
Non-Uniform Adversarially Robust Pruning

Qi Zhao
1
Tim Königl

1
Christian Wressnegger

1

1KASTEL Security Research Labs, Karlsruhe Institute of Technology (KIT), Germany

Abstract Neural networks often are highly redundant and can thus be e�ectively compressed to a
fraction of their initial size using model pruning techniques without harming the overall
prediction accuracy. Additionally, pruned networks need to maintain robustness against
attacks such as adversarial examples. Recent research on combining all these objectives
has shown signi�cant advances using uniform compression strategies, that is, parameters
are compressed equally according to a preset compression ratio. In this paper, we show
that employing non-uniform compression strategies allows to improve clean data accuracy as
well as adversarial robustness under high overall compression—in particular using channel
pruning. We leverage reinforcement learning for �nding an optimal trade-o� and demon-
strate that the resulting compression strategy can be used as a plug-in replacement for
uniform compression ratios of existing state-of-the-art approaches. Our code is available at
https://intellisec.de/research/heracles

1 Introduction

Deploying deep neural networks on resource-constrained hardware is often hindered by the
sheer size of the network. Neural network pruning e�ectively removes redundancy at di�erent
structural granularity to reduce a model’s size. In safety-critical environments, these networks
additionally need to be robust against attacks, such as adversarial examples (Szegedy et al., 2014).
With adversarial training (Madry et al., 2018; Shafahi et al., 2019; Wong et al., 2020) it is possible to
signi�cantly improve robustness by introducing adversarial examples into the training process.
However, recent research (Zhang et al., 2019) suggests that large networks have higher adversarial
robustness. Consequently, it is inherently di�cult to strike a balance between the compactness and
robustness against attacks when pruning neural networks.

The typical network pruning procedure consists of three stages (Liu et al., 2019): First, an
over-parameterized model is trained. Second, this pre-trained model is pruned based on a speci�c
criterion and strategy. Finally, the pruned network is �ne-tuned to recover the potentially lost
performance. The most critical step in the procedure is the second one that de�nes the pruning
objective and any additional objectives next to network compression itself. Han et al. (2015) propose
to prune network connections following the order of weight magnitude (OWM), which later on has
also been shown e�ective for robustness-aware pruning by Sehwag et al. (2019). Ye et al. (2019) and
Gui et al. (2019) inherit this criterion and de�ne network pruning as an optimization problem that
can be solved by the alternating direction method of multipliers (ADMM), initially proposed by
Boyd et al. (2011). Similarly, Sehwag et al. (2020) formulate the pruning criterion as an importance
score-based optimization problem that, however, anchors adversarial robustness deeply in the
pruning process itself. While both OWM (Ye et al., 2019) and optimization-based criteria (Sehwag
et al., 2020) yield good results for robust-aware pruning, they require the speci�cation of the
compression ratio as an hyper-parameter that is then used uniformly across all layers. Madaan
et al. (2020) propose ANP-VS to combine adversarial training with pruning and thus they merge the
previously mentioned steps one and two. As such, the method pursues a di�erent goal for which
compression does not need to be adjustable. However, ANP-VS learns an implicit non-uniform
compression that yields promising results.

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:qi.zhao@kit.edu
mailto:tim.koenigl@kit.edu
mailto:c.wressnegger@kit.edu
https://intellisec.de/research/heracles
https://creativecommons.org/licenses/by/4.0/

In this paper, we follow this intuition and investigate the possibility of improving
both compression and adversarial robustness of existing state-of-the-art approaches using
non-uniform compression strategies. The necessity of non-uniform compression is most evident for
channels for which Table 1 provides a �rst glimpse of the improvements made by our method
Heracles. We prune a network’s layers based on the order of weight magnitude (OWM), but deter-
mine the compression rate per layer. Inspired by He et al. (2018), we leverage deep reinforcement
learning (Deep-RL) to automatically �nd this global pruning strategy to yield an optimal trade-o�
between accuracy and adversarial robustness of the pruned network. The determined compression
strategy is then used with approaches for pruning a pre-trained model which allows for increasing
accuracy on benign as well as adversarial inputs.

Method Channel Acc. on Benign Data Acc. on Attack Data

Compr. Uniform / Non-Uniform [%] Uniform / Non-Uniform [%]

Hydra 0.50 69.92 / 76.82 +6.90 39.82 / 47.06 +7.24
0.10 10.00 / 59.83 +49.83 10.00 / 38.70 +28.70

R-ADMM 0.50 72.65 / 77.59 +4.94 43.60 / 46.16 +2.56
0.10 56.24 / 67.04 +10.80 32.65 / 41.38 +8.73

Table 1: Uniform vs. non-uniform pruning of channels for VGG16 on CIFAR-10.

Contributions and impact. We show that a non-uniform, global compression strategy is bene�cial
for e�ective network pruning when considering adversarial robustness. The compression strategy
learned by Heracles can be applied to state-of-the-art pruning techniques as a plug-in replacement
for manually speci�ed compression rates to improve original (benign) and adversarial accuracy
whilst yielding the same overall compression. In extensive experiments with the CIFAR-10, SVHN,
and ImageNet datasets, we show to surpass the performance of Robust-ADMM (Ye et al., 2019) and
Hydra (Sehwag et al., 2020) in pruning channels that originally use uniform compression strategies.
As shown in Table 1, for channel pruning on VGG16, we yield up to 10.80 percentage points higher
begin accuracy and 8.73 percentage points higher accuracy under adversarial inputs using Robust-
ADMM. For Hydra, we even successfully escape from a completely damaged model and achieve a
remarkable performance improvement. In summary, we are able to signi�cantly improve channel
pruning over related work and maintain at least on-par performance in weight pruning. In practice,
the additionally gained model robustness helps increase the security and safety of applications
on hardware-constraint platforms, for instance, in autonomous driving or edge AI. Moreover,
channel pruning is particularly suitable for hardware deployment as it straightforwardly reduces
the dimensionality of the necessary computations and thus also speeds up inference.

2 Background

We begin by brie�y recapping concepts that are central to our approach, such as basic background
on network pruning, adversarial training, and reinforcement learning.

2.1 Network Pruning

Network pruning enables to compress over-parameterized neural networks by removing structural
redundancy (Han et al., 2015, 2016). For this, usually a binary mask " with elements in {0, 1}
is introduced to cancel out redundant network connections at weight level or channel level. We
represent this masking operation by the Hadamard product � that transforms the model (its
parameters) at the ; th layer of the network, \ (;) , to a sparse (pruned) representation \̃ (;) :

\̃ (;) = " (;) � \ (;) .

Note that determining the importance of connections, and thus populating the binary mask " ,
depends on the criterion used in the pruning stage. The order of weight magnitude (OWM) has

2

been shown to outperform other criteria such as Variational Dropout (Molchanov et al., 2017), Soft
Weight-Sharing (Karen Ullrich, 2017), or Filter Standard Deviation (Sun et al., 2019). Thus, it is seen
as the gold standard in network pruning (Liu et al., 2019). Consequently, for Heracles, we pick up
the OWM criterion for pruning as well but learn a global strategy. Similar to Sehwag et al. (2020),
we use scored masks to binarize the pruning mask and initially assign scores to each element of
the pruning masks " based on scaled-absolute-initialization:

k (;) =
|\ (;) |

max |\ (;) |
,

where |\ (;) | takes the absolute values of model’s parameters of layer ; . Note that for channel
pruning, score masks are commonly initialized by the sum of absolute weights along each channel
to comply with the OWM criterion.

