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Abstract

Porous materials have been developed rapidly in recent years and have many particular
properties due to their special geometries, such as lightweight, large specific surface area,
good energy absorption and high heat-transfer capacity. A commonly used parameter to
characterize porous structures is the number of pores per inch (PPI). In this work, PPI is
computed in three-dimensional (3D) space rather than in two dimensions, for instance from
a two-dimensional image. The studied structures are computer-generated or reconstructed
from computed tomography (CT) scan images of real structures. The images segmented by
the marker-based watershed algorithm (a part of the pore network model) are also used in
this work. All the computations are conducted using the solver Parallel Algorithm for Crystal
Evolution in 3D (PACE3D) for counting the number of pores accurately. The algorithm for
counting the number of pores is proposed and modified according to the distribution of pores
in different cases.

This work is divided into three main stages: verifying the counting algorithm with an aligned
structure, modifying it for complex structures, and applying it for real structures. The two
modified algorithms are also validated by a periodic aligned structure, then two modified
algorithms are used in complex structures to reduce the influence of periodic boundaries.
The first modified algorithm is a subtraction of computed values and the second modified
algorithm is an adjustment of the length of the measuring lines. The relationships between
PPI and other important parameters, such as porosity, the total number of pores (Voronoi
points) and strut radius, are observed. The effects of the stretching direction and degree of
pores on PPI are also studied. The PPI of structures with different stretching factors in one
or two directions is shown. In addition, the advantages and disadvantages of the two modified
algorithms are also identified.

By reconstructing the real structure and computing the PPI of the 3D models, the PPI of the
real foams is found to be smaller than the value given by the manufacturer. This difference
is particularly evident in the structure with a large PPI. By observing the PPI in different
directions, it is possible to find the stretching of pores.






1. Introduction

In this chapter, the traditional method for measuring PPI and the motivation to improve
the traditional method are introduced. The purpose and structure of the thesis are also
mentioned.

1.1. Motivation

With the advancement of scientific concepts and production technology, people have shown
more concern about porous materials because of their special geometry, remarkable properties,
and valuable functions in recent years. Different materials correspond to different applications.
In the early 1990s, a working group for porous materials in the USA established a few areas
as potential applications for porous materials in industrial production: porous materials
are particularly attractive for lightweight construction, impact-energy absorption, acoustic
damping, and heat-transfer applications [16].

Nowadays, people can gain more information about porous materials through gradually
advanced characterization methods. A porous material morphology consists of the geometry
that describes the pores’ shapes and sizes as well as the structure of a porous medium. In
addition, it includes the topology, which quantifies the way pores and throats are connected
[33]. For metal foams, the size of cells is a particularly critical parameter, because many
properties of foams are directly influenced by cell size. In the past few years, PPI (pores per
inch) has been often used for characterizing metal foams. Different techniques of counting the
number of pores over a standard length of one inch provide different methods for measuring
PPI. The linear intercept method was primarily used when manual measurements were required
to obtain data because it could be performed by drawing random lines on images of sections
[34]. The traditional method is shown in Figure

Figure 1.1.: Principle of the traditional method for PPI measurement [34].



4 1. Introduction

However, the traditional PPI method has many limits. First, all pores cannot be clearly
distinguished in a two-dimensional (2D) image. Second, porous materials are usually complex,
so varying the locations and numbers of measuring lines result in different PPI numbers
for a single porous medium. In addition, manual measurements cause heavy workload and
subjective influences.

Computer calculation can solve the aforementioned problems. In computer-generated or
computer-reconstructed structures, the pores are clearly distinguished by marker-based water-
shed algorithms and PPI can be computed in three different directions. As shown in Figure
[I:2] with the counting algorithm, more measuring lines can be placed in the entire volume of
the structure, which can eliminate the influence of location on the result and the randomness
of manual measurements. With outstanding computing capacity, the calculation can take less
time and provide more accurate information about porous materials.

~
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Figure 1.2.: Principle of the computer calculation method for PPI measurementﬂ

1.2. Goal of the thesis

The first objective of this work is to implement a counting algorithm that can accurately
compute the number of pores in a porous structure. By knowing the precise number of pores,
it is possible to gain the accurate PPI (pores per inch). The algorithm must be applied
in three dimensions, which demonstrates the superiority of a computer calculation over a
traditional PPI measurement. At the same time, for further analyses and characterization,
many topological and morphological properties of the structure should be taken into account.
Therefore, a model in which individual pores can be accurately distinguished is crucial.

The second objective is that once an accurate PPI value for a porous structure is obtained,
the other tools (mentioned in chapter |3)) can be used to measure other basic parameters,
such as porosity, strut radius, to determine the relationship between PPI value and other

!Source: http://grabcad.com/library/8mm-cell-foam-1., access data: 01-20-2022
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basic parameters. This can make PPI values more informative and make PPI be reused to
characterize porous structures. For real structures, it needs to be determined whether the PPI
of the reconstructed structure is the same as that given by the manufacturer, and if not, how
large the difference is.

The long-term goal is to use more suitable solutions for computing the PPI of different
structures because the structure of porous materials is often complex. To maintain a high
level of reliability of the measurement results for real structure, the validations for aligned
structures must also be taken into account.

1.3. Structure of the thesis

This section is intended to give a brief overview of the contents found in the chapters
constituting this thesis. Chapter [2|is related to the state of research for porous materials. The
construction of their network models and a few classic parameters are introduced. Chapter
starts with preprocessing tools and their algorithm fundamentals used in this study. According
to these algorithms, suitable segmented images are achievable for this study.

Chapter {4 gives the method of computing PPI as a very important parameter for porous
materials. Depending on the type of porous media, different algorithms are required. More-
over, the studied structures are also introduced, for example, computer-generated structures,
computer-reconstructed structures. The results and analyses are shown in chapter [5], the
relationships and the variation trend between different parameters and PPI are described.
Chapter [6] summarizes the main findings of this work and presents questions met during the
study and have the potential to be solved in the future.






2. State of research

This chapter gives the basic knowledge about porous materials. Besides, the pore network
modeling of porous materials and the way how to construct the model are introduced. Pore
network models are valuable and useful tools for understanding and predicting mesoscale
phenomena. The segmentation of binary images used in the thesis is the basis of pore network
modeling. By using them, results are obtained more quickly with less computational work

[35].

2.1. Porous materials

What are porous materials? So-called materials must possess two essential characteristics:
one is that the material contains a lot of pores, and the other is that the pores are designed
specifically to achieve the expectant index of the material’s performance [29]. According to
the structure, porous materials can be classified into two types: closed-cell and open-cell. For
example, a honeycomb material, in which the structure looks similar to a two-dimensional (2D)
array of the hexagon and the pores are isolated: this type of material has closed pores and the
cross-sectional shape of pores can also be circular, triangle, etc. By open-cell structures, on
the other hand, the solid part of a material is a three-dimensional (3D) reticulated structure
and the pores are connective. Figure [2.1] shows closed-cell and open-cell foamed materials. In
general, the materials with low or middle porosities have closed pores and the high porosity
materials exhibit more complex morphologies, which means that both cases happen possibly
on high porosity materials.

Figure 2.1.: Two different types of porous structure: (a) a closed-cell bubblelike foamed material of
aluminum foam; (b) an open-cell foamed material of nickel foam [29].
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2.2. The network model of porous structure

As Figure shows, both closed-cell and open-cell structures consist of irregular polyhedral
chambers and a three-dimensional strut network that surrounds them. The difference is that
the cells of an open-cell structure are connected via open face, while the cells of closed-cell are
isolated, between two cells is solid face.

cell wall
open / closed

Figure 2.2.: Components of a cell unit in (a) open and (b) closed cell foams [34].

The computer-generated or computer-reconstructed structures used in this work are open-cell,
so the pore network modeling is used to describe complex morphology in structure with regular
shapes. The current pore network model (PNM) is mainly composed of two parts: pores and
throats. The throat represents the elongated space where the pores are linked. The pore
network model is an idealization and simplification of a variable porous structure using regular
shapes such as spheres and columns. The spatial location and geometric parameters of these
spheres or columns are key to the construction of the model.

2.2.1. Conventional pore network models

PNMs have evolved from simple to complex, and there are many ways to construct a PNM,
for example [35]: first, statistical reconstruction, the basic morphologic parameters are used
to create a statistically equivalent network. Such as the work of Rezanezhad et al. [30],
the information from 2D images can be used to provide 3D, high-resolution images and the
analysis of 3D images describes the distribution and size of pores and their effects on the flow.
The second, direct mapping model, is to map a network structure directly onto a porous void
space. The common approaches include the medial axis algorithm, which has been studied
and improved by Lindquist et al. [28] and Liang et al. [27] since the 1990s; maximal ball
algorithm, which has been refined by Dong et al. [12], they proposed a clustering algorithm
that can more clearly define pores and throats by making family trees for the maximal balls
according to their size and rank.

In this work, a new graph-based model has been mentioned: the PNM is defined as a graph
whose nodes represent the pores and whose edges represent the connections between the pores,
so-called throats. Thus, the distribution of pores and the connections between pores can
be clearly presented. A new algorithm called subnetwork of the over-segmented watershed
(SNOW), which was based on the marker-based watershed algorithm and developed by Gostick
et al. [I7], will also be applied to avoid over-segmentation. The watershed algorithm assigns
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each pixel or voxel to a region, and if a large number of small regions appear, this is known as
"over-segmentation" [§].

2.2.2. Extraction of pore network models

This subsection describes the specific extraction process of several mentioned models. For
instance, medial axis algorithm, maximal balls algorithm and SNOW algorithm.

Medial axis algorithm

This approach converts the pore space images into a medial axis, which is a simplified
representation of the pore space and acts as a topological skeleton. Baldwin et al. [6] presented
a thinning algorithm to extract a medial axis. As Figure [2.3]shows, starting from the voxels
closest to the solid matrix, the voxels in pore space are eroded step by step in a certain
direction and at a certain speed. The erosion sequence of the voxels is marked and the last
eroded voxel should be on the medial axis. It can be seen that the medial axis of part a~h are
yellow voxels, and the medial axis of i and j are red voxels. The position with the shortest
distance from the medial axis to the solid phase namely the position, where the medial axis
marked by the smallest number in Figure is considered to be the pore throat. Based on
this information, a pore network model can be constructed.

