buffer dbuffer of all orders completed in time period t
by recording the due date of every completed order at its time of completion.

B.2 Warm-up Period

The simulation model suffers from the problem of initial transient. Since the
initial state of the simulation is randomly selected, there is no guarantee that
initial simulation iterations correctly represent system behaviour in steady-state.
Instead, the average value of any key figure calculated based on a finite number
of replications will be a biased estimator of the real value of this key figure in
steady-state. To avoid this bias in estimators, a certain number of simulation
iterations at the beginning of every replication, the so-called warm-up period
of the simulation, is deleted, and the key figures are estimated based on the
remaining observations that are said to represent steady-state behaviour of the
simulation (Law 2015, p.511).

There are various methods in the literature to determine the end of the warm-up
period τ . We use the Marginal Standard Error Rule (MSER-5) introduced by
White Jr (1997) to identify the end of warm-up period τ based on β-service
level and 100 replications, each of which consists of 5,000 simulation iterations.
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B.3 Stopping Criteria

The length of every replication and the number of replications are determined
based on β-service level. SLβ,i,j denotes β-service level of simulation iteration
j in replication i. SLβ,i denotes β-service level of replication i, and it is
calculated as the average value of the values SLβ,i,j of β-service level of the
simulation iterations in steady-state of replication i

SLβ,i =
1

mi − τ

mi∑
k=τ

SLβ,i,k, (B.14)

wherebymi denotes the number of simulation iterations of replication i.

To determine the length of replication i∗, we calculate the absolute deviation
of the average value of β-service level measured after the current simulation
iteration j∗ from the average value of β-service level measured after simulation
iteration j′

∆i∗,j∗,j′ =

∣∣∣∣∣∣ 1

j∗ − τ

j∗∑
k=τ

SLβ,i∗,k −
1

j′ − τ

j′∑
k=τ

SLβ,i∗,k

∣∣∣∣∣∣
∀j∗, j′ ≥ τ, (j∗ − j′) ∈ {1, 2, . . . , 10}.

(B.15)

Replication i∗ stops after simulation iteration j∗ if the following condition holds

∆i∗,j∗,j′ < εR ∀(j∗ − j′) ∈ {1, 2, . . . , 10}, (B.16)

whereby εR denotes the predefined precision of a replication.

The replications of the simulation are independent and identically distributed
since the initial state of every replication is selected randomly (Law 2015, p.489).
To determine the number of replications, we calculate the 95%-confidence in-
terval of β-service level based on the values SLβ,i of β-service level of the
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already calculated replications. The 95%-confidence interval of β-service level
after replication i∗ is calculated as follows[

SLβ,i∗ − t(i∗−1),0.975·
√
S2(SLβ,i∗)

i∗
;

SLβ,i∗ + t(i∗−1),0.975 ·
√
S2(SLβ,i∗)

i∗

]
,

(B.17)

whereby SLβ,i∗ denotes the average value of β-service level after replication i∗

SLβ,i∗ =
1

i∗

i∗∑
k=1

SLβ,k,

S2(SLβ,i∗) denotes the variance of β-service level after replication i∗

S2(SLβ,i∗) =
1

i∗ − 1

i∗∑
k=1

(SLβ,k − SLβ,i∗)2,

and t(i∗−1),0.975 denotes the 97.5%-quantile of the t-distribution with (i∗ − 1)

degrees of freedom. The simulation model terminates after replication i∗ if
the 95%-confidence interval of β-service level is narrower than the predefined
precision εS of the simulation

2 · t(i∗−1),0.975 ·
√
S2(SLβ,i∗)

i∗
< εS . (B.18)