2.2 Adversarial Training

To date, adversarial training (Madry et al., 2018) in its di�erent manifestations (Zhang et al., 2019;
Wong et al., 2020) is the most e�cient defense against adversarial examples (Szegedy et al., 2014).
It generates attacks and incorporates them in the training process, solving a min-max optimization
problem, which is formally expressed as:

min
\

E
(G,~)∼DC

[
max
X

Ladv (\, G + X,~)
]
.

Input pairs of a data sample G ∈ R3 and its label ~ ∈ [:] are drawn from the training data
distribution DC , where : represents the number of classes. As the normal training procedure, the
outer minimization reduces the loss function Ladv , for instance, the cross-entropy loss. The inner
maximization is formulated to increase the maximally allowed (adversarial) perturbation X for
each input data sample G , and is solved by projected gradient descent (PGD) (Madry et al., 2018).
Building on top of this concept, several approaches have been proposed that improve upon the
performance of PGD-based adversarial training (Zhang et al., 2019; Shafahi et al., 2019; Wong et al.,
2020).

However, Guo et al. (2018) and Ye et al. (2019) show that increasing adversarial robustness is
accompanied with stronger parameter distribution, which commonly hinders network pruning. By
striving for a globally optimal compression strategy with varying compression ratios per layer, we
show that adversarial robustness and large compression rates are not mutually exclusive.

2.3 Reinforcement Learning

For reinforcement learning (RL), an agent strives for an action strategy to maximize the reward R
over multiple episodes 8 that provides feedback about the e�ectivity of certain actions in a speci�c
environment (Sutton and Barto, 2018):

max
c

E

[∞∑
8=0

W8 R8 | B0 = B
]
.

Here, B refers to the agent’s state and W represents the discount rate in each episode 8 . Policy c aims
to maximize the cumulative reward by optimizing the mapping from states to actions taken by the
RL agent. To tailor this process to a particular application, such as network pruning, we have to
de�ne a state space representing the environment as well as an action space that speci�es allowed
actions. The agent then outputs a so-called action space vector to in�uence its “location” in the
environment. In our case, this environment is the model \ we operate on.

For instance, Huang et al. (2018) deploy a RL agent for a �lter pruning, where the state space is
composed of the number of input feature maps and the shape in each �lter. The agent returns a
discrete action vector that scores the importance of each �lter.

3

[]
Reward

Layer-wise Pruning

Layer-State Vector

 ✗
 ✗ ✗

Channel Pruning

Weight Pruning

✗

RL agent

Replay buffer

Benign
Accuracy

Adversarial
Robustness

Layer l-1 Layer l+1Layer l ...

Figure 1: Schematic depiction of Heracles, with an intuition of channel and weight pruning (left) and
the global composition of the layer’s state (center) as used for reinforcement learning (right).

3 Non-Uniform Adversarially Robust Pruning

Heracles searches for the globally optimal pruning strategy that increases compression of an
adversarially trained network with minimal degradation on both benign accuracy and adversarial
robustness. A schematic depiction is provided in Fig. 1. In contrast to focusing on direct connections
in a network as implemented in related work (Sehwag et al., 2020), we consider the relations of all
layers to each other (pre and post relations) and observe that these far-reaching contexts e�ect the
robustness after pruning and �ne-tuning. Finding an optimal compression strategy [0 (1) , . . . , 0 (!)]
under these constraints for all ! layers is challenging and is best solved automatically.

Model compression. We consider Θ(;) as the ; th layer’s total number of parameters and de�ne
the compression rate 0 (;) as the ratio of preserved parameters Θ(;)

B0E43
to all parameters of layer ; ,

0 (;) =
Θ(;)
B0E43

Θ(;)
.

The compression rate for the entire network, 0, is computed analogously. In line with He et al.
(2018), we make sure that the network is not compressed below a speci�ed global compression
rate, 0<8= . For this, the layer-speci�c compression rate 0 (;) is constrained to ensure that the overall
compression is lower than the sum of i) already pruned parameters of all layer up to ; − 1, ã ,
ii) parameters that are about to be pruned in layer ; , \̃ (;) , and iii) potentially removed parameters
by the most aggressive compression rate 0<8= in layers from ; + 1 onward. This mechanism allows
to precisely control the network’s size. For Heracles, we additionally adapt the action range
to �t di�erent network compression rates and allow for weight as well as channel pruning. In
Appendix A.1, we provide further details on the process.

Learning Globally Optimal Compression

Based on the above de�nition of network compression, we resume to de�ne the details of learning
a globally optimal compression strategy using reinforcement learning (Algorithm 1). At each
iteration of the searching process, we prune the model as outlined in Section 2.1 to determine the
accuracy and robustness of the current state. In the following, we detail the de�nition of the state
and action space, specify the reward function used, and elaborate on the exploration phase.

State space. For reinforcement learning, we de�ne the RL state B (;) for layer ; based on the following
eleven features: (

;, 28=, 2>DC , ℎ,F, :, stride,Θ(;) , ã, a, 0?A4E
)
.

4

All features but the compression rate of the previous layer, 0?A4E , are dependent on layer ; : For
instance, the ; th layer and its output have shape : × : × 28= × 2>DC and ℎ ×F × 2>DC , respectively.
stride refers to the striding o�set used for convolutional layers, which may vary depending on
input size of subsequent layers. Additionally, we use Θ(;) to denote the number of parameters of a
speci�c layer, and specify the number of compressed parameters, ã , that are produced by pruning so
far in preceding layers, as well as parameters remaining in latter layers, a . Moreover, we normalize
all states to avoid over�tting.

Algorithm 1 Heracles’ non-uniform strategy search
Input: Pretrained Model \ , The number layers !, RL-Agent RLA, Target rate 0C0A64C , Rate range
[0<8=, 0<0G], Warm-up episodes #FD? , Search episodes #BA2ℎ , Valid-set DE0;

Output: Global optimal non-uniform strategy [0 (1) , ..., 0 (!)]