The medial axis algorithm can easily obtain the interconnectivity of the pores, however, it
is still difficult to identify individual pores. The irregularities in pore space and the choice
thinning (erosion) directions can lead to the existence of multiple medial axes in the same
pore, the high likelihood for a big pore to be divided into several small pores and throats.
Therefore, various merging algorithms need to be developed to trim the skeleton and improve
the partition of pores [19]. In conclusion, this algorithm presents the interconnectivity well,
but is not suitable for this thesis because pores in this work must be better identified and
high-porosity structures should not be over-segmented.

77 ” Solid matrix
70000

i 2 B void space
abcdef 8hil

Figure 2.3.: Illustration of the medial axis algorithm, adapted from Fig. 3 in Ref [25].
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Maximal balls algorithm

The maximal ball (MB) algorithm was developed by Al-Kharusi and Blunt [I]. Dong et al.
[12] improved their algorithm and found a clustering algorithm that classifies maximal balls
into pores and throats. The MB algorithm takes any voxel in the pore space as a reference
voxel and tries to find the largest inscribed spheres centered on each voxel that just touch
the grain or the boundary. As Figure shows, the red voxel is an initial point, extends in
8 directions until it encounters a solid voxel or boundary (voxels marked 4 in the diagram).
The distance from the red voxel 1 to the light blue voxel 3 is regarded as the lower limit
of the radius of this inscribed sphere, and the distance from the red 1 voxel to the blue 4
voxel is regarded as the upper limit of the radius, the true radius of this maximum sphere
lies between these two radii. Once all spheres are found, those spheres, which are included in
other spheres, are considered as redundant and removed, while the rest are called maximal
balls. If all maximal balls have been found, the next step is to divide them into pores and
throats. First, all MBs are sorted by size, from largest to smallest, each group contains MBs

“Solid matrix

EVoid space
®aSurface

e

Figure 2.4.: Illustration of the maximal balls algorithm, adapted from Fig. 4 in Ref [25].

of the same size. Next, starting from the maximal ball with the largest radius and it is defined
as a pore, all its smaller or same sized overlapping neighbors are absorbed by it and ranked
the second generation, so the ball is a parent in this cluster [12]. When two families have a
common child as in Figure 2.5] the common child defines a throat and a pair of pore throat
chains can be constructed. The black balls are on the chain along with the skeleton, the white
balls are not on the skeleton but can describe pore space. But this algorithm requires a large
amount of computation and it is also just suitable for low or middle porosity structures [11].

SNOW algorithm
In this thesis, a subnetwork of the over-segmented watershed (SNOW) algorithms, which was

developed by Gostick et al. [17], is used to extract the PNMs accurately. Section provides
more details about the algorithm and its implementation in a tool.

2.3. Important parameters

In this section, some basic and important parameters of porous material are introduced.
The physical behavior of porous materials depends on their microscopic structures, so some
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Figure 2.5.: Two families A and B with a common child [12].

parameters, such as porosity, pore size and shapes are crucial. Some of these are variables
that need to be controlled in this work by computer generation.

2.3.1. Porosity

Porous materials can be classified by porosity: low (<30%), middle (30~60%) and high porosity
(>60%). The porosity € can be defined as the fraction of void space (pore) V; relative to the

apparent total volume V; [22]
e=V,/V;. (2.1)

There are two types of porosity for porous structures: one is the "open porosity" €,, which
is due to the volume of voids surrounded by foam strut network and led by open pores;
another is the "closed porosity" €., which is led by closed pores. The sum of them is the total
porosity. For open-cell structures studied in this thesis, the open porosity is taken as the total
porosity.

2.3.2. Pore size and shape

Figure illustrates the essential geometric characteristics and shapes of porous structures:
® dpore @ pore diameter
o dice : diameter of windows
® degge : thickness of ligament
® leqge @ length of ligament

Beer et al. [7] proposed a method to determine the essential geometric characteristics of the
metal foam structures. Firstly, they used photography devices to get the images. Next, they
utilized an analytical imaging software to choose a suitable part of the structure to measure
the geometric parameters, such as Fiji-ImageJ 1.53c. Finally, they used the Kline-McClintock’s
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Figure 2.6.: Illustration of geometric parameters of open-cell structure.

method [2I] to perform the uncertainty of the measurement process. The correct identification
and quantification of pore size and shapes are crucial for the development of porous materials.

2.3.3. Specific surface area

The "specific surface area" is defined as the detectable area of solid surface per unit mass or
volume of materials [3I]. The specific surface area is an important property of foam structures,
which is particularly relevant for heat and mass transform, adsorption, heterogeneous catalysis,
and reactions on surfaces. Different methods or experimental conditions deliver different values
of the specific surface area. For example, Bucimuman et al. [10] used a theoretical correlation
for estimating the specific surface area (Equation , and the used open-cell structure is
described as a theoretical model of the tetrakaidecahedron

1
Sy =C- (1—e)". 2.2
v dedge + dwindows ( E) ( )

In this equation, Sy is the volumetric specific surface area; deqge and dyindows represent the
diameter of strut and window in open-cell structure, respectively, and ¢ is the porosity; The
two constants C' and n can be obtained by a geometrical approach.

2.3.4. Pore density: Pores Per Inch (PPI)

Previously, PPI is used as an approximate commercial characteristic designated by the
manufacturer. Over recent years, PPI is usually just used to classify rather than to characterize
open-pore structures, because the ratio of pore size and ligament thickness may vary in two
structures with the same PPI. Therefore, many people believe that PPI value cannot give
effective information. In this thesis, PPI is associated with other parameters, the relationships
between them can make PPI more informative.



3. Preprocessing and theoretical background

The goal of this work is to count the PPI number of porous structures by using computer-aided
methods. In the first step, computer-generated or computer-reconstructed structures are
applied, which have high similarities with real structures. And then diverse tools are used to
do some preprocessing, which makes it possible to establish satisfying PNM. A structure with
well-identified pores is the basic of counting and calculation. Throughout this work, all the
numerical simulations are conducted using the solver Parallel Algorithm for Crystal Evolution
in 3D (PACE3D), which is developed at Karlsruhe University of Applied Sciences, Germany,
to study the evolution of free boundary problems with the phase-field method for various
phenomena and especially multi-physics applications [18]. In order to combine hundreds of
computed tomography images and transform them into a real structure, software Fiji-lmageJ
1.53c is also be applied to process images.

3.1. The tool: generatemembrane

The tool generatemembrane in PACE3D is for generating membrane-like structures and the
algorithm is developed by Altschuh et al [3]. The main generating process consists of the
following three steps:

(i) Spheres filling (Voronoi-points setting)

In the first step, spheres should be placed in the defined domain so that they can fill the
3D space as compact as possible. The number of the spheres is related to the amounts of
Voronoi points. The first sphere is placed randomly in the domain. The second sphere is
also set in a random place with a different location as the first sphere and then moves
to the first sphere [4]. The third-placed sphere cannot intersect with or on the same
straight line with the other two spheres and move towards the previous two spheres,
after each iteration, the sphere is one step closer to an ideal location. Each following
sphere is placed in the same way until all of them occupy an optimal location.

(ii) Construction of Voronoi-diagram

A Voronoi diagram is created by decomposing a 3D domain into Voronoi-regions according
to the nearest-neighbor rule and the regions are related to the center of spheres. The
nearest-neighbor means that each point is associated with the region closest to it [5]. In
other words, a Voronoi-region is composed of the points whose distance to its center is
closest than to the center of other regions. Figure shows a 2D Voronoi diagram.



14

3. Preprocessing and theoretical background

Figure 3.1.: A 2D Voronoi-diagram with hexagonal regions [32].

(iii) Strut generation

To form the strut of cellular structure, densely packed spheres with defined uniform
radii are placed on the boundary of Voronoi-regions, where at least three regions are
connected. The thickness of the strut can be controlled by the radii of packed spheres
and have also direct effects on pore size. Figure shows the process of construction of
struts.

Figure 3.2.: The construction of struts along the edges of Voronoi-regions [3].

The tool generatemembrane can adjust the properties of generated structures via parameters.
The following is a brief description of the parameters used in this work:

1.

-¢: with -- count, the number of Voronoi-points, which are placed in the domain, can be
set.

-b: with -- centroidal-voronoi, a centroidal Voronoi tessellation is used, in which the
Voronoi generators are the centroids of the corresponding Voronoi regions.

-f: with - - fit-to-porosity, porosity of the structure is set.

-w: with - - stanchion-radius, the radius of stanchion of the structure is set.

. -s: with - - seed, the seed for the pseudo-random generator is set, which makes it possible

to reproduce results of the generation.

-j: with - - z-stretching, the amount of stretching applied along the z-axis.
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7. -k: with -- y-stretching, the amount of stretching applied along the y-axis.

3.2. The tool: skeletonize

In this work, the Euclidean distance field (mentioned in section 3.3) can be provided by the
tool skeletonize. More details about the solving of the Euclidean distance field can be found
in [2]. The shortest Euclidean distance d(x,s), for any voxel to the nearest voxel on structure
surface, can be expressed in terms of a signed distance function D(x). x is any voxel in domain
Q, s is the voxel on surface 9§ and the domain  is a part of Euclidean space Q C R3.The
shortest Euclidean distance is

d(x,b) = [x = bly = /(21— b1)? + (w2 — b)? + (3 — bs)? (3.1)
The signed distance function D(x) is
D(x) = d(x,s)sgn(f(x)), (3.2)

where f(x) is an initialisation function and the function sgn(f(x)) is used to determine
whether the point x is in pore space, structure, or on the surface; the function sgn(f(x)) is
defined as:

1 if x e QF
sgn(f(x)) =4 -1 ifxeQ, (3.3)
0 if x € 9,92

where Q" represents the pore space; 2~ represents the structure; 95 represents the surface.