B.4 Performance Measures of the Order
Fulfilment System

The values of each performance measure of the order fulfilment system (see
Table 6.1) are derived from the corresponding absolute frequency distribution
that results from the values of this performance measure in all steady-state
simulation iterations of the simulation model. The probability distribution of
each stochastic performance measure is estimated by the corresponding relative
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frequency distribution, whereas the value of each deterministic performance
measure is estimated by the average value of the corresponding absolute fre-
quency distribution.
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We use a space-filling design to generate samples of order fulfilment systems.
The main characteristic of space-filling designs is that the design becomes in-
creasingly dense in the design space by increasing the sample size (Santner et al.
2018, p.149). Vazquez and Bect (2011) provide some justification for choosing
space-filling designs by showing that a space-filling design is the design with
the highest rate of the mean square prediction error decreases as design size
increases. The Latin hypercube design, which we use in this thesis, is a popular
space-filling design whose sample is evenly spread over the range of each input
variable separately. Santner et al. (2018, p.152f.) provide a detailed description
of the general procedure for obtaining a Latin hypercube sample. To determine
a reasonable sample size, Jones et al. (1998) propose the rule of thumb to use a
sample size of 10d data points for an input space of dimension d. Due to curse
of dimensionality, a 10d sample becomes very sparse as d increases. Loeppky
et al. (2009) investigate this issue and conclude that a sample size of 10d data
points is reasonable for experiments with an input space of dimension d ≤ 5.

C.1 Latin Hypercube Designs for Order
Fulfilment Systems

An order fulfilment system with a unique order type is specified by the following
parameters (see Sections 3.2 and 5.3):

• Number of incoming orders per time period A,
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• Lead time E of an order,

• Maximum backlog duration R,

• Set of processes P that results from the number of processing steps pmax
of the considered order type,

• Processing performance per time unit Lp of process p ∈ P , and

• Capacity cp of process p ∈ P .

The maximum backlog duration R and the number of processes pmax are not
included into the Latin hypercube design. They are both constant for every data
point of a sample. The maximum backlog duration is given R = 1 in every
sample. Regarding the number of processes pmax, we differentiate between
samples of single-stage, two-stage, and three-stage order fulfilment systems.
The remaining parameters are systematically varied in every sample.

Some of them –A, E, and Lp, p ∈ P – are stochastic parameters. To reduce the
degree of freedom of the stochastic parameters and thus to reduce the number of
input variables of the Latin hypercube design, we assume each stochastic para-
meter to belong to a particular class of theoretical probability distribution: We
assume that the number of incoming orders per time period A is approximately
Poisson-distributed with parameter λ and a finite range since arrival processes
are commonly modelled as Poisson-distributed random variables in the literat-
ure (Law 2015, p.312). Appendix E specifies the methodology to generate an
approximately Poisson-distributed random variable with finite range. Further-
more, we focus on order fulfilment systems with short lead times by assuming
the lead time E of an order to be Bernoulli-distributed with parameter η in
order to incorporate the customers’ requirements for short order deadlines (see
Chapter 1). Finally, we assume low variation for the processing performance
per time unit Lp of any process p ∈ P and model Lp as Bernoulli-distributed
random variable with parameter θp and transformed range. Due to these as-
sumptions, each stochastic parameter of the order fulfilment system is specified
by one input variable in the Latin hypercube design.
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C.2 Samples for Performance Analysis

The Latin hypercube design for performance analysis of order fulfilment systems
with pmax processes consists of (2 + 2 · pmax) input variables, one for each of
the following parameters:

• Number of incoming orders per time period A,

• Lead time E of an order,

• Processing performance per time unit Lp of each process p, and

• Capacity cp of each process p.

The ranges of the parameters are sample-specific. For the stochastic parameters,
we differentiate between the range of the random variable and the range of
the corresponding input variable of the Latin hypercube design. To ensure
that the resulting order fulfilment systems correspond to reasonable system
configurations, the chosen ranges are based on the following considerations:
First, the maximum possible processing performance per time unit lp,max of any
process p ∈ P corresponds to the minimum possible number of incoming orders
per time period amin. Second, the minimum (maximum) possible value of the
provided capacity cp,min (cp,max) at process p ∈ P is determined by the ratio of
the minimum (maximum) possible number of incoming orders per time period
amin (amax) to the maximum (minimum) possible processing performance per
time unit lp,max (lp,min) of process p. The discretisation of the lead time E
and the processing performances per time unit Lp of the processes p ∈ P is
constant in all samples since these parameters are Bernoulli-distributed. In
contrast, the range of the number of incoming orders per time periodA and thus
its discretisation are sample-specific. Unstable order fulfilment systems (see
equation (6.7)) are removed from the sample.

