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The rise of intermittent renewable power generation increasingly impedes an efficient
and reliable utility grid operation. Simultaneously, the number of electric vehicles,
which require significant amounts of electric energy to charge, is growing rapidly. The
energy and mobility sectors are therefore inevitably coupled, implying that reliable
electric mobility depends on robust power supply. Furthermore, vehicle users per-
ceive a limitation of their individual mobility, as electric vehicles currently provide less
driving range and require more time to recharge compared with internal combustion
engine vehicles. To tackle these challenges, the present thesis presents a novel con-
cept and a software application supporting users when charging their electric vehicles,
while considering the interests of all involved stakeholders.
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Abstract

The rise of intermittent renewable power generation increasingly impedes an ef-
ficient and reliable utility grid operation. Simultaneously, the number of electric
vehicles, which require significant amounts of electric energy to charge, is growing
rapidly. The energy and mobility sectors are therefore inevitably coupled, imply-
ing that reliable electric mobility depends on robust power supply. Furthermore,
vehicle users perceive a limitation of their individual mobility, as electric vehicles
currently provide less driving range and require more time to recharge compared
with internal combustion engine vehicles.

The present thesis therefore presents a novel concept and a software application
(charging assistant) supporting users when charging their electric vehicles, while
considering the interests of all involved stakeholders. To achieve this, design fea-
tures of possible software architectures are initially compared to define a suitable
structure of modules and their interconnection. Real data is then used to develop,
enhance, and validate both energy consumption and battery models representing
electric vehicle driving and charging characteristics. The major contributions of this
thesis arise from design and validation of the charging assistant’s following three
core components.

First, users’ individual mobility behavior is modeled and evaluated using both
recorded and semi-synthetic electric vehicle trip data. Particularly, a novel two-stage
clustering algorithm is developed to determine users’ frequently visited locations.
Ensembles of random forest models are then used to predict next locations to visit
and typical parking times there.

Second, stochastic mixed-integer programming is used to most conveniently and
cost-effectively schedule charging stops in a future time horizon. In this context, a
graph-based algorithm helps to quantify energy demand and occurrence probabil-
ity of an electric vehicle user’s mobility scenarios. For validation, two alternative
charging strategies are defined and compared with the proposed scheme.

Third, a non-linear optimization scheme is engineered to leverage unused time and
energy flexibility in electric vehicle charging processes. Integrating a detailed elec-
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Abstract

tric vehicle battery model allows to precisely quantify cost savings due to reduced
battery aging and dynamic electricity tariffs. Using data from real electric vehicle
charging events, influences on the profitability of vehicle-to-grid applications can be
elaborated. Implementing the proposed scheme in a realistic environment yields
an architecture blueprint and communication concept for optimization-based smart
charging systems. In this context, further challenges regarding standardized charg-
ing communication, interventions of power suppliers, and user acceptance are dis-
covered.
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Kurzfassung

Der Anstieg intermittierender Stromerzeugung aus erneuerbaren Energiequellen
erschwert zunehmend einen effizienten und zuverlässigen Betrieb der Versorgungs-
netze. Gleichzeitig steigt die Zahl der Elektrofahrzeuge, die zum Aufladen erhebli-
che Mengen an elektrischer Energie benötigen, rapide an. Energie- und Mobilitäts-
sektor sind somit unweigerlich miteinander verbunden, was zur Folge hat, dass zu-
verlässige Elektromobilität von einer robusten Stromversorgung abhängt. Darüber
hinaus empfinden Fahrzeugnutzer ihre individuelle Mobilität als eingeschränkt, da
Elektrofahrzeuge im Vergleich zu Fahrzeugen mit Verbrennungsmotor derzeit eine
geringere Reichweite aufweisen und mehr Zeit zum Aufladen benötigen.

In der vorliegenden Arbeit wird daher ein neuartiges Konzept sowie eine Softwa-
reanwendung (Ladeassistent) vorgestellt, die den Nutzer beim Laden seines Elektro-
fahrzeuges unterstützt und dabei die Interessen aller beteiligten Akteure berück-
sichtigt. Dafür werden zunächst Gestaltungsmerkmale möglicher Softwarearchitek-
turen verglichen, um eine geeignete Struktur von Modulen und deren Verknüpfung
zu definieren. Anschließend werden anhand realer Daten sowohl Energieverbrauchs-
als auch Batteriemodelle entwickelt, verbessert und validiert, welche die Fahr- und
Ladeeigenschaften von Elektrofahrzeugen abbilden. Die wichtigsten Beiträge die-
ser Arbeit resultieren aus der Entwicklung und Validierung der folgenden drei
Kernkomponenten des Ladeassistenten.

Als Erstes wird das individuelle Mobilitätsverhalten der Nutzer modelliert und
anhand von aufgezeichneten und halbsynthetischen Fahrdaten von Elektrofahr-
zeugen ausgewertet. Insbesondere wird ein neuartiger, zweistufiger Clustering-
Algorithmus entwickelt, um häufig besuchte Orte der Nutzer zu ermitteln. An-
schließend werden Ensembles von Random-Forest-Modellen verwendet, um die
nächsten Aufenthaltsorte und die dort typischen Parkzeiten vorherzusagen.

Als Zweites wird gemischt-ganzzahlige stochastische Optimierung angewandt, um
Ladestopps in einem zukünftigen Zeithorizont möglichst komfortabel und kosten-
günstig zu planen. Dabei wird ein graphenbasierter Algorithmus eingesetzt, um
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den Energiebedarf und die Eintrittswahrscheinlichkeit von Mobilitätsszenarien ei-
nes Elektrofahrzeugnutzers zu quantifizieren. Zur Validierung werden zwei alter-
native Ladestrategien definiert und mit dem vorgeschlagenen System verglichen.

Als Drittes wird ein nichtlineares Optimierungsschema entwickelt, um vorhan-
dene Zeit- und Energieflexibilität in Ladevorgängen von Elektrofahrzeugen zu
nutzen. Die Integration eines detaillierten Batteriemodells ermöglicht eine genaue
Quantifizierung der Kosteneinsparungen aufgrund einer geringeren Batteriealte-
rung und dynamischer Stromtarife. Anhand von Daten aus realen Ladevorgängen
von Elektrofahrzeugen können Einflüsse auf die Rentabilität von Vehicle-to-Grid-
Anwendungen herausgearbeitet werden. Aus der Umsetzung des vorgestellten
Ansatzes in einer realistischen Umgebung geht ein Architekturentwurf und ein
Kommunikationskonzept für optimierungsbasierte intelligente Ladesysteme her-
vor. Dabei werden weitere Herausforderungen im Zusammenhang mit standardi-
sierter Ladekommunikation, Eingriffen der Energieversorger und Nutzerakzeptanz
aufgedeckt.
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Prologue

Since my earliest childhood memories, a strong fascination for science and tech-
nology has always shaped my perception. Whether it was huge machinery on
construction sites that caught my attention during a walk with my grandmother,
or chemical reactions that my grandfather showed and explained to me while I
skipped kindergarten. Growing up in a rural area, I also soon realized the im-
portance of mobility for people to achieve certain things. My fascination for cars,
planes, trains, and boats was born and I could hardly wait to finally receive my
own driver’s license. After finishing school, all this technical enthusiasm led me—
as a logical consequence—to study mechanical engineering; and it was amazing:
intense math, scientific formulae, technical drawings, and theoretical background
to all my childhood visions. Entering the automotive industry as an intern, I was
finally able to apply all the knowledge I had acquired. At about the same time, I
discovered another fascination. It was the magic of computer programs turning se-
ries of numbers and letters into valuable output, or even controlling those machines
that already fascinated me. I guess at this time my career path was set: to develop
technical software, preferably for cars. When I was given the opportunity to pursue
a PhD in collaboration with the automotive industry, it felt like connecting all the
elements: technology, mobility, software engineering, and science.

Preparing the present thesis, however, would have been impossible without having
the support of many as a foundation. First of all, I would therefore like to give spe-
cial thanks to my direct supervisor apl. Prof. Dr.-Ing. Ralf Mikut. Your time spent in
numerous constructive discussions, and your encouragement, advice and support
helped me develop both professionally and personally. I would also like to express
my sincere thanks to Prof. Dr. rer. nat. Carsten Agert from the University of Olden-
burg for reviewing this thesis and to Prof. Dr.-Ing. Christoph Stiller for chairing the
examination committee. I would furthermore like to acknowledge the support of
Prof. Dr.-Ing. Veit Hagenmeyer for the supervision and review of this thesis, for the
opportunity to be part of the Institute for Automation and Applied Informatics, and
for enabling real-world smart charging experiments in the Energy Lab 2.0. In the lat-
ter context I would also like to thank Dr.-Ing. Simon Waczowicz and his colleagues
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for diligent hands-on support. Thanks also goes to all members of the Institute for
Automation and Applied Informatics—especially my colleagues within the research
area Automated Image and Data Analysis. Your supportive collaboration doubtlessly
contributed to successfully completing this work. In this context, I would like to
express my special thanks to Dr.-Ing. Riccardo Remo Appino. You always and tire-
lessly encouraged, mentored, and supported me, especially during my first months
as a doctoral student.

While conducting the research and experiments of this thesis, I was employed at
Mercedes-Benz AG in Sindelfingen, Germany. I would like to give special thanks to
Dipl.-Ing. Frank Hepperle and Dr.-Ing. Tim Harr. You gave me the opportunity to
be an appreciated member of your team, provided me honest and constructive feed-
back, and constantly supported my professional and personal growth. Likewise, I
would like to thank all my former team colleagues and members of the eDrive In-
novations department under the leadership of Dr.-Ing. Martin Hermsen. During the
past years I also had the honor to supervise the work of students myself; a truly
rewarding task that helped me grow and learn a lot about mutual collaboration.
Many thanks therefore goes to M.Sc. Maximilian Hentsch, M.Sc. Stefan Meisen-
bacher, and M.Sc. Julian Frick.

Finally, I would like to express deep gratitude to my parents and family. Your
comprehensive support and encouragement always enabled me to pursue my goals
such as this thesis. Many thanks also goes to my friends and especially my girl-
friend Mareike who always pushed my motivation in case I was struggling myself.

July 4, 2022, Weil der Stadt, Germany Karl Schwenk
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1 Introduction

In the previous century, the eventual shortage of fossil fuels, such as gasoline and
diesel, has been prophesied repeatedly [1]. Additionally, Carbon Dioxide (CO2)
emissions from combusting these fuels are assumed to negatively affect the earth’s
climate [2]. These aspects heavily influence the current-day mobility system con-
suming more than 50 % of all worldwide allocated fossil fuels [3]. Electric mobility
powered from sustainable, environmental-friendly energy sources constitutes a fea-
sible alternative [4,5]. Some researchers even suppose a potential to mitigate anthro-
pogenic climate change when employing (Battery) Electric Vehicles (EVs) combined
with low-emission energy sources [6–8]. For instance, the life-cycle CO2 emissions
of EVs could be decreased by 55 % compared with Internal Combustion Engine Ve-
hicles (ICEVs), if charged with 13 % of Renewable Energy Sources (RESs). As shown
in Figure 1.1, using 100 % RESs would even decrease life-cycle CO2 emissions of an
EV by 90 %.1
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Figure 1.1: Comparison of life-cycle CO2 emissions of ICEV and EV for varying RES-share [6].

1Assuming a midsize EV with a life cycle mileage of 240 000 km, including production and scrapping.
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However, the practical use of EVs in combination with renewable energies requires
some basic conditions. First, a reliably available infrastructure providing sustain-
able energy to charge EVs. Second, EVs fulfilling the user requirements in terms
of reliability, convenience, and value-stability. The latter, in turn, requires a suf-
ficient understanding of behavioral motives and potential influence to define user
requirements.

In terms of electric energy supply, nuclear power was assessed as putatively clean
and reliable resource. The nuclear waste storage, however, poses a huge risk of envi-
ronmental pollution. Furthermore, catastrophic incidents—both man-made (Tscher-
nobyl, Ukraine 1986) and natural disasters (Fukushima, Japan 2011)—encouraged the
political decision to exit nuclear power perennially in many nations, e.g., Germany
[9]. Advancing environmental pollution due to fossil fuel emissions prompted gov-
ernments to also abolish coal-fired power plants, e.g., Germany in 2020 [10]. These
decisions call for a tighter coupling of energy sectors such as electricity, transport
and heat demand and favor the rise of RESs [11–13]. Recently, an upheaval on
the part of energy producers can thus be observed. Figure 1.2 shows that energy
generation shifts towards wind, solar, and hydro power.
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Figure 1.2: Relative share of hydro power, solar power, and wind power in total electricity generation in
Germany, 1990 to 2020 [14].

Unlike stationary, centralized power plants, however, RESs distributedly inject en-
ergy into the grid [15]. Additionally, the power output of RESs depends on environ-
mental conditions, e.g., solar radiation and wind. Increasing shares of RESs, hence,
impede a reliable and predictable energy allocation [16]. The risk of local over- or
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underproduction arises and needs to be handled accordingly, e.g., using adequate
forecasting methods [17, 18] together with (stationary) energy storages [19, 20].

Increasing uncertainty also arises from energy consumers. Public services, resi-
dential areas, and industry dominated the hitherto electricity consumption. As
Figure 1.3 shows, the transport sector, in contrast, only accounted for approx. 3%
of all consumed electricity. With rising electric mobility, EV charging causes load
profiles to become more fluctuating. Primarily, users’ random behavior determines
the points in time an EV will be charged. Furthermore, the power rates and en-
ergy amounts needed for EV charging exceed the residential levels by far. This may
cause a congestion of the distribution grid [21–24]. Together, RESs and EVs’ energy
consumption complicate an efficient and reliable grid operation [25] and call for a
coordination of EV charging processes [23, 24].
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Figure 1.3: Electricity consumption in the European Union grouped by sectors; illustration of the trans-
port sector’s reluctant consumption, 1990 to 2020 [14].

With the market penetration of EVs, vehicle manufacturers also face new chal-
lenges [26]: The complexity of ICEVs was mainly based on mechanical components
such as shiftable transmission or combustion engine. Even though mechanical com-
ponents of EVs simplify, the complexity moves towards power electronics and en-
ergy storage. Low energy density of state-of-the-art battery systems, and thus high
battery weight, requires increased construction safety. High power in- and outputs
cause battery heating. According monitoring and cooling is required to reduce the
risk of inflammation. Battery degradation, i.e., increased internal resistance and the
loss of storage capacity, however, poses the possibly biggest challenge. Figure 1.4
shows a cost breakdown of EV manufacturing, with battery related costs account-
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ing for half of it. Thus, battery degradation causes a significant value loss of the
entire EV [27].

25 %

Battery Cells

15 %

Electric Engine,
Power Electronics

10 %

Battery Integration
50 %

Unrelated to Powertrain

Figure 1.4: Breakdown of EV manufacturing cost focusing on powertrain-related components [28].

Insufficient user acceptance impairs the effectiveness of a strategy that combines the
divergent interests of car manufacturers and power supply [29]. Using ICEVs over
decades shaped the expectations of users towards EVs in terms of flexibility and re-
liability. Low driving range and long charging times of EVs, however, increase the
manual effort of planning trips. For instance, estimating the energy consumption
or searching for charging stations requires multiple information resources. Acquir-
ing and combining this information is neither trivial, nor comfortable for users. A
software tool considering individual user needs is inevitable to improve flexibil-
ity and reliability of EVs, and thus ensure convenient electric mobility. Therein,
the secure storage and proper treatment of users’ personal information need to be
considered [30].
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1.1 State of the Art

This section points out the context of the thesis by reviewing the state of the art
and discussing related work. First, Section 1.1.1 presents the setup of the elec-
tric utility grid, the effects of RESs, and the integration of EVs into the grid. Sec-
tion 1.1.2 reviews essential models of EV batteries and compares different modeling
approaches. Then, typical driving and charging habits of users, methods to predict
mobility behavior, and user acceptance issues are described in Section 1.1.3. At
last, Section 1.1.4 presents the combination of the primarily mentioned aspects in
form of software applications (charging assistants) and architectural consideration
therefore.2

1.1.1 Grid Integration of Electric Vehicles

Today, electric energy is available as ubiquitous resource. For this, reliable and effi-
cient transport of electricity constitutes a prerequisite [31]. Most utility grids all over
the world, but especially in Europe have a hierarchical topology of different voltage
levels, as seen in Figure 1.5. Power transformer substations connect grid areas of
different voltage among each other. Independent grid areas with the same voltage
can be connected with switch substations. For areas with different or asynchronous
frequencies, electric energy converters, e.g., motor-generator combinations or power
electronics are used [31].

The transmission grid transfers power from centralized generation to areas of
high consumption. In this context, transmission grid operators monitor power flow
and maintain hardware. The highest voltage level (220-380 kV) takes in the en-
ergy production from hydro power generation, coal-fired and nuclear power plants.
Prospectively, off-shore wind parks also contribute. Mostly, no consumers are di-
rectly connected to this voltage level. The high voltage level (110 kV) is the transmis-
sion grid’s second voltage level. Mainly industrial power plants feed in energy. The
consumers comprise large industry and railway transportation.

Once the energy is transmitted to high consumption areas, the distribution grid
spreads energy within metropolitan areas. Here, distribution grid operators are in
charge of monitoring and maintenance. Terrestrial wind parks, solar power plants,

2Regional differences, e.g., regarding electric utility grid, EV market penetration, or user behavior may
exist. For the scope of this thesis, Europe, or particularly Germany is used as reference.
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Figure 1.5: Schematic grid topology with transmission and distribution grids in different voltage levels,
as well as energy producers and consumers, see also [31].

and municipal power plants inject energy to the mid voltage level (1-50 kV). This
voltage level supplies most of the industry consumers and some remote private
homes. The low voltage level (230-400 V) is the most subordinated level. It takes in
energy generation from distributed RESs such as private solar panels and wind tur-
bines. As the power output of these resources depends on volatile environmental
conditions, e.g., solar radiation and wind, they pose the risk of local over- or un-
derproduction. Private homes both in rural and urban areas account for the major
consumption in this voltage level.
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Nowadays, mainly residential and industry consumers dominate the energy de-
mand. Their load profiles repeat in multiple time levels (time of day, day of week,
month). With a growing market penetration of EVs, EV charging increasingly con-
tributes to electricity consumption [32, 33]. EV charging loads, however, are more
volatile and less predictable. Primarily, users’ behavior, determines the points in
time an EV will be plugged in to charge. Due to range anxiety, users tend to charge
their vehicles as often as possible and in an uncoordinated way [21, 34].

Furthermore, the power rates and energy amounts needed for EV charging usually
exceed the household levels by far. This might especially endanger the distribu-
tion grid’s performance; in particular, the mid voltage level for fast charging at
highways, and the low voltage level for residential areas. In already critical peak
load situations, e.g., people coming home from work in the evening, while using
several electric devices, the power demand concentrates. As few monitoring or
controlling exists for these voltage levels, arising overload might not be detected
instantaneously [35–37]. Power quality issues, e.g., voltage fluctuation or frequency
instability could be the consequence. In the worst case, local distribution grid areas
may break down due to overload. Combined with distributed RESs, an efficient
and reliable grid operation becomes thus more complicated [25].

A growing number of EVs connected to the grid, may also enable grid-beneficial
applications, often concluded as Vehicle-to-Grid (V2G) services [22,38–40]. For this,
smart charging, i.e., to charge a defined amount of energy at a certain place and time,
however, is a prerequisite [41]. Many V2G services base on bidirectional power
flow and can provide additional revenue streams for charging station providers
and/or EV users [5,36,42–46]. According to customer surveys, the concerns of users
about V2G comprise advanced battery degradation and limited flexibility [47]. For
receiving monetary rewards in return, however, users could accept providing their
EVs for V2G services [48].

1.1.1.1 Vehicle-to-Grid Development

The evolution of V2G services can be classified in five phases as shown in Fig-
ure 1.6.3 The already established grid-compliant charging bases upon the com-

3The specified time line only gives a rough estimation. Various factors may propel or delay this devel-
opment.
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Figure 1.6: Road map of EV charging modes also considering a connection to the electric utility grid,
approx. 2015 to 2025, according to [49].

pliance with guidelines and regulations. As charging power is either limited to un-
critical levels or monitored decentralized, active controllability or centralized load
management is not required.

The on-the-rise controlled charging is based on modulations of charging power or a
temporal shift of the charging process, if applicable. Either infrastructure (charging
station provider, grid operator), the EV, or the EV user provide necessary signals
for the power modulation. Electricity only flows from the grid to the EV, not vice
versa.

The principle of cooperative charging currently develops. EVs and charging infras-
tructure automatically negotiate and agree upon charging power, time and tariff.
Active user interaction is mainly not required. Grid constraints, incentives for users
and mobility needs of users motivate the negotiated charging strategy. A local ag-
gregation of several EVs can be included, e.g., in parking lots.

In upcoming years, bidirectional charging can be expected. Therein, energy can
also be transferred from EVs to the infrastructure. First, applications could support
home energy systems of EV users motivated by sustainability or economic reasons,
see e.g., [50]. Subsequently, a variety of services to the grid can offer additional
revenue streams.

8



State of the Art

In the long term, aggregated bidirectional charging could be implemented. Bidi-
rectional energy transfer mostly exceeds the own energy system of users and can
be aggregated across states or countries. Thus, full balancing market services could
be generated also enabling monetary rewards for EV users. The balancing of con-
tradictory objectives regarding EV charging, however, requires advanced charging
strategies. For instance, block-chain technology could help balance charging and
discharging of multiple EVs. The internet of energy could provide a suitable commu-
nication platform, respecting security and privacy issues. For instance, secure data
transmission, centralized architectures with mutual authentication, and individual
remote access for payments [30, 51].

1.1.1.2 Vehicle-to-Grid Services

The applications based on grid-connected EVs—V2G services—can be divided in
five major categories as shown in Table 1.1 [52, 53].

Table 1.1: Literature review on V2G services grouped by categorical characteristics of the services [53]

Category Reference Comments

Frequency Regulation Wu et al. [54] two-stage stochastic programming

Donadee et al. [55] stochastic dynamic programming

Spinning Reserves Rahmani-Andebili et al. [56] optimal fleet management

Aliasghari et al. [57] micro-grid demand response

Power Quality Beaude et al. [58] voltage regulation

Knezovic et al. [59] voltage support by EVs and solar power

Rajaei et al. [60] ramp provision cost reduction

Energy Arbitrage Denholm et al. [61] system impacts of energy arbitrage

Melo et al. [62] energy arbitrage with battery degradation

Gan et al. [63] demand-side management

Erden et al. [64] peak shaving

Khemakhem et al. [65] flattening power load curves

Renewable Energy Ashique et al. [66] solar-powered fast chargers

Integration Lund et al. [67] minimize wind generation curtailment

Ghofrani et al. [68] resource management strategies

Appino et al. [16] reliable dispatch of RES

Nguyen et al. [69] managed charging with user information

Dallinger et al. [70] price-responsive EVs

Mozafar et al. [71] optimal RES allocation

Salah et al. [72] price-based RES integration via EV charg-
ing
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Some of them, e.g., energy arbitrage or power quality services, require mandatory
bidirectional power flow, i.e., energy feedback from the EV to the grid. Within
this context, dynamic electricity tariffs and market structures serve to monitor and
control V2G services [72–75]. Energy price models help to calculate appropriate
electricity prices, e.g., using stochastic programming [76, 77]. The quantification of
the impacts of V2G services on the power supply requires appropriate metrics. The
literature recommends for instance i) the change in the minimum net load, ii) the
change in cumulative negative net load, or iii) the residual load change [70].

Mismatching electric energy generation and loads cause the system frequency to
deviate from the nominal value [53]. Controlled energy injecting or withdrawal—
frequency regulation—can eliminate these deviations. The associated market re-
quires energy storage systems to react within a few minutes. These technical quali-
fications are well within the specifications of EV batteries [78]. Despite high market
clearing prices, increased battery degradation due to high energy throughput, i.e.,
cyclic battery aging, limits profitability. Hence, battery degradation costs often ex-
ceed the remuneration of frequency regulation.4

Spinning reserves provision extra generation to provide power in case of a sudden
loss of generation [53]. To attain permanent service, a combination with stationary
energy storages, e.g., large capacitors, seems conceivable [79]. Dispatch signals
are issued occasionally and not on a regular schedule (20-50 times per year [80,
81]). The infrequent dispatch calls cause low additional energy throughput of the
EV battery, i.e., low cyclic aging. As remuneration is paid for having capacity on
hand, regardless of it being called, spinning reserves yields high revenue per energy
throughput [82].

Power quality services correct voltage and current deviations from an ideal sinu-
soidal profile with precise power injections or withdrawals on sub-cycle timescales.
Such deviations can negatively affect the operation of electrical devices. The high-
dynamic and easy controllable power characteristics of EV batteries grant EVs a
promising role therein [58, 59].

Energy arbitrage services leverage energy price spreads.5 Presupposed a sufficient
price difference to exceed round-trip energy losses, trading fees, and operational

4The EV battery is assumed to be property of the remuneration recipient, e.g., the EV user.
5Energy arbitrage describes economically motivated V2G services solely based upon energy acquisition

and disposal according to temporal or spatial price discrepancies. Price signals can be motivated by
applications such as load balancing or peak shaving.
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cost of the energy storage, revenue can be generated. Despite its simplicity, grid-
beneficial energy arbitrage requires a suitable control of EV charging [70]. Energy
arbitrage can be proceeded on a retail level, e.g., vehicle-to-building applications,
or on a wholesale level. In the latter case, the charging demand of several EVs can
be aggregated and traded on the wholesale energy market.

Renewable energy integration, e.g., powering EVs entirely from RESs, could enable
an environmental-friendly and sustainable energy system [6]. By means of suitable
optimization algorithms [83], grid-responsive EVs can help to integrate RESs into
the electricity system [84, 85]. For instance, balancing the variable power output
of RESs by controlled charging and discharging of EVs can yield a power transfer
efficiency of up to 92% [86]. The authors of [68] develop resource management
strategies to enable V2G in support of RES integration. Another approach for reli-
able dispatch of RES generation by means of EVs is presented in [16]. More specific
approaches, e.g., solar-powered fast chargers [66] or minimize wind generation cur-
tailment [67], could remediate distribution system impacts.

Note that all five aforementioned V2G service categories mainly possess a Tech-
nology Readiness Level (TRL) according to Mankins [87] between 2 (“Technology
concept and/or application formulated”) and 5 (“Component and/or breadboard
validation in relevant environment”).

1.1.2 Modeling of Electric Vehicles

Unlike ICEVs, the complexity and major cost of EVs arise from energy storage and
power electronics. For the energy storage, two partly competing technologies exist.
Fuel Cell Electric Vehicles (FCEVs) consuming hydrogen can be refueled fast and
operated locally emission-free. Producing hydrogen from natural gas reformation,
however, depends on fossil resources, e.g., methane. Water electrolysis would be
an alternative, but has low efficiency [88]. Furthermore, the low energy density
of gaseous hydrogen requires energy and cost-intensive compression and storage.6

Thus, FCEVs only yield about half the efficiency of EVs using electro-chemical stor-
ages, i.e., battery-electric systems. When directly using electricity to drive, no ineffi-
cient conversion of chemical to electrical energy is required. Furthermore, the losses

6Given the physical limitations of that issue, future research is not expected to bring significant advan-
tages.
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during transport and refueling are significantly lower [88]. Especially mobile appli-
cations, e.g., EVs that require frequent recharging, qualify for batteries as electric
energy storages. This thesis therefore takes a closer look at the latter concept.

1.1.2.1 Lithium Ion Batteries

Most state-of-the-art batteries use lithium as active material, which theoretically
allows higher energy density compared with liquid fossil fuels. Figure 1.7 illustrates
a schematic view of a lithium ion battery [89].
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Figure 1.7: Schematic section view of lithium ion battery. Positive electrode (LiCoO2) releases electrons
when charging; negative electrode (graphite) releases electrons when discharging; lithium
ions diffuse through the separator accordingly [89].

Battery cells as used in EVs generally consist of two compartments divided by a
separator. Current collectors line the outsides of the two compartments (positive:
aluminum, negative: copper).

The inner of the positive electrode consists of lithium active material, e.g., Lithium-
Cobalt-Oxide (LiCoO2). Therefore, most batteries contain cobalt, which appears
critical regarding environmental pollution and raw material scarcity. Emerging bat-
tery recycling, however, will improve resource availability, while current research
could allow to entirely replace cobalt in future batteries [90]. The negative elec-
trode contains a carbon-based material that can store positive lithium ions. The
inner of the battery cell is filled with a liquid-state electrolyte that appears critical
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in terms of flammability and toxicity. Using solid-state electrolytes in the future,
however, could eliminate these issues [27, 91].

When charging, electrons from the positive electrode’s active material drain off
through the aluminum current collector, see the yellow arrows in Figure 1.7. The
lithium ions in the positive electrode are pushed through the separator into the car-
bon material. Simultaneously, the copper current collector releases electrons into
the carbon material. In discharging mode, the charging process is inverted as indi-
cated by the blue arrows in Figure 1.7. The positive electrode absorbs electrons that
flow into the active material. Positive lithium ions are pushed trough the separator,
while the negative electrode releases electrons towards the copper current collector.

In terms of cost, the battery accounts for about half of the vehicle’s value. About
two thirds of the battery cost arise from active components such as electrodes, elec-
trolyte, and separator, as shown in Figure 1.8. However, a maturing EV market and
battery technology improvements might cause battery production prices to decrease
within the next years [27, 92, 93].
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Figure 1.8: Breakdown of battery manufacturing cost comprising raw material values, labor and over-
head costs [27].
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Aboard the EV, the Battery Management System (BMS) supervises the operation
of the EV battery. This includes functions that monitor and control the battery
while charging or discharging. If a safety-critical situation is likely, a warning sys-
tem alerts the user, or the safety control shuts down the battery system entirely.
Furthermore, the battery state, i.e., the State of Charge (SOC), the State of Health
(SOH), and the internal battery temperature are estimated [94]. Therefore, appro-
priate models, i.e., an electrical model, a thermal model, and a degradation model,
are required [95].

1.1.2.2 Electrical Battery Models

To describe the charging and discharging characteristics of batteries, an electrical
model is required. In this context, the momentary battery voltage Ubat and current
Ibat can be measured. To quantify the battery level, the battery energy e is used,
usually represented by the dimensionless SOC

SC =
e

enom
, (1.1)

with the nominal storage capacity enom.7 For real-time SOC estimation, a variety
of methods exist as shown in Table 1.2 [96].

For Ibat = 0, the SOC of a battery correlates with the open circuit voltage UOCV and
the battery temperature θ, see Figure 1.9. These relationships can be mapped to
the SOC and stored into look-up tables. Consequently, if the external parameters
are measurable, the battery SOC can be inferred by consulting this table [97, 98].
However, a precise UOCV measurement requires cutting off the power and having
the battery rest for an extended period to attain electro-chemical equilibrium [110].
Thus, the method’s applicability in EVs is limited [110, 111].

Coulomb counting bases on integrating all currents Ibat flowing into or out of the
battery over time [110]. Presuming the initial SOC is known, and Ibat is precisely
measurable, the remaining SOC can be calculated. Inevitable current measurement
errors, however, compromise the precision of the SOC estimation. Furthermore, the
method requires a capacity recalibration according to the battery’s operating and
aging condition [111, 112]. Combining coulomb counting with look-up tables [113]
or physical models [100, 101] helps to overcome these drawbacks.

7In the literature, formulation (1.1) is sometimes also referred to as the battery’s state of energy.
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Table 1.2: Literature review on electric battery models grouped by model categories.

Category Reference Comments

Look-up Tables He et al. [97] look-up table for open-circuit voltage

Xing et al. [98] open-circuit voltage with temperature influence

Coulomb Counting Kustiman et al. [99] recursive least square estimation

Juang et al. [100] with physical thermal model

He et al. [101] real-time error correction

Electro-chemical Rahman et al. [102] parameter identification, particle swarm optimization

Model Zheng et al. [103] electro-chemical-enhanced equivalent circuit

Equivalent Circuit Zhang et al. [104] resistor-capacitor-network

Model Li et al. [105] distributed parameter model

Data-driven Deng et al. [106] support vector machine

Estimation Gong et al. [107] neural network (battery pack modeling)

Wang et al. [108] neural network (thermo-coupled SOC estimation)

Lee et al. [109] growing hierarchical self-organizing maps (with ag-
ing)

Electro-chemical models describe the mass, energy, moment, and momentum
transport in each phase and component of a battery cell [102]. Thus, macroscopic
quantities, e.g., cell current and voltage can be derived from kinetic and charge
transfer processes on a microscopic scale. The model complexity, however, restricts
a direct use in BMSs [102]. For this reason, electro-chemical models are mainly used
to infer design rules in battery research [111].

Equivalent circuit models aim to describe batteries’ electrical behavior with com-
ponents such as resistors, capacitors, or voltage sources in circuit networks [101].
Solving the state equations of the circuit network allows to determine the SOC evo-
lution for given voltage and current profiles. Due to the simple model structure and
few model parameters, real-time applications often utilize equivalent circuit mod-
els [104,111]. Figure 1.9 shows an equivalent circuit that consists of a voltage source
UOCV serially connected to the internal resistance Ri [114]. This circuit suitably
represents low-dynamic or stationary battery operation, e.g., EV charging.

Complex chemical processes and varying operating conditions often reduce the ac-
curacy of above-mentioned methods. A broader applicability can be achieved with
data-driven estimation. Despite the huge variety of model types, in the literature
mostly neural networks [107, 108] and support vector machines [106] are used. In-
dependent of the model type, the model reconstructs the inner system behavior by
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Figure 1.9: Equivalent circuit network of EV battery for low-dynamic or stationary operation [104].

mapping observed outputs for various inputs. Achieving a high accuracy at varying
conditions, however, requires highly diverse training data [109–111, 115].

1.1.2.3 Thermal Battery Models

The inner battery temperature θ influences battery performance, degradation, and
the risk of inflammation. To monitor θ, BMSs utilize thermal battery models [116].
The literature differentiates three model types, as Table 1.3 shows.

Table 1.3: Literature review on thermal battery models grouped by model categories.

Category Reference Comments

Heat Generation Dai et al. [117] adaptive Kalman filter

Model Yoo et al. [118] internal resistance derived from electro-chemical kinet-
ics

Heat Transfer Guo et al. [119] finite element method

Model Panchal et al. [120] infrared analysis for thermal safety

Reduced-order Muratori et al. [121] internal temperature estimation of battery pack

Model Gambhire et al. [122] electro-chemical thermal response

Heat generation models describe the sources of heat within the battery during
operation. The Joule heating mechanism causes the largest source of heat due to
Ohmic losses at the internal resistance of the battery. Furthermore, exothermic or
endothermic electro-chemical reactions generate heat sources or sinks [123]. Exem-
plary approaches assess the batteries’ real-time heat generation [117], or incorporate
electro-chemical kinetics for higher accuracy [118].

Inside the battery, generated heat mostly distributes non-uniformly. The ability to
measure the internal battery temperature, however, is limited. Heat transfer mod-
els help to avoid overheating of certain areas (hot spots) that might cause increased
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battery degradation or risk of inflammation. To this end, heat convection, conduc-
tion, and radiation within and outside the battery need to be considered. These
mechanisms can then be concluded in a three dimensional, distributed-parameter
model as in [119]. To assess the risks of battery overheating, infrared analysis can
be helpful [120].

Reduced-order models describe the simplified thermal battery behavior, i.e., heat
generation and transfer, on a macroscopic level. Simplifications could be a homo-
geneous temperature distribution within the battery, or the conclusion of internal
losses into one internal resistance [124]. Therefore, the electrical power loss dur-
ing charging and discharging is assumed to be completely dissipated into heat. A
second heat flow comprises all heat exchange between the battery and the environ-
ment. To maintain the battery temperature within a range that guarantees efficient
and safe operation, the BMS may actively inject or withdraw additional heat. Using
the battery’s heat capacity, the differential temperature evolution of the battery can
be derived from the energy balance. Due to their lower computational complexity
these simplified models are often used within BMSs, presupposed their accuracy
suffices [121, 122].

1.1.2.4 Battery Degradation

About half of EVs’ total cost is accounted for by electrical components, i.e., the
battery and power electronics. Especially battery degradation (also battery aging)
dominates the depreciation of the entire EV [125]. The mechanisms causing battery
degradation comprise i) loss of lithium active material, i.e., lithium irreversibly re-
acting with other components, ii) lithium crystallization on the negative electrode
(lithium plating), and iii) film formation by reaction products depositing on active
material. While the first mechanism decreases the capacity available for energy stor-
age, the latter two cause increased internal resistance and hinder diffusion [125,126].
One differentiates cyclic aging and calendar aging. Cyclic aging is mainly caused by
charging or discharging of the battery. Calendar aging, i.e., a temporal decay of
the battery material, is promoted by high battery temperatures, high SOCs, over-
voltage, and mechanical vibrations. To quantify battery degradation, one refers to
the SOH

SH =
emax

enom
, (1.2)
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as the relative loss of storage capacity.8 For measuring or estimating SH, in the
literature different methods have been developed, as shown in Table 1.4 [127].

Table 1.4: Literature review on battery degradation grouped by model categories.

Category Reference Comments

Model-free Roscher et al. [128] standard capacity test

Coleman et al. [129] pulse current test

Jiang et al. [130] electro-chemical impedance spectroscopy

Model-based Bi et al. [131] particle filter

Gholizadeh et al. [132] Kalman filter

Zheng et al. [133] analyses of charging curves, particle swarm optimization

Petit et al. [134] thermo-coupled empirical model

Data-driven Nuhic et al. [135] lithium ion cell load collectives, support vector machine

Hu et al. [136] particle swarm optimization, k-nearest-neighbor regres-
sion

You et al. [137] real-time SOH estimation, neural network

Ng et al. [138] remaining useful life prediction, naive Bayes

Hu et al. [139] sample entropy of battery voltage, Bayes learning

Huang et al. [90] discharging voltage, unit time voltage drop, linear re-
gression

Klass et al. [140] on-board SOH estimation method, support vector ma-
chine

Eddahech et al. [141] recurrent neural networks with impedance spectroscopy

Susilo et al. [142] Gaussian kernels, support vector machine

Li et al. [143] ensemble learning

Those methods help to estimate battery degradation costs, or determine a reason-
able point in time, the battery should be replaced.9

Model-free methods base upon direct or indirect measurements of characteristic
battery quantities. Examples are the standard capacity test [128], the pulse current
test [129], or the electro-chemical impedance spectroscopy [130]. Due to extensive
measurement equipment and difficult execution, those methods are usually used in
an laboratory environment and disqualify for the usage aboard an EV.

8Alternatively, the relative increase of the internal resistance could be used.
9Model characteristics and parameters originate from comprehensive cells tests and therefore are

mostly confidential.
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Model-based methods generally base upon empirical laboratory tests of single bat-
tery cells. The battery’s physical characteristics, manifested in electrical or electro-
chemical models, change throughout battery degradation. Observing the temporal
change thereof, allows to infer the actual SOH. The time-varying parameters of
these models can be estimated e.g., by means of particle filters [131], or Kalman

filters [132]. As the models usually are based on observations of single battery cells,
transferring the results on entire battery packs, as used in EVs is limited.