In the tool skeletonize, thinning algorithm is applied to the extract medial axis, which can just
deliver the topological properties and connectivity, but not the information about distance.
So, the signed distance function is combined with thinning algorithm, that the tool skeletonize

is used to get the pore size
r(xs) = D(xs). (3.4)

where xg is a voxel on the skeleton (medial axis).

3.3. The tool: extractnetwork

The algorithm for the tool extractnetwotk is a marker-based watershed algorithm and is
divided into two stages: segmentation of the pore space and extraction of the PNM based
on the segmented pore space. In this work, only the first stage of extractnetwork is used, the
segmentation of pore space can directly influence the PPIL.

The watershed transform is a complex morphological technique, that the signals of images
are used to segment the images. For a grayscale image, the pixel values are the signals that
can be applied. As Figure shows, the pixel values are used to identify peaks and basins
(local maximum and local minimum). Flooding begins at the lowest points of basins (local
minimum) until the waters from different basins meet each other and the segmentation is
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completed. The watershed lines (boundaries) consist of meeting points of waters. The number
of markers also affects the segmentation if local minima as markers without filtering are used.
This is likely to lead to over-segmentation of an image.

i « watershed
A signal ~ o —
" =
- é; E
2 g A f | watershed
N, @ transform
\ E l / - "
\ ¢ /
e
B signal ~ watershed |
™ o ]
PR X ,
5 a e segment 1 segment 2
o g A ~ E ] watershed
N, 8 RN e transform
‘ E , "-\_ S— .

Figure 3.3.: Examples of the marker-based watershed transform with different markers: (A) three local
minima act as markers (B) two markers are selected, the water in segment 2 flows into the
neighbouring basin and forms a boundary with segment 1, the number of segments is the
same as the number of markers [I5].

If a binary image is used, the Euclidean distance field will be combined with the marker-based
watershed algorithm. Subsequently, the first stage of the extraction algorithm is divided into
the following five conceptual steps [17]:

1. Preparation of the distance field
In the first step, the image is prepared for segmentation by calculating its Euclidean
distance field, then smoothing it with a Gaussian filter with variance o= 0.35 to remove
spurious peaks, which are misidentified in the distance field.

2. Identification of peaks (local maxima) in the distance field
A maximum filter with a spherical structuring element of radius R = 5 is used to
determine the maxima in the distance field. The R is difficult to define, when it is too
small, spurious maxima are found, if R is too large, some maxima disappear.

3. Elimination of peaks on saddles and plateau
After the previous steps, the initial set of local maxima is available. On saddles and

plateau, a few markers appear that may cause over-segmentation. Therefore, the
Superfluous and repetitive markers should be eliminated.

4. Merging neighbouring peaks
If two markers are close to each other, they cannot form a saddle or plateau. As Figure
[3-4] shows, if centered spheres with the corresponding distance values as radius are placed
on the considered markers and they overlap each other significantly, that means the

set of overlapping markers should be reduced to one marker, all markers satisfy the
following formula.
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d(m,n) < min{D(m),D(n)};(m,n) € M x M,m # n, (3.5)

Figure 3.4.: An example of merging neighbouring markers [24].

where m and n are two nearby markers, d(m,n) is the Euclidean distance between the
two markers, D(m) and D(n) are distances between markers and the nearest solid surface.
When the Euclidean distance between two markers is still less than their distances to
the surface, the markers with the smaller distance to the surface should be eliminated. If
the two markers have the same distance to the surface, (randomly) should be removed.

5. Segmentation of pore space
After completing the above steps, an accurate set of markers is gained and the marker-
based watershed algorithm is now used to segment the pore space.

The second stage is based on the first stage. The goal of the second stage is to obtain
information from the watershed-segmented images to construct a pore network model. The
important information includes connectivity, pore and throat geometric properties. Figure 3.5
shows a segmented-structure by extractnetwork, all pores are clearly identified. This useful
pore network model provides an advantage for calculating PPI.

3.4. Imagel

Fiji-ImageJ is an open-source software that is used in this work to process the images. At the
later stage of this work, ImageJ is useful to study real structures. The specimens are provided
by TAM-MMS, with the help of computed Tomography, information of the internal structure
of specimens can be obtained. Therefore, a stack of CT images is observed to reconstruct the
real structure, and image processing seems to be particularly important.

It can be seen in Figure that the original CT images contain the metal in the outer layer,
and the contrast between pores and solid parts is not very clear. The outer non-foam structure
has to be removed and a suitable threshold must be chosen to ensure that the proportion of
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Figure 3.5.: A 3D representation of a structure that the pore space has been segmented by tool
extractnetwork, the segments are marked with different colors respectively [24].

pores in the images is close enough to reality. The detailed processing steps and results are
described in chapter

(a)

Figure 3.6.: An example of image processing: (a) a CT image without processing; (b) the same image
after processing.



4. PPl computation methods

In this chapter, the entire workflow of computing PPI is mentioned. The use of simple and
complex structures, the choice of parameters, and a validation case study are also included. The
algorithm for computing PPI has also undergone several adjustments, due to the complexity of
the pore distribution and specifical boundaries of generated structures. The original algorithm
is modified by two approaches. This chapter also describes the encountered problems and the
solutions proposed for them.

4.1. The computation of PPl number

Figure [4.1] shows the entire workflow of the PPI computation method studied in this thesis.
The structures used in this thesis are transformed into stacks of binary images, structure space
is 1, pore space is 0. The Euclidian distance field (mentioned in section is the basis of
the segmentation for binary images, consequently, the tool skeletonize is used to calculate
the Euclidian distance field of the binary images, structure spaces have negative values, pore
spaces have positive values. Next step, the tool extractnetwork (mentioned in section can
use the binary images and their distance fields with the marker-based watershed algorithm to
segment the images. The PPI-counting algorithms can be used in segmented images to obtain
an accurate number of PPI.

Structure as a binary Euclidian SDF calculation
image: > for the structure and pore
structure space 1, spaces using the tool
pore space 0 skeletonize
- ) (structure space 1,
inary image
Midkerbaadl sraieming] pore space 0
ar irt.ase wa e;l}'ls (z |
segmentation using the oo SDF combined structure space: negative values,
extractnetwork pore space: positive values
Segemented 3 PPI—colunting > PPI
images algorithms

Figure 4.1.: The workflow of the computation of the PPI number.
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4.2. The original logic of algorithm

Things go from easy to hard, the algorithm verification is no exception. Using an appropriate
PPI counting algorithm, how many pores exist in the entire domain should be ascertained.
The aim of the algorithm is to determine the PPI number using straight lines across the porous
medium in three directions. These lines are called measuring lines, some pores may not be
identified, when the number of measuring lines is insufficient. The original logic of the PPI
counting algorithm is simple: counting the number of pores that each measuring line passes
through. This should be done for all measuring lines in the entire domain. Dividing the total
number of pores by the total number of measuring lines gives the (average) PPI number.

It is worth mentioning that if a measuring line does not meet any pore, in other words, the
measuring line passes only through the skeleton, the achieved number of counting pores is zero.
These lines are excluded when calculating the average PPI number, otherwise, they reduce
the average and lead to inaccuracies. In the segmented images obtained from extractnetwork
(chapter [3)), each pore is assigned a different index to provide an easier method for counting
the number of pores. Figure shows a schematic representation of counting pores using the
PPI counting algorithm.

. pore structure
(a) . - The number of pore = 3

The number of pores = 0,

(b)

ruled out.

Figure 4.2.: The original logic for the counting algorithm: (a) the normal measuring line which passes
through three pores; (b) the specific measuring line, which does not face any pore and
should be excluded.

4.2.1. Validation of original algorithm

An aligned (highly ordered and uniform) structure is generated to validate the original
algorithm, whose number of pores is known, namely 891 pores in the whole domain; 11 pores
are placed in the z-direction, 9 pores are in the y and z-direction; The pores in the y-z plane
at the boundary of the structure, namely at = 0 and 2 = 302 (the minimum and maximum
of the domain) are not interconnected.

The results are shown in Table [£.I] due to the changes in interconnectivity on the boundary,
the z-direction result has a slight deviation from the set value, but this difference is to be
expected. The reason is, when using the marker-based watershed algorithm, the connections
between the pores, i.e., the pore throats, are also divided as the part of the pores. The numbers
of pores in the other direction are the same as the setting. A preliminary conclusion can be
drawn that this algorithm works for counting the pores in aligned structures.
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Figure 4.3.: 3D presentation of an aligned structure: (a) the pores on the boundary can be detected; (b)
because there are no pore throats, at a specific height, the pores on the boundary cannot
be detected. The yellow part represents the solid structure.

Table 4.1.: The measured numbers of pores of the designed aligned structure.

Direction r-axis y-axis z-axis Average

Number of pores 10.465 9 9 9.488

4.3. The modified algorithms

The structures generated by generatemembrane are periodic. In each step, the domain is
considered to be boundless; if there are IV slices in one direction, the first slice is identical to
slice N, so the pores that appear on these two slices represent the same pore. For periodic
structures, the problem of double-counting of pores has emerged. To reduce the influence of
the periodic boundary, the original algorithm should be modified.