1: Mask scores initialization: k =
|\ |

max(|\ |)
2: for Episode = 1 . . . #BA2ℎ do
3: for ; = 1 . . . ! do

4: if Episode ≤ #FD? then
5: 0 (;) = A0=3><_D=8 5 >A<(0, 1) # Use random compression rate
6: else

7: Train RL-Agent with sampled data
8: 0 (;) = NCAD=2

(
RLA(B (;)), f2, 0, 1

)
Predict compression rate

9: end if

10: 0 (;) = 0<8= + 0 (;) · (0<0G − 0<8=) # Re-scale rate

11: 0
(;)
0;;>F

= Max-Allow-Action(0 (;) , 0C0A64C) # Compute maximal allowed rate

12: 0 (;) = min(0 (;) , 0 (;)
0;;>F
) # Action control by 00;;>F

13: " (;) = 1

(
k (;) ≥ k (;)

)
Binary mask transformation with 0 (;)

14: \̃ (;) = " (;) � \ (;) # Layer pruning
15: end for

16: Robustness evaluation on \̃ with DE0;

17: end for

Action space. The action space of the RL agent here is (roughly speaking) the range of valid
compression ratios. In contrast to prior work (Huang et al., 2018), we do not directly produce
a discrete binary mask for all layers, but use the Deep Deterministic Policy Gradient (DDPG)
algorithm (Lillicrap et al., 2016) to predict a continuous compression rate along each layer. This
allows us to approach �ner granularity and prune layers that have di�erent shapes. Consequently,
the action space used for Heracles is in the range of (0, 1].

To facilitate more stable reinforcement learning, we use a replay bu�er that is initialized in
the RL agent’s warm-up stage using a random uniform distribution to generate 0 (;) (line 5). In the
exploration-exploitation stage of the RL process, we then use a truncated normal distribution to
add noise to the action predicted by the RL agent (RLA) with f = 0.5 which exponentially decays
with each episode (line 8):

NCAD=2

(
RLA(B (;)), f2, 0, 1

)
Further details on the action range and the action control algorithm are speci�ed in Algorithm 2

of Appendix A.1, where we introduce the used thresholds and elaborate on the function to selected
the maximally allowed action (line 10– 12).

5

Exploration. The RL agent operates on layer-based states B (;) and predicts a compression rate 0 (;) .
We then order the values by magnitude (OWM) and introduce a thresholdk (;) that implements the
determined compression rate 0 (;) . Values lower thank (;) are zeroed out to construct the binary
pruning mask " (line 13). We evaluate the robustness as well as benign accuracy of the pruned
network on the validation dataset to determine the agent’s reward R (line 16) and distribute it
to all state vectors. Additionally, these are stored in the replay bu�er to facilitate more stable
reinforcement learning.

Reward function. Next to the accuracy on clean, benign data Acc14= , we additionally incorporate
the adversarial robustness as “adversarial accuracy” Acc03E (adversarial examples that are still
classi�ed correctly) in the reward function to yield an optimal trade-o� between both:

R = Acc14= + Acc03E
For e�ective and fast exploration, the reward is obtained on the validation dataset only, which

is sampled homogeneously from each class of the training data. For CIFAR-10, as an example, we
choose 500 images from every class, such that we yield an overall number of 5,000 samples for our
validation dataset and thus 10 % of the training dataset.

4 Evaluation

We evaluate the performance of Heracles’s non-uniform compression strategies by enhancing
state-of-the-art robust-aware pruning methods (Section 4.1), before we analyze the found strategies
(Section 4.2) and discuss our method’s convergence (Section 4.3). For this, we experiment with
multiple architectures that are adversarially pre-trained on di�erent datasets (CIFAR-10, SVHN,
and ImageNet). The pruning methods then attempt to maintain accuracy and robustness whilst
achieving high compression rates of either channels or weights.

In the following, we use CIFAR-10 as the representative for small-scale datasets and report
corresponding results for SVHN in the appendix, for which the class-wise imbalance (see Table 5)
makes pruning even more challenging. For both small-scale datasets, we consider ResNet18 (He
et al., 2016), VGG16 (Simonyan and Zisserman, 2015) and WRN-28-4 (Zagoruyko and Komodakis,
2016), and thereby align with the experiments in related work. Since the approaches we compare to
all use slightly di�erent variants of VGG16, we settle for the de�nition of Sehwag et al. (2020) for
all our experiments. For strategy search, we bootstrap the pruning stage with #FD? = 100 episodes
(warm-up), and #BA2ℎ = 300 episodes for Deep-RL exploration-exploitation. Further details on the
experimental setup are provided in Appendix A.2.

Considered Adversaries. We use PGD adversarial training for pre-training and �ne-tuning, and
also Heracles’s RL agent uses PGD adversarial examples (Madry et al., 2018) to validate the pruned
network during strategy search. To generate these, we initialize with random noise and make
10 perturbation steps per sample. For CIFAR-10 and SVHN, models are trained with the maximal ;∞
perturbation budget and step sizes of 8⁄255 and 2⁄255, respectively. For ImageNet, we use “free adversarial
training” (Shafahi et al., 2019) with 4 replays, where the perturbation parameters are set to 4⁄255 and
1⁄255. The robustness (accuracy on adversarial examples) of the pruned models is then evaluated with
multiple attack strategies each applied to the entire testing dataset with the same perturbation
strength considered during training: FGSM (Goodfellow et al., 2015), PGD-10 and PGD-20 (Madry
et al., 2018), and C&W∞ (Carlini and Wagner, 2017) optimized by PGD (20 steps).

CO2 Emission. We have conducted all our experiments on Nvidia RTX-3090 GPU cards and have
consumed about 960GPUhours in total. This amounts to an estimated total CO2 emissions of
204.96 kgCO2eq when using Google Cloud Platform in region europe-west31.

1Calculated using the “Machine Learning Impact Calculator” at https://mlco2.github.io/impact/

6

https://mlco2.github.io/impact/

4.1 Improving related work using Heracles

We consider two approaches, Hydra and Robust-ADMM, that use uniform compression strategies
for pruning neural networks, whilst maintaining both benign accuracy (Acc14=) and adversarial
robustness, that is, the accuracy on adversarially modi�ed inputs (Acc03E). In the following, we
show that it is possible to learn a non-uniform compression strategy that improves adversarial
robustness when applied to Hydra or Robust-ADMM. Moreover, Heracles is applicable to channel
and weight pruning likewise—channel pruning yields a larger potential for improvement, while
weight pruning is on par with related work. We simply replace the uniformly used compression
ratio of Hydra and Robust-ADMM with the strategy found by our method and present the results
in Tables 2a and 2b for channel and weight pruning, respectively.

Method Rate Benign Data FGSM PGD-10 PGD-20 C&W∞

VG
G1

6 Hydra 0.50 69.92 / 76.82±0.61 44.63 / 51.63±0.27 39.82 / 47.06±0.43 39.02 / 45.96±0.45 36.95 / 43.98±0.40
0.10 10.00 / 59.83±0.78 10.00 / 41.20±0.52 10.00 / 38.70±0.38 10.00 / 38.20±0.61 10.00 / 35.37±0.40

R-ADMM 0.50 72.65 / 77.59±0.46 49.52 / 51.71±0.24 43.60 / 46.16±0.16 43.12 / 45.45±0.39 41.85 / 43.54±0.36
0.10 56.24 / 67.04±0.54 35.96 / 44.68±0.47 32.65 / 41.38±0.45 30.21 / 40.79±0.47 28.20 / 37.98±0.36

Re
sN

et
18 Hydra 0.50 70.36 / 77.56±0.31 48.63 / 51.50±0.32 42.43 / 47.14±0.14 41.73 / 46.22±0.14 39.27 / 44.81±0.04

0.10 10.00 / 67.52±0.67 10.00 / 44.13±0.72 10.00 / 40.83±0.58 10.00 / 40.27±0.60 10.00 / 38.07±0.56