The complexity of model-free measurement methods, and the limited generaliza-
tion of model-based methods can be overcome by using data-driven approaches.
According models correlate accumulated aging influences with the momentary
SOH. Existing approaches utilize i) support vector machines [135,140], ii) k-nearest-
neighbor regression [136], iii) Linear Regression (LR) [90], iv) Artificial Neural Net-
works (ANNs) [137], v) and Bayes learning [138, 139]. Depending on the data used
for training, environmental influences, or real degradation behavior, e.g., of an en-
tire battery pack, can also be represented. As no additional measurement equip-
ment is required, real-time SOH estimations are also possible.

1.1.3 Electric Vehicle Users

From a user’s perspective, using an EV differs from the usage of an ICEV. While an
ICEV can be easily refueled in short time, charging an EV consumes more time. The
current-day availability of charging stations is also more limited compared with the
number of gas stations. While the number of registered EVs constantly increases,
the public charging infrastructure limps behind, as shown in Figure 1.10 [144, 145].

In addition, current-day EVs generally have a lower driving range than ICEVs.
Charging is thus required more often. Altogether, those circumstances cause EV
users to develop range anxiety, the fear of being stuck on the road with an empty
battery and no charging station in reach [36, 146]. Overcoming this fear requires
users to adapt their behavior in a certain manner. Future trips need to be planned
in advance. This requires the combination of several sources of information and
is not trivial for users. For instance, the search for charging stations, estimating
energy consumption, and considering charging stops in travel time. The results of
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Figure 1.10: Number of public charging stations and disproportionately growing amount of registered
EVs in Germany, 2011-2021 [144, 145].

recent customer surveys [48,147,148] support this effect.10 Table 1.5 presents users’
relevant concerns and according expectations towards future EVs.

Table 1.5: Concerns and future expectations towards EV usage according to recent customer surveys
[48, 147, 148].

Concern Details Future expectations

Reliability mistrust in driving range improved/individualized remaining range
estimation

low driving range increased battery capacity (> 400 km)

Convenience long charging duration advanced fast charging ability/infrastructure

effort for trip preparation smart navigation, i.e., charging assistant

complicated pay systems standardized/centralized payment platform

poor charging infrastructure accessible information on available charging
stations, reservation functionality

Costs missing knowledge on battery care detailed guidance on appropriate battery us-
age

unknown cost of ownership transparency of depreciation/amortization

10Survey [48]: 157 participants from Germany, USA, China, and Great Britain. Survey [147]: 782 par-
ticipants from Germany, USA, China, Great Britain, Japan, and South Korea. Kühl et al. [148]:
evaluation of customer feedback on EVs via Twitter.
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Among the surveyed participants the majority specified reliability, convenience,
and costs as momentous concerns when using an EV. For instance, users expect
a driving range of more than 400 km and a battery that lasts more than 8 years
before total degradation.11 In return, users are also willing to accept a surcharge of
13% to 15% for an EV over an ICEV. Although advancing technology and increasing
market penetration of EVs are expected to mitigate most concerns in Table 1.5, other
challenges may arise that EV users are not yet aware of. For instance, occupied fast
charging infrastructure on highly frequented travel days.

To encounter these issues and support users with EV usage on a daily basis, one
needs to understand users’ driving and charging habits, aspects of user acceptance,
and methods for mobility prediction. Table 1.6 shows related work elaborating
these topics.

1.1.3.1 Driving and Charging Habits

The habits characterizing driving can by differentiated between a macroscopic pur-
pose and a subordinated driving style. According to recent customer surveys [48],
the major purposes of EV comprise private trips, commuting, and business trips.
While exclusively private purposes account for 41% of all driven trips, only 17%
of the total distance is caused by daily commutes to work. Trip with exclusive oc-
cupational purpose account for 12%. Evaluating the daily distance driven by an
average vehicle user, see Figure 1.11, reveals most of the trips to be shorter than 50
km. This distance is within the range of most current EV batteries [171]. Hence, the
phenomena of range anxiety appears to be mainly psychologically enforced [36].

Driving style can e.g., be quantified via the vehicles’ speed, steering wheel angle,
and longitudinal and lateral acceleration [150]. Existing evaluations show that driv-
ing styles vary broadly, while e.g., a correlation to the drivers’ age exists. Younger
people drive more aggressively, e.g., accelerate harshly [149], while older people
drive more efficiently, e.g., with moderate speed [152]. Aggressive driving style
negatively affects the vehicles’ efficiency and wear. As users accustomed to ICEVs
transfer their driving style on EV usage, both maximum driving range and bat-
tery lifetime decrease [151, 172]. For instance, users that brake excessively instead

11EV batteries are assumed to fulfill automotive requirements as long as the nominal energy capacity
has faded less than 20%, i.e., SOH ≥ 80 %.
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Table 1.6: Literature review on EV usage, i.e., driving and charging habits, mobility prediction, and user
acceptance.

Category Reference Comments

Driving/Charging Abu-Bakar et al. [149] driver behavior classification, deep learning

Habits Dong et al. [150] driver classification, deep learning

Li et al. [151] two-level driving pattern clustering

Knowles et al. [152] driving style effects in EV efficiency

Faria et al. [153] comparison charging scenarios

Azadfar et al. [154] classification charging behavior

Netze BW AG [155] small scale field experiment, charging evaluation

Desai et al. [156] charging pattern analysis

Schmidt et al. [157] charging behavior at travel destinations

Goebel et al. [158] driving behavior forecasting for V2G

Mobility Gambs et al. [159] next place prediction, Markov chain

Prediction Zhang et al. [160] time-related route prediction, ensemble learning

Rathore et al. [161] trajectory prediction framework

Koolwal et al. [162] trajectory prediction, possible use cases

Liu et al. [163] next location prediction, spatio-temporal recurrent
ANN

Zhang et al. [164] next location recommendation, hidden content,
meta-data

Frendo et al. [165] prediction of EV departure time

Zong et al. [166] prediction of trip destinations

Zhao et al. [167] prediction of individual trip properties

Rossi et al. [168] prediction of taxi trip destinations

User Eider et al. [36] individualized incentivation methods

Acceptance Broadbent et al. [169] EV penetration influences, incentive recommenda-
tions

Huber et al. [170] user acceptance smart charging, possible incentives

Will et al. [29] influence factors on user acceptance of smart charg-
ing

of coasting disregard EVs’ possibility of recuperation.12 In contrast, anticipatory
driving yields a much higher efficiency.

12Coasting is the disengagement of wheels and powertrain during deceleration, in order to decrease
drag torque. Recuperation is regenerating energy while decelerating, using the electric engine as
generator.
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Figure 1.11: Histogram illustrating the frequency of daily driven distance [171].

Charging habits can generally be characterized by i) the frequency an EV is charged,
ii) the appliances used for charging, iii) the charging duration, and iv) the energy
amount charged. Even though range anxiety does not constitute a problem from a
technical perspective, it influences users’ charging behavior. EV users charge more
often than needed and in an uncoordinated way [154]. However, recent small-scale
experiments, such as E-Mobility Allee [155] show that this is not generally the case.
In this field experiment including ten EVs used in a residential area, the authors
evaluated charging habits and respective impacts on grid load. They found that
most of the time (73%) no EVs were charging at all, as shown in Figure 1.12. In
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Figure 1.12: Characterization of charging habits according to frequency of simultaneously charging EVs
in residential areas [155].
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less than 2% of the time, two or more EVs were charging simultaneously. Negative
effects of the charging behavior of multiple EVs, e.g., grid overload, are thus very
unlikely. Recent customer surveys support these results. Only half of all EV users
specified to charge their car on a daily basis [48, 173]. However, a growing number
of EVs might significantly affect power supply, which in turn calls for adequate
power demand forecasting e.g., as in [18, 174–183]

To the end of commonly used charging appliances, most EV users prefer either a
conventional household socket (38%) or a wallbox (28%) at home.13 The usage of
public charging stations (12%) and charging at wallboxes at work (14%) each only
accounts for less than one fifth of all charging events. Only fast charging stations
(8%) are used more infrequently [173]. The amounts of energy charged are usually
significantly below the EVs’ total battery capacity, as the histogram in Figure 1.13
illustrates. Therein, all charging events of an EV fleet are classified according to their
SOC at the start and the end in bins of 10%. The majority of charging events ends
at an SOC of 100%, while most of them are starting at SOC of 60% or more. Note
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Figure 1.13: Characterization of charging habits according to SOC at the beginning and the end of charg-
ing events [184].

that the aforementioned evaluations may change with advancing technology and
increasing market penetration of EVs in the future; e.g., the duration of common
trips taken or the preferred charging appliances. Appropriate modeling of EV users’
driving and charging behavior, however, is still expected to be relevant [23].

13Wallboxes are charging devices usually connected to higher voltage supplies than the conventional
household level. Common power levels comprise 7 kW to 22 kW.
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1.1.3.2 Mobility Prediction

Appropriately integrating EV users’ behavior into automated charging requires a
prediction of the future actions of a user. In particular, the next locations and
trips in between need to be predicted based upon historical movements and where-
abouts. Then, suitable decisions—in this case regarding charging, e.g., where and
how much to charge—can be made, according to the prediction. Alike works in
the literature aim to predict users’ next locations or travel trajectories. For this pur-
pose, ensemble learning [160], Markov chains [159], or neural networks [163, 164]
are used. Other approaches semantically describe the problem of predicting travel
trajectories [162] or define generic frameworks for this [161]. These works, however,
pursue different purposes and are unrelated to charging strategies.

1.1.3.3 User Acceptance

A strategy combining various objectives, e.g., improve efficiency, prevent battery
degradation, or provide grid services, requires sufficient user acceptance. Users
must be granted a benefit to ensure an adoption of such strategies. Some researchers
even doubt that without adequate user integration technological advancement alone
will not increase the market share of EVs [154]. Possible incentives comprise cost
advantages, convenience, environmental protection, or health benefits [36,170,185].
As driving and charging habits, work hours, and personality characteristics vary
broadly, there is no universal approach to influence all users equally effective. Ap-
propriate methodology needs to be adapted individually per user [170,186]. To this
end, usage profiles and behavioral patterns can be deduced from case studies [154]
and customer surveys [36]. For instance, most EV users specified environmental
protection (34%) or cost savings (31%) as compelling reasons for using EVs [48,187].
Accordingly, suitable incentives must be selected and individualized for every user.
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1.1.4 Design of Charging Assistants

Considering the combination of all, partly divergent objectives described in the
previous sections, a multi-layered and multivariate decision problem originates. It
requires information from diverse sources, e.g., historical user data, energy prices,
physical characteristics of EVs and the power grid [41, 188, 189]. For users both the
allocation of such information and solving the decision problem itself is non-trivial
[190,191]. Therefore, the support of automation in terms of a software application is
required. Table 1.7 presents related work proposed in the literature. The approaches
are categorized according to three perspectives relevant to this thesis; considerations
of EV fleets, e.g., as in [192–196], are not examined further here.

The first perspective deals with the efficient utilization of charging infrastructure.
In particular, the objectives comprise to size or locate charging station in an efficient
way—according to EV charging demand—and thus maximize profits [197–203].
Approaches assigned to the EV user perspective aim to simplify electric mobil-
ity from a customers’ point of view. Therefore, user-individual habits, or monetary
and social incentives are integrated in EV charging assistants [204–216]. Holistic
power supply concepts aim to increase the reliability and efficiency of the electric
energy system. They, for instance, leverage market mechanisms to develop novel
business cases [16, 57, 217–231].

For a safe and efficient operation, the architecture of charging assistants needs to
be capable of scaling computation and memory resources to increased demand.
The broad variety of possible architectures is reviewed e.g., in [41, 232, 233]. The
use of cloud-based microservices allows to handle scalability accordingly [234]. For
this, each microservice is deployed in its own, stateless and stand-alone virtual en-
vironment (container). Usually, a superordinate software application (orchestration)
coordinates several dependent containers and adapts their available resources to
momentary demand. Several concepts describing alike architectures can be found
in the literature. Examples comprise use cases such as i) scalability of meta-heuristic
optimization [235], ii) speed up of meta-heuristics via virtualization/parallelization
[236], iii) semantic data handling with web services [237], iv) application-level cloud
orchestration [238], and v) scalable machine learning/data analysis tasks [239].
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Table 1.7: Literature review on EV charging assistants and strategies grouped by stakeholder perspec-
tives.

Perspective Reference Comments

Infrastructure Chen et al. [197] multiple-charger, multiple-port charging system

Cassandras et al. [198] EV allocation at charging stations

Gusrialdi et al. [199] charging scheduling/control at highway stations

Kim et al. [200] pricing, scheduling, energy management

Hou et al. [201] auction design for EV charging station scheduling

Gonzalez et al. [202] charging station locating based on user habits

Li et al. [203] charging station planning based on user behavior

EV Users Zhou et al. [204] incentive-based charging scheduling with uncertainty

Liu et al. [205] day-ahead charging scheduling, game model

Subramanian et al. [206] optimal EV charging, electricity price peaks

Yucel et al. [207] privacy-aware supplier matching for EV charging

Vadium et al. [208] charging strategies for CO2 footprint reduction

Alsabbagh et al. [209] distributed EV charging, social contribution concept

Alinia et al. [210] EV charging scheduling, energy delivery commitment

Alface et al. [211] smart phone application for charging guidance

Hoch et al. [212] EV travel optimization, charging constraints

Steffen et al. [213] optimal EV charging, battery aging reimbursement

Ebrahimi et al. [214] stochastic V2G, battery aging and user constraints

Zhou et al. [215] charging scheduling, convenience, dynamic prices

Maia et al. [216] EV charging optimization to prolong battery life

Power Supply Yoon et al. [217] EV charging with demand response

Appino et al. [16] dispatchability of EVs and RESs

Hoog et al. [218] market mechanism for grid constrained charging

Aliasghari et al. [57] charging scheduling with RESs, reserve markets

Zhang et al. [219] load reduction for non-residential EV charging

Alipour et al. [220] EV aggregators scheduling, energy/ancillary services

Hertrampf et al. [221] local power production, emission reduction

Giorgio et al. [222] model predictive control for EV charging

Valogianni et al. [223] sustainable EV charging via dynamic pricing

Sundström et al. [224] EV charge planning, power grid constraints

Li et al. [225] V2G approach with active battery anti-aging

Yang et al. [226] battery aging-ware V2G approach

Hesse et al. [227] optimization-based energy arbitrage concept

Das et al. [228] multi-objective V2G approach

Wan et al. [229] EV charging scheduling with reinforcement learning

Lunz et al. [230] EV charging optimization with genetic algorithms

Vermeer et al. [231] vehicle-to-building, renewable energy, battery aging
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1.2 Open Questions

In reflection of the previously described state of the art, the following problems and
research questions arise:

• Which model components serve to describe the context of a holistic charging
assistant? Can model deficiencies be eliminated using advanced modeling
approaches? What architectural considerations are needed for reliable com-
munication, scalability, flexibility, and data security?

• Based on geodetic locations of EVs, how accurate can future trips and parking
times be predicted? How can user requirements for a charging assistant be
represented?

• To what extent do (electrical, thermal, degradation) characteristics of EV bat-
teries limit the feasibility and profitability of V2G services?

• How does the uncertainty of user actions propagate inside a charging assistant
context? Can a robust operation of the system be guaranteed?
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1.3 Objectives

Based on the previous elaborated research questions, the objectives of this thesis
comprise the following:

• Chapter 2 outlines the requirements to tackle the open questions. All neces-
sary components are identified and a modeling concept is presented. Then, a
suitable way to connect components with each other is elaborated.

• Chapter 3 presents models to describe the physical characteristics of EVs.
Where necessary and applicable, components are modeled based on historical
data to overcome model deficiencies. Then, the models are validated based
on realistic data.

• Chapter 4 evaluates and adapts concepts to predict users’ future movements,
typical parking locations and duration. To this end, historical data is used
such as parking locations, energy consumption, or calendar appointments.
Furthermore, the uncertainty of user decisions is estimated. For validation of
the concept, real data is used.

• Chapter 5 deals with scheduling charging stops based on predicted user ac-
tions. The focus here is on user requirements in terms of cost and convenience.
To achieve robustness, the uncertainty of user actions is handled with multi-
day scenarios. Simulating alternative strategies provides benchmark data and
a proof of robustness.

• Chapter 6 aims at adapting single charging events to user requirements, dy-
namic energy prices, and battery degradation. Additionally, the allocation of
V2G services based on bidirectional power flow is integrated. Together with
historical charging events, a real-world implementation of the concept is used
for validation.
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2 Concept and Architecture

To systematically approach the objectives outlined in Section 1.3, Figure 2.1 presents
an overview of relevant stakeholders and subsystems. In the following, the combi-
nation of these subsystems is referred to as the charging assistant.

User Manufacturer Power Supply

Electric Vehicle

Consumption
Model

(Section 3.1)

Battery
Model

(Section 3.2)

Mobility
Prediction
(Chapter 4)

Charging
Scheduling
(Chapter 5)

Charging
Optimization
(Chapter 6)

uses/owns

planned
trips

historical
trips

produces/
maintains

delivers energy
to charge

energy price/
grid constraints

consumption
characteristics

charging/aging
characteristics

next trips,
idle times

charging
schedule

charging
profiles

Figure 2.1: Layout of all stakeholders (white boxes), the EV (light blue box) represented by the vehicle-
specific models (orange boxes), all developed modules (dark blue boxes), and their respective
connection among each other.

Together with the content of this chapter, Figure 2.1 supports the reader to under-
stand the following three prerequisites. First, the context of an automated charging
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assistant needs to be described. Therefore, all relevant stakeholders are introduced,
which are represented by the white boxes in Figure 2.1. The individual perspective
of each stakeholder is briefly outlined in Section 2.1. Second, a semantic segmen-
tation of the charging assistant into technical subsystems, i.e., modules, is required.
This modular concept enables flexibility for alternative solutions that are adapt-
able, e.g., to different technologies or regulatory decisions. In Figure 2.1, all mod-
ules of the charging assistant are represented by blue boxes; those are described
in Section 2.2. The arrows and their respective labels represent relationships and
information flows between single modules or stakeholders. Third, it is necessary to
understand distinct characteristics about the implementation environment in which
the system was developed and tested. Figure 2.1 shows a basic concept that is in-
dependent from manufacturer and technology. However, a systematization via the
scope of each module allows to decide on suitable implementation environments.
Hence, Section 2.3 provides further details on employed communication protocols,
data storage, and deployment technology.

Table 2.1: Possible alternatives and their respective properties for design features of the charging assis-
tant shown in Figure 2.1.

Design Feature Alternatives Properties

Reusability of
Modules/Architecture

Proprietary Scope simpler interface design, less development
costs

Generic Scope high flexibility, broader application scope of
components

Architecture Principle
Cloud-based Microservices highly extensible and scalable system, avail-

ability of external information

User End Device advanced privacy and security, reduced
communication overhead

User Representation
User-individual Models precise adaption of charging strategy to user

needs

Generic User Models less modeling effort, less privacy issues

User-less Models no data-intensive modeling

Modeling Approach
Data-driven individual, adaptable and precise models

Physical/Empirical less data-intensive modeling, advanced ex-
trapolation properties

Decision
Problem Modeling

Heuristic/Rule-based simple and inexpensive design

Unified Optimization precise solutions for decision problems,
high computational complexity

Two-stage Optimization semantic separation of hierarchical deci-
sions, manageable complexity

32



To furthermore justify the design of the charging assistant, Table 2.1 presents a
qualitative overview of alternatives for each design feature; the eventually chosen
alternatives are briefly described in the following. To attain a reusability of the
developed modules, a generic scope would hold the most benefits in terms of flex-
ibility and extensibility. Due to limited time and resources, however, a hybrid ap-
proach of proprietary and generic modules is chosen. Scalability and flexibility also
determines the cloud-based microservice architecture that is chosen. To counteract
privacy and security issues, modules processing highly user-related data (e.g., mo-
bility prediction) are run on user end devices. To ideally represent the EV user
needs, user-individual models, e.g., for mobility habits, are inevitable. If user data
is not available or users deny their consent to use it, generic user models are used as
base alternative. In a similar way, data-driven modeling approaches are preferred
over physical ones whenever data is available in sufficient amount and quality. For
cases with sparse training data, physical or empirical models are used exclusively
or reasonably combined with data-driven models. Decision problems—especially
to schedule and optimize charging events—may be easiest modeled with rule-based
heuristics; their results, however, lack precision and robustness compared with op-
timization models. A unified optimization approach would yield the most pre-
cise solutions but may be difficult to solve due to high computational complexity.
Consequently, two hierarchical optimization models (i.e., charging scheduling and
charging optimization) are chosen that combine sufficiently precise results with
manageable complexity.
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2.1 Stakeholders

To develop a holistic charging assistant, first all relevant stakeholders are identified;
those are represented by the white boxes in Figure 2.1. Then, each stakeholder
needs to be characterized by describing their individual perspective and the relation
to other stakeholders and modules. The following three stakeholders are defined:

• User: The person who owns and uses the EV.1 The interest of the user gen-
erally comprises individual and convenient mobility, cost saving, and sus-
tainability (see Table 1.5). Especially when switching from ICEVs to EVs,
users may desire guidance on battery usage and charging procedure. Further-
more, typical mobility habits, as described in Section 1.1.3, are determined by
users themselves. The according information—assuming a previous consent
of the user—can then be used to analyze and predict the user’s future mobil-
ity. To support mobility prediction, users may also provide information about
planned mobility events. For instance explicitly, via set routing destinations,
or implicitly using calendar appointments.

• Manufacturer: The car manufacturer produces and maintains the EV. It fur-
ther delivers experimental data on energy consumption and battery degrada-
tion used for modeling purposes, see also Section 1.1.2 and Chapter 3. The
manufacturer’s interest comprises designing reliable and value-stable prod-
ucts to avoid future warranty expenses or damages to reputation. In addi-
tion, the manufacturer may have sovereignty over data on EV usage. This
designates the manufacturer to be the prospective operator of the developed
charging assistant.

• Power Supply: Within the power supply stakeholder all entities that support
the allocation of electric energy are concluded, those comprise:

i) Producers of electric energy, either based on centralized energy sources,
e.g., in coal-fired plants, or based on distributed energy sources, e.g.,
solar and wind energy generation.

ii) Operators of transmission and distribution grids that maintain and—if
required—enhance physical grid infrastructure to ensure a reliable con-
stitution of the electric utility grid.

1Car leasing or sharing, which are concepts that usually involve different users than the EV owner,
are neglected. The developed charging assistant of this thesis is also applicable to these concepts of
ownership; monetary value streams, however, may differ.
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iii) Providers of charging infrastructure that maintain and market infrastruc-
ture particularly relevant to charge EVs, e.g., public charging stations, or
web-based search engines for charging stations.

All these entities support charging of EVs, see therefore also Section 1.1.1.
Furthermore, the power supply pursues the interest in a reliable and efficient
operation of the electricity grid. Hence, it dynamically manages grid load and
demand (or according forecasts) to match closely. This can be accomplished
via dynamic electricity prices, which comprise costs for energy generation,
and for the operation of grid and charging infrastructure. These dynamic
tariffs are usually published as price tables. Additionally, grid operators may
issue hard grid constraints, e.g., power limitations on an irregular basis and
for a limited time.

These stakeholders are not elaborated in further detail. Rather, they are set in
according context in the following described modules.
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2.2 Modules of an Automated Charging Assistant

To describe the functionality of an automated charging assistant, separate modules
are defined, as indicated by the blue boxes in Figure 2.1. These modules repre-
sent subsystems that have a specific purpose and can be modeled and implemented
individually. The EV is a central component illustrated by a light blue box in Fig-
ure 2.1, which again is subdivided into vehicle-specific models (orange boxes). All
stand-alone modules of the charging assistant, which are not vehicle-specific, are
represented by dark blue boxes. In the following Sections 2.2.1 to 2.2.4, each mod-
ule is characterized according to:

• Input and output values with their respective structure and interfaces

• Scope, i.e., whether the module is user-, vehicle-, or battery-specific

• Time frame, i.e., the time each module is created, trained or retrained, and
used for predictions or calculations

Furthermore, links to the chapters that describe the detailed modeling and valida-
tion of each module are provided.

2.2.1 The Electric Vehicle as a Means of Transportation

As the EV is assumed to be the user’s prioritized means of transportation, it is
a central part of the charging assistant (light blue box in Figure 2.1). It provides
historical information about:

• Movements, i.e., trips described by a start and end time, start and end location,
and provided as single data points in JavaScript Object Notation (JSON) for-
mat. This information is vehicle-independent as it actually represents move-
ments of the EV user. For this study, however, the EV functions as a sort of
tracking device.

• Battery behavior, i.e., time series data on charging power, battery SOC, tem-
perature, current, and voltage. This information is vehicle-independent, but
battery-specific, i.e., it depends on the installed battery cells and power elec-
tronics.

• Energy consumption, i.e., time series data on vehicle speed and acceleration,
propulsion and brake torque, and auxiliary consumption, e.g., for heating.
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This information is both battery- and vehicle-specific as physical characteris-
tics of the entire EV account for energy consumption, e.g., the air resistance
or efficiency of the electric engine.

The battery- and vehicle-specific characteristics that can be derived from the pro-
vided data is most important to the algorithms of the proposed charging assistant.
Based on the fundamentals in Section 1.1.2, models therefore are created that suit
the application purposes in terms of accuracy and complexity. These models can be
initialized with a generic baseline approach, e.g., an analytical model. Once a suffi-
cient amount of measurement data is collected, data-driven approaches with higher
accuracy can also be implemented.2 Thus, either vehicle-specific models—e.g., to
represent manufacturing tolerances—, or user-specific models—i.e., to incorporate
the EV user’s individual behavior—can be created. The model characteristics can
then explicitly be included into an optimization scheme (see Chapter 5 and Chap-
ter 6). Alternatively, the consumption model can be deployed as a stand-alone mi-
croservice accessible via a standardized Application Programming Interface (API).

The consumption model represents characteristics of the EV when driving. Espe-
cially time series data on vehicle speed and acceleration, battery temperature and
torque is used as input values. This time series data is assumed to be available
from a learning map, e.g., as described in [241]. Thus, the consumption model can
be used to predict the EV’s user-individual energy consumption of future trips.
For the modeling process both historical and experimental consumption data can
be used. In this way, not only vehicle-specific power electronics and mechanical
drive-train components can be represented, but also user-individual behaviors. The
details of this subsystem are described in Section 3.1.

The battery model describes the electrical, thermal, and aging behavior of the EV
battery. For the context of this thesis, the focus lies on battery models for charging
the battery, i.e., a low-dynamic operation.3 For this, mostly experimental charging
data is used, as the charging process generally does not include user-individual
influences. All details on modeling and the model’s performance are outlined in
Section 3.2.

2In the case of sparse training data, an ensemble approach as in [240], using both analytical and data-
driven models, might be conceivable.

3To represent EVs’ driving characteristics, similar battery models can be used. However, a higher time
resolution and according model types to capture further non-linearity would be required.
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2.2.2 Predicting the Mobility of Electric Vehicle Users

Scheduling and optimizing EV charging in an automated manner requires to fore-
cast the EV user’s mobility.

Using an ensemble of different machine learning techniques the module then out-
puts user-specific estimations on:

• Common whereabouts, i.e., the frequently visited locations of the EV user,
characterized by a geodetic center location surrounded by a radius of stay,
and a differentiation into known and unknown locations (measurement noise).
The information may also be augmented with data on charging infrastructure
and user preferences.

• Typical parking times at frequently visited locations, i.e., the time the EV will
be parked at a location given a specific context, e.g., day of week, time of day,
or previously visited locations. The estimation may be advanced by also esti-
mating a measure of uncertainty, e.g., the parking times’ standard deviation.

• Possible next trips, i.e., the locations the EV user might visit next, with their
respective probability of being visited next, again given a specific context,
e.g., day of week, time of day, or previously visited locations. Furthermore, a
residual probability is deduced to quantify the chance that the user will visit
an unknown location next.

Furthermore, the user is able to input (deterministic) information on planned trips,
e.g., via set routing destinations or via a calendar interface. Together with one-
time user inputs such as home and work location, the forecast’s accuracy can thus be
enhanced.

The mobility prediction module could either be implemented as a cloud-based
microservice, or directly on the user end device; besides the user’s smart phone,
this may also be the infotainment system of the EV. The latter approach, i.e., the
EV both collects and analyzes data, only requires device-internal interfaces for raw
mobility data. Only the anonymously rendered result will be made available on
demand for the use in subsequent modules outside the EV infotainment system.
This poses a clear benefit in terms of data security and privacy issues, see also
Section 1.1.4.

When initializing the module, user data first needs to be accumulated before accu-
rate predictions can be made. Thereafter, the learning models inside the module
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are retrained in frequent intervals (e.g., 30 days) considering a rolling time win-
dow (e.g., 90 days) of historical data. To continuously process the incoming stream
of mobility data, accordingly adapted methods, e.g., stream clustering as described
in [242], are required. All details on the used methods and the belonging results of
the mobility prediction module are described in Chapter 4.

2.2.3 Scheduling of Charging Events

Keeping track of all possible upcoming mobility needs is not easy for human indi-
viduals. Based on that, maintaining a sufficiently charged EV battery to stay mobile
in the majority of cases is even more difficult for EV users.4 To support the EV
user to stay mobile, the charging scheduling module (see Figure 2.1) makes use of
the mobility prediction outputs. In particular, the set of next locations, the prob-
ability to go there, and corresponding parking duration at known places are used
to automatically schedule charging events. The resulting charging schedule consid-
ers several trips and parking periods in a given future horizon, e.g., five days, and
contains information about:

• The need to plug in the EV at a charging station when approaching a targeted
location at a specific time. This information is directly fed back to the EV user,
e.g., via the EV infotainment system, as a user action is required in this case,
i.e., plug in the EV.

• Once the EV was plugged in, how much energy to charge at a specific location.
Together with the expected parking duration at this location, the required
energy amount will subsequently be processed in the charging optimization
module.

These two decisions are modeled in a mixed-integer optimization problem, whose
solution yields the required decision policy. In this context, (linearized) character-
istics of the EV (on consumption, charging, and battery aging, see Section 2.2.1) are
also necessary. To represent the uncertainty inherent in the user’s actions, a set of
possible scenarios is created. The user may define a security level, i.e., the portion
of cases (e.g., 5 %) in which the battery is allowed to undercut a lower SOC limit.
Then, both security level and the scenarios’ probability of occurrence are considered
in the optimization as chance constraints.

4The term “staying mobile” refers to EV trips that do not require additional charging stops along the
way. Rather, the EV is only charged when it is parked anyway due to another, unrelated purpose,
e.g., an appointment.
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Charging scheduling is a generic (neither vehicle-, nor user-specific) module, which
is only modeled once and not retrained during operation. Thus, a deployment as
microservice in a cloud-based environment is conceivable.5 In this way, the module
can also virtually be replicated for several EV users. A recalculation of the charging
schedule may be requested via a standard API. This could happen either manually,
by the user, or automatically each time the user attempts to start a trip, i.e., gets
inside the EV and starts driving. The same standard API is also used to feed back
the calculated charging schedule to the EV user (see dashed line in Figure 2.1) and
subsequent modules. Chapter 5 outlines the approach and according evaluations of
the charging scheduling module in detail.

2.2.4 Optimization of Charging Events

The majority of charging events follows a standard procedure, i.e., plug in the EV
and charge at maximum available power to 100 % SOC. However, default charging
is sub-optimal in terms of efficiency (e.g., power conversion losses), sustainability
(e.g., battery aging), and cost (e.g., electricity prices). In general, charging events
offer flexibility that can be utilized:

• Time flexibility, i.e., additional time to charge is available, than actually re-
quired. In this context, the mobility prediction module estimates the parking
duration for a given parking location and given arrival time (see Section 2.2.2).

• Energy flexibility, i.e., a lower target SOC than 100 % may suffice in many
cases. To this end, a superordinate scheme, i.e., the charging scheduling
module (see Section 2.2.3) calculates the minimum required target SOC to
stay mobile in subsequent trips.

The charging optimization module exploits the identified energy and time flexibil-
ity in a single charging process. Particularly, a time-discrete charging power profile
is calculated to reduce the EV’s operating cost due to electricity prices and battery
aging. In addition to (power-dependent) price tables, the resulting charging power
profile may also be subject to strict power limitations issued by the power supply.
While the target SOC is assumed to be deterministic, both the estimated parking
time and the irregular occurring power limitations introduce uncertainty. To tackle
the introduced uncertainty, a stochastic optimization scheme may be used. Therein,

5User-specific quantities, e.g., the individual security level, or vehicle-specific quantities, e.g., consump-
tion characteristics, are replaceable parameters to the optimization problem.
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the detailed model of the EV battery is also utilized (see Section 3.2). To obtain
a deterministic charging power profile despite the uncertainty, chance constraints
with a user-defined security level (e.g., 1 %) can be introduced. This is, the portion
of cases the user accepts the actual SOC to be below the target SOC when departing
from a parking location.

Similar to charging scheduling, charging optimization is a generic (neither vehicle-
nor user-specific) module, which is only modeled once and not retrained during op-
eration. Hence, a cloud-based microservice deployment may also be used to ensure
availability and scalability. Via a standardized API, a recalculation may be triggered
automatically each time, the EV is parked and plugged into a charging station. Us-
ing the same API, the resulting charging profile is sent to the EV-BMS that starts
and controls the charging process (see dashed line in Figure 2.1). Simultaneously,
the user may monitor and adapt this process via a smart phone app in real time.
Furthermore, the power supply receives the calculated charging profiles to incor-
porate them in load forecasts, electricity pricing, or similar. Chapter 6 presents all
details and evaluations on the charging optimization module.
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2.3 Environment of Implementation

Developing, evaluating, and deploying single modules of the charging assistant
requires a suitable environment. Especially when processing user-related data, ap-
propriate data security measures must be taken as required by law. Furthermore,
a centralized, server-based infrastructure is inevitable to i) coordinate and monitor
data efficiently, ii) make data persistently available, and iii) ensure sufficient data
quality. Therefore, a cloud-based environment is used, also referred to as backend,
as it is shown in Figure 2.2 [243, 244]. For further reading on the fundamentals of
cloud infrastructures and computing, see also [245].

Acquisition
(Section 2.3.1)

Preprocessing

MQTT-Broker

Storage
(Section 2.3.2)

Longterm
Database

Application
Database

Application
(Section 2.3.3)

Models

Microservices

EV Fleet EV Users

Developer/User Interface (watch, control, adapt)

Figure 2.2: Scheme of cloud-based environment for data acquisition via a MQTT-broker, storage in sev-
eral databases, and application of data-driven models or microservices [243, 244].

The cloud-based environment consists of three semantic subsystems for acquisi-
tion, storage, and application of data; those are described in the following Sec-
tions 2.3.1, 2.3.2, and 2.3.3. Via an interface (a set of various APIs) all data pro-
cesses can be monitored and analyzed. The Interface also provides feedback to the
EV fleet and EV users.

Note that Figure 2.2 shows a schematic setup for the use case of this thesis. This is,
the environment mainly collects, stores, and processes sensor data of EVs. Further-
more, it connects EVs and EV Users (or developers during development) with each
other. The underlying concept of the framework may, however, also be a template
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for other development setups; for instance, a setup with different sources of data
and stakeholders. Furthermore, the concept may be a blueprint for later productive
systems that also comprise larger fleets of EVs.

2.3.1 Acquisition of Data

To develop and maintain high-quality applications based on data-driven models, a
sufficient supply of both live and historical data is required. For the scope of this
thesis, the data acquisition especially comprises on-board sensor data of EVs (see
Figure 2.2, left). To collect this data, a fleet of EVs is equipped with Single-Board
Computers (SBCs) that run on a Linux-based operating system. Each SBC possesses
a mobile internet connection and Global Positioning System (GPS) antenna. As
the SBC enables bidirectional communication (via the Message Queuing Telemetry
Transport (MQTT) protocol, a publish and subscribe mechanism), it functions as a
gateway between EV and backend. While the SBC is installed inside the EV, its
functionality can be updated remotely using packetized software.

During data collection, i.e., during driving and charging, the SBC reads physical
raw data from the EV’s Controller Area Network (CAN). As the amount of live
data generated aboard each EV is very circumstantial and contains irrelevant com-
ponents, the SBC initially filters the data stream. The selected time series signals
(370 signals, 10 Hz recording frequency) are then decoded, and compressed. Before
transmitting the data to a cloud-hosted MQTT broker, all signals are packetized
into MQTT messages of approx. ten to thirty seconds of measurement data. The
resulting data stream amounts to approx. 10 MB/h, while the SBC is also able to
buffer messages in case the backend connection is lost.

Once received, the MQTT messages are decompressed in a preprocessing module.
To maintain a high data quality, the Preprocessing module proceeds further actions:

• Filtering of corrupted data to avoid the storage of unstructured data to become
oversaturated.

• Extracting meta-information to create a structured index that simplifies and
speeds up querying of raw data.

• Standardization, i.e., assigning a unique reference name, data type, and phys-
ical unit to each signal in order to align data of different sources, e.g., data
from EVs of various make and model.
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After Preprocessing, the filtered and unified data is passed to the next module to
be stored accordingly.

2.3.2 Storage of Data

Building applications based on data-driven models generally requires large amounts
of data. Therefore, appropriate data storage is inevitable (see Figure 2.2, middle).
For the scope of this thesis, EV data is initially stored in a longterm database, after
it was collected and pre-processed in the Acquisition module (see Section 2.3.1).
According to its structure, different types of storage technologies are employed.
A document-oriented NoSQL-database stores time series data from recorded EV
signals. Due to vehicle-dependent features and signal availability, this data is semi-
structured. A unified document schema simplifies the processing of large amounts
of data. In particular, one stored document (in JSON format) represents one re-
ceived MQTT message. Meta-information of the EV fleet is stored in a relational
database. Both structure and content of this meta-information is almost static, i.e.,
it changes rarely. Hence, this data is considered as structured.

A separate application database stores data particularly relevant for applications.
This comprises e.g., i) specifically processed data for model training, ii) data-driven
models and their training status, iii) user-specific information, or iv) configurations
of microservice applications. Most of this data is again unstructured and thus stored
in a NoSQL-database.

2.3.3 Application of Data

To gain value from the data collected, it is processed into data-driven models de-
signed for a specific purpose, such as predicting EVs’ energy consumption. There-
fore, data-driven models are created in the application module (see Figure 2.2,
right) according to the methods described in [246]. To this end, the full potential
of the cloud-based environment can be leveraged, see also [239]. A continuous
availability and potential automation allows to efficiently develop and deploy mod-
els with an updated data stream.6 Furthermore, the modular structure allows to
create and train several models in parallel. For this purpose, all persistent informa-
tion is stored in the Application Database, see Section 2.3.2. To monitor and adapt

6Risks inherent in a continuous availability, e.g., information security issues, need to be handled ac-
cordingly [247].
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the training progress of these models, the interface provides detailed insights for
developers.