Two possible options are tried: the first one, the measured number of pores can be adjusted.
When the pores are detected both at the beginning and the end of the measuring line, because
the structure is periodic, these two pores represent one single pore. As shown in Figure
the measured value needs to be subtracted by one to exclude double-counted pores. The
second option is that the measured value will not be changed, the measuring range will be
adjusted. When the pores are detected both at the beginning and the end of the measuring
line, the measurement range starts at the second pore and ends at the penultimate pore,
as shown in Figure [£.4b] To show the modified algorithms more clearly, Figure are the
3D presentations of the modified algorithms. The results obtained by these two algorithms
need to be compared and their respective advantages or weaknesses should be analyzed. The
comparison is described in chapter [5

In addition, it is noteworthy that the length of measuring lines in the original algorithm and
the first modification is the same as the length of the domain. In the second modification,
the length of measuring lines is no longer invariant because they pass through different pores
and the starting and ending points of the lines are also variable. The PPI can no longer be
calculated by directly defining the entire domain as one inch, so in this work, a new concept is
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structure
- The number of pore = 3
- The number of pore =3 -1 =2

same pore l
)

. pore structure

begin

Figure 4.4.: The modified algorithms: (a) the first modification: subtraction of measured values; (b)
the second modification: change of the measuring range.

used to represent PPI: PP100C. PP100C is pores per 100 voxel cells, which can be written
as
Ct
PP100C = T 100, (4.1)

m
where C} is the measured number of pores for a measuring line, [, the length of the measuring
line, unit is a cell. With PP100C, it is easier to convert between measured values and PPI,
e.g., if 100 cells are assumed to be one inch, the PP100C is equal to PPI, if 200 cells are
assumed to be one inch, in this case, the PPI is twice the PP100C. In chapter [5], all results are
represented by PP100C instead. The concept of PP100C is to standardize the values obtained
by each measuring line and make it more intuitive.

4.3.1. Validation of the modified algorithms

A periodic aligned structure is used to validate two modified algorithms. The domain of the
structure is 672 cells, 23 full spheres and 2 half-spheres are arranged in all directions and the
half-spheres on the boundaries are also divided into pores. Because of the periodicity, the first
and last pores along measuring lines are considered to be the same pore, subsequently, the
computed number of pores is expected to be close to 24. Figure shows the periodic aligned
structure. In Table [£.2] the computed results are expressed in PP100C and the PP100C can
be converted into a number of pores by the following formula

_ PP100C - domain
P 100 ’

(4.2)
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Figure 4.5.: The 3D presentation of two modified algorithms: (a) the first modified algorithm; (b)
the modified second algoritm. The colored part represents the pores and the white part
represents the solid structure.

where N, represents the number of pores. The relative difference between the two modified
algorithms can be written as

PPIOOCsecond - PPlOOCsecond
PP 100Cs.econd

By using Equation [£.2] the number of pores computed by the first modified algorithm is 23.7
and the number of pores computed by the second modified algorithm is 24.19, both results
are very close to 24. The relative difference between the two modifications shown in Table [4.2]
is also small. It can be concluded that both modified algorithms work well in the periodic
aligned structure.

The relative difference = (4.3)

4.4. Computer-generated structures

As described in chapter [3| the tool generatermembrane can be used to generate complex
structures. In this thesis, two types of structures are studied: the porosity is given; the strut
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Figure 4.6.: The 3D presentation of the periodic aligned structure (yellow part represents solid).

Table 4.2.: The computed PP100C for the periodic aligned structure.

The computed PP100C for the periodic aligned structure in different directions
The modified algorithms

z-direction y-direction z-direction
The first modification 3.53 3.53 3.53
The second modification 3.60 3.60 3.60
The relative difference(-) 0.02 0.02 0.02

radius is given. It is also possible to generate structures with elongation or stretching in one
spatial direction. For instance, the parameter j € (0,1] (mentioned in section can be
used to specify the desired spatial direction. As Figure [£.7 shows, j is defined as the ratio of
3. This has the consequence that the structures are stretched in one direction and thus the
mean pore area in the plane orthogonal to the stretched spatial direction is smaller than the
mean pore area in the two remaining spatial directions. There is a high probability of pores in
real porous structures that stretch in certain directions. For this reason, it is also important
to observe the relationship between the stretching degree and the PPI. In this thesis, the
structures with pore stretching in one direction as well as two directions are studied.

4.4.1. Voronoi tessellation

The tool generatemembrane is based on Voronoi tessellation, so the distribution of Voronoi
regions also affects the porous structures. In Figure two types of Voronoi tessellations are
shown. The uniformity of centroidal Voronoi tessellation is greater than other one [13]. The
phenomenon becomes more obvious with larger numbers of Voronoi points.

In this thesis, the most studied structures are based on centroidal Voronoi tessellation. Because
of the uniformly distributed Voronoi regions (less particularly large or small regions), when the
spheres are placed at the boundary, i.e., during the generation of struts, the Voronoi points
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Figure 4.7.: The generated structure with targeted stretching in one spatial direction.

of smaller regions are less frequently covered. When the number of pores in the structure is
consistent with the set Voronoi points, it is more advantageous for subsequent analysis, such
as finding the relationship between the number of Voronoi points and PPI. In addition, a
"large model" (described in section shows that the centroidal Voronoi tessellations work
better for this thesis.

(a) m (©)

Figure 4.8.: The Voronoi tessellations: (a) a Voronoi tessellation with 10 random points as generators;
(b) a centroidal Voronoi tessellation with 10 points as generators, which are also the
mass centroids of Voronoi regions; (c) a Voronoi tessellation with 100 random points as
generators; (d) a centroidal Voronoi tessellation with 100 points as generators.

4.4.2. Sturcture generation

There are two main types of structures studied in this work. The input parameters to generate
the first type of structures are the number of Voronoi points (100, 150, 200 and 250) and
porosity (10%-90%). Similar to the first type, the number of Voronoi points is given for the
generation of the second type, but instead of the porosity, the strut radius is used and varies
from 1 to 5. In the environment PACE3D), structures are composed using voxel cells, so the
unit of strut radius is a cell. Figure [£.9]displays a few generated structures and their segmented
models.

4.4.3. Validation of computer-generated structures

Validation is also a necessary step before computing PPI. Only a clear and correct structure
can ensure that the later computed PPI can be correctly related to the other parameters.
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Figure 4.9.: (a), (c), (e) and (g) are the generated structures and (b),(d), (f) and (h) are their segmented
models, computed by the marker-based watershed algorithm, respectively, with the input
parameters: (a) porosity 60% and 150 Voronoi points; (¢) porosity 60% and 250 Voronoi
points; (e) strut radius 1 cell and 100 Voronoi points; (g) strut radius 3 cells and 200
Voronoi points. The yellow part represents the solid structures.

If the computed data is not the same as the setting, a decision should be made, which one
should be chosen. The following are the approaches to validate:

e porosity: use tool volume to check if the porosities of structures are the same as the
setting.

e Voronoi points: for this parameter, it needs to be checked whether the number of Voronoi
points matches the number of pores.

e strut radius: use the tool skeletonize to measure the radius of strut. The radius can be
determined from distance fields.

Porosity

Table shows the comparison of the set and the computed porosities for different structures,
where "set porosity" means the given porosity when using the tool generatemembrane and
the "computed porosity" is the porosity computed by the tool volume. Five structures are
generated for each combination of Voronoi points (VP) and set porosity, and the average of
porosities is presented. The computed values deviate only slightly from the set values, which
is negligible, and the preliminary conclusion is that the obtained porosity of the generated
structure is as expected.
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Table 4.3.: Comparison of set and computed porosities of different generated structures.

. Computed porosity (-) for the generated structures with different Voronoi points (VP)
set porosity (-)

250 VP 200 VP 150 VP 100 VP
0.1 0.101 0.102 0.103 0.103
0.2 0.198 0.200 0.200 0.200
0.3 0.297 0.297 0.297 0.299
0.4 0.397 0.396 0.398 0.399
0.5 0.499 0.496 0.497 0.500
0.6 0.597 0.596 0.598 0.601
0.7 0.698 0.700 0.703 0.701
0.8 0.790 0.798 0.798 0.803
0.9 0.905 0.897 0.891 0.888

Voronoi points (the number of pores)

To verify the number of pores, the concept of a "large model" is used. In a large model, the
original structure will be extended and copied in three directions. In this way, at the center,
the pores on the boundary of the original structure can be interconnected and will not be
over-divided when performing the marker-based watershed segmentation. Only the pores in
the center, i.e., the domain of the original structure, one twenty-seventh of the large model,
will be measured. Figure is the validations for the used structures. When the porosity is
less than 20% or the strut radius greater than 5% of the domain (5 of 102), the number of
pores differs significantly from the number of Voronoi points. The reasons are roughly the
same for both situations, as some small pores can be covered when the strut radius is relatively
too large or the porosity is too low. In the analysis of the results in chapter [5] this type of
structure should be avoided as far as possible to ensure the accuracy of the data.

Figure 4.10.: The diagram of a "large model" [23].
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Figure 4.11.: Validation of pore numbers: (a) a validation of porosity-given structures with 200 Voronoi
points; (b) a validation of strut-given structures with 200 Voronoi points.

The large model can also be used to compare applicability between the centroidal Voronoi
tessellation and non-centroidal Voronoi tessellation. The fit functions in Figure show the
validation of pore numbers for structures, which are based on two aforementioned Voronoi
tessellations. The z-axis is the number of set Voronoi points, y-axis represents the number of
pores, which are measured in the center of the large model. The slope of the fit function for
structures based on centroidal Voronoi tessellation is close to 1. That means, in such structures,
the obtained number of pores is the same as the number of Voronoi points. However, the fit
function for geometries based on non-centroidal Voronoi tessellation has a smaller slope and
the measured number of pores for structures generated with the same parameters has large
fluctuations. In other words, the measured numbers are smaller than the set numbers. With
the aid of Figure it can be explained better, why the structures with centroidal Voronoi
tessellations are studied in this thesis.

300

250 1

200 1

150 1

Number of pores (-)

100 8

Centroidal Voronoi tessellation ——
Nqn-centrmdal Voronoi tessel‘latlon —

50 ‘
50 100 150 200 250 300

Number of Voronoi points (-)

Figure 4.12.: Comparison of pore numbers in the large model between two different Voronoi tessellations.
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Strut radius

Table displays the comparison of the set and computed strut radii for different structures,
where set means the given radius when using the tool generatemembrane and the computed
radius is the radius computed by the tool skeletonize. Because of the differences in algorithms,
the computed strut radius differs from the corresponding set radius and this difference becomes
even larger when the structure has more pores. The main focus of this work is to observe the
trend in PPI. A small amount of deviation will not lead to a big change in trend, so the set
strut radius is chosen as the object of observation.

Table 4.4.: Comparison of set and computed strut radius (cell) of different generated structures.

