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Abstract
The engineering of non-trivial topology in superconducting heterostructures is a very challenging
task. Reducing the number of components in the system would facilitate the creation of the
long-sought Majorana bound states. Here, we explore a route toward emergent topology in a
trivial superconductor without a need for other proximitized materials. Specifically, we show that a
vortex hosting an even number of flux quanta is capable of forming a quasi-one-dimensional
topological sub-system that can be mapped to the Kitaev wire, if the vortex is trapped at a screw
dislocation. This crystallographic defect breaks inversion symmetry and thereby threads a local
spin–orbit coupling through the superconductor. The vortex-dislocation pair in the otherwise
trivial bulk can harbor a pair of Majorana bound states located at the two surface terminations. We
explain the topological transition in terms of a band inversion in the Caroli-de Gennes-Matricon
vortex bound states and discuss favorable material parameters.

1. Introduction

Majorana bound states (MBS) are self-conjugate, non-abelian quasi-particles that appear as boundary
modes in topological superconductors [1, 2]. The foreseen applications of MBS in quantum computation
[3] have motivated tremendous effort to generate them in a variety of systems, yet without conclusive
evidence. To date, the design of Majorana platforms largely relies on the paradigm of proximity: owed to the
sparsity of intrinsic topological superconductors, non-trivial topology is engineered in heterostructures,
e.g., in semiconductor nanowires [4, 5] with partial [6–11] or full [12] superconducting shell or at
superconductors interfacing with topological insulators [13, 14]. The recurring key components are
spin–orbit coupling, Zeeman splitting, and (trivial) s-wave superconductivity. Here we take a different
approach, where these components readily coexist without proximity effects and may cause the formation
of a topological phase. The surprisingly simple system consists of a trivial superconductor in an external
magnetic field, where a vortex is trapped at a screw dislocation. Screw dislocations are well understood and
commonly occurring crystallographic defects, which introduce a spin–orbit coupling by locally breaking
inversion symmetry [15]. While MBS at vortices usually require a p-wave superconductor [2], we show
below that this symmetry restriction can be lifted if the vortex carries multiple flux quanta [12, 16].
Depending on their type, superconductors tend to carry magnetic field either through large normal-state
regions (type-I) or vortices with singly-quantized flux Φ0 = hc/2e (type-II). Yet, the formation of giant
vortices, carrying a flux nΦ0, |n|� 1 is known to occur under appropriate circumstances [17]. Generally,
Caroli-de Gennes-Matricon (CdGM) states [18] at sub-gap energies are found close to the vortex line.
Including the effect of Zeeman splitting, an inversion of the CdGM bands is possible. We show that this
inversion turns the vortex-dislocation system into an effective topological wire with MBS at the surface
terminations. We thus demonstrate that, in principle, MBS can arise from a trivial superconductor, i.e., a
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Figure 1. A trivial superconductor (yellow) is ready to host localized MBS (green) at its termination when a giant vortex (light
blue) with even vorticity n ∈ 2Z is trapped at a screw dislocation. The superconducting phase winds by 2πn, indicated by the
red/blue color scale.

superconductor where the 3D bulk does not possess nonzero topological indices in the absence of other
adjacent materials.

We first introduce a minimal model and argue that MBS are symmetry-allowed for an even number of
flux quanta. We then demonstrate the conceptual reduction of the system to a quasi-one-dimensional
Majorana wire. Finally, we consider in more detail the spatial profile of multi-flux (giant) superconducting
vortices and their CdGM states for vorticities n > 1 and discuss suitable conditions to enter the topological
regime.

2. Model and symmetries

Consider a screw dislocation along the z axis trapping a giant vortex with n flux quanta in an s-wave
superconductor. Around the s axis, the phase of the superconducting order parameter winds by 2πn and we
assume a pairing gap of the form Δ(r) = Δ0(r)e−inϕ in cylindrical coordinates. Schematically, the setup is
shown in figure 1.