R-ADMM 0.50 76.99 / 78.06±0.32 49.21 / 50.96±0.24 44.40 / 46.11±0.29 42.67 / 45.19±0.24 40.51 / 44.20±0.29
0.10 63.05 / 69.17±0.94 41.94 / 44.96±0.90 37.79 / 41.71±0.81 36.96 / 40.67±1.09 35.16 / 38.74±0.79

W
RN

-2
8-

4 Hydra 0.50 75.60 / 80.30±0.55 48.25 / 53.59±0.12 42.93 / 48.28±0.27 41.82 / 47.23±0.35 39.96 / 45.99±0.18
0.10 10.00 / 61.93±0.88 10.00 / 40.13±0.62 10.00 / 37.70±0.54 10.00 / 37.26±0.55 10.00 / 35.20±0.58

R-ADMM 0.50 79.67 / 80.11±0.32 51.58 / 53.28±0.49 46.41 / 48.26±0.55 45.41 / 47.35±0.48 43.70 / 45.69±0.56
0.10 66.41 / 66.68±0.82 40.86 / 43.51±0.38 37.59 / 40.56±0.29 36.65 / 40.06±0.32 34.82 / 37.70±0.34

(a) Channel Pruning

Method Rate Benign Data FGSM PGD-10 PGD-20 C&W∞

VG
G1

6 Hydra 0.10 77.51 / 78.21±0.60 50.70 / 52.00±0.21 45.66 / 47.11±0.26 44.57 / 46.07±0.36 43.24 / 44.68±0.23
0.01 63.99 / 64.33±0.71 42.28 / 44.58±0.66 39.40 / 41.44±0.55 38.86 / 40.85±0.57 36.34 / 38.66±1.00

R-ADMM 0.10 75.41 / 74.38±5.57 49.18 / 49.08±4.05 44.37 / 45.31±2.76 43.33 / 43.70±4.18 41.28 / 43.35±2.80
0.01 47.40 / 49.85±1.93 35.22 / 35.30±1.21 31.10 / 33.02±1.10 30.85 / 32.58±1.12 30.24 / 32.66±1.94

Re
sN

et
18 Hydra 0.10 78.14 / 78.58±0.58 51.14 / 51.45±0.35 46.75 / 46.45±0.27 45.90 / 45.48±0.36 43.66 / 44.42±0.24

0.01 71.01 / 72.92±0.96 47.53 / 48.42±0.62 43.42 / 44.43±0.58 42.37 / 43.69±0.55 40.25 / 41.94±0.60

R-ADMM 0.10 78.33 / 78.60±0.79 50.68 / 50.91±0.69 45.46 / 45.87±0.78 44.48 / 44.85±0.88 43.23 / 43.57±0.62
0.01 67.01 / 62.91±1.90 43.57 / 43.99±1.30 40.35 / 40.80±1.12 39.71 / 40.26±1.08 37.58 / 41.38±1.78

W
RN

-2
8-

4 Hydra 0.10 81.91 / 81.77±0.38 54.26 / 53.86±0.49 47.87 / 47.82±0.68 46.80 / 46.77±0.78 46.07 / 45.86±0.66
0.01 68.74 / 71.63±0.72 44.83 / 46.65±0.64 41.10 / 43.36±0.46 40.12 / 42.70±0.51 38.95 / 40.71±0.58

R-ADMM 0.10 80.10 / 80.12±0.57 51.98 / 52.73±0.48 46.98 / 47.34±0.78 46.03 / 46.45±0.89 44.43 / 45.03±0.65
0.01 59.88 / 61.68±0.82 38.31 / 39.74±0.65 36.28 / 37.09±0.63 35.98 / 36.61±0.68 35.76 / 36.83±0.79

(b) Weight Pruning

Table 2: Uniform vs. non-uniform pruning on CIFAR-10 with Hydra and Robust-ADMM. The accuracy
of both strategies is presented in [%] left and right of the / character, respectively, considering
benign input data and 4 di�erent attacks. Non-uniform strategies generated by Heracles are
averaged over 5 experiments and show the standard deviation in ± notation.

CIFAR-10. Heracles’s compression strategy can improve the performance of VGG16, ResNet18,
and WRN-28-4 pruned by Hydra as well as Robust-ADMM. As an example, for pruning channels

7

at a compression rate of 02 = 0.5, the benign and adversarial accuracy in VGG16 pruned by Hydra
increase 6.90 and up to 7.03 (C&W∞) percentage points, respectively. A similar trend is observed
for Robust-ADMM and other architectures as well, with WRN-28-4 being the most challenging
setting. For aggressive channel pruning (02 = 0.1), Heracles enables Hydra to even avoid an
completely damaged model that yields 10 % accuracy and thus random outputs. For weight pruning,
the results are less obvious. While Heracles’s non-uniform strategies do not yield similar high
levels of improvement they are still slightly better or on par with the uniform compression rates.
Again, the results are consistent across architectures for both, Hydra and Robust-ADMM.

SVHN. As a second small-sized dataset, we have conducted experiments on the SVHN datasets.
While similar in size to the CIFAR-10 dataset, SVHN is highly unbalanced (as shown in Table 5),
which can pose additional challenges. In Appendix A.3, we report details on the results and visualize
the compression strategies found by Heracles for the di�erent architectures in Fig. 4.

ImageNet. Next, we apply our method for moderate pruning of ResNet50 learned on the large-scale
dataset ImageNet. Due to the size of the dataset, we reduce the RL agent’s validation dataset for
strategy search to 1 % of the training data. Sehwag et al. (2020) demonstrate Hydra’s e�ectivity for
pruning weights of a model learned on ImageNet and we are able to con�rm these results in our
experiment as shown in Table 3.

Pruning Method Benign Data FGSM PGD-10 PGD-20 C&W∞

channels (02 = 0.5) Hydra 46.67 / 50.03 24.34 / 26.18 21.45 / 23.61 20.79 / 22.45 19.36 / 21.06
R-ADMM 48.62 / 50.52 21.16 / 23.85 21.19 / 22.15 21.21 / 23.88 19.36 / 21.47

weights (0F = 0.1) Hydra 49.08 / 48.71 26.26 / 25.81 23.25 / 23.19 22.75 / 22.31 21.21 / 20.70
R-ADMM 35.83 / 37.45 15.42 / 16.51 14.89 / 15.89 14.88 / 15.83 12.60 / 13.81

Table 3: Uniform vs. non-uniform pruning on ImageNet with Hydra and Robust-ADMM. The accuracy
of both strategies is presented in % left and right of the / character, respectively.

While for Hydra results with non-uniform compression remains similar, Heracles’s strategies
can improve Robust-ADMM in weight pruning. However, the added value does not su�ce to help
Robust-ADMM surpass Hydra. Moreover, in channel pruning both Hydra and Robust-ADMM
show obvious improvements over uniform compression by using our method’s strategies and both
methods are then nearly on-par in robustness and performance on benign data.