Computed strut radius (cell) for the generated structures with different Voronoi points (VP)

set strut radius (cell)

250 VP 200 VP 150 VP 100 VP
1 1.204 1.200 1.194 1.184
2 2.360 2.357 2.346 2.334
3 3.114 3.161 3.190 3.263
4 3.588 3.644 3.785 3.957

4.5. Real structures

The relationship between PPI and the other parameters can already be obtained through
the more complex computer-generated structures. The next stage of this work is to put this
tool into practice: reconstruct the real structure and compare the results of the computer
simulation with the data given by the manufacturer. The samples used in this work are
open-cell aluminium foams (AlSizMg) with pore densities of 10 PPI and 30 PPI and the
porosities of the two samples are 88.441% and 90.999%[14]. The porosity is used as a criterion
for processing images to determine whether the reconstructed structures are close to the true
value.

4.5.1. Reconstruction

Since the steps for processing the images and reconstructing the structures are the same for
each model, here a structure with 10 PPI is taken as an example, the procedure is as follows.
Figure shows the cross-section images of the structure in various stages:

1. As mentioned in section the CT images of specimen are processed using Fiji ImageJ.
The entire CT image stack contains low-quality images, in which the pores are poorly
defined, that did not meet the requirements for reconstruction in this work. Only the
clear part of the images stack is used.

2. The image stack is converted into a binary image stack and an appropriate threshold is
selected to ensure that the porosity of the entire image stack is close to the experimentally
given porosity.
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3. Using the tool slices2scalardata, a set of binary images of cross-sections of a specimen is
combined and transformed into a 3D model, the pixels in the images become voxels in
the 3D model.

4. Validation of porosity in the 3D model is necessary. The reconstructed 3D model is cut
to a suitable size and the surrounding part that not the part of the foam is transformed
into barriers (no influence on porosity).

5. The pore network model of validated structures can be extracted by tool extractnetwork,
and then the PPI can be computed.

(c) (d)

Figure 4.13.: The reconstruction process of real structures with 10 PPI: (a) a processed binary image of
the cross-section of real structure; (b) the reconstructed 3D model; (¢) the structure, whose
surroundings are transformed into barriers; (d) the segmented model of the reconstructed
structure.
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4.5.2. Validation of porosity

The porosity of the 3D model needs to be verified before computing the PPI. When the
porosity of the images stack is adjusted close to the experimental data, the porosity of the
3D model is larger than the experimental data. Therefore, by image processing, the porosity
of the image stack is deliberately reduced to lower than the experimental data and then the
porosity of the 3D model can be obtained, which is closer to the experimental value. As
the 3D models are used directly for computing PPI in this work, it is important to keep the
porosity of the 3D model closer to the experimental value. For the structures with 10 PPI,
a reconstructed 3D model with 88.39% porosity is used. For the structure with 30 PPI, a
reconstructed 3D model with 90.83% porosity is used, the cross-sections of the structure are
displayed in Figure Table shows the results of validation of porosity.

For the reconstructed structures, firstly, the original algorithm is used when computing PPI in
which the length of the measuring line is constant and equivalent to the length of the domain.
From the cross-section images of the pore network model, it can be seen that the periphery
(yellow part) of the foam cannot be completely removed. If the length of the domain acts as
the length of the measuring line, the result may be affected. Similar to reducing the impact of
periodic boundaries, a second approach is therefore proposed, with all measuring lines starting
at the second pore and ending at the penultimate pore. The results of the two approaches are
compared in chapter

Table 4.5.: Validation of porosity.

experimental porosity (%) porosity of 3D model (%)

10 PPI 88.44 [14] 88.39
30 PPI 90.99 [14] 90.83
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(c) (d)

Figure 4.14.: The Reconstruction of structure with 30 PPI: (a) a processed binary image of the
cross-section of real structure; (b) the reconstructed 3D model; (¢) the structure, whose
surroundings are transformed into barriers; (d) the segmented model of the reconstructed
structure.



5. Results

This chapter shows the results of the PPI counting algorithm in computer-generated structures.
The relationships between other parameters and PPI are discussed. The PPI values of the
real structures are also computed by using reconstructed structures.

5.1. PPI for complex computer-generated structures

5.1.1. Porosity-given structures
The first modified algorithm

Figure shows the number of pores per 100 cells computed with the first modified algorithm
(see section , in the a-direction, y-direction, z-direction and the average PP100C for the
entire volume, respectively. As the graphs show, the variation of PP100C, i.e., PPI is in good
agreement with expectation and the results in the three directions are not significantly different.
The structures with the same number of Voronoi points (pores) but different porosities have
different PP100C. The computed PP100C increases with a larger porosity. When the structures
have the same porosity, the more Voronoi points they contain, the greater the computed
PP100C is. In structures with a low total number of Voronoi points, the fitting function
between PP100C and porosity is close to a primary function, namely linear, which means
the rate of increase of PP100C with porosity is almost constant. When the total number of
Voronoi points in the structures is greater, the fitting function between porosity and PP100C
is more in line with a quadratic function, the growth rate of PP100C is at low porosities faster
than at high porosities.

In addition, in the structures generated with the same conditions, the first modified algorithm
runs quickly, the error of the PP100C computed with the first modified algorithm is very small
and the amplitude of error does not change with different porosities or number of Voronoi
points. The results are also similar in all directions (see the average of PP100C in Table
. For the structures with 250 pores, the average PP100C varies from 3.83 to 7.07; for the
structures with 200 pores, that varies from 3.59 to 6.55; for structures with 150 pores, the
average PP100C varies from 3.28 to 6.16; for structures with 100 pores average PP100C varies
from 2.92 to 5.39. As the number of Voronoi points in the structures increases, the magnitude
of the variation in PP100C also increases.
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Figure 5.1.: The number of pores per 100 cells (PP100C) for structures with different porosities
computed using the first modified algorithm: (a) PP100C in the z-direction; (b) PP100C in
the y-direction; (¢) PP100C in the z-direction; (d) average PP100C for the entire volume.
Each point represents data from five structures with different seeds.
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Figure 5.2.: The number of pores per 100 cells (PP100C) for structures with different porosities
computed using the second modified algorithm: (a) PP100C in the z-direction; (b) PP100C
in the y-direction; (¢) PP100C in the z-direction; (d) average PP100C for the entire volume.
Each point represents data from five structures with different seeds.
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Table 5.1.: The average PP100C computed by the first algorithm for the porosity-given structures.

Computed PP100C (-) by structures with different Voronoi points (VP)

porosity (%)

250 VP 200 VP 150 VP 100 VP
30 3.83 3.59 3.28 2.92
40 4.57 4.25 3,89 3.43
50 5.20 4.85 4.44 3.89
60 5.78 5.32 4.87 4.32
70 6.20 5.78 5.40 4.65
80 6.77 6.35 5.64 4.96
90 7.07 6.55 6.16 5.39

The second modified algorithm

Figure shows the PP100C computed with the second modified algorithm (see section
, also in the z-direction, y-direction, z-direction and the average PP100C for the entire
volume, respectively. There are no significant differences in the results in the three directions.
The PP100C computed by the second modified algorithm also increases with porosity and
the number of Voronoi points, but the specific values and growth rate are different from
those computed by the first modified algorithm. In the structures with a smaller number
of Voronoi points, at first, the PP100C does not vary much with porosity, until porosity is
greater than 60%, then the tendency for PP100C to increase is more pronounced. In structures
with a higher number of Voronoi points, the rate of increase for PP100C is more stable. In
structures with porosities less than 50%, the results of PP100C have large errors. Presumably,
the reason for this is that the second modified algorithm is sensitive to the distribution of
pores. Because the length of the measuring line is not constant, the PP100C is large, when
multiple pores are distributed on a short measuring line whereas the PP100C is small on a
long measuring line with fewer pores. Therefore, the second modified algorithm is not suitable
for structures with small numbers of Voronoi points and low porosities, it may cause great
errors by measuring. Conversely, when both the number of Voronoi points and the porosity
in the structures are high, the results are more accurate and stable. Table displays the
average PP100C computed by the second modified algorithm. For the structures with 250
pores, the average PP100C varies from 4.93 to 7.53; for the structures with 200 pores, that
varies from 4.80 to 7.03; for structures with 150 pores, the average PP100C varies from 4.67
to 6.61; for structures with 100 pores, the average PP100C varies from 4.43 to 5.88.

Comparison of the two modified algorithms

Firstly, both modified algorithms are considered to be applicable to the periodic structures and
can partly exclude some influence of periodic boundaries on the results. But both algorithms
have their advantages and drawbacks. Figure shows the PP100C computed with the two
modified algorithms, the Voronoi points are 150 and 250, respectively. As can be seen, the
results computed by the second modified algorithm are generally larger than those computed



5.1. PPI for complex computer-generated structures 39

Table 5.2.: The average PP100C computed by the second modified algorithm for porosity-given struc-
tures.

Computed PP100C (-) by structures with different Voronoi points (VP)
porosity (%)

250 VP 200 VP 150 VP 100 VP
30 4.93 4.80 4.67 4.43
40 5.35 5.07 4.83 4.51
50 5.80 5.51 5.12 4.70
60 6.32 5.90 5.45 4.96
70 6.70 6.31 5.91 5.20
80 7.25 6.84 6.12 5.47
90 7.53 7.03 6.61 5.88

by the first modified algorithm. The reason is, it is too simple in the first modified algorithm
to subtract 1 directly from the number of pores and not change the length of measuring lines,
which can lead to smaller computed PP100C.