Once data-driven models are mature, i.e., their accuracy is sufficient for a dedicated
use case, they are integrated into standalone microservices. To obtain a flexible
and scalable architecture—especially when deploying multiple microservices—the
following aspects are inevitable:

• Each microservice is run in its individual, lightweight virtual environment
(container) using Docker [248]. This allows to automatically start, restart, and
replicate microservices according to increased demand.

• All microservices are hosted on a cluster of virtual machines. The related
containers are orchestrated by a parent agent called Kubernetes [249]. The
orchestration task comprises scaling and replicating microservices to demand,
as well as supervising the required dependencies with other microservices.

• Each microservice possesses standardized APIs. This enables to communicate
with other microservices and process outside information from other services,
e.g., weather data. In addition, microservices can communicate with the user’s
end devices, e.g., smartphones or EVs, using the same APIs. A Developer
Interface can be used to monitor all microservices (and their replications) and
handle errors accordingly.

With this setup, microservices based on data-driven models can be developed
and evaluated in a production-like environment. Furthermore, a wide range of
applications—such as the proposed charging assistant—can be realized.
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2.4 Conclusion

Chapter 2 outlines a systematic approach to separate semantic entities of the charg-
ing assistant proposed in this study. The contributions can be briefly summarized
in the following three parts of the approach.

First, individual stakeholders and their perspectives are described to identify re-
quirements of the charging assistant. In this way, each stakeholder is set in accord-
ing context within the charging assistant. Second, separate modules are defined
representing subsystems that have a specific purpose and can be modeled and im-
plemented individually. Each module is systematically characterized according to
i) its input and output values, ii) its scope, i.e., if the module is user-, vehicle-, or
battery-specific, and iii) its time frame, i.e., the time each module is created, trained
or retrained, and used for predictions or calculations. Third, an exemplary imple-
mentation framework for data collection, storage, and application is presented. In
this way, privacy and security issues are discussed, as the charging assistant pro-
cesses sensitive, user-related data. This framework may function as a blueprint for
other development setups or later productive systems with different sources of data
and stakeholders.
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For the scope of this thesis, the EV is assumed to be the user’s prioritized means of
transportation. Hence, a sufficient understanding of its characteristics while driving
and charging is essential. To achieve this, according models to estimate energy con-
sumption and battery state are designed based on the fundamentals in Section 1.1.2.
These models can be initialized with a generic baseline approach, e.g., an analytical
model. If necessary, data-driven approaches with higher accuracy may also be im-
plemented. For the latter, however, historical data on the EV user’s movements, the
battery behavior, and the EV’s energy consumption is required in sufficient amount
and quality.

Section 3.1 outlines the design of a consumption model to estimate the EV’s energy
consumption for future trips. The consumption model possesses a hybrid structure
as it consists of a vehicle-specific, analytical baseline model and a user-specific data-
driven model. For modeling of the latter model, especially time series data from
on-board measurements is selected and processed, see Section 3.1.1; the modeling
approach is partly based on the ideas presented by Schwenk et al. in [243]. Then,
different machine learning approaches are chosen (Section 3.1.2) and subsequently
validated on an independent test set (Section 3.1.3).

Section 3.2 describes the structure of a three-part battery model to simulate EV
charging events; parts of this section are based on the battery model described by
Schwenk et al. in [250]. First, an electrical model to estimate the energy evolution
of the battery is outlined in Section 3.2.1. Second, Section 3.2.2 presents a thermal
model to estimate the battery temperature progression. Third, a semi-empirical bat-
tery aging model to estimate the decay of the battery’s storage capacity is described
in Section 3.2.3. All three components of the battery model can be operated with
typical EV on-board sensor data. Accordingly, the battery model validation is also
proceeded with such data in Section 3.2.4.
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3.1 Consumption Model

For a thoroughly adapted and reliable charging strategy, i.e., both scheduling and
optimization of charging, an accurate estimation of the future energy demand is
inevitable. The consumption model presented in this chapter therefore estimates
the energy consumption of all future trips a user may take. Figure 3.1 shows an
overview of the consumption model that is built by use of the framework presented
in Section 2.3. All individual components are described in the following.
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(Section 3.1.1)

Data-driven
Model

(Section 3.1.2)
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Model

Baseline
Model

Preprocessing
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Merger

∆o

ν

xΓ Γ̂DD

Γ̂BL

Figure 3.1: Schematic block diagram of the consumption model and its components.

A baseline model estimates the EV’s specific energy consumption Γ̂BL based on the
trip distance ∆o and speed ν along a trip. This model is built upon experimental
data and the expertise of the EV manufacturer and represents the vehicle’s physical
characteristics in terms of energy efficiency.1 Independent of user-related data, thus
a robust estimation for Γ can be achieved. However, both user’s driving style and
environmental influences diminish the prediction quality of the Baseline Model.
To illustrate this, Figure 3.2 compares the true energy consumption Γ of recorded
trips with the estimations Γ̂BL of the Baseline Model. It can be seen that the
majority of estimations Γ̂BL lays within a range of approx. 0.15 to 0.25 kWh/km. The

1The details of the Baseline Model are subject to the confidentiality of the manufacturer and are there-
fore not described further here. Similar approaches may be found, e.g., in [251, 252]; for the funda-
mentals of EV consumption models, see [253].
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Figure 3.2: Comparison of energy consumption estimation Γ̂BL of the Baseline Model (see Figure 3.1)
with the true energy consumption Γ of recorded EV trips; the orange line indicates ideal
model behavior.

true consumption Γ, however, reaches up to approx. 0.8 kWh/km for some cases.
This is likely to be caused by user-individual driving maneuvers such as excessive
acceleration and breaking, which reduce the EV’s overall energy efficiency.

If historical trip data of the EV user is available, the data preprocessing module ex-
tracts additional features characterizing the user’s driving style and environmental
conditions, see Section 3.1.1.2 Then, an additional data-driven model can be trained
and used to estimate the user-specific energy consumption Γ̂DD, see Section 3.1.2. In
this way, a higher estimation accuracy may be achieved compared with the Baseline
Model, see Section 3.1.3.

An estimation merger module subsequently weights and adds up both estimations.
Thus, the final energy consumption estimation is given by

Γ̂ = ϕΓ · Γ̂BL + (1− ϕΓ) · Γ̂DD. (3.1)

2The user’s consent to the recording and use of this data for modeling purposes constitutes a prereq-
uisite.
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The coefficient ϕΓ ∈ [0, 1] represents the weight assigned to the Baseline Model. If
the amount or quality of user-related data is low, i.e., the Data-driven Model yields
poor results, the weight for the baseline consumption Γ̂BL is ϕΓ

∼= 1. Accordingly,
the data-driven consumption Γ̂DD is weighted with (1− ϕΓ) ∼= 0. This also enables
conformity in terms of data security and privacy. For instance, if user-related data
is available in sufficient quality, but the user has revoked their consent to the use of
this data. If, on the other hand, user-related data is available and can be used, the
user-specific estimation Γ̂DD of the Data-driven Model may outperform the Baseline
Model. The baseline estimation Γ̂BL may then be enhanced by increasing the weight
for Γ̂DD, i.e., ϕΓ is decreased.

A suitable value for ϕΓ could be adapted continuously depending on the available
data and its quality. To this end, ϕΓ could be dynamically chosen based on the
performance of both models in different scenarios; e.g., for trips that are well or not
well represented in the training data. In this thesis, however, the determination of
ϕΓ will not be elaborated in further detail; however, an exemplary approach for this
may be found in [240].
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3.1.1 Selection and Preprocessing of Training Data

To capture both the EV user’s driving style and environmental conditions, the Data-
driven Model uses additional information. For this purpose, a fleet of ten EVs pro-
vides 370 measured signals, which are recorded with a sampling rate of 10 Hz, see
also Section 2.3.1.3 The Data Preprocessing module then extracts relevant features,
see Figure 3.1. For future trips, this data is assumed to be available from a learning
map, e.g., as described in [241]. Therein, characteristic profiles for each signal are
inferred based on historical trips a user has taken. For model training, historically
recorded trips J are used. Each trip j ∈ J starting at tj,0 and ending at tj,τ rep-
resents one training sample, whereas τ j = tj,τ − tj,0. As the consumption model
targets to estimate the EV’s energy consumption, the training label

Γj =
ej,τ − ej,0

oj,τ − oj,0
, ∀j ∈ J , (3.2)

represents the specific energy consumption of a trip j. Therein, ej,0 is the battery en-
ergy at the beginning of the trip and ej,τ the battery energy at the end. Similarly, oj,0
is the mileage (in kilometers) at the beginning of the trip and oj,0 at the end, respec-
tively. Figure 3.3 shows a histogram of Γ for the available training data J . In the
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Figure 3.3: Histogram of training data classified by the specific energy consumption Γ in bins of
0.05 kWh/km.

3This equals a data stream of approx. 12 MB/h per vehicle.
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available data set J , the average energy consumption amounts to 0.293 kWh/km.4

In addition, a few outliers can manually be detected on the upper end of the distri-
bution. They occur due to very short trips taken in cold ambient temperatures. In
this case, a high share of consumed energy is used for heating both the EV battery
and interior. For model training, these outliers are removed.

To the end of relevant features, all available signals are manually screened based on
fundamental knowledge of EV modeling, see Section 1.1.2. The signals presented
in the leftmost column of Table 3.1 appear to be most reasonable.

Table 3.1: Selection of consumption model features according to univariate feature relevance based on
the Spearman-correlation coefficient (see Section A.1.1) in relation to the specific energy con-
sumption Γ and manual screening.

Signal Aggregation Spearman-Correlation qSp(•, Γ) Selected

Mileage o difference 0.081 yes

Vehicle ν mean 0.243 yes

Speed minimum 0.082 no

maximum 0.280 yes

Longitudinal ν̇ mean -0.157 yes

Acceleration minimum -0.071 yes

maximum -0.007 no

Lateral mean -0.009 no

Acceleration minimum -0.081 no

maximum 0.038 no

Acceleration ν̇ped mean 0.155 yes

Pedal Position minimum 0.004 no

maximum 0.089 yes

Battery θ mean 0.161 yes

Temperature minimum 0.159 no

maximum 0.161 no

Geodetic lalt mean -0.056 no

Altitude minimum -0.051 yes

maximum -0.018 yes

difference -0.042 yes

To condense the information provided by these signals, different aggregation func-
tions are applied to the originally 10-Hz-sampled signals. These aggregation func-

4The energy consumption is established from a fleet of development vehicles and does not necessarily
represent the behavior of the same EVs in production condition.
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tions comprise i) mean value, ii) maximum value, iii) minimum value, and iv) the
difference throughout a trip j, where applicable, see second-left column in Table 3.1.

To get an overview on univariate feature relevance, the Spearman-correlation coef-
ficient (see Section A.1.1) in relation to Γ is calculated for all samples, see second-
right column in Table 3.1. Furthermore, the rightmost column outlines, whether
a combination of signal and aggregation function has been selected as feature for
the subsequent training process of the models. Using this systematic approach, the
feature vector

xΓ, j =



∆o
mean{ν}
max{ν}

mean{ν̇}
min{ν̇}

mean{ν̇ped}
max{ν̇ped}
mean{θ}
min{lalt}
max{lalt}

∆lalt


j

∈ R11, ∀j ∈ J , (3.3)

is obtained, whose individual components are describe in the following:

• The trip distance ∆o is a basic feature that is also used by the Baseline Model.

• The average vehicle speed mean{ν} and the maximum vehicle speed max{ν}
characterize the type of trip and the user’s individual driving style. High val-
ues of both features are assumed to increase the specific energy consumption,
as the positive Spearman-correlation coefficient in Table 3.1 indicates.

• Similar to vehicle speed, the average and minimum longitudinal acceleration
mean{ν̇} and min{ν̇} also characterize driving style, particularly harsh brak-
ing maneuvers. To achieve sufficient deceleration in this situation, the EV’s
braking system must perform hydraulic braking instead of energy-saving re-
cuperation.

• Aggressive driving style can also be quantified using the driver’s input on the
acceleration pedal. In particular, the desired mean and maximum propulsion
torque represented by mean{ν̇ped} and max{ν̇ped}. The higher these values
are, the less efficient the electrical power train components can be operated,
see the positive Spearman-correlation coefficient in Table 3.1.
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• The average battery temperature mean{θ} throughout a trip needs to be es-
timated separately using a thermal battery model, see also Section 3.2.2. It
considers e.g., environmental conditions such as the ambient temperature.
Furthermore, aggressive and thus inefficient driving increases the battery tem-
perature and lowers the efficiency of the energy storage itself.

• The features based on the geodetic altitude lalt introduce additional informa-
tion about the driving environment. While ∆lalt represents the sole potential
energy difference of a trip, min{lalt}, and max{lalt} also provides information
about peaks and valleys visited throughout the trip. Prospectively, the inte-
gral over the absolute change in geodetic altitude could help to also capture
multiple peaks and valleys along a trip.

Although the features characterizing driving style may be correlated to each other,
the combination of these features potentially exhibits additional information. Fur-
thermore, features based on the EV’s lateral acceleration—i.e., features character-
izing driving style on curvy roads—have low correlation to Γ. Therefore, none of
these features has been selected, see Table 3.1.

After cleaning the data, i.e., removing invalid values and outliers, the total amount
of trips recorded throughout two years is |J | = 2146. The data is randomly shuffled
and 80 % thereof are selected as training set J train, with a cardinality of |J train| =
1717. Accordingly, 20 % of the data is used as independent test set J test, with
|J test| = 429. To guarantee an efficient training process of the Data-driven Model,
mean and variance normalization is performed on the data using SciKit-Learn [254].

3.1.2 Data-driven Models to Estimate Energy Consumption

The proceeded data exploration as described in Section 3.1.1 revealed the impor-
tance of single features over others. However, the specific dependency between the
input features xΓ and the output label Γ is still unknown. For this reason, three
machine learning models of different complexity are presented in this section to
estimate the specific energy consumption Γ.
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3.1.2.1 Regression using a Linear Approximation

For the initial approach, a linear regression model, e.g., as described in [255], is
used. To this end, the input vector xΓ, j is multiplied by the weight matrix W ∈
R1×11, and added to the bias b ∈ R. Hence, the estimated energy consumption

Γ̂DD, LR = W · xΓ + b, (3.4)

is obtained. The components of the weight matrix W and the value of b are deter-
mined from the training data J train, such that

min
W∈R1×11, b∈R

{
qMSE

(
Γj, Γ̂DD, LR,j

)}
, ∀j ∈ J train. (3.5)

In particular, the target is to minimize the Mean Squared Error (MSE) (see Sec-
tion A.2.4) of actual energy consumption Γ and estimated energy consumption
Γ̂DD, LR for all training samples j ∈ J train. The model is implemented in Python [256]
using SciKit-Learn [254].

3.1.2.2 Regression using an Artificial Neural Network

The interdependence between the input features xΓ and the energy consumption Γ

may not be linear. Hence, an ANN regression model is designed, as ANNs are able
to represent highly non-linear behavior. For the according fundamentals of ANNs
in engineering applications, see [257].

To ensure a proper model performance, different combinations of hyperparameters
are evaluated and tuned accordingly. In Table 3.2, all tested and finally selected
values of hyperparameters are listed. Preliminary tests especially focusing on the

Table 3.2: Tested and selected hyperparameters for ANN regression model to calculate Γ̂DD, MLP.

Hyperparameter Tested Values Selected Value

Number of Hidden Layers 1, 2, 3, 4, 5 3

Number of Neurons per Hidden Layer 5, 10, 20, 50 20

Activation Function sigmoid, rectified linear unit sigmoid

Batch Size for Model Training 32, 64 32

Epochs of Model Training up to 5000 200 (with early stopping)

Loss Function for Model Training MSE MSE

Learning Rate of Optimizer 0.001 0.001

number of hidden layers and the number of neurons per hidden layer showed that
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advancing the interior model architecture may improve the model’s performance,
see Table 3.3.

Table 3.3: Result of preliminary tests to examine different architectures of the ANN model to calculate
Γ̂DD, MLP.

Test Run Hidden
Layers

Neurons qMSE qRMSE qMAE qRMAE

1 1 50 0.084 0.290 0.138 0.610

1 3 20 0.071 0.267 0.078 0.257

2 1 50 0.060 0.246 0.110 0.419

2 3 20 0.047 0.217 0.085 0.328

As a consequence, a Multi Layer Perceptron (MLP) with three hidden layers is
used to calculate Γ̂DD, MLP. Each hidden layer consists of 20 neurons that possess a
sigmoid activation function. The output layer only consists of one neuron activated
by a linear function. For model training, batches of 32 trips are fed to the model. To
avoid overfitting the model, the gradient of the model’s loss function is monitored
in each training epoch; in this way, 200 epochs of model training appeared to be
sufficient (early stopping). Using the MSE as loss function and the Adam optimizer
[258], the incremental learning process is proceeded with a learning rate of 0.001.
The model is implemented in Python [256] using Tensorflow [259].

3.1.2.3 Regression using a Random Forest

Besides ANNs, random forests can also be used for modeling complex relations
between input features and output label. The advantage of random forests over
ANNs, however, is given by less computational effort and smaller amounts of data
required for training. To train a random forest regressor, multiple decision trees are
trained with randomly selected subsets of the training data J train. Each decision
tree creates an individual estimation of the desired output Γ. Then, the average
of these estimations is used as ensemble estimation Γ̂DD, RF. Further details on the
fundamentals of random forest regression can be found in [260].

The training process can be automated using a programming framework. How-
ever, hyperparameters also need to be adapted for a proper model performance.
Table 3.4 presents the manually tuned parameters used in this study. The entire
random forest consists in total of 100 separate decision trees. Each decision tree
is allowed to have a maximum depth of ten decision nodes. Furthermore, each
internal node requires at least two training samples to be split. For training each
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Table 3.4: Selected hyperparameters for random forest regression model to calculate Γ̂DD, RF.

Hyperparameter Selected Value

Total Number of Decision Trees 100

Maximum Depth of Decision Trees 10 nodes

Samples to Split Internal Node 2

Loss Function for Model Training MSE

individual decision tree, the MSE is used as loss metric. The model is implemented
in Python [256] using SciKit-Learn [254].

3.1.3 Validation of Consumption Model

After training the data-driven machine learning models (see Section 3.1.2.1, Sec-
tion 3.1.2.2, and Section 3.1.2.3) on the training data set J train, the independent test
data set J test is used for validation. To quantify the model performance, the error
metrics (A.7)-(A.10) are calculated. For comparison, the performance of the baseline
model and all data-driven models is listed in Table 3.5.

Table 3.5: Comparison of baseline model and data-driven models according to the error metrics MSE
qMSE (in (kWh/km)2), Root Mean Squared Error (RMSE) qRMSE (in kWh/km), Mean Absolute
Error (MAE) qMAE (in kWh/km), and Relative Mean Absolute Error (RMAE) qRMAE, on the
independent test data set J test.

Model qMSE qRMSE qMAE qRMAE

Baseline Γ̂BL 0.209 0.457 0.172 0.482

Linear Regression Γ̂DD, LR 0.180 0.424 0.142 0.532

ANN Regression Γ̂DD, MLP 0.071 0.267 0.078 0.257

Random Forest Regression Γ̂DD, RF 0.044 0.210 0.062 0.214

Using the baseline model as benchmark, the linear regression model slightly im-
proves the estimation error. For instance, the Mean Absolute Error (MAE) of the
linear regression model is improved by 17.44% compared with the baseline model,
see Table 3.5. Yet, the linear regression model estimates most of the test samples
incorrectly, as Figure 3.4 indicates. Furthermore, neither systematic overestimation
nor underestimation of values can be observed. Thus, the relation between input
features xΓ and the true energy consumption Γ is assumed to be non-linear. Com-
pared with the linear regression model, the ANN model yields significantly more
accurate estimations Γ̂DD, MLP. In particular, the ANN model reduces the MAE of
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Figure 3.4: Comparison of energy consumption estimation Γ̂DD, LR of the linear regression model (see
Section 3.1.2.1) with the true energy consumption Γ of recorded EV trips in independent test
set J test; the orange line indicates ideal model behavior.

estimated energy consumption by 54.65% compared with the baseline model, see
Table 3.5. In Figure 3.5 the ANN model estimations on the independent test set J test

are also visualized. This result supports the assumption of present non-linearity be-
tween xΓ and the true energy consumption Γ. The performance of both random
forest regression and ANN regression is comparable. Yet, for the chosen test data
set J test, the random forest regression outperforms all other models, see Table 3.5
and Figure 3.6. The estimation error can significantly be improved compared with
both the linear regression and baseline model. For instance, the random forest re-
gression cuts the MAE by 63.95% compared with the baseline model. Overall, the
results show that all data-driven models to estimate the specific energy consump-
tion Γ outperform the baseline model. Hence, the hypothesis that known driving
behavior of the EV user enhances consumption estimations, can be confirmed. The
developed random forest regression model seems to most adequately represent the
non-linear relation between xΓ and Γ, and should therefore be used. For this pur-
pose, however, both the availability of the required data and the EV user’s consent
to the use of this data are essential prerequisites.

On the upper end of the independent test set J test some outliers occur for Γ. In
real applications of the model, such high values of Γ usually occur for very short
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Figure 3.5: Comparison of energy consumption estimation Γ̂DD, MLP of the ANN regression model (see
Section 3.1.2.2) with the true energy consumption Γ of recorded EV trips in independent test
set J test; the orange line indicates ideal model behavior; the dashed pink line indicates a
systematic misrepresentation.

trips, e.g., taken in cold ambient conditions. Hence, the absolute deviation of a
trip’s total energy consumption is comparably small. Compared with the linear re-
gression model, both the random forest regression the ANN model more accurately
estimates these outliers, cf., Figure 3.4, Figure 3.5 and Figure 3.6. Furthermore, the
random forest model also more accurately estimates outliers of Γ̂DD, MLP produced
by the ANN model, cf., Figure 3.5 and Figure 3.6.

Figure 3.5 shows that the ANN model appears to possess a systematic misrepre-
sentation. Particularly, the energy consumption is slightly overestimated for trips
with a true energy consumption of less than approx. 0.27 kWh/km. On the other
hand, for trips with true energy consumption higher than approx. 0.27 kWh/km,
the energy consumption is slightly underestimated. To illustrate this behavior, the
dashed pink line in Figure 3.5 indicates the trend of the estimations Γ̂DD, MLP. Sim-
ilar to the ANN model, the estimations Γ̂DD, RF of the random forest model show
a slight systematic misrepresentation; again, see the dashed pink line in Figure 3.6.
This behavior could be explained by the fact that high values of Γ mostly occur
for short trips with a high amount of auxiliary energy consumption; this comprises
e.g., active battery temperature adaption, air conditioning, or interior and seat heat-
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Figure 3.6: Comparison of energy consumption estimation Γ̂DD, RF of the random forest regression model
(see Section 3.1.2.3) with the true energy consumption Γ of recorded EV trips in independent
test set J test; the orange line indicates ideal model behavior; the dashed pink line indicates a
systematic misrepresentation.

ing. In the present setup, however, there is no feature in xΓ that represents the
energy consumption of these auxiliary consumers. By introducing an additional
feature for auxiliary energy consumption, a further improvement of the estimation
accuracy of the data-driven models is expected. However, this feature also has to be
predicted for future trips. To this end, an additional model would be required, pos-
sibly introducing further estimation errors. Furthermore, data on auxiliary energy
consumption in sufficient amount and quality would be required to both design
and validate such a model.

In addition to specific energy consumption, prospectively the deviation of total en-
ergy consumption per trip could also be employed as error metric. In this way, very
short—and thus irrelevant—trips would be effectively suppressed for model train-
ing. As a consequence, the overall model performance is expected to be improved.
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3.2 Battery Model

The models presented in this section help to estimate the state of the EV battery
throughout a charging event k. Each charging event that starts at arrival time tk,0

and ends at departure time tk,Nk
is discretized in time with ∆t. In this way, the

charging event’s time horizon
[
tk,0, tk,Nk

]
is divided into Nk time intervals of dura-

tion ∆t and Nk + 1 states. Accordingly, the set of time intervals is defined as

N k = [0, Nk − 1] ⊂N. (3.6)

All time intervals n ∈ N k start at time tn and end at time tn+1. The battery state at
time tn is characterized by the battery energy content en, the internal battery tem-
perature θn, and the maximum battery capacity emax, n. For a general quantification
of the battery state—e.g., for different types of batteries—, e is normalized as SOC
SC according to (1.1); similarly, emax is normalized as SOH SH according to (1.2). To
calculate the evolution of e, θ, and emax over time, the battery’s dynamic behavior is
represented in three models, see Figure 3.7. First, an electrical model estimates the

en

pn

θn

θamb

SH, 0

Electrical
Model

(Section 3.2.1)

Thermal
Model

(Section 3.2.2)

Aging
Model

(Section 3.2.3)

∆En

∆Θn

∆Hcyc, n

∆Hcal, n

Q̇loss, n

Figure 3.7: Schematic block diagram of EV battery model and its components.

change of battery energy ∆En and the internal losses Q̇loss, n in time interval n. Then,
a thermal model estimates the change of battery temperature ∆Θn in time interval
n. Finally, an aging model estimates both cyclic battery aging increment ∆Hcyc, n

and calendar aging increment ∆Hcal, n in time interval n. The combination of these
three models is referred to as the battery model. All individual components are
described in Section 3.2.1, Section 3.2.2, and Section 3.2.3. Note that these models
can be vehicle-, vehicle-type-, battery-, or battery-type-specific; a generic reuse is
thus limited. General initialization followed by incremental adaption, however, is
conceivable.
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3.2.1 Electric Battery Model

The energy level e of the EV battery—and thus the SOC SC—changes with sur-
rounding influences, especially the charging power p. An electrical battery model
helps to calculate the evolution of the battery energy. For this purpose, the electri-
cal battery model, as shown in Figure 3.7, estimates the energy throughput of the
battery

∆En = en+1 − en, ∀n ∈ N k, (3.7)

for a given time interval n, battery temperature θn, battery energy en, and charging
power pn. This model might represent dedicated power electronics, hence it is
vehicle-specific.

The EV battery usually consists of several battery cells connected to a combined
series-parallel circuit. Using Thévenin’s theorem [261], the Equivalent Circuit
Model (ECM) as presented in Figure 3.8 is designed.5 The model consists of the

Ri

Ubat

UOCV

Ibat

Ri · Ibat

Figure 3.8: Equivalent circuit model of an EV battery for low-dynamic operation with internal resistance
Ri and voltage source UOCV

voltage source UOCV serially connected with the internal resistance Ri. Both battery
current Ibat and battery voltage Ubat are quantities that can be measured at the bat-
tery’s terminals. Following Kirchhoff’s voltage law (also known as Kirchhoff’s
loop rule), the term

UOCV, n = Ubat, n − Ri, n · Ibat, n, (3.8)

mathematically describes the ECM in Figure 3.8. Using the convention that the
battery current Ibat is greater than zero during charging, Ubat > UOCV for charging

5Thévenin’s theorem states that any linear electrical network consisting of resistances, current and
voltage sources may be replaced by an equivalent combination of a voltage source serially connected
to a resistance [261]. Hence, the name Equivalent Circuit Model.
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and Ubat < UOCV for discharging; accordingly, Ubat = UOCV, if no external load is
connected, i.e., if Ibat = 0. Substituting the terminal voltage Ubat in (3.8) with

Ubat, n =
pn

Ibat, n
, (3.9)

and solving (3.8) for the battery current Ibat yields

Ibat, n =
−UOCV, n +

√
U2

OCV, n + 4Ri, n · pn

2Ri, n
; (3.10)

despite two possible solutions only the greater one is physically feasible, see also
[262]. The gross charging power pn consumed from the charging station is assumed
to remain constant throughout a single time interval n, ∀n ∈ N . In (3.10), the value
of UOCV, n depends on the battery energy en and is obtained from the characteristic
curve in Figure 3.9. In a similar way, Ri, n depends on the battery temperature θn
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Figure 3.9: Characteristic curve of open circuit voltage UOCV with respect to normalized battery energy e.

and the battery energy en. The according values of Ri, n are obtained from the char-
acteristic curve in Figure 3.10. Similar to pn, the values of both UOCV, n and Ri, n are
also assumed to be constant throughout a single time interval n. Hence, the ECM as
shown in Figure 3.8 is only suitable to represent quasi-stationary operation such as
charging the EV battery. For high-dynamic operation, such as discharging the EV
battery while driving, an advanced ECM, e.g., with additional resistor-capacitors-
pairs would be required [263]. Note that the characteristic curves in Figure 3.9
and Figure 3.10 are battery-type-specific and may be replaced for different types of
batteries.

Once the battery current Ibat is calculated, the Ohmic [264] losses

Q̇loss, n = Ri, n · I2
bat, n, (3.11)
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Figure 3.10: Characteristic curve of internal battery resistance Ri with respect to battery SOC SC and
battery temperature θ.

within the battery may also be calculated. Given the charging power pn, finally the
energy throughput

∆Ên = ∆t ·
(

pn − Q̇loss, n
)

, (3.12)

for each time interval n is obtained.

Note that Q̇loss, n > 0 occurs both while charging and discharging. Hence, it de-
creases |∆En| during charging and increases |∆En| during discharging. Further-
more, the losses Q̇loss are dissipated into heat and thus may increase the battery
temperature θ both while charging and discharging, see also Section 3.2.2.
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3.2.2 Thermal Battery Model

The internal temperature θ of the EV battery affects both battery parameters, such as
Ri, and battery aging, see Section 3.2.3. Hence, a thermal battery model is required
to estimate the change of battery temperature

∆Θn = θn+1 − θn, ∀n ∈ N k, (3.13)

for a given time interval n, battery temperature θn, battery energy en, ambient tem-
perature θamb, and charging power pn. Due to heat exchange with surrounding
components, these models are mostly vehicle-type-specific.

In existing applications found in the literature (see Section 1.1.2.3), mostly reduced-
order models are used to estimate ∆Θ. Such models describe the simplified thermal
battery behavior on a macroscopic level. For this purpose, heat flows into and
out of the battery are balanced, based on the first principle of thermodynamics.
Particularly, the differential formulation of the battery’s thermal energy balance

dθ

dt
=

Q̇loss + Q̇amb + Q̇BMS

ch
, (3.14)

is consulted. Here, ch represents the heat capacity of the battery. The power loss
Q̇loss is calculated beforehand using (3.11) (see Section 3.2.1) and is assumed to be
completely dissipated into heat. Furthermore, the heat flow

Q̇amb = −α · (θ − θamb) , (3.15)

describes conductive heat exchange between the battery and the environment; α

represents the specific heat transition coefficient of the battery system. The direc-
tion of Q̇amb depends on the difference between θ and θamb. If θ > θamb, Q̇amb is
negative, i.e., heat flows out of the battery; accordingly, if θ < θamb, Q̇amb is positive,
i.e., heat flows into the battery. To maintain the battery temperature within a range
that guarantees efficient and safe operation, the BMS can actively add the heat flow
Q̇BMS; heat may therefore either be injected for heating the battery, i.e., Q̇BMS > 0,
or withdrawn for cooling the battery, i.e., Q̇BMS < 0.

Applying discrete-time Forward-Euler integration [265] to (3.14) yields the battery
temperature change

∆Θ̂RO, n = ∆t · Q̇loss, n + Q̇amb, n + Q̇BMS, n

ch
, (3.16)

of the reduced-order thermal battery model. Preliminary tests, however, show that
the reduced-order model inadequately represents the battery’s thermal behavior for
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some cases. Therefore, the design of a data-driven thermal model is described in
the following. The results of the reduced-order thermal model are consulted as
benchmark for validation purposes in Section 3.2.4.2.

3.2.2.1 Selection and Preprocessing of Training Data

To improve the estimations of reduced-order thermal models, data-driven ap-
proaches use additional information to estimate the change of battery temperature
∆ΘDD. In this way, hidden thermodynamic processes, e.g., electro-chemical heat
sources or sinks can be captured. The required training data for these models is
extracted from 279 real-world charging events that are recorded with a sampling
rate of approx. 30 s from batteries installed and operated in EVs. Events containing
gaps greater than 90 s are screened out and resampled to the regular 30 s sampling
rate using linear interpolation. Then, a rolling time window of duration ∆t = 5 min
is applied to obtain a set of individual samples Bk for each charging event k ∈ K.
For model design and validation, the samples of all charging events k ∈ K are
united as set of historical battery data samples

B =
⋃
∀k∈K

Bk. (3.17)

Subsequently, the difference of battery temperature

∆Θb = θb+1 − θb, ∀b ∈ B, (3.18)

throughout each training sample b is calculated as regression target for the data-
driven models. Figure 3.11 shows a histogram of ∆Θ for all samples in B. On
average, the change of battery temperature amounts to 0.961 K for each time interval
of 5 min. In most cases, ∆Θ is positive, i.e., the battery temperature rises, e.g.,
due to internal charging losses. Only a few samples exists in which the battery
temperature decreases, i.e., ∆Θ is negative. These cases may occur, e.g., after long
trips in which θ is high; given a lower ambient temperature θamb compared with
the battery temperature θ, the heat exchange with the environment may thus cool
down the battery slowly.

To the end of relevant features, all available signals are manually screened based
on basic knowledge of EV battery modeling, see Section 1.1.2. The leftmost column
of Table 3.6 presents the most promising features. The values of the features e, θ,
Ibat, and pb are taken at the beginning of each sample b and assumed to be constant
for the time interval of ∆t = 5 min. For simplicity, the ambient temperature θamb is
assumed to remain constant throughout one charging event k and thus also for each
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Figure 3.11: Histogram of battery temperature change ∆Θb for all data samples b in battery data set B.

Table 3.6: Selection of thermal battery model features according to univariate feature relevance based
on the Spearman-correlation coefficient (see Section A.1.1) in relation to the change of battery
temperature ∆Θ and manual screening.

Feature Spearman-Correlation qSp(•, ∆Θ) Selected

Battery Energy eb -0.48 no

Battery Temperature θb -0.32 yes

Battery Current Ibat, b 0.46 no

Gross Charging Power pb 0.43 yes

Ambient Temperature θamb -0.18 no

Difference to Ambient Temperature θb − θamb -0.12 no

Battery Internal Resistance Ri, b 0.24 no

Open Circuit Voltage UOCV, b -0.48 no

Energy Throughput ∆Eb 0.41 yes

(Estimated) Internal Losses Q̇loss, b 0.52 yes
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training sample b ∈ Bk; advanced models could include a forecast of θamb for the
charging event’s time window

[
tk,0, tk,Nk

]
. Note that Ri, b and UOCV, b are obtained

from the characteristic curves in Figure 3.9 and Figure 3.10; furthermore, ∆Eb and
Q̇loss, b are calculated beforehand using the ECM as presented in Section 3.2.1. The
developed data-driven thermal model is thus a gray-box approach.

To initially analyze the univariate relevance of these features to the label ∆Θ, the
Spearman-correlation coefficient (see Section A.1.1) is consulted, as presented in
the middle column of Table 3.6. Although the battery energy e shows a relatively
strong correlation to ∆Θ, it is screened out due to a parallel correlation. In particular,
the higher e, the less charging power p is applied and thus less internal losses occur
to heat up the battery; instead, p and the energy throughput ∆E are selected as
features. The same principle applies to UOCV, as it is calculated from e. In a similar
way, the battery current Ibat is screened out, as it strongly correlates to the charging
power p and the internal losses Q̇loss; Hence, only Q̇loss is selected as feature. The
internal resistance Ri, on the other hand, is screened out as it directly influences
Q̇loss via the ECM. All features related to the ambient temperature θamb show low
correlations, and thus are not selected. Altogether, the input features of the data-
driven thermal model can be represented by the feature vector

xΘ, b =


pb

Q̇loss, b
∆Eb
θb


b

∈ R4, ∀b ∈ B. (3.19)

Since the EVs from which the training data is taken do not support bi-directional
charging, discharging, e.g., for V2G applications as described in Section 1.1.1, is
underrepresented. The characteristic curves of both Ri and UOCV, however, show
similar values for charging and discharging. The battery’s thermal behavior is thus
assumed to be independent on the direction of p and ∆E; accordingly, absolute
input values are used for these features.

After data cleaning, i.e., removing invalid values and outliers, the total number
of battery data samples amounts to |B| = 18868. This data is split in a training
set Btrain, with a cardinality of |Btrain| = 15094. The remaining samples, i.e., the
independent test set Btest with |Btest| = 3774, is used for validation. To guarantee
an efficient training process of the data-driven models, the data is normalized using
SciKit-Learn [254].
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3.2.2.2 Data-driven Models to Estimate the Change of Battery Temperature

To the end of creating a data-driven model from the training data Btrain, two ma-
chine learning approaches are tested. First, a LR model is formulated that estimates

∆Θ̂DD, LR = W · xΘ + b, (3.20)

based on the feature vector xΘ. The determination of the weight matrix W and
the bias b follows the equivalent procedure as in Section 3.1.2.1. A more detailed
description of the design and training of LR models can also be found in [255]. The
model is implemented in Python [256] using the SciKit-Learn [254] framework.

Second, a more complex ANN model is designed, to also model possibly non-linear
thermal behavior and hidden electro-chemical processes of the EV battery. The ac-
cording fundamentals of ANNs in engineering applications can be found in [257].
To establish the best performing values for the ANN model hyperparameters, a
grid-search is run that evaluates all combinations of hyperparameters as listed in
Table 3.7; the rightmost column also reveals the actually selected value for each hy-
perparameter. To particularly evaluate the interior ANN architecture, preliminary

Table 3.7: Tested and selected hyperparameters for ANN regression model to calculate ∆Θ̂DD, MLP.

Hyperparameter Tested Values Selected Value

Number of Hidden Layers 1, 2, 3 2

Number of Neurons per Hidden Layer 5, 10, 20, 30, 40, 50 10

Activation Function sigmoid, rectified linear unit sigmoid

Batch Size for Model Training 32, 64, 128 128

Epochs of Model Training up to 10000 3000 (with early stopping)

Loss Function for Model Training MSE MSE

Learning Rate of Optimizer 0.001 0.001

tests are run in which the number of hidden layers and the number of neurons per
hidden layer is varied. The corresponding results are shown in Table 3.8.

It can be seen that for the given problem, ANN models with two hidden layers
generally seem to outperform models with only one hidden layer. Furthermore,
the number of neurons per hidden layer exhibits an optimum in the region of ten.
Consequently, an MLP with two hidden layers is used to calculate ∆Θ̂DD, MLP. Each
hidden layer consists of ten neurons that possess a sigmoid activation function; the
output layer consists of only one neuron activated by a linear function. For model
training, batches of 128 samples are fed to the model. To avoid overfitting the model,
the gradient of the model’s loss function is monitored in each training epoch; in this
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Table 3.8: Result of three preliminary test runs to examine different architectures of the ANN model to
calculate ∆Θ̂DD, MLP; for evaluation, the R2-Score qR2 of estimated and true values (see (A.6))
is used.