4.2 Analysis of Heracles’s Strategies

We take weight pruning (0F = 0.1) and channel pruning (02 = 0.5) on CIFAR-10 as an example
and inspect the global compression strategies learned by our method. Fig. 2 visualizes the learned
strategies by Heracles for VGG16, ResNet18, and WRN-28-4.

Channel pruning. The learned strategies for channel pruning (orange lines) consistently preserve
more parameters in the �rst several layers and prune the convolutional layers at the end of the
networks more aggressively. The strategy, however, di�ers in compression rates of fully connected
layers of the network architectures. For VGG16, it is notable that the RL agent preserves much
more of them than the middle convolutional layers. Interestingly, in residual block based networks
(ResNet18 and WRN-28-4) the RL agent discovers pruning potential on the last connected layer.

Weight pruning. With an overall compression rate of 0F = 0.1, the learned strategies for weight
pruning (blue lines) are more diverse for the individual network architectures. Networks with
residual blocks share parameters which causes a more homogeneous parameter distribution on
each layer. As an example, for ResNet18 the agent does not preserve front layers but prunes layers

8

more homogeneously. Also for WRN-28-4 the pruning strategy approaches uniformity, which also
explains the similarity in results between uniform and non-uniform strategies in Table 2b. For
VGG16 (a conventional CNN without shortcut layers) in contrast, Heracles particularly preserves
layers in the front and prunes layers in the back more distinctively.

1 2 3 4 5 6 7 8 9 10 11 12 13 fc1 fc2 fc3

0
0.2

0.4
0.6

0.8
1

Co
m
pr
es
sio

n
Ra

te

(a) VGG16

1

2-
1-
1

2-
1-
2

2-
2-
1

2-
2-
2

3-
sh
or
t

3-
1-
1

3-
1-
2

3-
2-
1

3-
2-
2

4-
sh
or
t

4-
1-
1

4-
1-
2

4-
2-
1

4-
2-
2

5-
sh
or
t

5-
1-
1

5-
1-
2

5-
2-
1

5-
2-
2

fc
1

0
0.2

0.4
0.6

0.8
1

Co
m
pr
es
sio

n
Ra

te

(b) ResNet18

1

2-
sh
or
t

2-
1-
1

2-
1-
2

2-
2-
1

2-
2-
2

2-
3-
1

2-
3-
2

2-
4-
1

2-
4-
2

3-
sh
or
t

3-
1-
1

3-
1-
2

3-
2-
1

3-
2-
2

3-
3-
1

3-
3-
2

3-
4-
1

3-
4-
2

4-
sh
or
t

4-
1-
1

4-
1-
2

4-
2-
1

4-
2-
2

4-
3-
1

4-
3-
2

4-
4-
1

4-
4-
2

fc
1

0
0.2

0.4
0.6

0.8
1

Co
m
pr
es
sio

n
Ra

te

(c) WRN-28-4

Figure 2: Heracles’s strategies for pruning channels (02 = 0.5; dashed orange line) and weights
(0F = 0.1; solid blue line) of VGG16, ResNet18, and WRN-28-4 on CIFAR-10.

4.3 Pruning Convergence

We have shown the capability of Heracles’s strategies to outperform related work for compressing
channels on CIFAR-10, but our evaluation also exposes the lack of signi�cant improvement when
pruning weights. In this section, we take ResNet18 as an example to inspect the RL agent’s searching
progress in Fig. 3 to detail the underlying reasons. Top sub-�gures (a and b) refer to moderate
compression, bottom ones (c and d) show very aggressive pruning. Left sub-�gures (a and c) belong
to channel pruning, whereas right sub-�gures (b and d) show weight pruning.

Channel pruning. Convergence for moderate pruning at 02 = 0.5 works �awlessly. After 300 steps
the RL agent has successfully determined a strategy that reaches the highest reward. While high
initial exploration leads to large �uctuation, after 350 episodes the reward converges. At 02 = 0.1,
in turn, model performance is strongly degraded by the highly aggressive pruning. However, the
RL agent keeps excavating better strategies, yielding good results eventually (cf. Table 2a).

Weight pruning. At 0F = 0.1, the process exhibits a certain instability due to the high sensitivity
to the compression rate. Still, the �nal stage converges to the overall best reward. Di�erently,
aggressive pruning at 0F = 0.01 hinders successful exploration. The best strategies found, thus,
merely realize performance on-par with uniform pruning.

9

0 100 200 300 400

0
0.
3

0.
6

0.
9

1.
2

Episode

Re
w
ar
d

0
25

50
75

10
0

Ac
cu
ra
cy

(%
)

(a) 02 = 0.5

0 100 200 300 400

0
0.
3

0.
6

0.
9

1.
2

Episode

Re
w
ar
d

0
25

50
75

10
0

Ac
cu
ra
cy

(%
)

Ben. Acc. in WarmUp
Ben. Acc. in RL-Search
Adv. Acc. in WarmUp
Adv. Acc. in RL-Search

(b) 0F = 0.1

0 100 200 300 400

0
0.
1

0.
2

0.
3

Episode

Re
w
ar
d

Reward in WarmUp
Reward in RL-Search

0
10

20
30

Ac
cu
ra
cy

(%
)

(c) 02 = 0.1

0 100 200 300 400

0
0.
1

0.
2

0.
3

Episode

Re
w
ar
d

0
10

20
30

Ac
cu
ra
cy

(%
)

(d) 0F = 0.01

Figure 3: Convergence of Heracles’s RL agent for pruning ResNet18 on CIFAR-10.

5 Limitations

Heracles exhibits three noteworthy limitations in practice: First, due to the randomness inherent to
reinforcement learning exploration, our method exhibits variance in the yield results and ultimately
cannot guarantee that the RL agent converges to an optimal strategy. Our experiments, however,
show that this still succeeds in the majority of the cases, surpassing the state of the art. Second,
Heracles’s non-uniform strategies are more e�ective for channel pruning than weight pruning. This
can be seen directly in the reported accuracy, but also the convergence visualization in Fig. 3, where
channel pruning (left) is more e�ective and stable than weight pruning (right)–even at aggressive
compression rates. Third, one needs to pay attention to runtime performance and exploration
e�ciency. Strategy search for pruning weights of the evaluated CIFAR-10 models, for instance,
requires 4.6× longer on average than channel pruning on a single NVIDIA RTX-3090 card. This
further emphasizes Heracles’s primary suitability for channel pruning. Moreover, models with
pruned channels will also be more resource-friendly during inference as channel pruning reduces
the dimensionality of computations rather than zeroing out single values.

6 Conclusion

Striking a balance between benign accuracy and adversarial robustness during pruning is chal-
lenging. Related work has already shown impressive results using uniform compression strategies.
With Heracles, we present a method that learns a global but layer-speci�c and thus non-uniform
compression strategy, which can be used to further bene�t existing, state-of-the-art approaches. For
instance, we increase performance for aggressive channel-pruning (02 = 0.1) with Robust-ADMM
by up to 10.80 and 9.78 (C&W∞) percentage points for benign and adversarial accuracy, respec-
tively. Weight pruning using our compression strategies has shown less distinctive results but
still is slightly better or on par with related work. This is founded in the fact that here the best
compression strategy often is close to uniformity. If so Heracles also �nds these close-to-uniform
strategies. Such �exibility when pruning deep neural networks is crucial in practice to adapt to the
model at hand. The results using non-uniform strategies are particularly promising on channel
granularity, where Heracles signi�cantly improves related work on adversarially robust pruning.