The difference varies with porosities; for structures with the same number of Voronoi points
but lower porosities, the difference between computed PP100C is larger. For instance, the
difference between PP100C for structures with 30% porosity is around 2, but the difference for
structures with 90% porosity is around 1.3. In addition, for structures with a large number
of Voronoi points, the difference caused by the two algorithms is smaller than for structures
with fewer Voronoi points. Table shows the comparison of the average PP100C by two
modified algorithms for structures with different Voronoi points. The porosity of all used
structures is 90%, the domain of the first 4 types of structures, i.e., structures with 100, 150,
200 and 250 Voronoi points, is 100 x 100 x 100 cells. The domain of the other structures is
200 x 200 x 200 cells. When a large number of Voronoi points are placed in a larger domain,
the accuracy of the generated structures is better guaranteed. Arranging 250 Voronoi points in
a structure with a domain of 100 x 100 x 100 cells is theoretically the same as arranging 2000
Voronoi points in a structure with a domain of 200 x 200 x 200 cells. However, for the latter
(more Voronoi points in a larger domain), the relative difference between the two modified
algorithms is smaller, which indicates that both modified algorithms are more accurate in the
structures with a large number of Voronoi points. The relative difference between the two
algorithms decreases with the increasing number of Voronoi points in the structure. When
2000 or more Voronoi points are placed in the entire structure, the relative difference can be
less than 3%. Additionally, the results obtained by the first modified algorithm can give a
clearer picture of the relationship and trend between PP100C and porosity. There are no errors
between the results for structures generated with the same conditions. As mentioned before,
the disadvantage of the second modified algorithm is obvious, the results are susceptible to
the distribution of pores at porosities less than 50%, the errors of results are large. Conversely,
the advantage of the second modified algorithm is that more accurate values can be obtained
in structures with large porosity and a high number of Voronoi points, this condition usually
can be met by porous materials used in real life.
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Algorithm Computed PP100C Fit function Error bars

The first o - none
The second o - ——]
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Figure 5.3.: The number of pores per 100 cells (PP100C) in z-direction for structures with different
porosities computed using two different modified algorithms: (a) the number of pores is
150; (b) the number of pores is 250.

Table 5.3.: The average computed PP100C by the two modified algorithms.

Computed PP100C by structures with different Voronoi points (VP)

The modified algorithm domain 100 x 100 x 100 domain 200 x 200 x 200

100 VP 150 VP 200 VP 250 VP 2000 VP 3000 VP 4000 VP 5000 VP

The first modification 5.39 6.16 6.55 7.07 7.18 8.09 8.92 9.42
The second modification 5.88 6.61 7.03 7.53 74 8.31 9.15 9.66
The relative difference (%) 8.33 6.81 6.83 6.11 2.98 2.65 2.51 2.48
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5.1.2. Strut radius-given structures

The first modified algorithm

Figure shows the results of PP100C computed by the first modified algorithm (see section
and the relationship between PP100C and strut radius, in the z-direction, y-direction,
z-direction and the entire volume, respectively. The graphs show that when a structure contains
more Voronoi points, this structure is more sensitive to the changes in strut radius and the
PP100C value decreases significantly as the strut radius increases. Conversely, structures
with a smaller number of Voronoi points have a smaller variation of PP100C. As for the
porosity-given structures, the error of the results computed by the first algorithm is small, the
results do not differ much in the three spatial directions and in Table the average values
of PP100C are shown. For the structures with 250 pores, the average PP100C varies from
6.97 to 3.50; for the structures with 200 pores, that varies from 6.55 to 3.67; for structures
with 150 pores, the average PP100C varies from 6.07 to 3.81; for structures with 100 pores,
the average PP100C varies from 5.37 to 3.83. It is important to be noted, as shown in graphs,
there is a critical range around the strut radius of 3.5. When the strut radius of the structure
is less than the critical range, more Voronoi points (pores) in the structure result in greater
values of PP100C. When the strut radius is greater than the critical range, the previous rule
does not hold again.

Table 5.4.: The average PP100C computed by the first algorithm for strut radius-given structures.

Computed PP100C (-) by structures with different Voronoi points (VP)
Strut radius (cell)

250 VP 200 VP 150 VP 100 VP
1 6.97 6.55 6.07 5.37
2 6.00 5.75 5.42 4.92
3 4.95 4.90 4.78 4.50
4 3.50 3.67 3.81 3.83

To analyze the reason for the overall trend, the strut radius can correlate with porosity. Table
[5.5] shows the average porosities of strut radius-given structures. As shown, in a structure
with a large number of Voronoi points (pores), the porosity changes from 88.25% to 23.52%,
while the strut radius changes from 1 to 4. In the structures with fewer Voronoi points, the
porosity changes only from 93.3% to 46.30%. This can explain why structures with a higher
number of Voronoi points are more sensitive to the changes in strut radius because the changes
can lead to a greater difference in porosity. When the strut radius is 1, there is not much
distinction in the porosity of structures with different numbers of pores (88.25% ~93.3%), now
the principle should be followed: the higher the number of Voronoi points, the greater PP100C
value. When the strut radius is 4, the gap of porosity in different structures becomes wider
(23.52% ~46.3%), now the number of Voronoi points plays no longer a decisive role. That can
explain why there is a critical range.
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Figure 5.4.: The number of pores per 100 cells (PP100C) for structures with different strut radii
computed using the first modified algorithm: (a) PP100C in the z-direction; (b) PP100C in
the y-direction; (¢) PP100C in the z-direction; (d) average PP100C for the entire volume.
Each point represents data from five structures with different seeds.
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Figure 5.5.: The number of pores per 100 cells (PP100C) for structures with different strut radii
computed using the second improved algorithm: (a) PP100C in the z-direction; (b)
PP100C in the y-direction; (¢) PP100C in the z-direction; (d) average PP100C for the
entire volume. Each point represents data from five structures with different seeds.
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Table 5.5.: The average porosity of strut radius-given structures.

. Computed porosity (%) by structures with different pore numbers
Strut radius (cell)

250 VP 200 VP 150 VP 100 VP
1 88.25 89.72 91.36 93.30
2 65.60 69.40 73.78 79.19
3 43.66 48.93 55.30 63.64
4 23.52 28.99 36.12 46.30

The second modified algorithm

Figure shows the results computed by the second modified algorithm (see section .
The specific trend is similar to that obtained by the first modified algorithm, but at large
strut radii such as 4 cells, the measuring error of the second algorithm increases significantly.
This is consistent with the previous conclusion that the second modified algorithm is more
suitable for structures with high porosity and a larger number of Voronoi points. Table
shows the average PP100C computed by the second modified algorithm, which is generally
bigger than the result of the first modified algorithm. For the structures with 250 pores, the
average PP100C varies from 7,42 to 4.83; for the structures with 200 pores, that varies from
7.03 to 4.85; for structures with 150 pores, the average PP100C varies from 6.51 to 4.81; for
structures with 100 pores, the average PP100C varies from 5.84 to 4.69. The previous view
holds that the results of the first modified algorithm are suitable for observation trends and
the results of the second modified algorithm are suitable for measuring specific values.

Table 5.6.: The average PP100C computed by the second algorithm for strut radius-given structures.

Computed PP100C (-) by structures with different Voronoi points (VP)
Strut radius (cell)

250 VP 200 VP 150 VP 100 VP
1 7.42 7.03 6.51 5.84
2 6.51 6.27 5.92 5.43
3 5.60 5.53 5.37 5.10
4 4.83 4.85 4.81 4.69

5.1.3. Structures with stretching in one direction

The distribution and stretching direction of pores affect the mechanical properties of porous
materials and the flow of liquids in a porous medium. Therefore, studying the relationship
between PPI and the stretching of pores is also beneficial to the characterization of porous
structures by PPI. As mentioned in section when the structure has high porosity and
more Voronoi points, the PP100C computed by the two modified algorithms are more accurate
and have minor relative differences. As a result, when studying the effect of stretching of pores
on PPI, structures containing 4000 Voronoi points with 90% porosity are used. The domain of
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structures is 200 x 200 x 200 cells. The results are computed by the second modified algorithm.
Figure [5.6] shows the PP100C in three spatial directions for structures with stretching in the
a-direction.

Direction Computed PP100C Fit function
z-direction o N
y-direction
z-direction A N

0.5 0.6 0.7 0.8 0.9 1
Stretching factor (-)

Figure 5.6.: The number of pores per 100 cells (PP100C) for structures with stretching in the 2-direction.
Each point represents data from five structures with different seeds.

The stretching factor 0.5 means that the radius of pores in the a-direction is close to twice as
long as in the other two spatial directions; the stretching factor 1 means that the pores have
equal radii in all three spatial directions (no stretching). To keep the porosities constant and
the domain of structures unchanged, if the radius of the pores is stretched in one direction, a
slight adjustment of the pore radius in the other two directions is necessary.

With a small stretching factor, the PP100C in the stretching direction is much smaller
than the PP100C in the other two spatial directions. Since there is no stretching, the PP100C
in the other two directions is basically the same. As the stretching factor increases, the PP100C
in the stretching direction gradually increases, and on the contrary, the PP100C in the other
two directions slightly decreases. When the stretching factor is 1, the PP100C in all directions
reaches the same value, the PP100C in all directions is around 8.67. When the stretching
factor is 0.5, the PP100C in the z-direction is around 6.52 and in the other two directions is
around 9.8. The radar charts in Figure show the PP100C of the structures stretched in the
z-direction with different factors. In (a) the stretching factor in the z-direction is 0.5, which
is a large degree of stretching. It is in clear view that the stretched structures (blue) have a
much smaller PP100C in the z-direction than the unstretched structures (sandy brown). In
the other two directions, the PP100C of the stretched structures (blue) is slightly larger than
that of the unstretched structures (sandy brown). The situation is significantly different in
(e), where the stretching factor in the z-direction is 0.9, which is a small degree of stretching.
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The PP100C of the stretched structures (blue) and the unstretched structures (sandy brown)
are very close to each other, but the PP100C still maintains the previous variation pattern:
smaller in the x-direction and larger in the other directions.
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1 10 1 10
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z-direction

T 10
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Figure 5.7.: The PP100C of structures stretched in z-direction with different stretching factors: (a)
factor is 0.5; (b) factor is 0.6; (c¢) factor is 0.7; (d) factor is 0.8; (e) factor is 0.9.
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5.1.4. Structures with stretching in two directions

The used structures are stretched in both z and y-directions with stretching factors ranging
from 0.5 to 1.0. Figure shows the variation of the PP100C with the stretching factor in
the y-direction, wherein (a)-(f) the stretching factors in the z-direction are 0.5, 0.6, 0.7, 0.8,
0.9, 1.0, respectively. When the stretching factor in the z and y-directions are identical, the
PP100C computed in these two directions are almost the same. It can be observed, that the
fitting curves of the PP100C in = and y-directions intersect around the points, where the
stretching factors are identical in both directions. When the stretching factors in the x and
z-directions are constant, the PP100C computed in the y-direction grows as the stretching
factor increases, while the PP100C in the other two directions progressively decreases. In
(a)-(e), the PP100C in the z-direction is smaller than that in the z-direction because the pore
radius in the z-direction is always stretched (stretching factor varies from 0.5 to 0.9). In (f),
the stretching factor in the z-direction is 1.0 (no stretching) and the computed PP100C in both
directions becomes the same. It can be preliminarily concluded that in porous structures, the
greater the stretching degree in a certain direction (in this thesis means a smaller stretching
factor), the smaller PP100C is computed in that direction. Figure shows the PP100C of
the structures stretched in two directions with stretching factors 0.5 and 0.7.