Hidden Layers Neurons qR2 , Run 1 qR2 , Run 2 qR2 , Run 3

1 5 0.525 0.670 0.640

1 10 0.577 0.721 0.693

1 20 0.472 0.709 0.682

2 5 0.768 0.688 0.665

2 10 0.802 0.724 0.713

2 20 0.749 0.659 0.648

way, 3000 epochs of model training appeared to be sufficient (early stopping). Using
the MSE as loss function and the Adam optimizer [258], the incremental learning
process is proceeded with a learning rate of 0.001. The model is implemented in
Python [256] using the Tensorflow [259] framework.

3.2.3 Battery Aging Model

Throughout the operation of EV batteries, irreversible physical and electro-chemical
processes decrease the battery’s usable storage capacity emax. These degradation
processes—also called battery aging—in turn cause the EV’s usable driving range
and monetary value to decline. A model to quantify battery degradation is thus
essential to design a charging assistant, see also Section 1.1.2.4. For this purpose,
a semi-empirical degradation model is applied to calculate the progression of the
SOH SH, as given in (1.2). Particularly,

SH, n+1 = SH, n + ∆Hcyc, n + ∆Hcal, n, (3.21)

needs to be estimated for each time interval n ∈ N k of a charging event k. Here, one
differentiates the cyclic aging increment ∆Hcyc and calendar aging increment ∆Hcal;
both are described in the following.

Cyclic aging is mainly caused by charging or discharging the EV battery. Among
other processes, a loss of active lithium material occurs due to mechanical stress,
see also [125]. For the battery cells used in this study, the cyclic aging increment

∆Hcyc, n = βA · |∆En|βB , (3.22)

only depends on the absolute energy throughput ∆En. The degradation history, i.e.,
the SOH of previous time steps, is negligible. Thus, ∆Hcyc is independent from SH.
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Additionally, high battery temperature, high SOC, over-voltage, and mechanical
vibrations cause degradation of both active and inactive battery components, see
also [125]. Hence, the battery capacity fades over time, regardless of the energy
throughput (calendar aging). For the battery cells used in this work, the calendar
aging increment

∆Hcal, n = 1− SH, 0 + βC exp
(

βD
273 K + θn

+ βEen

)
· (∆t + τn)

βF , (3.23)

can be described based on a set of Arrhenius curves [266]. Here, SH, 0 is the SOH
at the beginning of the charging event k, i.e., at time tk,0; SH, 0 serves as a reference
for all time steps of charging event k, as calendar aging occurs on larger time scales
(years) than charging (hours). Furthermore,

τn =

 SH, 0 − 1

βC exp
(

βD
273 K+θn

+ βEen

)
1/βF

, (3.24)

represents the equivalent battery age for each time interval n ∈ N k as a function of
SH, 0. Thus, ∆Hcal depends on the degradation history.

Both model characteristics and parameters are estimated from extensive cell tests
at varying conditions, e.g., battery energy and temperature. Hence, the detailed
parameters βA..F represent battery-type-specific aging characteristics that are con-
fidential. As these parameters may differ for different types of battery cells, the
aging model may need to be replaced accordingly, e.g., with models as in [267].
Furthermore, the aging model is scaled from individual battery cells to the EV bat-
tery consisting of several interconnected cells. For this, a linear scaling is assumed.
Production variance of battery cells, however, may yield deviating behavior as fast
degrading cells can determine the SOH of the entire EV battery. Therefore, prospec-
tively an implicit representation, e.g., via machine learning approaches as in [268]
is also conceivable.
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3.2.4 Validation of Battery Model

For validation of the battery model, measured time series data of 279 unidirectional
charging events k ∈ K is obtained from a fleet of ten real-world EVs. Here, K
denotes the set of available charging events k. To the end of data collection, all
EVs are equipped with cloud-connected data loggers and utilize the framework as
described in Section 2.3.1. After charging events are recorded with a sampling rate
of approx. 30 s, they are resampled to a time interval of ∆t = 5 min; each time
interval equates to a battery data sample b. In this way, a set Bk of historical battery
data samples b is obtained for each charging event k. To quantify the estimation
accuracy of the single battery model components, two measures are used. For the
sake of comprehensibility, Figure 3.12 shows exemplary profiles of a quantity’s true
values y and estimated values ŷ over the time window

[
tk,0, tk,Nk

]
of charging event

k; the quantity y functions as a placeholder for battery state values, such as e or θ.

Time t

Quantity y

tk,0 tk,1 tk,7 = tk,Nk

y0
y1

y2

y3
y4

y5

y6

y7ŷ1
ŷ2

ŷ3
ŷ4

ŷ5

ŷ6

ŷ7

∆t

local

error

global

error

True Values y
Estimated Values ŷ

Figure 3.12: Exemplary profiles of a quantity’s true values y and estimated values ŷ over the time win-
dow

[
tk,0, tk,Nk

]
of charging event k to explain the error measures of the battery model (see

Section 3.2).

The local error corresponds to the deviation between the estimated value ŷ and the
actual value y in a single time step. To determine the local error, the battery model
is applied to each data sample b ∈ Bk of all charging events k ∈ K.6 Subsequently,

6For the data-driven thermal model (see Section 3.2.2) only the independent test data set
Btest =

⋃
∀k∈Ktest Bk is used for validation.
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the estimated values are compared with the actual values of each sample using the
Root Mean Squared Error (RMSE).

The global error mirrors the deviation ŷNk − yNk of the estimated value ŷNk and the
actual value yNk at the end of a charging event k that consists of Nk time intervals.
For this purpose, the battery model is repeatedly applied to all samples b out of
the (ordered) set Bk. This is, the estimation ŷb of one data sample b is used to
estimate ŷb+1 of the subsequent data sample b + 1. Finally, the deviation after the
last sample equals the global error. For a general statement, the MAE is calculated
from the global error of all charging events k ∈ K.

3.2.4.1 Validation of Electrical Model

The electrical battery model as described in Section 3.2.1 yields an RMSE of
0.35 % SOC for single battery data samples b ∈ B (local error). To illustrate this
result, Figure 3.13 shows a scatter plot of estimated values ∆Ê over the true values
∆E; in addition, the orange line indicates ideal model behavior.
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Figure 3.13: True and estimated energy throughput for individual samples b ∈ Bk for all k ∈ K (local
error, normalized as SOC) using the electrical battery model (Section 3.2.1), the orange line
indicates ideal model behavior.

It can be seen that the model estimations ∆Ê mostly fit the actual values ∆E. This
can be achieved, as both UOCV, n and Ri, n are chosen from a characteristic curve for
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each time interval n depending on en and θn. Furthermore, high-dynamic changes
of the battery energy are leveled out, as they occur on smaller time scales than
the chosen ∆t = 5 min [263]. If charging the battery to emax, the BMS corrects
the characteristic SOC curve towards the end of the charging event; hence, a few
outliers occur, e.g., with ∆E ∼= 0 and ∆E ≪ ∆Ê. Prospectively, these outliers could
also be handled by the electrical battery model, if the update policy of the BMS is
included in the estimation algorithm.

Figure 3.14 presents a histogram of the deviation êNk − eNk (global error) at the end
of all charging events k ∈ K.
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Figure 3.14: Deviation êNk − eNk of true and estimated SOC at the end of all charging events k ∈ K
(global error) using the electrical battery model (Section 3.2.1).

The deviations are distributed off-centric around 0 % SOC that would represent
ideal model behavior. Hence, the ECM tends to overestimate a charging event’s
final SOC. However, the MAE calculated from these deviations only amounts to
1.896 kWh, or a normalized error of 2.37 % SOC, respectively. This equals an ac-
ceptable driving range deviation of approx. 7.6 km. The accuracy of the electrical
model is thus considered as sufficient. Furthermore, both the chosen time inter-
val ∆t = 5 min and the ECM appear to be suitable to properly represent an EV’s
charging process.
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3.2.4.2 Validation of Thermal Model

In Section 3.2.2, different models to estimate the change of battery temperature
are described. Accordingly, battery temperature profiles are calculated with these
models and compared with actual measured temperature profiles of real charging
events k ∈ Ktest.7 Table 3.9 presents the validation results by means of local and
global error metrics as described at the beginning of Section 3.2.4.

Table 3.9: Local and global error of thermal battery models (Section 3.2).

Model Local Error (RMSE) Global Error (MAE)

Constant Battery Temperature 0.72 K 7.57 K

Reduced-Order Thermal Model 1.56 K 4.78 K

LR Thermal Model 0.76 K 4.18 K

ANN Thermal Model 0.29 K 1.96 K

To benchmark the different thermal modeling approaches, constant battery temper-
ature is assumed as naive baseline approach. Particularly, the battery temperature
θn is assumed to equal a charging event’s initial battery temperature θ0 in all time
intervals n ∈ N . Accordingly, the change of battery temperature ∆Θn = 0.0 K, for
all time intervals n ∈ N . Note that the ambient temperature θamb does not have
any effect in this model. In comparison with the actual measured battery tempera-
ture profiles of real charging events, assuming constant battery temperature yields
a local error RMSE of 0.72 K for single time intervals, see Table 3.9. The global error
MAE, i.e., the mean temperature deviation at the end of a charging event amounts
to 7.57 K. For estimating the battery temperature in single time intervals, assuming
constant battery temperature suffices as the local error of 0.72 K indicates. However,
θ generally rises with the progression of a charging event. The longer a charging
event lasts, the greater the propagated error of assuming constant battery temper-
ature will thus be. This is also reflected in the significant global error of 7.57 K
that may result in false conclusions, e.g., regarding temperature-dependent battery
aging, see also (3.23) and Section 1.1.2.4.

Validating the reduced-order thermal battery model as described at the beginning of
Section 3.2.2 reveals a slightly different result, see Table 3.9. The battery temperature
estimations per time interval (local error) yield an RMSE of 1.56 K—a lower accuracy

7For the data-driven approaches, a subset Ktrain ⊂ K is used for model training; for this reason, only
the independent test set Ktest = K\Ktrain is used for validation here.
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compared with assuming constant battery temperature. Figure 3.15 shows a scatter
plot of true and estimated battery temperature change per time interval.
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Figure 3.15: True and estimated change of battery temperature for individual samples b ∈ Bk , ∀k ∈ K
(local error) using the reduced-order thermal battery model (Section 3.2.2), the orange line
indicates ideal model behavior.

It can be seen directly that the reduced-order model mostly underestimates the real
change in battery temperature ∆Θ. When repeatedly applying the reduced-order
model, the mean temperature deviation at the end of a charging event, i.e., the
global error MAE is 4.783 K. In Figure 3.16 presents a histogram of the reduced-
order model global error. Here, it can be seen that despite the lower mean de-
viation compared with the naive benchmark, the battery temperature at the end
of a charging event may significantly deviate. Although the global error of the
reduced-order model on average outperforms the naive benchmark, the significant
local error mostly precludes application of this model in a charging assistant. Partic-
ularly, assuming constant parameters ch and α to represent heat flows into and out
of the battery, see (3.16), seems to misrepresent the battery’s real thermal behavior.
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Figure 3.16: Deviation θ̂Nk − θNk of true and estimated battery temperature θ at the end of all charging
events k ∈ K (global error) using the reduced-order thermal battery model (Section 3.2.2).

As this result emphasizes the need for more advanced modeling, different data-
driven approaches are presented in Section 3.2.2.2. First, a LR model is tested to
estimate ∆Θ̂DD, LR. With a local error RMSE of 0.76 K, the LR yields an accuracy
per time interval that lies in between the reduced-order model and the naive bench-
mark, see Table 3.9. Figure 3.17 presents the according scatter plot to visualize the
LR model’s local error. Especially for high values ∆Θ, the LR model underesti-
mates the true change in battery temperature per time interval. For entire charging
events, however, the battery temperature is mostly overestimated by the LR model.
This can be seen when contemplating the histogram of temperature deviation at
the end of all charging events, see Figure 3.18. Considering the significant global
error MAE of 4.18 K, the LR model seems to inadequately represent the battery’s
thermal behavior. The reason could be hidden electro-chemical processes that in-
troduce non-linearity to the battery’s thermal behavior. By design, the LR model is
unable to capture this non-linearity.
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Figure 3.17: True and estimated change in battery temperature for individual samples b ∈ Btest (local
error) using the LR thermal battery model (Section 3.2.2.2), the orange line indicates ideal
model behavior.
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Figure 3.18: Deviation θ̂Nk − θNk of true and estimated battery temperature θ at the end of all charging
events k ∈ Ktest (global error) using the LR thermal battery model (Section 3.2.2.2).
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To overcome this, the design of more advanced ANN models is also described
in Section 3.2.2.2. Although having tested several ANN hyperparameters, see Ta-
ble 3.7, for the sake of brevity only the best-performing model is presented here.
Particularly, an MLP is used that possesses two hidden layers with ten neurons
each; each neuron is activated by a sigmoid function. The output layer consists of a
single neuron activated by a linear function. Using the distinct test data set Btest, the
ANN thermal model outperforms all others models in local error evaluations, see
Table 3.9. Collectively, the single time interval estimations of the ANN model yield
an RMSE of 0.29 K. Furthermore, the ANN model neither systematically overesti-
mates nor underestimates the change in battery temperature. To support this, see
the scatter plot of true and estimated change of battery temperature in Figure 3.19.
The mean temperature deviation at the end of a charging event, i.e., the global error
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Figure 3.19: True and estimated change in battery temperature for individual samples b ∈ Btest (lo-
cal error) using the ANN thermal battery model (2 hidden layers, 10 neurons each, Sec-
tion 3.2.2.2), the orange line indicates ideal model behavior.

MAE is 1.96 K. Similar to the local error, the ANN model’s global error neither
systematically over nor underestimates the propagated battery temperature. This
can be seen when contemplating the global error histogram in Figure 3.20.
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Figure 3.20: Deviation θ̂Nk − θNk of true and estimated battery temperature θ at the end of all charging
events k ∈ Ktest (global error) using the ANN thermal battery model (2 hidden layers, 10
neurons each, Section 3.2.2.2).

Although the ANN model’s performance outperforms all other models, the inter-
pretation of this result requires some caution. ANN models are prone to overfitting,
i.e., their ability to extrapolate on unseen data is often poor. For these cases, the LR
model could deliver more robust results when considering the local error. It is thus
suggested to apply a novelty detection to decide if the more accurate ANN model,
or the more robust LR model should be used. To this end, a one-class support vec-
tor machine [269] with a radial basis function kernel could be fit onto the training
data Btrain. Thus, all input data tuples that are similar to the training data contained
within Btrain will be considered as inliers, i.e., trusted data; estimations for this data
will be performed by the ANN model. All other input data tuples will be consid-
ered as outliers, i.e., unseen data, and will be handled by the LR model. Note that
the transition between inliers and outliers could also be designed in a continuous
manner (fuzzy transition), e.g., as in [240].
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3.2.4.3 Validation of Aging Model

The battery aging model as described in Section 3.2.3 separately estimates the bat-
tery’s capacity loss caused by cyclic and calendar aging. Aboard the EV, however,
the true SOH SH can only be measured as aggregated value, which in turn may
be subject to measurement errors; for the present use case, however, this error is
assumed to be negligible. To ensure a consistent validation, accordingly also aggre-
gated aging estimations ŜH are used; these are calculated by repeatedly applying
the aging model according to (3.21) throughout the lifetime of each EV. Figure 3.21
shows a scatter plot of estimated and true SOH values from real operated EVs.
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Figure 3.21: True and estimated battery SOH values using the battery aging model as describes in Sec-
tion 3.2.3, the orange line indicates ideal model behavior.

Estimating the aggregated SOH yields an RMSE of 0.159 % SOH compared with
measured SOH values. For the application of the proposed charging assistant, the
aging model is mainly used within optimization models to inhibit battery aging
effects while charging. Regardless of the aging model’s actual accuracy, battery
aging can be reduced. Thus, the RMSE of 0.159 % SOH seems acceptable for the
scope of this thesis.

On the upper end of true SOH, i.e., close to SH = 100 % SOH, some outliers can
be detected. These occur for new EVs that have batteries with slightly higher initial
capacity than the assumed nominal storage capacity enom. For these cases, the BMS
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may adapt enom to avoid measured values of SH exceeding 100 % SOH. The offline
calculation of ŜH based on the aging model, however, misses the information of
adapting enom. Thus, the estimated values ŜH can deviate from the true values SH.
Prospectively, the initial storage capacity would have to be considered directly in
the offline aging calculation, to avoid these inaccuracies.

Furthermore, it can be seen that with advancing battery aging, i.e., lower SH, the
aging model estimates too high values for ŜH. Hence, the aging model tends to
slightly underestimate battery degradation with progressing real degradation. This
appears to be a systematic model deficiency that in order to be resolved would
require remodeling, once according data is sufficiently available.

Note that all batteries from which the validation data is obtained, lost less than
approx. 4 % of their nominal storage capacity enom. Accordingly, none of the data
samples shown in Figure 3.21 occurs below true SH of approx. 96 % SOH. This
result seems reasonable, as battery degradation processes occur slowly—on a time
scale of years—and the underlying EVs only exist for a period of approx. two years.
At the moment, the battery aging model can thus only be validated for the initial
phase of degradation. In future work, progressing degradation, i.e., SH values of
less than 96 % SOH, may also be validated and remodeled if necessary. For this,
however, additional data from further degraded EV batteries is required.
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3.3 Conclusion

Chapter 3 deals with characterizing driving and charging behavior of EVs. For this
purpose, separate models represent the EV’s energy consumption while driving
and the EV battery’s state progression while charging.

To the end of consumption modeling (Section 3.1), a physical model is used as
baseline estimator. To include user-specific driving style, data-driven consumption
models are designed with additional features. For validation, an independent test
set is taken from measurement data of real EV trips. Due to low accuracy of an LR
model, non-linearity is assumed. This can be confirmed, as ANN and random forest
models are able to properly represent user-specific driving style and outperform the
baseline model. Hence, it is concluded that to estimate an EV’s energy consumption
more precisely, user’s driving style needs to be considered. In turn, according user-
related data needs to be available. If this data is not or only sparely available,
physical baseline model and user-specific data-driven model may be dynamically
weighted and combined. In this way, the high accuracy of the data-driven model
and the robustness of the baseline model can be leveraged.

For employing user-individual consumption models—such as the presented data-
driven model—characteristic driving styles of EV users are required. To efficiently
provide such information for future trips, in turn, calls for a user-individual map
containing aggregated data of historical trips; such a map, however, is outside the
scope of this thesis and is therefore subject to future work. In following research,
the presented consumption model should also consider effects of battery aging.
Furthermore, cross-validation over several independent test sets and/or vehicles
should be proceeded to benchmark generalization of the developed models.

To the end of battery modeling, a three-part model is used to estimate the battery’s
SOC, temperature, and SOH. First, to estimate the SOC, an ECM is used as electrical
model. For validation, discretized time series data measured from real EV charging
events is used. Then, a local error metric—per time step—and a global error metric
for entire charging events is calculated. The ECM appears to be suitable for EV
charging applications, i.e., for low-dynamic battery operation. For other, possibly
high-dynamic applications such as driving, a more complex model is likely to be
required.

Second, a state-of-the-art reduced-order thermal model is tested and seems to in-
adequately represent the battery’s thermal behavior. Thus, data-driven models are
engineered and validated similar to the electrical model. Using additional input
features, an ANN model can outperform the reduced-order model. Sparse training
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data, however, may result in over-fitting the ANN model. To overcome this problem
in future work, a two-model application may be helpful in which novelty detection
decides whether to use a more accurate ANN model (for trusted input data) or a
more robust LR model (for unseen input data). Furthermore, the input features
of the data-driven thermal models seem to lack further influences on the battery’s
thermal behavior. In future work, the input features could thus be enhanced with
information such as internal cell temperatures or ambient conditions, e.g., sun ra-
diation and wind. Typical EV on-board data, however, does not (yet) provide this
information, and these quantities would need to be forecast for the time window of
each charging event.

Third, a semi-empirical aging model from battery cell tests is used to estimate the
battery’s SOH. For validation, SOH measurements are used, obtained from real
operated EVs that lost less than approx. 4 % of their nominal battery storage ca-
pacity. For this initial phase of degradation, the aging model yields sufficiently
precise results. In future work, progressing degradation, should also be considered
in modeling and validation, once data from further degraded EV batteries is avail-
able. Furthermore, production variance of battery cells may invalidate the aging
model results, as fast degrading cells can determine the SOH of the entire EV bat-
tery. Therefore, prospectively an implicit representation, e.g., via machine learning
approaches is also suggested.

In summary, data-driven modeling is especially required for thermal and aging
models of the EV battery; for the EV battery’s electrical behavior while charging, a
less complex model—such as the presented ECM—suffices. The fact that all battery
model components are either battery- or battery-type-specific enables a generic us-
age in customer EVs, decoupled from user-individual behavior. Although the data
to train and validate the battery model is obtained from real-world operated EVs,
exceptional situations may still be underrepresented; these could comprise very
high or low ambient temperatures, and bidirectional charging events, e.g., required
for V2G services (see Section 1.1.1.2). A corresponding investigation of the EV
models’ behavior in exceptional situations is thus strongly recommended for future
work.
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4 Mobility Prediction

To ensure sufficient user acceptance of an automatically generated charging strat-
egy, the EV user’s individual mobility requirements need to be considered. Hence,
the mobility prediction module shown in Figure 4.1 uses an ensemble of different
machine learning techniques to pursue the following three targets.

Two-Stage
Spatial Clustering

(Section 4.2)

Next Location
Prediction
(Section 4.3)

Parking Duration
Estimation
(Section 4.4)

Historical
Trips J

Planned
Trips Next

Location l̂ j+1,τ

Estimated
Parking
Duration τ̂p

Known
Locations L

Figure 4.1: Schematic block diagram of the mobility prediction module and its components; inputs of
the EV user, e.g., via a calendar interface, may provide information on planned trips.

First, a two-stage spatial clustering algorithm is applied to the end locations of
the EV user’s historical trips. In this way, locations the user frequently visits, i.e.,
known locations, can be determined. Each of these known locations is character-
ized by a geodetic center location surrounded by a radius of stay. Subsequently
to clustering, each known location may be enhanced with additional context infor-
mation. The detailed approach can be found in Section 4.2 and is partly based on
Schwenk et al. [270]. Second, the sequence of known locations together with their
context information is used to train a random forest classification model. When
departing from a known location, this model predicts the next known location that
the user may visit and the corresponding probability. In addition, planned trips—
e.g., extracted from the user’s calendar as in Schwenk et al. [271]—can be used to
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enhance the prediction accuracy (see also [272]). All belonging methods and evalu-
ations are described in Section 4.3. Third, different ensembles of regression models
are generated from the sequence of known locations and their context information.
Upon arrival at a known location, these models estimate the typical idle time (i.e.,
parking duration) of the EV. This approach is partly based on Schwenk et al. [270];
all details can be found in Section 4.4. Note that all three modeling components
require the collection of user data over an extended period of time before a valid
output can be generated. A suitable initialization—e.g., user-independent models
that can be transfer-learned—is therefore essential to ensure seamless functional-
ity of the charging assistant immediately after activation by the EV user (cold start
setup, see also Section 2.2.2). Before introducing the detailed algorithms and pre-
senting the results, however, Section 4.1 provides a description of the available data
used for model training and evaluation.
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4.1 Available Data of Users’ Mobility Behavior

The available data on individual mobility behavior is generally limited due to data
privacy; particularly, users must explicitly consent to the storage and purposeful
use of their personal data, see also [273]. In the following, two data sets a described
that are used for model training and evaluation in the subsequent Sections 4.2, 4.3,
and 4.4.

4.1.1 Data of Real Mobility Behavior

The first data set of historical trips J real is recorded from a personal vehicle over the
two years 2018 and 2019. During these two years, the vehicle was only used by a sin-
gle person and was the prioritized means of transport during this time.1 The vehicle
was equipped with an on-board computer to record trip data and parking duration.
This data was then transferred via an Internet-of-Things system using the MQTT
protocol to a backend database for storage; for further details see also Section 2.3.
The final data set in the database consists of |J real| = 2906 trips. Each trip j ∈ J real

starts at departure time tj,0 at the start location l j,0 =
(
llat, j,0, llon, j,0

)
. Accordingly,

each trip ends at arrival time tj,τ at the parking location l j,τ =
(
llat, j,τ , llon, j,τ

)
. Fur-

thermore, all trips in J real are ordered in time, i.e., l j,τ = l j+1,0. Note that this data
set only mirrors the behavior of one individual user and is therefore not necessarily
representative of other EV users. In the remainder of this chapter, this data set will
be referred to as real data or J real, respectively.

4.1.2 Generation of Semi-Synthetic Data

Besides the real data recorded from a single user, an additional semi-synthetic data
set J syn is generated. This data set aims to represent typical and predictable electric
vehicle user behavior with a defined amount of random and unpredictable events.
As real user behavior is likely to be less predictable, the data set functions as a qual-
itative benchmark data set for the predictive models in Section 4.3 and Section 4.4.

Generating the semi-synthetic data set follows the procedure given in Algorithm 4.1
(see page 89) and is briefly described here. For the sake of comparability, the same

1Note that the vehicle user was formally notified and agreed to the recording and use of their data for
scientific purposes.
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time frame is used as for the real data, i.e., the years 2018 and 2019. Starting from
a home location, for each day within this time frame trips are taken in between the
eight locations

Lsyn =
{

lhome, lwork, lorchestra, lgym, lparents, lgrocery, lpool, lbackoffice

}
, (4.1)

which represent the most commonly visited places for a real EV user. To account
for spatial variations of the parking position, each location is offset by a normally
distributed variable ι ∼ N (0, 0.0005) when generating the sequence of trips.2 In Al-
gorithm 4.1, each new trip that is added to J syn is denoted by a blue line following
the scheme:

[departure time]±[standard deviation]: [start location]→ [end location] ([mean travel time])

The trip sequences include recurrences on four levels: daily, weekly, monthly, and
seasonally. Besides the eight known locations in Lsyn, no further, unknown lo-
cations are visited. All departure times are assumed to be normally distributed;
the according standard deviation is directly indicated with each departure time.
An external routing service provides mean values for all travel times, neglecting
variations due to different start times of a trip; to account for stochastic fluctua-
tions in travel times, they are multiplied with a normally distributed random factor
ζ ∼ N (1, 0.05).3 Twice a week, a grocery store is occasionally visited in between
work and home location, see Algorithm 4.1, lines 19-21 and lines 38-40. The probabil-
ity that each of these visits occurs is defined by the Bernoulli-distributed random
variable ξ ∼ B(0.5). In addition, all trips made Monday through Friday occur only
on regular workdays, not holidays, see Algorithm 4.1, line 2. The required list of
public and school holidays “holidayList” is obtained from a holiday calendar, or
optionally also from the EV user’s personal calendar, if available. In this way, the
semi-synthetic data set J syn is obtained, which in the remainder of this chapter will
be referred to as synthetic data.4

2At the equator, the standard deviation 0.0005 corresponds to a radius of approx. 55 m around the
target location.

3Overlaps caused by the normally distributed times (e.g., departure before arrival time) are handled in
the data cleaning process of the subsequent models, see Section 4.3 and Section 4.4.

4To support future research on predicting human mobility, the data set Lsyn and source code of Algo-
rithm 4.1 is online available at: https://github.com/KarlSchwenk/mobility-data-creator
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Algorithm 4.1: Procedure to generate semi-synthetic mobility data
set J syn based on set of known locations Lsyn and real mobility behavior
of a single EV user (note the time format hours:minutes (local time zone)
and the date format day.month.year).

Input: Lsyn, holidayList

1: for each day ∈ {1.1.2018, 2.1.2018, . . . , 30.12.2019, 31.12.2019} :
# check if current day is public/school holiday

2: if day /∈ holidayList :
3: if day is Monday :
4: if day is first Monday of month :

# monthly visit of backoffice

5: 08:00 ± 5 min: lhome → lbackoffice (70 min)
6: 15:45 ± 45 min: lbackoffice → lhome (85 min)
7: else:
8: 06:00 ± 5 min: lhome → lwork (22 min)
9: 16:30 ± 45 min: lwork → lhome (25 min)

10: if day is Tuesday :
11: 06:00 ± 5 min: lhome → lwork (22 min)
12: if day ∈ {1.5.2018, . . . , 30.9.2018, 1.5.2019, . . . , 30.9.2019} :

# seasonal visit of public swimming pool, only in summer months

13: 14:45 ± 45 min: lwork → lpool (12 min)
14: 16:20 ± 20 min: lpool → lhome (23 min)
15: else:
16: 16:30 ± 45 min: lwork → lhome (25 min)
17: if day is Wednesday :
18: 06:00 ± 5 min: lhome → lwork (22 min)
19: if 1 == ξ ∼ B(0.5) :

# random visit of grocery store with 50 % probability

20: 16:30 ± 45 min: lwork → lgrocery (20 min)
21: 17:15 ± 5 min: lgrocery → lhome (6 min)
22: else:
23: 16:30 ± 45 min: lwork → lhome (25 min)
24: 18:24 ± 30 min: lhome → lgym (35 min)
25: 20:49 ± 10 min: lgym → lhome (32 min)
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Continuation of Algorithm 4.1.

# continued for-loop from Algorithm 4.1, line 1

# continued if-statement from Algorithm 4.1, line 4

26: if day is Thursday :
27: 06:15 ± 5 min: lhome → lwork (22 min)
28: if day ∈ {1.5.2018, . . . , 30.9.2018, 1.5.2019, . . . , 30.9.2019} :

# seasonal visit of public swimming pool, only in summer months

29: 15:20 ± 45 min: lwork → lpool (12 min)
30: 17:00 ± 20 min: lpool → lhome (23 min)
31: else:
32: 16:30 ± 45 min: lwork → lhome (25 min)
33: if day is Friday :
34: 06:00 ± 5 min: lhome → lwork (22 min)
35: if 1 == ξ ∼ B(0.5) :

# random visit of grocery store with 50 % probability

36: 15:30 ± 45 min: lwork → lgrocery (20 min)
37: 16:15 ± 5 min: lgrocery → lhome (6 min)
38: else:
39: 15:30 ± 45 min: lwork → lhome (25 min)
40: 19:27 ± 30 min: lhome → lorchestra (19 min)
41: 22:15 ± 5 min: lorchestra → lhome (18 min)
42: if day is Saturday :
43: 10:00 ± 45 min: lhome → lgrocery (6 min)
44: 11:05 ± 5 min: lgrocery → lhome (6 min)
45: if day is Sunday :
46: 11:55 ± 45 min: lhome → lparents (24 min)
47: 15:00 ± 60 min: lparents → lhome (25 min)

Output: J syn

90



Determination of Users’ Known Locations

4.2 Determination of Users’ Known Locations

Generally, the habits of human behavior—in this case EV users—are assumed to be
coupled with a limited number of specific locations; for instance, the most common
locations comprise the user’s home address, work place and favorite grocery store.
When targeting to generate an EV charging strategy that is adapted to these habits,
the knowledge of EV users’ frequently visited locations is crucial. In the following
these frequently visited locations will also be referred to as known locations L.

In the process of determining a user’s known locations based on parking locations
recorded aboard an EV (as in Section 2.3), two challenges may occur. First, the
tolerance inherent in measurements of a GPS location may deviate up to approx.
30 m from the actual parking location.5 Second, the EV user may not necessarily
park their EV at exactly the same GPS location, although visiting only a single
location.

To overcome these challenges and estimate the true locations an EV user frequently
visits, a two-stage spatial clustering approach is presented in this section. For this
purpose, the real data J real as described in Section 4.1.1 is used. After initially
cleaning the data set, a state-of-the-art density-based spatial clustering algorithm is
run in the first stage. In the second stage, a joining algorithm combines clusters
that are assumed to represent a single known location of the EV user. Finally, the
proposed scheme is briefly evaluated to demonstrate its functionality.

4.2.1 Data Cleaning

To ensure a proper data quality, the raw data is initially processed as follows. First,
all trips possessing measurement errors are removed; these may comprise invalid
GPS values for their parking locations and/or corrupt timestamps. Then, all trips
shorter than 15 s are removed, as these are assumed to be unrealistic trip times
and thus also measurement errors. After removing all invalid trips, the parking
duration τp is calculated, i.e., the time after each trip the EV is stationary before the
next trip begins. Subsequently, the data is filtered to only include trips possessing a
parking duration between 2 h and 24 h. This time frame appears to be particularly
relevant for smart charging applications such as charging scheduling and charging
optimization. For a parking time of less than 2 h it is either unreasonable to plug in

5For parking locations without GPS connection, the last transferred location is used.
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the EV at all, or, if plugged in, the user would likely require the EV to be charged at
maximum power; hence, there would not be enough flexibility to enable charging
optimization. On the other hand, if the parking duration exceeds 24 h there is too
much flexibility. As a consequence, charging optimization either becomes trivial,
or the uncertainty inherent in charging scheduling exceeds a trustworthy level.
More details on the latter case can be found in the according chapters on charging
scheduling (Chapter 5) and charging optimization (Chapter 6).

Note that performing the filtering task in a real-world application calls for an addi-
tional model predicting whether the parking duration will be within 2 h to 24 h or
not. In preliminary tests using the real data set, a binary random forest classifier
achieved a precision of 93.1 % and a recall of 85.5 %.

4.2.2 Two-Stage Density-Based Spatial Clustering

Given clean data, the next aspect in determining an EV user’s known locations is
a two-stage clustering algorithm. In the first stage, a standard DBSCAN-algorithm
[274] is applied to the parking locations l j,τ =

(
llat, j,τ , llon, j,τ

)
of all trips j ∈ J real.6

DBSCAN is a state-of-the-art density-based spatial clustering algorithm that can be
parameterized with little prior knowledge of the data. To level out measurement
scatter of parking locations in the first clustering stage, the density parameter (i.e.,
the maximum spatial distance of two data points within a cluster) is adjusted to GPS
measurement tolerance. In addition, specifying a minimum number of data points
per cluster allows to designate irregularly visited locations as “noise”. Furthermore,
DBSCAN is able to detect clusters of arbitrary shapes; a property helpful to handle
various parking setups, e.g., both along a street (elongated cluster shape) and in a
rectangular parking lot (bulky cluster shape). For more insight into the functionality
and properties of DBSCAN, see [274].

Although this initial clustering stage generates several suitable clusters, it may also
create multiple clusters representing only a single known location. For this reason,
the second-stage algorithm joins clusters whose center locations are closer to each
other than a predefined threshold. This threshold represents a typical walking dis-
tance a user may take. Particularly, users would either walk that distance—without
using the EV—or, if they choose to drive, the energy consumption of such short
trips is negligible. The second stage algorithm furthermore assigns GPS points pri-
marily labeled as “noise” to existing clusters, if these locations are within a specific

6DBSCAN is short for “Density-Based Spatial Clustering for Applications with Noise”, see also [274].
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neighborhood radius. In this way, irregular parking positions at a known location
can still be detected by the algorithm. Hence, the size of the neighborhood radius
should be chosen to a reasonable distance for users to walk when parking at a
known location.

As a final step, the set of inferred known locations L is ordered and each location
l ∈ L is labeled according to the frequency of its occurrence. The location that
contains the most data points is labeled as l1 (or “Location 1”), that with the second-
most data points l2 (or “Location 2”), and so on. Furthermore, the data points
considered as noise will be referred to as “-1”. Once determined by the two-stage
algorithm, each known location may also be augmented with information, e.g., on
charging infrastructure, surrounding amenities and user preferences, see also [275].
In this way, the performance of subsequent predictive models (see Section 4.3 and
Section 4.4) can be improved.

4.2.3 Evaluation of Clustering

This section aims to demonstrate how the two-stage clustering approach presented
in Section 4.2.2 is able to enhance a default DBSCAN algorithm. To achieve this,
all parts of the algorithm are implemented in Python [256] using Scikit-Learn [254].
Then, the synthetic data set J syn is used to tune the parameters of the two-stage
clustering algorithm (see Table 4.1). In particular, the parameters are manually

Table 4.1: Parameters and selected values for two-stage density-based spatial clustering algorithm (see
Section 4.2.2) to determine EV users’ known locations.

Parameter Selected Value

Density Parameter of Clusters 100 m

Minimum Number of Data Points per Cluster 5

Maximum Cluster Distance for Joining Clusters 500 m

Neighborhood Radius to Assign Noise 300 m

adjusted in a way that the inferred known locations after clustering are identical
with the ones used for initially generating the data set (see Algorithm 4.1). This
procedure can be legitimately applied, as no further, unknown locations besides
the eight known locations in Lsyn are visited. Hence, there are no “noise” locations
in J syn, i.e., no trips to irregularly visited locations. The eventually chosen values
for each parameter are also given in Table 4.1.
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For evaluation, both available data sets J syn and J real (see Section 4.1) are eval-
uated individually. For the real data J real, Figure 4.2 shows a map section of
southwestern Germany with the inferred known locations Lreal drawn as blue cir-
cles.7 Here, the proposed two-stage clustering approach is used. It can be seen
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Figure 4.2: Map section of southwestern Germany with inferred known locations Lreal (blue circles) and
noise points (pink crosses) using the proposed two-stage clustering approach, based on real
data J real, orange double lines indicate major highways.

that all nine determined locations are separated locally and have travel distances
of less than approx. 50 km in between each other. Furthermore, irregularly visited
locations, i.e., “noise” points are drawn as pink crosses.8 Although many “noise”
points are determined, either the density of these points or the minimum number
of data points did not suffice to form another cluster. However, if the user would
continue to visit one of these “noise” locations, an additional cluster, i.e., known
location, could be formed eventually. To always obtain a clustering result that is
representative of the EV user’s momentary mobility behavior, a frequent recalcu-

7To ensure proper data privacy for the real data set, location numbering is omitted in Figure 4.2.
8Further “noise” points outside the scope of Figure 4.2 exist, which are not shown here.
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lation (e.g., on a weekly basis) may be required. Alternatively, a stream clustering
approach that uses a rolling time window of historical data (e.g., 90 days) as de-
scribed in [242] could be implemented.

To also perform a quantitative comparison of default DBSCAN with the proposed
two-stage clustering approach, in Figure 4.3 a bar chart is shown. For each known
location that was determined from the real data set J real, vertical bars indicate
the relative relevance, i.e., share of data points per cluster; orange bars are used
for default DBSCAN, blue bars for two-stage clustering. Furthermore, the share of
data points labeled as “noise” is shown. Default DBSCAN finds 42 locations from
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Figure 4.3: Inferred known locations Lreal and their relative relevance to compare default DBSCAN with
the proposed two-stage clustering approach (see Section 4.2.2) on the real data set J real; in
addition, the share of data points labeled as “Noise” is shown.

which only 14 (as shown in Figure 4.3, orange bars) possess more than 1 % of the
data points. Hence, especially the locations 15 to 42 are locations the user does not
visit on a regular basis. Generating trustworthy predictions on parking duration
or next locations to visit becomes accordingly difficult for these locations. Another
measure of quality is the share of data points assigned to “noise”, i.e., the share of
irregularly visited locations. Default DBSCAN labels 12.21 % of all data points as
“noise”.