10

Acknowledgments

The authors thank the anonymous reviewers for their valuable suggestions, and gratefully acknowl-
edge funding by the Helmholtz Association (HGF) within topic “46.23 Engineering Secure Systems”
and by SAP S.E. under project DE-2020-021.

References

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning.

Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M. (2010). The balanced accuracy
and its posterior distribution. In 2010 20th International Conference on Pattern Recognition, pages
3121–3124.

Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural networks. In Proc.
of the IEEE Symposium on Security and Privacy, pages 39–57.

Goodfellow, I., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial examples.
In Proc. of the International Conference on Learning Representations (ICLR).

Gui, S., Wang, H., Yang, H., Yu, C., Wang, Z., and Liu, J. (2019). Model compression with adversarial
robustness: A uni�ed optimization framework. In Proc. of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Guo, Y., Zhang, C., Zhang, C., and Chen, Y. (2018). Sparse DNNs with improved adversarial
robustness. In Proc. of the Annual Conference on Neural Information Processing Systems (NeurIPS),
volume 31.

Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Compressing deep neural networks
with pruning, trained quantization and hu�man coding. Proc. of the International Conference on
Learning Representations (ICLR).

Han, S., Pool, J., Tran, J., and Dally, W. (2015). Learning both weights and connections for e�cient
neural network. In Proc. of the Annual Conference on Neural Information Processing Systems
(NeurIPS).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L., and Han, S. (2018). AMC: AutoML for model compression and
acceleration on mobile devices. In Proc. of the European Conference on Computer Vision (ECCV),
pages 815–832.

Huang, Q., Zhou, S. K., You, S., and Neumann, U. (2018). Learning to prune �lters in convolutional
neural networks. In Proc. of the IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 709–718.

Karen Ullrich, Edward Meeds, M. W. (2017). Soft weight-sharing for neural network compression.
In Proc. of the International Conference on Learning Representations (ICLR).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning. In Proc. of the International Conference on
Learning Representations (ICLR).

11

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2019). Rethinking the value of network
pruning. In Proc. of the International Conference on Learning Representations (ICLR).

Loshchilov, I. and Hutter, F. (2016). SGDR: Stochastic gradient descent with restarts. In Proc. of the
International Conference on Learning Representations (ICLR).

Madaan, D., Shin, J., and Hwang, S. J. (2020). Adversarial neural pruning with latent vulnerability
suppression. In Proc. of the International Conference on Machine Learning (ICML), pages 6575–6585.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). Towards deep learning models
resistant to adversarial attacks. In Proc. of the International Conference on Learning Representations
(ICLR).

Molchanov, D., Ashukha, A., and Vetrov, D. (2017). Variational dropout sparsi�es deep neural
networks. In Proc. of the International Conference on Machine Learning (ICML), pages 2498–2507.

Sehwag, V., Wang, S., Mittal, P., and Jana, S. (2019). Towards compact and robust deep neural
networks. CoRR.

Sehwag, V., Wang, S., Mittal, P., and Jana, S. (2020). HYDRA: Pruning adversarially robust neural
networks. In Proc. of the Annual Conference on Neural Information Processing Systems (NeurIPS).

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson, J., Studer, C., Davis, L. S., Taylor, G., and
Goldstein, T. (2019). Adversarial training for free! In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Proc. of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image
recognition. In Proc. of the International Conference on Learning Representations (ICLR).

Sun, X., Zhou, D., Pan, X., Zhong, Z., and Wang, F. (2019). Pruning �lters with l1-norm and standard
deviation for CNN compression. In Proc. of the International Conference on Machine Vision (ICMV),
pages 691 – 699.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT Press,
second edition.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R. (2014).
Intriguing properties of neural networks. In Proc. of the International Conference on Learning
Representations (ICLR).

Wong, E., Rice, L., and Kolter, J. Z. (2020). Fast is better than free: Revisiting adversarial training. In
Proc. of the International Conference on Learning Representations (ICLR).

Ye, S., Lin, X., Xu, K., Liu, S., Cheng, H., Lambrechts, J., Zhang, H., Zhou, A., Ma, K., and Wang,
Y. (2019). Adversarial robustness vs. model compression, or both? In Proc. of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 111–120.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In Proc. of the British Machine
Vision Conference (BMVC).

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and Jordan, M. I. (2019). Theoretically principled
trade-o� between robustness and accuracy. In Proc. of the International Conference on Machine
Learning (ICML).

12

A Appendix

In the appendix, we extend on three aspects of our method: We begin by detailing the process of
layer-wise action rate control to reach the preset target compression rate. After that, we further
describe our experimental setup, before we investigate the performance of Heracles’s non-uniform
strategy on SVHN.

A.1 Action control

The action control algorithm helps to constrain the layer’s compression rate to reach the targeted
global network size. In related work (Boyd et al., 2011; Sehwag et al., 2020), the global compression
rate is de�ned as the sparsity rather than the ratio of preserved parameters for both weight and
channel pruning. Weight pruning is apt to be controlled by the sparsity. However, since sparsity
on the channel granularity can not re�ect the real network size after pruning with a global non-
uniform strategy, sparsity control is not appropriate anymore. Our approach, thus, considers the
in�uence from layer ; on its preceding (joint) layer ; − 1 for channel pruning, such that the pruned
network has the exact same size as considered in related work. We denote determining the global
parameter-wise compression rate as the function ConvertRate in Algorithm 2.

Algorithm 2 Max-Allow-Action

Input: Objective layer ; , Number of total network parameters Θ0;; , Number of network layers !, Target rate 0C , Rate range
[0<8=, 0<0G], Founded action list [01, . . . , 0;−1], Pruning regularity %-A46
Output: Maximal allowed action 0 (;)

0;;>F

%-A46 = “Weight Pruning” :
1: Convert compress rate:

0C = ConvertRate (0C , %-A46)

2: Initialize: 0 (;) = 1.0
3: ΘC = 0C · Θ0;;

4: ã =
∑;−1
8=1 0

(8) · Θ(8)
5: a =

∑!
8=;+1 0<8= · Θ

(8)

6: �DC~ = ΘC − (ã + a)

7: 00;;>F =
�DC~

Θ(;)

8: 0 (;)
0;;>F

= min(0 (;)
0;;>F

, 0<0G)

%-A46 = “Channel Pruning” :
1: Convert compress rate:

0C = ConvertRate (0C , %-A46)

2: Initialize: 0 (;) = 1.0
3: ΘC = 0C · Θ0;;

4: ã =
∑;−2
8=1 0

(8) · 0 (8+1) · Θ(8)
5: a =

∑!−1
8=;+1 0

2
<8=
· Θ(8) + 0<8= · Θ(!)