Under the influence of the stretching factor, the PP100C computed in the stretching direction
becomes smaller. In the stretching directions, the PP100C of the structure with a stretching
factor of 0.5 is smaller than that of the structure with a factor of 0.7. Additionally, the PP100C
in the z-direction is also indirectly influenced by the stretching, the PP100C is larger when
the stretching factor is 0.5, while the PP100C is smaller when there is no stretching in the
structures. The higher the stretching degree of the pore radius in certain directions, the larger
the PP100C computed in the remaining direction. However, for the structures with the same
size, porosity and the number of Voronoi points, the average PP100C of the entire volume
does not vary greatly with the stretching of pores.

z-direction

V : 9\\

z-direction 10 y-direction
Stretching factor of z-direction 0.5, y-direction 0.5
Stretching factor of z-direction 0.7, y-direction 0.7
Stretching factor of z-direction 1.0, y-direction 1.0 ===

Figure 5.8.: The PP100C of structures stretched in two directions with factor 0.5 and 0.7.
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Figure 5.9.: The PP100C for structures with stretching in z and y-directions, where the stretching
factor in z-direction is: (a) 0.5; (b) 0.6; (c) 0.7; (d) 0.8; (e) 0.9; (f) 1.0. Each point
represents data from three structures with different seeds.
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Comparison of structures with one and two stretching directions

As shown in Figure [5.10] if stretching can only be found in the z-direction of the structures
(sandy brown), the PP100C computed in this direction is much smaller than that in the other
two directions and is influenced by the stretching factor deeply. When stretching also occurs
in the y-direction (blue), the computed PP100C in the z-direction becomes larger, while that
in the y-direction becomes smaller and changes only slightly in the remaining direction. The
greater the degree of stretching, the more pronounced this phenomenon is.
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Stretching factor of z-direction 0.5, y-direction 1.0 Stretching factor of a-direction 0.7, y-direction 1.0
(a) (b)

Figure 5.10.: The PP100C of structures with one stretching direction (sandy brown) and two stretching
directions (blue), where the stretching factor in z-direction is: (a) 0.5; (b) 0.7.

5.2. PPI for real structures

The computed PP100C needs to be converted to obtain PPI. The real diameter of the specimen
is known to be 4 cm [I4]. In the pore network model, the domain in the z-direction is considered
to represent the diameter of the foam. The conversion equation is as follows

2.54

PP1
PPI:T Cn'iooc7

100 (5.1)

where C,, represents the number of cells of the domain in z-direction, and the results are
also computed using two approaches. Table shows the results computed by the original
algorithm. It can be seen that the PPI values are smaller than those given by the manufacturer
and the difference is more pronounced in the 30 PPI structure. Table presents the results
computed by the improved algorithm. Although the results are closer to the values given by
the manufacturer than the original algorithm, they are still on the small side.

A special point is that the PPI of the z-direction computed by the original algorithm is bigger
than the other two directions, but the results of the improved algorithm are opposite, the PPI
of z-direction is the smallest. Figure [5.11]is the z-z cross-section images of the segmented
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models, where can be seen that the shape of the defined pores is closer to an ellipse and has
a greater length in the z-direction,i.e., there are stretching of pore radius in the z-direction.
The number of pores in the z-direction in one inch should be less. So the PPI value in the
z-direction should also be smaller than the other two directions. The improved algorithm
can produce more accurate results and the PPI value can, to a certain extent, express the
anisotropy of a porous structure.

Table 5.7.: The PPI for real structures computed by the original algorithm.

. Computed PPI (-) in different directions
Company provided PPI (-)

z-direction y-direction z-direction arithmetic mean in all
three directions

10 7.51 7.52 7.81 7.61
30 10.62 10.28 11.39 10.76

Table 5.8.: The PPI for real structures computed by the second algorithm.

Computed PPI (-) in different directions
Company provided PPI (-)

z-direction y-direction z-direction arithmetic mean in all
three directions

10 9.68 10.14 8.19 9.34
30 14.08 13.85 11.42 13.12

(a)

Figure 5.11.: The z-z cross section images of the segmented models: (a) 10 PPI structure; (b) 30 PPI
structure.
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6.1. Conclusion

In this work, an algorithm is implemented to compute the PPI in the three spatial directions
of a porous structure, the pore segmentation is based on a marker-based Watershed algorithm,
which was proposed by Gostick et al. [17].

The accuracy of the original counting algorithm is verified using an aligned structure. Because
the distribution of pores in porous structures is always diverse, the original algorithm is
modified to work better with the complex structures generated in the PACE3Denvironment.
Both of the modifications are designed to reduce the effect of periodic boundaries on the
computed results and are also validated by a periodic aligned structure. The first modification
is that the measured number of pores needs to be subtracted by one to exclude double-counted
pores, which repeat at the boundary, the second modification is by adjusting the range of
the measuring lines. It is concluded that the results of the first modified algorithm are more
indicative of the variation trend in the PPI values (see Figure [5.1]), while the second modified
algorithm gives more precise results for higher porosities, larger numbers of Voronoi points
(pores) structures (see Figure[5.2). For structures with more Voronoi points and high porosities
(see Table[5.3), the difference between the two modified algorithms is smaller.

The stretching of pores has effects on the mechanical properties and the permeation of liquids
in porous structures. Porous structures with stretched pores in targeted directions are also
common in industrial production. Therefore, the relationship between PPI and the stretching
of pores is noteworthy. When the pores are stretched in one direction, the computed PPI in
that direction becomes smaller, the computed PPI in the other directions increases (see Figure
. With a higher degree of stretching (in this thesis is a smaller stretching factor), the
greater the variation of the computed PPI in all spatial directions. When there is no stretching
in the structures, the computed PPI in the three spatial directions is identical. When the
stretching of pores can be found in two directions, the PPI in both directions is lower than in
the remaining direction. When the degree of stretching is the same in both directions, the
computed PPI is approximately the same (see Figure . When the conditions of structures
generation are constant, the direction and degree of stretching of the pores do not change the
average PPI in the entire volume significantly.

The general rules of the variation of PPI are as follows: For the structures with the same
porosity, those with higher numbers of Voronoi points (pores) have higher PPI values. When
the structures have the same number of Voronoi points, PPI increase with increasing porosity.
Furthermore, the structures with more Voronoi points are more sensitive to the variation
of strut radius. As the strut radius increases, the PPI changes sharply in structures with
a high number of Voronoi points, while the PPI in structures with fewer Voronoi points
changes gently (see Figure and Figure . Because the porosity of structures with more
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Voronoi points changes a lot when the strut radius varies. With an increment of strut radius,
the structures have a smaller PPI. In addition, as the stretching factor increases (degree of
stretching decreases), the PPI computed in this direction becomes larger and the PPI in the
other directions becomes smaller.

The end of the work is applying the algorithm to the real structures. First, the structure is
reconstructed from CT images and then PPI values are computed. It can be found that the
second modified algorithm, which is improved by adjusting the length of the measuring line,
produces results closer to those given by the manufacturer. The results are still less than the
data given by the manufacturer, especially for structures with large PPI values. At the same
time, it is also found that PPI values can demonstrate partly the anisotropy of the structures.
The PPI in the z-direction is smaller than the other directions, from the cross-section, it can
be found that the pores are indeed stretched along the z-direction.

6.2. Future work

In the analysis of the results in chapter [f] it is proposed that there is a critical range of strut
radius. This issue is essentially a question of what has the greater influence on the PPI value,
the number of Voronoi points or the porosity. As can be seen in Table when the strut
radius is 1, the difference between the pore numbers of the individual structures (from 250
to 100, around 60% difference) is much greater than the difference between the porosities
(from 88.25% to 93.3%), and now the number of pores play a decisive role and influences the
PPI values. However, when the strut radius is 4, the difference between the number of pores
remains the same and the difference in porosity becomes progressively greater (from 23.52%
to 46.3%). This difference is still smaller than the difference between the number of pores, but
at this time, the changes of PPI do not follow the previous rules. Does this mean that the
number of pores has a much smaller effect on PPI than porosity?

Subsequent works can use the above option as an entry point to find the magnitude of the
effect of pore numbers and porosity on PPI. At the same time, the position of the measuring
lines can be further improved, for example by not placing measuring lines in the same direction
as the axes, but at an angle to them.



A. List of symbols

Latin letters

Ch the number of cells of the domain in z-direction, [m~!]
Cy tested number of pores

dedge thickness of ligament, [m)]

dface diameter of windows, [m]

dpore diameter of pore, [m]

d(x,s) Euclidean distance

Im the length of the measuring line, [m™!]
ledge length of ligament, [m]

Ny the number of pores

Sy specific surface area, [m™!]

Ve volume of void space, [m?]

Vi total volume, [m?]