In this thesis, we generate six samples for performance analysis of order fulfil-
ment systems, three of which consider single-stage systems (sample A1, A2, B)
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and two of which consider two-stage systems (sample C, D). Sample E contains
three-stage systems. The specification of each sample is given in Table C.1.

Table C.1: Samples for performance analysis of order fulfilment systems.

Sample A1 Configuration Single-stage order fulfilment systems P = {1}

Parameter
ranges

A A = {5, 6, . . . , 40} λ ∈ {6, 7, . . . , 39}
E E = {0, 1} η ∈ [0, 1]

Lp, p ∈ P Lp = {4, 5} θp ∈ [0, 1]

cp, p ∈ P cp ∈ {2, 3, . . . , 10}

Sample size 200 data points, 120 of which specify stable systems

Application Evaluation of the Strategy of Levelled Order Release in Chapter 12

Sample A2 Configuration Single-stage order fulfilment systems P = {1}

Parameter
ranges

A A = {5, 6, . . . , 40} λ ∈ {6, 7, . . . , 39}
E E = {0, 1} η ∈ [0, 1]

Lp, p ∈ P Lp = {4, 5} θp ∈ [0, 1]

cp, p ∈ P cp ∈ {2, 3, . . . , 10}

Sample size 1000 data points, 350 of which specify stable systems with a
utilisation of [0.5,1.0]

Application Evaluation of the Strategy of Levelled Order Release in Chapter 12

Sample B Configuration Single-stage order fulfilment systems P = {1}

Parameter
ranges

A A = {3, 4, . . . , 15} λ ∈ {4, 5, . . . , 14}
E E = {0, 1} η ∈ [0, 1]

Lp, p ∈ P Lp = {2, 3} θp ∈ [0, 1]

cp, p ∈ P cp ∈ {1, 2, . . . , 7}

Sample size 200 data points, 133 of which specify stable systems

Application Runtime and memory optimisation of the Markov chain in
Chapter 10
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Sample C Configuration Two-stage order fulfilment systems P = {1, 2}

Parameter
ranges

A A = {3, 4, . . . , 14} λ ∈ {4, 5, . . . , 13}
E E = {0, 1} η ∈ [0, 1]

Lp, p ∈ P Lp = {2, 3} θp ∈ [0, 1]

cp, p ∈ P cp ∈ {1, 2, . . . , 7}

Sample size 500 data points, 256 of which specify stable systems

Application Evaluation of the models for performance analysis in Chapter 8
Evaluation of the Strategy of Levelled Order Release in Chapter 12
Verification of the exact model for performance analysis in Ap-
pendix D

Sample D Configuration Two-stage order fulfilment systems P = {1, 2}

Parameter
ranges

A A = {2, 3, . . . , 6} λ ∈ {3, 4, 5}
E E = {0, 1} η ∈ [0, 1]

Lp, p ∈ P Lp = {1, 2} θp ∈ [0, 1]

cp, p ∈ P cp ∈ {2, 3, . . . , 5}

Sample size 500 data points, 256 of which specify stable systems

Application Runtime and memory optimisation of the Markov chain in
Chapter 10

Sample E Configuration Three-stage order fulfilment systems P = {1, 2, 3}

Parameter
ranges

A A = {2, 3, . . . , 7} λ ∈ {3, . . . , 6}
E E = {0, 1} η ∈ [0, 1]

Lp, p ∈ P Lp = {1, 2} θp ∈ [0, 1]

cp, p ∈ P cp ∈ {2, 3, . . . , 6}

Sample size 1000 data points, 353 of which specify stable systems

Application Evaluation of the models for performance analysis in Chapter 8
Evaluation of the Strategy of Levelled Order Release in Chapter 12
Verification of the exact model for performance analysis in Ap-
pendix D
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C.3 Samples for Capacity Planning