However, when using the two-stage clustering approach, i.e., comprising cleaning
the data, joining close clusters and assigning “noise” within a neighborhood radius,
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only 9 locations are found, see blue bars in Figure 4.3. Hence, the relevance of the
locations has been redistributed. Data points, which the default DBSCAN algorithm
assigned to locations with low relevance, i.e., location 10 to 42, were reassigned to
one of the locations 1 to 9. For instance, the relevance of location 1 increases from
44.03 % to 65.81 %, accordingly. Furthermore, the share of data points labeled as
“noise” is reduced from 12.21 % to 7.75 %.

The effectiveness of the second stage of the spatial clustering method can also be
seen considering an example of the synthetic data set J syn. Figure 4.4 therefore
visually compares the results of the default DBSCAN (left) and the two-stage clus-
tering (right). All raw data points are depicted as crosses, the inferred clusters
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Figure 4.4: Comparison of the default DBSCAN (a) and the two-stage spatial clustering approach (in-
cluding data cleaning) (b). The two-stage approach combines clusters that are not clearly
separated to ensure well-defined single locations for further assessment.

are shown as colored markers with a surrounding neighborhood radius. Notice-
ably, the default DBSCAN method generates three distinct clusters (Figure 4.4, left).
However, these three clusters are very close to each other, and there is no clear
separation in between. On the contrary, when applying the two-stage clustering
method, only one cluster is generated (Figure 4.4, right), despite the underlying
raw data being identical. This single cluster, formed by joining clusters whose cen-
ter locations are less than 500 m apart, represents a clearly defined single location.
Hence, it is far more advantageous for the performance of subsequent predictive
models as described in Section 4.3 and Section 4.4. Furthermore, a two-stage ap-
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proach allows to flexibly adjust parameters depending on the EV user’s individual
mobility setup. For example, a user living in a densely populated city requires a
different neighborhood distance than one living in a sparsely populated country
region. This accounts for a major advantage of the two-stage clustering approach.

4.3 Prediction of Next Location

Adapting an EV’s charging process in an automated manner necessarily calls for
knowledge of the EV’s future energy demand. To this end, the next location to
visit l̂ j+1,τ needs to be predicted given a specific context, e.g., the time, and the
current and last locations. For this, the point in time of departing from a known
location (see Section 4.2) is taken as reference, see Figure 4.5.9 Based on the

Parking at
current location

Trip to
next location

Time

Time of predicting
next location to visit

Figure 4.5: Schematic sequence of trips (light blue) and parking periods (dark blue) to indicate the point
in time (red arrow) of predicting the next location to visit.

next trip’s destination, an external routing service and a consumption model (e.g.,
as in Section 3.1) can be used to derive the future energy consumption of the EV.
Furthermore, probabilistic predictions are applied to obtain all possible destinations
of the next trip and their corresponding probability Pt. This information allows to
also estimate an expected energy consumption and a measure of uncertainty, e.g.,
the energy consumption’s standard deviation. Depending on the data quality, the
distribution of the next trip’s energy consumption may also be estimated directly
in a future application. In addition to Pt, a residual probability Pr is deduced to
quantify the chance of the user visiting an unknown (“noise”) location next.

In the remainder of this section, first the engineering of features and labels based on
historical trips J and the previously determined known locations L (see Section 4.2)

9Adapting a future charging process (as in Chapter 6) requires to predict the next trip’s destination
already upon arrival at the current location. At this point in time, however, some input features (see
Section 4.3.1) are unknown and therefore need to be estimated separately in future work.
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is described. Then, two classification models are designed to predict the most likely
destination l̂ j+1,τ of the next trip and estimate the transition probabilities Pt. Finally,
all methods are evaluated and the results are presented.

4.3.1 Data Engineering for Next Location Prediction

This step combines the historical trip data J with the determined known loca-
tions L. 10 Particularly, the historical sequence of visited (known) locations is
considered as time series of discrete events. First, a general preprocessing is con-
ducted. For each trip j ∈ J the start location l j,0 ∈ L (i.e., the cluster number) is
derived from the end location l j−1,τp ∈ L of the previous trip j− 1. For this, the
previously determined known locations L are used (see Section 4.2). If data gaps
exist, e.g., from data cleaning as described in Section 4.2.1, the start location of the
consecutive trip is assigned to “noise”. All these trips starting from an unknown
location are removed for training and evaluation of the predictive models (see Sec-
tion 4.3.2); the resulting models therefore only produce valid predictions for trips
starting from a known location. Furthermore, round trips, i.e., trips with the same
start and end location are excluded in both training and test data. These trips may
exist due to removing very short trips (see Section 4.2.1) or joining several identi-
fied locations in the second clustering stage (see Section 4.2.2). In this step each trip
may also be enriched with supplementary information such as calculated energy
consumption or the type of trip, i.e., spontaneous or planned; the latter information
e.g., could be acquired from the EV user’s calendar. Together with one-time user
inputs such as home and work location, the accuracy of the predictive models may
thus be improved.

Second, each trip’s end location l j,τ is defined as one-hot encoded training label for
the classification models described in Section 4.3.2. When starting a new trip from
a known location, the models are thus trained to predict the most likely location
l̂ j+1,τ at which this trip may end.

To effectively achieve this, additional features are designed from the start time of
each trip. All features are then combined in the feature vector xl ∈ R9, whose
components are briefly described here:

• Current Location: The known location from which the next trip starts, given
as an integer numeric value; Unknown locations, i.e., “noise” equate to −1.

10All data engineering steps are separately proceeded for both data sets J syn and J real, see Section 4.1.
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• Last Location: The known location from which the last trip started, given as
an integer numeric value; Unknown locations, i.e., “noise” equate to −1.

• Hour of Day: The time at which the next trip starts, expressed as duration
since midnight and given as a real numeric value, e.g., 09:42 is encoded as 9.7.

• Time Window of Day: One-hot encoded variable to indicate different time
windows of a day (based on the hour of day), i.e., morning (05:00-08:59), noon
(09:00-12:59), afternoon (13:00-16:59), evening (17:00-21:59), and night (22:00-
4:59).

• Day of Week: Encoding of the day of the week (integer numeric value, 0 for
Sunday to 6 for Saturday) to represent frequently reoccurring weekly trips.

• Month: Numeric values that indicate the month of the year (1-12 as an integer
numeric value) to represent seasonally varying mobility behavior.

• Is Holiday: Boolean value based on a holiday calendar indicating which days
are public and/or school holidays; in this way, work-free days e.g., without
specific trips to work could be mapped.

• Last Trip Duration: Travel time of the previous trip before parking at the
current location.

• Parking Duration at Current Location: The time the EV has been parked at
the current location before the next trip started.

To quantify the performance of these features, the Gini importance qGini is used as
shown in Table 4.5. This metric is considered appropriate as in Section 4.3.2 a ran-

Table 4.2: Gini importance qGini using a random forest model for all features when predicting the next
trip destination on the real data J real. Higher numbers indicate that the feature causes a larger
mean decrease in impurity and is therefore more relevant to the random forest [276, 277].

Feature Importance qGini to Label l̂ j+1,τ

Current Location 0.2184

Last Location 0.0419

Hour of Day 0.2386

Time Window of Day 0.0475

Day of Week 0.0945

Month 0.0733

Is Holiday 0.0135

Last Trip Duration 0.1151

Parking Duration at Current Location 0.1573
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dom forest classification is used as machine learning model [276, 277]. A definition
of qGini taken from [276–278] can be found in Section A.1.2.

It can be seen that “Hour of Day” is the most important feature to predict the
label l̂ j+1,τ . Hence, a certain daily rhythm may exist and the EV user may have
regular trips based on the time of the day. On the contrary, the “Time Window of
Day” feature, which is highly correlated with the hour of the day, is not important.
Apparently, the information regarding the daily rhythm is thus sufficiently covered
by the “Hour of Day” feature. Furthermore, the “Current Location” is almost as
important to predict l̂ j+1,τ as the “Hour of Day”. A future trip’s destination thus
also strongly depends on the location from which it starts. This seems reasonable,
as most trips are coupled to a specific purpose, which in turn is usually coupled to
a specific location. Both the “Parking Duration at Current Location” and “Last Trip
Duration” are also relevant for the label. This suggests repetitive patterns, i.e., the
next location may be different if the car was parked for a large amount of time or
if the last trip was very short. All remaining features only show minor importance
for predicting l̂ j+1,τ . For “Day of Week”, “Month”, and “Is Holiday” this suggests
that the mobility behavior of the evaluated user does not exhibit underlying weekly
and seasonal patterns. The low importance of the “Last Location” indicates that
the history of visited locations has only a minor impact on the next location to be
visited.

4.3.2 Models to Predict the Next Location to Visit

For predicting the next location to visit two models are tested. First, a naive baseline
model is presented, which only takes the feature “Current Location” into account;
it functions as a benchmark. Second, a more advanced random forest model is de-
signed that considers all features xl ; the according fundamentals on random forests
can be found in [260]. Both models are trained and tested using a five-fold cross-
validation on both data sets described in Section 4.1, i.e., the real data set J real and
the synthetic data set J syn. The according train and test sets are denominated using
the index “train” or “test”, respectively.

4.3.2.1 Most-Common Next Location Model

To design a naive baseline model, the most frequently visited next location is de-
termined for each known location. For this, the training data set J train is filtered
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to only contain trips departing from a single known location l. Thus, a filtered
training data set of trips

J (l)
train =

{
j ∈ J train|l j,0 = l

}
, (4.2)

is obtained for each known location l ∈ L. When departing from a known location
l ∈ L, the next location to visit is predicted as

l̂ j+1,τ = argmax
∀k∈L

{∣∣∣{j ∈ J (l)
train|l j,τ = k}

∣∣∣} , (4.3)

regardless of previously visited locations or time. To better understand the charac-
teristics of this model, consider the following example. For an arbitrary EV user,
the majority of historical trips starting from the home location possess the end loca-
tion work. Then, the predicted next place to visit for all future trips starting from
home would always be the work location. Despite the current location, the predic-
tions of this model are thus independent from all other features in xl ; all resulting
predictions are time-invariant, accordingly.

In the following, this model will be referred to as Baseline model. It is used to
benchmark the more advanced random forest model described in Section 4.3.2.2.

4.3.2.2 Random Forest Classification Model

As second model, a random forest classification model as described in [260] is used.
It consists of a maximum of 100 decision trees, which are individually trained with
randomly selected subsets of the training data. For the training process, the Gini

importance is used as loss metric (see also [276,277]). All other hyperparameters of
the model are used with their default values as given by Scikit-Learn [254].

Primarily, the random forest model aims to predict a one-hot encoded vector of
all next locations to visit. In addition to these deterministic predictions, however,
the conditional transition probabilities Pt(l|xl), ∀l ∈ L are also estimated. Given a
context expressed by the feature vector xl , this probability represents the chance
that the EV user may visit the location l next. Note that the summed transition
probabilities for all known locations may be less than one. Accordingly, the residual
probability

Pr(xl) = 1− ∑
∀l∈L

Pt(l|xl), (4.4)

can be deduced as a measure of uncertainty for each context xl . The residual proba-
bility Pr thus represents the chance that the EV user may visit an unknown location
next.
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In the following, this model will be referred to as Random Forest model.

4.3.3 Validation and Results

To evaluate the models described in Section 4.3.2, a five-fold cross-validation on
both the real data set J real and the synthetic data set J syn (see Section 4.1)
is performed. For this, all models and evaluation schemes are implemented in
Python [256] using Scikit-Learn [254]. Only the eight most frequently visited loca-
tions are considered for both training and evaluation. All trips with unknown start
and end location, and all round trips, i.e., trips with the same start and end location,
are removed. In doing so, the real data set J real can directly be compared with the
synthetic data set J syn. Furthermore, the present study focuses on predicting the
next locations to visit in order to estimate the EVs future energy demand. If either
the start or end location is unknown (or both are identical), this cannot be achieved.
Therefore, the next location is only predicted for trips starting from and going to
commonly visited, i.e., known locations.

To quantify model performance, the mean accuracy qACC (see (A.5)) is calculated.
This quantity represents the portion of next locations a model predicts correctly,
i.e., predicted locations that equal the true location visited next. The evaluation is
also proceeded for location-specific subsets (as defined in (4.2)) of the test data, to
evaluate the model for a specific scope, see Section 4.3.3.1.

Furthermore, the probabilistic output of the random forest model, i.e., the proba-
bility of each location to be visited next, is evaluated in Section 4.3.3.2. For this, a
matrix is created that contains all possible transition probabilities Pt based on the
set of known locations L. Based on the real data set, finally, a one-day simulation is
used to qualitatively evaluate the transition probabilities over time.

4.3.3.1 General Performance of Models to Predict the Next Location

In terms of the average accuracy qACC, the random forest classification model is
generally able to outperform a naive baseline model (see Section 4.3.2). As shown
in Table 4.3, the random forest model yields an average accuracy qACC = 65.12 %
on the real data set J real; the random forest hence correctly predicts approx. two
thirds of all next locations to visit. This level of accuracy is considered sufficient
for use cases such as charging scheduling described in Chapter 5. The baseline
model, on the other hand, only achieves an (likely insufficient) average accuracy of
qACC = 43.64 %.
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Table 4.3: Comparison of baseline and random forest model (see Section 4.3.2) accuracy qACC for differ-
ent scopes (start locations) when predicting the next location to visit on the real data set J real

using a five-fold cross-validation.

Scope Baseline Model Random Forest

Location 1 20.59% 59.83%

Location 2 67.72% 65.27%

Location 3 81.68% 76.56%

Location 4 66.67% 41.50%

Location 5 66.02% 66.01%

Location 6 76.17% 70.88%

Location 7 51.0% 38.0%

Location 8 91.67% 88.81%

Average 43.64% 65.12%

The location-specific evaluation in Table 4.3 shows that especially for Location 1,
i.e., the home location, the random forest model yields more precise results. For all
other locations, however, the baseline model either achieves similar or even higher
accuracy compared with the random forest model. This can be explained by the
fact that trips starting from any location other than home mostly possess the end lo-
cation home; the naive baseline model, which always predicts the most frequent trip
destination per location, can easily handle those trips. Trips starting from home, on
the contrary, go to many different locations. Here, the baseline model is only able to
correctly predict the next location for about one fifth of all trips. The random forest
model, however, has the ability to leverage features such as time and previously vis-
ited locations to achieve much higher accuracy (qACC = 59.83 %) for Location 1. In
the future, the predictions of both models could be combined to achieve a higher av-
erage accuracy. Alternatively, an individual random forest model could be trained
for each start location. In this way, the underlying classification problem would
simplify and improved accuracy can be expected. This, however, also comes with
increased computational complexity for both model training and predictions.

As shown in Table 4.4, evaluating the models on the synthetic data set J syn ex-
hibits similar results. While the random forest model yields an average accuracy
of qACC = 94.0 %, the average accuracy of the baseline model only amounts to
qACC = 69.25 %. A result that can be expected when considering the rule-based cre-
ation of the synthetic data as described in Section 4.1.2. As stated in Algorithm 4.1
(lines 19 and 35), the only trips whose end locations are subject to randomness start
from Location 2, i.e., the work location. Those trips possess a 50 % chance of ran-
domly visiting a grocery store twice a week. Contemplating the location-specific

103



Mobility Prediction

Table 4.4: Comparison of baseline and random forest model (see Section 4.3.2) accuracy qACC for differ-
ent scopes (start locations) when predicting the next location to visit on the synthetic data set
J syn using a five-fold cross-validation.

Scope Baseline Model Random Forest

Location 1 52.93% 99.35%

Location 2 65.31% 76.69%

Location 3 89.32% 98.61%

Location 4 100.0% 100.0%

Location 5 100.0% 100.0%

Location 6 100.0% 100.0%

Location 7 98.57% 100.0%

Location 8 100.0% 100.0%

Average 69.25% 94.0%

results in Table 4.4 reveals this characteristic of the data set J syn. While the ran-
dom forest model almost perfectly (qACC ∼= 100.0 %) predicts the next location for
most start locations, Location 2 is the only location at which the accuracy drops
to 76.69 %. In this situation, however, even ideal models could not exceed 80 %
accuracy.11

Although the levels of accuracy for the synthetic data J syn are significantly beyond
the levels of the real data J real, the results still provide a useful benchmark. The
synthetic data features an inherent structure that arises from rule-based (see Al-
gorithm 4.1) sequences of trips without irregular trips to unknown locations, e.g.,
vacation journeys. Regardless of the underlying user that the real data is taken
from, it is very unlikely to be as structured as the synthetic data J syn. In terms of
next locations to visit, any real data set is likely to be less predictable than J syn,
accordingly (see also [279]). The random forest model’s accuracy on J syn thus
constitutes an qualitative upper bound for next place prediction.

4.3.3.2 Probabilistic Evaluation of Random Forest Model

A point prediction of the next location to visit may not be helpful if all possible
next locations and their corresponding probability are of interest. For this rea-
son, the random forest model also estimates the conditional transition probabilities

11Five trips per week, three of which are completely predictable and two with 50 %-uncertain destina-
tions; hence, qACC ≤ 1

5 (3 · 100 % + 2 · 50 %) = 80 %.
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Pt(l|xl), ∀l ∈ L. For a given context xl , the transition probability Pt(l|xl) repre-
sents the chance to visit the location l next. When considering all combinations of
start and end locations, i.e., current and next locations, Pt may be presented in a
transition matrix. Figure 4.6 shows the transition matrix of the random forest model
trained on the real data J real for an arbitrary Monday morning at 05:00 o’clock.

1 2 3 4 5 6 7 8 Σ Pr

1

2

3

4

5

6

7

8

98% 2%0% 92% 2% 1% 0% 1% 2% 0%

96% 4%21% 58% 0% 15% 0% 0% 1% 1%

78% 22%35% 31% 2% 4% 0% 0% 4% 2%

71% 29%36% 27% 4% 0% 0% 0% 2% 2%

68% 32%33% 29% 2% 0% 1% 0% 1% 2%

72% 28%33% 30% 1% 1% 2% 0% 2% 3%

75% 25%31% 30% 1% 1% 6% 0% 2% 4%

66% 34%31% 29% 1% 0% 3% 0% 1% 1%

Next Location

C
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Figure 4.6: Transition matrix containing transition probabilities Pt for all combinations of current and
next location on a Monday morning at 05:00 o’clock; random forest model (see Section 4.3.2.2)
trained on real data set J real (see Section 4.1.1).

In addition to the transition probabilities, the summed probability for each current
location is also calculated and given in a separate column; the sum may be less
than one (or 100 %, respectively), i.e., if the next trip may have an unknown end
location. For this case, the residual probability Pr is deduced according to (4.4) and
also given in another column.

It can be seen that on Monday morning the most likely trip will occur from Loca-
tion 1 (home) to Location 2 (work) with a probability of Pt = 92 %. Furthermore, the
residual probability Pr for trips starting from home only amounts to 2 %; given this
context, hence only 2 % of trips are predicted to have an unknown end location.

Note that the transition matrix as shown in Figure 4.6 is only valid for a single
point in time.12 To also evaluate the transition probabilities over time, a one-day
simulation is performed. In particular, the random forest model’s input vector xl is
varied over the time of one day and for all known locations to obtain a set of Pt-

12The baseline model (see Section 4.3.2.1) would be the simplest approach that yields a time-invariant
transition matrix.
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profiles. The result for an arbitrary Monday when starting a trip from Location 1
(home) is drawn in Figure 4.7.
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Figure 4.7: Stacked transition probabilities Pt for a trip starting from Location 1 (home) to all possible
end locations on an arbitrary Monday; random forest model (see Section 4.3.2.2) trained on
real data set J real (see Section 4.1.1).

Here, a significant peak of the transition probability for trips from home to work
can be detected between 05:00 and 06:00 o’clock. A result that can be expected
when considering the mobility behavior of a typical commuter. At approx. 08:00
o’clock another peak can be observed for the probability of trips from Location 1
to Location 4. This could indicate a conditionally recurring trip to Location 4,
e.g., dropping off children at school when working from home. The transition
probabilities of going to any other location are relatively small (Pt < 15 %) for the
majority of the time. Furthermore, after the “commute”-peak between 05:00 and
06:00 o’clock, the residual probability Pr (represented by the white space between
the stacked curves and 100 %) always amounts to approx. 40 %. The chance for a
trip starting at home to end at an unknown location significantly rises after 06:00
o’clock, accordingly.
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Similarly to Figure 4.6, the transition matrix at 16:00 o’clock on an arbitrary Monday
is shown in Figure 4.8; for this, the random forest model was also trained on the
real data J real.

1 2 3 4 5 6 7 8 Σ Pr

1

2

3

4

5

6

7

8

72% 28%2% 7% 2% 41% 3% 5% 3% 9%

95% 5%44% 2% 0% 48% 0% 0% 0% 1%

88% 12%53% 0% 3% 27% 0% 3% 0% 2%

85% 15%71% 0% 8% 3% 1% 1% 0% 1%

70% 30%49% 0% 6% 10% 1% 2% 1% 1%

86% 14%62% 0% 5% 13% 0% 3% 1% 2%

85% 15%58% 0% 2% 13% 4% 4% 1% 3%

69% 31%48% 0% 4% 10% 4% 1% 1% 1%
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Figure 4.8: Transition matrix containing transition probabilities Pt for all combinations of current and
next location on a Monday afternoon at 16:00 o’clock; random forest model (see Sec-
tion 4.3.2.2) trained on real data set J real (see Section 4.1.1).

Here, especially trips starting from Location 2 (work) seem to be relevant as the
summed probability of 95 % indicates; the residual probabilities Pr for all other lo-
cations are relatively high. The end location for trips starting at work is predicted to
either be Location 1 (home, 44 %) or Location 4 (48 %). Apparently, the EV user from
which the real data set is taken, has two almost equally important trip destinations
when leaving work on Monday afternoon. This can also be discovered when con-
templating Figure 4.9 in which the simulated Pt-profiles for trips starting at work
are shown.

After approx. 09:00 o’clock, both transition probabilities for trips to Location 1 (dark
blue) and Location 4 (brown) steadily amount to values between 40 % and 60 %.
Note that the residual probability throughout the entire day is always less than
20 %. In general, the chance for trips to end at an unknown location when starting
at Location 2 is smaller than for trips starting at Location 1.

Although round trips, i.e., trips with the same start and end location were removed
from the training and test data, on Monday morning still a 58 % chance of departing
from Location 2 and also driving to Location 2 is predicted (see Figure 4.6). This
observation is consistent with the falsely predicted transition probability for trips
ending at Location 2, shown as the blue area in Figure 4.9. This can be explained
by the fact that on Monday morning barely any trips start from the work location.
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Figure 4.9: Stacked transition probabilities Pt for a trip starting from Location 2 (work) to all possible
end locations on an arbitrary Monday; random forest model (see Section 4.3.2.2) trained on
real data set J real (see Section 4.1.1).

The training data for this situation is sparse and the prediction quality is expected
to be poor, accordingly. In future work, the model may be engineered in a way
such that—by design—identical current and next locations are excluded and thus
cannot be predicted. Additionally, the prediction quality should also be estimated
for each input sample, e.g., as additional model output. In this way, trustworthy
predictions obtained from inputs sufficiently represented in the training data could
be distinguished from predictions whose confidence is low.

Note that the Pt-profiles as shown in Figure 4.7 and Figure 4.9 can be used to
directly derive the expected energy demand over time. In particular, the energy
consumption of each single trip in between two known locations can first be esti-
mated; either using an external routing service and/or a user-individual consump-
tion model as described in Section 3.1. Then, each trip’s energy consumption can be
weighted by the transition probability Pt of this trip occurring and summed up for
each point in time afterwards; the resulting profile represents the expected energy
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demand over time. In addition to that, a measure of prediction quality could used
together with the residual probability Pr to quantify the uncertainty inherent in the
expected energy profile; for this, a general energy consumption, e.g., the average,
for all (historical) trips to unknown locations could be consulted. Both expected
energy demand and the quantified uncertainty can subsequently provide valuable
information for the robustness of charging scheduling (Chapter 5) and charging
optimization (Chapter 6) schemes. The last mentioned aspects, however, are out-
side the scope of this thesis and may be subject to future work.
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4.4 Estimation of Parking Duration at Known Locations

As evaluations on EV usage reveal (see e.g., Section 1.1.3.1), EVs (and also cars in
general) are parked the majority of time. Hence, especially services that generate
added value for EV customers while the EV is parked hold large economic potential.
For example, charging optimization (see Chapter 6), which aims to improve an
EVs charging process in terms of operating cost and sustainability. A sufficient
knowledge of time flexibility—i.e., the excess time not required for charging when
the EV is parked—is thus inevitable. For this, in turn, the parking duration τp of
an EV needs to be estimated upon arrival at a known location (see Section 4.2);
Figure 4.10 illustrates the time at which the estimation is made.

Last trip to
current location

Parking at
current location

Time

Time of estimating
parking duration

τp

Figure 4.10: Schematic sequence of trips (light blue) and parking periods (dark blue) to indicate the point
in time (red arrow) of estimating the duration τp of the next parking period.

In this section, first the engineering of features and labels based on historical trips
J and the previously determined known locations L (see Section 4.2) is described.
Then, different regression models to estimate the parking duration τp are designed.
Finally, all methods are evaluated with a custom metric and the results are pre-
sented.

4.4.1 Data Engineering for Parking Duration Estimation

Data engineering aims to combine the historical trip data J with the determined
known locations L to fit the requirements of the predictive models described in
Section 4.4.2.13 First, for each trip j ∈ J the start location l j,0 ∈ L (i.e., the cluster
number) is derived from the end location l j−1,τp ∈ L of the previous trip j− 1. For

13All data engineering steps are separately proceeded for both data sets J syn and J real, see Section 4.1.
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this, the previously determined known locations L are used (see Section 4.2). If data
gaps exist, e.g., from data cleaning as described in Section 4.2.1, the start location
of the consecutive trip is assigned to “noise”. At this step, each trip can also be
enriched with additional information such as calculated energy consumption or
the type of trip, i.e., spontaneous or planned; the latter information e.g., could be
acquired from the user’s calendar. Together with one-time user inputs such as home
and work location, the predictive models’ accuracy may thus be improved.

Second, the regression target, i.e., the estimated parking duration τ̂p, j following
each trip j ∈ J , is approached via two different labels:

• Label A: Upon arrival of the EV at a known location, the duration of the
time period until the next departure is estimated; this corresponds to directly
estimating τp, j. This label will also be referred to as parking duration.

• Label B: Upon arrival of the EV at a known location, the point in time the next
departure occurs is estimated; subsequently, τ̂p, j is calculated by subtracting
the given arrival time from the estimated departure time. This label will also
be referred to as departure time.

For the scope of this study, separate models are trained for both labels and evaluated
separately. In future work, however, the estimations of Label A and Label B may be
merged to enhance the overall accuracy. Ideas for this are given in Section 4.4.3.2.

Third, additional features are designed from the end time of each trip to provide
useful information to estimate τ̂p, j. Similar to xl (see Section 4.3.1), all features are
then combined in a feature vector xτp ∈ R8; the differences between xl and xτp are
described here:

• Current Location: The known location where the EV is currently parked; the
feature “Last Location” is removed.

• All absolute time features (e.g., “Hour of Day”) refer to the end time of each
trip.

• Last Parking Duration at Current Location: Alike to “Parking Duration at
Current Location” but referring to the last visit of the current location.

To quantify the performance of the features in xτp , the Gini importance qGini is used
as shown in Table 4.5.

The Gini importance (see its definition in Section A.1.2) is considered appropriate
since the machine learning models described in Section 4.4.2 are based on random
forests [276, 277].
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Table 4.5: Gini importance qGini using a default random forest for all features when considering both
Label A and Label B on the real data J real. Higher numbers indicate that the feature causes a
larger mean decrease in impurity and is therefore more relevant to the random forest [276,277].

Feature Importance qGini to
Label A

Importance qGini to
Label B

Current Location 0.0682 0.1750

Hour of Day 0.4390 0.3094

Time Window of Day 0.0076 0.0076

Day of Week 0.0587 0.0879

Month 0.0659 0.0736

Is Holiday 0.0152 0.0195

Last Parking Duration at Current Location 0.1672 0.1611

Last Trip Duration 0.1781 0.1658

Apparently, “Hour of Day” is the most important feature for both Label A and
Label B. This suggests that a certain daily rhythm exists and that the EV user has
regular trips based on the time of the day. Furthermore, the “Time Window of Day”
feature, which is highly correlated with the hour of the day, is not important. This
suggests that the information regarding the daily rhythm is sufficiently covered by
the “Hour of Day” feature. The “Last Parking Duration at Current Location” and
“Last Trip Duration” are also relevant for both labels, and thus, suggest repetitive
patterns. Particularly, when the EV user visited a location for a certain period, they
will likely stay for a similar duration the next time visiting this location. Further-
more, after a long trip the EV is likely to be parked longer than if the last trip was
very short. Interestingly, the feature “Current Location” is not important for La-
bel A but relatively important for Label B. The reason could be that the departure
time (Label B) is more strongly coupled to the current location than the parking
duration. For example, a typical user is expected to leave their work location at a
similar time every workday regardless of when they arrived. The departure time
can thus be accurately predicted based on the location; the parking duration, how-
ever, could vary broadly. Surprisingly “Day of Week”, “Month”, and “Is Holiday”
only show low importance for both labels. This suggests that for the evaluated
user underlying weekly and seasonal patterns are either nonexistent or not learned
properly. This could be explained, however, by the fact that the real data set is
obtained from only one user, and it cannot be ensured that they exhibit seasonal
characteristics in their mobility behavior.
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4.4.2 Models to Estimate Parking Duration

In this section, first a simple parking duration estimation model is presented. Then,
three different machine learning models based on one or more random forests are
designed; the according fundamentals can be found in [260]. All models are trained
and tested for both labels described in Section 4.4.1, i.e., Label A (parking duration)
and Label B (departure time). Furthermore, a five-fold cross-validation is proceeded
on both data sets described in Section 4.1, i.e., the real data set J real and the syn-
thetic data set J syn. The according train and test sets are denominated using the
index “train” or “test”, respectively.

4.4.2.1 Mean Parking Duration per Known Location

As a naive baseline model, the mean parking duration of every known location is
used as parking duration estimation. To achieve this, the training data set J train is
filtered to only contain trips of a single known location l. Thus, a filtered training
data set of trips

J (l)
train =

{
j ∈ J train|l j,τ = l

}
, (4.5)

is obtained for each known location l ∈ L. When arriving at a known location
l ∈ L, the parking duration can then be estimated as

τ̂p =
1

|J (l)
train|

∑
∀j∈J (l)

train

τp, j, ∀l ∈ L. (4.6)

Note that apart from the current location, the estimations of this model are inde-
pendent from all other features in xτp . This model is used to benchmark the more
advanced machine learning models; in the following, it will be referred to as Baseline
model.

4.4.2.2 Random Forest Regression Model

As a basic machine learning technique, a single random forest regression model as
proposed by Breiman [260] is implemented. The random forest model consists of
a maximum of 100 decision trees, which are individually trained with randomly
selected subsets of the training data. For the training process, the MSE is used as
loss metric (see also Appendix A). All other hyperparameters of the model are set
to their default values as given by Scikit-Learn [254]. The resulting estimation τ̂p is
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obtained by averaging the individual estimations from each decision tree. For all
details and fundamentals of random forests please refer to [260].

In the following, this model will be referred to as Default RF model.

4.4.2.3 Location-Based Ensemble Model

The semantic parking location of the EV such as home or work is assumed to notice-
ably impact the parking duration. For this reason, the training data J train is split
into subsets J (l)

train only containing trips with the same parking location l, as already
described in (4.5). Then, a random forest model is trained for each subset, i.e., for
each known location l ∈ L. The problem complexity can thus be reduced and a set
of less complex, location-specific random forest models is obtained. Accordingly,
the overall estimation accuracy is also expected to be improved. This, however, also
comes with higher computational complexity increasing with the number of known
locations. In the present case, the number of known locations is relatively small and
therefore the additional computation time is negligible.

This model will be referred to as Location Ensemble model in the following.

4.4.2.4 Time-Based Ensemble Model

The stochastic nature of human mobility behavior causes both parking duration
(Label A) and departure times (Label B) to vary randomly to some extent. There-
fore, a regression approach that allows for a certain tolerance is conceivable. For
example, instead of estimating a precise departure time such as 9:10am, the hour
of day in which the departure takes place, i.e., between 9am and 10am, could be
estimated. To achieve this calls for a multi-class classification model predicting in
which hour the next departure occurs. However, the classes are interdependent and
therefore an ordered classification problem exists, see [280]. For the present case, a
manual approach to an ordered classification model in the form of a time-based en-
semble is engineered as follows. Instead of training a single random forest model, a
binary random forest classifier is trained for each hour in the relevant time window,
to determine whether a departure occurs within this hour or not. The relevant time
window is either the parking duration range for Label A, or each hour of a day for
Label B, respectively. Based on this approach, the first rising edge, i.e., the change
in the classification from “no departure” to “departure” is used as the estimated
parking duration. Prospectively, the output of all classifiers could also be used to
estimate a (time-discrete) probability density function of the parking duration.
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To better understand this method, consider the following example of training and
predicting for Label A. In the training process, the filtered parking duration is be-
tween 2 h to 24 h. Hence, 22 random forest classifiers are trained, beginning with a
classifier between 2 h to 3 h. For a data sample with a parking duration of 7.35 h, the
first five classifiers (for 2 h to 6 h) receive the label “no departure”. The remaining
17 classifiers are trained with the label “departure”. In the prediction process, the
parking duration is calculated based on the first classifier to return the label “de-
parture” given the input. Therefore, if the first five classifiers (for 2 h to 6 h) return
“no departure” and the sixth classifier returns “departure”, the predicted parking
duration would be 7 h. The time-based ensemble model thus tends to round off the
true parking duration.

Note that the computational complexity increases linearly with the number of time
slots defined; e.g., if instead of one-hour time slots, 15 min slots would be used, the
computation time would increase by approx. a factor of four. In the following, this
model will be referred to as Time Ensemble model.

4.4.3 Validation and Results

This section first presents the case study used to evaluate the predictive models de-
scribed in Section 4.4.2. The evaluation is performed in a five-fold cross-validation
on both the real data set J real and the synthetic data set J syn (see Section 4.1).
To this end, all models and evaluation schemes are implemented in Python [256]
using Scikit-Learn [254]. Only the eight most frequently visited locations are con-
sidered for both the training and evaluation of the parking duration estimation. All
trips with unknown end location, i.e., those trips assigned to the “noise” cluster,
are removed. In this way, the real data set J real can directly be compared with
the synthetic data set J syn. Furthermore, the present study focuses on the parking
duration estimation to improve the EV users’ experience of charging optimization
(see Chapter 6). This optimization is not possible if the location—and as a result
of this, the available charging infrastructure—is unknown. Therefore, the parking
duration is only estimated for commonly visited, i.e., known locations.

The general model performance is quantified in a specific way, based on the later
charging optimization use case of the predictive models. In this use case with the
objective of energy cost reduction, only electricity prices with a time resolution of
either 15 min or 60 min are available. Therefore, fluctuations within this threshold
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do not affect the final optimization result (see also Chapter 6). Thus, the custom
accuracy metric

qp,ετp =

∣∣∣{j ∈ J test : |τp, j − τ̂p, j| ≤ ετp

}∣∣∣
|J test|

, (4.7)

is defined with τp, j being the true parking duration, and τ̂p, j the estimated park-
ing duration. Equation (4.7) thus represents the percentage of estimated parking
periods where the absolute difference between the estimated and actual parking
duration is less than an error threshold ετp . To evaluate different levels of quality,
four values are considered for

ετp ∈ {15, 30, 45, 60} , (4.8)

which are given in minutes.

Based on this case study, in the following, all major findings are presented and set
into the broader context of this thesis.

4.4.3.1 Benchmark through Semi-Synthetic Data

To evaluate the general performance of the predictive models, the accuracy qp,60 is
consulted. The results of the five-fold cross-validation are visualized in Figure 4.11
and Figure 4.12 for both Label A and Label B (see Section 4.4.1).
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Figure 4.11: Accuracy (qp,60) of different models to estimate parking duration (Label A) and next depar-
ture time (Label B) on the synthetic data set J syn with five-fold cross-validation, horizontal
line indicates mean accuracy.
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For the synthetic data J syn, all three machine learning models vastly outperform
the baseline, with accuracy nearing qp,60 = 90 % for Label A in some cases. Thus,
even simple predictive models based on random forests seem to efficiently outper-
form the baseline given well-chosen features. The parking duration of the real data
appears to be more challenging to predict. Although the performance is notice-
ably worse on the real data, even in this case, the default random forest model
can outperform the baseline. Furthermore, note that regardless of the data set, the
estimations for Label B are in general less accurate than those for Label A.
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Figure 4.12: Accuracy (qp,60) of different models to estimate parking duration (Label A) and next depar-
ture time (Label B) on the real data set J real with five-fold cross-validation, horizontal line
indicates mean accuracy.

These results clearly show that the synthetic data set J syn can be used as a bench-
mark for future analyses on EV users’ mobility behavior. In particular, the synthetic
data set does not contain “noise” or measurement errors (see Section 4.1). How-
ever, real data sets such as J real are likely to contain further stochastic influences,
measurement errors, and irregular trips resulting in “noise” locations. Such real
mobility behavior is expected to be less predictable than the synthetic data in any
case (see also [279]). Accordingly, J syn is considered as benchmark data set, i.e., an
upper bound for the accuracy of parking duration estimation.

4.4.3.2 Benefit of Two-Model Regression Approach

Although the accuracy for Label B is always slightly lower than the one for Label A
(see Figure 4.11 and Figure 4.12), including models for both regression targets may
be beneficial. Particularly, the performance of the models for different labels seems
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to depend on the current location. To illustrate this, consider the accuracy qp,60 for
both Label A and Label B evaluated at three different locations as shown in Ta-
ble 4.6. It can be seen that estimations made for the home location are more accurate

Table 4.6: Per-location accuracy (qp,60, mean of five-fold cross-validation) of estimated parking duration
(Label A) and next departure time (Label B), on the real data set J real using the default
random forest model.

Regression Target Home Location Work Location Back Office Location

Label A 25.60% 31.98% 34.0%

Label B 16.86% 33.28% 56.4%

when using the parking duration (Label A). The performance at the work location
is similar for both labels. The reason could be that the work location is usually
characterized by both regular departure times and steady parking duration (e.g.,
regular working day). Considering the “Back Office” location, on the other hand,
estimating the departure time (Label B) is noticeably improved. This improvement
can be explained by the fact that departure times from such a location are often de-
termined by following appointments. However, the time spent at the “Back Office”
location, i.e., the parking duration, may vary broadly. Accordingly, the predictive
models’ performance differs for Label A and Label B.