Greek letters

3 porosity, [—]

Q Euclidean space
ar pore space

Q- structure space

0582 surface space
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Abbreviation

Pace3D Parallel Algorithms for Crystal Evolution in 3D
PNM pore network model
PP100C pores per 100 cells

PPI pores per inch
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B. List of codes

B.1. The original algorithm

#include
#include
#include
#include
#include
#include
#include

<wrapper .h>
<datafiles/fielddescriptor.h>
<container/queue.h>
<container/datavector .h>
<container/genericfields.h>
<timing/timer .h>
<plot/table.h>

static frames_t framelList = {.frames =

static char *fileln;

static long force = false;

static plot_t

plotter;

argument_t arguments[] = {

NULL ,

.count

0};
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{NULL, ’ ’, PARAM REQUIRED, '', NULL, "image (vtk, png) or
SimGeo (generated by skeletonize) to process', PARAM_FILEIN, &
fileIn},

s

toolparam_t tool = {
.description = "This tool processes....\n",
.example = "e.g.: .",
.istested =0,

.arguments

};

arguments

float PoreNumber (float storel[],long len,long Max,long Min) {

float count=0;
long tmpi=0;
long tmpj=0;
if (store[0]>Min && store[0]!=Max) {
count=count+1;
}
for (tmpi=1;tmpi<len;tmpi++) {
for(tmpj=1;tmpj<=tmpi;tmpj++) {
if (store[tmpi]!=store[tmpi-tmpj] && store[tmpi]>Min &&
store[tmpi]!=Max && tmpj==tmpi) {
count ++;
break;
} else if(store[tmpi]!=store[tmpi-tmpj] && store[tmpi]>Min
&& store[tmpil]!=Max && tmpj!=tmpi) {
count = count + O;
} else {
break;

}

return (float) count;

3

float my_Average(long a,long b) {
return (float)a/b;
}

float VolumPpi( SimBench *in,ScalarData *b,char a,int num) {

long dir_x;
long dir_y;
long dir_z;
ulong x_max=in->simgeo->Nx;
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99

ulong z_max=in->simgeo->Nz;
ulong y_max= in->simgeo->Ny;
long lenz=z_max;

float tmp_storez[lenz];

long lenx=x_max;

float tmp_storex[lenx];

long leny=y_max;

float tmp_storeyl[leny];

int init=0;

long c_num=0;

float sum_vx=0;

long times_vx=0;

long times_px=0;

float sum_vy=0;

long times_vy=0;

long times_py=0;

float sum_vz=0;

long times_vz=0;

long times_pz=0;

long times_np=0;

float min, max, min_i, max_1i;
ScalarData_getMinMax (b, &min, &max, &min_i, &max_i);

if (a==

7X 7) {

for(dir_y=0;dir_y<y_max;dir_y=dir_y+num) {
times_px=0;
times_vx++;

for(dir_z=0;dir_z<z max;dir_ z=dir_z+num) {

dir_z);

times_px++;
for(init=0;init<x_max;init++) {
tmp_storex[init]=-1.0;
}
for(dir_x=0;dir_x<x_max;dir_x++) {
float test = ScalarData_getValue(b, dir_x, dir_y,

if (test>=min && test<=max) {
tmp_storex[c_num]=test;

c_num++;
X
b
long length_total=c_num;
c_num=0;

float result =PoreNumber (tmp_storex,length_total ,max,min

if (result==0) {
times_np++;
}

sum_vx=sum_vx+result;
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}
float time_totalx = times_vx * times_px-times_np;
float average_v=my_Average(sum_vx,time_totalx)*100/1lenx;

return average_v;
}
else if(a=="y’) {
for (dir_z=0;dir z<z max;dir z=dir z+num) {
times_py=0;
times_vy++;
for(dir_x=0;dir_x<x_max;dir_x=dir_x+num) {
times_py++;
for (init=0;init<y_max;init++) {
tmp_storey[init]=-1.0;
}
for(dir_y=0;dir_y<y_max;dir_y++) {
float test = ScalarData_getValue(b, dir_x, dir_y,

dir_z);
if (test>=min && test<=max) A
tmp_storey[c_num]=test;
c_num++;
}
b
long length_total=c_num;
c_num=0;
float result =PoreNumber (tmp_storey,length_total ,max
,min)
if (result==0) {
times_np++;
}
sum_vy=sum_vy+result;
}
3
float time_totaly = times_vy * times_py-times_np;

float average_v=my_Average(sum_vy,time_totaly)*100/leny;
return average_v;
} else {
for(dir_y=0;dir_y<y_max;dir_y=dir_y+num) {
times_vz++;
times_pz=0;
for(dir_x=0;dir x<x max;dir_ x=dir_x+num) {
times_pz++;
for(init=0;init<z max;init++) {
tmp_storez[init]=-1.0;
}

for(dir_z=0;dir_z<z_max;dir_z++) {
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164 float test = ScalarData_getValue(b, dir_x, dir_y,
dir_z);

165 if (test>=min && test<=max) {

166 tmp_storez[c_num]=test;

167 c_num++;

168 +

169 }

170 long length_total=c_num;

171 c_num=0;

172 float result =PoreNumber (tmp_storez,length_total ,max,min
)8

173 if (result==0) {

174 times_np++;

175 }

176 sum_vz=sum_vz+result;

177 }

178 }

179 float time_totalz = times_vz * times_pz-times_np;

180 float average_v=my_Average(sum_vz,time_totalz)*100/1lenz;

181 return average_v;

182 }

183 }

184

185

186 int main(int argc, char *argv[])

187 {

188 PACE3DMAIN (argv [0]) ;

189 getParams (argc, argv, tool, ARGUMENT (arguments)) ;

190

191 SimBench *in = newSimBench () ;

192 ScalarData *combinedImageData = NULL;

193 Table *tb = newTable () ;

194

195 SimBench_init (in, fileIn, SIMBENCH_IN) ;

196 SimBench_addFileByFieldname (in, "combined", FD_SCALARDATA);

197 SimBench_finishInit (in, force) ;

198 SimBench_getFirstFrame (in, &framelList, false);

199 combinedImageData = in->scalardata[0];

200 float average_vx = VolumPpi( in,combinedImageData, 'x’, 1);

201 float average_vy = VolumPpi( in,combinedImageData, ’'y’, 1);

202 float average_vz = VolumPpi( in,combinedImageData, 'z’, 1);

203 Table_init (tb, &plotter, " I f f f ", "frame', &in->frame,
"time", in->simulationtime , "PPI00C x", &average_vx, '"PPI100C y",

&average_vy, "PP100C _z", &average_vz);

204
205 }

Table_

printRow (tb);
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B.2. The improved parts

B.2.1. The improved parts of the first algorithm

if (a=="x") {
for(dir_y=0;dir_y<y_max;dir_y=dir_y+num) {
times_px=0;
times_vx++;
for(dir_z=0;dir_z<z_max;dir_z=dir_z+num) {

dir_z) ;

max) {

¥

times_px++;
for(init=0;init<x_max;init++) {
tmp_storex[init]=-1.0;
}
for(dir_x=0;dir_x<x_max;dir_x++) {
float test = ScalarData_getValue(b, dir_x, dir_y,

if (test>=min && test<=max) A
tmp_storex[c_num]=test;
c_num++;

b
long length_total=c_num;
long test_begin=tmp_storex[0];

long test_end=tmp_storex[c_num-1];

c_num=0;
long result =PoreNumber (tmp_storex,length_total ,max,min)

if (result==0) {
times_np++;
b

if (testO>min && testO<max && test_end>min && test_end<

result=result-1;

¥

sum_vx=sum_vx+result;

float time_totalx = times_vx * times_px-times_np;
float average_v=my_Average(sum_vx,time_totalx)*100/lenx;
return average_vV;

}

B.2.2. The functions for adjusting measuring lines
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long Line_Begin(float store[],long len,long Min,long Max){

long 1i=0;
long j=0;
long count=0;
if (store[0]>Min && store[0]!=Max) {
count=count+1;
}
for(i=1;i<len;i++) {
for(j=1;j<=i;j++) {
if (store[i]!=store[i-j] && store[i]l>0 && store[i]<Max
&& j==1i) {
count++; break;
}
else if (storel[i]!=storel[i-j] && store[i]>0 && storeli
J'=Max && j'=i) {
count = count + O0;
}
else
break;
}
if (count==2) {
break;
}
}
if (i==1len)
return len-1;
else
return i;
}
long Line_End(float storel[],long len,long Min,long Max) {
long 1i;
long j;
long count=0;
if (storel[len-1]>Min && store[len-1]!=Max) {
count=count+1;
}
for (i=len-2;i>=0;i--) {
for(j=1;j<=len-i;j++) {
if (store[i]!=store[i+j] && store[i]l>0 && store[i]<Max

&& j==len-i) {
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count++; break;

}

else if(store[i]!=storel[i+j] && store[i]l>0 && storel[i

]!'=Max && j'!=len-i) {

}

count = count + O;
}
else
break;
}
if (count==2) {
break;
}
}
if (i==-1)

return O;
else
return i;

float get_result(long x,long y,long begin,long end,long total,
long Min,long Max,float storel[]) {

float result=0;

long length=0;

if (x>Min && x<Max && y>Min && y<Max) {

if (begin>end) {
result=0;

+
else {
length=end-begin+1;

result = PpiWatershed_poreNumber (store,begin,end,

length ,Min, Max) ;

)

}
}
else {

length=total;
result =PpiWatershed_poreNumber (store,0,total,length,Min, Max

}

return result;
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74 }
75 float PpiWatershed_poreNumber (float store[],long begin,long end,
long length,long Min,long Max) {

76 float count=0;

7 long tmpi=0;

78 long tmpj=0;

79 if (storel[begin]l>Min && storel[begin]<Max) {

80 count=count+1;

81}

82  for(tmpi= begin+1l;tmpi<end;tmpi++) {

83 for(tmpj=begin+1l;tmpj<=tmpi;tmpj++) {

84 if (store[tmpi]!=store[tmpi-tmpj+begin] && store[tmpil>
Min && store[tmpil<Max && tmpj==tmpi) {

85 count++; break;

86 X

87 else if (store[tmpil!=store[tmpi-tmpj+begin] && storel
tmpil >Min && store[tmpil<Max && tmpj'!=tmpi) {

88 count = count + O0;

89 }

90 else

91 break;

92 3

93}

94 return (float)count*100/length;
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