Samples for capacity planning differ from the ones for performance analysis re-
garding the input variables of the Latin hypercube design. For capacity planning,
we do not require input variables for capacity cp, p ∈ P , but one input variable
to specify the performance requirement. Thus, the Latin hypercube design for
capacity planning in order fulfilment systems with pmax processes consists of
(3 + pmax) input variables, one for each of the following parameters:

• Number of incoming orders per time period A,

• Lead time E of an order,

• Processing performance per time unit Lp of each process p, and

• Performance requirement.

We determine the ranges of the parameters of the samples for capacity planning
based on the same considerations as the ones of the samples for performance
analysis (see Section C.2). To specify the performance requirement, any per-
formance measure of the order fulfilment system (see Table 6.1) can be used.
In this thesis, we focus on α-service level SLα. Thus, the range of the corres-
ponding input variable of the Latin hypercube design is given by the interval
[0,1].

We generate two samples (sample F, G) for capacity planning in order fulfilment
systems, whereby sample F considers single-stage systems and sampleG contains
two-stage systems. The specification of each sample is given in Table C.2.

220



C.3 Samples for Capacity Planning

Table C.2: Samples for capacity planning in order fulfilment systems.

Sample F Configuration Single-stage order fulfilment systems P = {1}

Parameter
ranges

A A = {3, 4, . . . , 15} λ ∈ {4, 5, . . . , 14}
E E = {0, 1} η ∈ [0, 1]

Lp, p ∈ P Lp = {2, 3} θp ∈ [0, 1]

SLα SLα ∈ [0, 1]

Sample size 200 data points

Application Evaluation of the Strategy of Levelled Order Release in Chapter 12

Sample G Configuration Two-stage order fulfilment systems P = {1, 2}

Parameter
ranges

A A = {2, 3, . . . , 6} λ ∈ {3, 4, 5}
E E = {0, 1} η ∈ [0, 1]

Lp, p ∈ P Lp = {1, 2} θp ∈ [0, 1]

SLα SLα ∈ [0, 1]

Sample size 200 data points

Application Evaluation of the capacity planning algorithms in Chapter 11
Evaluation of the Strategy of Levelled Order Release in Chapter 12
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D Model Verification

To verify the implementation of the exact model for performance analysis, we
conduct a model comparison between the exact model and a simulation model.
The simulationmodel depicts system behaviour of a multi-stage, stochastic order
fulfilment system with levelled order release and customer-required deadlines,
analogous to theMarkov chain. Based on the simulation results, we calculate the
same performance measures of the order fulfilment system as in the exact model
(see Table 6.1). β-service level is used to determine the length of each simulation
replication (precision of 1.0E-05) and the number of simulation replications
(precision of 1.0E-04). Appendix B introduces the simulation model in detail.

As evaluation criteria, we calculate the absolute and relative deviations of selec-
ted performance measures – α-service level, β-service level, expected number
of unprocessed orders, and expected number of completed orders – between the
exact and the simulation model based on samples C and E. Sample C contains
256 two-stage order fulfilment systems, and sample E consists of 353 three-stage
order fulfilment systems. The samples differ regarding the ranges of the para-
meters, especially regarding the discretisation of the number of incoming orders
per time period A: Its range is given by AC = {3, 4, . . . , 14} in sample C and
AE = {2, 3, . . . , 7} in sample E. A comprehensive description of the samples
is given in Appendix C.2.

Table D.1 presents the absolute and relative deviations of the selected perform-
ance measures between the exact model and the simulation model in samples
C and E. For each performance measure, Table D.1 gives the minimum, the
maximum, and the average value, as well as the 2.5%- and the 97.5%-quantile
of the absolute and the relative deviations, respectively.
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Table D.1: Deviation of selected performance measures between the exact model and the simulation
model.