This difference in performance may be leveraged to enhance the overall accuracy of
estimating parking duration. Models for both labels exhibit better performance in
different scenarios, and therefore both sources of information should be considered.
To effectively decide, which regression target, i.e., Label A or Label B, is more
accurate, however, a well-designed estimation merger is vital. The details of such
a merger module has not been examined yet and should be subject to future work.
A dependence on the current location, however, is strongly expected. Furthermore,
user-specific dependencies may also be important, since mobility patterns may be
diverse. For example, a person who works rotating shifts always stays at work for a
relatively consistent amount of time. The arrival times at the work location, however,
change frequently. In this case, estimating the parking duration (Label A) will likely
outperform estimating departure times (Label B). In contrast, when contemplating
a user working in a store always opening at a specific time, estimating departure
times (Label B) may likely perform better than estimating the parking duration
(Label A).
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4.4.3.3 Evaluation of Ensemble Models

In addition to a default random forest model, time- and location-based ensemble
models were also designed, see Section 4.4.2. For comparison, the mean accuracy
of all predictive models and various tolerances ετp are used. Table 4.7 shows these
results for estimating parking duration (Label A); Table 4.8 shows the values for
estimating departure times (Label B).

Table 4.7: Comparison of mean error metrics for predictive models to estimate parking duration (La-
bel A) based on the real data set J real with a five-fold cross-validation.

Model MSE qp,15 qp,30 qp,45 qp,60

Baseline 27.03 h2 5.39% 10.21% 15.03% 18.12%

Default RF 22.04 h2 5.73% 12.84% 20.41% 26.49%

Location Ensemble 21.32 h2 8.25% 15.94% 22.47% 29.01%

Time Ensemble 23.8 h2 8.26% 18.92% 27.52% 35.32%

Table 4.8: Comparison of mean error metrics for predictive models to estimate the next departure time
(Label B) based on the real data set J real with a five-fold cross-validation.

Model MSE qp,15 qp,30 qp,45 qp,60

Baseline 16.02 h2 4.82% 8.50% 13.20% 17.80%

Default RF 14.18 h2 6.20% 11.48% 16.53% 21.24%

Location Ensemble 14.11 h2 6.65% 12.05% 18.02% 23.30%

Time Ensemble 16.52 h2 7.23% 15.26% 23.30% 27.89%

It can be seen that the location ensemble leads to increased accuracy compared
with both the baseline and the default random forest model for Label A and La-
bel B. This could be explained by the fact that the complexity of each individual,
location-specific random forest model decreases. Each random forest can thus more
easily learn existing dependencies related to parking duration. While combining
several location-specific models in this way enhances the overall accuracy, the com-
putational complexity—and thus the training and prediction time—also rises. For
the present case with considering eight locations, however, this is a manageable
problem.

In general, the performance of the time ensemble is even superior to that of the
location ensemble. Compared with the default random forest model, the significant
improvement in estimation accuracy could be explained by the adapted problem
formulation that allows for a tolerance. The model can more easily handle stochastic
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fluctuations of the parking duration (or the departure time), as it no longer tries to
estimate the exact duration (or point in time, respectively). Instead, a time window
of one hour is estimated in which the next departure will likely happen. However,
the computational complexity of the time ensemble model increases with the time
resolution selected for the individual classification models. In this study, an hourly
resolution is chosen, but higher resolutions (e.g., 15 min) are conceivable. Although
increasing the time resolution could improve estimation accuracy, it also increases
computational cost. Hence, a trade-off exists, which should be examined further in
future work.

As previously discussed in Section 4.4.3.2, there might be a benefit of combining
several models—in this case location and time ensemble—in an intelligent way. To
achieve this, however, a suitable estimation merger would be required that should
be subject to future work.

4.4.3.4 Enhanced Service Quality via Estimation Confidence Filtering

As stated in the previous Sections 4.4.3.1 to 4.4.3.3, the implemented machine learn-
ing models have proven to outperform a naive benchmark in estimating parking
duration. Yet, the model accuracy qp,60 only amounts to 35.32 % for Label A using
the real data set J real. The proportion of parking periods whose duration can be
estimated with a tolerance of less than one hour is therefore only about one third
on average. This level of accuracy is unlikely to be sufficient for EV users to accept
smart charging applications such as charging scheduling (Chapter 5) and charging
optimization (Chapter 6). The reason is that incorrect estimations could cause the
EV operating cost to increase or even cause the EV not to be charged sufficiently
when the user demands it.

To solve this problem, the confidence of each parking duration estimation may be
determined and used. In this way, only trustworthy estimations could be used
for subsequent smart charging; estimations assessed to be incorrect would then
be withdrawn and default charging (i.e., plug in and charge with maximum power)
could be used. To the end of determining estimation confidence, several approaches
are conceivable. Similar to [281], e.g., two quantile regression models could be used
to estimate the interquartile range; the smaller this range, the higher the confidence
of the estimation. The difficulty here is to find a characteristic threshold for the
interquartile range to effectively distinguish trustworthy from incorrect estimations.
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Table 4.9: Comparison of time ensemble model accuracy for different scopes (known locations with
corresponding number of data samples) when estimating parking duration (Label A) on the
real data set J real with a five-fold cross-validation.

Scope Samples qp,15 qp,30 qp,45 qp,60

Location 1 1324 6.39% 15.68% 23.71% 31.74%

Location 2 332 6.58% 11.53% 25.37% 33.45%

Location 3 72 2.86% 12.86% 24.05% 24.05%

Location 4 54 21.33% 48.67% 82.0% 94.44%

Location 5 22 11.11% 11.11% 11.11% 11.11%

Location 6 16 30.0% 56.67% 66.67% 86.67%

Location 7 14 33.33% 33.33% 50.0% 50.0%

Location 8 12 0.0% 33.33% 44.44% 44.44%

Average 1846 8.26% 18.92% 27.52% 35.32%

A more practical approach using the existing models is presented here. Table 4.9
shows the results of the time ensemble (see Section 4.4.2) based on the real data
set J real evaluated for different known locations. Although the average accuracy
qp,60 = 35.32 % might not yield a satisfactory result when applied in charging op-
timization, the isolated accuracy for Location 4 (qp,60 = 94.44 %) and Location 6
(qp,60 = 86.67 %) could be sufficient. Thus, the current location where the vehicle
is parked functions as an indicator for estimation confidence. For this data set, the
charging optimization service could e.g., only be prompted if the EV is detected
to be parked at either Location 4 or Location 6. However, these locations are only
visited in approx. 4 % of all cases. When parking at another location, default charg-
ing would be applied. Besides the current location, other features, e.g., the day of
week, could be also used to evaluate the isolated model performance and deduce
estimation confidence. This aspect, however, should be examined in future work.
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4.5 Conclusion

In Chapter 4 the mobility behavior of EV users is modeled in order to provide
useful information for smart charging applications such as charging scheduling
(Chapter 5) and charging optimization (Chapter 6). For this, real data from a single
EV user is utilized. As a benchmark, furthermore, a synthetic data set is generated
based on realistic user behavior, see Section 4.1.

To determine frequently visited locations, i.e., the user’s known locations, a two-stage
clustering algorithm is designed in Section 4.2. The first stage uses a state-of-the-art
density-based spatial clustering algorithm and helps to level out GPS measurement
scatter. In the second stage, determined clusters are combined to semantic locations
based on given neighborhood parameters. In this way, the two-stage algorithm
yields more robust results compared with standard density-based clustering. In
addition, more realistic results can be achieved via the two-stage clustering as it
can be parameterized to user-individual mobility habits; this accounts for a major
advantage of the two-stage approach. In future work, the two-stage algorithm could
be adapted to clustering of data streams, e.g., as described in [242].

Subsequently to clustering, models to predict the next location that the user may
visit when departing from a known location are designed in Section 4.3. To this
end, a heuristic baseline model is compared with a random forest classification
model. The use of a synthetic data set allows for a qualitative benchmark regarding
the accuracy of next location prediction models. For the real data set, the random
forest correctly predicts approx. two thirds of all locations visited next and thus
achieves sufficient accuracy for smart charging applications. Although the random
forest outperforms the baseline model on average, for some scenarios, e.g., specific
locations, the baseline model yields similar or even better results. In the future, the
predictions of both models could therefore be combined to achieve higher overall
accuracy. Alternatively, different modeling approaches could be tested for improved
accuracy, e.g., an individual random forest model for each known location. Further-
more, probabilistic predictions of the random forest model can be used to estimate
an EV’s expected energy demand in the future. In addition, a measure of uncer-
tainty can be derived, which favors the robust design of smart charging applications
based on next location prediction.

At third, different machine learning ensembles based on random forests are de-
signed to estimate an EV’s parking duration when arriving at a known location.
Similar to the next place prediction, the use of a synthetic data set allows to suggest
a qualitative benchmark for parking duration estimation. For this, both the parking
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duration directly and also the absolute point in time at which the next departure
occurs are estimated with separate models. Using a custom metric that allows for
an application-specific tolerance, this two-model regression approach appears to
be beneficial in terms of situation-dependent accuracy. Compared with a default
random forest regression model, both a time- and location-based ensemble model
exhibit improved performance. On the real data set, however, the best-performing
model only estimates the duration of approx. one third of all parking phases with
a deviation of less than one hour. This level of precision is assumed to be insuffi-
cient for most consecutive smart charging applications. Evaluating the models for
specific known locations, on the contrary, shows sufficiently accurate estimations.
Besides the current location, thus also other features, e.g., the day of week, could
be used to deduce estimation confidence in the future. Follow-up work should
also consider probabilistic estimations of the parking duration, e.g., using quantile
regression models.

To prove general functionality, a validation of all algorithms on a variety of user
types is inevitable. Furthermore, all models are user-individual and the available
data is sparse, accordingly. To obtain a customer-ready service, a ramp-up concept is
required, which allows for trustworthy predictions with a minimum of data at the
beginning. For this, the problem formulation could be generalized to leverage data
of several EV users in creating general predictive models. To incrementally adapt
these models to individual users, a suitable adjustment of model parameters, i.e.,
transfer learning, could be applied afterwards.
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5 Charging Scheduling

The requirements of humans’ individual mobility in most cases can be very diverse
(see Section 1.1.3). For instance, both planned and especially spontaneous trips
possess an uncertainty inherent in their start time, destination, travel time, and en-
ergy consumption. It is therefore both difficult and inconvenient for EV users to
keep track and maintain a sufficiently charged battery to stay mobile.1 The charg-
ing scheduling module as proposed in Figure 5.1 supports EV users to i) keep an
overview of upcoming charging events that are required to stay mobile, ii) find
convenient charging opportunities, and iii) ensure a battery reserve to be able to
reach any desired destination given a user-individual security level. Rather than

Graph-Based
Scenario Generation

(Section 5.1)

Mixed-Integer
Optimization

Problem
(Section 5.2)

Predicted
Next Location l̂ j+1,τ

Estimated
Parking Duration τ̂p

EV Driving/Charging
Characteristics

Charging
Schedule

Set of
Scenarios D

Figure 5.1: Block diagram of the charging scheduling scheme; mobility prediction (Chapter 4) deter-
mines predicted next location l̂ j+1,τ and estimated parking duration τ̂p, EV driving and
charging characteristics are derived from the corresponding EV models (Chapter 3).

adapting single EV charging processes, thus, the aim is to determine adequate lo-
cations, time windows, and amounts of energy for multiple charging opportunities
in a future time horizon.

1The term “staying mobile” refers to EV trips that do not require additional, unplanned charging stops
along the way.
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To achieve this, the outputs of the mobility prediction module as described in
Chapter 4 are leveraged. First, a set of scenarios D, i.e., possible sequences of
trips in between all known locations L, is generated based on the predicted next
location l̂ j+1,τ , the corresponding estimated probability Pt, and estimated parking
duration τ̂p. In this way, the uncertainty inherent in the user’s actions can be repre-
sented. All details can be found in Section 5.1.

To model the decision problem of where and how much energy to charge, a mixed-
integer optimization problem is designed in Section 5.2. Besides the previously gen-
erated set of scenarios D, the EV’s characteristics on energy consumption, charging,
and battery aging (see Section 2.2.1) are also consulted. Solving the optimization
problem then yields a Charging Schedule for a given future horizon (e.g., five days)
that contains the following information:

• Required user actions, i.e., park and plug in the EV at a close-by charging
station when approaching a targeted location at a specific time.

• The amount of energy to charge at a specific location.

Once the EV is connected to a charging station, a subordinate scheme, e.g., as in
Chapter 6, may process the amount of energy to charge together with the expected
parking duration to calculate a single charging event’s power trajectory.

To prove and quantify the functionality of the charging scheduling module, finally
a Monte Carlo simulation is designed and run. The simulation setup and corre-
sponding results are outlined in Section 5.3. Note that the contents of this chapter
are partly based on and further develop the concepts presented by Schwenk et al.
in [271, 282, 283].
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5.1 Scenario Generation

Although the sources of uncertainty in humans’ individual mobility are manifold
(see Section 1.1.3), the highest impact is assumed to arise from the user’s decision of
where to go next. The uncertainty inherent in these decisions needs to be quantified
in order to formulate a computationally tractable decision problem (see Section 5.2),
which is able to handle stochastic influences. Thus, all possible mobility scenarios
a user may take—i.e., all sequences of trips and visits of a known location—are
determined (see also [284]). For this purpose, a graph-based approach is used that
implements the following recursive procedure.2

Each time the charging scheduling module is triggered, an out-tree T with a set of
vertices V is created based on the set of known locations L that was determined be-
forehand, see Section 4.2. The root vertex v0 represents the current location l0 of the
EV at the time of calculation. For each possible next location l ∈ L \ l0 despite the
current location, a successor vertex vl is then connected to v0 via a directed edge.
The procedure is repeated, i.e., the successor vertices are searched for each previ-
ously appended vertex until a termination criterion is met; e.g., a defined future
time horizon, a number of locations visited, or a minimum occurrence probability.

To better understand this procedure and introduce further nomenclature, consider
the example as shown in Figure 5.2. Here, an exemplary set of known locations
L = {A, B, C} (see Figure 5.2a) is taken as a basis on which the tree T (see Fig-
ure 5.2b) is constructed. The start location A is represented by vertex vA from which
only the remaining locations B and C may be visited. Accordingly, the vertices vAB

and vAC are connected to vA via the edges A-AC and A-AB, respectively. This pro-
cedure is then repeated for each vertex until—in this example—three consecutive
trips have been taken from the start location.

Each vertex v ∈ V (see Figure 5.2, drawn in blue) represents a visit of a known
location l ∈ L at a specific time and is therefore associated with the properties:

• Start time tv,0, i.e., the point in time at which the EV arrives at vertex v.

• End time tv,τp, v = tv,0 + τ̂p, v, i.e., the point in time the EV is assumed to
depart from vertex v; the estimated parking duration τ̂p, v is determined using
a model as described in Section 4.4.

2For the fundamentals of graph-based concepts and algorithms, see e.g., [285].
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Figure 5.2: Exemplary generation of scenarios based on a set L = {A, B, C} of three known locations
(a) and the constructed out-tree T (b) to demonstrate the scenario generation procedure and
nomenclature.

• Occurrence probability P(v), i.e., the probability that v is actually visited;
determined by multiplying all transition probabilities Pt of the tree edges
required to reach v. The root vertex—in this case vA—always possesses an
occurrence probability of 100 %, as it is already being visited at the time of
calculation.

• Charging power limitations p
v

and pv, i.e., the maximum and—in case of
bidirectional charging negative—minimum available charging power; both are
equal to zero if there is no charging station available at this location.

• Walking distance wv, i.e., the distance between the location the user intends
to visit and the closest charging station; this quantity is used for convenience
aspects later, see Section 5.2.1, and may also correspond to other factors such
as user preferences and availability of charging stations.

128



Scenario Generation

• Electricity price ϵ, i.e., the specific price at which electric energy can be pur-
chased at the closest charging station; this quantity is assumed to be constant
throughout a single stay at each vertex.3

All edges (see Figure 5.2b, drawn in orange) of the tree represent trips of the EV,
e.g., connecting two tree vertices vA, vAB ∈ V . Therefore, edges are associated with
the properties:

• Transition probability Pt(vAB|vA), i.e., the probability of traveling to vAB when
departing from vA; estimated using a model as described in Section 4.3.

• Travel time τ(vA,vAB)
, i.e., the estimated time required to travel from location

A to B at a specific point in time; estimated using an external routing service,
or prospectively, from historical trip data of the user.

• Energy consumption Γ(vA,vAB)
, i.e., the energy required to travel from location

A to B at a specific point in time; e.g., estimated using a model as in Section 3.1.

All vertices reachable within the same number of trips (i.e., edges) starting from the
root vertex (here vA) are combined in a set V s ⊂ V ; in the following, these sets are
called stages s of the tree (see Figure 5.2b, drawn in green). Note that the user might
also visit other, unknown locations, which are not in the set of known locations.
The summed occurrence probability for all vertices v ∈ V s of a stage s can therefore
be less than 100 %, accordingly. To quantify the chance of the user visiting another
location besides the ones represented by vertices, the residual probability

Pr(s) = 1− ∑
∀v∈V s

P(v), (5.1)

is introduced for each stage of the tree.4 For better comprehensibility, an additional
“Noise”-vertex can be imagined to exist in each tree stage s to which Pr(s) is as-
signed to. If Pr = 0, all possible next locations the user might visit are known. For
Pr = 1, on the other hand, none of the known locations is assumed to be visited
in a stage; instead, the “Noise”-vertex would be certainly visited. In Section 5.2.4,
an approach is presented to account for the uncertainty of visiting an unknown
location.

Each path connecting the root vertex (here vA) to a vertex of the final tree stage is
called a scenario d (see Figure 5.2b, drawn in pink). All corresponding vertices are

3If a dynamic electricity tariff is available (see e.g., [286]), the mean price for the time window at each
vertex is used.

4See also (4.4) in Section 4.3.
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summarized in set Vd ⊂ V . The set of scenarios D, in turn, summarizes all possible
scenarios d of a tree. To avoid a large number of scenarios to be considered in the
optimization problem (see Section 5.2), whose occurrence probability is very small,
a scenario reduction is applied (see also [271, 287]). In particular, D only contains
scenarios with an estimated probability higher than a given threshold, e.g., 1 %. For
consistency, vertices not being visited in any remaining scenario are removed from
V and their probability weight is added to the residual probability Pr. The charging
schedule resulting from the subsequent optimization problem will therefore disre-
gard very unlikely events. Note that if no scenarios remain after scenario reduction,
the scheduling of charging stops is not considered reasonable. Users may then re-
ceive a corresponding notification prompting them to charge conservatively until a
(repeated) recalculation of the scheduling scheme provides a valid result again.

Beyond that, users can always manually request a recalculation via a user inter-
face in order to receive an updated charging schedule. For this purpose, already
generated scenario trees may be reused to save computation resources and time
(memoization, see [288]) Prospectively, additional vertices with high confidence, e.g.,
appointments or planned trips taken from the user’s calendar, may be furthermore
included in the scenario tree to enhance the robustness of the scheduling scheme,
see also [271].
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5.2 Optimization Problem

Determining possible scenarios, i.e., sequences of trips and visits of known loca-
tions, in the previous Section 5.1, allows to identify all available charging opportu-
nities, i.e., locations and time windows in which the EV is parked close to a charg-
ing station. The question of where and how much energy to charge best—given
a defined objective, e.g., electricity costs—is, however, not trivial for EV users. To
support users with this issue, first, a mathematical model of the multi-dimensional
decision problem is required. Solving this problem then yields the desired decision
policy, i.e., the charging schedule that can be provided to the user via an interface,
e.g., a smart phone app or the EV’s infotainment system.

For this purpose, the following stochastic mixed-integer optimization problem is
designed such that

min E (JC + JE) (5.2a)

subject to

Ev ≤ Ev ≤ Ev, Ev ∈ R, ∀v ∈ V , (5.2b)

0 ≤ Cv ≤ 1, Cv ∈ Z, ∀v ∈ V , (5.2c)

Ev · Cv ≤ Ev ≤ Ev · Cv, ∀v ∈ V , (5.2d)

e ≤ eA, v ≤ e, ∀v ∈ V , (5.2e)

e ≤ eD, v ≤ e, ∀v ∈ V , (5.2f)

eD, v = eA, v + Ev, ∀v ∈ Vd, ∀d ∈ D, (5.2g)

eA, v = eD, 0 − ∑
∀i, j ∈

{Vd |i ≺ j ⪯ v}

Γ(i,j) + ∑
∀k ∈

{Vd |k ≺ v}

Ek, ∀v ∈ Vd, ∀d ∈ D, (5.2h)

P (eA, v < ẽs) ≤ εv, ∀v ∈ V s, ∀s ∈ S , (5.2i)

P (eD, v < ẽs) ≤ εv, ∀v ∈ V s, ∀s ∈ S . (5.2j)

Note that by using graph-based scenario generation, the decision problem is de-
coupled from time. In particular, each parking phase of the EV is represented by a
vertex v ∈ V . Furthermore, all vertices v ∈ V s of a single stage s may have different
start and end times. From a mobility aspect, however, they all represent a potential
charging opportunity reached after a specific number of trips with a correspond-
ing energy consumption. Applying a graph-based approach therefore enables to
adequately represent this condition in the optimization problem.

The following sections further outline all components of (5.2) in detail.
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5.2.1 Optimization Objective of Charging Scheduling

Charging scheduling aims to minimize the expected (notional) cost resulting from
two components. First, the plug-in costs

JC = ∑
∀v∈V

Cv · (ϵC, v + ϕw · wv) , (5.3)

which are meant to represent constant costs ϵC that might be billed at some charging
stations. Furthermore, the user’s discomfort arising from plugging in the EV at a
charging station is included. In particular, the walking distance wv between the
users intended destination and the charging station is consulted for this. Depending
on a user’s preferences, the walking distance can be individually weighted with a
factor ϕw; the more important convenience is for a user, the higher ϕw should be
chosen. Both costs ϵC, v and ϕw · wv only need to be accounted for, if the EV is
plugged in; for this reason, the term (ϵC, v + ϕw · wv) is multiplied by the plug-in
flag Cv, which is equal to one, if the EV is plugged in, and zero otherwise. Finally,
the single costs for each vertex v ∈ V are summed up.

As second cost component, the electricity costs

JE = ∑
∀v∈V

ϵv · Ev

ηc, v
(5.4)

are defined to consider the variable costs for charging electric energy. Particularly,
the net charged energy Ev is multiplied with a location- and time-dependent elec-
tricity price ϵv. To account for energy losses in the charging process, the term is
divided by the efficiency ηc, v associated with vertex v. Similar, to (5.3), the single
costs for all vertices v ∈ V are then summed up.

Note that the energy cost function JE implicitly penalizes calendar battery aging.
Assuming a globally optimal solution to (5.2), only the minimum required amount
of energy is charged. By the end of the scheduling time horizon both the battery
energy eA upon arrival at and eD upon departure from of the last vertex meet the
adapted minimum energy ẽs. Accordingly, the average level of the energy stored in
the EV battery is reduced. As stated in (3.23) (see Section 3.2.3), calendar aging is
proportional to the energy stored in the battery. Consequently, calendar aging also
decreases with a reduction of JE.

Note that the actual values of both JC and JE depend on the realized scenario d ∈ D,
which in turn, depends on the user’s random decisions. At the time of calculation,
the realized scenario is therefore unknown. Hence, only the expected value of JC

and JE can be minimized, see (5.2a). To achieve this, the costs associated with
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each vertex v ∈ V are multiplied with the corresponding estimated occurrence
probability P(v).

5.2.2 Decision Variables

To obtain an optimal policy of where and how much energy to charge, two decision
variables are defined for each vertex v ∈ V .

First, the net energy Ev ∈ R that is charged into the battery at each vertex v ∈ V is
defined. Taking (1.1) as a basis, it can also be contemplated as the difference of the
battery’s SOC. Due to power limitations, e.g., given by the charging station or the
EV power electronics, (5.2b) constrains Ev. Here, the lower bound

Ev = ηc, v · pv

(
tv,τp, v − tv,0

)
, ∀v ∈ V , (5.5)

is equal to zero in case of unidirectional charging, as p
v
= 0 kW. If, on the other

hand, p
v
< 0 kW, i.e., bidirectional charging is available, Ev represents the max-

imum amount of energy that can be discharged at vertex v. Similarly, the upper
bound

Ev = ηc, v · pv

(
tv,τp, v − tv,0

)
, ∀v ∈ V , (5.6)

represents the maximum amount of energy that can be charged at vertex v. Here,
the energy efficiency ηc is determined by simulating a charging process using the
electrical battery model as described in Section 3.2.1.

Second, a binary variable Cv ∈ Z is defined, which indicates if the EV needs to be
plugged into a charging station when parking at vertex v ∈ V . As this variable can
only take two values for each vertex, it is constrained by (5.2c). For Cv = 1, the EV
needs to be connected to a charging station at vertex v; if Cv = 0, the EV does not
need to be plugged in.

Apparently, the EV cannot be charged if it has not been plugged into a charging sta-
tion before. To ensure a reasonable combination of plug-in events and the charged
energy at each vertex, Ev is additionally constrained by (5.2d). This constraint en-
sures in particular that

Cv =

{
1, ∀Ev ̸= 0,
0, ∀Ev = 0,

(5.7)

for all vertices v ∈ V . Thus, the decision to charge or discharge energy at vertex v,
i.e., Ev ̸= 0, depends on the corresponding plug-in event, i.e., Cv = 1.
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5.2.3 State Variables

In addition to the decision variables described in Section 5.2.2, state variables are de-
fined, which represent the EV battery’s energy content (and thus, the SOC) through-
out the scheduling time horizon. Particularly, the state variable eA, v ∈ R represents
the battery level e when arriving at vertex v. Similarly, eD, v ∈ R represents the
battery level e upon departure from vertex v. The energy level of the EV battery
has to be kept within the global battery energy limits e and e at all times. These
boundaries are either defined by the battery capacity enom or by user preferences,
e.g., a constant battery reserve of 20 % SOC. To achieve this, (5.2e) constrains the
arrival energy state eA, v; in a similar manner, eD, v is limited via (5.2f).

At each vertex v ∈ V , an amount of energy Ev may be charged into (or discharged
from) the EV battery. Accordingly, the battery level eD, v upon departure can deviate
from the arrival energy eA, v. Thus, the transition constraint (5.2g) represents the
charging of energy.5 In between two vertices, e.g., vA and vB, a trip is taken that
is associated with an energy consumption Γ(vA,vB)

.6 Thus, the energy eA, vB upon
arrival at vertex vB deviates from the departure energy eD, vA of its predecessor
vertex vA. To represents this condition, the transition constraint (5.2h) is defined for
each vertex v ∈ Vd along each scenario d ∈ D. Note the notation

∀k ∈ {Vd|k ≺ v} , ∀d ∈ D, (5.8)

which represents the set of all predecessors to v in scenario d, i.e., all vertices that
were visited before reaching v when starting from the root vertex. All edges, i.e.,
connected pairs i, j of vertices, within this set are represented by means of the nota-
tion

∀i, j ∈ {Vd|i ≺ j ⪯ v} , ∀d ∈ D. (5.9)

Note that the root vertex v0 representing the current location at the time of calcu-
lation does not have a temporal extension, i.e., tv0,0 = tv0,τp, v ; no energy can thus
be charged or discharged at this vertex, i.e., Ev0 = 0 kW. For the initial energy, i.e.,
the energy content of the battery at the time of calculation, the relation eA, 0 = eD, 0

therefore holds.

5The battery of EVs parking for long time periods (several weeks) without charging may be subject to
self-discharge. However, the corresponding amounts of energy are negligible for the present use case
and are therefore not considered in (5.2g).

6For trips whose energy consumption exceeds the (remaining) battery energy, an EV routing service is
used to insert further charging stops along the way, see e.g., [289]. The energy consumption Γ(vA ,vB)

is accordingly lowered by the additional energy charged; similarly, the travel time in between vA and
vB is increased by the time required for driving to a charging station and charging itself.
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5.2.4 Chance Constraints on Adapted Minimum Energy

As mentioned in Section 5.1, the vertices V s of a tree stage s only represent the
visits of known locations. The chance that the user, however, may also visit other,
unknown locations is quantified by the estimated residual probability Pr(s) as de-
fined in (5.1). Accordingly, an additional battery reserve seems conceivable, which
is derived from the expected energy consumption when visiting such an unknown
location. To embed this characteristic in the charging scheduling scheme (5.2), an
adapted minimum energy level

ẽs = f (Pr(s), e, Γl /∈L) , (5.10)

is introduced for each stage s; ẽs depends on the estimated residual probability
Pr(s) per stage s, the lower battery limit e, and the additional energy consumption
Γl /∈L for trips to unknown locations. The last quantity Γl /∈L can be derived from
the energy consumption of historical trips to unknown locations; e.g., using the
mean value (or other metrics, e.g., the 75 %-quantile) of their energy consumption.7

Then, the characteristic of ẽs are designed such that ẽs = e for Pr(s) = 0, i.e., if all
possible next locations the user might visit are known. Furthermore, ẽs = e + Γl /∈L
for Pr(s) = 1, i.e., in the case that none of the known locations is assumed to be
visited. In between these two support points, a linear interpolation

ẽs = e + Γl /∈L ·Pr(s), (5.11)

is used as intuitive baseline approach, see Figure 5.3, drawn in blue. Alternatively,
more conservative or riskier interpolations could also be used, see e.g., Figure 5.3
drawn in orange or pink, respectively. This dependency, however, might also be
user-specific and may therefore require an individual adaption depending on the
user’s risk aversion.

Depending on a user’s mobility habits, the residual probability Pr(s) may take high
values close to 100 %—especially for users with irregular mobility behavior. As a
consequence, the adapted minimum energy ẽs also takes on high values. If the lower
energy bound e in (5.2e) and (5.2f) would simply be replaced with ẽs, the resulting
charging schedule may become over-conservative. In particular, the optimization
scheme would target a fully charged battery whenever possible. To provide the
ability to counteract over-conservative results, instead, the adapted minimum en-
ergy requirement is formulated as chance constraints (5.2i) and (5.2j). In addition

7Note that Γl /∈L should be chosen such that e + Γl /∈L ≤ e, as otherwise (5.2) may be infeasible.
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Figure 5.3: Different interpolations for the adapted minimum energy ẽs, i.e., the dynamic battery reserve
for charging scheduling, as a function of the residual probability Pr(s).

to the characteristics of ẽs, the user can thus also provide a personal security level
εv ∈ [0, 1]; it represents the maximum share of cases (e.g., 5 %) in which the bat-
tery energy may undercut the adapted minimum energy ẽs when arriving at or
departing from a vertex.

Note that the numerical solution of (5.2) depends on computational tractability,
which the chance constraints (5.2i) and (5.2j), however, impede. Hence, a suitable
reformulation is required. To this end, first additional auxiliary integer variables
zA,v ∈ Z and zD,v ∈ Z are introduced for each vertex v ∈ V . These variables
function as a flag to indicate whether the battery level upon arrival or departure
undercuts the adapted minimum energy or not. Accordingly, the conditions

zA,v =

{
1, if 0 ≤ eA, v < ẽs,
0, if ẽs ≤ eA, v ≤ e,

(5.12)

and

zD,v =

{
1, if 0 ≤ eD, v < ẽs,
0, if ẽs ≤ eD, v ≤ e,

(5.13)

must hold for all vertices v ∈ V . For the sake of comprehensibility, Figure 5.4 shows
the dependency of the state variables eA, v or eD, v and the corresponding value for
zA,v or zD,v, respectively. In order to establish a link between the state variables
eA, v, eD, v and the violation flags zA,v, zD,v, the constraints

ẽs · (1− zA,v) ≤ eA, v ≤ zA,v · (ẽs − e) + e, ∀v ∈ V s, ∀s ∈ S , (5.14)
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Figure 5.4: Dependency of battery energy (eA or eD) and the corresponding violation flags (zA or zD) to
explain integer reformulation of chance constraints (5.2i) and (5.2j).

and
ẽs · (1− zD,v) ≤ eD, v ≤ zD,v · (ẽs − e) + e, ∀v ∈ V s, ∀s ∈ S , (5.15)

are formulated, which further constrain eA, v and eD, v beyond the global energy
limits (5.2e) and (5.2f), respectively.

By introducing zA,v and zD,v, each minimum energy violation, i.e., each zA/D,v = 1,
can be weighted with the estimated occurrence probability P(v) of the associated
vertex v. To ensure the user’s individual security level εv at all times, accordingly,
the conditions

zA,v ·P(v) ≤ εv, ∀v ∈ V , (5.16)

and
zD,v ·P(v) ≤ εv, ∀v ∈ V , (5.17)

must hold.

137



Charging Scheduling

5.2.5 Reformulated Optimization Problem

Taking into account all explanations described in Section 5.2.1 to Section 5.2.4, the
original optimization problem (5.2) can be reformulated as

min
Ev ∈ R,

Cv , zA,v , zD,v ∈ Z,
∀v ∈ V

∑
∀v∈V

P(v) ·
(

Cv · (ϵC, v + ϕw · wv) +
ϵv · Ev

ηc, v

)
(5.18a)

subject to

0 ≤ Cv ≤ 1, Cv ∈ Z, ∀v ∈ V , (5.18b)

Ev · Cv ≤ Ev ≤ Ev · Cv, Ev ∈ R, ∀v ∈ V , (5.18c)

e ≤ eA, v ≤ e, ∀v ∈ V , (5.18d)

e ≤ eD, v ≤ e, ∀v ∈ V , (5.18e)

eD, v = eA, v + Ev, ∀v ∈ Vd, ∀d ∈ D, (5.18f)

eA, v = eD, 0 − ∑
∀i, j ∈

{Vd |i ≺ j ⪯ v}

Γ(i,j) + ∑
∀k ∈

{Vd |k ≺ v}

Ek, ∀v ∈ Vd, ∀d ∈ D, (5.18g)

0 ≤ zA,v ≤ 1 zA,v ∈ Z, ∀v ∈ V , (5.18h)

0 ≤ zD,v ≤ 1 zD,v ∈ Z, ∀v ∈ V , (5.18i)

ẽs · (1− zA,v) ≤ eA, v ≤ zA,v · (ẽs − e) + e, ∀v ∈ V s, ∀s ∈ S , (5.18j)

ẽs · (1− zD,v) ≤ eD, v ≤ zD,v · (ẽs − e) + e, ∀v ∈ V s, ∀s ∈ S , (5.18k)

zA,v ·P(v) ≤ εv, ∀v ∈ V , (5.18l)

zD,v ·P(v) ≤ εv, ∀v ∈ V . (5.18m)

The major changes in (5.18) compared with (5.2) are briefly summarized here. The
cost components JC and JE in (5.2a) are replaced with their definitions (5.3) and
(5.4), respectively. Furthermore, the expected value is resolved by multiplying the
costs arising for each vertex v with its occurrence probability P(v) in (5.18a).

The limits (5.18b) of the integer decision variable Cv indicating a plug-in of the EV
remain unchanged as in (5.2c). As the condition (5.2b) to limit the charged energy
directly holds if (5.2d) is satisfied, both are combined to become (5.18c).

Both state variables eA, v and eD, v are still globally limited by (5.18d) and (5.18e).
Alike, the transition constraints (5.18f) for charging and (5.18g) are unchanged.
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To achieve computational tractability of the chance constraints (5.2i) and (5.2j), the
integer variables zA,v and zD,v indicating a violation of the adapted minimum en-
ergy ẽs are added; they are limited by (5.18h) and (5.18i) to have binary values
only. In order to link the state variables eA, v and eD, v to the violation flags zA,v

and zD,v, (5.18j) and (5.18k) are introduced. Furthermore, (5.18l) and (5.18m) ensure
the user’s individual security level εv, i.e., the chance of undercutting the adapted
minimum energy ẽs, to be maintained for all vertices v ∈ V .
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5.3 Simulation Setup to Validate Charging Scheduling

This section describes the approach to proof functionality of the charging schedul-
ing scheme outlined in the previous Section 5.1 and Section 5.2. In particular, the
target is to test the system’s robustness and quantify benefits of the resulting charg-
ing schedule in comparison with alternative strategies. For this purpose, a Monte

Carlo simulation is set up in which 10 000 charging scheduling tasks are run with
varying parameters and randomly choosing a scenario to realize.

5.3.1 Parameter Setting for Monte Carlo Simulation

For the scenario generation (see Section 5.1), the synthetic set of known locations
Lsyn as presented in Section 4.1.2 is taken as a basis. Table 5.1 presents location-
specific properties for each known location, which are time-invariant parameters to
the charging scheduling scheme. These comprise the walking distance w between
known location and the closest charging station, and its mean electricity price ϵ,
both used in the objective (5.18a), Furthermore, the maximum available power p
for each charging station is provided to determine the upper energy bound E, cf.,
(5.6) and (5.18c). In addition to their semantic name, all locations are given a capital

Table 5.1: Information on known locations l ∈ Lsyn (aliased with capital letters A to H) comprising
the walking distance w between known location and the closest charging station, its mean
electricity price ϵ, and maximum available charging power p; dashes indicated unavailable
charging opportunities at a location; used for validating the charging scheduling scheme (see
Section 5.1 and Section 5.2).

Location Walking Distance w Electricity Price ϵ Max. Charging Power p

Home A 5 m 0.23e/kWh 3.0 kW

Work B 500 m 0.43e/kWh 11.0 kW

Orchestra C - - -

Parents D 25 m 0.30e/kWh 3.0 kW

Workout E - - -

Backoffice F - - -

Swimming G 150 m 0.34e/kWh 7.4 kW

Grocery H 20 m 0.79e/kWh 250.0 kW

letter alias to avoid ambiguous nomenclature of the resulting scenario tree compo-
nents (see Section 5.1), e.g., vertices. For better orientation, Figure 5.5 shows the
(anonymized) geodetic positions of locations A to H.
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Figure 5.5: Map section with position of known locations A to H based on synthetic data J syn (see
Section 4.1.2); blue circles: locations with close-by charging station, orange circles: locations
without charging opportunity.

Furthermore, parameters for trips in between all pairs of two known locations (i.e.,
edges of the scenario tree) are determined by means of an external routing ser-
vice [290] together with a consumption model, e.g., as described in Section 3.1.
Figure 5.6 shows the obtained values for the travel time τ in between two known
locations.
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1:20 1:35 1:05 1:05 1:08 1:25 1:17
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Figure 5.6: Matrix of travel times τ, i.e., the time required to travel from a (known) start location to
another (known) end location (see Table 5.1), estimated using an external routing service
[290]; note the format hours:minutes.
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Similarly, Figure 5.7 shows the energy consumption Γ.
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6.8 8.8 17.0 19.8 44.2 1.8 5.4

5.4 10.4 2.4 5.0 30.2 18.2 4.8

6.4 17.6 1.4 3.0 28.8 17.2 5.6

11.2 22.6 6.4 5.2 21.6 22.2 10.6

46.6 50.8 32.4 30.2 25.8 52.6 47.6

7.2 1.0 16.2 16.2 19.0 43.2 6.4
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Figure 5.7: Matrix of energy consumption Γ, i.e., the energy required to travel from a (known) start
location to another (known) end location (see Table 5.1), estimated using an external routing
service [290] together with a model as in Section 3.1; values given in kWh.

Note that both matrices are not symmetrical, as travel times and energy consump-
tion depend on environmental factors such as road topology and traffic conditions.
Taking a trip in between two locations may therefore consume more or less time and
energy in one direction compared with the other. For instance, a trip from locations
C to B consumes 10.4 kWh while the opposite direction only consumes 8.8 kWh due
to sloping terrain; furthermore, travel times are identical for both directions in this
example.