In the Nambu basis Ψ = (Ψ↑,Ψ↓,Ψ†
↓,−Ψ†

↑)T, the electronic system is described by the Bogoliubov-de
Gennes (BdG) Hamiltonian

HBdG(r) =

(
H0(r)+Hsoc(r) Δ(r)σ0

Δ∗(r)σ0 −σy[H∗
0 (r)+H∗

soc(r)]σy

)
(1)

with the electronic contribution

H0(r) = (p + eA/c)2/2m − EF − gμBB · σ/2, (2)

and spin–orbit contribution [15]

Hsoc(r) = α(r)(pz/�)[cos(pza/2�)σy − i sin(pza/2�)σx] (3)

imposed by the screw winding. Here, we have the momentum operator p = −i�∇, the electron charge
−e < 0, the period length a of the screw dislocation, the Fermi energy EF , the gyromagnetic ratio g, and the
Bohr magneton μB. The magnetic field B relates to the vector potential A via B = ∇× A. The Pauli
matrices σ ≡ (σx,σy,σz)T act in spin space, while those acting in the particle-hole space are denoted with
τx,y,z. In compounds with high ionicity, the role of σx and σy in equation (3) may be exchanged as shown in
reference [15]. This modification has no implications on our following arguments.

The Hamiltonian possesses the particular rotational symmetry [HBdG, Jz] = 0, with the modified
angular momentum operator Jz ≡ −i�∂ϕ + (n/2)τz, which accounts for the vorticity n. Note that the
translation along z by the distance a (as part of the screw operation) has been omitted in Jz as it does not
affect the topological regime, see supplementary material https://stacks.iop.org/NJP/24/053057/mmedia
[19]. The eigenvalue � of Jz is a good quantum number and the eigenfunctions of HBdG may be labeled as

Ψ�(r,ϕ, z) = ψ�(r, z)ei[�−(n/2)τz]ϕ. (4)

2
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The constraint �− (n/2)∈Z assures that the wave functions remain single-valued under a circulation
around the giant vortex, ϕ→ ϕ+ 2π. This yields integer (half-integer) values for � when n is even (odd).

As a minimal requirement, MBS must be eigenstates of the particle-hole operator C = τyσyK, with K
the complex conjugation. Since the particle-hole operator anti-commutes with the modified angular
momentum, {C, Jz} = 0, it holds � 	→ −� under C. Consequently, any MBS must have � = 0 to be mapped
onto itself. Together with the single-valuedness of Ψ�, it follows that n ∈ 2Z is a necessary condition for the
existence of MBS. Similar arguments are known from full-shell nanowires [12] and magnetic skyrmions
[16, 20], and go back to earlier work on vortex-bound zero modes [21]. The system of bound-states
centered around the vortex core can be assigned the same topological Z2 index as multi-mode quantum
wires [22–25], see supplementary material [19]. However, topological transitions can only be triggered by a
band inversion of modes with � = 0. To gain more qualitative insight, the problem is reduced to a
one-dimensional effective problem in the following.

3. Reduction to one dimension

The angular dependence can be removed from the problem by virtue of the unitary transformation

UJ ≡ e−i[�−(n/2)τz]ϕ. (5)

This motivates us to narrow the following discussion to the subspace of even vorticity n and � = 0.
Neglecting the radial dependence of α(r) on the scale of the giant vortex, the wave function decomposes
into ψ0(r, z) = ψ0(z)χ(r), with a scalar radial part χ(r) and an axial part ψ0(z). While the separation of
variables helps to streamline our analysis, the assumption on α must be relaxed in most real materials,
where the Thomas–Fermi length is shorter than the superconducting coherence length. At the same time,
our qualitative findings are robust toward a decaying shape of α(r) as long as the net spin–orbit effect on
the relevant CdGM wavefunctions does not vanish. For the CdGM states, which have energies well inside
the bulk gap Δ∞, χ(r) is localized at the vortex. Here, we neglect all other states to study the low-energy
properties of the system. To capture the emergence of MBS, it is convenient to average out the radial
dependence and obtain an effective one-dimensional problem along the z axis. Let the probability-weighted
planar mean for a quantity X(r) be

〈X(r)〉χ =

∫ ∞

0
dr r χ†(r)X(r)χ(r). (6)