Absolute deviation1 (Relative deviation [%]2)

Criterion Min Max Average Q0.025 Q0.975

Sample C SLα -6.04E-04 4.13E-04 -9.95E-06 -1.07E-04 1.01E-04
(-0.0684) (0.0438) (-0.0011) (-0.0103) (0.0105)

SLβ -4.68E-04 3.96E-04 -9.25E-06 -6.89E-05 3.16E-05
(-0.0487) (0.0403) (-0.0009) (-0.0069) (0.0032)

E(Q) -1.23E-02 3.10E-02 4.86E-03 -6.24E-03 2.02E-02
(-0.1371) (0.6455) (0.0851) (-0.0787) (0.4099)

E(F ) -6.88E-03 3.10E-02 4.83E-03 -4.02E-03 2.03E-02
(-0.1086) (0.6455) (0.0838) (-0.0556) (0.4012)

Sample E SLα -2.36E-04 3.60E-04 -6.94E-06 -1.37E-04 1.24E-04
(-0.0248) (0.0363) (-0.0006) (-0.0140) (0.0140)

SLβ -1.67E-04 1.68E-04 -5.45E-06 -6.99E-05 5.89E-05
(-0.0170) (0.0172) (-0.0005) (-0.0070) (0.0069)

E(Q) -4.61E-03 2.05E-02 1.86E-03 -2.50E-03 1.03E-02
(-0.1232) (0.4289) (0.0492) (-0.0578) (0.2879)

E(F ) -5.31E-03 1.14E-02 1.46E-03 -2.16E-03 8.45E-03
(-0.1610) (0.3081) (0.0398) (-0.0564) (0.2512)

1 Difference between the value of the considered performance measure calculated based on the exact model and
the one calculated based on the simulation model.

2 Difference between the value of the considered performance measure calculated based on the exact and the
one calculated based on the simulation model, divided by the value calculated based on the simulation model.

We observe absolute deviations of β-service level between -4.68E-04 and
3.96E-04 in sampleC and between -1.67E-04 and 1.68E-04 in sample E. The cor-
responding 95%-confidence interval is given by [-6.98E-05, 3.16E-05] in sample
C and [-6.99E-05, 5.89E-05] in sample E. Regardingα-service level, we observe
absolute and relative deviations of the same magnitude as for β-service level.
However, the absolute and relative deviations of α-service level are more fluc-
tuating than those of β-service level as indicated by the wider 95%-confidence
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intervals of [-1.07E-04, 1.01.E-04] in sample C and [-1.37E-04, 1.24E-04] in
sample E.

We observe absolute deviations of the expected number of unprocessed or-
ders between -1.23E-02 and 3.10E-02 in sample C and between -4.61E-03 and
2.05E-02 in sample E. The corresponding 95%-confidence interval is given by
[-6.24E-03, 2.02E-02] in sample C and [-2.5E-03, 1.03E-02] in sample E. The
absolute and relative deviations of the expected number of completed orders
are of the same magnitude as the ones of the expected number of unprocessed
orders.

The deviations of the expected number of unprocessed orders and the expected
number of completed orders are higher than the ones of α- and β-service level.
However, wemeasure the expected number of unprocessed orders and the expec-
ted number of completed orders in number of orders, whereas α- and β-service
level are calculated as a ratio with a range of [0,1]. Thus, for each performance
measure, the deviations between the exact model and the simulation model are
negligible despite the different magnitudes of the deviations. In conclusion, the
results of the model comparison confirm that the exact model is implemented
correctly.
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E Generation of Approximately
Poisson-distributed Random
Variables with Finite Range

Random variable K is said to be Poisson-distributed Poi(λ) with parameter
λ > 0 and discrete range {0, 1, . . .} if its probability distribution is given by

P (K = k) =

 1
k!
· e−λ · λk k ∈ {0, 1, . . .}

0 otherwise.
(E.1)

The expected value and the variance are calculated as follows (Law 2015, p.312)

E(K) = λ V ar(K) = λ. (E.2)

In the following, we present a methodology to generate the probability distri-
bution of an approximately Poisson-distributed random variable J with finite
range J = {jmin, . . . , jmax} whose expected value is given by E(J).