Furthermore, to estimate the transition probability Pt a next place model as de-
scribed in Section 4.3 is consulted. The probability Pt is therefore varying for dif-
ferent conditions such as location and time; yet, within each simulation run, the
values of Pt are constant. In a similar manner, the model to estimate parking dura-
tion (see Section 4.4) is used to determine the available time window [tv,0, tv,τp, v ] of
each vertex v ∈ V .

Beyond these previously described parameters, Table 5.2 contains all remaining pa-
rameters with their corresponding values, which are constant for all locations and
simulation runs. For the (maximum) expected energy consumption of trips to un-
known locations, the 95 %-quantile energy consumption (19.69 kWh) of all trips to
unknown locations in the real data set J real (see Section 4.1.1) is used as orienta-
tion. Conservatively, the additional energy consumption is set to Γl /∈L = 20 kWh;
cf., (5.18j), (5.18k) and (5.11).
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Table 5.2: Globally constant parameters and their selected values for the Monte Carlo simulation to
validate charging scheduling.

Parameter Selected Value

Upper Energy Bound e 80 kWh

Additional Energy Consumption Γl /∈L 20 kWh

Minimum Charging Power p
v

0 kW

Weight of Walking Distance ϕw 0.01e/m

Constant Costs for Charging ϵC, v 0e

To test the charging scheduling scheme in a variety of situations, all parameters
listed in Table 5.3 are furthermore varied within a specified range of values. Here,

Table 5.3: Parameters that are varied in a specified range of values for the Monte Carlo simulation to
validate charging scheduling.

Parameter Tested Values

Number of Trips 2,3,...,10

Pruning Probability 1 %, 2 %, ..., 10 %

Lower energy bound e 8 kWh, 16 kWh, 24 kWh

User’s Security Level εv 0 %, 1 %, ..., 10 %

the maximum number of trips that can be taken within the scheduling time hori-
zon is used as termination criterion for the scenario generation. Furthermore, the
pruning probability specifies the minimum occurrence probability for a scenario d
to be considered in the optimization scheme.

To additionally reproduce stochastic influences, e.g., uncertain user behavior, the
following parameters are randomly chosen for each simulation run:

• Time of Calculation: The point in time at which the charging scheduling
module is triggered, varied over the time range of one week in a resolution of
one minute.

• Start Location: The location from which the scenario generation originates,
i.e., the root vertex of the scenario tree (see Section 5.1), randomly chosen
from the set of known locations L, see also Table 5.1.

• Initial Battery Energy eD, 0: Congruent to the SOC at the time of calculation,
randomly chosen from a range eD, 0 ∈ [48 kWh, 80 kWh].
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• Scenario to Realize: The sequence of locations the user actually visits
throughout the scheduling time horizon, randomly chosen considering the
occurrence probabilities P(v) associated with each vertex v ∈ V .

To finally run the simulation, all components of the charging scheduling module
are implemented in Python [256]. For the mixed-integer programming (5.18), the
optimization framework CasADi [291] is used together with the open-source solver
BONMIN [292].

5.3.2 Alternative Strategies for Charging Scheduling

After setting up and running a Monte Carlo simulation of the charging scheduling
scheme (see Section 5.3.1), the results are benchmarked. To this end, two alternative
strategies to schedule charging are defined:

• Always Charge Strategy: Whenever a charging station is available close to the
visited location, the EV will be charged with as much energy as possible. This
behavior is expected from users who just recently switched from an ICEV to
an EV and suffer from range anxiety, i.e., the EV’s range seems too small for
the user’s mobility demand, and thus, they charge as often and much energy
as possible.

• Minimum Charge Strategy: The EV will be charged when arriving at a lo-
cation, if the battery level eA is less than the minimum energy level e. This
behavior is expected from experienced EV users who almost fully utilize their
EV’s driving range before recharging.

These strategies represent two opposing types of users between which the major-
ity of actual users are assumed to be, see also Section 1.1.3. Future work could
also explore a strategy of charging the EV whenever it is parked at home or if
the battery level falls below the lower bound. Comparing the proposed charging
scheduling scheme with alternative strategies allows to quantify the results and
provide a benchmark for further research. To represent different perspectives on
charging scheduling, the following four metrics are consulted:

• The number of plug-in events C per scheduling run as a measure for user
comfort, i.e., the more plug-in events a strategy has, the less comfortable it is
assumed to be perceived.
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• The mean electricity price to quantify the average energy cost savings, i.e., the
sum of all energy costs JE divided by the sum of charged energy E throughout
the time horizon per scheduling run.

• The number of adapted minimum energy violations z per scheduling run as
a security measure to stay mobile, i.e., how reliably a dynamic battery reserve
for unexpected trips can be maintained.

• Calendar battery aging as a measure of sustainability, i.e., the temporal decay
of battery capacity within one scheduling run, calculated by means of (3.23)
and summing up the increments.8

These metrics are calculated based on the charging schedules obtained from both
the proposed scheduling scheme and the alternative strategies. Then, the absolute
and relative difference to the optimized strategy are evaluated.

8Note that cyclic battery aging solely depends on the amount of charged energy, see (3.22). If more
energy is charged in one scheduling run (i.e., more cyclic aging occurs), the energy does not have
to be charged in a subsequent run (i.e., less cyclic aging occurs); evaluating cyclic aging is therefore
unreasonable in this context.
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5.4 Results of Validating Charging Scheduling

The Monte Carlo simulation described in Section 5.3 attempted to perform a total
of 10 000 runs. However, only 6287 successful simulation runs (i.e., 62.9 %) are ob-
served. In all remaining cases, the optimization problem (5.18) could not be solved
successfully. In particular, simulation runs with a large number of trips and scenar-
ios are prone to fail. A possible reason for this observation can be the applied op-
timization solver, whose preprocessing heuristics might not be performant enough
to cope with optimization problems of this size. In this situation, a simple backup
strategy could be used, e.g., charging the EV when arriving at a location with a bat-
tery level of less than 50 % SOC. However, future work should still consider testing
more advanced solvers to increase the share of successfully solved problems. Al-
ternatively, a less complex representation of the problem should be examined; e.g.,
locations without any charging station close by—for which the charged energy is
always equal to zero—could be removed as decision variables. All evaluations in
the remainder of this section are based only on the successful simulation runs.

For a real-world implementation of the proposed charging scheduling scheme, the
algorithms for scenario generation (Section 5.1) and optimization (Section 5.2) need
to be deployed as cloud-based microservices (see also Section 2.3). Furthermore,
suitable programming interfaces are required to connect these microservices with
both the EV and a user interface such as a smart phone application. Via the latter,
EV users are able to track the scheduled charging stops and also manually request
a recalculation.

5.4.1 Robustness through Adapted Minimum Energy

As described in Section 5.2.4, the obtained charging schedule incorporates an ad-
ditional battery reserve, which is derived from the estimated residual probability
Pr(s), i.e., the chance of the user unexpectedly visiting an unknown location. In
Figure 5.8, this battery reserve, i.e., the adapted minimum energy ẽs is shown as
dotted line for one exemplary simulation run over the stages of the corresponding
scenario tree (see Section 5.1). As defined in (5.18h) to (5.18m), the battery level is
only allowed to undercut ẽs in a specified portion of cases, i.e., the user’s security
level εv. It can be seen that in Figure 5.8 all optimized SOC profiles (in blue) exactly
meet ẽs by the end of the scheduling time horizon; an expected result, as εv = 0 %
for the shown example. Given a suitable determination of ẽs, e.g., as in (5.11), the
optimized strategy therefore ensures to reach any destination within the maximum
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Figure 5.8: Exemplary charging scheduling run with sets of SOC profiles (without charging in orange,
optimized in blue) over tree stages s (see Section 5.1), adapted minimum energy ẽs drawn as
dotted line (εv = 0 %), turquois shaded areas represent parking phases of the EV.

range of the battery whenever desired. Note that the number of vertices grows ex-
ponentially with each scenario tree stage (see Section 5.1). As a consequence, both
residual probability Pr(s) and adapted minimum energy ẽs increase throughout the
scheduling time horizon. Thus, ẽs functions as a terminal penalty to avoid large de-
viations of a subsequent charging schedule when recalculating prior to the end of
the current time horizon, see e.g., also [293, 294].

As shown in Figure 5.9, following one of the alternative strategies, however, may
reveal different results in terms of robustness. Especially the Minimum Charge strat-
egy yields 72.3 % more cases in which the adapted minimum energy ẽs is undercut
compared with the optimized strategy. In 10.7 % of all cases, even the global energy
limit e is violated if following the Minimum Charge strategy. As for some cases also
the optimized strategy may undercut ẽs, i.e., if εv > 0 %, the Always Charge strategy
on average exhibits 17.6 % less violations.

Figure 5.10 examines the probability of violating the adapted lower energy limit ẽs
with respect to the specified security level εv.

Here, the optimized strategy (a) is shown next to the alternative strategies Always
Charge (b) and Minimum Charge (c); each marker represents one simulation run.
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Figure 5.9: Comparison of alternative charging scheduling strategies (see Section 5.3.2) with the pro-
posed charging scheduling scheme (Section 5.2) in terms of reducing minimum battery en-
ergy constraint violations, i.e., e < ẽs; minimum, maximum and mean relative difference is
given; negative values indicate a benefit over the proposed strategy.
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For the optimized and Always Charge strategy, the violation probability is always
less or equal to the set security level εv (see the pink, diagonal line). To obtain a
cost-optimal solution, however, the optimized strategy utilizes admitted constraint
violations, i.e., e ≤ e < ẽ, more often compared with Always Charge. For the Mini-
mum Charge strategy, a large number of simulation runs can be observed in which
the violation probability exceeds the value of εv. It can therefore be concluded that
the optimized strategy exhibits significant benefits in terms of robust battery re-
serve compared with the Minimum Charge strategy. This is especially helpful for
anxious EV users, who suffer from range anxiety, see also Section 1.1.3. Compared
with Always Charge, the optimized strategy may exhibit more constraint violations;
yet, the specified security level is always respected.

5.4.2 Benefits over Alternative Strategies for Charging Scheduling

Besides the robustness mentioned in Section 5.4.1, the scheduling scheme (5.18)
holds further advantages. To demonstrate, Figure 5.11 shows the SOC profiles of
both the optimized and the alternative scheduling strategies based on one exem-
plary simulation run. The benefits of the optimized strategy over the alternative
strategies are threefold, see Table 5.4.

Table 5.4: Comparison of alternative charging strategies (see Section 5.3.2) with the proposed scheduling
scheme (Section 5.2) in terms of reducing the number of plug-in events, battery calendar aging,
and the mean electricity price; negative values indicate a benefit over the proposed strategy.

Strategy Plug-In Events Calendar Aging Mean Electricity Price

Always Charge 88.8 % 32.2 % 78.4 %

Minimum Charge −13.1 % −2.9 % 4.3 %

First, the number of plug-in events is significantly reduced compared with the Al-
ways Charge strategy—an aspect that increases the user comfort of EV charging. In
the particular example shown in Figure 5.11, the EV needs to be plugged in nine
times when following Always Charge; the optimized result only exhibits three plug-
in events. Figure 5.12 visualizes the evaluation of all simulation runs. Here, the
optimized strategy on average yields 2.86 less plug-in events compared with Always
Charge (blue), i.e., a 88.8 % reduction (approx. 50 % reduction is described in [271]).
Compared with the Minimum Charge strategy (orange), on the contrary, the EV re-
quires 0.26 more plug-in events following the optimized strategy (13.1 % increase).
However, note that complying with Minimum Charge exposes the risk of low battery
(see Section 5.4.1), which in turn may cause additional, unplanned charging stops
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Figure 5.11: SOC profiles for proposed (green) and alternative charging scheduling strategies (blue, or-
ange) for one simulation run over the scheduling time horizon, adapted minimum energy ẽs
drawn as dotted line (εv = 0 %), turquois shaded areas represent parking phases of the EV.
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Figure 5.12: Comparison of alternative charging scheduling strategies (see Section 5.3.2) with the pro-
posed charging scheduling scheme (Section 5.2) in terms of reducing the number of plug-in
events C; minimum, maximum and mean relative difference is given; negative values indi-
cate a benefit over the proposed strategy.
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along the way. Hence, a trade-off between the robustness and comfort of charg-
ing scheduling exists, which may require user-individual adaptions of (5.18) in the
future.

Second, the mean SOC level of the battery is lowered compared with Always Charge,
which in turn significantly reduces calendar battery aging, according to (3.23); this
aspect enhances the EV’s sustainability, as the battery lifetime is prolonged. In Fig-
ure 5.11, the optimized battery SOC—both during driving and charging—is always
kept in a range between approx. 40 % SOC to 80 % SOC; the SOC profile of Always
Charge, on the contrary, is close to 100 % for the majority of time. The evaluation
of all simulation runs is visualized in Figure 5.13. Compared with Always Charge,
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Figure 5.13: Comparison of alternative charging scheduling strategies (see Section 5.3.2) with the pro-
posed charging scheduling scheme (Section 5.2) in terms of reducing the calendar aging;
minimum, maximum and mean relative difference is given; negative values indicate a ben-
efit over the proposed strategy.

the proposed scheme on average yields 32.2 % less calendar aging. For the battery
of a typically used EV, this would equal a saving of approx. 81e per year in terms
of battery aging costs.9 The Minimum Charge strategy on average exhibits 2.9 % less
calendar aging (equals approx. 7e per year) compared with the optimized strat-
egy. Similar to the aspect of comfort, a sufficient battery reserve is not guaranteed
with Minimum Charge. Hence, an additional trade-off between sustainability and ro-
bustness exists, which may prospectively be parameterized according to the user’s
preferences.

9Assuming a yearly driving distance of 10 000 km and a yearly battery depreciation of 760e due to
aging, of which approx. one third results from calendar aging, cf., Section 3.2.3, [125] and [92].
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Third, the mean price for charging electricity is reduced compared with both alter-
native strategies Always Charge and Minimum Charge. As a consequence, the overall
EV operating cost decreases. Figure 5.14 shows the relative savings over the alter-
native strategies considering all simulation runs. Especially in comparison with
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-87 % +70.9 %
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Figure 5.14: Comparison of alternative charging scheduling strategies (see Section 5.3.2) with the pro-
posed charging scheduling scheme (Section 5.2) in terms of reducing the mean price for
electricity; minimum, maximum and mean relative difference is given; negative values indi-
cate a benefit over the proposed strategy.

Always Charge, a significant price reduction of 78.4 % can be observed on average.
For a typically used EV, this would equal electricity cost savings of approx. 737e
per year.10 A traceable result considering the fact that Always Charge consumes en-
ergy at every charging opportunity; thus, e.g., also at the grocery location H (see
Table 5.1), which offers an electricity price of 0.79e/kWh. Following Minimum
Charge, still 4.3 % less energy costs can be achieved. This price difference can be
explained by the fact that the proposed optimization scheme incorporates all elec-
tricity prices at the time of calculation. In this way, charging locations with low
electricity prices can be anticipated when generating a charging schedule. The Min-
imum Charge strategy, on the other hand, may in some cases force the user to charge
electricity at locations with high prices, as otherwise the battery would run empty.

10Assuming a yearly driving distance of 10 000 km and an average energy consumption of
0.293 kWh/km, see Section 3.1.1.
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5.5 Conclusion

Chapter 5 deals with the scheduling of charging events. In particular, the aim is to
choose the most suitable charging opportunities when the EV is parked anyway. To
this end, the outputs (set of known locations, predicted next place, and estimated
parking duration) of the mobility prediction models as described in Chapter 4 are
consulted.

A graph-based scenario generation (see Section 5.1) allows to quantify the uncer-
tainty inherent in user actions via scenarios, i.e., sequences of trips and visits of
known locations. Based on this, a mixed-integer programming is engineered (see
Section 5.2) the solution of which yields a charging schedule providing informa-
tion of where and how much energy to charge. As minimization objective, the
(notional) cost for plugging in the EV at a charging station and for the charged
energy is used. Furthermore, an additional battery reserve is calculated depending
on the estimated probability of unexpected events to happen, and incorporated via
chance constraints; to enable computational tractability, a integer reformulation of
the chance constraints is conducted afterwards. To validate the proposed scheme, a
Monte Carlo simulation is run while varying input parameters (see Section 5.3).
In addition, two alternative charging strategies representing corner cases of EV
users are designed to benchmark the results according to four metrics evaluating
robustness, comfort, sustainability, and monetary cost.

The results show that approx. 38 % of all attempted simulation runs fail due to
optimization solving issues. Accordingly, the applied solver might be inadequate
for mixed-integer optimization problems of this size. Future work should evaluate
other solvers and/or examine a simpler formulation of the decision problem.

The proposed charging scheduling strategy proves to be capable of providing suf-
ficient battery reserve to accomplish all daily (expected and unexpected) mobility
requirements. Critical situations within the scheduling time horizon in which users
following an alternative strategy may end up with an empty battery, can be antici-
pated and successfully handled.

To the end of comfort, the number of plug-in events can be reduced by up to almost
88 % compared with an alternative strategy anxious users would follow. Further-
more, the proposed scheme can anticipate future mobility demand, derive a cor-
responding energy demand, and accordingly adapt the amount of charged energy.
Consequently, the mean SOC level is decreased, which in turn reduces calendar
aging of the EV battery up to one third, and thus promotes a sustainable operation
of the EV. Finally, anticipating charging opportunities with low electricity prices
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allows to reduce the mean electricity price of charged energy compared with all
alternative strategies; in some cases, energy cost savings exceed 75 %.

Future work should extend the proposed scheme to include bidirectional charging.
In this way, the impact and potential revenue streams from the provision of V2G
services (see Section 1.1.1.2) can also be examined. Furthermore, the system needs
to be embedded into a real-world smart charging environment that comprises in-
tegration of multiple users, end devices, EVs, and real-time data sources. Testing
charging scheduling in such a setup can help to establish a meaningful setting of
(user-individual) parameters and discover possible issues.
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The time EVs are parked usually exceeds the time required to fully charge their bat-
tery, see e.g., Section 1.1.3.1. Most charging events therefore follow a standard pro-
cedure of charging the EV at maximum available power upon arrival at a charging
station. Then, the fully charged EV parks until the next trip, leaving both time and
energy flexibility of the charging process unused. Anxious users in particular also
tend to charge their vehicles more often than necessary (see also Section 5.3.2). Fig-
ure 6.1 shows the charging optimization scheme presented in this chapter, which
aims to leverage each charging event’s flexibility to improve efficiency, sustainabil-
ity, and operating cost.

Charging Optimization Scheme
(Section 6.1)

Battery Model
(Section 3.2)

eA, k

θA,k

SH, 0

θamb

Targeted
Energy eD, k

Time Window[
tk,0, tk,τp, k
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Figure 6.1: Schematic block diagram of the charging optimization scheme interacting with the EV bat-
tery model (see Section 3.2); both targeted battery energy eD, k and available time window
[tk,0, tk,τp, k

] are taken from the charging schedule generated with a scheme as described in
Chapter 5.
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Based on the energy eA, k, temperature θA,k and SOH SH, 0 of the battery upon arrival
at charging event k, a time-discrete charging power profile p∗k is calculated for the
time window [tk,0, tk,τp, k

], such that the target battery energy eD, k is met upon depar-
ture. To achieve this, a non-linear optimization problem is designed in Section 6.1,
which takes a dynamic electricity price ϵ into account; an approach similarly known
from residential electricity consumers, see e.g., [295,296]. Using the detailed battery
model as described in Section 3.2 allows to incorporate the electrical, thermal, and
degradation characteristics of the EV battery.

To evaluate the optimization scheme, a two-part case study is set up in Section 6.2.
First, charging optimization is simulated for the conditions of real-world charging
events and compared afterwards. Second, a simplified version of the optimization
scheme is implemented in a realistic environment and tested with real EVs. Sec-
tion 6.3 then presents and interprets the major findings of the case study. Note that
parts of this chapter are based on the evaluations Schwenk et al. described in [250].
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6.1 Charging Optimization Scheme

Automatically calculating an optimal charging power trajectory p∗k , first, calls for
a suitable problem formulation in a mathematical sense. For this purpose, each
charging event k starting at time tk,0 and ending at time tk,τp, k

is divided into

Nk =

⌊
tk,τp, k

− tk,0

∆t

⌋
∈N, (6.1)

equidistant time intervals possessing a duration of ∆t. Based on this, the set of
time intervals N k ⊂N is defined according to (3.6).1 Both times tk,0 and tk,τp, k

are taken from the previously calculated charging schedule (see Chapter 5). To
account for the uncertainty especially inherent in a charging event’s end time (see
Section 4.4), a conservative approach may be used. Rather than a point estimation of
the parking duration τp, e.g., the estimated 5 %-quantile could be used to establish
tk,τp, k

. Accordingly, only a 5 % chance remains that the charging event ends before
the corresponding power profile is finished.

To subsequently determine a suitable charging power pn for each time interval
n ∈ N k, the following non-linear optimization problem is designed such that

min
pn ∈ R,
∀n ∈ N k

∑
∀n∈N k

JE, n (pn, ϵn) + JD, n (θn, en, SH, 0) (6.2a)

subject to

p
k
≤ pn ≤ pk, pn ∈ R, ∀n ∈ N k, (6.2b)

ek ≤ en ≤ ek, en ∈ R, ∀n ∈ {0, 1, ..., Nk} , (6.2c)

e0 = eA, k, (6.2d)

eNk = eD, k, (6.2e)

θk ≤ θn ≤ θk, θn ∈ R, ∀n ∈ {0, 1, ..., Nk} , (6.2f)

θ0 = θA,k, (6.2g)

en+1 = en + ∆En(en, θn, pn), ∀n ∈ N k, (6.2h)

θn+1 = θn + ∆Θn (en, θamb, pn) , ∀n ∈ N k. (6.2i)

1The optimization time horizon may be shorter than the actual time window of charging event k. The
end time tk,Nk

of the last interval Nk − 1 may therefore be less than tk,τp, k
.
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All components of (6.2) are further explained in the following sections.

6.1.1 Objective of Charging Optimization

The charging optimization scheme (6.2) aims to minimize the sum of energy costs
JE, n and aging costs JD, n in all time intervals n ∈ N k, see (6.2a). To consider the
costs inherent with charging electric energy, the energy cost function

JE, n =

{
J+E, n, ∀pn ≥ 0,
J−E, n, ∀pn < 0,

(6.3)

is defined. If the battery is charged in a time interval n, i.e., pn ≥ 0, the energy
expenses

J+E, n = pn ·∆t · ϵn, (6.4)

apply. In a similar manner, the energy rewards

J−E, n = pn ·∆t · ϵn. (6.5)

account for energy sold back to the grid if pn < 0, i.e., when discharging the EV
battery. In both energy cost components, ϵn corresponds to the electricity price in
time interval n, which is assumed to be deterministic at the time of calculation.2 If
charging the EV at public charging stations, the operator of the station will usually
stipulate the values for ϵn, e.g., in form of an (dynamic) electricity tariff. A sole
reduction of electricity costs is thus pursued. Beyond that, ϵn might be defined
by a notional price profile, e.g., corresponding to the share of renewable (and, if
charging at home, self-produced) energy in the grid. In this way, the amount of
renewable energy charged into the EV can be maximized. This, however, requires to
forecast the share of renewable energy for the time window of each charging event,
e.g., using an approach as presented by Schwenk et al. in [297]. Furthermore, an
additional price component is conceivable, which is derived from the load of the
relevant low voltage distribution grid, as congestion issue may particularly occur in
these areas, see also [23, 295, 298]

Besides charging electric energy, degradation of the battery also contributes to the
total EV operating cost. For each time interval n ∈ N k, the increments of cyclic
aging ∆Hcyc, n and the calendar aging ∆Hcal, n are thus calculated by means of (3.22)

2In a real application, the prices for buying and selling electricity might also deviate at the same time,
i.e., ϵn differs in (6.4) and (6.5); for the sake of simplicity, however, both prices are assumed to be
identical in this evaluation.
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and (3.23), see also Section 3.2.3. Based on this, the costs for battery degradation
(aging costs)

JD, n = ∆Hcyc, n ·
VEV

HEV︸ ︷︷ ︸
Jcyc
D, n

+∆Hcal, n ·
VEV

HEV︸ ︷︷ ︸
Jcal
D, n

, (6.6)

are defined. For the sake of traceability, JD, n is separated into the cyclic aging costs
Jcyc

D, n and the calendar aging costs Jcal
D, n. In (6.6), VEV denotes value loss of the EV

battery due to a loss of storage capacity HEV during its entire automotive appli-
cation (first life of the battery). In particular, VEV is the difference of the battery’s
production price and its residual value in a second life market.3 Note that (6.6) only
accounts for battery aging caused during charging events. If using a superordi-
nate scheduling scheme, e.g., as described in Chapter 5, battery aging for trips in
between charging events can also be considered. For instance, by determining an
optimal target energy eD, k < e, which is adapted to the energy demand of subse-
quent trips.

6.1.2 Decision and State Variables

To obtain an optimal trajectory

p∗k =
(

p∗0 , p∗1 , ..., p∗Nk−1

)⊤
∈ RNk , (6.7)

of charging power, a decision variable pn ∈ R is defined for each time interval
n ∈ N k. Here, pn represents the gross charging power consumed from the charging
station. As given in (6.2b), pn is constrained by the power limitations p

k
and pk.

Those are determined e.g., by charging stations or (on-board) power electronics and
represent the minimum and maximum available power at charging event k.

To compute and track the progression of the battery level, i.e., the SOC, throughout
a charging event, the state variable en ∈ R is defined, which represents the battery
energy at time tn, ∀n ∈ {0, 1, ..., Nk}. As given in (6.2c), the energy limitations ek
and ek apply to en. Their values are determined by physical restrictions, i.e., the
battery’s maximum storage capacity emax, and/or preferences of the EV user, e.g.,
a minimum SOC level as mobility reserve. Furthermore, the values for eA, k and
eD, k are taken from the previously calculated charging schedule, see Chapter 5. The

3After their automotive application, EV batteries can be used for stationary and low-dynamic applica-
tions (second life), such as energy buffers for the utility grid, see also [27, 92, 93].
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energy eA, k left in the battery upon arrival at k defines the initial battery level e0,
see (6.2d). Similarly, the battery energy eNk by the end of the charging process must
equal the target energy eD, k, see (6.2e). Prospectively, (6.2e) could be formulated as
additional cost function to allow for some tolerance and thus enable larger energy
flexibility. In case of electricity overproduction (low prices), the battery could then
be charged beyond the target energy (if eD, k < ek). If electricity underproduction
occurs (high prices), not reaching eD, k could be traded off with charging expensive
energy; however, only if not limiting the user’s mobility.

Similar to battery energy, the state variable θn ∈ R is defined to represent the battery
temperature at time tn, ∀n ∈ {0, 1, ..., Nk}. Here, (6.2g) ensures that the initial value
θ0 corresponds to the battery temperature θA,k upon arrival at k. At the time of
computation, all other values θn, ∀n ∈ {1, 2, ..., Nk} are unknown. As (6.2f) states,
however, they are constrained within the temperature limits θk and θk, such that a
safe operation of the EV battery can be guaranteed, see also Section 1.1.2.

6.1.3 Including Dynamics of the Electric Vehicle Battery

The values of both state variables en and θn (see Section 6.1.2) change within each
time interval of a charging process depending on the given conditions. Simulating
the progression of the battery state is therefore essential to optimize a future charg-
ing process. To represent the electrical behavior of the battery throughout a single
time interval n, the energy transition constraint (6.2h) is formulated. Here, the
electrical battery model developed in Section 3.2.1 is consulted. Equivalently, the
temperature transition constraint (6.2i) is defined by means of the thermal battery
model described in Section 3.2.2.

Note that (6.2) omits the battery SOH progression throughout a charging event.
Instead, the SOH SH, 0 at the beginning of a charging event serves as a reference for
all time steps n ∈ {0, 1, ..., Nk}; a simplification legitimated by the fact that battery
aging occurs on significantly larger time scales (years) than charging (hours). The
expected marginal difference in the obtained solution p∗k would therefore not justify
the increased problem complexity caused by including the SOH progression.
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6.2 Validation and Case Study

To validate the optimization scheme as described in Section 6.1, a two-part case
study is set up. First, the optimization scheme is simulated and evaluated for his-
torical charging events, see Section 6.2.1. Second, Section 6.2.2 presents a real-world
implementation in which the scheme is tested with real EVs.

6.2.1 Simulation of Historical Charging Events

This part of the case study, in particular, aims to quantify influence factors on EV
operating cost, i.e., the sum of aging costs JD and energy costs JE, when applying
charging optimization. For simulating the proposed scheme, the data set K of 279
real, unidirectional charging events k as described in Section 3.2.2.1 is consulted. To
ensure a realistic test setup, 45 charging events that have sufficient duration of more
than two hours are selected. For each charging event k, the parameters eA, k, θA,k,
SH, 0, tk,0, tk,τp, k

, and eD, k are set individually. In addition, Table 6.1 outlines further
parameters, whose values are set constant for all k ∈ K.

Table 6.1: Globally constant parameters and their selected values to simulate charging scheduling.

Parameter Selected Value

Nominal Battery Energy enom 80 kWh

Maximum Battery Energy e 80 kWh

Minimum Battery Energy e 8 kWh

Maximum Charging Power p 50 kW

Minimum Charging Power p −50 kW

Maximum Battery Temperature θ 60 °C

Minimum Battery Temperature θ −25 °C

Battery First Life Capacity Loss HEV 20 % SOH

Battery First Life Value Loss VEV 6080e

To reproduce a dynamic electricity price ϵ, historic hourly market prices of 2018 are
used [299]. Then, typical fees and taxes are supplemented to attain a representative
retail price level for private customers, see Figure 6.2. The hourly price profiles
are then averaged over all workdays and weekends to level out price peaks due
to electricity over- or underproduction. In this way, two characteristic price tables
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for ϵ are obtained (see Figure 6.3) to evaluate the average profitability of charging
optimization.4

21 %

Market Prices
(0.062e/kWh)

25 %

Grid Charges
(0.0729e/kWh)

16 %

Value-Added Tax
(0.0471e/kWh)

6 %

Concession Fee
(0.0166e/kWh)

23 %

Renewables Surcharge
(0.0679e/kWh)

7 %

Electricity Tax
(0.0205e/kWh)

2 %
Other Fees

Figure 6.2: Breakdown of 2018 mean retail electricity prices for private customers in Germany [144];
absolute values given in brackets.

Finally, the optimization scheme (6.2) is implemented in Python [256]. Due to the
use of highly non-linear models in (6.2h) and (6.2i), Discrete Dynamic Programming
(DDP) is used as solving method; a detailed description and pseudo code of the
algorithms can be found in Appendix B.

After generating optimal charging power trajectories p∗k , ∀k ∈ K, the operating cost
is compared in three modes:

• Mode I: No optimization is performed and default charging (i.e., plug in and
charge immediately at maximum available power) is applied; still, the energy
and aging costs are calculated for measured battery energy and temperature
profiles throughout each charging event.

4The electricity prices as given in Table 5.1 could either be constant tariffs or mean values derived from
these profiles for the time window of each charging event.
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Figure 6.3: Characteristic price profiles of retail electricity for workdays and weekends supplemented by
0.188e/kWh fees and 19 % taxes [299].

• Mode II: Each charging event is optimized for energy costs only; the aging
costs are calculated afterwards.

• Mode III: Each charging event is optimized for the sum of both energy and
aging costs.

Note that p∗k is only calculated once at the beginning of each charging event. In a
real-world application, the user might wish to adapt an ongoing charging event to
dynamic changes, e.g., departure time, target energy, or electricity tariff. A suitable
user interface is therefore required, e.g., such as the one presented in the following
Section 6.2.2.
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6.2.2 Real-World Implementation of Charging Optimization

The second part of the case study aims to discover issues occurring while imple-
menting charging optimization in a realistic environment. In cooperation with
Meisenbacher et al. (see [250,300–302]), a simplified charging optimization scheme
is therefore developed and realized in the Smart Energy System Simulation and Con-
trol Center of the Energy Lab 2.0, see also Hagenmeyer et al. [303].5 To attain a
scalable and flexible setup, a cloud-based architecture is chosen, see Figure 6.4. All
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Figure 6.4: Cloud-based architecture of the charging optimization scheme as realized in the En-
ergy Lab 2.0 [303], simplified according to [300].

web applications run as containerized microservices (by means of Docker [248]), de-
ployed on a cluster of virtual machines, and orchestrated using Kubernetes [249]. An
MQTT-based communication concept enables performant interaction in between
components, see also Section 2.3.

The Optimization Service provides a runtime environment for the optimization logic
(6.2), which is adapted as follows. To decrease problem complexity, a larger time
step of ∆t = 15 min is chosen. In addition, the battery temperature progression
is omitted and a constant battery temperature is assumed throughout the entire

5A brief overview of the project can also be found here: https://energylabsmartcharging.github.
io/Smart-Charging-Wizard/
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charging event.6 Accordingly, (6.2f), (6.2g), and (6.2i) are removed from (6.2). For
a faster calculation, a gradient-based solver (Ipopt [304]) is used instead of DDP.
Furthermore, the power limits in (6.2b) are adapted to the used charging station;
i.e., p = 0 kW and p = 11 kW. All other parameters given in Section 6.2.1 remain
unchanged.

Furthermore, to adapt input values (parking time window, SOC upon arrival and
departure, electricity price profile), trigger the optimization scheme, and monitor
the charging process, a light-weight user interface is designed by means of Stream-
lit [305]; its three-page layout is shown in Figure 6.5 and a detailed description can
be found in [300, 301].

Inputs Result Charging
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Figure 6.5: Three-page user interface of the charging optimization scheme as realized in the En-
ergy Lab 2.0 [303], according to [300, 301].

To persist information on running charging processes, the Charging Session Handler
is implemented as headless web application. Independently from the other services,
charging events can thus be started, updated and stopped from different devices;
e.g., if the Optimization Service crashes and needs to be restarted.

The architecture also includes a real EV charging station (KEBA [306]), whose charg-
ing power can be adapted via a programming interface. Figure 6.6a shows the

6The expected error from assuming constant battery temperature is elaborated in Section 6.3.3.
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EV (Mercedes-Benz EQC) connected to this charging station during testing the real-
world charging optimization setup in the Energy Lab 2.0 [303]. For safety reasons, a
programmable logic controller is used, e.g., to validate charging power setpoints re-
ceived from the Charging Session Handler. In case of invalid values, an error message
is raised to report the failed request. Furthermore, values measured at the charging
station are cyclically published to provide live information for the user interface, as
shown in Figure 6.6b; here, the real-time profiles of both set (green) and measured
(blue) charging power can be seen.

(a) EV (Mercedes-Benz EQC) connected to controllable
charging station (KEBA [306])

(b) Screenshot of user interface showing set (green) and
measured (blue) charging power in realtime

Figure 6.6: Impressions of real-world charging optimization setup in the Energy Lab 2.0 [303].
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6.3 Results of Charging Optimization Case Study

The first part of the case study (see Section 6.2.1) compares operating cost of opti-
mized charging with a standard procedure, see the results in Section 6.3.1. Parame-
ter variation of the optimization scheme allows to identify crucial influence factors
on the profitability of V2G, see Section 6.3.2. Although the applied DDP solving
method ensures to yield globally optimal solutions, and thus, deliver precise re-
sults, its calculation time vastly exceeds acceptable levels of a user application. In
some cases, its calculation time reaches up to 45 min for a single charging event.
As the high computational complexity seems to arise especially from the thermal
battery model (see Section 3.2.2) used in (6.2i), Section 6.3.3 examines the necessity
of thermal battery models in charging optimization.

Finally, Section 6.3.4 describes the outcome of the real-world implementation of
charging optimization, see Section 6.2.2.

6.3.1 Comparison of Electric Vehicle Operating Cost

In Figure 6.7, the operating cost components for all three modes described in Sec-
tion 6.2.1 are shown; the total cost is normalized against the operating cost of
Mode I.
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Figure 6.7: Comparison of normalized operating cost and its components of 45 real charging events in
three modes: standard charging without optimization (Mode I); energy cost optimization,
aging costs calculated afterwards (Mode II); energy and aging cost optimization (Mode III).
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On average, Mode III yields a 7.8 % lower operating cost compared with Mode I;
similar results can be found in the literature, e.g. 5.4 % in [307] and 13.2 % with
simplifications in [308]. Although p < 0 kW in (6.2b), i.e., discharging of the EV
battery is possible, no energy rewards JE

− can be observed in Mode III. This im-
plies that JE

− does not compensate for round-trip energy losses, i.e., charging and
discharging, and battery aging costs.

Disregarding battery aging underestimates the total operating cost in Mode I by
30.1 % on average; in [309] an underestimation of up to 52 % is reported. This
becomes apparent when applying Mode II: the optimization scheme utilizes fluc-
tuations of the electricity price throughout the charging events to generate energy
rewards. As a consequence, the energy costs as defined in (6.3) decrease by 13.3 %
compared with Mode I. Subsequently calculating the battery aging costs as defined
in (6.6), however, yields a 55.8 % higher total operating cost. Repeatedly charging
and discharging the battery increases the battery temperature θ and causes the cal-
endar aging costs JD

cal to rise in Mode II. Trippe et al. [309] report an even more
drastic result for this setup: an 8 % reduction of electricity costs, but a threefold
increase of battery aging costs. Hence, it is concluded that especially for charging
with the allocation of V2G services–in this case energy arbitrage–battery aging must
not be neglected.

6.3.2 Influence Factors on Vehicle-to-Grid Profitability

Evaluating the total EV operating cost of optimized charging in Section 6.3.1 indi-
cates that V2G services such as energy arbitrage might not be profitable. Two possible
influence factors on V2G profitability are therefore examined in this section.

6.3.2.1 Influence of Battery Prices

According to the literature [27, 92, 93], production prices of EV battery cells will
likely decrease within the next decade; reasons for this include a growing EV mar-
ket and improvements in battery production technology. In anticipation of charging
optimization for EV fleets, the operating cost of real, historical charging events (see
Section 6.3.1) is compared with the operating cost when assuming underlying fu-
ture battery prices. Table 6.2 presents the setup and the corresponding results. Par-
ticularly, the value loss VEV of the EV battery is varied, directly affecting the aging
costs JD in (6.6). To highlight the sole influence of decreasing battery prices, 2018
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Table 6.2: Comparison of charging optimization (Mode III, see Section 6.2.1) for different future scenarios
in terms of battery value loss (according to [92]).

Year Battery Value Loss VEV Share of Aging Costs JD Decrease of Operating Cost

2020 6080e 30.1 % 0 %

2025 4470e 22.1 % 6.8 %

2030 2770e 13.7 % 15.9 %

electricity prices are assumed as the cost calculation’s underlying future prices. Fur-
thermore, advances in battery technology, i.e., reduced battery aging itself, would
have similar effects to decreasing battery production prices.