6: �DC~ = ΘC − (ã + a)

7: 0 (;)
0;;>F

=
�DC~

0<8= ·Θ(;) +0 (;−1) ·Θ(;−1)

8: 0 (;)
0;;>F

= min(0 (;)
0;;>F

, 0<0G)

A.2 Experimental setup

We conduct experiments on three di�erent datasets: CIFAR-10, SVHN, and ImageNet. In the
following, we elaborate on the considered networks and their pre-trained performances as used in
our experiment, the action range used by the action-control algorithm, and settings of the RL agent
doing the strategy search.

Networks. In related work, a variety of di�erent deep neural network architectures are used for
evaluating pruning approaches. Some of the supposedly identical networks, however, show subtle
di�erences. For a fair comparison, we thus center our experiments on the architectures used by
Sehwag et al. (2020) and build the exact same VGG16, ResNet18, and WRN-28-4 as in their open-
source implementation2. For our experiments on the large-scale ImageNet dataset, we additionally
use ResNet50 as proposed by He et al. (2016). We conduct 90 and 100 epochs for pre-training
models on the large-scale and the small-scale datasets, respectively, with a learning rate starting

2https://github.com/inspire-group/hydra

13

https://github.com/inspire-group/hydra

at 0.1 while adapting it with a cosine learning-rate schedule (Loshchilov and Hutter, 2016). For
pruning with Heracles’s strategies, we employ the respective default schedules in both Hydra
and Robust-ADMM to adapt the learning rate. Table 4 summarizes the used network architectures
and lists their performance after adversarial pre-training. These models are used for all pruning
experiments to ensure an identical starting point for our comparison.

Model/ Network Architecture CIFAR-10 SVHN ImageNet

VGG16 as used by Sehwag et al. (2020) 75.72 / 46.35 92.40 / 55.09 —
ResNet18 as proposed by He et al. (2016) 82.68 / 43.44 92.70 / 59.33 —
WRN-28-4 as proposed by Zagoruyko and Komodakis (2016) 83.35 / 48.86 92.69 / 57.15 —
ResNet50 as proposed by He et al. (2016) — — 60.25 / 32.82

Table 4: The network architectures used in this work and their accuracy after adversarial pre-training
for benign data and PGD-10 attacks, left and right of the / character for di�erent dataset.

Action range. The range of compression rates (0<8=, 0<0G) considered by the RL agent (the action
values) have to be speci�ed upfront, for which a few things need to be followed: For aggressive
pruning, su�cient neurons must remain in each layer rather than being pruned entirely. For
moderate pruning, the agent has to be encouraged to explore di�erent possibilities. Consequently,
we set the range as [0.01, 0.8] and [0.005, 0.5], for weight pruning with compression rates of
0F = 0.1 and 0F = 0.01, respectively. For channel pruning with compression rates of 02 = 0.5
and 02 = 0.1, in turn, we use [0.1, 1.0] and [0.05, 0.5]. Note that for channel pruning, we maintain
a compression rate of 1.0 (no compression) for the �rst layer to keep input information intact.
Moreover, for residual blocks, we set the compression rate on the shortcut layers to the same value
as for the connected backbone layers, such that networks with residual blocks are processable by
the channel-wise pruning strategy.

RL agent setting. We use DDPG (Lillicrap et al., 2016) as RL agent for determining the layer’s
state and, thus, predict compression rates. In our implementation, the actor network and the critic
network are both constructed with two 300 neurons wide, fully connected layers. Moreover, the
size of the replay bu�er is set to 200 times the number of prunable layers in the neural network—for
instance, for pruning weights of VGG16 the size equals to 200 × 16 = 3,200. The training of the
RL agent is performed with learning rates 0.01 and 0.001 respectively on critic and actor in DDPG.
And we use a soft update of 0.01 on the target model. During the 300 episodes long RL search
phase, we train the agent for 20 epochs on states sampled from the replay bu�er with a batch size
of 128. For better exploration, we additionally set the exponential decay X to 0.99.

A.3 Heracles’s performance on SVHN

In contrast to CIFAR-10, neither training nor testing data of SVHN is balanced. While we use the
common accuracy to determine robustness and the model’s natural performance in our experiments
on CIFAR-10, for SVHN we hence use the balanced accuracy (Brodersen et al., 2010) as the evaluation
metric. Table 5 shows the class-wise distribution of the SVHN dataset. For both datasets, a
completely damaged model with random predictions thus is indicated by a (balanced) accuracy of
10 % as the datasets contain 10 classes each.

Channel pruning. Table 6a summarizes the experimental results of channel pruning on SVHN. With
the help of Heracles, both Hydra and Robust-ADMM improve robustness and natural accuracy
at 02 = 0.5. Interestingly, pruning ResNet18 by Robust-ADMM equipped with our strategies even
yields up to 9.05 percentage points higher robustness against PGD-10 than uniform compression.
However, the variance is rather high, which originates the inherent randomness of reinforcement

14

Dataset Amount of Samples per Class [%]

1 2 3 4 5 6 7 8 9 10

Training 18.92 14.45 11.60 10.18 9.39 7.82 7.64 6.89 6.36 6.75
Test 19.59 15.94 11.07 9.69 9.16 7.59 7.76 6.38 6.13 6.70

Table 5: Class-wise data distribution of the SVHN dataset.

learning. The accuracy on benign data, in turn, remains stable across all strategies and our method
yields a pruned model with at least a performance on-par with the uniform strategy. This clearly
shows the positive impact of Heracles in moderate pruning. Aggressive channel pruning (02 = 0.1)
is more challenging for SVHN, though. Neither uniform nor our non-uniform compression can

Method Rate Benign Data FGSM PGD-10 PGD-20 C&W∞

Re
sN

et
18 Hydra 0.50 91.05 / 91.52±0.63 65.17 / 67.06±3.96 53.76 / 54.16±1.62 51.28 / 51.74±0.90 48.63 / 49.66±1.52

0.10 10.00 / 82.74±0.56 10.00 / 46.09±1.38 10.00 / 43.31±0.41 10.00 / 38.87±1.02 10.00 / 34.95±0.76

R-ADMM 0.50 91.59 / 91.94±0.38 74.59 / 80.45±6.18 56.95 / 66.00±8.67 54.06 / 60.42±6.79 51.92 / 59.89±7.22
0.10 86.65 / 85.96±1.46 56.43 / 59.16±1.53 47.05 / 46.52±0.36 45.34 / 44.72±0.10 41.47 / 41.54±0.25

VG
G1

6 Hydra 0.50 89.27 / 91.18±0.32 59.09 / 62.01±0.34 50.07 / 52.14±0.35 48.01 / 49.42±0.22 44.06 / 46.52±0.17
0.10 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00

R-ADMM 0.50 88.72 / 89.97±0.97 57.02 / 60.63±1.20 48.15 / 51.09±0.95 46.03 / 49.20±0.94 42.72 / 46.33±0.56
0.10 79.25 / 85.27±2.77 45.46 / 51.54±2.74 37.92 / 43.12±2.23 36.39 / 41.28±2.15 32.39 / 37.22±2.36