Initially, we calculate the parameter λ0 of the corresponding Poisson-distributed
random variableK as follows

λ0 = E(K) = E(J)− jmin. (E.3)

Subsequently, an iterative procedure starts. Each iteration i ∈ N consists of the
following steps:

1. Determine the approximate upper boundΠi of the range ofK ∼ Poi(λi−1)

based on the following condition:

P (K ≤ Πi) ≥ 1− εP , (E.4)
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whereby εP is set to 1.0E-09.

2. Calculate the scale parameter Φi:

Φi =
jmax − jmin

Πi
. (E.5)

3. Update the Poisson parameter λi:

λi =
E(J)− jmin

Φi
. (E.6)

4. Calculate the normalisation constant Ψi based onK ∼ Poi(λi):

Ψi =

Πi∑
k=0

P (K = k). (E.7)

5. Check the stopping criterion:

Ψi > 1− εP , (E.8)

whereby εP is set to 1.0E-09. If the stopping criterion is met, the iter-
ative procedure terminates with λ = λi, Π = Πi, Φ = Φi, and Ψ = Ψi.
Otherwise, iteration (i+ 1) starts.

Finally, the probability distribution of J is derived from the probability distri-
bution Poi(λ) ofK as follows

P (J = j) =
1

Ψ
·
∑
k∈I(j)

P (K = k) ∀j ∈ J

I(j) =

{
k ∈ {0, . . . ,Π} |

(
j − 1

2

)
≤ (Φ · k + jmin) <

(
j +

1

2

)}
.

(E.9)
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Order fulfilment systems are forced to efficiently manage a highly volatile cus-
tomer demand while simultaneously meeting customer-required short order 
deadlines. To handle these challenges, we develop the Strategy of Levelled 
Order Release (LOR) that balances workload in multi-stage stochastic systems 
with order deadlines over time. The contribution of this work is three-fold: We 
introduce (1) the workload balancing concept LOR, (2) a discrete-time Markov 
chain for performance analysis, and (3) an algorithm for capacity planning under 
performance constraints in order fulfilment systems with LOR.

The Markov chain models order fulfilment according to LOR in multi-stage sto-
chastic systems with customer-required order deadlines. It enables the exact cal-
culation of multiple key figures, e.g. system throughput, service level, and back-
log duration, for systems with general distributed input parameters. The capacity 
planning problem determines the minimum capacity that is required to guaran-
tee specific performance requirements of the customers. As it is a blackbox op-
timisation problem, we solve it using the derivative-free optimisation algorithms 
Mesh Adaptive Direct Search and Surrogate Optimisation Integer. Numerical 
studies show that LOR achieves higher service levels and reduces the amount of 
required capacity compared to FCFS, especially in systems with high utilisation. 

Wissenschaftliche Berichte des Instituts für Fördertechnik und  
Logistiksysteme des Kar lsruher Instituts für Technologie (KIT)
Prof. Dr.-Ing. Kai Furmans [Hrsg.]  

G
ed

ru
ck

t 
au

f 
FS

C
-z

er
ti

fi
zi

er
te

m
 P

ap
ie

r


	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Description
	Scope of the Thesis

	Literature Review
	Workload Balancing
	Workload Balancing in Make-To-Order Systems
	Workload Balancing in Warehouses

	Performance Analysis of Order Fulfilment Systems
	Performance Analysis of Make-To-Order Systems
	Performance Analysis of Warehouses

	Capacity Planning in Order Fulfilment Systems
	Chapter Conclusion

	Order Fulfilment Systems
	Definition of Order Fulfilment
	Formal Description
	Specification of an Order
	Specification of an Order Type
	Specification of a Process

	Chapter Conclusion

	Strategy of Levelled Order Release
	Concept of Heijunka Levelling in Production Systems
	System Parametrisation
	Operational Planning

	Delimitation from Heijunka Levelling
	Levelling Concept for Order Fulfilment Systems
	System Parametrisation
	Operational Planning