The mean radius R = 〈r〉χ, superconducting gap Δ̄ = 〈Δ0(r)〉χ, and field strength B̄ = 〈B(r)〉χ are of
particular interest here. Furthermore, the mean Zeeman splitting ĒZ = gμBB̄/2 is introduced for brevity.
Note that even in the presence of in-plane anisotropy, a reduction to a low-energy 1D model of vortex
bound states is possible, if an appropriate form factor f (ϕ) is introduced in the planar average. After a
spin-space rotation with Uσ = exp[iσzkza/4], the effective low-energy 1D Hamiltonian reads

Heff =

[
�

2k2
z

2m
− μ̄

]
τz − ĒZσz + αkzτzσy + Δ̄τx, (7)

with an effective chemical potential μ̄ 
 EF [19]. By virtue of equation (7), the electronic states within the
vortex/dislocation tube are described by the well-known Hamiltonian of Majorana nanowires, which enters
the topological phase for [4, 5]

Ē 2
Z > |Δ̄|2 + μ̄2, (8)

i.e., for sufficiently large effective field strength B̄. In this phase, MBS appear at the ends of the wire, that is
at the two surface terminations of the vortex/dislocation axis. Remarkably, this demonstrates that the system
at hand—a trivial superconductor—is generically susceptible to a topological regime with MBS. To solidify
this conceptional result, we give more details on the nature of the transition and suitable material properties
below.

4. Giant vortices and CdGM states

The spatial distribution of the superconducting order parameter Δ and the magnetic vector potential A is
well captured within the Ginzburg–Landau (GL) theory. In reduced units, see references [26, 27] and the
supplementary material [19], the free energy density

FGL =
κ2

4
(|Δ|2 − 1)2 +

1

2
|(∇+iA)Δ|2 + 1

2
(∇×A)2 (9)

3
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Figure 2. Radial profile of superconducting vortices with n = 1 − 6, 10 flux quanta (dark to bright). (a) Superconducting order
parameter, inset: planar profile for n = 2; (b) vector potential, inset: planar profile of the magnetic field for n = 2;
(c) supercurrent, inset: planar profile for n = 2. The dimensionless quantities are defined in [19].

Figure 3. Electronic bound states in a giant vortex with n = 2. For weak Zeeman splitting, the CdGM band structure remains
topologically trivial: exact diagonalization reveals the spectrum (a) and the radially resolved density of states (DOS) (b), where
the schematic peak structure (c) has no zero-bias features at the core. When the innermost CdGM bands get inverted by
sufficiently strong Zeeman splitting and n is even, a topological regime opens up, cf the spectrum (d). The DOS (e) reveals a gap
at r = 0, similar to the trivial case (a) and (b). However, owed to the non-trivial topology, an additional isolated zero-bias peak
caused by MBS is expected at the surface termination (f). The MBS are obtained from an effective 1D wire model, see
equation (7), for which the radial probability weight r|χ(r)|2 of the lowest-energy CdGM state at � = 0 (red triangles in (d)),
yields effective (averaged) 1D parameters: R, Δ̄, and ĒZ (note also E0

Z = gμBB(0)/2). The planar probability density |χ(x, y)|2 is
shown as an inset. As a result, the band dispersion (h) in the z direction of the effective 1D system (along the vortex/dislocation
axis, color scale represents spin polarization parallel to the spin–orbit field) develops a topological character and induces
zero-energy MBS (i) at the surface terminations (here from exact diagonalization). The inset shows the energies of the lowest
eigenstates. The definitions of dimensionless quantities and all numerical parameters are introduced in the supplementary
material [19].

is solely characterized by the dimensionless quantity κ = λ/ξ, the ratio of the superconducting penetration
depth λ and the coherence length ξ. Taking full account of the dislocation, the screw symmetry imposes a
staircase winding of the supercurrent. However, as shown by Ivlev an Thompson [28], this effect is
parametrically small in a/λ, and shall be neglected here. The parameter κ is decisive of whether a
superconductor is of type-I (κ < κc ≡ 1/

√
2) or type-II (κ > κc). Close to κc, the vortex–vortex

interactions become small, allowing for stable giant vortices with intermediate vorticities.
Numeric vortex solutions in the weak type-I case (κ = 0.4), figure 2, define the confining normal-core