W
RN

-2
8-

4 Hydra 0.50 91.37 / 91.32±0.38 65.01 / 67.42±2.27 54.84 / 55.64±1.03 53.31 / 53.74±0.45 50.16 / 51.10±0.96
0.10 10.00 / 81.30±0.86 10.00 / 48.22±0.98 10.00 / 41.32±0.96 10.00 / 39.94±0.95 10.00 / 36.22±0.97

R-ADMM 0.50 91.57 / 92.03±1.08 73.49 / 74.35±2.41 57.48 / 61.45±8.49 54.85 / 58.04±6.29 53.47 / 56.62±7.17
0.10 89.22 / 88.94±0.48 57.77 / 50.21±1.42 47.55 / 47.37±0.76 45.60 / 40.83±1.93 42.40 / 37.26±1.52

(a) Channel Pruning

Method Rate Benign Data FGSM PGD-10 PGD-20 C&W∞

Re
sN

et
18 Hydra 0.10 91.36 / 91.61±0.13 64.04 / 66.95±1.94 52.74 / 53.61±0.71 50.63 / 51.31±0.49 48.14 / 49.07±0.52

0.01 88.23 / 88.21±0.21 58.76 / 59.72±0.81 49.80 / 50.62±0.24 48.05 / 49.07±0.19 44.86 / 45.34±0.23

R-ADMM 0.10 89.73 / 91.71±0.88 77.39 / 79.11±7.46 57.01 / 61.69±6.34 55.25 / 56.60±3.78 53.35 / 55.16±4.83
0.01 84.63 / 85.11±1.51 51.10 / 55.93±4.28 42.81 / 45.92±1.71 40.93 / 43.38±1.86 36.96 / 40.14±2.16

VG
G1

6 Hydra 0.10 90.46 / 91.40±0.40 59.87 / 62.79±0.90 50.02 / 51.38±0.66 47.89 / 49.01±0.63 44.84 / 46.39±0.51
0.01 84.68 / 89.30±0.53 52.37 / 58.90±0.82 45.34 / 50.40±0.56 43.60 / 48.35±0.59 39.16 / 44.89±0.66

R-ADMM 0.10 89.12 / 90.10±0.33 58.61 / 59.73±0.43 48.62 / 51.25±0.32 46.56 / 48.66±0.36 43.78 / 45.63±0.35
0.01 55.80 / 86.46±2.38 28.55 / 55.32±2.13 24.34 / 47.58±0.67 23.48 / 45.70±1.13 21.15 / 41.71±0.72

W
RN

-2
8-

4 Hydra 0.10 91.61 / 92.16±0.15 67.72 / 67.52±2.23 54.76 / 55.06±0.88 52.74 / 52.87±0.45 50.31 / 50.16±0.90
0.01 88.37 / 82.85±4.93 57.66 / 54.45±2.82 49.24 / 46.42±2.27 46.34 / 45.12±2.19 43.97 / 42.58±0.93

R-ADMM 0.10 90.36 / 90.78±0.57 68.33 / 65.83±1.62 53.92 / 53.41±0.72 52.19 / 50.71±0.95 49.66 / 48.58±0.66
0.01 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00 10.00 / 10.00±0.00

(b) Weight Pruning

Table 6: Uniform vs. non-uniform pruning on SVHN with Hydra and Robust-ADMM. The balanced
accuracy of both strategies is presented in % left and right of the / character, respectively,
considering benign input data and 4 di�erent attacks. Non-uniform strategies generated by
Heracles are averaged over 5 experiments and show the standard deviation in ± notation.

15

prevent VGG16 from complete damage (10 %) and the uniform strategy adapts better to WRN-28-4
when pruning with Robust-ADMM. In all other situations, Heracles’s strategies still yield on-par
or better performance in aggressive channel pruning as well. Even in situations where uniform
compression yields a completely damaged model (ResNet18 and WRN-28-4 using Hydra), our
method selects a strategy that results in meaningful and competitive results.

Furthermore, we visualize the strategies learned by Heracles for moderate channel pruning in
Fig. 4 (orange lines). Similar to our results on CIFAR-10, the RL agent discovers high redundancy (and
thus pruning potential) in the middle convolutional layers for VGG16. Di�erently, the compression
on ResNet18 is nearly uniform along convolutional layers where the RL agent, however, still
acknowledges the higher importance of the �nal fully connected layer.

Weight pruning. In comparison to channel pruning, Heracles is more stable and achieves higher
robustness on VGG16 and ResNet18 (cf. Table 6b). For both moderate (0F = 0.1) and aggressive
(0F = 0.01) pruning, state-of-the-art methods can bene�t from Heracles’s strategies and improves
up to 30.66 and 26.77 percentage points for benign accuracy and FGSM robustness, respectively.
However, also here similar instability issues happen for pruning ResNet18 with Robust-ADMM.
In Fig. 4b, we see that the RL agent approaches a strategy close to uniformity for WRN-28-4 and
ResNet18. For the latter, in particular for early layers the variance is larger than for layers further
back. Overall, we observe that non-uniform compression is more bene�cial for channel pruning
than weight pruning. However, for aggressive weight pruning (0F = 0.01) by Robust-ADMM,
WRN-28-4’s performance is completely damaged for uniform and non-uniform strategies alike.

1 2 3 4 5 6 7 8 9 10 11 12 13 fc1 fc2 fc3

0
0.2

0.4
0.6

0.8
1

Co
m
pr
es
sio

n
Ra

te

(a) VGG16

1

2-
1-
1

2-
1-
2

2-
2-
1

2-
2-
2

3-
sh
or
t

3-
1-
1

3-
1-
2

3-
2-
1

3-
2-
2

4-
sh
or
t

4-
1-
1

4-
1-
2

4-
2-
1

4-
2-
2

5-
sh
or
t

5-
1-
1

5-
1-
2

5-
2-
1

5-
2-
2

fc
1

0
0.2

0.4
0.6

0.8
1

Co
m
pr
es
sio

n
Ra

te

(b) ResNet18

1

2-
sh
or
t

2-
1-
1

2-
1-
2

2-
2-
1

2-
2-
2

2-
3-
1

2-
3-
2

2-
4-
1

2-
4-
2

3-
sh
or
t

3-
1-
1

3-
1-
2

3-
2-
1

3-
2-
2

3-
3-
1

3-
3-
2

3-
4-
1

3-
4-
2

4-
sh
or
t

4-
1-
1

4-
1-
2

4-
2-
1

4-
2-
2

4-
3-
1

4-
3-
2

4-
4-
1

4-
4-
2

fc
1

0
0.2

0.4
0.6

0.8
1

Co
m
pr
es
sio

n
Ra

te

(c) WRN-28-4

Figure 4: Heracles’s strategies for pruning channels (02 = 0.5; dashed orange line) and weights
(0F = 0.1; solid blue line) of VGG16, ResNet18, and WRN-28-4 on SVHN.

16

	Introduction
	Background
	Network Pruning
	Adversarial Training
	Reinforcement Learning

	Non-Uniform Adversarially Robust Pruning
	Evaluation
	Improving related work using Heracles
	Analysis of Heracles's Strategies
	Pruning Convergence

	Limitations
	Conclusion
	Appendix
	Action control
	Experimental setup
	Heracles's performance on SVHN