	Chapter Conclusion

	Choice and Specification of Modelling Approach
	Discrete-time Analytical Model
	Discrete-time Markov Chain
	Characteristics
	Relevant Probability Distributions

	Modelling Order Fulfilment as a Discrete-time Markov Chain
	Specification of the Order Fulfilment System
	Specification of the Modelling Approach

	Chapter Conclusion

	Exact Model for Performance Analysis
	Preliminaries
	Processing Performance per Time Period
	Order Income per Time Period
	Stable Order Fulfilment System

	Discrete-time Markov Chain
	System State
	State Transition
	State Space
	Limiting Distribution

	Performance Measures of the Order Fulfilment System
	Number of Unprocessed Orders
	Number of Lost Sales
	Performance Balance
	Utilisation
	Number of Processed Orders
	Time Difference to Order Deadline
	Service Level

	Memory and Computation Time Requirements
	Chapter Conclusion

	Simplified Model for Performance Analysis
	Preliminaries
	Aggregated Processing Performance per Time Period
	Order Income per Time Period
	Stable Order Fulfilment System

	Discrete-time Markov Chain
	System State
	State Transition
	State Space
	Limiting Distribution

	Performance Measures of the Order Fulfilment System
	Memory and Computation Time Requirements
	Chapter Conclusion

	Evaluation of Models for Performance Analysis
	Modelling Accuracy
	Hypotheses
	Mathematical Proof

	Accuracy of Performance Analysis
	Hypotheses
	Numerical Results
	Discussion

	Memory and Computation Time Requirements
	Hypotheses
	Numerical Results

	Chapter Conclusion

	Formalisation and Solution Algorithms of the Capacity Planning Problem
	Capacity Planning Problem
	Mathematical Formulation
	Characteristics

	Derivative-free and Blackbox Optimisation Algorithms
	Definition
	Classification

	Selection of Solution Algorithms for Capacity Planning
	Capacity Planning using Mesh Adaptive Direct Search (MADS)
	General Procedure
	Extensions
	Problem-specific Configuration

	Capacity Planning using Surrogate Optimisation Integer (SO-I)
	General Procedure
	Problem-specific Configuration

	Chapter Conclusion

	Runtime and Memory Optimisation of the Markov Chain
	Strategies for Runtime and Memory Optimisation
	Limitation of State Space
	Sparse Storage Schemes
	Indirect Solution Methods for Linear Systems
	Parallel Computing

	Evaluation of Optimisation Potentials
	Limitation of State Space
	Indirect Solution Methods for Linear Systems
	Parallel Computing

	Chapter Conclusion

	Evaluation of Capacity Planning Algorithms
	Evaluation Criteria
	Solution Quality
	Runtime Efficiency

	Fine-Tuning of the MADS Algorithm
	Investigated Algorithmic Parameters
	Numerical Results

	Fine-Tuning of the SO-I Algorithm
	Investigated Algorithmic Parameters
	Numerical Results

	Comparison of the MADS Algorithm and the SO-I Algorithm
	Chapter Conclusion

	Evaluation of the Strategy of Levelled Order Release
	Alternative Strategies
	Dispatching Policies
	Scheduling
	Strategy of Flexible Capacity Adaption
	Selected Alternative Strategy

	Hypotheses
	Comparison regarding Resulting System Performance
	Analysis of -Service Level
	Analysis of -Service Level
	Discussion

	Comparison regarding Required Capacity
	Numerical Results
	Discussion

	Chapter Conclusion

	Conclusion
	Summary
	Outlook

	Methodology of Literature Review
	Simulation Model
	Simulation Iteration
	Warm-up Period
	Stopping Criteria
	Performance Measures of the Order Fulfilment System

	Design of Experiments
	Latin Hypercube Designs for Order Fulfilment Systems
	Samples for Performance Analysis
	Samples for Capacity Planning

	Model Verification
	Generation of Approximately Poisson-distributed Random Variables with Finite Range
	Glossary of Notation
	List of Figures
	List of Tables
	List of Publications
	References