Δ(r), vector potential A(r), and current j(r) relevant for electronic CdGM states. Let us stress that type-I
superconductors of finite thickness are ready to host vortices with a low number of flux quanta [17]. In fact,
single-flux vortices become stable below a threshold thickness ∼ξ/(1−κ/κc). Close to κc, this mesoscopic
length bridges from the microscopic scales of the superconductor to the macroscopic lengths in bulk
specimen. Furthermore, the screw dislocation provides an additional pinning potential, see [19]. Note that a
weak type-II superconductor with a strong pinning potential at the dislocation line would be an equally

4
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suitable candidate for our proposal. This gives us good reason to believe that the existence of giant vortices
trapped at dislocation lines should persist to specimens of macroscopic size.

The confinement of electrons by the superconducting flux tube provides discrete CdGM in-gap states
that crucially depend on the vorticity [18, 29–33]. These states are obtained by solving the BdG
Hamiltonian (1) in the plane orthogonal to the vortex axis (recall α(r) is assumed constant within the
vortex region). Figures 3(a)–(f) shows the spectrum of CdGM states and the corresponding density of
states. In absence of Zeeman splitting, the CdGM states disperse as a function of the (discrete) quantum
number � and a total of |n| spin-degenerate branches cross zero energy [33]. As derived in reference [32],

these states have a typical spacing ΔE ≈ (Δ2
∞/EF) π2|n|1−γ

2π+4|n|γ , with Δ∞ the asymptotic superconducting energy
gap and γ a non-universal exponent close to unity (reference [32] reports γ ≈ 0.78). Flux tubes with an
odd vorticity feature a large number of low-energy states at small |�|. Giant vortices with an even number of
flux quanta, on the contrary, have a large energy gap of the order of Δ∞ at � = 0. Combining these two
results one arrives at a crude, yet surprisingly accurate, estimate for the separation Δ� ≈ 2(EF/Δ∞)/|n|1−γ

between branch crossings as a function of the modified angular momentum �.

5. Topology and Majorana bound states

Including the Zeeman effect, the spin degeneracy is lifted and each branch splits into a pair of
non-degenerate branches (in the two-fold redundant BdG formalism), with clear signatures in the local
density of states. Upon increasing the splitting, the two branches closest to zero energy at � = 0 get inverted,
which corresponds to the topological transition captured by equation (8): the CdGM spectrum at � = 0
maps approximately to the spectrum of the one-dimensional Hamiltonian with averaged fields,
equation (7), at kz = 0 In figure 3, both the trivial CdGM (a)–(c) and inverted (topological) bands (d)–(f)
are shown. A mapping to an effective 1D wire is achieved by radial averaging, see figure 3(g) and [19] for
details. The inversion of the lowest two states indicates the gap closing and reopening known from
Majorana wires, see figure 3(h) for the dispersion relation for the inverted-band case. Note that only the
central CdGM bands of the 1D system matter for the topological phase and could, in principle, be directly
mapped to the Kitaev chain [1] without the detour to the nanowire model. However, to make the role of the
spin–orbit coupling more apparent we keep a four-band effective model. The radial averaging (6) bears
several advantages. On the one hand, it formally maps a higher-dimensional problem to a 1D effective
model, see equation (7), which is readily identified with the topological nanowire. In the supplementary
material we provide a detailed argument that the topological character is independent of this reduction
scheme. On the other hand, the numerical solution of the problem is now split in two tasks: first, the vortex
core and CdGM states are computed for the radial problem, figures 3(a)–(g). In the second stage, the
effective parameters allow to solve the nano-wire problem, figures 3(h) and (i). Both tasks can be performed
with high numerical accuracy. The full two-dimensional exact diagonalization calculations in the
rz-plane—a task that becomes necessary if the spin–orbit coupling shows a strong spatial
dependence—would impose severe numerical limitations on the system size, and the results would be
overly prone to finite-size errors.