Compared with 2020 battery prices, JD could on average decrease by 26.5 % in 2025
and by 54.4 % in 2030, accordingly. In terms of total operating cost, however, the
decrease would only amount to 6.8 % in 2025, or 15.9 % in 2030, respectively. From
an EV user’s point of view, this reduction of battery aging costs is not sufficient
for energy arbitrage to become profitable. Consequently, a suitable approach to in-
centivize EV owners to participate in V2G services is required. For instance, power
suppliers could offer a flat compensation for battery aging costs per charging event,
in case the user allows V2G services.

In addition to price-based energy arbitrage, power suppliers could prospectively of-
fer further rewards for contingency reserves, i.e., feeding back energy to the grid in
situations exhibiting a critical lack of power generation (undergeneration). Although
the actual number of these situations is still unclear, they are expected to only occur
several times per year, see Section 1.1.1.2. However, since the fixed cost for bidi-
rectional charging equipment (on-board charger, charging station, communication
infrastructure) is still incurred, the rewards that would need to be offered are likely
to be very high. From an economic point of view, other alternatives such as sta-
tionary battery storages to provide contingency reserves may be more reasonable.
Therefore, further research is needed to clarify this issue.

6.3.2.2 Influence of Electricity Tariff

The operating cost evaluations in Section 6.2.1 take a dynamic electricity tariff as
a basis, which is similar to the ones available today, see e.g., aWATTar [286]. With
this setup, however, V2G services such as energy arbitrage may be unprofitable (see
Figure 6.7). A possible reason could be insufficient price variations over time to
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compensate aging costs. To investigate this relation, the spread of a charging event’s
price profile ϵ = (ϵ0, ϵ1, ..., ϵNk−1)

⊤ is quantified as

γ =
max {ϵ} −min {ϵ}

ϵmean
, (6.8)

with taking the mean workday price ϵmean = 0.286e/kWh as a reference. To eval-
uate the sensitivity of the optimization scheme (6.2) to γ, an exemplary workday
charging event is used. In particular, the EV arrives at 07:00 o’clock with a bat-
tery level of 60 % SOC and departs at 15:00 o’clock with 100 % SOC. As shown in
Figure 6.8, three price profiles with different γ are then tested.

First, a regular workday profile with γ = 0.054 is used (drawn in blue). Second,
a real-world case is analyzed, which exhibits slight electricity underproduction in
the morning and overproduction in the afternoon (γ = 0.418, drawn in orange). In
particular, German day-ahead prices of 05.05.2021 are used to which typical fees and
taxes (see Figure 6.2) are added [299]. Considering the expected rise of renewable
energy sources in the near future, such cases could occur more often compared with
today [310]. The power supply—particularly grid operators—may then use batteries
of grid-connected EVs as power reserve to compensate drastic grid imbalances.
Therefore, a third, stretched price profile derived from the real-world case with
γ = 0.5 is used (drawn in green).

Table 6.3 outlines the charging cost and its components for all three price curves.
In addition, Figure 6.9 shows the corresponding battery energy profiles—here, nor-
malized as SOC profiles. No discharging of the battery can be observed for the reg-
ular workday price profile with γ = 0.054; the corresponding energy rewards JE

−

amount to 0.0e. Instead, charging is delayed towards the end in order to reduce
battery aging, as high SOC levels cause additional calendar aging, see Section 3.2.3.
In contrast, the SOC profile of the real-world case (Figure 6.9, drawn in orange)
with γ = 0.418 exhibits discharging of the battery at the beginning, when ϵ is high;
accordingly, energy rewards JE

− of −5.41e are gained via energy arbitrage, which
reduce the total energy cost JE to 5.76e. The battery is then maintained at a level
of approx. 41 % SOC before charging, when ϵ is low. Calendar aging of the bat-
tery (and the corresponding costs JD

cal = 0.55e) is thus reduced by decreasing the
charging event’s mean SOC level. However, the additional energy throughput due
to initially discharging the battery causes increased cyclic aging costs JD

cyc = 3.19e.
As a consequence, the total battery aging cost JD rise to 3.74e—a 59.8 % increase
compared with the regular workday price profile. Collectively, the gained energy re-
wards, however, compensate for additional battery aging costs resulting in a 28.8 %
decreased total cost of 9.50e.
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To guide future work on grid-supporting V2G services, a characteristic threshold
for γ is estimated, see also [77, 311]. In particular, a case is designed in which
the battery is discharged in one time interval and charged in the subsequent time
interval with equal (absolute) power |p| ≤ 7 kW. The characteristic threshold

γ∗ =
JE · (1− ηc) + 2JD

ϵmean
, (6.9)

then corresponds to the critical price spread above which V2G rewards fully com-
pensate for battery aging and conversion losses. Assuming a battery temperature
θ = 21 ◦C and a round-trip energy efficiency ηc = 0.997, γ∗ = 0.431 is obtained.
Thus, for this setting, V2G potential is fully utilized if the price spread γ is greater
than 43.1 % relative to the mean electricity price ϵmean = 0.286e/kWh. The green
SOC profile shown in Figure 6.9 with γ = 0.5 confirms this result. At the beginning,
the battery is fully discharged to the lower battery limit of 10 % SOC. After idling
for approx. three hours, the battery is charged to 100 % SOC. Hence, the available
capacity of the EV battery is fully utilized to provide V2G services; for this setup,
a corresponding (maximum) cost reduction of 36.9 % (4.92e) is achieved via energy
arbitrage, see Table 6.3. Conversely, V2G is likely to be unprofitable for price pro-
files featuring a smaller price spread than γ∗; e.g., the ones shown in Figure 6.3,
possessing price spreads of γ = 0.107 (workday) and γ = 0.075 (weekend), which
are significantly below γ∗.

Finally, note that the threshold γ∗ also depends on other quantities, e.g., the mean
electricity price ϵmean, and the charging event’s SOC and time range, whose influ-
ences need to be investigated in future work. The specific value of γ∗ may therefore
not apply directly to other cases. Nevertheless, a qualitative result can be concluded.
Influencing EV charging processes externally—e.g., as grid operator—requires an

Table 6.3: Cost comparison of optimized charging (Mode III, see Section 6.2.1) for three electricity
price profiles (see Figure 6.8) with different spreads γ according to (6.8): regular workday
(γ = 0.054), example 05.05.2021 (γ = 0.418), and stretched example 05.05.2021 (γ = 0.5).

Cost Component γ = 0.054 γ = 0.418 γ = 0.5

Energy Rewards JE
− 0.0e −5.41e −11.36e

Energy Expenses JE
+ 11.0e 11.17e 14.46e

Total Energy Cost JE 11.0e 5.76e 3.10e

Cyclic Aging Costs JD
cyc 1.63e 3.19e 4.82e

Calendar Aging Costs JD
cal 0.71e 0.55e 0.50e

Total Aging Cost JD 2.34e 3.74e 5.32e

Summed Cost JE + JD 13.34e 9.50e 8.42e
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Figure 6.8: Profiles of the electricity price ϵ with different spreads γ, according to [299]; the green
price profile is obtained by stretching the orange one while keeping a constant mean price
ϵmean = 0.24e/kWh.
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Figure 6.9: Profiles of battery energy (normalized as SOC) over time for price profiles with different
electricity spreads γ (see Figure 6.8).
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adapted price policy. Instead of offering averaged price profiles (e.g., Figure 6.8,
blue), the bare fluctuations of the electricity market such as extensive price peaks
(Figure 6.8, red) need to be passed to the EV customer. In this way, price-controlled
charging optimization may be adequately used to realize V2G services. Yet, it is
unclear whether dynamic electricity prices alone are sufficient for V2G services
to support reliable grid operation. Additional control signals based on time- and
location-dependent grid state (e.g., overload in low voltage distribution grids) could
be required, see also [23, 75, 298].

6.3.3 Effects of Thermal Modeling

Including advanced thermal models such as ANNs (see Section 3.2.2.2) into the
charging optimization problem (6.2) allows to precisely simulate the battery tem-
perature. However, this also leads to a significant increase in problem complexity
and computational effort to solve the corresponding optimization problem. For
this reason, the necessity of a thermal battery model as described in Section 3.2.2
is examined here. Particularly, the assumption of constant battery temperature
throughout a charging event is compared with the use of a data-driven thermal
model.

In Mode III, assuming constant battery temperature (upon arrival at a charging sta-
tion), i.e., ∆Θn = 0 K, ∀n ∈ N k, would underestimate the operating cost by 0.55 %
compared with a data-driven thermal model. When applying Mode II, however,
the operating cost would be underestimated by 3.44 %. Considering the vastly de-
creased computation time (< 15 s, with gradient-based solver) when omitting a
thermal model, the error is deemed acceptable for real-world applications. For the-
oretical evaluations on the profitability of charging optimization, however, thermal
models should not be neglected. A compromise might be to include a heuristic
thermal model that provides better temperature estimation than omitting a thermal
model entirely, while maintaining reasonable computation time.

Besides the errors in estimating operating cost, the presence of a thermal model
also influences the decision made by the optimization scheme, i.e., the charging
power trajectory p∗. Figure 6.10 therefore shows exemplary power profiles for as-
suming constant battery temperature, and for using a data-driven thermal model
as described in Section 3.2.2.2. For |p| > 7 kW, the mean difference of charging
power is 3.11 kW, when comparing the constant battery temperature assumption
with the data-driven thermal model. However, for |p| ≤ 7 kW the mean deviation
of charging power only amounts to 0.75 kW.
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Figure 6.10: Power profiles over time of an exemplary charging event, if assuming constant battery tem-
perature (orange), and if using a data-driven thermal model as described in Section 3.2.2.2
(blue).

Finally, it can be concluded that although the operating cost only show minor de-
viations, the charging power profiles change significantly (see Figure 6.10). In par-
ticular, the relevance of the battery temperature rises with the (absolute) charging
power. As a consequence, advanced thermal models (e.g., as in Section 3.2.2.2)
should be used for charging events with |p| > 7 kW. For low power levels of
|p| ≤ 7 kW, assuming constant battery temperature is sufficient.
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6.3.4 Insights from Real-World Implementation

To evaluate the real-world charging optimization setup, two different scenarios are
defined and tested:

• Scenario I: Charging on a typical workday; EV arriving at 09:00 o’clock with
45 % SOC, expected departure at 17:00 o’clock with 95 % SOC. The electricity
price profile forms a valley between two price peaks at 08:00 and 18:00 o’clock.

• Scenario II:

a) Charging over night in between two workdays; EV arrives at 12:00 o’clock
with 20 % SOC, planned departure at 09:00 o’clock the next day with
95 % SOC; due to electricity underproduction, the price profile exhibits
an extensive peak between 16:30 and 20:00 o’clock (see Figure 6.11b).

b) Alike to Scenario II-a, at 14:15 o’clock, however, the user decides to al-
ready depart on the same day at 18:00 o’clock with 55 % SOC; the ongo-
ing charging process is recalculated and updated, accordingly.

The cost saved in comparison with default charging is given in Table 6.4.7 Fig-

Table 6.4: Relative cost savings of optimized charging over default charging (plug in and charge imme-
diately) for three different scenarios, tested with the real-world implementation of charging
optimization (see Section 6.2.2), according to [300].

Scenario Total Cost Aging Costs Energy Costs

Scenario I −5 % −12 % −3 %

Scenario II-a −11 % −22 % −8 %

Scenario II-b −13 % −52 % −1 %

ure 6.11a shows both electricity price and the calculated SOC profiles for Scenario I,
as provided to the EV user on the Result Page of the user interface (see also Fig-
ure 6.5). For the optimized SOC profile, charging occurs in a period of low electric-
ity prices between 12:00 and 17:00 o’clock. Furthermore, instead of symmetrically
filling the price valley, considering calendar battery aging (see Section 3.2.3) shifts
charging to a later time. The conditions of Scenario II-a yield the charging power
profiles shown in Figure 6.11b. Due to electricity underproduction, a price peak of

7The term default charging refers to a standard procedure of immediately charging the EV at maximum
available power upon arrival at a charging station.
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up to 0.375e/kWh occurs between 16:00 and 20:00 o’clock. While default charg-
ing (black profile) would disregard the energy shortage, optimized charging (green
profile) is shifted to a time at which the electricity price peak flattens out again. In
Scenario II-b, a recalculation of Scenario II-a is requested at 14:15 o’clock. As the
blue power profile in Figure 6.11b shows, charging is inactive (i.e., p = 0 kW) until
this point in time. Once the ongoing charging event is updated to the new condi-
tions (lower target SOC, early departure), charging is immediately started despite
high electricity prices (blue and yellow power profile), as otherwise the target SOC
could not be met by the end of the specified time window.
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Figure 6.11: Examples of real charging processes (default in black, optimized in green/yellow, actually
measured charging power in blue) controlled and adapted via the user interface of the
charging optimization scheme realized in the Energy Lab 2.0 [303]; charging event of a typical
workday (a); over-night charging with recalculation and early departure (b); according to
[300].

Beyond these results, implementing charging optimization in a real-world environ-
ment revealed further critical challenges. To address these, some suggestions for
future work are given in the following. The seamless integration of charging opti-
mization (or generally smart charging) into users’ mobility habits calls for uniform
communication concepts, see also [312]. With introducing standards for charging
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communication, e.g., ISO 15118-20 [313], this issue is expected to improve. How-
ever, a key question still remains to be answered: Should communication with the
EV be established via the charging station’s power cable or via a wireless, cloud-
based connection? While using the former approach ensures communication also,
if the EV itself is offline (e.g., when parked in an underground garage), the latter
approach provides more flexibility; of course, both approaches could also be com-
bined. Furthermore, as already anticipated in [23], the interaction between EV and
the power supply is unclear: How and on which legal and economic foundation
may power suppliers externally control a charging process, e.g., by actively reduc-
ing charging power? In this context, the question arises whether a dynamic price
signal alone suffices to control charging, see also [75, 298] In addition, a uniform
interface for power suppliers needs to be developed that allows to control and ag-
gregate several charging processes. Finally, a concept for user interaction needs
to be elaborated in which user acceptance issues and suitable incentives for smart
charging are addressed.

177



Charging Optimization

6.4 Conclusion

In Chapter 6, the optimization of EV charging events is addressed. Particularly,
a non-linear optimization scheme is engineered, which aims to reduce EV operat-
ing cost by leveraging unused energy and time flexibility inherent in the charging
process. To track the progression of the battery state, a detailed model of the EV
battery (see Section 3.2) is incorporated. In this way, the influence of battery aging
on (bidirectional) charging optimization of EVs can also be analyzed.

For validation, a two-part case study is set up. First, the conditions of historical
charging events from real EVs are used to simulate optimized charging. In this
way, the need for advanced thermal battery models when charging power exceeds
7 kW is revealed. In terms of operating cost, taking advantage of the time and en-
ergy flexibility of unidirectional EV charging holds the potential to save an average
of 7.8 %. Furthermore, disregarding the costs arising from battery aging under-
estimates EVs’ total operating cost up to 30 %. Battery aging thus hinders many
V2G services based on bidirectional power flow—e.g., energy arbitrage—from being
profitable. To overcome this would require a vast decrease of battery production
prices or adapted electricity tariffs that directly represent market fluctuations. Fu-
ture work on this part should examine stochastic influences on charging optimiza-
tion, e.g., the provision of occasional power reserves for which EV users might be
rewarded—regardless of them being called or not. Furthermore, random user ac-
tions (see Chapter 4) should be included in the optimization via chance constraints
and their impact on robustness should be quantified. In this context, formulating
the target energy criterion as cost function—rather than a constraint—could be help-
ful. Particularly, a deviation of the target energy could be penalized depending on
future charging opportunities; e.g., if the next location with charging opportunity
can be reached, not meeting the target energy is uncritical.

In the second part of the case study, charging optimization is implemented in a real-
world environment, together with a controllable EV charging station. In this con-
text, an architecture blueprint and communication concept for optimization-based
smart charging systems is developed. It is demonstrated that cost-optimized (unidi-
rectional) charging of real EVs can be planned, started and stopped via a web-based
user interface. Furthermore, the adaption of ongoing charging processes to changed
conditions, e.g., an early departure time, can be successfully performed. However,
further developments are required to provide a robust smart charging system that
seamlessly integrates into users’ daily mobility habits. In particular, issues regard-
ing standardized charging communication, interventions of power suppliers, and
user acceptance should be further examined in future work.
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7 Conclusion and Outlook

In recent years, paradigm shifts could be observed in both energy and mobility sec-
tors. Increasing power generation from intermittent renewable energy sources, e.g.,
solar and wind, is threatening an efficient and reliable utility grid operation. At
the same time, the number of (Battery) Electric Vehicles (EVs) requiring significant
amounts of electric energy to charge is increasing rapidly. The resulting coupling
of energy and mobility sector inevitably implies that reliable electric mobility de-
pends on a robust power supply. Furthermore, vehicle users are facing unprece-
dented challenges due to the fact that EVs currently provide less driving range and
require more time to recharge compared with Internal Combustion Engine Vehicles
(ICEVs). Consequently, EV users’ perceive their individual mobility as limited.

The work summarized in this thesis intends to support users when charging their
EV by means of an intelligent software application (charging assistant), which con-
siders the interests of all involved stakeholders. To achieve this, design features
of different possible software architectures are initially reviewed and assessed with
respect to flexibility, data privacy, development effort, and complexity (Chapter 2).
Furthermore, driving and charging characteristics of the EV are modeled based on
historical data (Chapter 3). As core of the charging assistant, three major compo-
nents are then examined, engineered and implemented as prototypes. In mobility
prediction (Chapter 4), the user’s individual mobility behavior is modeled based
on recorded EV trip data. Charging scheduling (Chapter 5) then aims to most
conveniently and cost-effectively plan charging stops at locations the EV is parked
anyway. Finally, charging optimization (Chapter 6) identifies unused time and en-
ergy flexibility inherent in future charging processes to generate optimal charging
power trajectories with respect to dynamic electricity prices and battery aging. Col-
lectively, the major contributions of the present thesis can thus be summarized as
follows:

1. A qualitative comparison of alternative architecture designs is performed
in order to define a suitable structure of modules that consider all relevant
sources of information, their semantic processing steps, and interconnection
(Chapter 2).
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2. A state-of-the-art analytical model to estimate (user-individual) energy con-
sumption of an EV’s future trips is compared with a data-driven approach
(Section 3.1). It is found that although data-driven approaches may have ben-
efits in terms of accuracy, an actual live deployment is difficult due to the
variety of data sources.

3. A three-part model of the EV battery is developed and validated based on
real charging data (Section 3.2). To simulate the battery’s energy state, an
Equivalent Circuit Model (ECM) is found to be sufficiently precise. In terms
of thermal modeling, a data-driven model is developed based on historical
data to diminish deficiencies of analytical models. To track the battery’s State
of Health (SOH), the accuracy of a battery-specific empirical aging model is
examined and considered sufficient.

4. For developing and evaluating mobility prediction models, a semi-synthetic
data set based on a real user is designed (Section 4.1.2). The script to generate
the data set as well as the data itself is published open-source to support
research on human mobility.

5. To determine a user’s frequently visited locations, a novel two-stage density-
based spatial clustering algorithm is engineered and tested against state-of-
the-art approaches (Section 4.2). Potential alternatives of implementation
and data storage with respect to data-security and privacy issues are also
reviewed.

6. A random forest classification model to predict the next location a user may
visit is developed and compared with a naive baseline approach using both
real and synthetic data sets. In this context, the time-dependent (conditional)
probability of each location to be visited is also examined (Section 4.3).

7. Different ensembles of machine learning models are developed to estimate
typical parking times at users’ frequent locations (Section 4.4). Validation is
then conducted by means of both real and synthetic data, and reveals mostly
insufficient accuracy for typical smart charging applications.

8. A graph-based scenario generation algorithm is developed and applied to
quantify energy demand and occurrence probability of an EV user’s mobility
scenarios (Section 5.1).

9. A stochastic mixed-integer programming is set up to select EV charging stops
within a defined (receding) time horizon and to determine their correspond-
ing energy demand (Section 5.2). The optimization objective is convenient and
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cost-effective EV charging without disturbing the user’s individual mobility
habits.

10. Two alternative benchmark strategies are defined to validate charging
scheduling. A Monte Carlo simulation is run to quantify the benefits of
the proposed scheme over these strategies in terms of cost, comfort, sustain-
ability, and robustness (Section 5.3).

11. A non-linear optimization scheme is engineered to identify and leverage time
and energy flexibility in EV charging processes (Section 6.1). The integration
of a detailed EV battery model allows accurate quantification of cost sav-
ings arising from reduced battery aging and dynamic electricity tariffs (Sec-
tion 6.3.1).

12. Based on data from real EV charging events, the influence factors on the prof-
itability of Vehicle-to-Grid (V2G) applications are elaborated, and suggestions
for following research are deduced (Section 6.3.2, Section 6.3.3).

13. For a real-world implementation and end-to-end testing of the pro-
posed scheme, an architecture blueprint and communication concept for
optimization-based smart charging systems is developed, which provides a
basis for future smart charging research (Section 6.3.4). In this context, fur-
ther issues regarding standardized charging communication, interventions of
power suppliers, and user acceptance are discovered.

Although all developed components of the proposed charging assistant are tested
by themselves under realistic conditions, integrated testing of the entire system is
still required. In this context, both simulation and real-world applications can be
helpful to gain insights into usability, robustness, and user acceptance. For the
purpose of EV modeling (Chapter 3), suitable strategies to automatically establish
model parameters are necessary, e.g., when starting to use the charging assistant
with new types of EVs, whose parameters are still unknown. In this case, generic
models may be initially used and incrementally adapted during operation to fit the
changed EV characteristics (transfer learning).

The models used for mobility prediction (Chapter 4) call for a similar cold start
concept, which allows trustworthy predictions with a minimum of data at the be-
ginning. To achieve this, the problem could be generalized to leverage data of
several EV users in creating general predictive models. Subsequently, incremental
adjustment of model parameters could help to adapt the models to individual users.
Beyond that, evaluation of all mobility prediction models using a broad variety of
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real data is inevitable to prove general applicability, and examine concepts of model
surveillance and retraining.

Alike, charging scheduling (Chapter 5) should be tested in a real-world environ-
ment that incorporates several EV users, end devices, and real-time data sources. In
this context, the impact of uncertainty inherent in user decisions can be examined,
and a suitable recalculation strategy may be derived. Furthermore, bidirectional
charging should be included to consider the provision of V2G services.

The charging optimization concept proposed in Chapter 6 disregards stochastic in-
fluences. Future work should therefore examine stochastic optimization to handle
uncertain parking duration and the provision of further V2G services such as occa-
sional power reserves. Chance constraints may then be put on available energy and
power reserves throughout an EV charging process. In this way, both user’s indi-
vidual mobility and callable reserves for the power supply can be guarantee with
a specified security level. For these aspects to work properly, however, adequate
charging communication is essential, which ensures robust connectivity, e.g., also if
parking in an underground garage. Furthermore, legal foundations are required to
regulate external control of an EV charging process by power suppliers. In this con-
text, uniform interfaces need to be developed, allowing power suppliers to control
and aggregate several charging processes, e.g., in the case of EV fleets.

In summary, the concept of an intelligent charging assistant as proposed in the
present thesis may support EV users especially in two situations: First, when
switching from an ICEV to an EV by ensuring to stay mobile in the majority of
cases while demanding minimal planning effort. Second,—once having overcome
initial concerns such as range anxiety—when aiming to operate (especially charge)
an EV most sustainably, conveniently, and cost-effectively by gathering and com-
bining several sources of information. In a broader scope, however, the proposed
concepts particularly help to most effectively fulfill the basic human need of individ-
ual mobility. Consequently extending this idea to related trends, a future charging
assistant may therefore also consider other forms of mobility, e.g., public transport,
(autonomous) ride hailing, and (electric) bicycles, which may be included depend-
ing on user preferences, cost, and sustainability.
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A Important Evaluation Metrics

Adequate metrics constitute a prerequisite to evaluate both feature and model per-
formance when designing data-driven models. This chapter provides definitions of
all metrics used within this thesis, which are oriented at [246].

A.1 Metrics to Evaluate Feature Performance

To assess the (isolated) performance of single input features of a model—especially
data-driven models such as Linear Regression (LR), ANNs and random forests—the
following two metrics are used.

A.1.1 Spearman Rank Correlation Coefficient

Given a set of inputs X = {x1, x2, ..., xN} (e.g., multiple values of one feature) and a
corresponding set of outputs Y = {y1, y2, ..., yN} (e.g., values of a label), univariate
feature relevance (independent of model type) can be determined using the Spear-
man [314] rank correlation coefficient

qSp(X ,Y) = ∑N
i=1
(

R(xi)− RX
) (

R(yi)− RY
)√

∑N
i=1
(

R(xi)− RX
)2 ·∑N

i=1
(

R(yi)− RY
)2

. (A.1)

Here, R(xi) indicates the rank of xi in X if sorted in ascending order (1 for the
smallest, N for the largest element). To obtain offset compensation, the mean rank
RX = 1

N ∑N
i=1 R(xi) is used. Thus, qSp is a non-parametric rank correlation measure

that quantifies the fitness of a monotonic function to describe the relation between X
and Y . It takes values in [−1, 1] expressing the association of ranks, i.e., 1 for perfect
positive association, 0 for no association, and −1 for perfect negative association.
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A.1.2 Gini Importance in Random Forest Models

A random forest R (see [260, 276]) consists of a number NT of decision trees T .
Each tree, in turn, consists of nodes t representing a split of data, see Figure A.1.
In particular, each node splits a set of Nt data samples into two subsets of samples

xm t

tL

tR

Nt

Nt L

N
tR

Figure A.1: Node t of decision tree T ∈ R preforming a binary split of Nt data samples into subsets
with NtL and NtR samples.

that are passed to successor nodes tL and tR. The number of data samples NtL and
NtR passed to each successor is determined in the model training procedure for
which data with the features x = (x0, x1, ...)⊤ is used. To evaluate how a feature
xm influences the performance of a random forest model in terms of accuracy, the
corresponding Gini importance

qGini(xm) =
1

NT
∑
∀T ∈R

∑
∀t∈Txm

Nt

N
·∆i(t), (A.2)

can be consulted, which represents the mean decrease of node impurity that feature
xm causes [277]. To achieve this, the impurity decrease

∆i(t) = i(t)− NtL

Nt
· i(tL)−

NtR

Nt
· i(tR), (A.3)

is calculated for all nodes in set Txm ⊆ T , which only contains nodes whose split
ratio was influenced by feature xm in the training process. The decrease of impurity
is then weighted by the portion Nt

N of data samples reaching node t, and summed
up for all nodes t ∈ Txm . Finally, the sum over all decision trees T ∈ R is calculated
and divided by the total number of trees NT. Here, the Gini index

i(t) = 1−
(

NtL

Nt

)2
−
(

NtR

Nt

)2
, (A.4)

is used as impurity metric [260, 276, 278]; other adequate metrics may, however,
also be used [277]. Note that using Gini importance does not allow to distinguish
similarly performing, yet redundant features.
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A.2 Metrics to Evaluate Model Performance

To assess the average model performance, a variety of distance metrics can be ap-
plied. For this purpose, true values Y = {y1, y2, ..., yN} (i.e., observed values in
a data set, also called ground truth), are compared with the corresponding values
Ŷ = {ŷ1, ŷ2, ..., ŷN} estimated by a model.1 The elements of Y and Ŷ can be both
scalars and vectors.

A.2.1 Accuracy

An intuitive metric to quantify (especially classification) model performance is the
accuracy

qACC(Y , Ŷ) = 1
N

N

∑
i=1

{
1, if yi = ŷi,
0, if yi ̸= ŷi,

(A.5)

based on trivial distance, which represents the portion of correct estimations in re-
lation to the total number of estimations N. Note that qACC can be misleading for
imbalanced data sets (e.g., 95 % of the data samples in one class). For these cases,
advanced metrics such as balanced accuracy may be more appropriate, see e.g., [315].

A.2.2 Coefficient of Determination

To quantify the benefit of a model over a naive baseline approach estimating the av-
erage y = 1

N ∑N
i=1 yi regardless of the model input, the coefficient of determination

(also called R2-score)

qR2(Y , Ŷ) = 1− ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − y)2 , (A.6)

is defined. Reasonable values are within [0, 1], where 0 indicates the absence of
any relation and 1 indicates a deterministic relation. Similar to (A.1), an offset
compensation is achieved by considering y. Note that by replacing ŷi with values xi
of an input feature, qR2 can also be used to evaluate (univariate) feature relevance.

1To quantify unbiased model performance, an independent subset (test set) of the entire data must be
used, which has previously not been consulted for model creation or parameter tuning.
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A.2.3 Absolute Error Metrics

The Mean Absolute Error (MAE)

qMAE(Y , Ŷ) = 1
N

N

∑
i=1
|yi − ŷi|, (A.7)

represents the average deviation of a model’s estimates ŷi compared with true val-
ues yi. It possesses the same unit as the estimates and is therefore not generally
dimensionless. Furthermore, only the absolute deviation is quantified without di-
rection. A systematic over- or underestimation of a model can thus not be deter-
mined by means of qMAE.

Similar to (A.7), the Relative Mean Absolute Error (RMAE) (also mean absolute per-
centage error)

qRMAE(Y , Ŷ) = 1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ , ∀yi ̸= 0, (A.8)

quantifies the average deviation of a model’s estimates compared with true values.
In addition, each deviation is divided by the true value yi to obtain a dimensionless
quantity. Accordingly, qRMAE is however not defined, if yi = 0.

A.2.4 Squared Error Metrics

Extending definition (A.7) by squaring each deviation between a model’s estimates
ŷi and the true values yi yields the Mean Squared Error (MSE)

qMSE(Y , Ŷ) = 1
N

N

∑
i=1

(yi − ŷi)
2 , (A.9)

which possesses the squared unit of the estimates. Similar to the MAE, only the
absolute deviation is quantified without direction.

To allow a direct comparison of error and estimates, the Root Mean Squared Error
(RMSE)

qRMSE(Y , Ŷ) =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2, (A.10)

is additionally defined by taking the square root of qMSE.
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B Discrete Dynamic Programming
Solving Algorithms

The use of non-linear models in (6.2h) and (6.2i) increase the complexity of (6.2) and
potentially impede computational tractability. For this reason, Discrete Dynamic
Programming (DDP) [316] is used to solve (6.2), see also [250, 317]. The remainder
of this chapter describes the solving procedure and provides detailed pseudo code
of the algorithms.1

First, Algorithm B.1 initializes the cost grid J, which is spanned by the energy
state variables en, the temperature state variables θn and all time intervals n ∈ N k.
Furthermore, the grid of all optimal actions P is initially filled with zeros.

Algorithm B.1: Initialization of backward induction algorithm (see Algo-
rithm B.2), according to [316].

Input: Nk, e0, eNk , θ0, e, e, θ, θ, p, p, λ

# discretize state and action:

1: ed ← range(start: e, stop: e, step: 0.8 kWh)
2: θd ← range(start: θ, stop: θ, step: 1 K)

3: pd ← range(start: p, stop: p, step: 1 kW)

# initialize cost grid and action grid (penalty value λ = 1000e):

4: J← zeros(Nk, length(ed), length(θd))

5: J[0, :, :],J[Nk, :, :]← λ, λ

6: J[0, argmin(|ed − e0|), argmin(|θd − θ0|)]← 0
7: J[Nk, argmin(|ed − eNk |), :]← 0
8: P← zeros(Nk, length(ed), length(θd))

Output: J,P, ed, θd, pd

1In Algorithm B.1, Algorithm B.2, and Algorithm B.3, the notation x[n] indicates accessing the n-th
element of vector x.
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Second, Algorithm B.2 performs a backward induction in which the cost for all
possible transitions in between two stages is calculated. In particular, Algorithm B.2
runs backwards (n ∈ {Nk − 1, Nk − 2, ..., 0}) to update J for all possible ei ∈ ed and
θj ∈ θd. Similarly, all corresponding optimal actions P are determined (backward
induction). To avoid infeasible trajectories, a penalty value λ is assigned to the
according value in J, if a constraint (6.2b) to (6.2i) is violated. Here, the value of λ

should be chosen significantly higher than the sum of usual costs.

Algorithm B.2: Backward induction algorithm to create cost grid J and
corresponding optimal actions P, according to [316].

Input: Nk,J,P, ed, θd, pd, e, e, θ, θ, p, p, ϵ, λ

1: for n← Nk − 1 to 0 :
2: for all ei ∈ ed :
3: for all θj ∈ θd :

# initialize cached total cost:

4: J ← ones(length(pd)) · λ
5: for all pm ∈ pd :

# validate charging power constraints (6.2b):

6: if p(ei, θj) ≤ pm ≤ p(ei, θj) :
# calculate state transitions:

7: en+1 ← ei + ∆E(ei, θj, pm)

8: θn+1 ← θj + ∆Θ(pm, Q̇loss(ei, θj, pm), ∆E(ei, θj, pm), θj)

# validate state constraints (6.2c) and (6.2f):

9: if e ≤ en+1 ≤ e and θ ≤ θn+1 ≤ θ :
# calculate transition costs (6.3) and (6.6):

10: JE ← JE(pm, ϵn)

11: JD ← VEV
HEV

(∆Hcal(ei, θj, H0) + ∆Hcyc(|∆E(ei, θj, pm)|))
# calculate and cache total cost:

12: J[m]←
JE + JD +J[argmin(|ed− en+1|), argmin(|θd− θn+1|)]

# assign minimum cached cost and corresponding action:

13: J[n, i, j]← min(J)
14: P[n, i, j]← pd[argmin(J)]

Output: J,P
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Once the cost grid J is filled, Algorithm B.3 conducts a forward integration in which
a path of minimum cost through J is chosen, starting from the initial state. Par-
ticularly, Algorithm B.3 integrates forward in time (n ∈ {0, 1, ..., Nk}), starting from
the initial battery energy e0 and battery temperature θ0. For each n ∈ N k, the cost-
optimal action is taken from P based on the current state en and θn. This procedure
yields the globally optimal charging power trajectory p∗k (forward integration) [316].

Algorithm B.3: Forward integration algorithm to find the optimal charg-
ing power trajectory p∗k , according to [316].

Input: Nk,J,P, e0, θ0, ed, θd, ϵ

# find starting point in the cost grid:

1: i, j← argmin(J[0, :, :])
# initialize output and assign corresponding action:

2: p∗k ← zeros(Nk)

3: p∗k [0]←P[0, i, j]
# initialize costs:

4: JE, JD ← 0, 0
# start forward integration loop:

5: for n← 0 to Nk − 1 :
# calculate state transitions:

6: en+1 ← en + ∆E(en, θn, p∗k [n])
7: θn+1 ← θn + ∆Θ(p∗k [n], Q̇loss(en, θn, p∗k [n]), ∆E(en, θn, p∗k [n]), θn)

# calculate costs with (6.3) and (6.6):

8: JE ← JE + JE(pn, ϵn)

9: JD ← JD + VEV
HEV

(∆Hcal(en, θn, H0)) + ∆Hcyc(|∆E(en, θn, p∗k [n])|)
# find nearest discrete state and assign corresponding action:

10: p∗k [n + 1]←P[n + 1, argmin(|ed − en+1|), argmin(|θd − θn+1|)]
Output: p∗k , JE, JD
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List of Abbreviations

ANN Artificial Neural Network
API Application Programming Interface
BMS Battery Management System
CAN Controller Area Network
CO2 Carbon Dioxide
DDP Discrete Dynamic Programming
ECM Equivalent Circuit Model
EV (Battery) Electric Vehicle
FCEV Fuel Cell Electric Vehicle
GPS Global Positioning System
ICEV Internal Combustion Engine Vehicle
JSON JavaScript Object Notation
LR Linear Regression
LiCoO2 Lithium-Cobalt-Oxide
MAE Mean Absolute Error
MLP Multi Layer Perceptron
MQTT Message Queuing Telemetry Transport
MSE Mean Squared Error
RMAE Relative Mean Absolute Error
RES Renewable Energy Source
RMSE Root Mean Squared Error
SBC Single-Board Computer
SOC State of Charge
SOH State of Health
TRL Technology Readiness Level
V2G Vehicle-to-Grid
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List of Symbols

This section summarizes the notation used throughout the thesis. The taxonomy is
partly based on the formulation given in [246]. It follows these general rules:

• Scalars, parameters, indexing variables and functions are denominated by
lower case letters, e.g., a for parameters, scalars or variables, f (•) for func-
tions or functionals, i for indices

• Upper case bold face letters represent matrices, e.g., M, lower case bold face
letters represent vectors, e.g., x for column vectors and x⊤ for row vectors

• Upper case script letters represent sets, e.g., A = {a1, a2, ..., aA}, with the
entities a1..A, and the cardinality A denominated by an upper case letter.

• xn indicates the value of x at time tn

• The symbol x̂ indicates an estimate of x

• The symbol ẋ indicates the derivative of x with respect to time t

• The symbol x represents the upper limit of x, x represents the lower limit of x

• Optimal solutions are indicated by an asterisk, e.g., x∗ would denote the opti-
mal solution to min{ f (x)}

Latin Symbols

B Set of Historical Battery Data Samples [-]
ch Heat Capacity of the Battery [J/K]
C Plug-In Event [-]
d Scenario of Scenario Tree [-]
D Set of all Scenarios of Scenario Tree [-]
e Battery Energy [J]
eA Battery Energy upon Arrival [J]
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eD Battery Energy upon Departure [J]
emax Momentary Maximum Available Battery Capacity [J]
enom Nominal Available Battery Capacity [J]
e Lower Bound of Battery Energy [J]
ẽ Adapted Lower Bound of Battery Energy [J]
e Upper Bound of Battery Energy [J]
∆E Energy Throughput [J]
∆Ê Estimated Energy Throughput [J]
E Charged Energy [J]
E Lower Bound of Charged Energy [J]
E Upper Bound of Charged Energy [J]
E Expected Value [-]
∆Hcyc Cyclic Battery Capacity Fade [%]
∆Hcal Calendar Battery Capacity Fade [%]
HEV Total Battery Capacity Fade, EV Application [%]
Ibat Battery Current [A]
J Set of Historical Trips [-]
JE Energy Cost Function [e]
JD Battery Degradation Cost Function [e]
JC Plug-In Cost Function [e]
J Discrete Dynamic Programming Cost Grid [-]
k Charging Event [-]
K Set of Historical Charging Events [-]
l Geodetic Location [-]
l̂ j+1,τ Predicted Parking Location of Next Trip [-]
llat Geodetic Location, Latitude [°]
llon Geodetic Location, Longitude [°]
lalt Geodetic Location, Altitude [m]
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Power Grid and User Constraints

The rise of intermittent renewable power generation increasingly impedes an efficient
and reliable utility grid operation. Simultaneously, the number of electric vehicles,
which require significant amounts of electric energy to charge, is growing rapidly. The
energy and mobility sectors are therefore inevitably coupled, implying that reliable
electric mobility depends on robust power supply. Furthermore, vehicle users per-
ceive a limitation of their individual mobility, as electric vehicles currently provide less
driving range and require more time to recharge compared with internal combustion
engine vehicles. To tackle these challenges, the present thesis presents a novel con-
cept and a software application supporting users when charging their electric vehicles,
while considering the interests of all involved stakeholders.
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