In the topological phase, MBS appear at the terminations of the wire, i.e. one at each sample surface.
The CdGM states can be resolved in the differential conductance of scanning tunneling experiments [34], as
shown schematically in figures 3(c) and (f). A MBS would lead to an additional peak located at E = 0 and
close to r = 0. Such a peak—unattached to the dispersive CdGM bands—is a measurable signature of the
MBS. The relative strength of this peak in comparison to the other subgap states depends on the localization
of the MBS at the surface. The probability density of the MBS along the z axis is shown in figure 3(i). The
characteristic length ζ ≈ vF/Δeff of the exponential localization ∝e−z/ζ is inversely proportional to the
effective gap Δeff in 1D. The latter may be given by the band gap at either kz = 0 or kz ≈ kF with the Fermi
wave vector kF of the effective wire.

6. Material requirements

Before concluding, let us briefly comment on the energy scales involved in the problem, and how they
cooperate to favor a topological phase: the five independent energy scales to consider here are (i) the kinetic
energy K = �

2/2mξ2 at wavelengths ∼ξ, depending on the effective mass m, (ii) the Fermi energy EF

(iii) the bulk superconducting gap Δ∞, (iv) the Zeeman splitting ĒZ , and (v) the spin–orbit splitting αkF

induced by the screw dislocation. Apart from natural constants, the Zeeman splitting only depends on the
superconducting penetration depth, ĒZ ∝ λ−2 (assuming κ ≈ 1), and is estimated to be in the range
10 − 100μeV for typical values of λ. To reach the topological regime, the spacing of the lowest CdGM states

5
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at � = 0 must not exceed the Zeeman energy. At the same time, the superconducting gap Δ∞ needs to be
large enough to allow for measurements. As the spacing between CdGM branches decreases with K , a large
effective mass would facilitate the band inversion. Furthermore, EF/Δ∞ should be moderate to ensure an
unambiguous resolution of the MBS zero-energy peak. Also, our effective low-energy model is only valid for
a small Fermi energy. This is again favored by a large effective mass. Spin–orbit effects enter the game once
band inversion is present: opening a substantial gap at kz = kF reduces the localization length ζ and avoids
the hybridization of the two MBS. Spin–orbit coupling is guaranteed by the dislocation [15]; the strength
depends on the chemical composition of the material and will likely increase for heavier elements. Whereas
our approximation of a radially constant parameter α(r) ≈ α requires the Thomas–Fermi length to be
comparable to the coherence length, relaxing the approximation will not qualitatively affect the findings,
but merely add quantitative constraints. In summary, we expect our proposal to apply to superconductors
with κ ≈ 1, large effective mass m, not too strong superconducting gap Δ∞ and a crystal system known to
host screw dislocations. Suitable giant vortices can be created by sweeps of an external magnetic field.

Identifying a specific material that fulfills all of the requirements above is a challenging task that goes
beyond the scope of this work. Although we cannot predict a strong candidate, we conclude our discussion
with a brief prospect on relevant material classes for future investigations related to our conceptual
proposal. We focus on two key properties: the capability to host multi-quantum vortices and a small Fermi
energy. The former by itself is not too difficult. With a rapidly increasing number of reported compounds
[35–38], finding superconductors at the type-I/type-II-crossover is very realistic. Alternatively, giant
vortices can be created in type-II superconductors by means of lateral specimen confinement and control of
vortex pinning [39–42]. Exceptionally small Fermi levels, on the other hand, have recently been reported in
iron-based compounds such as FeSe [43, 44]. In addition, there is a growing family of
superconducting-doped semiconductors [45] with members of both type-I and type-II. Such materials
frequently have unconventional properties that are absent in our model, and doping would also require to
account for disorder effects. More specialized models combined with DFT results may help to find a good
candidate in future work.

7. Conclusion

We demonstrated that a pair of topological lines—a giant vortex trapped at a screw dislocation—is capable
of creating a quasi-one-dimensional topological wire hosting MBS in an otherwise trivial superconductor.
This proposal now awaits physical realization, which—unlike other defect-based systems, e.g. [46]—is
facilitated by the trivial bulk topology of the superconducting state. Screw dislocations are ubiquitous and
their appearance can often be controlled during sample growth. Giant vortices, on the other hand, are
known to exist in easily available materials. Therefore, our proposal opens an exciting and realistic route to
hunt for MBS without sophisticated fabrication of nano-hybrid structures, such that topological
superconductivity may become accessible for a broad experimental community.
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